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Abstract

This report pertains to a Laboratory Directed Research and Development project which was
funded for FY94 and FY95. The goal was to develop building blocks for small, cheap sensors -
that use optical spectroscopy as a means of detecting chemical analytes. Such sensors can have
an impact on a wide variety of technologies, such as: industrial process control, environmental
monitors, chemical analysis in medicine, and automotive monitors. We describe work in
fabricating and demonstrating a waveguide/grating device that can serve as the wavelength
dispersive. component in a miniature spectrometer. Also, we describe the invention and modeling
of a new way to construct an array of optical interference filters using sub-wavelength lithography -
to tune the index of refraction of a fixed Fabry-Perot cavity. Next we describe progress in more
efficiently calculating the fields in grating devices. Finally we present the invention of a new type
of near field optical probe, applicable to scanning microscopy or optical data storage, which is
based on a circular grating constructed in a waveguide. This result diverges from the original goal
of the project but is quite significant in that it promises to increase the data storage capacity of
CD-ROMs by 10 times.
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Introduction

This report pertains to the Laboratory Directed Research and Development project with the
same title which was funded for FY94 and FY95. The report consists of the journal articles and
disclosures which are listed as Sections 2 to 6 in the Table of Contents.

The goal of this work is to develop building blocks for small, cheap sensors that will use
optical spectroscopy as a means of detecting chemical analytes. Fabrication of the devices by
microelectronics techniques is a key feature of the work so that the goals of small and cheap may
" eventually be realized.. We have principally concentrated on the wavclength range of 1.5 to 1.8
um. This gives us access to the first overtone of CH, NH, and OH stretches. Such sensors.can
have an impact on a wide variety of technologies, such as: industrial process control,
environmental monitors, chemical analysis in medicine, and automotive monitors. Many detection
problems can be solved with instruments of lower spectral resolution and lower signal-to-noise
characteristics than traditional bench top equipment. The hope is that small, cheap sensors may
lead to more widespread and beneficial applications of optical spectroscopic detection.

Section 2 describes work in fabricating and demonstrating a waveguide device that can serve
as the wavelength dispersive component in a miniature spectrometer. Sections 3 and 4 describe
the invention and modeling of a new way to construct an array of optical interference filters using
sub-wavelength lithography to tune the index of refraction of a fixed Fabry-Perot cavity. This
filter array can serve as the wavelength selective portion of a miniature spectrometer. Section 5
describes progress in more efficiently calculating the fields in grating devices. The new methods
are particularly attractive because they are highly intuitive and allow one to write equations for
complicated structures by inspection. A more complete presentation of our novel theoretical
approach will be submitted to the Journal of the Optical Society of America in early 1996. In
Section 6, we present the invention of a new type of near field optical probe, applicable to
* scanning microscopy or optical data storage, which is based on a circular grating constructed in a
waveguide. Although this last result diverges from the original intent of the project, it was a
natural outgrowth of our work and may prove quite significant.

This project evolved into more theory and less experiment than was envisioned at the outset.
Nevertheless, the work has produced ideas for devices that appear to be truly revolutionary. We
are especially excited about the very small two-dimensional filter array and its application to near-
ir sensors. Also, we are excited about the near field optical probe and its potential to increase the
density for CD ROM data storage by a factor of 10 or more. Fabrication of these devices is
continuing with other funding. Patents and funding for commercialization are being sought.

-



Near-IR Spectroscopy with a Disp¢rsive Wavéguide Device

B.R. Stallard, A. J. Howard, R. Corless, G. R. Hadley, R. K Rowe,
G. A. Vawter, J. R. Wendt, and I J. Fritz" |

Sandia National Laboratories, AIbuquerqué, NM 87185-1405

ABSTRACT

Miniature, low cost sensors are in demand for a variety of applications in industry, medicine,
and environmental sciences. As a first step in developing such a sensor, we have etched a grating
into a GaAs rib waveguide to serve as a wavelength dispersive element. The device was
fabricated with the techniques of metal-organic chemical vapor deposition; electron-beam
lithography, optical lithography, and reactive ion-beam etching. While full integration is the
eventual goal of this work, for the present, a functional spectrometer was. constructed with the
addition of a discrete source, sample cell, lenses, and detector. The waveguide spectrometer has a
spectral resolution of 7.5 nm and a spectral dispersion of 0.11°/nm. As presently configured, it
functions in the spectral range of 1500 to 1600 nm. A demonstration of the analytical capability
. of the waveguide spectrometer is presented. The problem posed is the determination of diethanol
amine in an ethanol solution (about 10 to 100 mg/ml). This involves the detection of the first
overtone of the NH stretch at 1545 nm in a moderately absorbing solvent background The
standard error of prediction for the determination was 5.4 mg/ml.

Index Headings: optical sensors, near-ir spectrdscopy, optical waveguides

INTRODUCTION

Miniaturé, low cost sensors are in demand for a variety of applications in industry,
medicine, and environmental sciences. One concept to meet this need is.a miniature waveguide
spectrometer built with integrated circuit technology. The proposed spectrometer has four fully
integrated components, a source, a sample interaction area, a wavelength selective device, anda
detector. We report the fabrication and testing of a waveguide device with wavelength dispersive
characteristics suitable for incorporation into such a miniature spectrometer. For the present, this
device is combined with discrete components to produce a functional spectrometer. The
characteristics of the waveguide spectrometer are detemuned and a dernonstratnon of its analytlcal

_application is performed.



The present work is inspired by the area of research known as wavelength-division
multiplexing (WDM) which is important to the communication industry'. Modulated
signals are imposed on distinct wavelengths of light and the signals combined for transmission. At the
receiving end the wavelengths are separated in order to unravel the individual signals. Many devices
have been studied for this task and some have failed because of the requirement for high spectral
- resolution. However, sensor applications of near-ir spectroscopy rarely require spectral resolution
better than a few nm. Therefore, the discarded ideas from the WDM research may deserve further
attention for development as spectroscopic sensors. The present example is one of the simplest, a
. grating etched into a rib waveguide. Our work is related to the work of Goldman and co-workers?, yet
is unique in that ITI-V materials are employed thereby opening the way for integration with a source
and a detector.

EXPERIMENTAL

Fabrication of the waveguide device was accomplished in the facilities of the Compound
Semiconductor Research Laboratory at Sandia National Laboratories. The primary fabrication
tools were metal-organic chemical vapor deposition(MOCVD), electron beam lithography, optical
contact lithograpy, and reactive ion-beam etching (RIBE).

" Fig. 1 is a schematic of the optical set up used in these experiments. The waveguide device is
positioned with the orientation pictured in the top of Fig. 2. The source is a model C86069-13
edge emitting diode from EG&G Optoelectronics Division, with the fiber optic pigtail and can
removed. The spectrum of the source is centered at about 1550 nm with a full width half
maximum (FWHM) of about 110 nm. The total optical power is about 0.5 mwatt. The cameras
are model 7290 from Electrophysics, having room temperature PbS cathodes. Cameras #1 and #2
are used for alignment only, while camera #3 collects the spectroscopic data. The lens shown
schematically in front of camera #3 is a spherical and cylindrical lens combination required to
image the spectrally dispersed signal onto the cathode of the camera. The other three lenses are
of an infinite conjugate design placed in a microscope style mounting. The image on camera #3 is
captured with a Data Translation model DT2876 board in a 486 PC. The image is converted to a
conventional spectrum using the line scan function of the Global Data Image software.

The interference filter, which is used for calibrating the spectrometer, was purchased from
CVI Laser. It has a peak transmission (i.e. passband) for 0° incident angle at about 1570 nm and
a transmission bandwidth (FWHM) of about 5.3 nm. When the optical set up of Fig. 1 is to be
used as a spectrometer, the interference filter shown in Fig. 1 is replaced with a conventional glass
cuvette.

Samples for the analytical demonstration were prepared by weighing reagent grade diethanol
amine (DEA) into 10 ml volumetric flasks and filling to the mark with reagent grade ethanol. The
commercial spectrometer used for some parts of this work was a Nicolet 800 Fourier transform
(FT) instrument with a liquid nitrogen cooled InSb detector.



RESULTS AND DISCUSSION

Fabrication of the devices. Figs. 2 and 3 illustrate schematically the construction of the
dispersive waveguide device. The following layers were grown on a two inch GaAs substrate by
MOCVD: 2.5 um of AlGaAs, as the bottom cladding layer, 0.2 um of GaAs, as the guiding layer,
and 0.6 mm as the top cladding layer. Electron-beam lithography was employed to pattern a
second order grating with a pitch of 0.475 um and approximately equal lines and spaces. The
grating stretches 600 um along the length of the waveguide. The pattern for the 6 um wide rib

‘waveguide was produced with optical lithography. Etching was done with a RIBE,; first, the
electron beam pattern, to a 0.2 um depth, and then the optical pattern, to a 1.5 um depth. Cross--
sectional scanning electron microscope images were taken to verify the etch depths. For the
optical experiments, the wafers were cleaved into pieces about 2 mm square containing several
dispersive devices, including some waveguides without gratings which are helpful in aligning the
source to the device.

