

**INNOVATIVE CLEAN COAL TECHNOLOGY (ICCT)**

**500 MW DEMONSTRATION OF ADVANCED  
WALL-FIRED COMBUSTION TECHNIQUES  
FOR THE REDUCTION OF NITROGEN OXIDE (NO<sub>x</sub>)  
EMISSIONS FROM COAL-FIRED BOILERS**

**Technical Progress Report  
Third Quarter 1992**

**DOE Contract Number  
DE-FC22-90PC89651**

**SCS Contract Number  
C-91-000027**

**Prepared by:**

**Southern Company Services, Inc.  
800 Shades Creek Parkway  
Birmingham, Alabama 35209**

**Cleared by DOE Patent Council on November 23, 1992**

**MASTER**

## LEGAL NOTICE

This report was prepared by Southern Company Services, Inc. pursuant to a cooperative agreement partially funded by the U.S. Department of Energy and neither Southern Company Services, Inc. nor any of its subcontractors nor the U.S. Department of Energy, nor any person acting on behalf of either:

- (a) Makes any warranty or representation, express or implied with respect to the accuracy, completeness, or usefulness of the information contained in this report, or process disclosed in this report may not infringe privately-owned rights; or
- (b) Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method or process disclosed in this report.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Department of Energy. The views and opinion of authors expressed herein do not necessarily state or reflect those of the U.S. Department of Energy.

## EXECUTIVE SUMMARY

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO<sub>x</sub>) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO<sub>x</sub> combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO<sub>x</sub> reduction using combustion modifications has been established for the project.

The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO<sub>x</sub> burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO<sub>x</sub> reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO<sub>x</sub> emission levels to be approximately 0.65 lb/MBtu. Flyash LOI values for the LNB configuration are approximately 8 percent at full-load. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. Abbreviated diagnostic tests for the LNB+AOFA configuration indicate that at 500 MWe, NO<sub>x</sub> emissions are approximately 0.55 lb/MBtu with corresponding flyash LOI values of approximately 11 percent. For comparison, the long-term, full-load, baseline NO<sub>x</sub> emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB+AOFA configuration will be performed when the stack particulate emissions issue is resolved.

Testing of a process optimization package on Plant Hammond Unit 4 was performed during this quarter. The software was configured to minimize NO<sub>x</sub> emissions using total combustion air flow and advanced overfire air distribution as the controlled parameters. Preliminary results from this testing indicate that this package shows promise in reducing NO<sub>x</sub> emissions while maintaining or improving other boiler performance parameters.

## TABLE OF CONTENTS

|                                                                               |    |
|-------------------------------------------------------------------------------|----|
| 1. INTRODUCTION .....                                                         | 1  |
| 2. PROJECT DESCRIPTION .....                                                  | 3  |
| 2.1. Test Program Methodology.....                                            | 3  |
| 2.2. Unit Description.....                                                    | 4  |
| 2.3. Advanced Overfire Air (AOFA) System .....                                | 6  |
| 2.4. Low NO <sub>x</sub> Burners.....                                         | 6  |
| 3. PROJECT STATUS.....                                                        | 11 |
| 3.1. Phase 1 - Baseline Characterization.....                                 | 11 |
| 3.1.1. Task 1.5 Baseline Testing Summary.....                                 | 11 |
| 3.2. Phase 2 - Advanced Overfire Air Retrofit and Characterization.....       | 12 |
| 3.2.1. Task 2.2 AOFA Retrofit .....                                           | 12 |
| 3.2.2. Task 2.3 AOFA Testing Summary .....                                    | 12 |
| 3.3. Phase 3 - Low NO <sub>x</sub> Burner Retrofit and Characterization ..... | 12 |
| 3.3.1. Task 3.2 LNB Retrofit.....                                             | 12 |
| 3.3.2. Task 3.3 LNB Without AOFA Summary .....                                | 12 |
| 3.3.3. Task 3.3 LNB with AOFA Test Summary.....                               | 13 |
| 3.4. Data Comparison .....                                                    | 14 |
| 3.5. Reliability.....                                                         | 15 |
| 3.6. ECEM Certification .....                                                 | 15 |
| 3.7. Ultramax Exploratory Experiments .....                                   | 16 |
| 4. FUTURE PLANS.....                                                          | 24 |
| 5. CONCLUSIONS.....                                                           | 25 |
| 6. ACKNOWLEDGEMENTS.....                                                      | 26 |

APPENDIX A - Long-Term NO<sub>x</sub> Emissions - August - September 1992

APPENDIX B - CEM Certification Testing - August 1992

APPENDIX C - Ultramax Exploratory Experiment - July 1992

APPENDIX D - Ultramax Exploratory Experiment - September 1992

## LIST OF TABLES

|                                                                   |    |
|-------------------------------------------------------------------|----|
| Table 1. Work Breakdown Structure .....                           | 5  |
| Table 2. Plant Data Points .....                                  | 10 |
| Table 3. Baseline, AOFA, and LNB Long-Term Test Results .....     | 19 |
| Table 4. Mill Performance at Full Load.....                       | 19 |
| Table 5. Full Load Boiler Performance (Preliminary) .....         | 19 |
| Table 6. ECEM Certification Tests Results - June - July 1991..... | 19 |
| Table 7. Future Plans.....                                        | 24 |

## LIST OF FIGURES

|                                                                              |    |
|------------------------------------------------------------------------------|----|
| Figure 1. Plant Hammond Unit 4 Boiler .....                                  | 8  |
| Figure 2. Advanced Overfire Air System.....                                  | 8  |
| Figure 3. Low NOx Burner Installed at Plant Hammond .....                    | 9  |
| Figure 4. NOx Emissions Comparision .....                                    | 20 |
| Figure 5. Flyash Combustibles Loss-on-Ignition.....                          | 20 |
| Figure 6. Baseline Long-Term NOx Trend.....                                  | 21 |
| Figure 7. AOFA Long-Term NOx Trend .....                                     | 21 |
| Figure 8. LNB Long-Term NOx Trend .....                                      | 22 |
| Figure 9. LNB+AOFA Long-Term NOx Trend - Preliminary.....                    | 22 |
| Figure 10. Optimization Experiment #1 & 2 - NOx vs. Run Number.....          | 23 |
| Figure 11. Optimization Experiment #1 & 2 - CO Emissions vs. Run Number..... | 23 |

## TABLE OF ABBREVIATIONS

|                   |                                          |
|-------------------|------------------------------------------|
| AOFA              | Advanced Overfire Air                    |
| ASME              | American Society of Mechanical Engineers |
| C                 | carbon                                   |
| CFSF              | Controlled Flow/Split Flame              |
| Cl                | chlorine                                 |
| CO                | carbon monoxide                          |
| DAS               | data acquisition system                  |
| DOE               | United States Department of Energy       |
| ECEM              | extractive continuous emissions monitor  |
| EPA               | Environmental Protection Agency          |
| EPRI              | Electric Power Research Institute        |
| F                 | Fahrenheit                               |
| FC                | fixed carbon                             |
| FWEC              | Foster Wheeler Energy Corporation        |
| H                 | hydrogen                                 |
| HHV               | higher heating value                     |
| ICCT              | Innovative Clean Coal Technology         |
| lb(s)             | pound(s)                                 |
| LNB               | low NO <sub>x</sub> burner               |
| LOI               | loss on ignition                         |
| (M)Btu            | (million) British thermal unit           |
| MW                | megawatt                                 |
| N                 | nitrogen                                 |
| NO <sub>x</sub>   | nitrogen oxides                          |
| O, O <sub>2</sub> | oxygen                                   |
| psig              | pounds per square inch gauge             |
| PTC               | Performance Test Codes                   |
| RSD               | relative standard deviation              |
| S                 | sulfur                                   |
| SCS               | Southern Company Services                |
| SO <sub>2</sub>   | sulfur dioxide                           |
| UARG              | Utility Air Regulatory Group             |
| VM                | volatile matter                          |

## 1. INTRODUCTION

This document discusses the technical progress of a U. S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO<sub>x</sub>) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 (500 MWe) near Rome, Georgia.

The project is being managed by Southern Company Services, Inc. (SCS) on behalf of the project co-funders: The Southern Company, the U. S. Department of Energy (DOE), and the Electric Power Research Institute. In addition to SCS, The Southern Company includes five electric operating companies: Alabama Power, Georgia Power, Gulf Power, Mississippi Power, and Savannah Electric and Power. SCS provides engineering, research, and financial services to The Southern Company.

The Clean Coal Technology Program is a jointly funded effort between government and industry to move the most promising advanced coal-based technologies from the research and development stage to the commercial marketplace. The Clean Coal effort sponsors projects which are different from traditional research and development programs sponsored by the DOE. Traditional projects focus on long range, high risk, high payoff technologies with the DOE providing the majority of the funding. In contrast, the goal of the Clean Coal Projects is to demonstrate commercially feasible, advanced coal-based technologies which have already reached the "proof of concept" stage. As a result, the Clean Coal Projects are jointly funded endeavors between the government and the private sector which are conducted as Cooperative Agreements in which the industrial participant contributes at least fifty percent of the total project cost.

The primary objective of the Plant Hammond demonstration is to determine the long-term effects of commercially available wall-fired low NO<sub>x</sub> combustion technologies on NO<sub>x</sub> emissions and boiler performance. Short-term tests of each technology are also being performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NO<sub>x</sub> reduction using combustion modifications has been established for the project. Specifically, the objectives of the projects are:

1. Demonstrate in a logical stepwise fashion the short-term NO<sub>x</sub> reduction capabilities of the following advanced low NO<sub>x</sub> combustion technologies:

- a. Advanced overfire air (AOFA)
  - b. Low NO<sub>x</sub> burners (LNB)
  - c. LNB with AOFA
- 2. Determine the dynamic, long-term emissions characteristics of each of these combustion NO<sub>x</sub> reduction methods using sophisticated statistical techniques.
- 3. Evaluate the progressive cost effectiveness (i.e., dollars per ton NO<sub>x</sub> removed) of the low NO<sub>x</sub> combustion techniques tested.
- 4. Determine the effects on other combustion parameters (e.g., CO production, carbon carryover, particulate characteristics) of applying the NO<sub>x</sub> reduction methods listed above.

## **2. PROJECT DESCRIPTION**

### **2.1. Test Program Methodology**

In order to accomplish the project objectives, a Statement of Work (SOW) was developed which included the Work Breakdown Structure (WBS) found in Table 1. The WBS is designed around a chronological flow of the project. The chronology requires design, construction, and operation activities in each of the first three phases following project award.

The stepwise approach to evaluating the NO<sub>x</sub> control technologies requires that three plant outages be used to successively install (1) the test instrumentation, (2) the AOFA system, and (3) the LNBs. These outages were scheduled to coincide with existing plant maintenance outages in the fall of 1989, spring of 1990, and the spring of 1991. The planned retrofit progression has allowed for an evaluation of the AOFA system while operating with the existing pre-retrofit burners. As shown in Figures 1 and 2, the AOFA air supply is separately ducted from the existing forced draft secondary air system. Backpressure dampers are provided on the secondary air ducts to allow for the introduction of greater quantities of higher pressure overfire air into the boiler. The burners are designed to be plug-in replacements for the existing circular burners.

The data acquisition system (DAS) for the Hammond Unit 4 ICCT project is a custom designed microcomputer based system used to collect, format, calculate, store, and transmit data derived from power plant mechanical, thermal, and fluid processes. The extensive process data selected for input to the DAS has in common a relationship with either boiler performance or boiler exhaust gas properties. This system includes a continuous emissions monitoring system (NO<sub>x</sub>, SO<sub>2</sub>, O<sub>2</sub>, THC, CO) with a multi-point flue gas sampling and conditioning system, an acoustic pyrometry and thermal mapping system, furnace tube heat flux transducers, and boiler efficiency instrumentation. The instrumentation system is designed to provide data collection flexibility to meet the schedule and needs of the various testing efforts throughout the demonstration program. A summary of the type of data collected is shown in Table 2.

Following each outage, a series of four groups of tests are planned. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. The diagnostic, performance, and verification tests consist of short-term data collection during carefully

established operating conditions. The diagnostic tests are designed to map the effects of changes in boiler operation on NO<sub>x</sub> emissions. The performance tests evaluate a more comprehensive set of boiler and combustion performance indicators. The results from these tests will include particulate characteristics, boiler efficiency, and boiler outlet emissions. Mill performance and air flow distribution are also tested. The verification tests are performed following the end of the long-term testing period and serve to identify any potential changes in plant operating conditions.

As stated previously, the primary objective of the demonstration is to collect long-term, statistically significant quantities of data under normal operating conditions with and without the various NO<sub>x</sub> reduction technologies. Earlier demonstrations of emissions control technologies have relied solely on data from a matrix of carefully established short-term (one to four hour) tests. However, boilers are not typically operated in this manner, considering plant equipment inconsistencies and economic dispatch strategies. Therefore, statistical analysis methods for long-term data are available that can be used to determine the achievable emissions limit or projected emission tonnage of an emissions control technology. These analysis methods have been developed over the past fifteen years by the Control Technology Committee of the Utility Air Regulatory Group (UARG). Because the uncertainty in the analysis methods is reduced with increasing data set size, UARG recommends that acceptable 30 day rolling averages can be achieved with data sets of at least 51 days with each day containing at least 18 valid hourly averages.

## **2.2. Unit Description**

Georgia Power Company's Plant Hammond Unit 4 (Figure 1) is a Foster Wheeler Energy Corporation (FWEC) opposed wall-fired boiler, rated at 500 MW gross, with design steam conditions of 2500 psig and 1000/1000°F superheat/reheat temperatures, respectively. The unit was placed into commercial operation on December 14, 1970. Prior to the LNB retrofit, six FWEC Planetary Roller and Table type mills provided pulverized eastern bituminous coal (12,900 Btu/lb, 33% VM, 53% FC, 1.7% S, 1.4% N) to 24 pre-NSPS, Intervane burners. During the LNB outage, the existing burners were replaced with FWEC Control Flow/Split Flame burners. The unit was also retrofit with four Babcock and Wilcox MPS 75 mills during the course of the demonstration (two each during the spring 1991 and spring 1992 outages). The burners are arranged in a matrix of 12 burners (4W x 3H) on opposing walls with each mill supplying coal to 4 burners per elevation. As part of this demonstration project, the unit was retrofit with an Advanced

Overfire Air System, to be described later. The unit is equipped with a coldside ESP and utilizes two regenerative secondary air preheaters and two regenerative primary air heaters. The unit was designed for pressurized furnace operation but was converted to balanced draft operation in 1977.

| Table 1. Work Breakdown Structure                                                                                                                          |       |                                                          |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------|--------------|
| 500 MW Demonstration of Advanced Wall-Fired Combustion Techniques for the Reduction of Nitrogen Oxide (NO <sub>x</sub> ) Emissions from Coal-Fired Boilers |       |                                                          |              |
| Phase                                                                                                                                                      | Task  | Description                                              | Date         |
| 0                                                                                                                                                          | 1.0   | Phase 0 Pre-Award Negotiations                           |              |
| 1                                                                                                                                                          | 1.1   | Phase 1 Baseline Characterization                        | 8/89 - 4/90  |
|                                                                                                                                                            | 1.1.1 | Project Management and Reporting                         | 8/89 - 10/89 |
|                                                                                                                                                            | 1.1.2 | Site Preparation                                         | 9/89 - 6/90  |
|                                                                                                                                                            | 1.1.3 | Flow Modeling                                            | 9/89 - 10/89 |
|                                                                                                                                                            | 1.1.4 | Instrumentation                                          | 11/89 - 4/90 |
|                                                                                                                                                            | 1.1.5 | Baseline Testing                                         |              |
| 2                                                                                                                                                          | 1.2   | Phase 2 Advanced Overfire Air Retrofit                   | 4/90 - 3/91  |
|                                                                                                                                                            | 1.2.1 | Project Management and Reporting                         | 4/90 - 5/90  |
|                                                                                                                                                            | 1.2.2 | AOFA Design and Retrofit                                 | 5/90 - 3/91  |
|                                                                                                                                                            | 1.2.3 | AOFA Testing                                             |              |
| 3                                                                                                                                                          | 1.3   | Phase 3 Low NO <sub>x</sub> Burner Retrofit <sup>1</sup> |              |
|                                                                                                                                                            | 1.3.1 | Project Management and Reporting                         | 3/91 - 4/93  |
|                                                                                                                                                            | 1.3.2 | LNB Design and Retrofit                                  | 3/91 - 5/91  |
| 4                                                                                                                                                          | 1.3.3 | LNB Testing with and without AOFA                        | 5/91 - 9/93  |
|                                                                                                                                                            | 1.4   | Final Reporting and Disposition <sup>1</sup>             |              |
|                                                                                                                                                            | 1.4.1 | Project Management and Reporting                         | 9/93 - 12/93 |
|                                                                                                                                                            | 1.4.2 | Disposition of Hardware                                  | 5/93         |

<sup>1</sup>Dates of these tasks reflects change from original project schedule.

### **2.3. Advanced Overfire Air (AOFA) System**

Generally, combustion NO<sub>x</sub> reduction techniques attempt to stage the introduction of oxygen into the furnace. This staging reduces NO<sub>x</sub> production by creating a delay in fuel and air mixing that lowers combustion temperatures. The staging also reduces the quantity of oxygen available to the fuel-bound nitrogen. Typical overfire air (OFA) systems accomplish this staging by diverting 10 to 20 percent of the total combustion air to ports located above the primary combustion zone. AOFA improves this concept by introducing the OFA through separate ductwork with more control and accurate measurement of the AOFA airflow, thereby providing the capability of improved mixing (Figure 2).

Foster Wheeler Energy Corporation (FWEC) was competitively selected to design, fabricate, and install the advanced overfire air system and the opposed-wall, low NO<sub>x</sub> burners described below. The FWEC design diverts air from the secondary air ductwork and incorporates four flow control dampers at the corners of the overfire air windbox and four overfire air ports on both the front and rear furnace walls. Due to budgetary and physical constraints, FWEC designed an AOFA system more suitable to the project and unit than that originally proposed. Six air ports per wall were proposed instead of the as-installed configuration of four per wall.

### **2.4. Low NO<sub>x</sub> Burners**

Low NO<sub>x</sub> burner systems attempt to stage the combustion without the need for the additional ductwork and furnace ports required by OFA and AOFA systems. These commercially-available burner systems introduce the air and coal into the furnace in a well controlled, reduced turbulence manner. To achieve this, the burner must regulate the initial fuel/air mixture, velocities and turbulence to create a fuel-rich core, with sufficient air to sustain combustion at a severely sub-stoichiometric air/fuel ratio. The burner must then control the rate at which additional air, necessary to complete combustion, is mixed with the flame solids and gases to maintain a deficiency of oxygen until the remaining combustibles fall below the peak NO<sub>x</sub> producing temperature (around 2800°F). The final excess air can then be allowed to mix with the unburned products so that the combustion is completed at lower temperatures. Burners have been developed for single wall and opposed wall boilers.

In the FWEC Controlled Flow/Split Flame (CFSF) burner (Figure 3), secondary combustion air is divided between inner and outer flow cylinders. A sliding sleeve damper regulates the total secondary air flow entering the burner and is used to balance the burner air flow distribution. An adjustable outer register assembly divides the burner's secondary air into two concentric paths and also imparts some swirl to the air streams. The secondary air which traverses the inner path, flows across an adjustable inner register assembly that, by providing a variable pressure drop, apportions the flow between the inner and outer flow paths. The inner register also controls the degree of additional swirl imparted to the coal/air mixture in the near throat region. The outer air flow enters the furnace axially, providing the remaining air necessary to complete combustion. An axially movable inner sleeve tip provides a means for varying the primary air velocity while maintaining a constant primary flow. The split flame nozzle segregates the coal/air mixture into four concentrated streams, each of which forms an individual flame when entering the furnace. This segregation minimizes mixing between the coal and the primary air, assisting in the staged combustion process. The adjustments to the sleeve dampers, inner registers, outer registers, and tip position are made during the burner optimization process and thereafter remain fixed unless changes in plant operation or equipment condition dictate further adjustments.

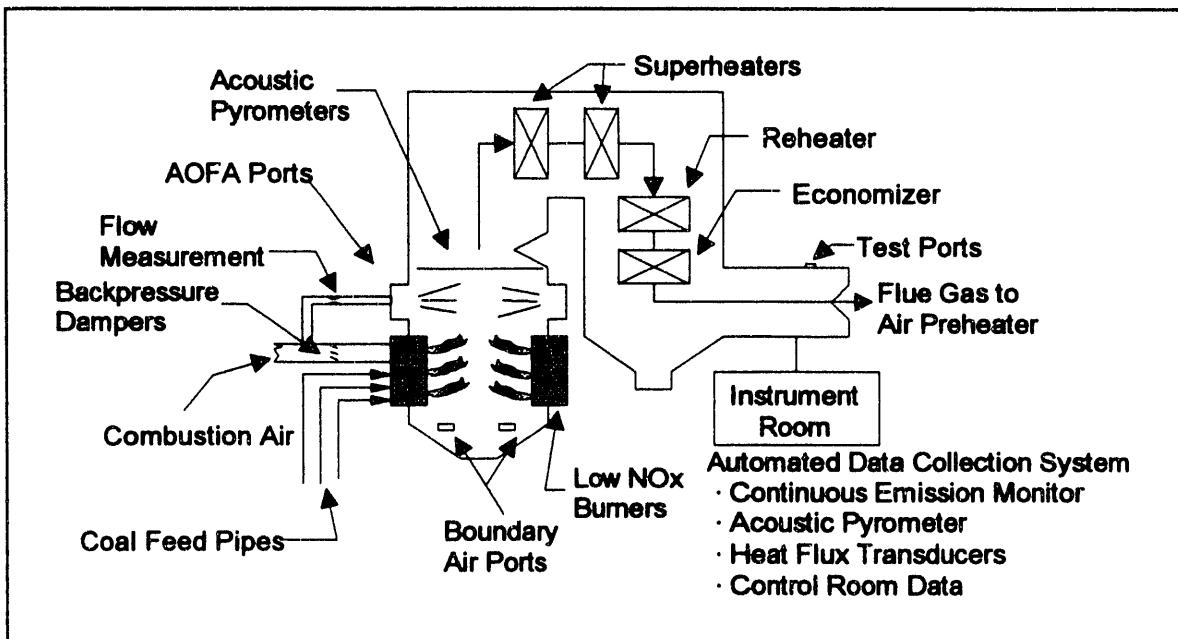



Figure 1. Plant Hammond Unit 4 Boiler

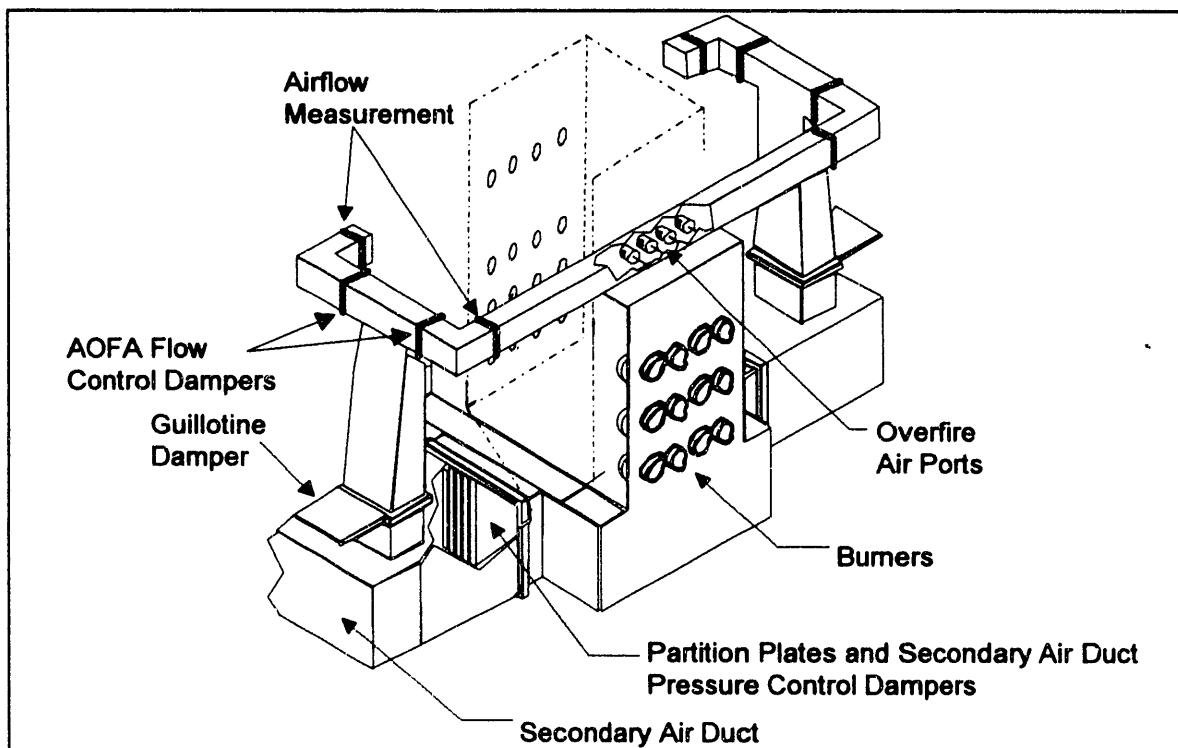



Figure 2. Advanced Overfire Air System

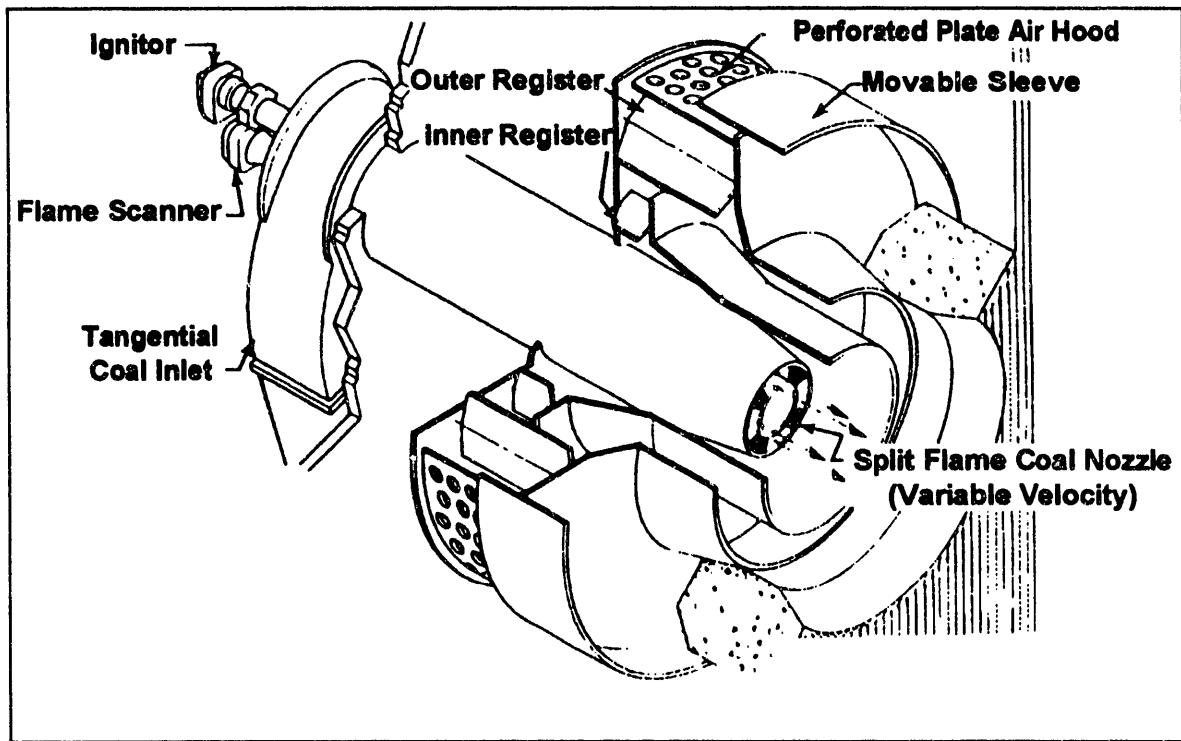



Figure 3. Low NO<sub>x</sub> Burner Installed at Plant Hammond

Table 2. Plant Data Points

|                             |                            |
|-----------------------------|----------------------------|
| Boiler Drum Pressure        | Superheat Outlet Pressure  |
| Cold Reheat Pressure        | Hot Reheat Pressure        |
| Barometric Pressure         | Superheat Spray Flow       |
| Reheat Spray Flow           | Main Steam Flow            |
| Feedwater Flow              | Coal Flows                 |
| Secondary Air Flows         | Primary Air Flows          |
| Main Steam Temperature      | Cold Reheat Temperature    |
| Hot Reheat Temperature      | Feedwater Temperature      |
| Desuperheater Outlet Temp.  | Desuperheater Inlet Temp.  |
| Economizer Outlet Temp.     | Air Heater Air Inlet Temp. |
| Air Heater Air Outlet Temp. | Ambient Temperature        |
| BFP Discharge Temperature   | Relative Humidity          |
| Stack NO <sub>x</sub>       | Stack SO <sub>2</sub>      |
| Stack O <sub>2</sub>        | Stack Opacity              |
| Generation                  | Overfire Air Flows         |