Calibration and characterization. Fig. 4 shows six individual transmission curves for the
bandpass filter, obtained with the optical apparatus in Fig. 1, where the bandpass filter is rotated
to give varying passbands. Having previously calibrated the rotation angle versus wavelength, the
pixel scale can be converted to wavelength as in Fig. 6a. Also, a knowledge of the specific optical
components used for imaging allows us to calculate a spectral dispersion of 0.11%/nm for the
grating device. Fig. 4 also contains information regarding the spectral resolution of the apparatus.
Knowing the spectral width of the bandpass filter, we calculate (using a simple Gaussian
convolution model) that the spectral broadening function of the waveguide spectrometer is about
7.5 nm (FWHM). This can be considered the spectral resolution of the waveguide spectrometer.
The resolution can be altered somewhat by the optics chosen to image the grating onto the
cathode of the camera. However, there is a more fundamental limitation to the resolution of the .
waveguide spectrometer, that is the interaction distance of the grating with the light in the
waveguide. The interaction length is, in-turn, a function of the groove depth of the grating.
Shallow grooves permit the light to interact with more teeth of the grating giving a higher
resolving power. Yet spreading the light out over a wider portion of the grating gives, in effect, a
wider 'slit width, to draw an analogy with a conventional grating monochrometer. A thorough
understanding of the relationship of groove depth and spectral resolution will require further
study.

An analytical demonstration. In order to demonstrate the application of the waveguide
spectrometer we have chosen to determine the concentration of DEA in an ethanol solution over
the range of about 10 to 100 mg/ml. This involves the detection of the first overtone of the NH
stretch at about 1545 nm in the presence of a moderately absorbing solvent background.
Although there is no specific commercial need for this determination, it represents an important
class of compounds, the amines. The determination was first performed with a commercial FT
spectrometer. The results are presented in Fig. 5. Part (a) is a series of representative spectra
with differing amounts of DEA in a cell of 1 mm path length. Since the reference spectrum is air,
both the NH peak at 1545 nm and the OH peak, primarily from the solvent, at 1580 nm are
evident. Fig. 5b is the cross-validated calibration curve constructed using partial least squares



(PLS) data analysis®*. The standard error of prediction (SEP), 0.41 mg/ml, is a measure of the
precision of the determination assuming negligible error in the reference concentrations.

To acquire spectra with the waveguide spectrometer, we remove the interference filter from
the apparatus of Fig. 1 and place a 5 mm optical sample cell in the collimated beam at the same
position. Fig. 6 contains the results of the DEA determination. In this case, the reference
spectrum is ethanol without DEA (rather than air as above) so that the OH peak from the solvent
is removed from the spectrum. The SEP is 5.4 mg/ml; less precise that the results from the
commercial FT instrument, but still a small fraction of the range of the samples. It should be
noted that the precision of the determination is largely a function of the detector type and source
intensity, so that absolute performance capabilities of the waveguide spectrometer should not be
inferred. It is clear that the waveguide spectrometer is capable of performing a quantitative
analysis for this NH containing compound. '
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“A Two Dimensional Array of Optical Interference Filters
Produced by Lithographic Alterations of the Index of
Refraction.”

Sumanth Kaushik and Brian R. Stallard

Description

Optical interference filters appear in a number of forms. The class of filters with the
highest transmission and narrowest linewidths are Fabry-Perot filters. These filters are formed by
sandwiching a half~wave A¢/2 (or some multiple thereof) spacer layer between two mirrors. The
lowest absorptive losses are typically found in mirrors made from multi-layer dielectric stacks that
are usually quarter wave in thickness (Ao/4). The bandpass of these filters (we denote the center
wavelength of the pass-band as Ao) is determined by the thickness of the spacer layer and the
bandwidth is determined both by the thickness of the spacer layer, as well as the reflectivities of
the two mirrors. ‘

The most common Fabry-Perot filters commercially available have pass-bands that are
spatially uniform with variations as small as .1%. Filters with spatially varying pass-bands,
however, are readily available. These filters are manufactured by proportionally varying the
thickness of all the layers uniformly across the surface of the filters. These filters, called wedged
filters, are either circular (circular variable filter - CVF) or linear (linear variable filter - LVF). In
the former, the thicknesses of the multilayer films vary linearly with the angular position across a
circular substrate; in the latter, they vary linearly with position across a rectangular substrate.

LY

Although these filters are widely used, they have several limitations. First, with wedge
filters, it is not possible to have both large dispersion (>> 10 nm/mm) as well as good spectral
response. The dispersion is proportional to the wedge angle.; however a large wedge angle
results in poor transmission characteristics (due to non-normal reflections from the angled mirror
facet) , as well as a loss in bandwidth (due to wavefront inhomogenity across the angled facets).
Owing to these limitations, wedge filters are large (e.g. typical LVFs in the 300 nm - 700 nm
spectral range are 60 mm in length) and have dispersion of about 5-10 nm/mm (CVFs are
typically 25-50 mm in diameter and have a dispersion of 1 nm/degree). Significant

14



improvements in these numbers is not expected ; therefore, ultra-miniaturization of devices (e.g.
sub-millimeter ) using LVF and CVF is not possible with existing technology.

. Another restrictive feature of wedge filters is that the pass-band can change only in a
continuous manner across the substrate. In many spectroscopic applications (such as the design of
optical sensors), one is often interested in only a limited number of distinct, and often non-
uniformly spaced spectral lines. However, with a spectrophotometer using a wedge filter, one
cannot pick and choose the desired channel unless one has a well collimated (uniform) beam that
encompasses all the desired channels. Since maintaining a good collimation along with acceptable
light levels is difficult (especially if the channels are separated by 60 mm), it is often necessary to
either move the spectrophotometer (e.g. a rotating CVF), or it is necessary to steer the beam.
Neither of these strategies is well suited for rapid data collection, especially if the desired channels
are physically separated by a large distance.

Another impediment to the miniaturization of wedge filters is that they are essentially
one-dimensional structures. Typically, pass-bands can be varied along only one dimension (linear
position in LVF and azimuthal angle in CVF). A two-dimensional wedge filter is difficult to
fabricate and to our knowledge, none are available commercially.

We describe here a new technique to produce on a single substrate, a two dimensional
array of optical interference filters in which the pass-band at any spatial location on the substrate
is a variable, user supplied parameter. An operational diagram of a typical “filter array” is shown
in Figure 1. This array is arranged in a pixel format similar to that of to a two-dimensional
photodetector array (e.g. silicon CCD array). This is to suggest a possible application of such a
filter array, in conjunction with a two-dimensional detector array, to the design of a compact
spectrophotometer. However, unlike conventional miniature spectrophotometers that utilize LVFs
and CVFs, each channel can be individually assigned a different pass-band wavelength over a
relatively large spectral range (AA/Ao ~ .4). In applications where information at only a few
wavelengths are desired, a spectrophotometer made using the filter array can be extremely
miniature since the pixel size can be made as small as the dimensions of the detector pixel (< 100

pum).

Our technique is to form an interference filter by optically contacting two dielectric
mirrors, where a series of one and two dimensional periodic steps is lithographically patterned on
the top surface of one of the dielectric mirrors. A sketch of our design is shown in Figure 2. In
the absence of any patterning, the juxtaposition of two identical dielectric mirrors leads to the
formation of a natural Fabry-Perot cavity having a width of Ao/(2n.). The presence of the two
mirrors on the top and bottom of this cavity yields the prototypical optical interference filter that
is well documented in the literature, with the pass-band centered at A, and a bandwidth
determined by the finesse. Note that in Fig. 2, both the multilayer mirrors end with a low-index
layer. Since each of the low (high) index layer is quarter wave thick (A¢/(4n.) for the low index
layer and A¢/(4ny) for the high index layer), the combination of the two mirrors yields the cavity

15



with the width A¢/(2n.)= 2 A¢/(4n.). The dielectric mirror shown in Fig. 2 (with three high index
Silicon layers) has a reflectivity of approximately 98%.

. The pass-band is changed by etching a periodic pattern onto the top surface of one of the

mirrors. The etched surface appears as a set of periodic grooves or steps in the outer quarter

wave layer of one of the dilectric mirrors. In this quarter wave layer, the index of refraction is

different from that of the bulk film and this difference can be controlled by varying the geometry
-of the pattern (e.g. changing the pitch and width of the grooves). Varying the index of refraction

of the cavity region changes its optical thickness thereby changing the pass-band of the

interference filter. For the one-dimensional pattern in Fig. 2, the effective index of refraction is

approximated as:

ng = ni.f + ni,.(A - f) 5
for polarization parallel to the groove direction and

L=Lre_la-/) @

2 2 2
n.L nA ir nLayer

for polarization perpendicular to the groove direction where A is the pitch of the groove and fis
the fill factor. This relation assumes that there are no diffracted orders other than the zeroth order
(hence, such such structures are often called zeroth order gratings) and has been established
experimentally to be reasonably accurate for A < A/2 [1]. In Figure 3, we plot the transmission
curve as a function of the fill factor for a groove pitch of (A=400 nm). This figure is obtained
from a multi-layer thin films computer code. The layer thicknesses of the quarter wave layers are
chosen to have the pass-band for zero fill (f=1) to be centered at 1550 nm. From Fig. 3, it is
seen that by changing the fill factor, the pass-band of the filter changes.

. From (1) and (2), it is seen that the etched layer has an index of refraction that is different
for differing polarizations. This birefringence can be quite large and has been measured
experimentally (for patterned SiO2) to be as much as An=n - n;=.06 [1]. Therefore, the use of a
grooved spacer layer such as that shown in Fig. 2, yields a narrowband polarization filter with
high polarization extinction ratios (< 10”) as is seen in Figure 4. By introducing two-dimensional
patterns (but still maintaining the sub-wavelength periodicity in all symmetry directions), such as
that shown in Figure 5, the polarization response of the filter can be changed and the birefringence
eliminated. Thisis particularly important for optical sensor work where polarization
independent behaviour is desired.

Structures with groove periods smaller than the wavelength such as that shown in Fig. 2
have been investigated for the design of ultra-low reflectance anti-reflection coatings [2-5].
However, a systematic study of the physics and engineering aspects of zeroth-order gratings is at
present lacking.
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Interference Filter

Figure 1: Operational diagram of a two-dimensional array filter.
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Figure 2: Schematic of a one-dimensional patterned interference
filter.
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Figure 3: Transmission vs. Wavelength as a Function of f for
Device in Fig. 2.
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Figure 4: Example of a two-dimensional pattern. The pattern would
appear on the top quarter-wave layer shown in Fig. 2.
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Commercial Potential

We expect our optical interference filter to find a number of useful and potentially
‘important industrial applications. We enumerate here some anticipated uses of our
- device ‘

1. Integrated Optical Sensors: The optical filter when used in conjunction with a

_broadband semiconductor diode source and an array detector is a miniature
spectrophotometer. Such a spectrophotometer can form the basis of a low-cost
miniature optical sensor.

2. Polarizing Interference Filters: As described earlier, by appropriate patterning, the
optical interference filter can be made polarization sensitive with extinction ratios better
than than 10®. The filter described here is useful for applications requiring a minature
low-cost narrowband filter (e.g. optical sensor and laser design).

Although the design of this product was not motivated by direct solicitation, we
believe that there is a nascent market for this product and therefore, a commercial
interest for the filter described here is expected. For example, presently Hamamatsu
Photonics K K. manufactures a commerical integrated spectrophotometer (S4111-
S4114 series) in the 300 nm -960 nm spectral regime using a LVF and Si CCD array.
In addition to companies such as Hamamatsu that specialize in photonics products, the
interference filter array would also be of interest to custom detector manufacturers such
as Santech Corp., EG&G Judson and Epitaxx Inc. . These companies would be
motivated by potential applications to optical sensors.

An attractive feature of our design from the viewpoint of its commericialization is
its potentially low manufacturing cost. Since the principal technical merit of our filter
array is its small stize, we anticipate most applications using our design to capitalize on
- this particular aspect. The advantage of fabricating small structures is that a large
number can be fabricated on an individual substrate. It is expected that over 200, 5x5
filter arrays (with a pixel size of 150 um x 150 um) can be fabricated on a single 2 inch
substrate. For a typical 2 inch substrate (costing roughly $200), the nominal coating
cost is roughly $1000 and an e-beam lithography cost is roughly $2000. Assuming that
200 arrays can be made on each substrate, the manufacturing cost per filter array,
excluding packaging, can be well under $50. This cost can be further reduced if
multiple substrates are coated per coating run (usually 10-15 two inch substrates can be
coated on each run). This cost is to be compared with currently available filters such as
LVF and CVF where natural economies of scale are lacking and the manufacturing cost
per filter can be well over $100 (typically $300-$500).
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Due its is potential uses and its relatively low manufacturing costs, we believe that
the filter described in this TA has good commericialization potential. We suggest that a
patent application be sought for this in United States. Since there are many photonics
vendors in Japan and Europe who specialize in optical filters and detectors, it would be
advisable to seek patents in Japan and a few of the European countries (e.g. Germany,
" England and France).
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A Two Dimensional Array of Optical Interference Filters

- Produced by Lithographic Alterations of the Index of Refraction

S. Kaushik and B. R. Stallard

ABSTRACT

We describe a new concept for producing, on a single substrate, a two-dimensional array of
optical interference-filters where the pass-band of each element can be independently specified. The
interference filter is formed by optically contacting two dielectric mirrors so that the top quarter-wave
films of the two mirrors form a Fabry-Perot cavity having a half-wave thickness. In the new device,
we propose to etch an array of sub-wavelength patterns into the top surface of one of the mirrors before
forming the cavity. The patterns must have a pitch shorter than the operational wavelength in order to
eliminate diffraction. By changing the index of refraction of the half-wave layer, or the optical
thickness of the cavity, the patterning is used to shift the pass-band and form an array of interference
filters. One approach to producing the array is to change the fill factor of the pattern. Once the filter
array is produced it may be mated to a two-dimensional detector array to form a miniature
spectrophotometer.

KEYWORDS: sub-wavelength structures, interference filter, spectrophotometer,

2. CURRENT TECHNOLOGY FOR FILTER ARRAYS

Optical interference filters appear in a number of forms. The class of filters with the highest
transmission and narrowest linewidths are Fabry-Perot filters. These filters are formed by sandwiching
a half-wave (or some multiple thereof) spacer layer between two mirrors. The lowest absorptive losses
are found in mirrors made from multilayer dielectric stacks that are usually quarter-wave in thickness.
The pass-band of these filters (i.e. the center wavelength, A,) is determined by the optical thickness of
the spacer layer. The bandwidth is determined by both the optical thickness of the spacer layer and the
reflectivities of the two mirrors. The most common Fabry-Perot filters commercially available have
pass-bands that are spatially uniform with variations as small as 0.1%. Filters with spatially varying
pass-bands are also coinmercially available and are manufactured by proportionally varying the
thickness of all the layers uniformly across the surface of the filters. These filters, called wedge filters,
are either circular (circular variable filter - CVF) or linear (linear variable filter - LVF). In the former,
the thicknesses of the multilayer films vary linearly with the angular position on a circular substrate; in
the latter, they vary linearly with position across a rectangular substrate.

Although wedge filters are widely used, they have several limitations. First, it is not possible to

have both large dispersion (>> 10 nm/mm) and retain other desirable characteristics. The dispersion is
proportional to the wedge angle; however, a large wedge angle results in poor transmission
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characteristics (due to non-normal reflections from the angled mirror facet), and an increase in spectral
bandwidth (due to wavefront inhomogenity across the angled facets). Owing to these limitations,
wedge filters are large (e.g. typical LVFs in the 300 nm - 700 nm spectral range are 60 mm in length)
and have dispersion of about 5-10 nm/mm. CVFs are typically 25-50 mm in diameter and have a
dispersion of 1 nm/degree. Significant improvements in these numbers are not expected; therefore,
ultra-miniaturization of devices employing LVFs or CVFs is not possible with existing technology.

Another restrictive feature of wedge filters is that the pass-band can change only in a continuous
manner across the substrate. In designing an optical sensors one may be interested only in a relatively
small number of distinct, and non-uniformly spaced spectral bands. However, with a wedge filter one
cannot pick and choose the desired channel unless one has a well collimated and uniform beam that
encompasses all the desired channels. Since maintaining a good collimation along with acceptable
light levels is difficult (especially if the channels are separated by 60 mm), it is necessary to either
move the filter (e.g. a rotating CVF), or steer the beam. Neither of these strategies is well suited for
extremely rapid data collection, especially if the desired channels are widely spaced throughout the
spectrum.

Another impediment to the miniaturization of a spectrophotometer based on a wedge filter is that
the filter is essentially a one-dimensional structure. Typically, pass-bands can be varied along only one
dimension (linear position in LVF and azimuthal angle in CVF). A two-dimensional wedge filter is
difficult to fabricate and to our knowledge, none is available commercially.

3. ANEW TECHNOLOGY

We describe here a new technique to produce on a single substrate, a two dimensional array of
optical interference filters in which the pass-band at any spatial location on the substrate is a variable,
user supplied parameter. A schematic diagram of the new type of filter array is shown in Fig. 1. This
array is arranged in a pixel format similar to that of a two-dimensional photodetector array (e.g. silicon
CCD array). This is to suggest that such a filter array, in conjunction with a two-dimensional detector
array, can form a compact spectrophotometer. However, unlike conventional miniature
spectrophotometers that utilize LVFs and CVFs, each channel can be individually assigned a different
pass-band over a relatively large spectral range (AA/Ay ~ 0.1 to 0.35). In sensor applications, where
information at only a few wavelengths is required, a spectrophotometer based on this type of filter
array can be extremely miniature since the p1xe1 size can be made as small as the dimensions of the
detector pixel (< 100 um).