### 3. PROJECT STATUS

#### 3.1. Phase 1 - Baseline Characterization

##### 3.1.1. Task 1.5 Baseline Testing Summary

Phase 1 baseline testing ended in April 1990. A summary of the baseline tests results is shown in Table 3 and Figures 4 and 5. During baseline testing, 52 days of long-term data were collected producing an average  $\text{NO}_x$  emission level of 1.12 lb/MBtu.  $\text{NO}_x$  emissions generally increased with load and ranged from 0.9 to 1.3 lb/MBtu (Figure 6). The band about the mean represents the range between the 5th and 95th percentiles of the data set and show the variability of  $\text{NO}_x$  emissions during long-term operation. The long-term data demonstrates a full-load, mean  $\text{NO}_x$  level of 1.24 lb/MBtu at the nominal 2.7 percent excess oxygen (wet measurement, plant  $\text{O}_2$  system) operating condition while the short-term test results show a mean level of 1.35 lb/MBtu. The explanation for this disparity most likely is a result of such variables as coal variability, minor unit operating changes (air register settings, etc.) and possibly weather conditions affecting the coal grinding (wet coal) as well as the fact that long-term data includes transients in operating  $\text{O}_2$  level which may be greater than the steady load excursions. The important point is that these normal excursions can influence the short-term data taken at one point in time but are essentially averaged out during normal, long-term operation.

The objective of the short-term testing was to establish the  $\text{NO}_x$  trends for the major parameters that influence emissions on this unit, i.e., excess air, mill pattern, and load. At the high load condition of 480 MW, characterization of the  $\text{NO}_x$  emissions over the excess  $\text{O}_2$  operating range was complicated by unit design constraints which limited the range to 0.75 percent about the nominal 2.7 percent  $\text{O}_2$  operating point. The full load, design  $\text{O}_2$  level for this boiler is approximately 3.3 percent at full load. Full load, short-term  $\text{NO}_x$  emission levels ranged from approximately 1.2 to 1.5 lb/MBtu. At the boiler design  $\text{O}_2$  level,  $\text{NO}_x$  emissions were approximately 1.4 lb/MBtu.

As an indication of mill performance during this phase, approximately 63 percent of the coal passed 200 mesh while 2.8 percent remained in 50 mesh (Table 4). Coal fineness data is collected during the performance tests.

### **3.2. Phase 2 - Advanced Overfire Air Retrofit and Characterization**

#### **3.2.1. Task 2.2 AOFA Retrofit**

The AOFA system was installed during a four week unit outage during spring 1990. For more information on the outage and installation see the *Second Quarter 1990 Technical Progress Report*.

#### **3.2.2. Task 2.3 AOFA Testing Summary**

Following optimization by FWEC, AOFA tests at Plant Hammond (with the pre-NSPS Intervane burners still in operation) were completed in March 1991. During the AOFA test phase, the unit was operated according to FWEC instructions provided in the design manuals. A summary of the long-term test results is shown, along with the baseline results, in Table 3. During AOFA testing, 86 days of long-term data were collected for which the average NO<sub>x</sub> emission level was 0.92 lb/MBtu. As compared to the baseline characteristic, NO<sub>x</sub> emissions were not highly dependent on load during the AOFA test phase (Figure 7). Mill performance during this phase was slightly better than during the baseline phase (Table 4).

### **3.3. Phase 3 - Low NO<sub>x</sub> Burner Retrofit and Characterization**

#### **3.3.1. Task 3.2 LNB Retrofit**

The LNBs were installed during a seven week unit outage during spring 1991. For more information on the outage and installation see the *Second Quarter 1991 Technical Progress Report*.

#### **3.3.2. Task 3.3 LNB Without AOFA Summary**

Following optimization by FWEC, characterization of the low NO<sub>x</sub> burner system began in June 1991 and ended in January 1992. Diagnostic testing was performed from July 9 to July 20, 1991 and performance testing began July 16, 1991. During the LNB test phase, the unit was operated according to FWEC instructions provided in the design manuals. This testing indicated that the low NO<sub>x</sub> burners were not optimally configured and, therefore, testing was postponed for four days to allow FWEC personnel to make additional adjustments to the new burners and ancillary systems. Testing continued on

July 22 and was completed July 28, 1991.

Long-term testing of the low NO<sub>x</sub> burners began on August 7, 1991 and was completed on December 19, 1991. Ninety-four days of long-term data were collected for which the average NO<sub>x</sub> emission level was 0.53 lb/MBtu and the full-load, mean, NO<sub>x</sub> emission level was 0.65 lb/MBtu (Table 3 and Figure 4). As in the baseline long-term test period, NO<sub>x</sub> emissions generally increased with load; however, below approximately 275 MW, the converse is true and NO<sub>x</sub> emissions rapidly increase with decreasing load. In contrast, NO<sub>x</sub> emissions during the AOFA long-term test phase were not highly dependent on load. As can be seen in Figure 8, the load-term variability in NO<sub>x</sub> emissions was small, especially at high-loads. This variability is less than in previous tests phases and is probably due to an improvement in burner condition.

### 3.3.3. Task 3.3 LNB with AOFA Test Summary

Comprehensive testing of the LNBs in conjunction with AOFA is scheduled to start the second quarter of 1993. However, to provide preliminary data, abbreviated testing (short- and long-term) of the LNB+AOFA configuration was performed at Plant Hammond from February to March 1992, during which approximately one week of long-term data was collected. The combined system was optimized by FWEC and operated per their instructions. As shown in Figure 9, long-term NO<sub>x</sub> emissions were somewhat independent of load above 275 MW. However, below this load, NO<sub>x</sub> emissions increased rapidly. The decrease in effectiveness of this configuration at low loads is the result of the operating procedures calling for the closure of AOFA dampers below 300 MW.

Appendix A contains a summary of the NO<sub>x</sub> emissions and load during August and September 1992. The following observations can be made from the graphs contained in this appendix:

- In order to remain within stack particulate compliance limits, the unit ran at loads below 450 MW during this period,
- The NO<sub>x</sub> emissions versus load characteristic was concave-upward with NO<sub>x</sub> emissions a minimum at approximately 225 MW,
- NO<sub>x</sub> emissions showed a much greater sensitivity to load at loads below 225 MW

than above this load point.

As stated previously, comprehensive testing of the LNB+AOFA configuration is scheduled for 1993. This test schedule is dependent on the unit being able to achieve full load while remaining within stack particulate compliance limits. Until full load can be achieved, long-term data will be collected.

### 3.4. Data Comparison

Figure 4 compares the baseline, AOFA, LNB, and LNB+AOFA short- and long-term NO<sub>x</sub> emissions data. The AOFA and LNBs provide a long-term, **full load**, NO<sub>x</sub> reduction of 24 and 48 percent, respectively. Although the abbreviated long-term testing of the LNB+AOFA configuration performed to date does not provide sufficient data to fully characterize NO<sub>x</sub> emissions at full-load, the incremental percent NO<sub>x</sub> reduction of the combined LNB+AOFA system above LNB alone has averaged less than 10 percent over the load range. As shown, long-term emission levels can be significantly different than that indicated by short-term tests.

Flyash loss-on-ignition (LOI) values increased significantly for both the AOFA, LNB, and LNB+AOFA test phases (Figure 5). LOI measurements for the baseline, AOFA, and LNB test segments were made during each performance test using EPA's Method 17 at the secondary air heater outlet. High volume sampling was used for the abbreviated LNB+AOFA phase. Mill performance was generally better in the AOFA, LNB, and LNB+AOFA test phases than during baseline (Table 4). Although it was expected to increase following the AOFA and LNB retrofits, CO remained below 20 ppm over the load range following the retrofits.

An important segment of the test program is to determine the impact of the low NO<sub>x</sub> combustion technologies on boiler performance. Boiler efficiency testing is performed as part of the performance tests and follows guidelines set forth in ASME PTC 4.1 [1]. Although it can be affected by a number of factors unrelated to the AOFA and LNB retrofits, boiler efficiency has decreased following installation of these technologies on Hammond Unit 4 (Table 5). The major contributors to the loss of efficiency are (1) an increase in combustion air requirements leading to increased dry flue gas losses and (2)

---

<sup>1</sup> ASME Performance Test Codes, PTC 4.1, "Steam Generating Units," New York: American Society of Mechanical Engineers, latest edition.

higher carbon in ash values.

A side effect of the post-retrofit shift in ash loading has been a post-LNB retrofit rise in primary air heater plugging rates. Also, these increases, coupled with the higher post-LNB retrofit flyash LOI, adversely impacted particulate emissions such that the unit had to be run at reduced loads to meet particulate compliance limits. The impact of the LNBs on precipitator performance and stack particulate emissions is highly dependent on a number of factors including the size of the precipitator (Hammond Unit 4 precipitator is sized at approximately 161 SCA) and pre-LNB retrofit slagging characteristics (Hammond Unit 4 was characterized as a heavy slagging unit prior to the LNB retrofit). Ammonia flue gas conditioning was used to improve precipitator collection efficiency, allowing full load operation and the completion of the LNB test phase.

### **3.5. Reliability**

Three low NO<sub>x</sub> burners have been damaged due to excessive heat since the spring 1991 low NO<sub>x</sub> burner retrofit. In each instance, portions of the cast burner nozzle assembly melted away, especially in the vicinity of the coal nozzle. The damaged burners were supplied coal from both the new Babcock and Wilcox mills and the FWEC mills, front and rear furnace walls, and upper and lower burner elevations. Two burners were damaged since resumption of unit operation following the spring 1992 outage. The last and most severe occurred on June 16, 1992, and required a one week outage to repair. Damage in this instance was not limited to the cast burner nozzle and sliding tip assembly, but also included the inner and outer barrel, secondary air register, adjacent burners, and windbox. Following this last failure, an enhanced burner thermocouple monitoring system was installed to provide more comprehensive alarming capabilities. The root cause of these failures is at this time undetermined.

### **3.6. ECEM Certification**

ECEM certification tests were conducted by Spectrum Systems, Inc. starting July 23, 1992 and continuing through July 30, 1992. Reference Method Tests were performed on the stack gas stream and were carried out in accordance with the emission monitoring requirements as set forth by the Environmental Protection Agency on May 25, 1991. The results of these tests (Table 6) clearly showed that the ECEM is in conformance with all requirements of EPA's "Performance Specifications and Specification Test Procedures for

Sulphur Dioxide and Nitrogen Oxides Continuous Emission Monitoring Systems in Stationary Sources". Additional information on the certification of the ECEM can be found in Appendix B.

### **3.7. Ultramax Exploratory Experiments**

Initial investigations by the Center for Electric Power personnel into the development of digital control strategies as relates to NO<sub>x</sub> emissions indicates that the software package Ultramax may be suitable as the optimization core of the strategy. Ultramax is an optimization package by which the improvements to the process are achieved by making adjustments to the process inputs, monitoring the output response, and using the response from prior perturbations to make performance predictions. This commercial package has been available for a number of years and is used extensively in the process industries. This package traverses the multi-dimensional process space in it's search for the optimum operating condition and in doing so develops a regression model of the process. Ultramax uses a goal-oriented, locally accurate model to make predictions and operating recommendations.

Preliminary *on-line* testing of this software package was conducted at Plant Hammond Unit 4 on July 28-29, 1992. The objective of this experiment was to determine the validity of the data used with the optimization package and the statistical process model (for NO<sub>x</sub>, CO, opacity, etc.) created by this package. The accuracy of the model represents Ultramax's ability to predict the process outputs given the optimization objective function and constraints (both physical and those defined in the software). Since the present pneumatic combustion control system is not suitable for implementation of this package, closed-loop control of NO<sub>x</sub> emissions was achieved by operators making changes to excess air and AOFA distribution based upon recommendations generated by the optimization package. The results of these changes on NO<sub>x</sub>, CO, and opacity were fed back into the optimization package manually. The software was running on a personal computer. The variables considered in this first test were:

#### *Controlled Variables*

- Total Combustion Air Flow
- Overfire Air Flow - West / Front
- Overfire Air Flow - East / Front
- Overfire Air Flow - West / Rear
- Overfire Air Flow - East / Rear

**Total Coal Flow**

**Results Variables**

**NO<sub>x</sub> Emissions**

**CO Emissions**

**Opacity**

The objective function (i.e. parameter to be minimized) consisted only of NO<sub>x</sub> emissions.

The test was run at approximately 450 MW with five mills in service (mill D out of service). During the test, a "snapshot" reading of the process data was taken from the wall-fired project's data acquisition system following a change in one of the controlled variables and settling of the boiler. A total of 45 data points were collected during the two days of testing of which 42 were considered suitable for Ultramax's use. These snapshot readings were used in real time to generate the advice for the settings of the control variables. In addition to this data, five minute averages were also collected for later analysis. Results from this test indicate that when using snapshot data, the optimization package was not able to define a unique optimum due to the high process noise levels. However, a post-test analysis of the five minute average data showed that a reliable process model could be developed.

A second test of the optimization package was conducted at Plant Hammond Unit 4 from September 26-27, 1992. The objectives of this experiment were:

- To continue the sequential optimization process started in the first test series,
- To incorporate a simple boiler efficiency loss model into the optimization.

As in the first test, the unit was run near 450 MW with five mills in service (mill D out of service). The first portion of the test continued the optimization process began in the earlier test. After reaching a minimum NO<sub>x</sub> emission level, the measure of performance was changed to minimize boiler efficiency losses with constraints on NO<sub>x</sub>, CO, and opacity. To reduce the impact of process noise and improve the quality of the model, five minute averages were used instead of snapshot data used in the first test. By using five minute averages, the optimization package was able to develop more reliable models of the process.

During the course of the optimization sequence (Experiments 1 and 2), NO<sub>x</sub> was reduced

from approximately 260 ppm to 220 (Figure 10). As shown in Figure 11, the CO constraint of CO emission levels being less than 30 ppm was violated a number of times, especially towards the end of the optimization sequence. However, the software package was able to identify a number of operating points in which both  $\text{NO}_x$  and CO emissions were relatively low. Further analysis of these tests is required to determine the suitability of Ultramax to this application. Details of this testing can be found in Appendices C and D.

**Table 3. Baseline, AOFA, and LNB Long-Term Test Results**

| Unit Configuration                                         | Baseline |        | AOFA |        | LNB  |        |
|------------------------------------------------------------|----------|--------|------|--------|------|--------|
|                                                            | Mean     | RSD, % | Mean | RSD, % | Mean | RSD, % |
| Number of Daily Averaged Values                            | 52       | -      | 86   | -      | 94   | -      |
| Average Load (MW)                                          | 407      | 9.4    | 386  | 17.9   | 305  | 17.7   |
| Average NO <sub>x</sub> Emissions (lb/MBtu)                | 1.12     | 9.5    | 0.92 | 8.6    | 0.53 | 13.7   |
| Average O <sub>2</sub> Level (percent at stack)            | 5.8      | 11.7   | 7.3  | 12.6   | 8.4  | 7.7    |
| NO <sub>x</sub> 30 Day Achievable Emission Limit (lb/MBtu) | 1.24     | -      | 1.03 | -      | 0.64 | -      |
| NO <sub>x</sub> Annual Achievable Emission Limit (lb MBtu) | 1.13     | -      | 0.93 | -      | 0.55 | -      |

\* RSD = Relative Standard Deviation = 100 \* Standard Deviation / Mean

**Table 4. Mill Performance at Full Load  
Mill Coal Flow Weighted Averages**

| Phase     | Left in 50 Mesh | Passing 200 Mesh |
|-----------|-----------------|------------------|
|           | Percent         | Percent          |
| Baseline  | 2.8             | 63.0             |
| AOFA      | 2.6             | 66.5             |
| LNB       | 1.3             | 66.5             |
| LNB+AOFA* | 1.3             | 73.6             |

\* Preliminary, data from one test only, 500 MW.

**Table 5. Full Load Boiler Performance (Preliminary)**

| Phase    | Test    | Load<br>MW | Total Fuel<br>lb/hr | Total Air<br>lb/hr | Excess O <sub>2</sub><br>Percent | Excess Air <sup>^</sup><br>Percent | Flyash LOI<br>Percent | Efficiency<br>Percent | Change* |
|----------|---------|------------|---------------------|--------------------|----------------------------------|------------------------------------|-----------------------|-----------------------|---------|
| Design   | N/A     | 480        | 3.9E+05             | 4.2E+06            | 3.3                              | 18%                                | 4.5%                  | 89.0                  | -       |
| Baseline | Average | 474        | 3.5E+05             | 3.7E+06            | 2.9                              | 10%                                | 5.1%                  | 89.8                  | -       |
| AOFA     | 43-1,3  | 478        | 3.4E+05             | 3.8E+06            | 3.9                              | 14%                                | 9.6%                  | 89.1                  | 0.7     |
| LNB      | Average | 476        | 3.3E+05             | 3.9E+06            | 3.7                              | 19%                                | 8.0%                  | 88.2                  | 1.6     |

\*Change relative to baseline average.

<sup>^</sup>Calculated using measured total air and fuel.

**Table 6. ECEM Certification Tests Results - June - July 1991**

| Test                      | SO <sub>2</sub> | NO <sub>x</sub> | O <sub>2</sub> | EPA Specs.                       |
|---------------------------|-----------------|-----------------|----------------|----------------------------------|
| Zero Drift (24 hr)        | 1.24%           | 0.00%           | -              | Less than or equal to 2.5% / day |
|                           | -               | -               | 0.20%          | Less than or equal to 0.5% / day |
| Calibration Drift (24 hr) | -1.04%          | -0.36%          | -              | Less than or equal to 2.5% / day |
|                           | -               | -               | 0.00           | Less than or equal to 0.5% / day |
| Relative Accuracy         | 1.82%           | 13.19%          | -              | Less than or equal to 20%        |