Our technique is to form an interference filter by optically contacting two dielectric mirrors,
where a series of one and two dimensional periodic steps is lithographically patterned on the top
surface of one of the dielectric mirrors. A sketch of our design is shown in Fig..2. Each dielectric
mirror (with three pairs of alternating layers of high index Si and low index SiO,) has a reflectivity of
approximately 98%. Note that both of the multilayer mirrors terminate with a low index layer. Since
each of the layers is a quarter-wave thick, combining the two mirrors yields a cavity width, A¢/(2n,),
where n, is the index of refractive of the low index material. The two mirrors on the top and bottom of
this cavity form a prototypical optical interference filter that is well documented in the literature, with
the pass-band centered at A, and a bandwidth determined by the finesse.
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The pass-band is changed by etching a periodic pattern onto the top surface of one of the mirrors.
The patterned surface appears as a set of periodic grooves or steps in the outer quarter-wave layer of
one of the dielectric mirrors. In this quarter-wave layer, the index of refraction is different from that of
the bulk film and this difference can be controlled by varying the geometry of the pattern (e.g.
changing the pitch and width of the grooves). Varying the index of refraction of the cavity region
changes its optical thickness thereby changing the pass-band of the interference filter. For the one-
dimensional pattern in Fig. 2, the effective index of refraction is approximated as:

ng = ni,f + nt,. (A~ f) ¢))

for polarization parallel to the groove direction, and

@

) S
nf - n}l’ f niuyn (A f)

for polarization perpendicular to the groove direction, where A is the pitch of the grooves and f'is the
dimension of the etched region (the fill factor, £, is defined as f/A, also, 0 < f < 1, where f=0 indicates
no etched region). These expressions assume that there are no diffracted orders other than the zeroth
order (hence, such structures are often called zeroth order gratings). Egs. (1) and (2) have been shown
experimentally to be reasonably accurate for A < A2' InFi ig. 3, we plot the transmission curve as a
function of the fill factor for a groove pitch of 400 nm. This figure is obtained from a multilayer thin
films computer code, assuming patterning on only one of the mirror surfaces. The layer thicknesses of
the quarter wave layers are chosen to have the pass-band for f=0 centered at 1550 nm. From Fig. 3, it
is seen that by changing the fill factor, the pass-band of the filter changes.  The spectral range of the
tuning can be readily shown to depend on the mdex of refraction of the cavity dielectric:

A7L= (n-1) . 3)

1_
A, 4 n

The range, AA, is 274 nm for Si, and 120 nm for SiO,, when A, is 1550 nm. This equation assumes
that only half of the cavity is patterned. Twice the range is possible if one is willing to pattern the
surface of both mirrors before forming the cavity. :

Frbr'ln Egs. (1) and (2), it is seen that the etched layer has an index of refraction that is different
for differing polarizations. This birefringence can be quite large and has been measured
experimentally (for a single layer of patterned SiO,) to be as much as An =n,- n;=0. 06 '. Therefore,
the use of a grooved spacer layer such as that shown in Fig. 2, yields a narrow band polarization filter
with polarization extinction ratios better than 10 as is seen in Fig. 4. By introducing two-dimensional
patterns, but maintaining the sub-wavelength penodlclty in all symmetry directions, such as that shown
in Fig. 5, the birefringence of the filter can be eliminated. This is particularly important for optical
sensor work where polarization independent behavior is normally desired.

Structures with groove periods smaller than the wavelength such as that shown in Fig. 2 have

been investigated for anti-reflection coatings®”®. However, such work has not been extended, to our
knowledge, to the area of interference filters, as suggested herein.
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4. CONCLUSIONS AND COMMERCIALIZATION POTENTIAL

This new type of interference filter array overcomes the principal limitations of the wedge filter
that were discussed in Section 2. In summary, the new technology has the following features: (1)
individual array elements are spectrally flat, (2) pass-bands can be specified independently for each
array element, (3) two dimensional arrays can be readily fabricated, and (4) miniaturization is readily
achieved.

There are at least two uses for these devices. (1) Integrated Optical Sensors. The optical filter
when used in conjunction with a broadband semiconductor diode source and an array detector is a
miniature spectrophotometer. Such a spectrophotometer can form the basis of a low-cost miniature
optical sensor. (2) Polarizing Interference Filters. As described earlier, by appropriate pattermng, the
optical interference filter can be made polarization sensitive with extinction ratios better than 10°.

An attractive feature of our design from the viewpoint of its commercialization is its potentially
low manufacturing cost. It is expected that over 200, 5x5 element arrays (with an element size of 150
pm x 150 pum) can be fabricated on a single 2 inch substrate. For a typical 2 inch substrate, costing
$200, the coating cost is about $1000 and the e-beam lithography cost is about $2000. Assuming that
200 arrays can be made on each substrate, the manufacturing cost per filter array, excluding dicing and
mounting, is only $16. This cost can be further reduced if multiple substrates are coated per coating run
(usually 10-15 two inch substrates can be coated on each run). This cost is to be compared with currently available filters
such as LVF and CVF where natural economies of scale are more limited and the retail cost is typically $300-$500.
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e Interference Filter

Figure 1. Schematic diagram of a two-dimensional filter array.
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Figure 2. Cross-section of a Fabry-Perot filter that is tuned by sub-wavelength patterning. The high and low index
materials, ny and n;, are assumed to be Si and SiO, for the calculations of Figs. 3 and 4.
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Figure 3. Calculated transmission vs. wavelength curves for the device in Fig. 2. Several values of the fill factor, f, from 0
to 0.75, are plotted. Shifts are double what is shown if patterning is on both mirror surfaces.

29



Transmission

-4 = .

10 1 1 1 L 1 1
1200 1250 1300 1350 1400 1450 1500 1550 1600
Wavelength (nm)

Figured4. Calculated transmission vs. wavelength curves for TE (parallel to grooves), and TM (perpendicular to grooves)
polarization for the device in Fig. 2. The value of the fill factor is 0.75.

Figure5. Example of a two-dimensional pattern where the fill factor is varied by turning on or off the sub-pixels. The
pitch, A, of the repeating pattern is chosen to be less than half the wavelength to avoid diffraction.
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Fresnel Equations and Transmission Line Analogues for Diffraction Gratings

Sumanth Kaushik
Sandia National Laboratory, Albuquerque, NM 87185-1405

ABSTRACT

A simple and intuitive formalism is presented to describe diffraction in multi-layered periodic structures. We use
the well known results from scalar analysis (wave propagation in homogeneous layered media) and show that they can
be generalized rather readily to vector problems such as diffraction analysis. Specifically, we derive : (1) generalized
Fresnel equations appropriate for reflection and transmission from an infinitely thick grating, (2) a generalized Airy
formula for thin-film to describe reflection and transmission of light through a lamellar grating and (3) a matrix
propagation method akin to that used for multi-layer thin film analysis.

The results developed here complement the recent work on R-matrix and S-matrix propagation algorithms that
have been used in connection with modal and differential grating theories. These algorithms have proven to be
numerically stable for calculating diffraction efficiencies from deep groove gratings. The formalism developed here
expands upon the earlier literature by providing important details that are hitherto unavailable.

1 Introduction

Modal methods to calculate grating efficiencies have a voluminous literature [1]. Modal techniques are easy to
understand conceptually, and easy to implement computationally. The underlying concept in these techniques is an
expansion of the electric/magnetic fields in terms of an orthogonal basis set, solving for the expansion coefficients
by matching boundary conditions and inverting the associated matrices [2, 3, 4]. Although simple to state and
implement, many implementations of this technique suffer from numerical instabilities caused by arithmetic overfiows
arising from the presence of large exponentials in the Rayleigh expansion. This problem is especially severe for surface
relief gratings and multilayer gratings where numerical errors propagated across layers lead to poor convergence [6].

The focus of this paper are “pure” modal methods (to contrast from related techniques such as coupled-mode
or coupled-wave theories [1]) as applied to multi-layer and surface relief gratings. These classes of gratings have
received considerable attention lately and efficient numerical methods have been developed recently to compute
grating peformance (4, 6].

The purpose of this paper is not to add yet another modal technique to the rather large set of extant methods.
Instead, the aim here is to distill the recent results in a form where: (1) the underlying physics is obvious and (2)
the numerics for even the most sophisticated grating computation can be written down by inspection.

Propagation of light in a multi-layer thin film stack is describable in terms of cascaded 2 x 2 scattering/transfer
and propagation matrices. The matrix elements are the reflection and transmission coefficients ohtained from Fresnel
equations. This method is standard, well understood and widely used in the optics community. The principal aim of
this paper is to show that existing methods used in analysis of wave propagation in 1D stratified media are readily
generalizable for inhomogeneous (but periodic) media. In the subsequent discussion, the inhomogeneous medium is
assumed periodic. The results here do not apply directly to media with random or aperiodic spatial variations in the
complex permittivity and susceptibility.

The principal results in this paper are: (1) the development of “vector” Fresnel equations for electromagnetic
waves diffracting from an infinitely thick lamellar grating, (2) the development of “vector” Airy-formula for light
propagating through a lamellar grating and (3) a generalized matrix propagaticn method for multi-layer and surface
relief gratings that is similar in spirit to multi-layer optical thin film theory.

In our formulation, typical scalar quantities such as reflection and transmission coefficients found in standard 1D
analysis, appear as infinite dimensional matrices. The rows of these matrices represent the different scattered orders
and the columns correspond to the coupling between the different orders (i.e. the same mode coupling described
in coupled-wave analysis). Table 1, for example, summarizes the generalized Fresnel reflection formulas or light
reflecting from a periodic surface shown in Fig. 1. Using these generalized reflection and transmission coefficients,
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(a) (b)

Figure 1: Reflection and transmission of light at the interface of: (a) an infinitely thick homogeneous layer with
complex permittivities ¢,, u,; and (b) an infinitely thick lamellar grating with complex permittivities e;(z), u.(z).
Here, a, is the incident amplitude of the relevant field (a; = E, for TE-polarization, and e, = H, for TM-
polarization).  See text for further explanation of notation.

Homogeneous Interface | Inhomogeneous Interface
zikl Ty : :
s 3 1
Reflection r=Y2. 2 = — - — [EIIK;. - Kz.Ea-l] g
%%kh + :‘:kz- EUKL + Ko 2;
) 2k, 2
Transmission | T = = T —m—K,,
. %%ku + %;‘k:. K,.Z,+ XK, '
Power Flow | §= k.la]® —k,.['?|a}? S=a'- (K, +K})-a-a"-I'(K,, +K},)T -a
Ny e’ N mscns? ~ — s~ ~ v/
incident reflected incident reflected

Table 1: Comparison of the generalized Fresnel formulas for light reflecting from an inifinitely thick lamellar grating
(see Fig. 1b) with the “classical” Fresnel formulas for light reflecting from a homogeneous interface (see Fig. 1a).
Bold face implies matrix and vector quantities and t represents Hermitian conjugate. See text for detailed description.
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we show how an appropriate transfer matrix can be constructed for analyzing multi-layer structures. These will be
discussed in greater detail in the subsequent sections.

The results in this paper bear a strong resemblence to the R- and S-matrix algorithms that have appeared
recently (7, 6, 8, 9]; however the results are not identical. In contrast to earlier work, this paper approaches the
diffraction problem from the viewpoint of physics. Unlike earlier work, mathematical features of the problem such
as convergence, stability etc., are of secondary importance; although, as we will see later, the algorithms presented
here do offer a few advantages over previous methods. We seek here instead, to draw an intimate connection between
the grating problem and homogeneous multi-layer theory. It is hoped that the added physical intuition will facilitate
further development in the mathematical treatment of diffraction.

The paper is organized as follows. In Sec. 2, we derive the reflection and transmission coefficients at an interface
between two inhomogeneous interfaces and show that it is formally equivalent to the equations obtained between
two homogeneous layers. In Sec. 3, these results are used to derive a set of generalized Fabry-Perot equations for a
lamellar grating. In Sec. 4, an algorithm for multi-layer grating analysis is developed. In Sec. 3, we discuss some of
the immediate consequences of our work and compare it with earlier work in this field.

2 Generalized Fresnel Equations for Periodic Stratified Media

We begin the analysis by considering an incident electromagnetic field on an infinitely thick grating as shown in
Iigure 1. The fields in Regions 1 and 2 can be expressed in terms of a modal expansion:

;@(3)(“1 + bl) Zwo(z)tw
Zﬁ«:.(x)(kl,),(a.—b.) Zj Ty Vo ezt

where a;, b; and tg are the mode amplitudes of the incident, reflected and transmitted fields respectively. The mode
functions ¢;(z) and ¥x(z) are the eigenfunctions of the Maxwell’s equations in Regions 1 and 2, with eigenvalues
(k..), and (k,,), respectively. These are defined in Appendix A. The functions o,(z) and o2(z) appear in Maxwell's
equations and are

1)

oi(z) — wi(z) for TE Polarization,
oi(z) — e€i(z) for TM Polarization.
The above mode expansion is standard and the reader is referred to the literature for further discussion [2, 3, 4].

To proceed further, we use well known properties of the mode functions ¢;(z) and ¥i(z) (see Appendix A) and
define the four matrices £1, X9, K;. and K3, whose matrices elements are:

(Z17 g = Wdldle ~ g- |
(B2 )y = Wdldlen ~ ;g @)

(le)“' = (kh-)loll' )

(K?l) v = (k‘h)v‘sqq'

We have used the bra-ket notation used in quantum mechanics where, for example, (¢|z) = ¥1(z) is the adjoint
function (see Appendlx A). In (2), we have also indicated the value taken by the matrix elements of the X matrices
in the limit of 8 homogeneous media (for which the X matrices become diagonal). These matrices, along with the
analytical inverses in Appendix A are, to the author’s knowledge are new, and is one of the important contributions
of this paper.

Using these matrices, (1) can be rewritten as

=;l.(a+b)
=K, - (a-Db)

|
o~

()

KZ: ‘ t!
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where a, b and t are vectors whose elements are the mode amplitudes a;, b; and ¢, respectively. Note that the vectors
and matrices above are infinite dimensional since there are infinite number of eigenmodes that can be excited by
the grating. The X; matrices are complex and have non-zero off-diagonal matrix elements if and only if Region 2 is
inhomogeneous, and are responsible for the coupling of the different scattering modes to the incident wave. The K,
matrices are diagonal, but have complex numbers. The above matrix equation can be solved for b and t in terms of
a to yield:

b = {ErlKl,iK,.E;‘ - [Z7 K. —K,.E,“]} - a,
) = I'-a
0 . (4
t = {E’-lz;lxh TR K"} e
= T-a. .

With the aid of equations (3) and (4), we now derive an equation for power flow. This is calculated using
Poynting’s theorem, which is written
1 A
S,.. = — dz(Ex H'+ E* x H), (5)
2A Jo
where we have followed standard procedure and averaged the power flow across the grating period A (see [3]).
Substituting (1) and (3) into (5) and using the orthogonality relations summarized in Appendix A, we get

S, = a'-(K,+K})-a-a"-I'"(K,,+ K )I-a,

(6)
SQ‘ = at . TY(KQ, + K;')T - a.

In (6), in order to simplify notation, we have absorbed all numerical and physical constants into the field amplitude
vector a. :

We indentify the first term in S,, with the power incident and the second with the power reflected. The transmitted
power S,, given above is strictly valid only for dielectric gratings where continuity of power flow demands that S
be constant over all space (i.e. S,, = S,, = Constaent). For conductive/lossy gratings, the orthogonality relations
cannot be used to simplify the integration in (5) and S,, varies with z.

However, this is not a serious issue from the viewpoint of computation. For infinitely thick conductive gratings,
only S,,(z = 0) = S,, is important as it represents the power absorbed/dissipated by the lossy grating. For gratings
with finite thickness, one can calculate (5) in the free-space region (Regions 1 and 3 shown in Figure 3 in Sec. 3)
where the orthogonality relations are recovered and where (6) is again applicable. Thus, the power absorbed by the
grating would simply be

. Powergps = S,, — 8.,

Therefore, all measurable quantities can be computed without calculating S,,. However, in order to quantity trun-
cation errors, an explicit evaluation of S,, has been found to be useful [3]. This issue is beyond the scope of this
paper and the reader is referred to the literature for a deeper discussion.

In Table 1, the principal results of this section are summarized and compared with the “classical” Fresnel for-
mulae appropriate for light impinging on a homogeneous interface. The equations are the same form for both the
homogeneous as well as the inhomogeneous problem. The principal difference is that for the latter, the reflection and
transmission coefficients are matrices whereas for the homogeneous problem, these are scalar quantities. This merely
reflects that fact that only specular reflection and transmission is possible from a homogeneous surface. It is -easy
to show that in the limit that the grating period becomes infinite (i.e. homogeneous), the matrices become diagonal
and the reflectivity and transmissivity obtained by the matrix formulation are identical to the scalar formulae.
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3 Generalized Airy-Formula for Lamellar Gratings

In this section, we will apply the results of Sec. 2 to a lamellar grating with finite thickness. For light propagating
through a homogeneous layer (with uniform complex permittivity), the reflection and transmission coefficients are
given by the well known Airy thin-film formula which are described in a number of texts (for example, see [11]).
For a slab shown in Fig. 2a (where, for simplicity, Region 1 and 3 are the same media), with reflectivities r,,r,
and transmissitivities ¢,, ¢, (where the indices refer to the media from which the beam is incident), the reflected and
transmitted amplitudes are given by [11):

tit,r, exp(—2j¢)
1 - r2exp(-2j¢)’

(7)
titsexp(—2j¢)
1 - r2exp(-2j¢)

To derive similar expressions for a lamellar grating such as that shown in Fig. 2b, we write the equations for the
reflected and transmitted fields at each of the interface and solve a set of linear matrix equations. To derive the
results, we use Fig. 3 that is often used in “classical” Fabry-Perot analysis. Here, the quantities a; and b; (i = 1,2)
are vectors whose elements are the mode amplitudes of the incoming and outgoing fields at each of the two interfaces.

The overall transmission and reflection coeflicients will be expressed in terms of the transmission and reflection
at each of the two interfaces. Table 1 provides the coefficients for the beam incident from Region 1. However, in
addition to these coefficients, it is also necessary to compute the coefficients when the beam is incident from Region 2.
This corresponds to t; and r, in (7). These coefficients can be calculated by setting up the complementary probiem,

Z¢.(z)(a’ +¥)) Zos.(z)t:

| (8)
Z B (o)) (el — ) = Z: XE )«m(z)(ku). g
and solving for the vectors b’ and t’ in terms of a’, we arrive at the following expressions:
rz = —E;lrlzg
(9)

Tg = nglK;'IEIKQ,.

Here I', and T, are the same coefficients defined in Sec. 2. In the limit of a homogeneous slab, the relations reduce
tol’; = —-TI', and T, = T, K,,/K,,. This corresponds exactly to the scalar result. In short, the reciprocal coefficients
used in scalar theory generalize rather directly to the vector problem. These relations, to the knowledge of this
author, is new and represents an important contribution of this paper.