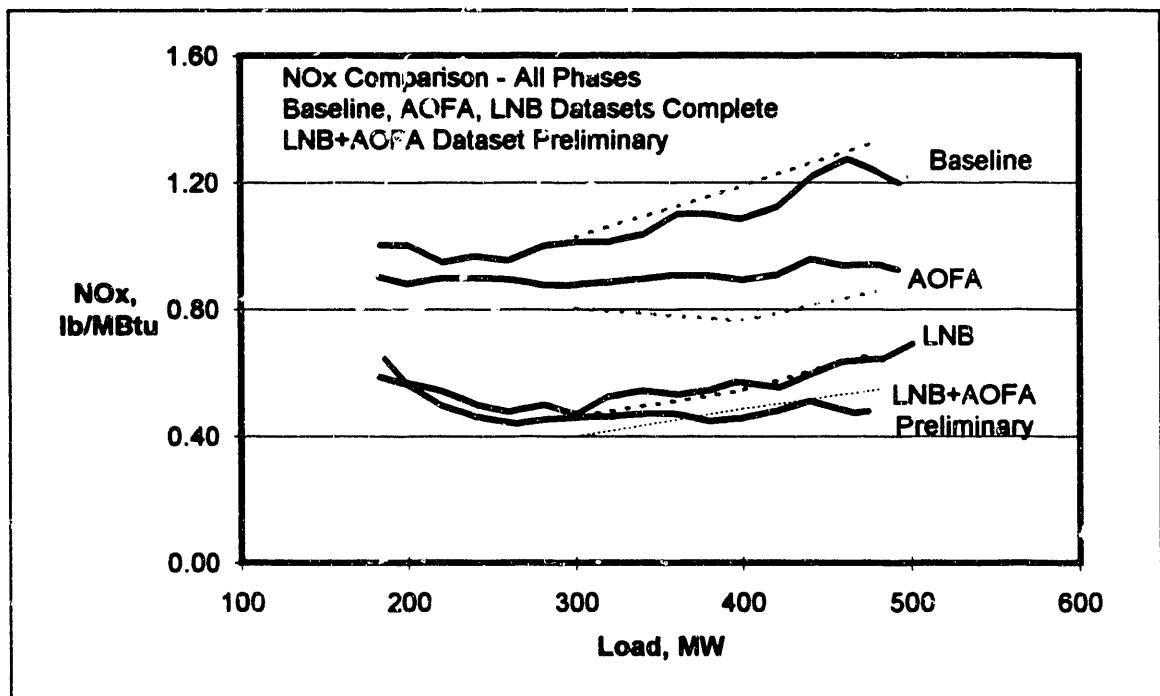



Figure 4. NO<sub>x</sub> Emissions Comparison

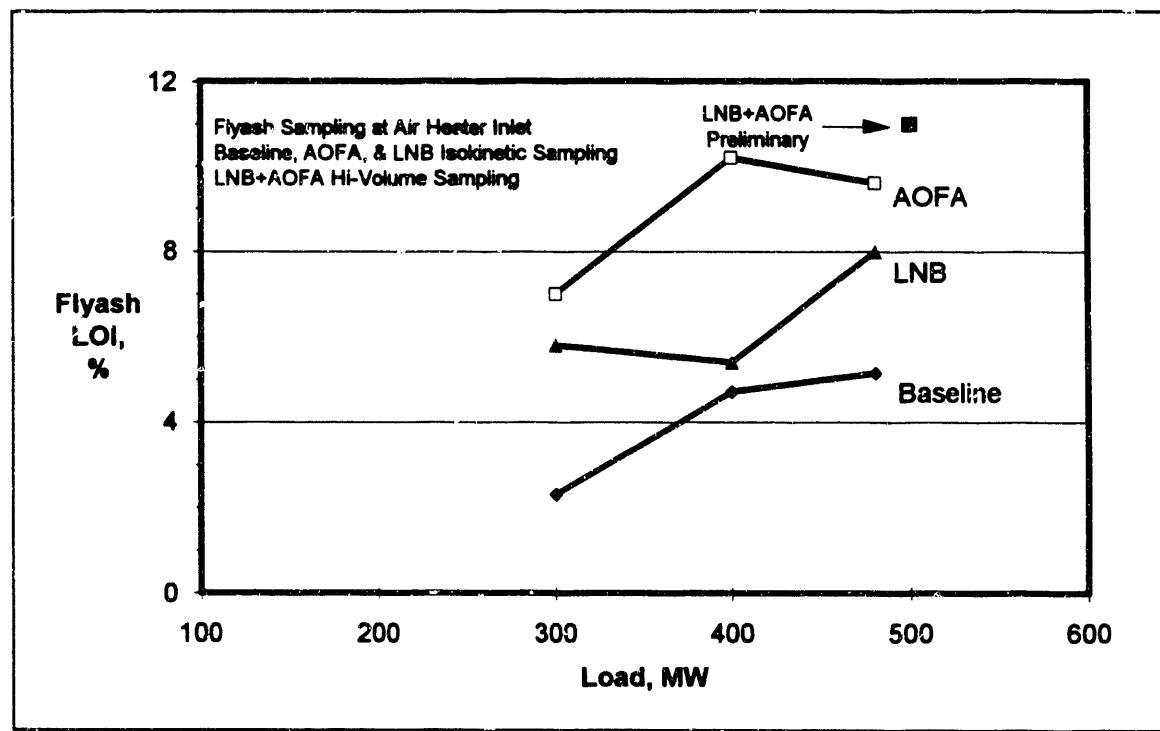



Figure 5. Flyash Combustibles Loss-on-Ignition

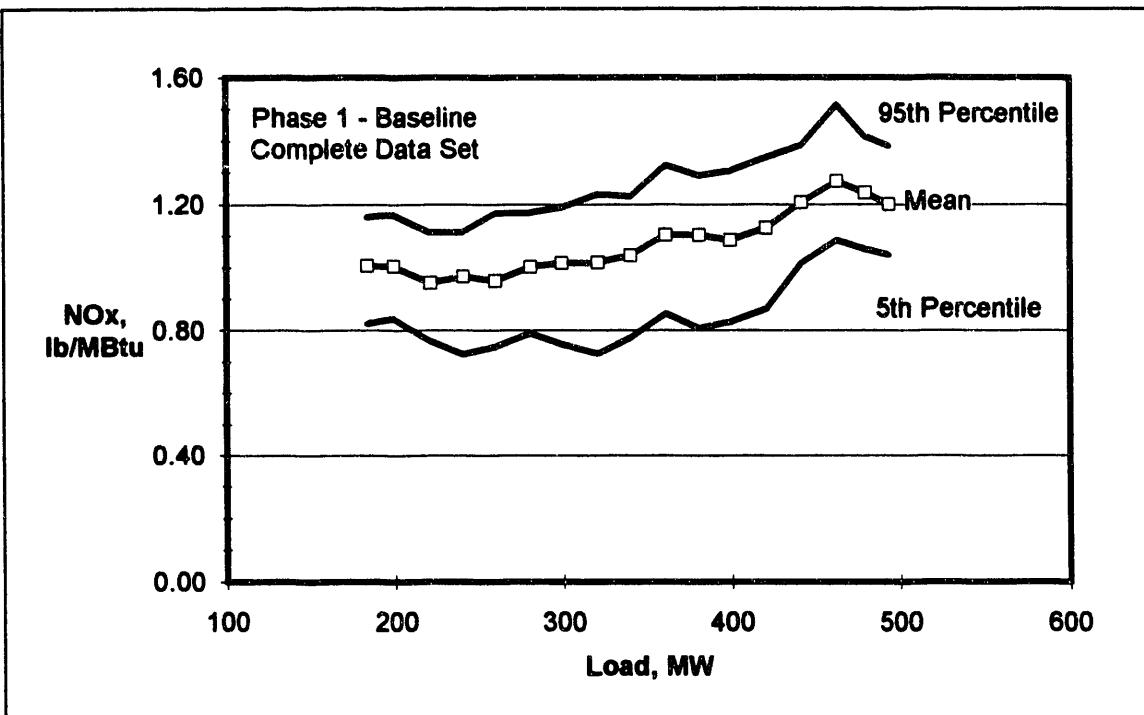



Figure 6. Baseline Long-Term NO<sub>x</sub> Trend

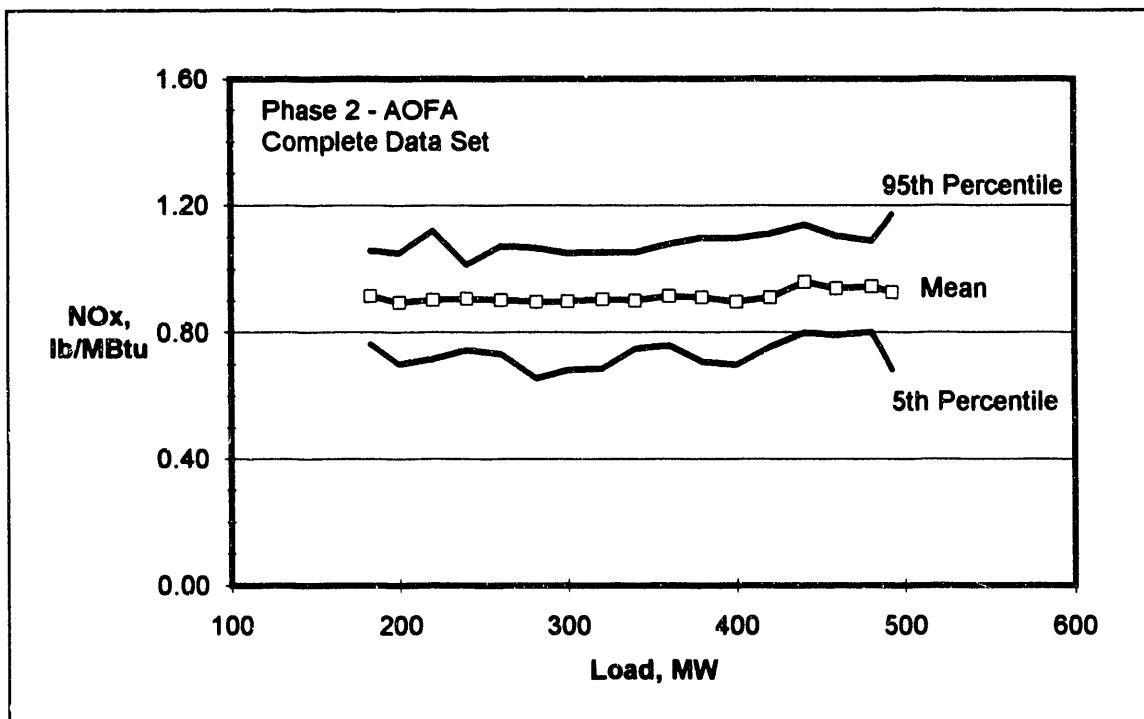



Figure 7. AOFA Long-Term NO<sub>x</sub> Trend

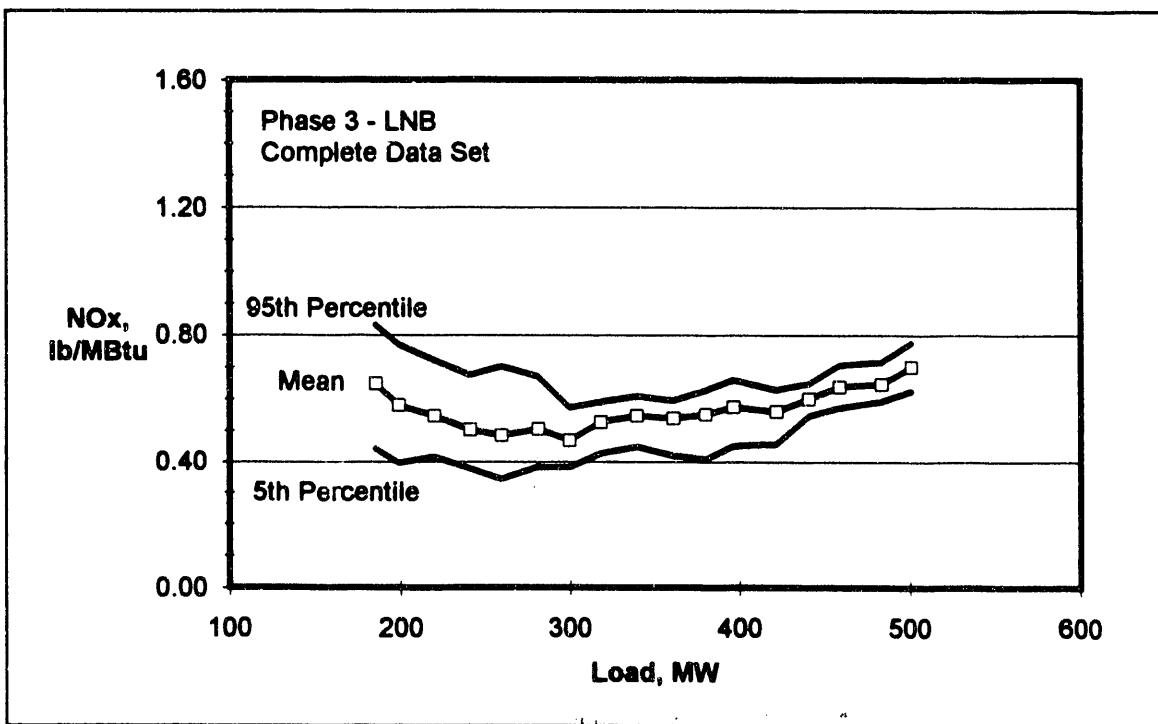



Figure 8. LNB Long-Term NO<sub>x</sub> Trend

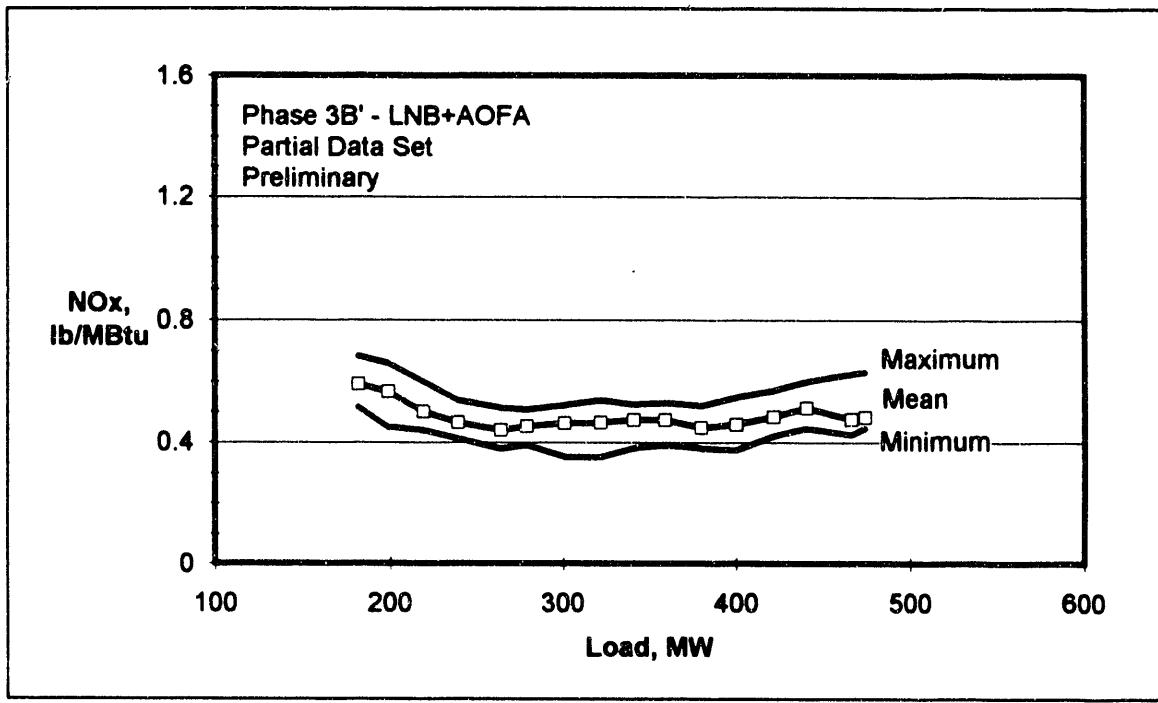



Figure 9. LNB+AOFA Long-Term NO<sub>x</sub> Trend - Preliminary

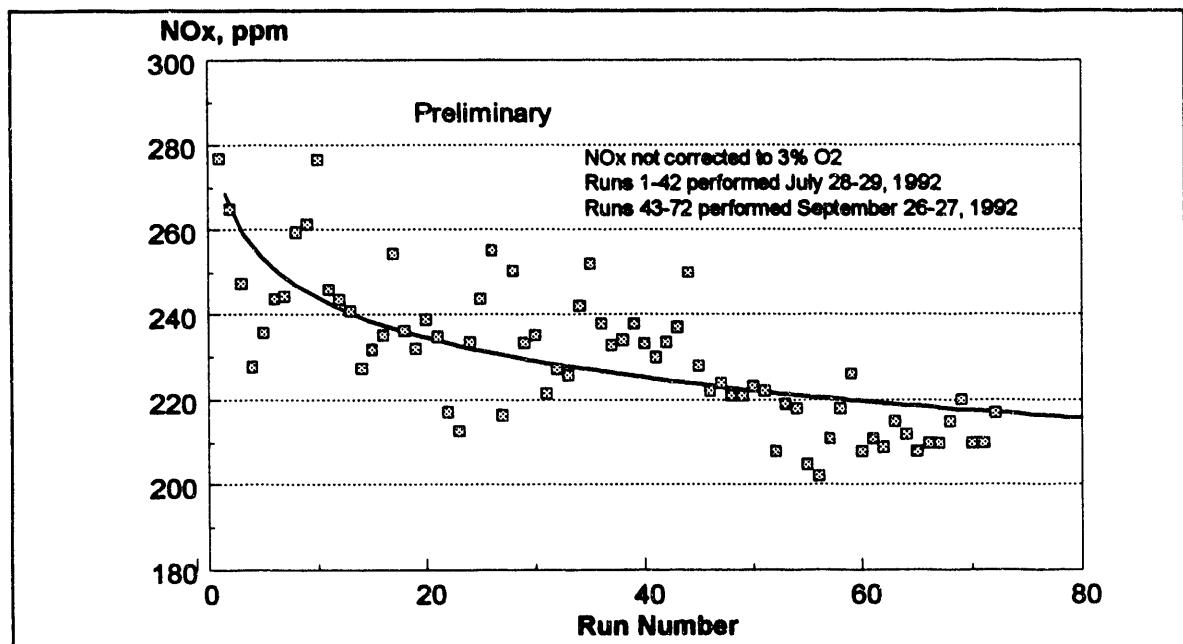



Figure 10. Optimization Experiment #1 & 2 - NO<sub>x</sub> vs. Run Number

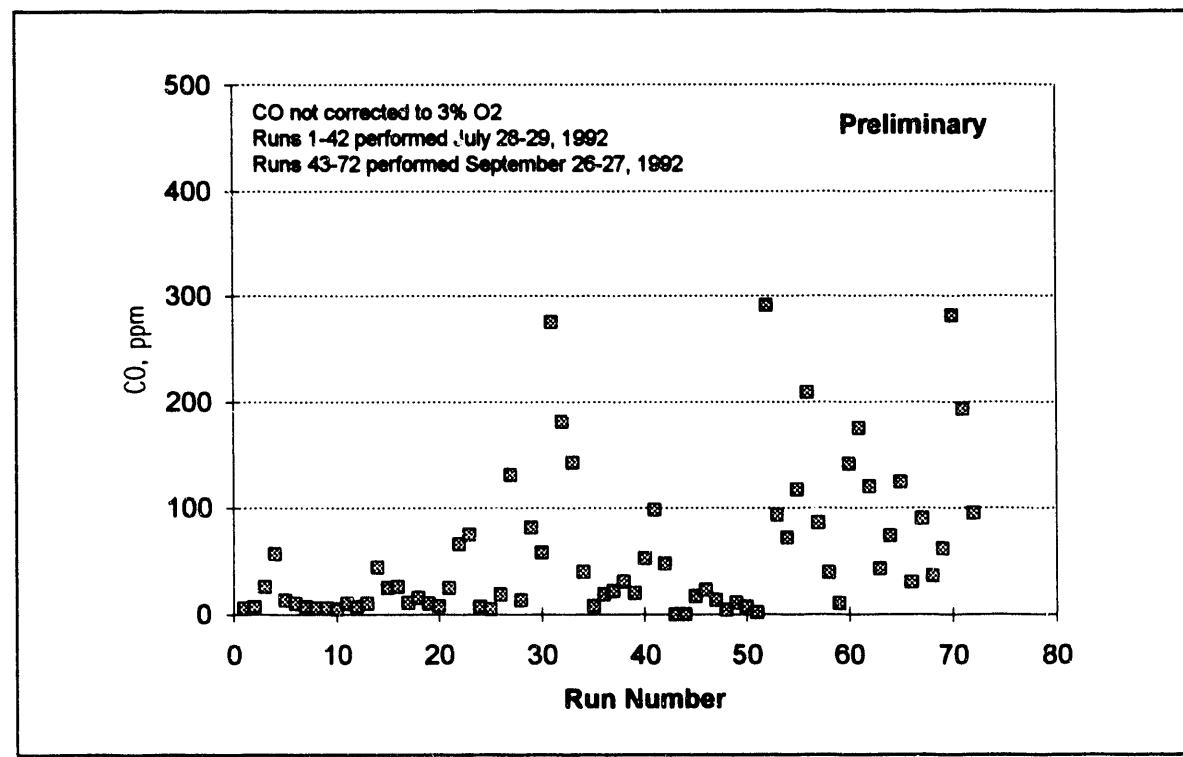



Figure 11. Optimization Experiment #1 & 2 - CO Emissions vs. Run Number

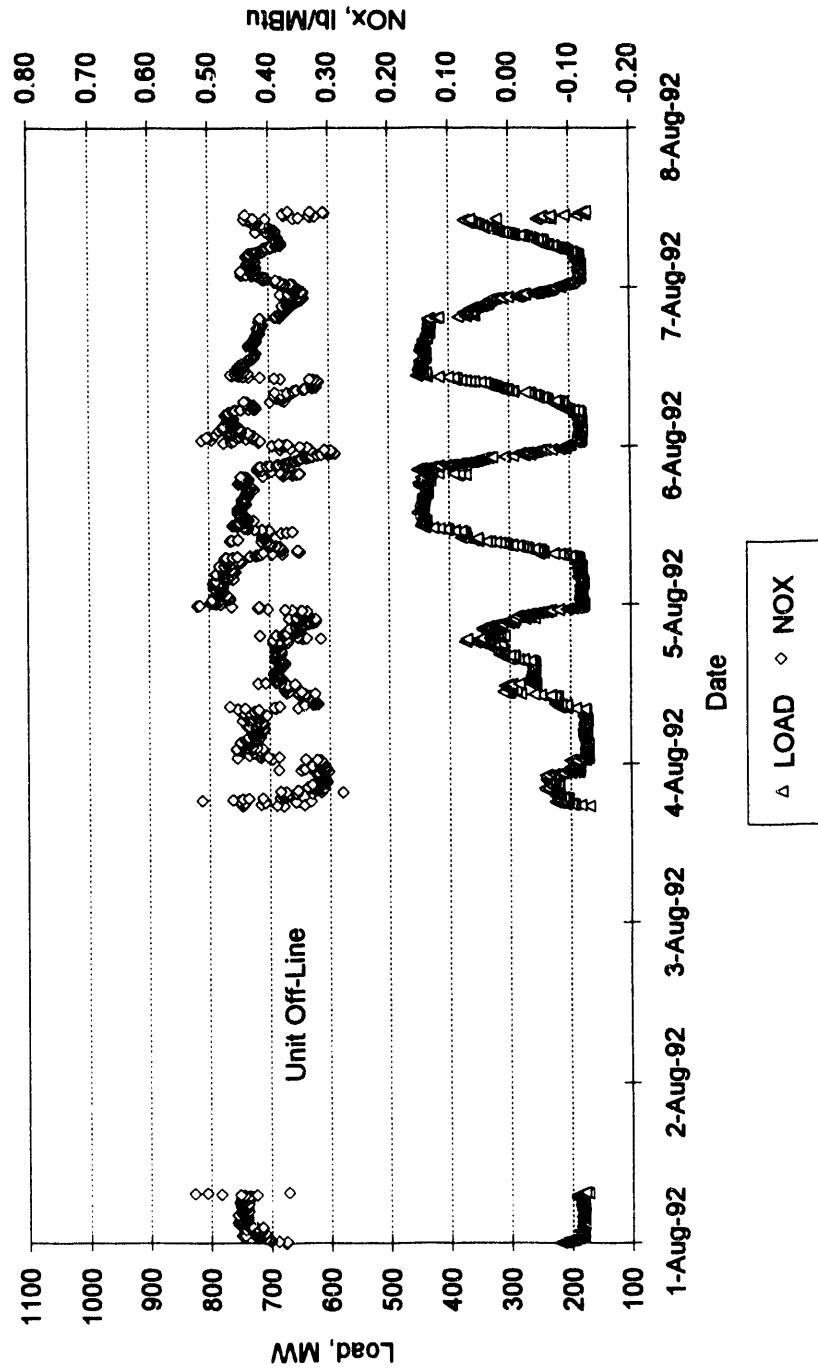
#### 4. FUTURE PLANS

The following table is a quarterly outline of the activities scheduled for the remainder of the project:

| Table 7. Future Plans |                                                                                                                                                                                              |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quarter               | Activity                                                                                                                                                                                     |
| Forth Quarter 1992    | <ul style="list-style-type: none"><li>• Continue Long-Term LNB+AOFA Test</li></ul>                                                                                                           |
| First Quarter 1993    | <ul style="list-style-type: none"><li>• Continue Long-Term LNB+AOFA Test</li></ul>                                                                                                           |
| Second Quarter 1993   | <ul style="list-style-type: none"><li>• Diagnostic Tests of the LNB+AOFA</li><li>• Post Retrofit Chemical Emissions Tests</li><li>• Performance Tests of the LNB+AOFA</li></ul>              |
| Third Quarter 1993    | <ul style="list-style-type: none"><li>• Complete Long-Term LNB+AOFA Tests</li><li>• Verification Tests of the LNB+AOFA</li><li>• Begin Final Reporting</li><li>• Begin Disposition</li></ul> |
| Forth Quarter 1993    | <ul style="list-style-type: none"><li>• Complete Final Reporting</li><li>• Complete Disposition</li><li>• Project Completion</li></ul>                                                       |

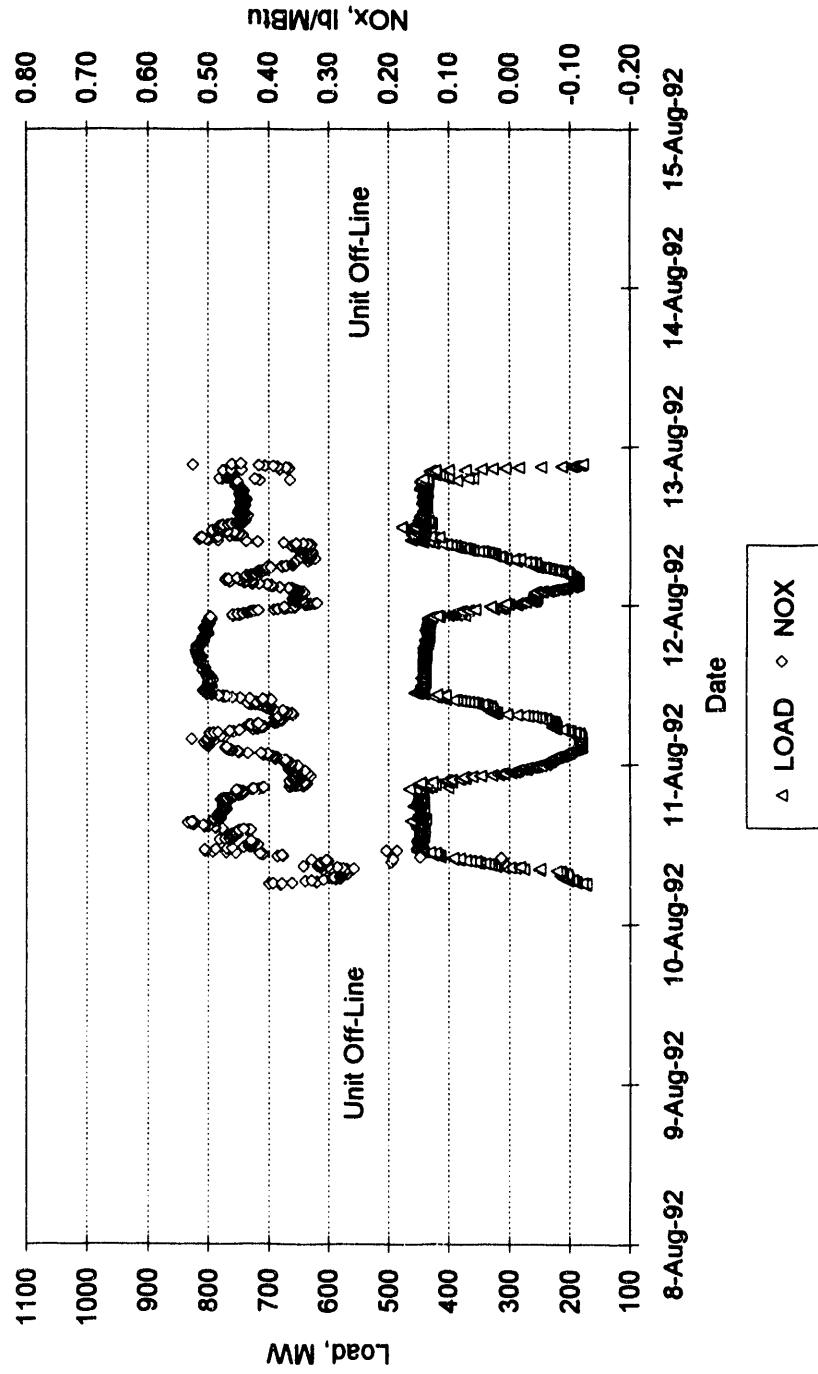
## 5. CONCLUSIONS

In conclusion, the results to date at Plant Hammond indicate:


- NOx emissions have been reduced to near 50 percent of baseline values by using low NOx burners alone. These reductions were sustainable over the long-term test period and were consistent over the entire load range. The full load short-term NOx reductions in this configuration were approximately 55 percent. Furnace waterwall slagging has been significantly reduced, leading to a reduction in soot-blowing frequency. Unit operation was approximately the same or slightly better than that experienced during baseline testing.
- Preliminary results show that AOFA used in conjunction with the LNBs provide only marginal, incremental NOx reduction benefits averaging less than 10 percent over the load range. When compared to baseline, the full load long-term and short-term NOx reductions in this configuration were approximately 55 percent and 62 percent, respectively. The long-term, full load NOx reduction using AOFA alone was approximately 24 percent. Operation of the unit was characterized by plant operators as being more difficult when using the AOFA system.
- In the AOFA, LNB, and LNB+AOFA configurations, the unit experienced significant performance impacts including increases in excess air and carbon in flyash.
- The LNBs are susceptible to tip cracking and melting. These problems will impact reliability and may affect performance as it relates to NOx production and LOI. The cause of these failures is at this time undetermined. Future work should address these challenges and the controls necessary to maintain performance and reliability.
- Auxiliary systems can be adversely impacted by the installation of these combustion technologies. Precipitator mass loading and gas flow rates have increased. Excess air requirements and, therefore, fan power requirements have also increased.

## **6. ACKNOWLEDGEMENTS**

The following project participants are recognized for their dedicated efforts toward the success of the wall-fired low NO<sub>x</sub> demonstration: Mr. Ernie Padgett, Georgia Power Company, and Mr. Mike Nelson, Southern Company Services, for their coordination of the design and retrofit efforts and Mr. Jose Perez, full-time Instrumentation Specialist from Spectrum Systems, Inc. Also Messrs Jim Witt and Jimmy Horton of Southern Company Services for design, procurement, and installation of the instrumentation systems. The following companies have provided outstanding testing and data analysis efforts: Energy Technology Consultants, Inc., Flame Refractories, Inc., Southern Research Institute, W. S. Pitts Consulting, and Radian Corporation. Finally, the support from Mr. Art Baldwin, DOE ICCT Project Manager, and Mr. David Eskinazi, EPRI Project Manager, is greatly appreciated.


**APPENDIX A**  
**Long-Term NO<sub>x</sub> Emissions - August - September, 1992**

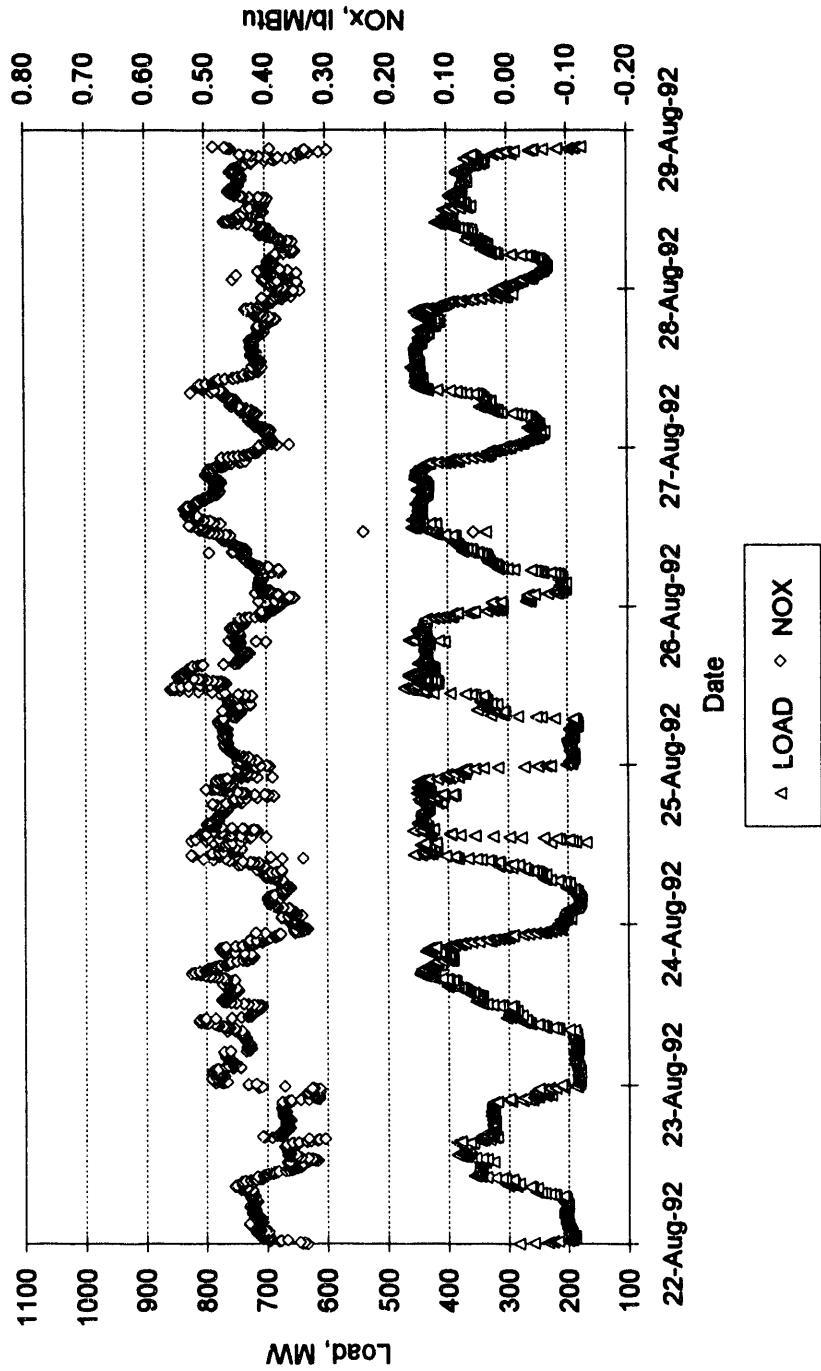
**Wall-Fired Project**  
**Long-Term Unit Generation and NO<sub>x</sub> Emissions**



**Figure A-1**

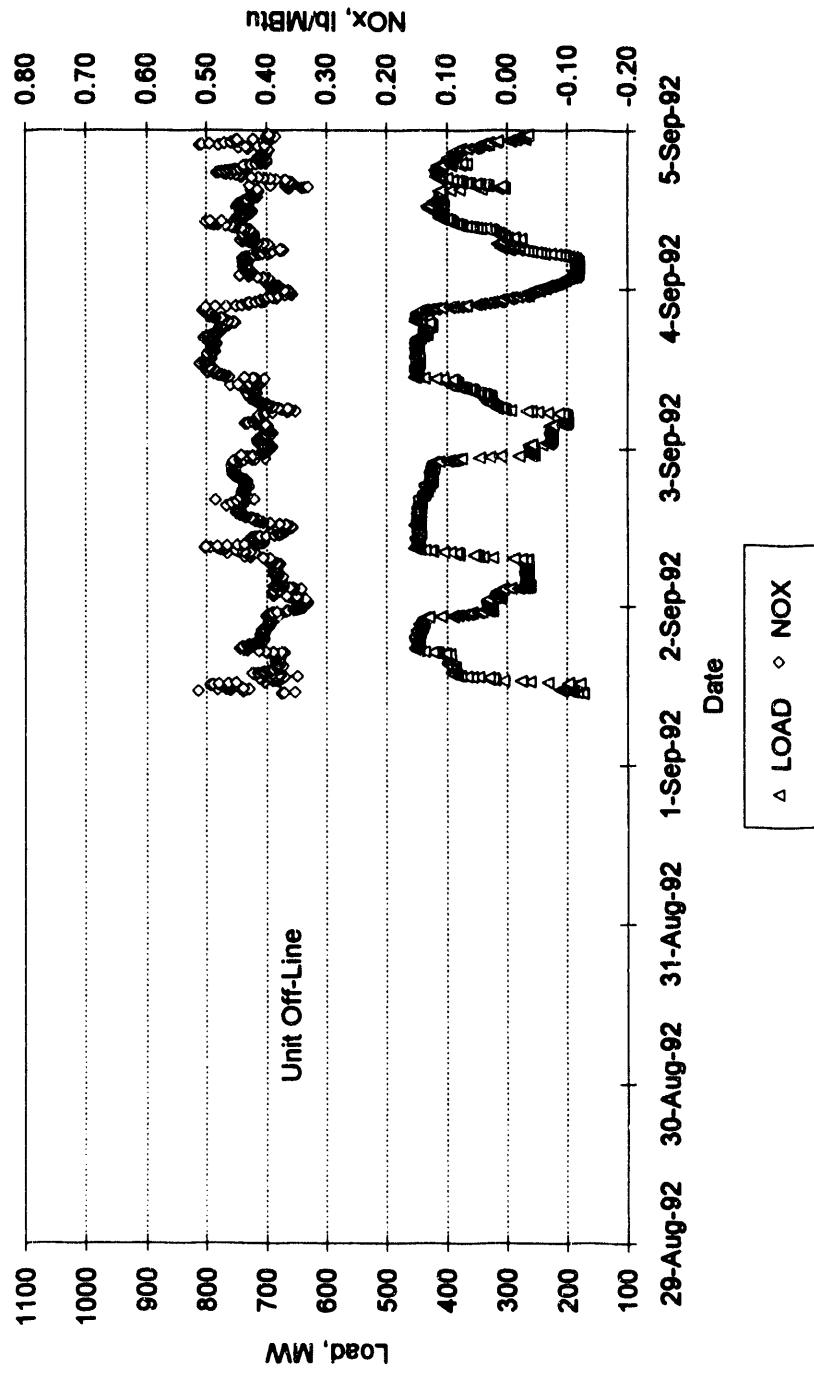
**Wall-Fired Project**  
**Long-Term Unit Generation and NO<sub>x</sub> Emissions**




**Figure A-2**

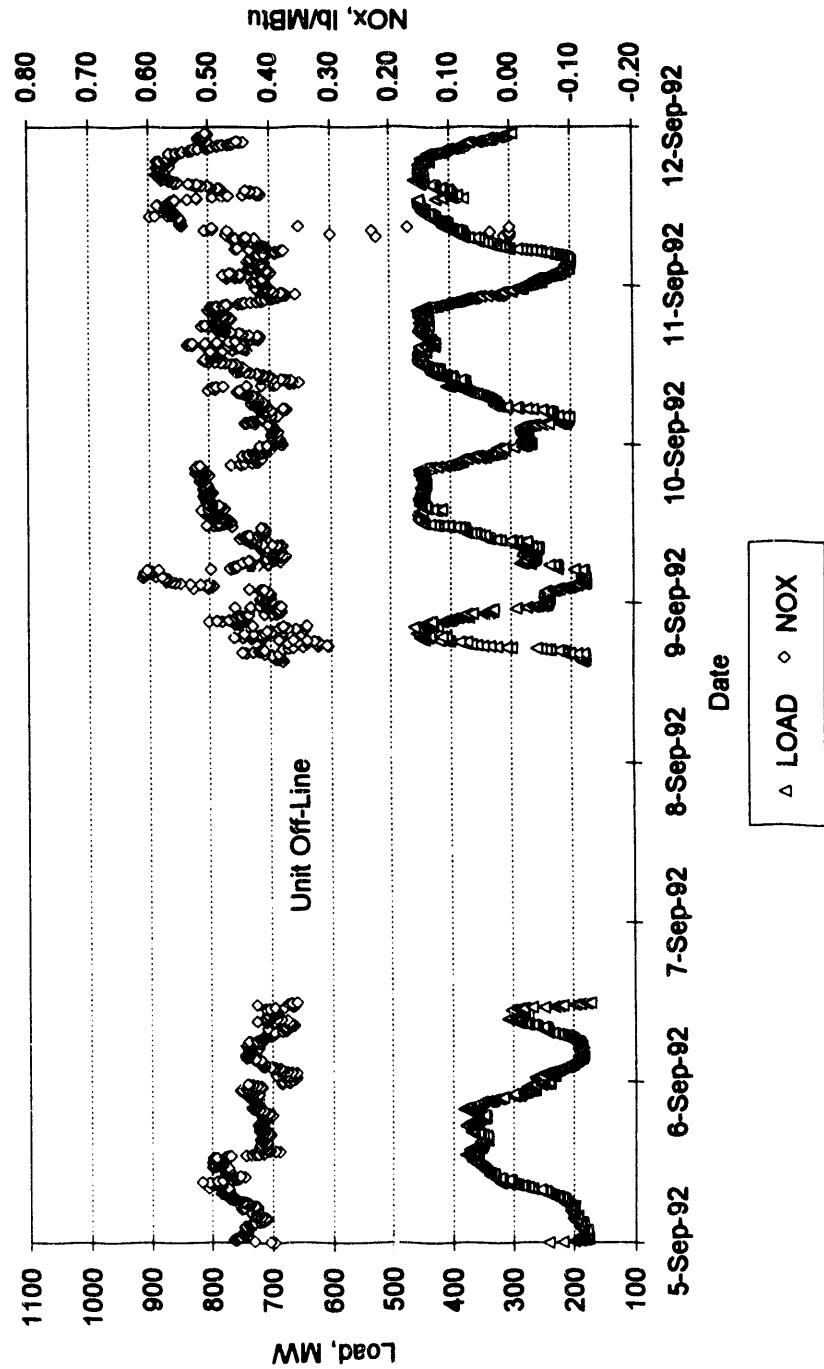
**Wall-Fired Project**  
**Long-Term Unit Generation and NOx Emissions**




**Figure A-3**

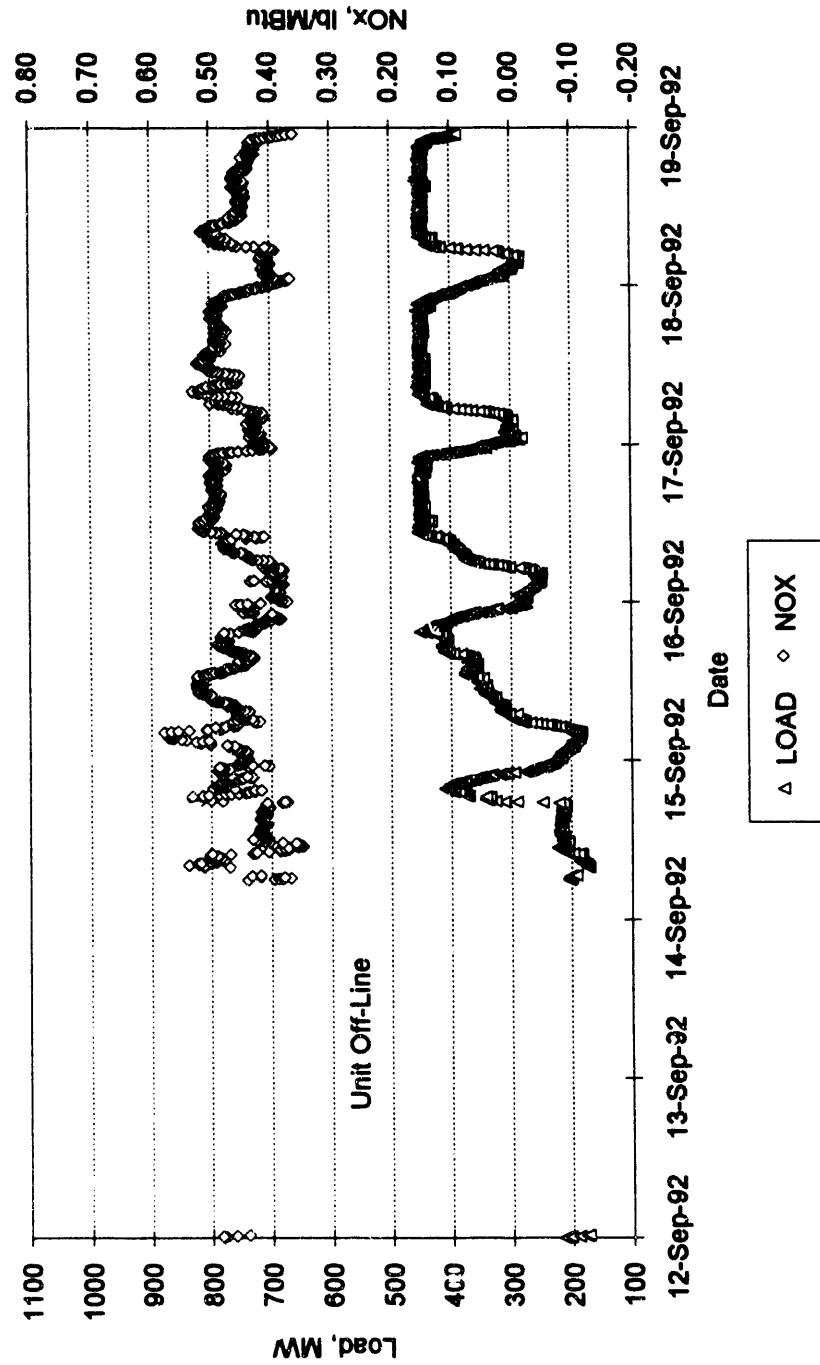
**Wall-Fired Project**  
**Long-Term Unit Generation and NO<sub>x</sub> Emissions**




**Figure A-4**

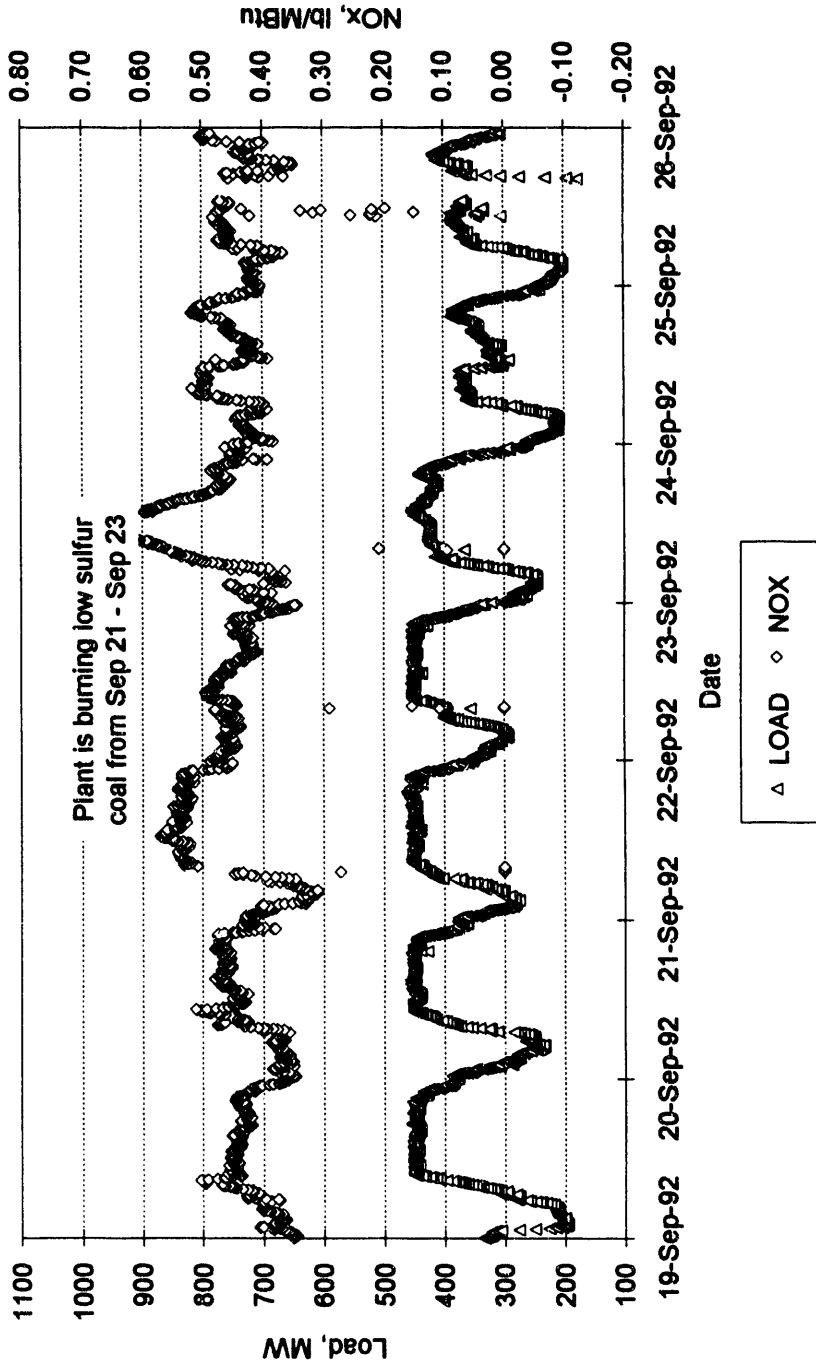
**Wall-Fired Project**  
**Long-Term Unit Generation and NO<sub>x</sub> Emissions**




**Figure A-5**

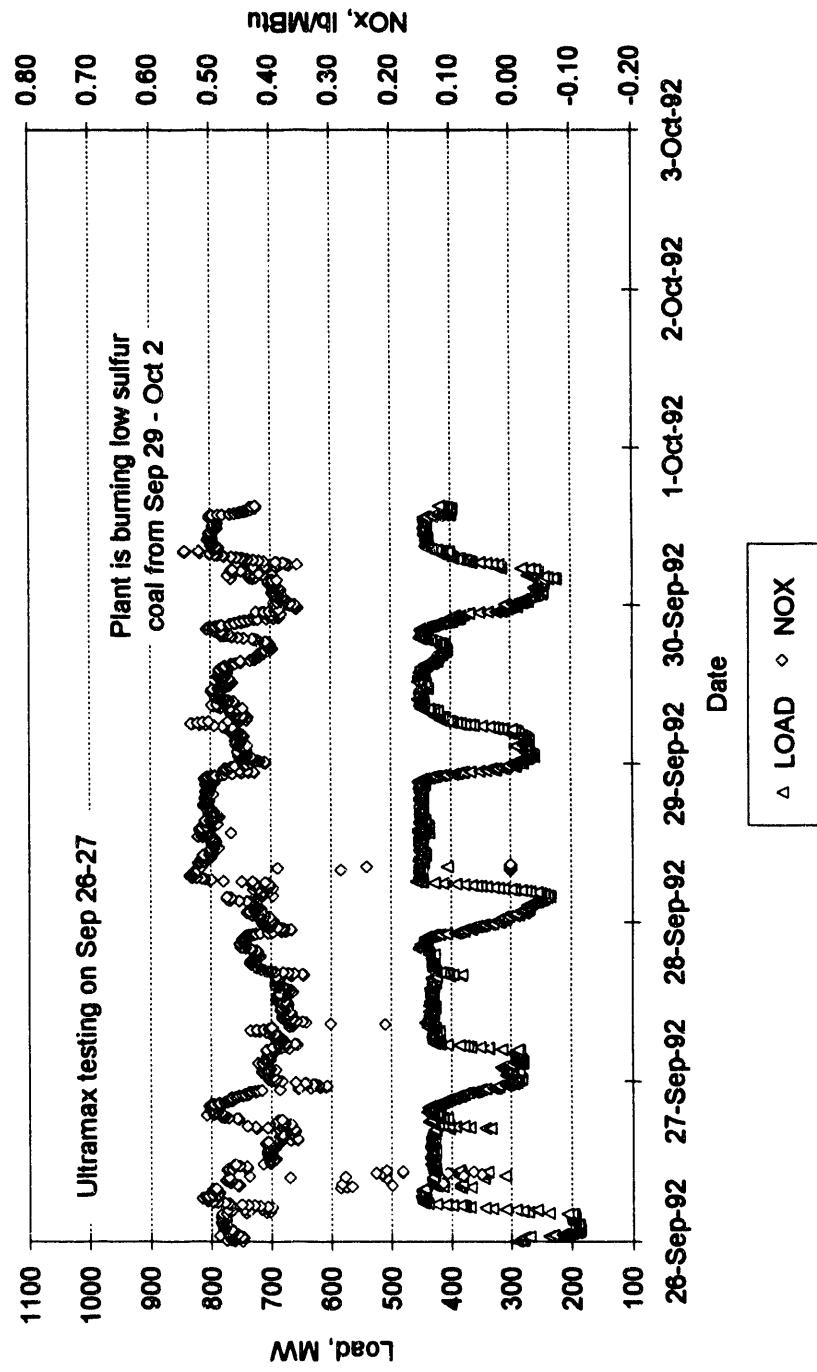
**Wall-Fired Project**  
**Long-Term Unit Generation and NO<sub>x</sub> Emissions**




**Figure A-6**

**Wall-Fired Project**  
**Long-Term Unit Generation and NOx Emissions**




**Figure A-7**

**Wall-Fired Project**  
**Long-Term Unit Generation and NOx Emissions**



**Figure A-8**

**Wall-Fired Project**  
**Long-Term Unit Generation and NOx Emissions**



**Figure A.9**

**APPENDIX B**  
**CEM Certification Testing - August 1992**

# **CERTIFICATION TESTING**

**UNIT #4**

**GEORGIA POWER COMPANY**

**PLANT HAMMOND**

**AUGUST 20, 1992**

**Prepared by:**

**Spectrum Systems, Inc.  
Pensacola, Florida**

**KVB O<sub>2</sub> Analyzer S/N CO58405(B)-1  
KVB SO<sub>2</sub> Analyzer S/N 89-721AT2-7543-3  
KVB NO<sub>x</sub> Analyzer 10 A/R-25864-222**

# TABLE OF CONTENTS

- I. INTRODUCTION
- II. INSTALLATION DESCRIPTION AND START UP
- III. SUMMARY
- IV. DISCUSSION OF RESULTS
  - CALIBRATION DRIFT TEST
  - CALIBRATION ERROR TEST
  - RELATIVE ACCURACY
  - LOG OF OPERATIONS
  - PERFORMANCE TEST RESULTS
- V. APPENDIX
  - NOTICE OF FIELD CERTIFICATION
  - REPORT CERTIFICATION
  - MATHEMATICAL EXPLANATION
  - REFERENCE METHOD TEST REPORT
  - APPENDIX A - CALCULATION OF AVERAGE EMISSIONS
  - APPENDIX B - SYSTEM CALIBRATION BIAS AND DRIFT CALCULATIONS
  - APPENDIX C - MEASUREMENT SYSTEMS PERFORMANCE TESTS
  - APPENDIX D - CONTINUOUS EMISSIONS MONITORING SYSTEMS OUTPUT DATA
  - APPENDIX E - STRIP CHART RECORDINGS
  - APPENDIX F - CALIBRATION GAS CERTIFICATES OF ANALYSIS
  - APPENDIX G - EPA TEST METHODS AND SPECIFICATIONS
  - APPENDIX H - FIELD NOTES

**DOE/SOUTHERN COMPANY SERVICES, INC  
INNOVATIVE CLEAN COAL TECHNOLOGY PROJECT  
GEORGIA POWER - PLANT HAMMOND - UNIT FOUR**

## **EQUIPMENT INVENTORY - CEM SYSTEM**

| SYSTEM      | MANUFACTURER  | SERIAL NUMBER      | MODEL   | RANGE     |
|-------------|---------------|--------------------|---------|-----------|
| KVB-O2      | AMETEK        | CO58405(B)-1       | WDGIII  | 0-25PCT   |
| KVB-SO2     | WESTERN RES.  | 89-721AT2-7543-3   | 721AT   | 0-2500PPM |
| KVB-NOx     | TECO          | 10A/R-25864-222    | 10      | 0-2500PPM |
| KVB-THC     | BECKMAN IND.  | 100952             | 400A    | 0-100PPM  |
| KVB-CO      | SIEMENS       | 7MB1122-1CA13-1BA1 | 21P     | 0-300PPM  |
| CABINET     | KVB           | 50525              | N/A     | N/A       |
| DATA LOGGER | KAYE          | 907157             | 4M PLUS | N/A       |
| DAS         | ZENITH SYSTEM | 934CC003385        | 386 PC  | N/A       |

## I. INTRODUCTION

Spectrum Systems, Inc. was contracted by Georgia Power Company to conduct a Performance Evaluation of the Plant Hammond Continuous Emission Monitoring Systems (CEMS), comprised of an Ametek Model WDGIII O<sub>2</sub> Analyzer, Serial Number CO58405(B)-1; Western Research Model 721-AT SO<sub>2</sub> Analyzer, Serial Number 89-721AT2-7543-3; and a Thermo Environmental Model 10 NO<sub>x</sub> Analyzer, Serial Number 10 A/R-25864-222. The KVB extractive system monitors the exhaust gas duct as well as several intermediate ducts, on command. Reference Method Tests were performed on the stack gas stream at a point located 250' up the stack to determine instrument accuracies. The installation was made on the multi-fuel boiler located on Unit #4 at the Plant Hammond facility. This certification was performed in accordance with the emission monitoring requirements as promulgated on May 25, 1984, by the Environmental Protection Agency. Field tests were conducted from July 23, 1992, through July 30, 1992. The instrument operated continuously throughout the operational test period without maintenance or service. During the relative accuracy test period, the boiler was operated at greater than 50% of normal load. Results in this report include data from a diluent monitor since reporting is required in a mass emission output format. The diluent monitors were also certified during this test.