Usmg T; and T, defined in (9) and T, and T, defined in Sec. 2, the equatlons that relate a; and b; at the
interfaces are:

b, = TIa +T,a, b, = TI,a,;+T,a,
bg = Tlal + r,a: b‘ = T,a, + rta‘.
. . (10)
a;, = exp(—jKa.d)b, a, = exp(—jKa.d)b,
. = Pobs = Pobg

The equations for a; and aj relate the field amplitudes at one end of the slab to the field amplitudes at the opposite
end through a simple propagation matrix. We note that a; and b; are infinite dimensional vectors, which in any
practical calculations are to be truncated. However, in all our analysxs no assumption of truncation will be made
and all results will be exact.
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‘Figure 2: Reflection and transmission of light at the interface of: (a) an homogeneous layer with complex permittivi-
ties €,, 4, and a thickness d; and (b) a lamellar grating with complex permittivities ¢,(z), u,(z) and thickness d. Here,
a, is the incident amplitude of the relevant field (e, = E,, for TE-polarization, and e, = H,, for TM-polarization).
See text for further explanation of notation.

o
F.’u$

7% 5 %Ng,;
I-"

Figure 3: Incoming and outgoing (vector) fields at the interfaces of a lamellar grating. Here, a, and b, are vectors
whose elements are the mode amplitudes of the incoming and outgoing fields respectively. These vectors are related
via matrix equations detailed in the text.
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The solution we seek is to express b, and b, in terms of a, and a,. Setting a, = 0, gives the overall reflection and
transmision coefficients for a wave propagating from left to right. Equation (10) can be solved to yield the following
expressions for b, and b,:

by = {Px+T2Pol_—r;%mP2PoTl}a
= Ta,
(11)
by = {TgPol—_—rzll,—orz-l;;Tl}al
= Ta,.

We see from (11) that the overall reflection and transmission coefficients I', T for the lamellar grating are identical
in form to that of the homogeneous slab given in (7).

The simple structure of (11) suggests immediately the underlying physics. The term (1 — (I',P,)?) is merely the
geometric sum obtained by the summation of the infinite series

1-— (r Po)2 E(I‘?PO)Z

This series accounts for the inifinite multiple reflections of both incident beam and all of the diffracted components.
It should be noted that the £ matrices do not commute and consequently, the order of the matrix is extremely
important. However, the order is physically intutive and therefore can be written by mspect.lon (as we will do in the
next section for multi-layer gratings where all the three regions are different).

In Table 2, we have summarized the principal results of this section. The similarities between the scalar (homo-
geneous slab) and vector problem (lamellar grating) are quite apparent. We now apply these results to formulate a
theory of multi-layer gratings.

4 Multi-layer and Surface Relief Diffraction Gratings

In the previous section, we developed a modal theory for a lamellar grating. Here, we extend the results for cascaded
gratings. Such an analysis is appropriate for surface relief gratings where the gratings can be approximated as a
series of stacked lamellar gratings [5, 4]. This is illustrated in Fig. 4 where a surface relief is divided vertically
into a set of N slabs where each slab is assumed to be a lamellar grating. The diffraction efficiencies are computed
by developing a suitable algorithm to cascade the (vector) reflection and transmission coefficients from each of the
layers. This approach has proven quite satisfactory and the reader is referred to the literature for a resume on this
method [5, 4]. Here, we describe a physically intutive, but exact method to cascade multi-layer lamellar gratings.

In scalar multi-layer thin film theory, a transfer matrix is defined at each interface to relate the fields from one -
side of the interface to the other. An overall transfer matrix is then calculated by multiplying the individual transfer
matrices, from which the overall reflectance and transmittance is extracted. The transfer matrix approach is however
not well suited for grating analysis and leads to numerical instabilities. This is well documented in the literature.

An alternative approach that has been recently developed is the R- and S-matrix propagation algerithm [6,
8, 9]. In these algorithm, one propagates the impedance/admittance of the layers, rather than the field itself. The
impedance/admittance is a better behaved quantity which appears to have none of the numerical instability problems
associated with the transfer matrix method. Although the S-matrix algorithm as applied to grating problems is
relatively new, its use in scalar theory is quite well established (though the name has not been widely used in the
optics community). For example, equation (7) is one of the simplest applications of the algorithm.

For applying the S-matrix approach to the vector problem, we refer to Figures 3 and 4. We assume the surface
relief grating is divided into M (not necessarily equal) layers. Each layer is modelled as a lamellar grating. At each
interface i, we define a pair of reflection and transmission matrices 7}, t¥ as described in Sec. 2. Here, we use the
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v Homogeneous Slab Lamellar Grating
e ‘ _‘ ¢ ) . ’ - Ttltzrgpoz — 1
=r,+— r'=r —T%P
. ;« Bgﬂgctlon |T Ty 1= r?Pf 1 + T2Pg T —T,Pel,Pq I'2PoT,
T - .t Po = 1
T = mere———— N = ———————

Transmission 1—r2P2 T =ToPor 5P,

: f_Stokés (reciprocity) | r,= —r, r,=-3;I®,
Relations : tz = tlkgz/kl, Tz = EQTIK‘—.IE,_KQ,

Table 2: Comparison of the generalized Airy relations for light reflecting from a lamellar grating (Fig. 2b) with
“classical” formulae for light reflecting from a homogeneous slab (see Fig. 2a). Bold faces implies matrix and vector
quantities. The matrix propagation is given by P, = exp(—jK,.d) and the scalar propagation by P, = exp(—jk,.d).
.See text for detailed description

€, (x)

Figure 4: Diffraction from a surface grating is modelled as diffraction from a stack of lamellar gratings. The surface
relief grating is divided into M layers with each being modelled as a lamellar grating (i.e. €(z) — {e1(z), e2(z)-em(z)}.
Diffraction efficiencies for the entire structure are computed by recursively calculating the reflection matrix I'; using
the reflection matrix from the adjacent layer I';_;. The recursive algorithm for this procedure is detailed in the text.
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notation % to refer to the direction of the wave propagation. The reflection and transmission matrices as seen just
.above the interface, I'; and T, are expressed in terms of 7%, t¥ and the reflection matrix f‘?’_l seen at the next
sub-layer i — 1. The matrix T'; is then combined with the 75510t matrices to yield I}, and 'I-‘;”_,_l."This procedure
is repeated till i = M, at which point I-‘,t, and 'i‘;, correspond to the overall reflection and transmission of the

structure, .
The matrices I'} and T can be calculated from 7%, tF and T'f | by setting up the following equations that are
very similar to (10).

b, = rfa+t]a, by = T},
b; - t?‘al +‘,:ag b‘ = T?:_lag
) . : (12)
a; = exp(—jKa;id)b, ay; = exp(~jKa; d)b,
= P;b, = P;b,.

The overall reflectivity when viewed from the ith layer is given by expressing b, = I-‘;"al and b, = 'i‘?'al . Itis
straighforward to solve the above matrix equations to yield

—_— et}
1“75_Pirt-xpi '
' 3
y 1 - t+, (13)
1-97P,IE P

I} = yf+¢ PPy

z)
+
fl

T+,P

As one would expect, these equations are identical in form to the scalar Fabry-Perot equations. It should be pointed
out that whereas (13) is similar in spirit to the equations found in Ref. [8], they are not identical. It is apparent
from comparing (13) with equation (12) of Ref. [8] that the latter requires several additional matrix operations. A
more detailed discussion of this subject will be forthcoming in future publications.

5 Discussion

The recursive algorithm (13) described in the previous section is numerically stable under almost any conditions.
It can only fail under rare circumstances when the denominator in (13) becomes singular. Such scenarios are rare
and correspond to the excitation of local resonances (e.g. surface plasmons, etc). Additionally, the equations
are applicable for any incident polarization. Although the derivations above have assumed non-conical mounting,
extension of our algorithm to conical mounting is also straightforward and will be forthcoming in future publications.

The recursive algorithm given by (13) is similar to the algorithm outlined in Ref. [8]. Although Li refers to the
algorithm as an “R-matrix” algorithm, it is infact a misnomer and would be more appropriately called S-matrix [10].
In Ref, [8], no direct comparison is made to the R-matrix algorithm in Ref. [6]. In principal, both algorithms are
exact treatments of the diffraction problem (in the limit of infinite stratification layers). As we will see below, both
algorithms are based on the same physics; however, they differ in their numerical properties. It is therefore useful to
examine these differences in greater detail.

The choice of basis set used in this paper is a plane wave basis set. The choice of a plane wave basis set allows
us to express the propagation matrix P, simply as a diagonal matrix. The use of other basis sets (e.g. sinusoidal
basis set used in Ref. [6]), although related to the plane wave set through a similarity transform, does not allow for
a simple identification with the scalar results.