## II. INSTALLATION DESCRIPTION

The instruments were installed on the main exhaust duct of the Unit #4 Boiler located at the Plant Hammond facility. Further installation information can be obtained from the affected facility. The initial start-up was on November 2, 1989, for the KVB system. The effluent gases are assumed to be representative in accordance with para. 3.1.1. of the referenced specification since the monitor location is more than eight diameters downstream of the nearest control device and in the centroid into the effluent stream. These monitoring

systems are used to evaluate the effects of NO<sub>x</sub> reduction procedures under test at the facility.

### III. SUMMARY

Test results of the Performance Evaluation are presented in Table III-1 A. These results are based on data obtained in Rome, Georgia during normal operation at the facility. The test results clearly show that the KVB continuous emissions monitor is in conformance with all requirements of "Performance Specifications and Specification Test Procedures for Sulphur Dioxide and Nitrogen Oxides Continuous Emission Monitoring Systems in Stationary Sources".

### IV. DISCUSSION OF RESULTS

#### *Calibration Drift Test*

Calibration drift was tested in accordance with paragraph 1 of Performance Specification 2. Both SO<sub>2</sub>/NO<sub>x</sub> monitors are designed to provide automatically timed zero and span calibration checks at 24 hour intervals throughout the required 7 consecutive days. The zero value is determined by mechanically introducing to the probe measurement cavity or sample probe a supply of zero air, thereby producing a zero condition that checks the analyzer's internal components and all electronic circuitry including the radiation source and detector assembly. The span of the system is checked with a calibration gas equivalent to between a 50 and 90 percent deflection of span concentration, utilizing the probe measurement cavity in a manner similar to that described above. Adjustments were not made on the gas monitor or the diluent monitor during the Calibration Drift Test. Twenty-four (24) hour results were calculated by taking the daily recorded monitor response and subtracting this reading from the reference value. Daily calibration drift tests are contained

in the reports entitled, "Plant Hammond Unit 4 Clean Coal Project", Valve Group 199, 200 and 201, taken from the plant reporting data acquisition system and found in Appendix D of this report.

### ***Calibration Drift Test Results***

Results of the two (2) point Calibration Drift Test are as follows:

Sulphur Dioxide and Nitrogen Oxide stack gas monitor and the oxygen diluent monitor calibration drift for the seven (7) consecutive day period did not exceed 2.5% of the zero or span value for pollutant parameters, or 0.5% oxygen by volume for the diluent monitor for any given day. Drift test results are displayed in tabular formats on the following pages.

Federal Register specifications permit calibration drift to be less than equal to 2.5% of span for sulphur dioxide and nitric oxide and 0.5 % O<sub>2</sub> by volume for diluent oxygen for each 24 hour period of the seven (7) day calibration drift test. The test data used in calculating these results is presented on the following pages.

### ***Calibration Error Test***

A calibration error test or cylinder gas audit was performed in accordance with the QA guideline contained in the Title 40 Part 60 Appendix F of Code of Federal Regulations. This test was used to access the accuracy of each CEMS prior to the reference method testing procedures. No adjustments were made to the CEMS as a result of the gas audits.

A secondary purpose of this procedure was to validate the calibration procedures used by contractor personnel to maintain instrument accuracy.

### ***Relative Accuracy***

Relative Accuracy is defined in the Federal Register as "the degree of correctness with which the continuous monitoring system yields the value of gas concentration of a sample relative to the value given by a defined reference method." The defined reference method, in this case, is EPA Reference Methods 3A, 6C and 7E. Nine sets of tests were performed on August 20, 1992, at a point established in accordance with Section 7.1 of the Federal Register. Additional details can be found in the appendix of this report.

The accuracy is reported as an error and is the sum of the absolute mean value of the difference between the reference test and the combined readings, plus a 95% confidence interval of the differences, expressed as a percentage of the mean combined reference value. The analyzer's average response was determined from the computer printouts corresponding to the time period the relative accuracy tests were performed. Since the Land measurement systems are insitu instruments, the outputs are expressed in ppm concentration on a wet basis. A moisture test correction factor was used in the conversion formula so instrument readings could be corrected to a dry basis prior to comparison with the reference method values and are shown in the Appendix.

When using computer printouts for comparisons to the reference methods, one minute instrument averages were used, corresponding to the time frame of stack gas samples. The method for arriving at the comparison of LBS/MBTU is obtained by using a formula that calculates the emission output based on raw PPM the percent of oxygen and moisture factor. The formulas used for conversion are explained in the Appendix, under the section entitled, "Mathematical Explanation."

The relative accuracy is displayed in tabular form on the Relative Accuracy Determination worksheet found on the following pages. Federal Register specifications limit the allowable error to 20% of the mean calculated reference method value.

## LOG OF OPERATIONS

**KVB SYSTEM S/N 50525**

|                                  |                                                                                         |
|----------------------------------|-----------------------------------------------------------------------------------------|
| Model and Manufacturer           | KVB Model 50 Extractive                                                                 |
| Instrument Serial Number         | 50525 - Cabinet<br>89-721AT2-7543-3-SO <sub>2</sub><br>10 A/R-25864-222-NO <sub>x</sub> |
| Diluent Serial Number            | Ametek CO58405(B)-1                                                                     |
| Initial Start-up                 | 11/02/89                                                                                |
| Start of Performance Calibration | 07/23/92                                                                                |
| Start of Calibration Drift Test  | 07/23/92                                                                                |
| End of Calibration Drift Test    | 07/30/92                                                                                |
| Start of Relative Accuracy Test  | 08/20/92                                                                                |
| End of Relative Accuracy Test    | 08/20/92                                                                                |

**TABLE III-1A**  
**PERFORMANCE TEST RESULTS**  
**KVB SYSTEM (S/N 50525)**

|                                                                     | <i>Monitor Performance</i>                            | <i>EPA Specifications</i>                                      |
|---------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|
| SO <sub>2</sub> Instrument Serial Number                            | 89-721AT2-7543-3                                      |                                                                |
| NO <sub>x</sub> Instrument Serial Number                            | 10 A/R-25864-222                                      |                                                                |
| Diluent Serial Number                                               | CO58405(B)-1                                          |                                                                |
| Calibration Period                                                  | seven (7)<br>consecutive days                         | seven (7)<br>consecutive days                                  |
| NO <sub>x</sub> Analyzer<br>Cal. Drift (Lo pt. 0-20%)               | 0.00% largest daily<br>difference (NO <sub>x</sub> )  | less than or equal to<br>2.5% span per day                     |
| SO <sub>2</sub> Analyzer<br>Cal. Drift (Lo pt. 0-20%)               | 1.24% largest daily<br>difference (NO <sub>x</sub> )  | less than or equal to<br>2.5% span per day                     |
| Diluent Oxygen Analyzer<br>(Downscale checkpoint)                   | .20% largest daily<br>difference (O <sub>2</sub> )    | less than or equal to<br>0.5% O <sub>2</sub> by volume per day |
| SO <sub>2</sub> Analyzer<br>Cal. Drift (Hi pt. 50-100%)             | -1.04% largest daily<br>difference (NO <sub>x</sub> ) | less than or equal to<br>2.5% span per day                     |
| NO <sub>x</sub> Analyzer<br>Cal. Drift (Hi pt. 50-100%)             | -.36% largest daily<br>difference (NO <sub>x</sub> )  | less than or equal to<br>2.5% span per day                     |
| Diluent Oxygen Analyzer<br>(Upscale checkpoint)                     | 0.00% largest daily<br>difference (O <sub>2</sub> )   | less than or equal to<br>0.5% O <sub>2</sub> by volume per day |
| System Relative Accuracy<br>computed in lbs/Mbtu (SO <sub>2</sub> ) | 1.82%                                                 | less than or equal to<br>20%                                   |
| System Relative Accuracy<br>computed in lbs/Mbtu (NO <sub>x</sub> ) | 13.19%                                                | less than or equal to<br>20%                                   |

DOE/SOUTHERN COMPANY SERVICES, INC.  
 INNOVATIVE CLEAN COAL TECHNOLOGY PROJECT  
 GEORGIA POWER COMPANY - PLANT HAMMOND UNIT FOUR

CEM CALIBRATION DRIFT DETERMINATION

|               |              |                               |                           |
|---------------|--------------|-------------------------------|---------------------------|
| SYSTEM        | KVB-02       | GAS<br>SPAN RANGE<br>OPERATOR | O2<br>25PCT<br>JOSE PEREZ |
| MANUFACTURER  | AMETEK       |                               |                           |
| MODEL         | WDGIII       |                               |                           |
| SERIAL NUMBER | C058405(B)-1 |                               |                           |

SPAN DRIFT

| DAY   | DATE      | TIME     | CALIBRATION<br>VALUE PCT | MONITOR<br>VALUE PCT | DIFFERENCE<br>IN PCT | TOTAL<br>ERROR |
|-------|-----------|----------|--------------------------|----------------------|----------------------|----------------|
| START | 23-Jul-92 | 07:56 AM | 19.90                    | 19.90                | 0.00                 | 0.00%          |
| 1     | 24-Jul-92 | 07:57 AM | 19.90                    | 19.90                | 0.00                 | 0.00%          |
| 2     | 25-Jul-92 | 07:56 AM | 19.90                    | 19.90                | 0.00                 | 0.00%          |
| 3     | 26-Jul-92 | 07:56 AM | 19.90                    | 19.90                | 0.00                 | 0.00%          |
| 4     | 27-Jul-92 | 07:56 AM | 19.90                    | 19.90                | 0.00                 | 0.00%          |
| 5     | 28-Jul-92 | 07:56 AM | 19.90                    | 19.90                | 0.00                 | 0.00%          |
| 6     | 29-Jul-92 | 07:21 AM | 19.90                    | 19.90                | 0.00                 | 0.00%          |
| 7     | 30-Jul-92 | 07:56 AM | 19.90                    | 19.90                | 0.00                 | 0.00%          |

ZERO DRIFT

| DAY   | DATE      | TIME     | CALIBRATION<br>VALUE PCT | MONITOR<br>VALUE PCT | DIFFERENCE<br>IN PCT | TOTAL<br>ERROR |
|-------|-----------|----------|--------------------------|----------------------|----------------------|----------------|
| START | 23-Jul-92 | 08:03 AM | 0.00                     | 0.10                 | 0.10                 | 0.10%          |
| 1     | 24-Jul-92 | 08:05 AM | 0.00                     | 0.20                 | 0.20                 | 0.20%          |
| 2     | 25-Jul-92 | 08:03 AM | 0.00                     | 0.10                 | 0.10                 | 0.10%          |
| 3     | 26-Jul-92 | 08:03 AM | 0.00                     | 0.10                 | 0.10                 | 0.10%          |
| 4     | 27-Jul-92 | 08:03 AM | 0.00                     | 0.10                 | 0.10                 | 0.10%          |
| 5     | 28-Jul-92 | 08:03 AM | 0.00                     | 0.20                 | 0.20                 | 0.20%          |
| 6     | 29-Jul-92 | 07:28 AM | 0.00                     | 0.20                 | 0.20                 | 0.20%          |
| 7     | 30-Jul-92 | 08:03 AM | 0.00                     | 0.20                 | 0.20                 | 0.20%          |

MAXIMUM ALLOWANCE ERROR = PLUS OR MINUS 0.5% O2 BY VOLUME

**DOE/SOUTHERN COMPANY SERVICES, INC.  
INNOVATIVE CLEAN COAL TECHNOLOGY PROJECT  
GEORGIA POWER COMPANY - PLANT HAMMOND UNIT FOUR**

**CEM CALIBRATION DRIFT DETERMINATION**

|               |                             |            |                   |  |
|---------------|-----------------------------|------------|-------------------|--|
| SYSTEM        | <b>KVB-NOX</b>              |            |                   |  |
| MANUFACTURER  | <b>THERMO ENVIRONMENTAL</b> | GAS        |                   |  |
| MODEL         | <b>10</b>                   | SPAN RANGE |                   |  |
| SERIAL NUMBER | <b>10A/R-25864-222</b>      | OPERATOR   |                   |  |
|               |                             |            | <b>NOx</b>        |  |
|               |                             |            | <b>2500PPM</b>    |  |
|               |                             |            | <b>JOSE PEREZ</b> |  |

**SPAN DRIFT**

| DAY   | DATE      | TIME     | CALIBRATION<br>VALUE PPM | MONITOR<br>VALUE PPM | DIFFERENCE<br>IN PPM | PERCENT OF<br>SPAN VALUE |
|-------|-----------|----------|--------------------------|----------------------|----------------------|--------------------------|
| START | 23-Jul-92 | 08:03 AM | 1510                     | 1509                 | -1                   | -0.04%                   |
| 1     | 24-Jul-92 | 08:05 AM | 1510                     | 1510                 | 0                    | 0.00%                    |
| 2     | 25-Jul-92 | 08:03 AM | 1510                     | 1515                 | 5                    | 0.20%                    |
| 3     | 26-Jul-92 | 08:03 AM | 1510                     | 1501                 | -9                   | -0.36%                   |
| 4     | 27-Jul-92 | 08:03 AM | 1510                     | 1508                 | -2                   | -0.08%                   |
| 5     | 28-Jul-92 | 08:03 AM | 1510                     | 1502                 | -8                   | -0.32%                   |
| 6     | 29-Jul-92 | 07:28 AM | 1510                     | 1511                 | 1                    | 0.04%                    |
| 7     | 30-Jul-92 | 08:03 AM | 1510                     | 1517                 | 7                    | 0.28%                    |

**ZERO DRIFT**

| DAY   | DATE      | TIME     | CALIBRATION<br>VALUE PPM | MONITOR<br>VALUE PPM | DIFFERENCE<br>IN PPM | PERCENT OF<br>SPAN VALUE |
|-------|-----------|----------|--------------------------|----------------------|----------------------|--------------------------|
| START | 23-Jul-92 | 07:56 AM | 0                        | 0                    | 0                    | 0.00%                    |
| 1     | 24-Jul-92 | 07:57 AM | 0                        | 0                    | 0                    | 0.00%                    |
| 2     | 25-Jul-92 | 07:56 AM | 0                        | 0                    | 0                    | 0.00%                    |
| 3     | 26-Jul-92 | 07:56 AM | 0                        | 0                    | 0                    | 0.00%                    |
| 4     | 27-Jul-92 | 07:56 AM | 0                        | 0                    | 0                    | 0.00%                    |
| 5     | 28-Jul-92 | 07:56 AM | 0                        | 0                    | 0                    | 0.00%                    |
| 6     | 29-Jul-92 | 07:21 AM | 0                        | 0                    | 0                    | 0.00%                    |
| 7     | 30-Jul-92 | 07:56 AM | 0                        | 0                    | 0                    | 0.00%                    |

**%SPAN = ((INSTRUMENT RESPONSE-EXPECTED CONCENTRATION)/SPAN VALUE)\*100**

DOE/SOUTHERN COMPANY SERVICES, INC.  
 INNOVATIVE CLEAN COAL TECHNOLOGY PROJECT  
 GEORGIA POWER COMPANY - PLANT HAMMOND UNIT FOUR

CEM CALIBRATION DRIFT DETERMINATION

|               |                  |            |            |
|---------------|------------------|------------|------------|
| SYSTEM        | KVB-SO2          | GAS        | SO2        |
| MANUFACTURER  | WESTERN RESEARCH | SPAN RANGE | 2500PPM    |
| MODEL         | 721-AT           | OPERATOR   | JOSE PEREZ |
| SERIAL NUMBER | 89-721AT2-7543-3 |            |            |

=====

SPAN DRIFT

| DAY   | DATE      | TIME     | CALIBRATION<br>VALUE PPM | MONITOR<br>VALUE PPM | DIFFERENCE<br>IN PPM | PERCENT OF<br>SPAN VALUE |
|-------|-----------|----------|--------------------------|----------------------|----------------------|--------------------------|
| START | 23-Jul-92 | 08:03 AM | 1500                     | 1488                 | -12                  | -0.48%                   |
| 1     | 24-Jul-92 | 08:05 AM | 1500                     | 1489                 | -11                  | -0.44%                   |
| 2     | 25-Jul-92 | 08:03 AM | 1500                     | 1497                 | -3                   | -0.12%                   |
| 3     | 26-Jul-92 | 08:03 AM | 1500                     | 1481                 | -19                  | -0.76%                   |
| 4     | 27-Jul-92 | 08:03 AM | 1500                     | 1474                 | -26                  | -1.04%                   |
| 5     | 28-Jul-92 | 08:03 AM | 1500                     | 1494                 | -6                   | -0.24%                   |
| 6     | 29-Jul-92 | 07:28 AM | 1500                     | 1501                 | 1                    | 0.04%                    |
| 7     | 30-Jul-92 | 08:03 AM | 1500                     | 1504                 | 4                    | 0.16%                    |

=====

ZERO DRIFT

| DAY   | DATE      | TIME     | CALIBRATION<br>VALUE PPM | MONITOR<br>VALUE PPM | DIFFERENCE<br>IN PPM | PERCENT OF<br>SPAN VALUE |
|-------|-----------|----------|--------------------------|----------------------|----------------------|--------------------------|
| START | 23-Jul-92 | 07:56 AM | 0                        | 29                   | 29                   | 1.16%                    |
| 1     | 24-Jul-92 | 07:57 AM | 0                        | 18                   | 18                   | 0.72%                    |
| 2     | 25-Jul-92 | 07:56 AM | 0                        | 16                   | 16                   | 0.64%                    |
| 3     | 26-Jul-92 | 07:56 AM | 0                        | 11                   | 11                   | 0.44%                    |
| 4     | 27-Jul-92 | 07:56 AM | 0                        | 15                   | 15                   | 0.60%                    |
| 5     | 28-Jul-92 | 07:56 AM | 0                        | 26                   | 26                   | 1.04%                    |
| 6     | 29-Jul-92 | 07:21 AM | 0                        | 31                   | 31                   | 1.24%                    |
| 7     | 30-Jul-92 | 07:56 AM | 0                        | 29                   | 29                   | 1.16%                    |

=====

%SPAN = ((INSTRUMENT RESPONSE - EXPECTED CONCENTRATION)/SPAN VALUE)\*100

## RELATIVE ACCURACY DETERMINATION

SPECTRUM SYSTEMS INC.  
PENSACOLA, FLORIDA 32526-7808

DATE - AUGUST 20 1982  
SOURCE - HAMMOND UNIT 4

## CEM SERIAL NUMBERS

|                 |                  |
|-----------------|------------------|
| SO <sub>2</sub> | 89-721AT2-7543-5 |
| NO <sub>X</sub> | 10AR-25864-222   |
| O <sub>2</sub>  | COS445(B)-1      |
| CO <sub>2</sub> |                  |
| CO              |                  |

|     |     |
|-----|-----|
| CEM | DRY |
| RM  | DRY |

| Run Number             | Run Start Time | SO <sub>2</sub> PPM |         |       | NO <sub>X</sub> PPM |        |        | O <sub>2</sub> % |      |       | CO <sub>2</sub> % |     |      | CO PPM |     |      |
|------------------------|----------------|---------------------|---------|-------|---------------------|--------|--------|------------------|------|-------|-------------------|-----|------|--------|-----|------|
|                        |                | RM-6C               | CEM     | DIFF  | RM-7E               | CEM    | DIFF   | RM-3A            | CEM  | DIFF  | RM-3A             | CEM | DIFF | RM-10  | CEM | DIFF |
| 1                      | 10:11          | 954.8               | 1016.00 | 61.18 | 218.9               | 207.50 | -11.40 | 7.57             | 6.70 | -0.87 |                   |     |      |        |     |      |
| 2                      | 10:48          | 933.9               | 983.40  | 49.52 | 227.0               | 213.80 | -13.17 | 7.87             | 6.90 | -0.97 |                   |     |      |        |     |      |
| 3                      | 11:21          | 937.1               | 998.50  | 61.37 | 223.7               | 211.60 | -12.12 | 7.77             | 6.80 | -0.97 |                   |     |      |        |     |      |
| 4                      | 11:53          | 947.5               | 999.90  | 52.43 | 225.0               | 210.80 | -14.25 | 7.87             | 6.70 | -0.97 |                   |     |      |        |     |      |
| 5                      | 12:26          | 943.8               | 991.80  | 48.05 | 228.9               | 212.30 | -16.56 | 7.72             | 6.80 | -0.92 |                   |     |      |        |     |      |
| 6                      | 13:00          | 954.4               | 1007.00 | 52.60 | 207.5               | 193.90 | -13.59 | 7.47             | 6.60 | -0.87 |                   |     |      |        |     |      |
| 7                      | 13:33          | 969.7               | 1029.90 | 60.17 | 215.2               | 202.30 | -12.90 | 7.26             | 6.40 | -0.86 |                   |     |      |        |     |      |
| 8                      | 14:05          | 943.5               | 990.05  | 46.52 | 221.3               | 206.30 | -14.97 | 7.87             | 6.70 | -0.97 |                   |     |      |        |     |      |
| 9                      | 14:37          | 944.7               | 999.70  | 55.01 | 221.1               | 206.50 | -14.60 | 7.87             | 6.70 | -0.97 |                   |     |      |        |     |      |
| 10                     |                |                     |         |       |                     |        |        |                  |      |       |                   |     |      |        |     |      |
| 11                     |                |                     |         |       |                     |        |        |                  |      |       |                   |     |      |        |     |      |
| 12                     |                |                     |         |       |                     |        |        |                  |      |       |                   |     |      |        |     |      |
| AVERAGE                |                | 947.71              | 1001.81 | 54.09 | 220.95              | 207.22 | -13.73 | 7.63             | 6.70 | -0.93 |                   |     |      |        |     |      |
| CONFIDENCE COEFFICIENT |                | 4.39                |         |       |                     |        |        | 1.20             |      |       | 0.04              |     |      |        |     |      |
| RELATIVE ACCURACY      |                | 6.17                |         |       |                     |        |        | 6.78             |      |       | 12.68             |     |      |        |     |      |

| Run Number             | Run Start Time | SO <sub>2</sub> #/MMBTU |       |        | NO <sub>X</sub> #/MMBTU |        |         | CO* PPM |     |      |
|------------------------|----------------|-------------------------|-------|--------|-------------------------|--------|---------|---------|-----|------|
|                        |                | RM-6C                   | CEM   | DIFF   | RM-7E                   | CEM    | DIFF    | RM-10   | CEM | DIFF |
| 1                      | 10:11          | 2.43                    | 2.43  | -0.00  | 0.4007                  | 0.3566 | -0.0441 |         |     |      |
| 2                      | 10:48          | 2.43                    | 2.38  | -0.05  | 0.4251                  | 0.3727 | -0.0524 |         |     |      |
| 3                      | 11:21          | 2.42                    | 2.40  | -0.02  | 0.4158                  | 0.3663 | -0.0496 |         |     |      |
| 4                      | 11:53          | 2.43                    | 2.39  | -0.04  | 0.4151                  | 0.3623 | -0.0528 |         |     |      |
| 5                      | 12:26          | 2.43                    | 2.39  | -0.04  | 0.4238                  | 0.3675 | -0.0563 |         |     |      |
| 6                      | 13:00          | 2.41                    | 2.39  | -0.02  | 0.3770                  | 0.3309 | -0.0460 |         |     |      |
| 7                      | 13:33          | 2.41                    | 2.41  | -0.00  | 0.3852                  | 0.3405 | -0.0447 |         |     |      |
| 8                      | 14:05          | 2.42                    | 2.37  | -0.05  | 0.4081                  | 0.3546 | -0.0536 |         |     |      |
| 9                      | 14:37          | 2.42                    | 2.39  | -0.03  | 0.4078                  | 0.3549 | -0.0529 |         |     |      |
| 10                     |                |                         |       |        |                         |        |         |         |     |      |
| 11                     |                |                         |       |        |                         |        |         |         |     |      |
| 12                     |                |                         |       |        |                         |        |         |         |     |      |
| AVERAGE                |                | 2.423                   | 2.394 | -0.029 | 0.4065                  | 0.3563 | -0.0503 |         |     |      |
| CONFIDENCE COEFFICIENT |                | 0.015                   |       |        |                         |        |         | 0.0034  |     |      |
| RELATIVE ACCURACY      |                | 1.82                    |       |        |                         |        |         | 13.19   |     |      |

## **V. APPENDIX**

## NOTICE OF FIELD CERTIFICATION - KVB CEMS

Certification is hereby given that the KVB stack gas monitoring system (S/N 50525) described below has been installed, tested, and satisfactorily evaluated in accordance with EPA requirements, CFR, Title 40, Part 60, Appendix B, Specification 2 as promulgated in the May 25, 1983 Federal Register, Vol. 48, No. 102, Part IV. Relative accuracy and calibration drift have been demonstrated over the required seven (7) day period in accordance with Paragraph 6 and have been shown to meet specification. Copies of the attached certified test data can be submitted to the appropriate regulator agency in compliance with source performance monitoring requirements. Additional copies are available by request from Spectrum Systems, Inc.

Customer: Georgia Power Company, Plant Hammond, Unit #4

Diluent O<sub>2</sub> Serial Number: CO58405(B)-1

721-AT SO<sub>2</sub> Stack Gas Monitor s/n: 89-721AT2-7543-3

10 A/R NO<sub>x</sub> Stack Gas Monitor s/n: 10 A/R-25864-222

Gas: SO<sub>2</sub>

Gas: NO<sub>x</sub>

Measurement Range ppm: 0-2500

Measurement Range ppm: 0-2500

Data Logger - Model: Kaye 4M Plus

Data Logger - Model: Kaye 4M Plus

Instrument Output (MA/DC): 4-20

Instrument Output (MA/DC): 4-20

**Certification Test Results:** SO<sub>2</sub> NO<sub>x</sub> O<sub>2</sub> EPA Specs.

Zero Drift (24 hr.): 1.24% 0.00% ---- less than or equal to 2.5% per day

---- ---- 0.20% less than or equal to 0.5% O<sub>2</sub> per day

Calibration Drift (24 hr.): -1.04% -.36% ---- less than or equal to 2.5% per day

---- ---- 0.00% less than or equal to 0.5% O<sub>2</sub> per day

Relative Accuracy 1.82% 13.19% ---- less than or equal to 20%

Test Performed by: R. Davis Date: August 20, 1992

Test Reviewed by: Nick Dixon Date: August 26, 1992

## REPORT CERTIFICATION

The sampling and analysis for this report was carried out under my direction and supervision.

Date: August 26, 1992

Signature:   
Reginald Davis  
Field Engineer

I have reviewed the testing details and results in this report and hereby certify that the test report is authentic and accurate to the best of my knowledge.

Date: August 26, 1992

Signature:   
Nick Dixon  
Service Manager

**APPENDIX C**  
**Ultramax Exploratory Experiment - July 1992**

## ULTRAMAX PROBLEM FORMULATION

PLANT HAMMOND EXPLORATORY EXPERIMENT

07:12 MON, 03 AUG 1992

| VAR<br>#                                  | NAME         | UNITS    | TY<br>PE | MO<br>DE | TR<br>SF | PRIOR REGION |        | CONSTRAINTS |      |
|-------------------------------------------|--------------|----------|----------|----------|----------|--------------|--------|-------------|------|
|                                           |              |          |          |          |          | LO           | HI     | LO          | HI   |
| 1                                         | TOTAL AIR    | MPPH     | 1        | H        | 0        | 3.4          | 4.     | 3.35        | 5.   |
| 2                                         | OFA W FRONT  | KPPH     | 1        | H        | 0        | 120.         | 160.   | 50.         | 250. |
| 3                                         | OFA E FRONT  | KPPH     | 1        | H        | 0        | 120.         | 160.   | 50.         | 250. |
| 4                                         | OFA W REAR   | KPPH     | 1        | H        | 0        | 120.         | 160.   | 50.         | 250. |
| 5                                         | OFA E REAR   | KPPH     | 1        | H        | 0        | 120.         | 160.   | 50.         | 250. |
| 6                                         | TOTAL COAL   | KPPH     | 2        | H        | 0        | 100.         | 370.17 | 0.          | 500. |
| 7                                         | LOAD         | MW       | 0        | H        | 0        | 100.         | 460.   | 0.          | 0.   |
| 8                                         | FLUEGAS TEMP | F        | 0        | H        | 0        | 200.         | 800.   | 0.          | 0.   |
| 9                                         | KVB SO2      | PPM      | 0        | H        | 0        | 500.         | 900.   | 0.          | 0.   |
| 10                                        | KVB THC      | PPM      | 0        | H        | 0        | 0.           | 5.     | 0.          | 0.   |
| 11                                        | KVB O2       | PCT      | 4        | H        | 0        | 5.           | 15.    | 0.          | 0.   |
| 12                                        | KVB CO       | PPM      | 5        | H        | 0        | 25.          | 60.    | 0.          | 40.  |
| 13                                        | ECON O2      | PCT      | 5        | H        | 0        | 3.           | 19.    | 2.5         | 25.  |
| 14                                        | OPACITY      | PCT      | 5        | H        | 0        | 10.          | 15.    | 0.          | 30.  |
| 15                                        | LOI          | PCT      | 0        | C        | 0        | 1.           | 4.     | 0.          | 0.   |
| 16                                        | LOSSES       | PCT      | 0        | C        | 0        | 4.           | 8.     | 0.          | 0.   |
| 17                                        | KVB NOX      | LBS/MBTU | 6        | H        | 0        | 0.2          | 0.4    | 0.          | 0.5  |
| MINIMIZING variable # 17 KVB NOX (Type 6) |              |          |          |          |          |              |        |             |      |

LIST of NON-DEFAULT PARAMETERS (if any). Parameters control Operations, Data entry, or Reports. See Users Guide Ch.9, "Problem Formulation". Parameters with no description should be reset to default.

PAR(10) = 1.8 Size of AREA OF CONFIDENCE  
 PAR(11) = 1.5 Factor of PAR(10) to limit TRAVEL  
 PAR(40) = 0. Do not limit ADVICE to AREA OF CONFIDENCE  
 PAR(45) = 1. Local models with fixed selection rule  
 PAR(55) = 2. Terminal: NORMAL MODE (Needs ANSI.SYS Driver)  
 PAR(56) = 0. Line printer: LPT1  
 PAR(57) = 1. Reports saved automatically

LIST of GLOBAL FACTORS (if any)

GLOBAL( 1) = 2.83 LOI CALC. COEF.  
 GLOBAL( 2) = -1.866 LOI CALC. COEF.  
 GLOBAL( 3) = 0.00652 LOI CALC. COEF.  
 GLOBAL( 4) = 0.01026 LOI CALC. COEF.  
 GLOBAL( 5) = -0.01164 LOI CALC. COEF.  
 GLOBAL( 6) = -0.009486 LOI CALC. COEF.  
 GLOBAL( 7) = 0.02711 LOI CALC. COEF.  
 GLOBAL(16) = 14093. HEAT OF COMBUSTION FOR C  
 GLOBAL(17) = -24.952 H CALC. COEF.  
 GLOBAL(18) = 0.25976 H CALC. COEF.  
 GLOBAL(19) = 0.48571 H CALC. COEF.  
 GLOBAL(20) = 0.0974 ASH IN COAL (9.74%)  
 GLOBAL(21) = 0.7276 C IN COAL  
 GLOBAL(22) = 12862. HEAT OF COMBUSTION FOR COAL  
 GLOBAL(23) = 4347. HEAT OF COMBUSTION FOR CO  
 GLOBAL(24) = 0.005 MULTIPLICATIVE RADIATION LOSSES FACTOR  
 GLOBAL(25) = 0.02 MULTIPLICATIVE "UNCOUNTED FOR" LOSSES FA  
 GLOBAL(26) = 970.3 LATENT HEAT (BTU/lb)  
 GLOBAL(27) = 5.6 % PERCENT MOISTURE BY WEIGHT

Contd. ...

GLOBAL(28) = 0.505 WATER IN COAL

M O D E L   S H A P E   R E P O R T S

PROBLEM: PLANT HAMMOND EXPLORATORY EXPERIMENT

ULTRAMAX 4.1 (R): Copyright 1982-90, Ultramax Corp. All rights reserved.  
07:15 MON, 03 AUG 1992

# 17 KVB NOX      MIN. PREDICTION ERROR =    0.020  
 % VAR. EXPL. (R2, Adj.R2, Signal): 86.3    59.8    84.8  
 MODEL TYPE : LOCAL FIXED-POINT-CENTERED QUADRATIC  
 Count, Latest, Active : 42    42    41.93  
 # COEF.FIT, # DEG.FREED, # PRIOR : 28    13.90    0.00  
 DISCRIMINATION PARAMETERS : 0. 0.001    34.00    34.00

| #              | VARIABLE    | UNITS    | T E | REF.  | 2S-SPREAD | EFFECTS IN 2S-SPREAD |            |       |      |
|----------------|-------------|----------|-----|-------|-----------|----------------------|------------|-------|------|
|                |             |          |     |       |           | Linear               | Curvatures |       |      |
| <b>DEGREE:</b> |             |          |     |       |           |                      |            |       |      |
| 17             | KVB NOX     | LBS/MBTU | 6 H | 0.391 | 0.062     | 1                    | 2.         | 2.    | 2.   |
| 1              | TOTAL AIR   | MPPH     | 1 H | 3.54  | 0.28      | 0.96                 | 0.04       | 0.11  | 0.01 |
| 2              | OFA W FRONT | KPPH     | 1 H | 122.  | 154.      | -0.06                | -0.03      | 0.04  | 0.11 |
| 3              | OFA E FRONT | KPPH     | 1 H | 121.  | 109.      | -0.41                | -0.17      | -0.02 | 0.00 |
| 4              | OFA W REAR  | KPPH     | 1 H | 119.  | 144.      | -0.10                | -0.02      | 0.00  | 0.20 |
| 5              | OFA E REAR  | KPPH     | 1 H | 142.  | 140.      | -0.15                | -0.09      | -0.18 | 0.02 |
| 6              | TOTAL COAL  | KPPH     | 2 H | 320.8 | 8.7       | 0.39                 | 0.68       | -0.07 | 0.03 |

Standard Distance of REFERENCE 1.4      Set at Default: LOCAL CENTER

| #              | VARIABLE    | REFERENCE | 2S-SPREAD | CURVATURES |       |  |  |
|----------------|-------------|-----------|-----------|------------|-------|--|--|
|                |             |           |           | 2.         | 2.    |  |  |
| <b>DEGREE:</b> |             |           |           |            |       |  |  |
| 17             | KVB NOX     | 0.391     | 0.062     | 0.27       | -0.20 |  |  |
| 1              | TOTAL AIR   | 3.54      | 0.28      | -0.02      | 0.03  |  |  |
| 2              | OFA W FRONT | 122.      | 154.      | 0.15       | 0.00  |  |  |
| 3              | OFA E FRONT | 121.      | 109.      | 0.01       | 0.15  |  |  |
| 4              | OFA W REAR  | 119.      | 144.      | -0.08      | 0.00  |  |  |
| 5              | OFA E REAR  | 142.      | 140.      | 0.00       | -0.01 |  |  |
| 6              | TOTAL COAL  | 320.8     | 8.7       | 0.01       | 0.01  |  |  |

| RUN # | ACTUAL<br>KVB NOX | MODEL<br>KVB NOX | ERROR  | KVB NOX |   |   |   |
|-------|-------------------|------------------|--------|---------|---|---|---|
|       |                   |                  |        | 1       | 2 | 3 | 4 |
| 43.00 | 0.385             | 0.388            | -0.003 |         |   |   |   |
| 42.00 | 0.391             | 0.379            | 0.012  |         |   |   |   |
| 41.00 | 0.411             | 0.401            | 0.010  |         |   |   |   |
| 40.00 | 0.401             | 0.400            | 0.001  |         |   |   |   |
| 39.00 | 0.399             | 0.414            | -0.015 |         |   |   |   |
| 38.00 | 0.410             | 0.414            | -0.004 |         |   |   |   |
| 37.00 | 0.406             | 0.392            | 0.014  |         |   |   |   |
| 36.00 | 0.444             | 0.431            | 0.013  |         |   |   |   |
| 35.00 | 0.443             | 0.440            | 0.003  |         |   |   |   |
| 34.00 | 0.402             | 0.391            | 0.011  |         |   |   |   |
| 33.00 | 0.377             | 0.366            | 0.011  |         |   |   |   |
| 32.00 | 0.375             | 0.374            | 0.001  |         |   |   |   |
| 31.00 | 0.361             | 0.367            | -0.006 |         |   |   |   |
| 30.00 | 0.391             | 0.393            | -0.002 |         |   |   |   |
| 29.00 | 0.388             | 0.390            | -0.002 |         |   |   |   |

Contd. ...

|       |       |       |        |
|-------|-------|-------|--------|
| 28.00 | 0.427 | 0.430 | -0.003 |
| 27.00 | 0.363 | 0.378 | -0.015 |
| 26.00 | 0.425 | 0.412 | 0.013  |
| 25.00 | 0.425 | 0.430 | -0.005 |
| 24.00 | 0.401 | 0.395 | 0.006  |
| 23.00 | 0.355 | 0.352 | 0.003  |
| 22.00 | 0.360 | 0.374 | -0.014 |
| 21.00 | 0.390 | 0.400 | -0.010 |
| 20.00 | 0.421 | 0.429 | -0.008 |
| 19.00 | 0.388 | 0.389 | -0.001 |
| 18.00 | 0.383 | 0.385 | -0.002 |
| 17.00 | 0.410 | 0.412 | -0.002 |
| 16.00 | 0.376 | 0.379 | -0.003 |
| 15.00 | 0.373 | 0.386 | -0.013 |
| 14.00 | 0.363 | 0.364 | -0.001 |
| 13.00 | 0.396 | 0.380 | 0.016  |
| 12.00 | 0.410 | 0.389 | 0.021  |
| 11.00 | 0.414 | 0.419 | -0.005 |
| 10.00 | 0.495 | 0.501 | -0.006 |
| 9.00  | 0.465 | 0.451 | 0.014  |
| 7.00  | 0.415 | 0.435 | -0.020 |
| 6.00  | 0.419 | 0.435 | -0.016 |
| 5.00  | 0.385 | 0.408 | -0.023 |
| 4.00  | 0.372 | 0.390 | -0.018 |
| 3.00  | 0.413 | 0.408 | 0.005  |
| 2.00  | 0.436 | 0.416 | 0.020  |
| 1.00  | 0.483 | 0.461 | 0.022  |

M O D E L   S H A P E   R E P O R T S

PROBLEM: PLANT.HAMMOND EXPLORATORY EXPERIMENT

ULTRAMAX 4.1 (R): Copyright 1982-90, Ultramax Corp. All rights reserved.  
07:16 MON, 03 AUG 1992

# 14 OPACITY      MIN. PREDICTION ERROR =      4.2  
 % VAR. EXPL. (R2, Adj.R2, Signal): 85.5 57.3 84.1  
 MODEL TYPE : LOCAL FIXED-POINT-CENTERED QUADRATIC  
 Count, Latest, Active : 42 42 41.93  
 # COEF.FIT, # DEG.FREED, # PRIOR : 28 13.90 0.00  
 DISCRIMINATION PARAMETERS : 0. 0.001 34.00 34.00

| #              | VARIABLE    | UNITS | T E | REF.  | 2S-SPREAD | EFFECTS IN 2S-SPREAD |            |       |       |
|----------------|-------------|-------|-----|-------|-----------|----------------------|------------|-------|-------|
|                |             |       |     |       |           | Linear               | Curvatures | 1     | 2.    |
| <b>DEGREE:</b> |             |       |     |       |           |                      |            |       |       |
| 14             | OPACITY     | PCT   | 5 H | 15.   | 13.       | 0.53                 | 1.93       | -0.84 | 0.44  |
| 1              | TOTAL AIR   | MPPH  | 1 H | 3.54  | 0.28      | 0.17                 | 0.10       | -0.01 | 0.02  |
| 2              | OFA W FRONT | KPPH  | 1 H | 122.  | 154.      | 0.11                 | 0.00       | 0.23  | -0.10 |
| 3              | OFA E FRONT | KPPH  | 1 H | 121.  | 109.      | -0.34                | 0.00       | 0.10  | 0.27  |
| 4              | OFA W REAR  | KPPH  | 1 H | 119.  | 144.      | -0.02                | -0.75      | -0.10 | -0.01 |
| 5              | OFA E REAR  | KPPH  | 1 H | 142.  | 140.      | 0.05                 | -0.01      | -0.32 | 0.02  |
| 6              | TOTAL COAL  | KPPH  | 2 H | 320.8 | 8.7       | -0.35                | 1.07       | -0.08 | -0.02 |

Standard Distance of REFERENCE 1.4      Set at Default: LOCAL CENTER

| #              | VARIABLE    | REFERENCE | 2S-SPREAD | CURVATURES |       |       |      |
|----------------|-------------|-----------|-----------|------------|-------|-------|------|
|                |             |           |           | 2.         | 2.    | -0.23 | 0.12 |
| <b>DEGREE:</b> |             |           |           |            |       |       |      |
| 14             | OPACITY     | 15.       | 13.       | -0.08      | 0.04  |       |      |
| 1              | TOTAL AIR   | 3.54      | 0.28      | 0.01       | 0.00  |       |      |
| 2              | OFA W FRONT | 122.      | 154.      | 0.05       | 0.00  |       |      |
| 3              | OFA E FRONT | 121.      | 109.      | 0.03       | 0.04  |       |      |
| 4              | OFA W REAR  | 119.      | 144.      | 0.00       | -0.02 |       |      |
| 5              | OFA E REAR  | 142.      | 140.      | 0.05       | 0.01  |       |      |
| 6              | TOTAL COAL  | 320.8     | 8.7       |            |       |       |      |

| RUN # | ACTUAL<br>OPACITY | MODEL<br>OPACITY | ERROR |   |   |   |   |
|-------|-------------------|------------------|-------|---|---|---|---|
|       |                   |                  |       | 1 | 2 | 3 | 4 |
| 43.00 | 21.7              | 17.9             | 3.8   |   |   |   |   |
| 42.00 | 19.2              | 20.7             | -1.5  |   |   |   |   |
| 41.00 | 18.4              | 17.0             | 1.4   |   |   |   |   |
| 40.00 | 19.9              | 24.2             | -4.3  |   |   |   |   |
| 39.00 | 20.5              | 20.6             | -0.1  |   |   |   |   |
| 38.00 | 18.6              | 21.3             | -2.7  |   |   |   |   |
| 37.00 | 20.4              | 15.4             | 5.0   |   |   |   |   |
| 36.00 | 19.3              | 19.6             | -0.3  |   |   |   |   |
| 35.00 | 24.6              | 26.0             | -1.4  |   |   |   |   |
| 34.00 | 21.6              | 17.7             | 3.9   |   |   |   |   |
| 33.00 | 19.2              | 19.1             | 0.1   |   |   |   |   |
| 32.00 | 18.2              | 20.8             | -2.6  |   |   |   |   |
| 31.00 | 21.2              | 16.8             | 4.4   |   |   |   |   |
| 30.00 | 15.6              | 17.9             | -2.3  |   |   |   |   |
| 29.00 | 54.4              | 50.3             | 4.1   |   |   |   |   |

Contd. ...

|       |      |      |      |
|-------|------|------|------|
| 28.00 | 19.9 | 20.2 | -0.3 |
| 27.00 | 16.3 | 17.6 | -1.3 |
| 26.00 | 17.1 | 17.0 | 0.1  |
| 25.00 | 25.1 | 24.6 | 0.5  |
| 24.00 | 22.1 | 24.6 | -2.5 |
| 23.00 | 27.6 | 28.1 | -0.5 |
| 22.00 | 16.9 | 17.2 | -0.3 |
| 21.00 | 16.4 | 20.7 | -4.3 |
| 20.00 | 24.4 | 23.5 | 0.9  |
| 19.00 | 19.9 | 20.5 | -0.6 |
| 18.00 | 17.9 | 17.9 | 0.0  |
| 17.00 | 18.3 | 15.5 | 2.8  |
| 16.00 | 16.7 | 17.8 | -1.1 |
| 15.00 | 14.2 | 15.6 | -1.4 |
| 14.00 | 15.5 | 19.2 | -3.7 |
| 13.00 | 13.0 | 11.2 | 1.8  |
| 12.00 | 19.2 | 16.5 | 2.7  |
| 11.00 | 15.8 | 18.6 | -2.8 |
| 10.00 | 16.0 | 16.4 | -0.4 |
| 9.00  | 22.2 | 21.1 | 1.1  |
| 7.00  | 20.5 | 17.0 | 3.5  |
| 6.00  | 15.3 | 18.6 | -3.3 |
| 5.00  | 13.0 | 15.1 | -2.1 |
| 4.00  | 15.1 | 13.3 | 1.8  |
| 3.00  | 13.1 | 14.6 | -1.5 |
| 2.00  | 17.5 | 15.5 | 2.0  |
| 1.00  | 21.7 | 20.4 | 1.3  |

M O D E L   S H A P E   R E P O R T S

PROBLEM: PLANT HAMMOND EXPLORATORY EXPERIMENT  
 ULTRAMAX 4.1 (R): Copyright 1982-90, Ultramax Corp. All rights reserved.  
 07:16 MON, 03 AUG 1992

# 12 KVB CO      MIN. PREDICTION ERROR =      38.  
 % VAR. EXPL. (R2, Adj.R2, Signal): 79.3    39.0    78.6  
 MODEL TYPE : LOCAL FIXED-POINT-CENTERED QUADRATIC  
 Count, Latest, Active : 42    42    41.93  
 # COEF.FIT, # DEG.FREQD, # PRIOR : 28    13.90    0.00  
 DISCRIMINATION PARAMETERS : 0. 0.001    34.00    34.00

| #              | VARIABLE    | UNITS | T E | REF.  | 2S-SPREAD | EFFECTS IN 2S-SPREAD |            |       |       |
|----------------|-------------|-------|-----|-------|-----------|----------------------|------------|-------|-------|
|                |             |       |     |       |           | Linear               | Curvatures |       |       |
| <b>DEGREE:</b> |             |       |     |       |           |                      |            |       |       |
| 12             | KVB CO      | PPM   | 5 H | 61.   | 97.       | 1.32                 | -1.85      | -1.30 | 0.73  |
| 1              | TOTAL AIR   | MPPH  | 1 H | 3.54  | 0.28      | -1.05                | -0.04      | 0.00  | 0.54  |
| 2              | OFA W FRONT | KPPH  | 1 H | 122.  | 154.      | 0.17                 | -0.14      | 0.02  | 0.01  |
| 3              | OFA E FRONT | KPPH  | 1 H | 121.  | 109.      | 0.28                 | -0.50      | 0.00  | -0.02 |
| 4              | OFA W REAR  | KPPH  | 1 H | 119.  | 144.      | 0.42                 | -0.08      | 0.08  | -0.14 |
| 5              | OFA E REAR  | KPPH  | 1 H | 142.  | 140.      | 0.47                 | 0.27       | 1.03  | 0.00  |
| 6              | TOTAL COAL  | KPPH  | 2 H | 320.8 | 8.7       | -0.39                | 0.82       | -0.16 | 0.00  |