But beyond pedagogy, the use of alternate basis sets can lead to disaster if one is not careful about the implemen-
tation. For example, the algorithm presented in Ref. [6], can potentially breakdown when layer thicknesses become
zero or are half-integral multiples of the internal propagation wave numbers. The reason for this can be understood
by considering the physics of the problem. '
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The R-matrix algorithm is successful because it is based on propagating impedances/admittances across the
interfaces. Conceptually, this is akin to the calculation of input impedances of a multi-segment transmission line with
multiple loads. Therefore, consider a simple transmission line with characteristic impedance Zy that is terminated
by a load impedance Z;. The impedance at some point to the left of the load, for example, z = —1, is given as [13]

(ZL — Zo) exp(jkl) + (Z1 — Zo) exp(~jkl) _ ,, Zi+ jZotan(kl)
ZL+ Zo) exp(jlcl) + (ZL + Zo) exp(—jkl) oZo + jZLtan(kl) ’

Z(z=~1l) = 2 (14)
However, notice that whereas the first equation behaves sensibly with all values of I, the second equation, due to
the present of the tan(z) function, exhibits unpredictable behavior for values where the tangent function becomes
infinite. Of course, since the numerator and denominator approach infinity at the same rate, the ratio is a well
defined quantity for all . However when the tan(z) terms appear in matrices, the ratio between the numerator
and denominator, due to numerical and truncation errors, can lead to potentially unpredicatable behaviour near the
singularity.

In Ref. [6], the matrix-elements of the so-called “sector matrices” (counterpart to the 7 and t¥, are defined
in terms of cot(z) and csc(z) functions. These functions arise naturally from the sinusoidal basis set used in the
analysis. When the arguments of the functions become integral multiples of 27 (e.g. thickness of grating layer much
smaller than the wavelength), the sector-matrices may become ill-conditioned leading to poor convergence of the
algorithm. In fact, the algorithm produces non-sensical results when the thickness of a layer is zero.

To contrast this, equation the S-matrix treatment (i.e. eqn. (13)) has no singular functions in its definition,
either in the numerator, or the denominator. In fact, it can be shown after some tedious algebraic manipulation
that the (13) can be cast in the form similar to the first equation in (14). Therefore, the transmission and reflection
coefficients behave sensibly for all values of layer thickness.

One final point that should be noted is that (13) appears to be rather well suited for approximations. For example,
if the term 7,7 P;I'} | P; is assumed to be small, then one can expand the denominator by series, keeping only the
first term. This approximation leads to the solution proposed by Pai and Awada [5] and also corresponds to the
Bremmer series expansion [6, 12].

6 Conclusion

We have shown in this paper an equivalence between scalar and vector theories of reflection and transmission.
Specifically, we have derived : (1) a set of generalized Fresnel equations appropriate for reflection and transmission
from an infinitely thick grating, (2) a generalized Airy formula for describing reflection and transmission of ‘light
through a lamellar grating and (3) a matrix propagation method akin to matrix methods used for multi-layer thin
film analysis.

The formalism developed here is directly applicable for calculating diffraction efficiencies of surface relief gratings.
The recently developed S-matrix propagation algorithm appears to be closely related to results presented here. This
paper exapnds on the earlier work by providing important inversion formulas and Stokes relations that were lacking
in the earlier work. The recursive algorithm presented in this paper is similar to earlier work, but appears to be
more computationally efficient.

A direct numerical comparison of our algorithm with earlier algorithms was not within the scope of this effort.
It will be forthcoming in future publications.
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A Appendix

The following is a brief summary of the important properties of the eigenfunction expansion used in this paper. A
more complete discussion can be found in the literature [2, 3, 4]. Maxwell’s equations, after appropriate separation
- of variables, can be written as :

E(z, z) = E(z) exp(~jk,z2),

where k, is the eigenvalue of the following equation

(o015 sy + Ko o) = K2t 15)

where ¢(z) and ¢(z) are periodic in z (i.e. o(z +A) = o(z),e(z + A) = ¢(z)). Here o(z) is defined to be

gi(z) — pi(z) for TE Polarization,
ogi(z) — e€i(z) for TM Polarization.

where ¢(z) and u(z) are the spatially varying (complex) permittivities of the layer.
In order to express aribtrary fields in terms of the modal fields above, it is also necessary to solve the adjoint
problem:

P s+ 48e0)| Fir ) = P @), 16)

where & indicates complex conjugate and + is used to signify adjoint.
It can be shown that the eigenfunctions {F;} and {F}} are bi-orthonormal and complete (see [2, 3, 4]). Bi-
orthonormality is expressed in terms of the inner product

A
(FII;%IFI') = / pore )F‘ (z)Fp(z) = b,

where 8, is the KKronecker delta. Completeness implies that a function h(z) satisfying the periodic boundary
conditions may be expanded as :

h(z) = Z} (Fil )Ih)Fl(z),
I=—
which, borrowing notations from quantum mechanics, can be written as

[+

1= 3 SIFAL

l=-00

where 1 is the identity operator.
Using these orthogonality properties, we establish the following matrix identities for the T matrices defined in
Sec. 2.

(Z1),, (¢tl£l¢q),

1
- (22)lq = (¢l|;l¢q)-

These were derived by demanding £ 'Zy =1 and 5 !5 =1.
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“An Optical Probe with sub-Raylelgh L1thographlc Alterations
of the Index of Refraction.”

“ Sumanth Kaushik

Description

The resolution R of a far-field optical instrument is determined by the wavelength Ao and
the numerical aperture of the light gathering optics. The resolution also depends on the nature of
the light source. Theoretical formulae for the resolution is found in standard optics texts. For
illumination from a coherent light source R=A¢/(2 N.A.) (Abbe limit). The resolution for
illumination with an incoherent source is R=.61A¢/N.A. (Rayleigh limit). For an optical
microsocope, the highest obtainable resolution at optical wavlengths (e.g. an oil immersion
microscope with Ag = 500 nm, and N.A=1.45) is 210 nm (incoherent source) and 180 nm .
(coherent source).

By resolution, we mean the smallest resolvable distance between two lines of equal
thickness. In the formulae given above, it is assumed these lines are part of grating with equal
line and space. Thus, to say a microscope has a resolution of 200 nm, means that using the
microscope, one can tell the difference between a homogeneous surface and a grating with a 400
nm pitch. Gratings with pitches smaller than 400 nm will appear as an homogeneous surface.

.z
K

The resolution of optical instruments as given by the Abbe and Rayleigh limits is
fundamental. The only improvements to resolution are shorter wavelength sources and higher
numerical aperture optics. Improvements in light sources is certainly to be expected (e.g. deep
UV and x-ray sources), however, its use in commerical instruments is not expected any time in the
near future. Improvements in numerical aperture is limited by available materials and signficant
improvements here is also not expected any time in the near future. Therefore, for practical
purposes, the resolution of conventional optical instruments appears to have reached a
fundamental limit.

Further increases in resolution of optical systems, however, is critical for a number of
industrial and research applications. Non-optical systems such as electron micrscopes, provide
much higher resolution than optical instruments and are readily available; however, optical
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diagnostics are: (1) operable under ambient conditions, (2) non-invasive and (3) cheaper to
operate than these alternative methods. Two applications where an optical high resolution
instrument is critical are semiconductor manufacturing and optical data storage.

In the next two to three years, the semiconductor industry will bring into production,
devices with feature sizes of .35 pm. Present day optical microscopes do not provide an adequate
resolution for the characterization of devices with such small feature sizes. In semiconductor

_manufacturing applications, non-invasive, in situ diagnostics are critical and existing non-optical
instruments such as electron microscopes are a inconvenient and expensive solution

The optical data storage industry is faced with a similar technological hurdle. Higher data
storage density demands higher resolution optics. Even with anticipated advances in available
laser sources (e.g. blue-green lasers) and beam shaping optics (e.g. super-resolving systems),
storage densities much larger than 2.5 - 3 Gbits/ inch? cannot be expected in the next decade using
existing data storage techniques (presently only .5 Gbits/ inch? is a commercially viable
technology).

A promising strategy to improve the resolution of optical instruments is to use the
information obtained in near-field. The Abbe and Rayleigh limits are fundamental limits only in
the far-field (distances larger than tens to hundreds of wavelengths from the object). In the near-
field, the resolution is potentially unlimited, constrained only by the intensity of the source and '
signal-to-noise on the detectors.

" Near-field optical systems has demonstrated a resolution of 50 nm (A/12). . Laboratory
near-field systems have demonstrated storage densities in the excess of 45 Gbits/inch®. In fact, a
near field microscope with resolution of 50 nm is available commerically -- providing high
resolution at moderate cost. '

However, several technical hurdles have prevented optical near-field techniques from
gaining widespread usage. These are: (1) close working range (< 50 nm), (2) tips that are both
expensive, difficult to fabricate and break often, and (3) poor signal collection efficiency leading
to slow data collection rates. Efficient solutions to these problems are critical if near-field based
instruments are to play a significant role in the industrial workplace.

Described here is a new near-field probe that is based on Bragg grating structures and
optical waveguides. The probe has a comparative advantage over existing near-field tips in that it
can operate at a distance of 150-200 nm with excellent signal to noise and is readily amenable to
fast data collection. Preliminary calculations show that our design can provide resolutions of 100-
200 nm (at an illumination wavelength of A,=1500 nm) with superior signal-to-noise.



The design described here is shown in Fig. 1. The near-field tip is a circular Bragg grating
patterned on a thin layer deposited on a surface. Similar to Fabry-Perot resonators formed by
linear Bragg gratings, the circular gratings form a two-dimensional resonator where the resonant
frequency is determined by the width of the central zone and the pitch of the gratings. An incident
beam (which can be either out-of-plane, or in-plane) can couple signficant energy only if the
frequency of the incident light is at or near the resonant frequency . Energy that is coupled into
the resonator is measured by detectors placed at the end of the waveguides that collect the in-
plane light emanating from the resonator.

Near-field optical measurement is done by bringing the central zone of the circular grating
in close proximity (< 150-200 nm) to the object being interrogated. The object, possessing an
index of refraction different from that of air, changes the effective index of the central zone. A
change in the index of refraction implies a change in the cavity resonant frequency 2,+A. The
physics is schematically illustrated in Fig. 2. Provided that the change in frequency is larger than
the bandwidth of the resonance, the amount of external light energy (at frequency ;) that can
couple into the cavity decreases. This decrease is measured by the in-plane detectors at the end of
the output waveguides. The probe described here is termed as a circular distributed bragg
resonator rear-field probe (CDBR) since it is closely related to the physics of distributed Bragg
reflectors (DBR) which has been well studied in the literature.

A schematic of a typical measurement is illustrated in Fig. 3. In Fig. 3, we have assumed
an out-of-plane illumination, but an in-plane source is equally feasible. The wavelength of the
source is chosen to be the resonant frequency of the resonator. The circular resonator is placed
above the surface to be interrogated. The surface is characterized by randomly placed “pits.” As
the resonator is scanned above the surface, the measured signal in the in-plane detectors increases
and decreases depending on whether a pit lies directly below the central zone of the resonator. As
the pit moves away from the central zone, the signal increases to a maximum value. As a pit
approaches the central zone, the signa monotonically decreases. Thus, the presence or absence of
the pit is determined by the signal on the detectors.

The term “pits” is appropriate for optical data storage applications, but for other
applications, it merely means some surface feature that is distinct from its neighbors. The principal
requirement for a successful detection/measurement is a sufficient contrast in the index of
refraction betweer the “pit” and the surrrounding region.

Compared with current near-field probes, the principal advantages of the CDBR near-
field probe described here are: (1) can be used at much greater distance, (2) superior contrast
ratio and signal collecting efficiency, (3) owing to its “flat architecture,” it is well suited to exploit
“fly” technology used in magnetic head designs, (4) readily amenable for parallel data collection.
By using several CDBR probes near each other, it is possible to have a near-field system which
does not require precise tip or height control. This eliminates the need for servo-control and can
enhance data collection rates significantly.
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As mentioned above, presently near-field optical techniques are not promising owing to:
(1) poor signal to noise, (2) poor data rates, and (3) complicated control machinery. The four
advantages described above for the CDBR probe, are critical if near-field techniques are to play
an important role in industrial diagonostics and for optical data storage.

In Figs. 4 -6, results of some hypothetical surfaces are presented based on computational
results. In Fig. 4, random bit are assumed to be patterned on to a surface. The bit pattern consists
of a pit being formed at each of the locations marked 1. The pit is assumed to be circular with a

"diameter of 200 nm and a depth of 100 nm, and formed on a silicon surface. The resonator is
assumed to be 100 nm from the surface. Thus, a bit sequence 1-0-1 represents two adjacent pits
separated by 200 nm.

Figure S plots a typical output from the in-plane detectors as the resonator is scanned over
the surface. Assuming the incident frequency is fixed at the resonant frequency €y, the resonator
only couples appreciable energy when the pit is directly below the central zone (representing an
intensity maximum). All other time, owing the presence of the surface (silicon has a very high
index of refraction), the resonator does not couple appreciable energy (hence the minimum). As it
can be seen, the contour plots reveal clearly the presence of the pits. The contrast ratio is better
than 100:1.

In Figure 6, the same surface is scanned in a slightly different way. Rather than monitoring
the detector outputs, the laser frequency is tuned instead. By measuring the detuning of the laser
frequency, the same information can be gleaned. This configuration could perhaps be useful for
microscopy applications where the frequency information could provide added information to the.
surface composition.

As can be seen, the resolution of this probe is well less than 200 nm and with excellent
contrast. Although the illustrated resolution is only 200 nm, the performance of this probe is
significantly better than conventional far-field optics having similar resolution. The principal
improvement is in the contrast ratio. The contrast is nearly two orders of magnitude better than
conventional optics. In fact, for a contrast ratio of 2 (the typical number used to obtain the
Rayleigh and Abbe limits), the resolution is better than 75 nm.

-

To see this, we have plotted in Figure 7, the intensity at the in-plane detectors as a pit is
moved away from the origin. Here, the origin is when the center of the pit coincides with the
center of the circular resonator. This corresponds to the maximum signal. As the pit moves away
from the center, the region directly under the central zone is replaced with higher index material
(in this case, silicon with n=3.42) and consequently, the resonator detunes and the signal drops.
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The resonator is characterized in terms of a Q or Quality-Factor. The Q is related to the
finesse of a Fabry-Perot cavity and is related to the pitch of the grating, the number of grooves in
the grating, and the width of the central zone. An explicit computation of the cavity O has not
been done for the circular resonator geometry owing to a lack of available theoretical formulae.
We have chosen values for O that we believe are readily manufacturable. These estimates are
based on what is readily available for linear Fabry-Perot structures. In Fig. 6, for a 0=200, we
have contrast of 50. For a =500, this contrast improves to 300. In typical optical data storage
system, a contrast ratio of about 50-60% is sufficient for detection. This indicates that the probe
has apotential resolution of well below 100 nm.

A resolution less than 100 nm would represent a six-ten fold increase in resolution that can
be available from optical systems (even with anticipated advances in shorter wavelength sources).
Additionally it would mean that some of the more sophisticated data modulation schemes (e.g.
RLL) can be used to get higher data density. Many of the sophisticated data encoding schemes
cannot be applied on existing systems owing to insufficient contrast and resolution.

It is important to note that the results presented here assume a probe laser centered at
about 1500 nm. Typical optical storage systems use lases at 780 nm, and recently 630 nm.
The relatively long wavelegth used in the present analysis was motivated by: (1) easing
fabrication tolerances, and (2) favorable optical properties of Silicon. The grating pitch is
roughly A¢/2; consequently, longer the wavelength, the easier it is to fabricate the gratings.
Silicon has both a high index of refraction and negligible absorption at 1500 nm. Owing to the
ready availibility of Si fabrication facilities at Sandia National Labs, it appears to be a good
material for fabricating the resonator. However, designing the resonator for shorter wavelength
lasers can lead to still higher resolution than quoted here.

The ideas described here are original and have not appeared elsewhere. However, the use
of circular and linear resonators in other applications is not new. Circular resonators meeting
fabrication tolerances of the sort needed for this application have been fabricated by others and is
documented in the literature. Attached to the technical advance are some important references in
the field. However, the use of distributed Bragg resonators for near-field optics, to the best
knowledge of the author, has not appeared in the published literature.

47



%otector

"

Waveguide Horn

L ~ 500 nm
(A = 1550 nm)

=

é

Detector

Circular Fabry-Perot
Resonator

nput Waveguide

Figure 1: Schematic of the Near-Field Probe
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Figure 4: A random “pit” pattern. Each 1 corresponds to a pit of diameter 200 nm. A zero
implies an unperturbed surface.
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Figure 7: Intensity at in-plane detector as a function of pit position. R=0 implies pit and
central zone of detector are concentric. Sce text for details
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Commercial Potential

~ We anticipate our near-field probe to have significant commercial potential. As was
mentioned earlier, the the semiconductor and optical data storage industry would benefit
significantly from a a near-field optlcal instrument that is rugged, with high resolution and which
has data collection rates.

- We anticipate the following applications of the probe:

.+, 1. High:Desntiy. Optical Read Head: The CDBR near-field probe is well suited for use in an
optical data storage instrument.

2. Critical Dimension Measurement Probe: With the sub-200 nm resolution of the probe, the
probe is well suited for critical dimension measurmnts in the semiconductor industry.

.. Although the design of this product was not motivated by direct solicitation, we believe that
there is a nascent market for this product and therefore, a commercial interest for the probe
described here is expected. A number of companies are actively involved in high resolution
microscopy. Presently, we are aware of one company manufacturing optical near-field
instruments. Topometrix Inc. manufactures a near-field optical microscope based on the designs
~ and research at AT&T Bell Laboratories. Their instrument, which roughly sells for $150,000 is
- capable of 50 nm resolution. However, it faces the limitations described earlier (low data rates,
poor rehablhty etc.) : This instrument has been purchased by a number of semiconductor
companies (e.g. Motorala, Intel) high resolution optical diagnostics for their sub-micron
development.

The application of near-field techniques to optical data storage is also a topic of
commercial interest. Most notably, IBM has been looking at solid immersion lens as a possible
avenue for high-density data storage. Solid immersion lens are described in one of the papers that
is attached to this technical advance. It is clear near-field techniques will play a significant role in
‘the future developments in optical data storage.

The CDBR probe described here has a number of advantages over competitive ideas in
_..terms of manufacturing. It can be fabricated via hthography (unlike other techniques such as solid
" “immersion lens and present near-field probes which require machining). Consequently, it can be
produced in bulk quantities. This is critical if these probes are to be used in optical data storage
applications.
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