Standard Distance of REFERENCE 1.4      Set at Default: LOCAL CENTER

| #              | VARIABLE    | REFERENCE | 2S-SPREAD | CURVATURES |       |      |       |
|----------------|-------------|-----------|-----------|------------|-------|------|-------|
|                |             |           |           | 2.         | 2.    | 0.58 | -0.37 |
| <b>DEGREE:</b> |             |           |           |            |       |      |       |
| 12             | KVB CO      | 61.       | 97.       |            |       |      |       |
| 1              | TOTAL AIR   | 3.54      | 0.28      | 0.00       | -0.02 |      |       |
| 2              | OFA W FRONT | 122.      | 154.      | -0.06      | 0.29  |      |       |
| 3              | OFA E FRONT | 121.      | 109.      | 0.37       | 0.00  |      |       |
| 4              | OFA W REAR  | 119.      | 144.      | 0.09       | -0.03 |      |       |
| 5              | OFA E REAR  | 142.      | 140.      | 0.03       | 0.00  |      |       |
| 6              | TOTAL COAL  | 320.8     | 8.7       | 0.03       | 0.03  |      |       |

| RUN # | KVB CO | ACTUAL | MODEL  |       |
|-------|--------|--------|--------|-------|
|       |        |        | KVB CO | ERROR |
| 43.00 | 96.    | 44.    | 52.    |       |
| 42.00 | 37.    | 19.    | 18.    |       |
| 41.00 | 14.    | 39.    | -25.   |       |
| 40.00 | 28.    | 46.    | -18.   |       |
| 39.00 | 40.    | 24.    | 16.    |       |
| 38.00 | 12.    | 11.    | 1.     |       |
| 37.00 | 39.    | 39.    | 0.     |       |
| 36.00 | 7.     | 19.    | -12.   |       |
| 35.00 | 9.     | 15.    | -6.    |       |
| 34.00 | 60.    | 46.    | 14.    |       |
| 33.00 | 175.   | 190.   | -15.   |       |
| 32.00 | 181.   | 147.   | 34.    |       |
| 31.00 | 198.   | 145.   | 53.    |       |
| 30.00 | 6.     | 50.    | -44.   |       |
| 29.00 | 60.    | 60.    | 0.     |       |

Contd. . .

|       |     |      |      |
|-------|-----|------|------|
| 28.00 | 16. | 11.  | 5.   |
| 27.00 | 13. | 41.  | -28. |
| 26.00 | 11. | 1.   | 10.  |
| 25.00 | 6.  | -3.  | 9.   |
| 24.00 | 9.  | 23.  | -14. |
| 23.00 | 74. | 80.  | -6.  |
| 22.00 | 71. | 78.  | -7.  |
| 21.00 | 17. | 10.  | 7.   |
| 20.00 | 6.  | -32. | 38.  |
| 19.00 | 11. | 61.  | -50. |
| 18.00 | 8.  | 13.  | -5.  |
| 17.00 | 8.  | -13. | 21.  |
| 16.00 | 25. | 43.  | -18. |
| 15.00 | 22. | 23.  | -1.  |
| 14.00 | 92. | 91.  | 1.   |
| 13.00 | 11. | 26.  | -15. |
| 12.00 | 7.  | -4.  | 11.  |
| 11.00 | 7.  | 28.  | -21. |
| 10.00 | 6.  | 9.   | -3.  |
| 9.00  | 4.  | 11.  | -7.  |
| 7.00  | 10. | 12.  | -2.  |
| 6.00  | 7.  | -8.  | 15.  |
| 5.00  | 17. | 32.  | -15. |
| 4.00  | 90. | 56.  | 34.  |
| 3.00  | 19. | 49.  | -30. |
| 2.00  | 10. | 14.  | -4.  |
| 1.00  | 6.  | -3.  | 9.   |

=====

HISTORICAL DATA REPORT (w/RE-CALCULATIONS)

=====

PROBLEM: PLANT HAMMOND EXPLORATORY EXPERIMENT

ULTRAMAX 4.1 (R): Copyright 1982-90, Ultramax Corp. All rights reserved.  
07:27 MON, 03 AUG 1992

Page 1

|    |              | RUN #    | 43  | 42      | 41      | 40      | 39      |         |
|----|--------------|----------|-----|---------|---------|---------|---------|---------|
| 1  | TOTAL AIR    | MPPH     | 1 H | 3.5530  | 3.4830  | 3.5330  | 3.5960  | 3.7620  |
| 2  | OFA W FRONT  | KPPH     | 1 H | 149.00  | 176.00  | 249.00  | 206.00  | 106.00  |
| 3  | OFA E FRONT  | KPPH     | 1 H | 135.00  | 55.000  | 122.00  | 106.00  | 208.00  |
| 4  | OFA W REAR   | KPPH     | 1 H | 45.000  | 59.000  | 45.000  | 206.00  | 102.00  |
| 5  | OFA E REAR   | KPPH     | 1 H | 241.00  | 234.00  | 208.00  | 106.00  | 211.00  |
| 6  | TOTAL COAL   | KPPH     | 2 H | 320.00  | 319.00  | 320.00  | 319.00  | 319.00  |
| 7  | LOAD         | MW       | 0 H | 432.00  | 430.00  | 431.00  | 431.00  | 432.00  |
| 8  | FLUEGAS TEMP | F        | 0 H | 322.00  | 322.00  | 322.00  | 321.00  | 321.00  |
| 9  | KVB SO2      | PPM      | 0 H | 964.00  | 976.00  | 947.00  | 948.00  | 954.00  |
| 10 | KVB THC      | PPM      | 0 H | 0.      | 0.      | 0.      | 0.      | 0.      |
| 11 | KVB O2       | PCT      | 4 H | 6.3000  | 6.3000  | 6.7000  | 6.6000  | 6.6000  |
| 12 | KVB CO       | PPM      | 5 H | 96.000  | 37.000  | 14.000  | 28.000  | 40.000  |
| 13 | ECON O2      | PCT      | 5 H | 2.9000  | 3.1000  | 3.5000  | 3.5000  | 3.5000  |
| 14 | OPACITY      | PCT      | 5 H | 21.700  | 19.200  | 18.400  | 19.900  | 20.500  |
| 15 | LOI          | PCT      | 0 C | 2.5000  | 2.5000  | 2.5000  | 2.5000  | 2.5000  |
| 16 | LOSSES       | PCT      | 0 C | 6.0000  | 6.0000  | 6.0000  | 6.0000  | 6.0000  |
| 17 | KVB NOX      | LBS/MBTU | 6 H | 0.38500 | 0.39100 | 0.41100 | 0.40100 | 0.39900 |

|    |              | RUN #    | 38  | 37      | 36      | 35      | 34      |         |
|----|--------------|----------|-----|---------|---------|---------|---------|---------|
| 1  | TOTAL AIR    | MPPH     | 1 H | 3.5780  | 3.5860  | 3.8140  | 3.8250  | 3.4760  |
| 2  | OFA W FRONT  | KPPH     | 1 H | 208.00  | 158.00  | 57.000  | 59.000  | 51.000  |
| 3  | OFA E FRONT  | KPPH     | 1 H | 215.00  | 162.00  | 173.00  | 171.00  | 57.000  |
| 4  | OFA W REAR   | KPPH     | 1 H | 106.00  | 151.00  | 72.000  | 71.000  | 239.00  |
| 5  | OFA E REAR   | KPPH     | 1 H | 110.00  | 141.00  | 278.00  | 266.00  | 225.00  |
| 6  | TOTAL COAL   | KPPH     | 2 H | 329.00  | 320.00  | 320.00  | 325.00  | 320.00  |
| 7  | LOAD         | MW       | 0 H | 428.00  | 432.00  | 432.00  | 436.00  | 435.00  |
| 8  | FLUEGAS TEMP | F        | 0 H | 321.00  | 322.00  | 321.00  | 320.00  | 319.00  |
| 9  | KVB SO2      | PPM      | 0 H | 953.00  | 960.00  | 918.00  | 923.00  | 983.00  |
| 10 | KVB THC      | PPM      | 0 H | 0.      | 0.      | 0.      | 0.      | 0.      |
| 11 | KVB O2       | PCT      | 4 H | 6.6000  | 6.6000  | 7.1000  | 7.0000  | 6.4000  |
| 12 | KVB CO       | PPM      | 5 H | 12.000  | 39.000  | 7.0000  | 9.0000  | 60.000  |
| 13 | ECON O2      | PCT      | 5 H | 3.6000  | 3.6000  | 4.0000  | 3.9000  | 3.3000  |
| 14 | OPACITY      | PCT      | 5 H | 18.600  | 20.400  | 19.300  | 24.600  | 21.600  |
| 15 | LOI          | PCT      | 0 C | 2.5000  | 2.5000  | 2.5000  | 2.5000  | 2.5000  |
| 16 | LOSSES       | PCT      | 0 C | 6.0000  | 6.0000  | 6.0000  | 6.0000  | 6.0000  |
| 17 | KVB NOX      | LBS/MBTU | 6 H | 0.41000 | 0.40600 | 0.44400 | 0.44300 | 0.40200 |

|    |              | RUN #    | 33  | 32      | 31      | 30      | 29      |         |
|----|--------------|----------|-----|---------|---------|---------|---------|---------|
| 1  | TOTAL AIR    | MPPH     | 1 H | 3.3830  | 3.4260  | 3.3680  | 3.5060  | 3.3670  |
| 2  | OFA W FRONT  | KPPH     | 1 H | 93.000  | 109.00  | 217.00  | 54.000  | 98.000  |
| 3  | OFA E FRONT  | KPPH     | 1 H | 124.00  | 95.000  | 112.00  | 89.000  | 78.000  |
| 4  | OFA W REAR   | KPPH     | 1 H | 244.00  | 235.00  | 195.00  | 46.000  | 108.00  |
| 5  | OFA E REAR   | KPPH     | 1 H | 97.000  | 188.00  | 71.000  | 197.00  | 72.000  |
| 6  | TOTAL COAL   | KPPH     | 2 H | 322.00  | 321.00  | 322.00  | 317.00  | 308.00  |
| 7  | LOAD         | MW       | 0 H | 433.00  | 436.00  | 435.00  | 429.00  | 417.00  |
| 8  | FLUEGAS TEMP | F        | 0 H | 320.00  | 319.00  | 317.00  | 316.00  | 313.00  |
| 9  | KVB SO2      | PPM      | 0 H | 1007.0  | 1017.0  | 1029.0  | 1025.0  | 1024.0  |
| 10 | KVB THC      | PPM      | 0 H | 0.      | 0.      | 0.      | 0.      | 0.      |
| 11 | KVB O2       | PCT      | 4 H | 6.1000  | 6.2000  | 6.0000  | 5.9000  | 6.1000  |
| 12 | KVB CO       | PPM      | 5 H | 175.00  | 181.00  | 198.00  | 6.0000  | 60.000  |
| 13 | ECON O2      | PCT      | 5 H | 2.8000  | 2.9000  | 2.7000  | 2.9000  | 2.8000  |
| 14 | OPACITY      | PCT      | 5 H | 19.200  | 18.200  | 21.200  | 15.600  | 54.400  |
| 15 | LOI          | PCT      | 0 C | 2.5000  | 2.5000  | 2.5000  | 2.5000  | 2.5000  |
| 16 | LOSSES       | PCT      | 0 C | 6.0000  | 6.0000  | 6.0000  | 6.0000  | 6.0000  |
| 17 | KVB NOX      | LBS/MBTU | 6 H | 0.37700 | 0.37500 | 0.36100 | 0.39100 | 0.38800 |

|    |              | RUN #    | 28  | 27      | 26      | 25      | 24      |         |
|----|--------------|----------|-----|---------|---------|---------|---------|---------|
| 1  | TOTAL AIR    | MPPH     | 1 H | 3.6960  | 3.4140  | 3.5270  | 3.7030  | 3.5470  |
| 2  | OFA W FRONT  | KPPH     | 1 H | 282.00  | 181.00  | 55.000  | 256.00  | 152.00  |
| 3  | OFA E FRONT  | KPPH     | 1 H | 56.000  | 48.000  | 60.000  | 0.      | 150.00  |
| 4  | OFA W REAR   | KPPH     | 1 H | 50.000  | 220.00  | 67.000  | 49.000  | 156.00  |
| 5  | OFA E REAR   | KPPH     | 1 H | 77.000  | 250.00  | 84.000  | 265.00  | 153.00  |
| 6  | TOTAL COAL   | KPPH     | 2 H | 320.00  | 323.00  | 318.00  | 318.00  | 316.00  |
| 7  | LOAD         | MW       | 0 H | 433.00  | 429.00  | 433.00  | 428.00  | 427.00  |
| 8  | FLUEGAS TEMP | F        | 0 H | 310.00  | 310.00  | 312.00  | 300.00  | 299.00  |
| 9  | KVB SO2      | PPM      | 0 H | 971.00  | 977.00  | 978.00  | 895.00  | 917.00  |
| 10 | KVB THC      | PPM      | 0 H | 0.      | 0.      | 0.      | 0.      | 0.      |
| 11 | KVB O2       | PCT      | 4 H | 6.7000  | 6.3000  | 6.3000  | 7.1000  | 6.9000  |
| 12 | KVB CO       | PPM      | 5 H | 16.000  | 13.200  | 11.000  | 6.0000  | 9.0000  |
| 13 | ECON O2      | PCT      | 5 H | 3.4000  | 3.0000  | 3.2000  | 4.1000  | 3.8000  |
| 14 | OPACITY      | PCT      | 5 H | 19.900  | 16.300  | 17.100  | 25.100  | 22.100  |
| 15 | LOI          | PCT      | 0 C | 2.5000  | 2.5000  | 2.5000  | 2.5000  | 2.5000  |
| 16 | LOSSES       | PCT      | 0 C | 6.0000  | 6.0000  | 6.0000  | 6.0000  | 6.0000  |
| 17 | KVB NOX      | LBS/MBTU | 6 H | 0.42700 | 0.36300 | 0.42500 | 0.42500 | 0.40100 |

|    |              | RUN #    | 23  | 22      | 21      | 20      | 19      |         |
|----|--------------|----------|-----|---------|---------|---------|---------|---------|
| 1  | TOTAL AIR    | MPPH     | 1 H | 3.3170  | 3.5290  | 3.4210  | 3.6430  | 3.5140  |
| 2  | OFA W FRONT  | KPPH     | 1 H | 254.00  | 68.000  | 105.00  | 0.      | 41.000  |
| 3  | OFA E FRONT  | KPPH     | 1 H | 56.000  | 172.00  | 127.00  | 136.00  | 159.00  |
| 4  | OFA W REAR   | KPPH     | 1 H | 79.000  | 67.000  | 46.000  | 273.00  | 259.00  |
| 5  | OFA E REAR   | KPPH     | 1 H | 245.00  | 253.00  | 79.000  | 72.000  | 71.000  |
| 6  | TOTAL COAL   | KPPH     | 2 H | 317.00  | 319.00  | 311.00  | 320.00  | 321.00  |
| 7  | LOAD         | MW       | 0 H | 427.00  | 427.00  | 430.00  | 431.00  | 434.00  |
| 8  | FLUEGAS TEMP | F        | 0 H | 300.00  | 301.00  | 302.00  | 301.00  | 299.00  |
| 9  | KVB SO2      | PPM      | 0 H | 976.00  | 991.00  | 980.00  | 840.00  | 963.00  |
| 10 | KVB THC      | PPM      | 0 H | 0.      | 0.      | 0.      | 0.      | 0.      |
| 11 | KVB O2       | PCT      | 4 H | 6.2000  | 6.1000  | 6.2000  | 6.8000  | 6.3000  |
| 12 | KVB CO       | PPM      | 5 H | 74.000  | 71.000  | 17.000  | 6.0000  | 11.000  |
| 13 | ECON O2      | PCT      | 5 H | 2.9000  | 2.9000  | 3.0000  | 3.6000  | 3.2000  |
| 14 | OPACITY      | PCT      | 5 H | 27.600  | 16.900  | 16.400  | 24.400  | 19.900  |
| 15 | LOI          | PCT      | 0 C | 2.5000  | 2.5000  | 2.5000  | 2.5000  | 2.5000  |
| 16 | LOSSES       | PCT      | 0 C | 6.0000  | 6.0000  | 6.0000  | 6.0000  | 6.0000  |
| 17 | KVB NOX      | LBS/MBTU | 6 H | 0.35500 | 0.36000 | 0.39000 | 0.42100 | 0.38800 |

|    |              | RUN #    | 18  | 17      | 16      | 15      | 14      |         |
|----|--------------|----------|-----|---------|---------|---------|---------|---------|
| 1  | TOTAL AIR    | MPPH     | 1 H | 3.4810  | 3.4410  | 3.3450  | 3.4860  | 3.3850  |
| 2  | OFA W FRONT  | KPPH     | 1 H | 94.000  | 0.      | 207.00  | 0.      | 45.000  |
| 3  | OFA E FRONT  | KPPH     | 1 H | 219.00  | 68.000  | 60.000  | 203.00  | 137.00  |
| 4  | OFA W REAR   | KPPH     | 1 H | 0.      | 42.000  | 41.000  | 45.000  | 135.00  |
| 5  | OFA E REAR   | KPPH     | 1 H | 70.000  | 102.00  | 72.000  | 71.000  | 70.000  |
| 6  | TOTAL COAL   | KPPH     | 2 H | 323.00  | 319.00  | 321.00  | 321.00  | 317.00  |
| 7  | LOAD         | MW       | 0 H | 433.00  | 437.00  | 432.00  | 434.00  | 430.00  |
| 8  | FLUEGAS TEMP | F        | 0 H | 299.00  | 300.00  | 299.00  | 299.00  | 299.00  |
| 9  | KVB SO2      | PPM      | 0 H | 992.00  | 1002.0  | 1020.0  | 1019.0  | 1032.0  |
| 10 | KVB THC      | PPM      | 0 H | 0.      | 0.      | 0.      | 0.      | 0.      |
| 11 | KVB O2       | PCT      | 4 H | 6.0000  | 5.9000  | 5.7000  | 5.7000  | 5.7000  |
| 12 | KVB CO       | PPM      | 5 H | 8.0000  | 8.0000  | 25.000  | 22.000  | 92.000  |
| 13 | ECON O2      | PCT      | 5 H | 3.1000  | 3.0000  | 2.8000  | 2.8000  | 2.7000  |
| 14 | OPACITY      | PCT      | 5 H | 17.900  | 18.300  | 16.700  | 14.200  | 15.500  |
| 15 | LOI          | PCT      | 0 C | 2.5000  | 2.5000  | 2.5000  | 2.5000  | 2.5000  |
| 16 | LOSSES       | PCT      | 0 C | 6.0000  | 6.0000  | 6.0000  | 6.0000  | 6.0000  |
| 17 | KVB NOX      | LBS/MBTU | 6 H | 0.38300 | 0.41000 | 0.37600 | 0.37300 | 0.36300 |

## HISTORICAL DATA REPORT (w/RE-CALCULATIONS)

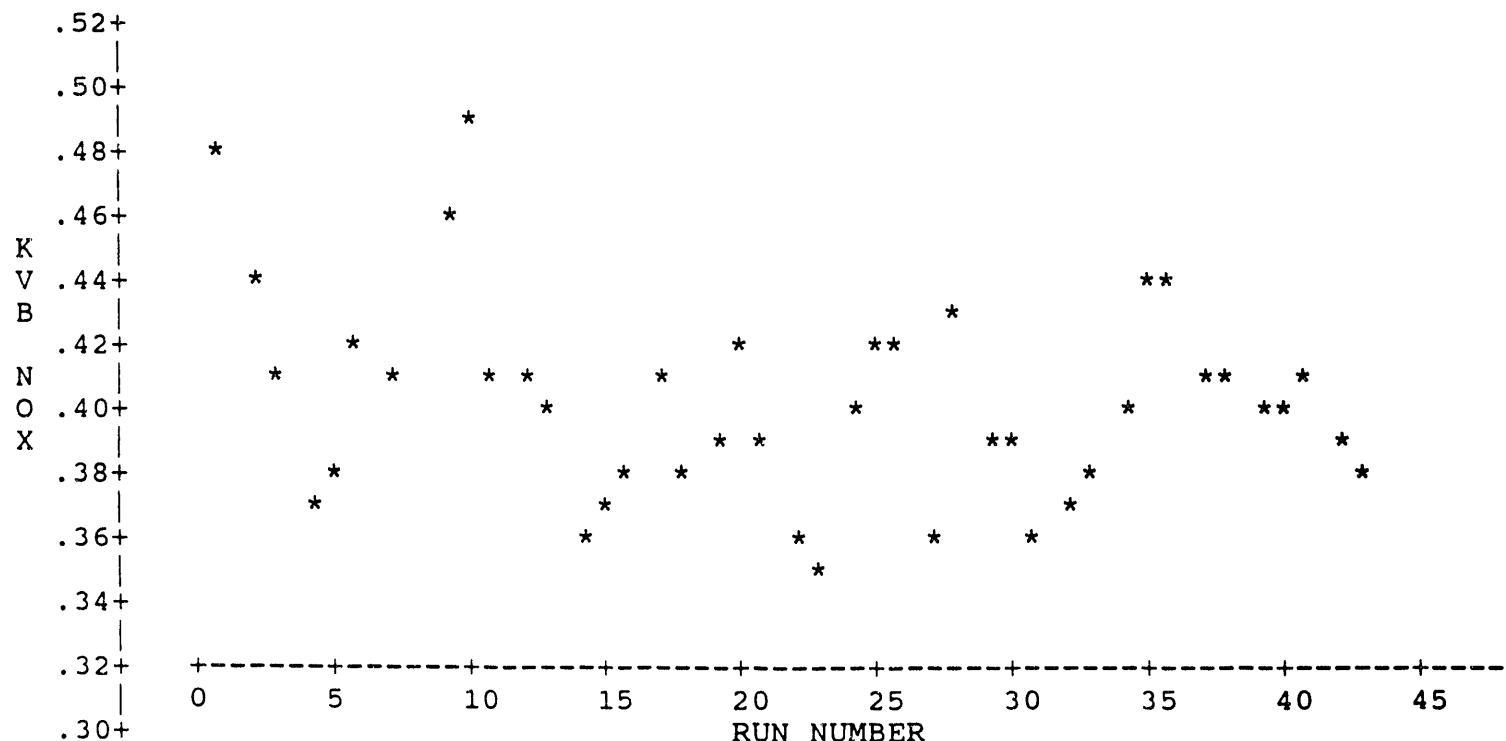
Page 4

|    |              | RUN #    | 13  | 12      | 11      | 10      | 9       |         |
|----|--------------|----------|-----|---------|---------|---------|---------|---------|
| 1  | TOTAL AIR    | MPPH     | 1 H | 3.4460  | 3.5420  | 3.4910  | 3.9220  | 3.7050  |
| 2  | OFA W FRONT  | KPPH     | 1 H | 100.00  | 0.      | 0.      | 43.000  | 164.00  |
| 3  | OFA E FRONT  | KPPH     | 1 H | 158.00  | 221.00  | 49.000  | 58.000  | 56.000  |
| 4  | OFA W REAR   | KPPH     | 1 H | 56.000  | 60.000  | 200.00  | 47.000  | 165.00  |
| 5  | OFA E REAR   | KPPH     | 1 H | 73.000  | 76.000  | 76.000  | 204.00  | 79.000  |
| 6  | TOTAL COAL   | KPPH     | 2 H | 321.00  | 318.00  | 320.00  | 319.00  | 322.00  |
| 7  | LOAD         | MW       | 0 H | 434.00  | 435.00  | 435.00  | 438.00  | 442.00  |
| 8  | FLUEGAS TEMP | F        | 0 H | 298.00  | 298.00  | 298.00  | 298.00  | 295.00  |
| 9  | KVB SO2      | PPM      | 0 H | 979.00  | 967.00  | 954.00  | 881.00  | 883.00  |
| 10 | KVB THC      | PPM      | 0 H | 0.      | 0.      | 0.      | 0.      | 0.      |
| 11 | KVB O2       | PCT      | 4 H | 6.1000  | 6.3000  | 6.4000  | 7.2000  | 7.2000  |
| 12 | KVB CO       | PPM      | 5 H | 11.000  | 7.0000  | 7.0000  | 6.0000  | 4.0000  |
| 13 | ECON O2      | PCT      | 5 H | 3.3000  | 3.5000  | 3.3000  | 7.5000  | 4.4000  |
| 14 | OPACITY      | PCT      | 5 H | 13.000  | 19.200  | 15.800  | 16.000  | 22.200  |
| 15 | LOI          | PCT      | 0 C | 2.5000  | 2.5000  | 2.5000  | 2.5000  | 2.5000  |
| 16 | LOSSES       | PCT      | 0 C | 6.0000  | 6.0000  | 6.0000  | 6.0000  | 6.0000  |
| 17 | KVB NOX      | LBS/MBTU | 6 H | 0.39600 | 0.41000 | 0.41400 | 0.49500 | 0.46500 |

|    |              | RUN #    | 7   | 6       | 5       | 4       | 3       |         |
|----|--------------|----------|-----|---------|---------|---------|---------|---------|
| 1  | TOTAL AIR    | MPPH     | 1 H | 3.6670  | 3.5190  | 3.5670  | 3.4320  | 3.4480  |
| 2  | OFA W FRONT  | KPPH     | 1 H | 149.00  | 146.00  | 143.00  | 134.00  | 195.00  |
| 3  | OFA E FRONT  | KPPH     | 1 H | 140.00  | 140.00  | 136.00  | 131.00  | 137.00  |
| 4  | OFA W REAR   | KPPH     | 1 H | 148.00  | 140.00  | 131.00  | 130.00  | 146.00  |
| 5  | OFA E REAR   | KPPH     | 1 H | 130.00  | 121.00  | 119.00  | 116.00  | 129.00  |
| 6  | TOTAL COAL   | KPPH     | 2 H | 325.00  | 329.00  | 324.00  | 326.00  | 328.00  |
| 7  | LOAD         | MW       | 0 H | 443.00  | 443.00  | 443.00  | 442.00  | 444.00  |
| 8  | FLUEGAS TEMP | F        | 0 H | 294.00  | 293.00  | 292.00  | 293.00  | 300.00  |
| 9  | KVB SO2      | PPM      | 0 H | 945.00  | 938.00  | 982.00  | 989.00  | 971.00  |
| 10 | KVB THC      | PPM      | 0 H | 0.      | 0.      | 0.      | 0.      | 0.      |
| 11 | KVB O2       | PCT      | 4 H | 6.7000  | 6.7000  | 6.3000  | 6.0000  | 6.4000  |
| 12 | KVB CO       | PPM      | 5 H | 10.000  | 7.0000  | 17.000  | 90.000  | 19.000  |
| 13 | ECON O2      | PCT      | 5 H | 3.8000  | 3.8000  | 3.3000  | 2.9000  | 3.3000  |
| 14 | OPACITY      | PCT      | 5 H | 20.500  | 15.300  | 13.000  | 15.100  | 13.100  |
| 15 | LOI          | PCT      | 0 C | 2.5000  | 2.5000  | 2.5000  | 2.5000  | 2.5000  |
| 16 | LOSSES       | PCT      | 0 C | 6.0000  | 6.0000  | 6.0000  | 6.0000  | 6.0000  |
| 17 | KVB NOX      | LBS/MBTU | 6 H | 0.41500 | 0.41900 | 0.38500 | 0.37200 | 0.41300 |

|    |              | RUN #    | 2   | 1       |
|----|--------------|----------|-----|---------|
| 1  | TOTAL AIR    | MPPH     | 1 H | 3.4030  |
| 2  | OFA W FRONT  | KPPH     | 1 H | 148.00  |
| 3  | OFA E FRONT  | KPPH     | 1 H | 144.00  |
| 4  | OFA W REAR   | KPPH     | 1 H | 151.00  |
| 5  | OFA E REAR   | KPPH     | 1 H | 124.00  |
| 6  | TOTAL COAL   | KPPH     | 2 H | 331.00  |
| 7  | LOAD         | MW       | 0 H | 445.00  |
| 8  | FLUEGAS TEMP | F        | 0 H | 300.00  |
| 9  | KVB SO2      | PPM      | 0 H | 949.00  |
| 10 | KVB THC      | PPM      | 0 H | 0.      |
| 11 | KVB O2       | PCT      | 4 H | 6.6000  |
| 12 | KVB CO       | PPM      | 5 H | 10.000  |
| 13 | ECON O2      | PCT      | 5 H | 3.5000  |
| 14 | OPACITY      | PCT      | 5 H | 17.500  |
| 15 | LOI          | PCT      | 0 C | 2.5000  |
| 16 | LOSSES       | PCT      | 0 C | 6.0000  |
| 17 | KVB NOX      | LBS/MBTU | 6 H | 0.43600 |
|    |              |          |     | 0.48300 |

PLOT REPORT

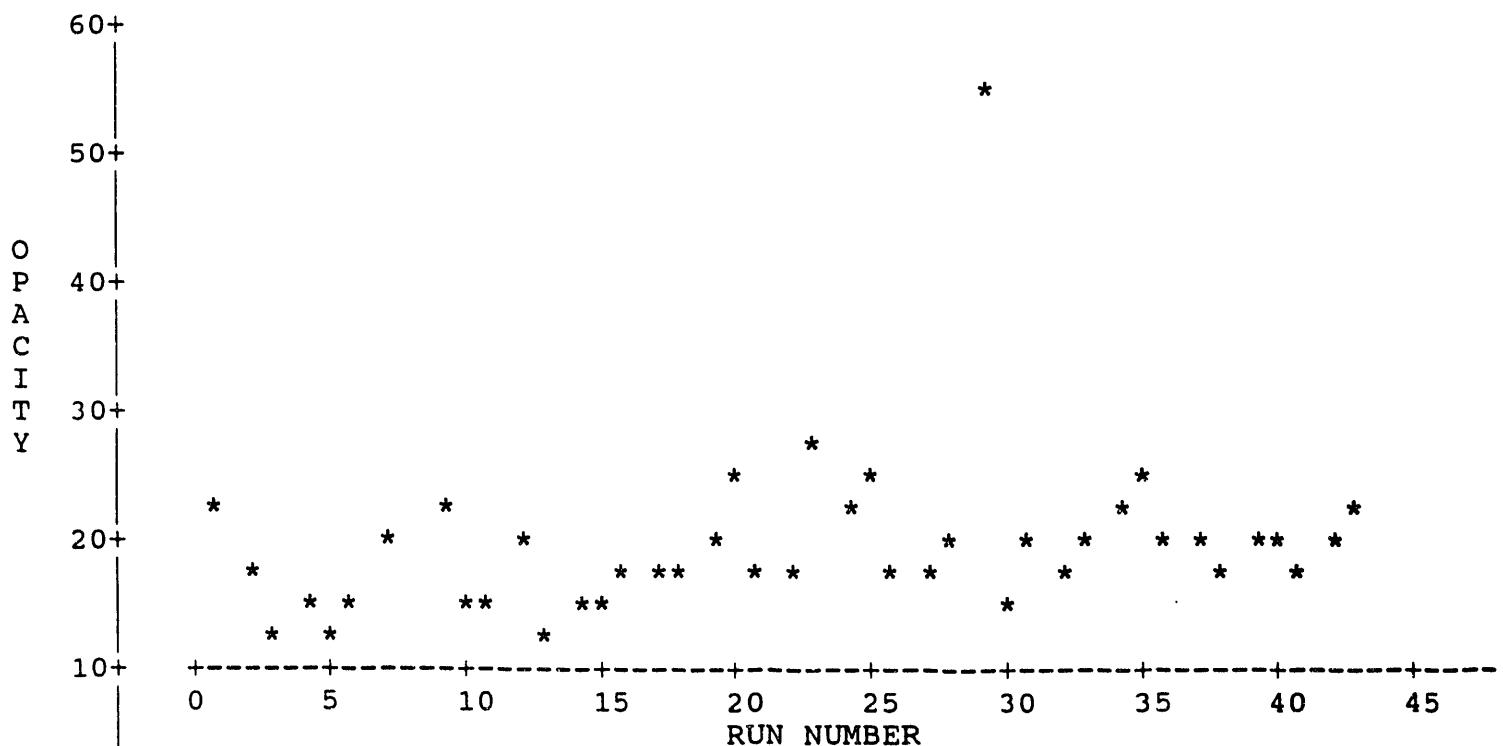

-----  
PROBLEM: PLANT HAMMOND EXPLORATORY EXPERIMENT

ULTRAMAX 4.1 (R): Copyright 1982-90, Ultramax Corp. All rights reserved.  
07:20 MON, 03 AUG 1992

=====

VERTICAL VARIABLE(S): 17 KVB NOX

HORIZONTAL VARIABLE: 0 RUN NUMBER



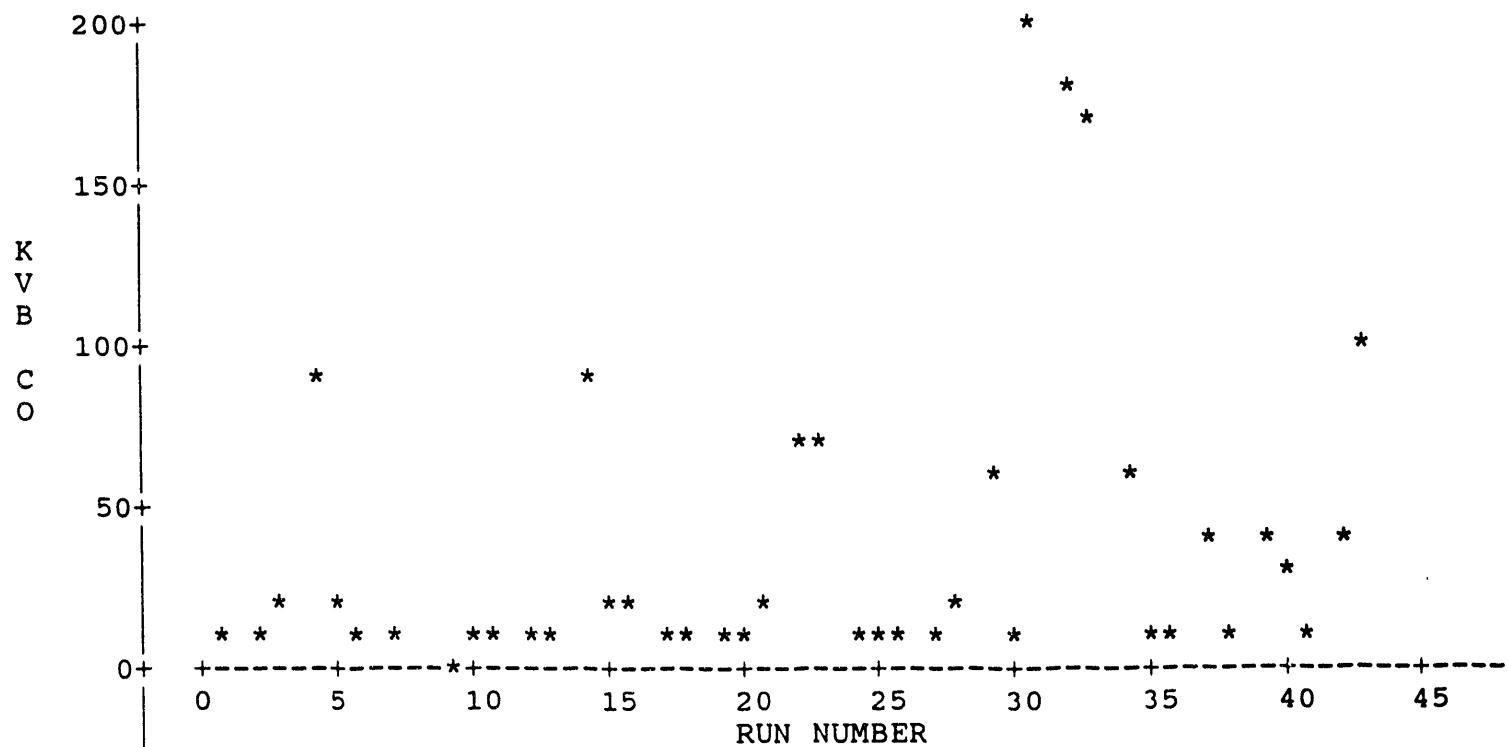

PLOT REPORT

-----  
PROBLEM: PLANT HAMMOND EXPLORATORY EXPERIMENT  
ULTRAMAX 4.1 (R): Copyright 1982-90, Ultramax Corp. All rights reserved.  
07:21 MON, 03 AUG 1992  
=====

VERTICAL VARIABLE(S): 14 OPACITY

HORIZONTAL VARIABLE: 0 RUN NUMBER



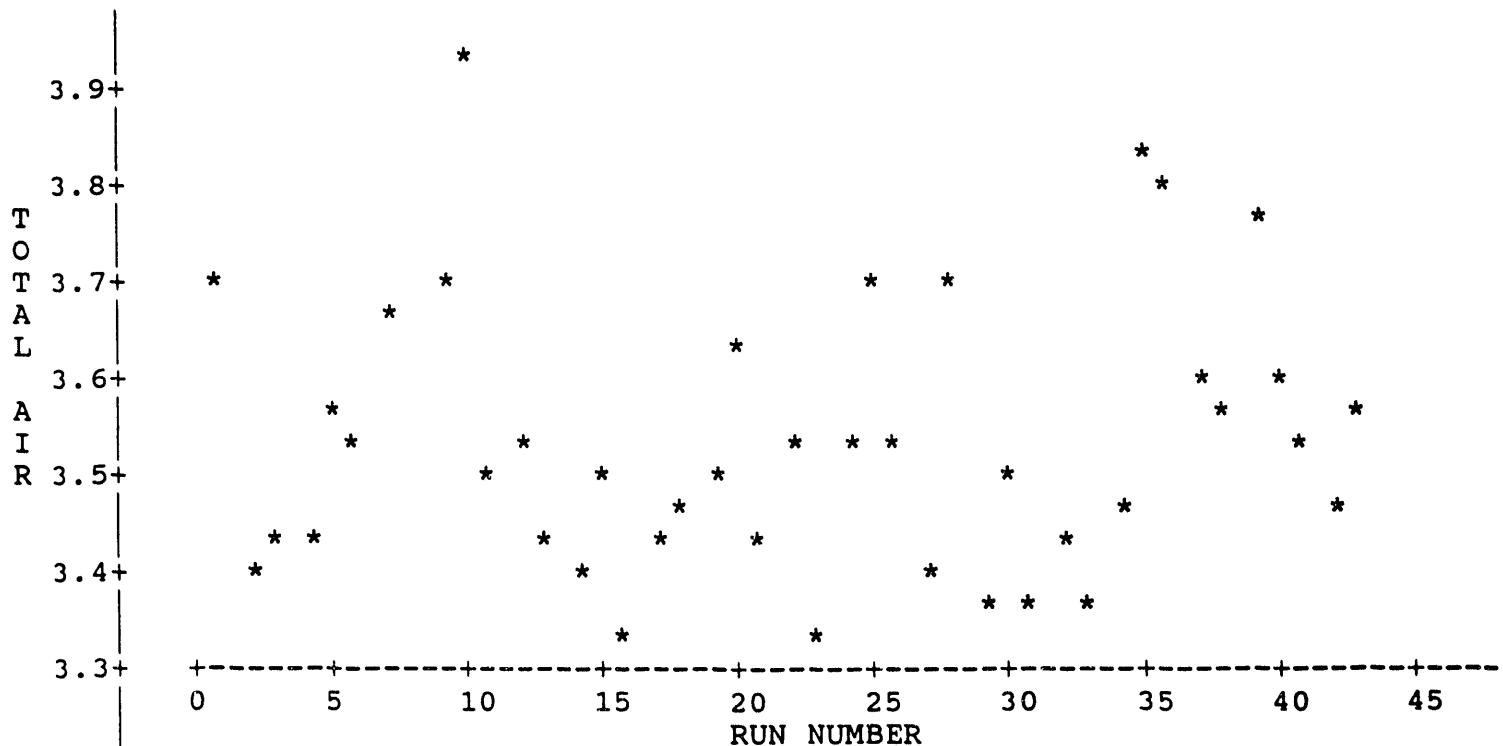

PLOT REPORT

PROBLEM: PLANT HAMMOND EXPLORATORY EXPERIMENT

ULTRAMAX 4.1 (R): Copyright 1982-90, Ultramax Corp. All rights reserved.  
09:17 TUE, 04 AUG 1992

VERTICAL VARIABLE(S): 12 KVB CO

HORIZONTAL VARIABLE: 0 RUN NUMBER



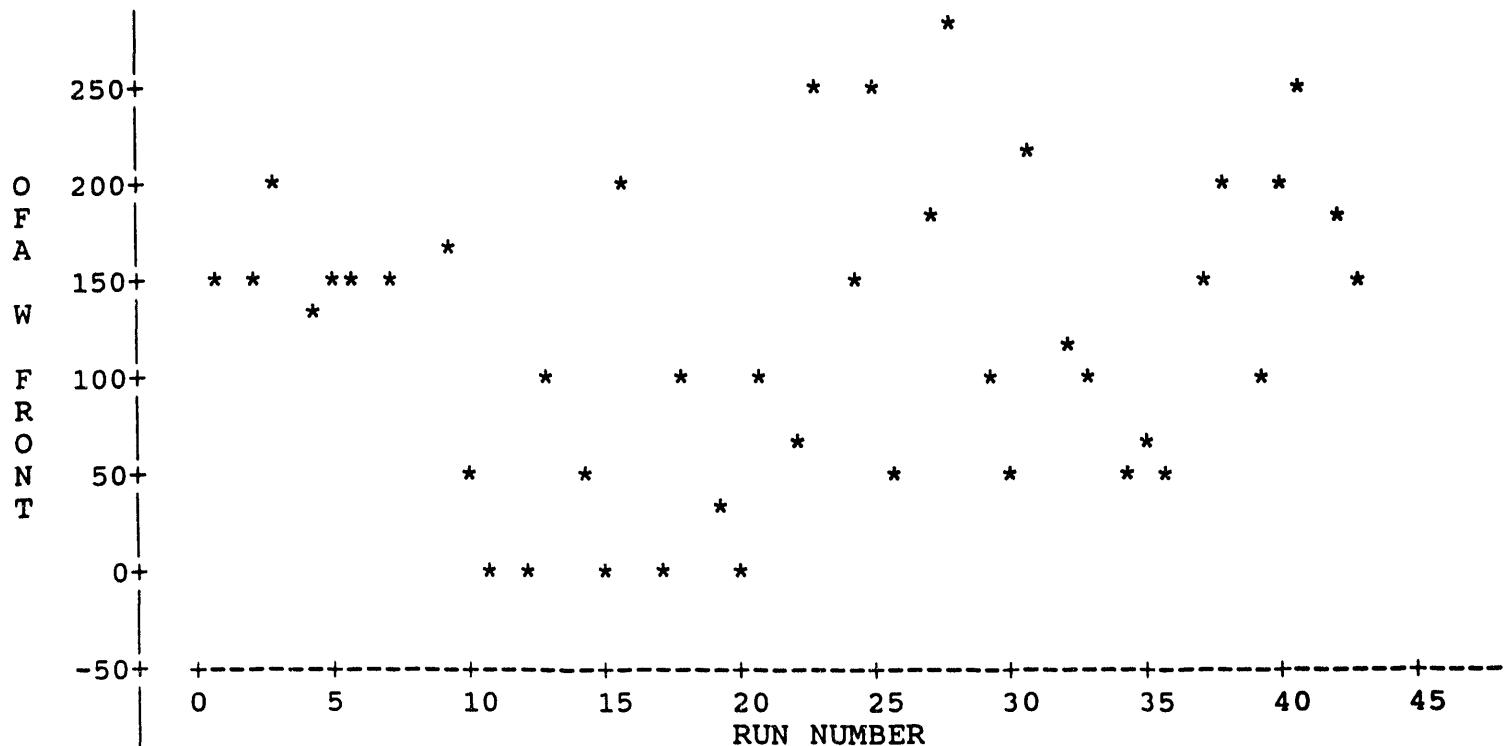

PLOT REPORT

-----  
PROBLEM: PLANT HAMMOND EXPLORATORY EXPERIMENT  
ULTRAMAX 4.1 (R): Copyright 1982-90, Ultramax Corp. All rights reserved.  
07:22 MON, 03 AUG 1992  
=====

VERTICAL VARIABLE(S): 1 TOTAL AIR

HORIZONTAL VARIABLE: 0 RUN NUMBER




PLOT REPORT

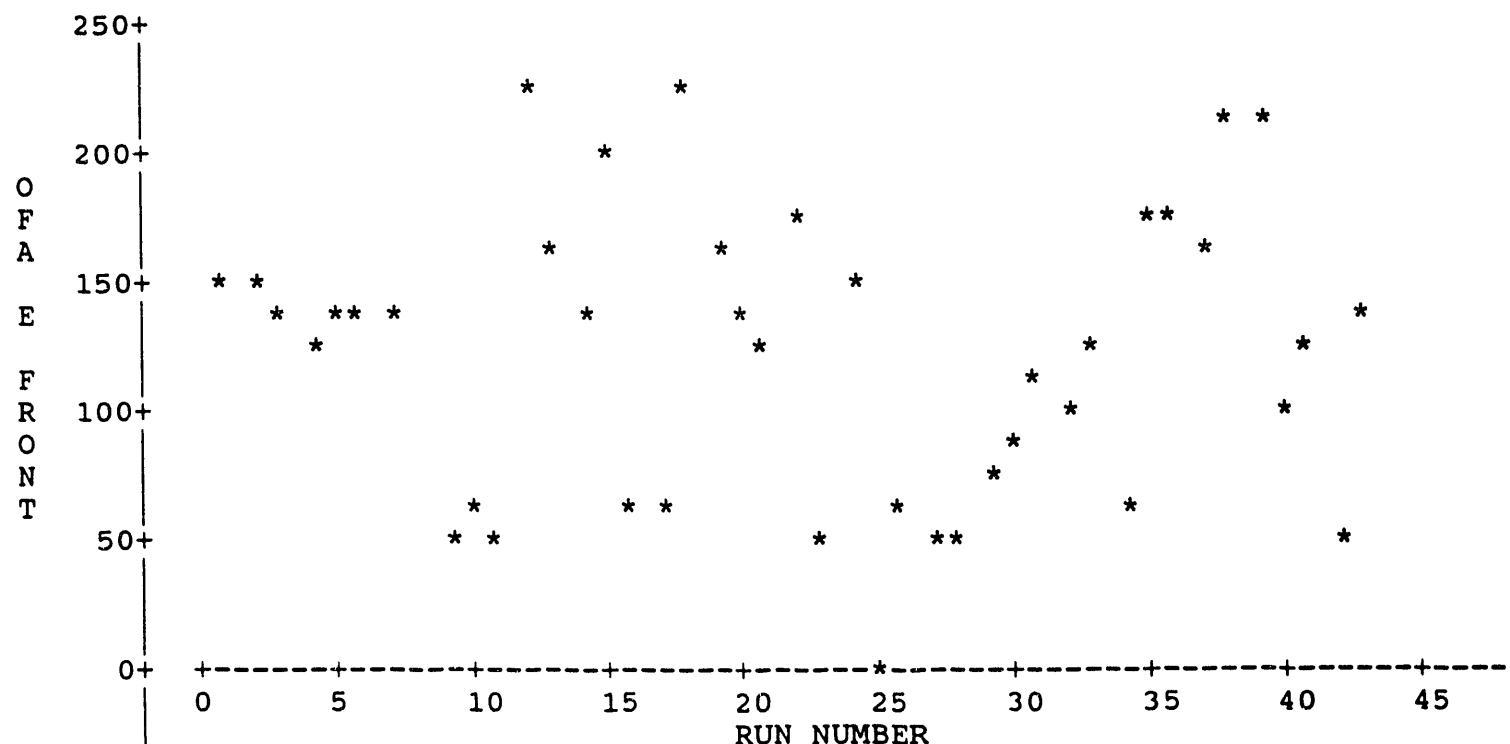
PROBLEM: PLANT HAMMOND EXPLORATORY EXPERIMENT

ULTRAMAX 4.1 (R): Copyright 1982-90, Ultramax Corp. All rights reserved.  
14:54 MON, 03 AUG 1992

VERTICAL VARIABLE(S): 2 OFA W FRONT

HORIZONTAL VARIABLE: 0 RUN NUMBER




PLOT REPORT

-----  
PROBLEM: PLANT HAMMOND EXPLORATORY EXPERIMENT

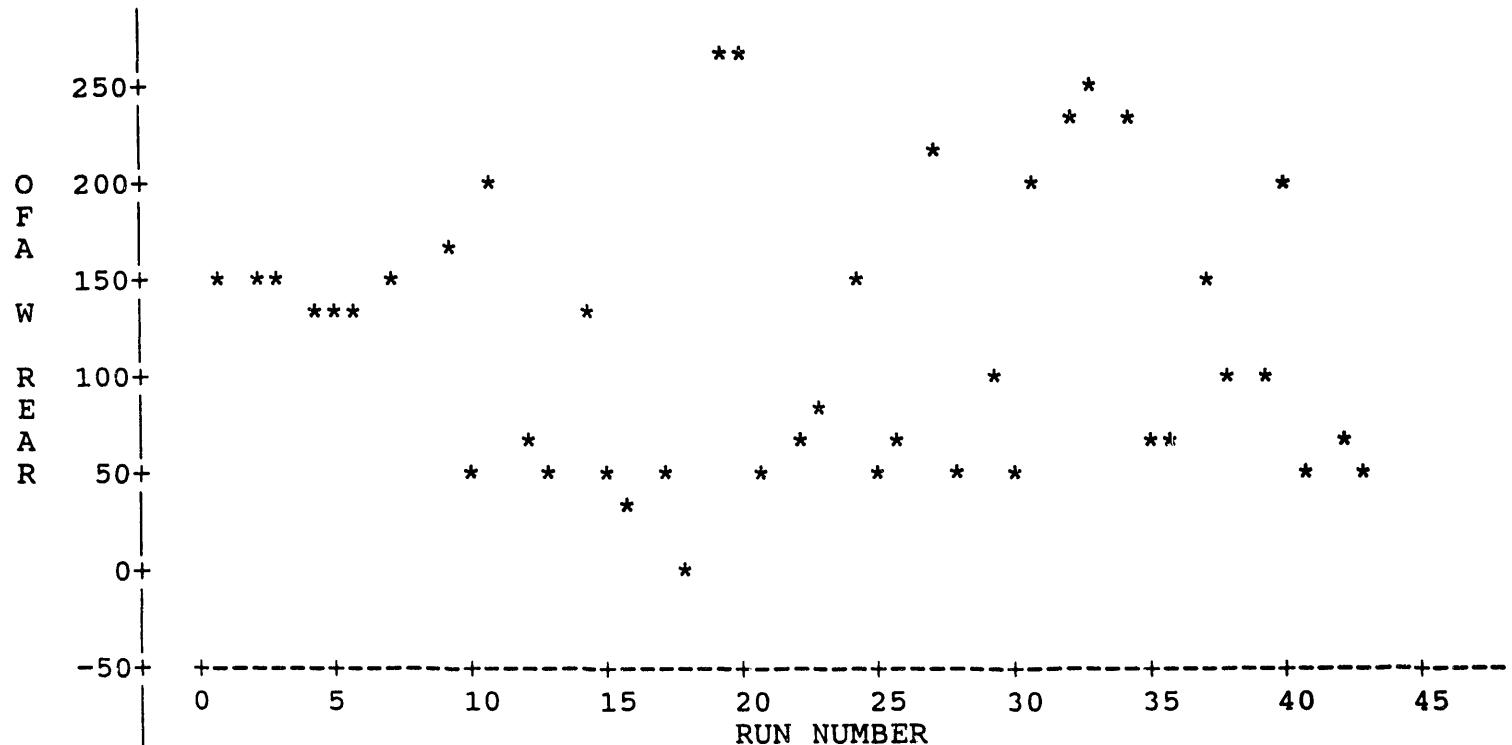
ULTRAMAX 4.1 (R): Copyright 1982-90, Ultramax Corp. All rights reserved.  
14:54 MON, 03 AUG 1992  
=====

VERTICAL VARIABLE(S): 3 OFA E FRONT

HORIZONTAL VARIABLE: 0 RUN NUMBER



PLOT REPORT


-----  
PROBLEM: PLANT HAMMOND EXPLORATORY EXPERIMENT

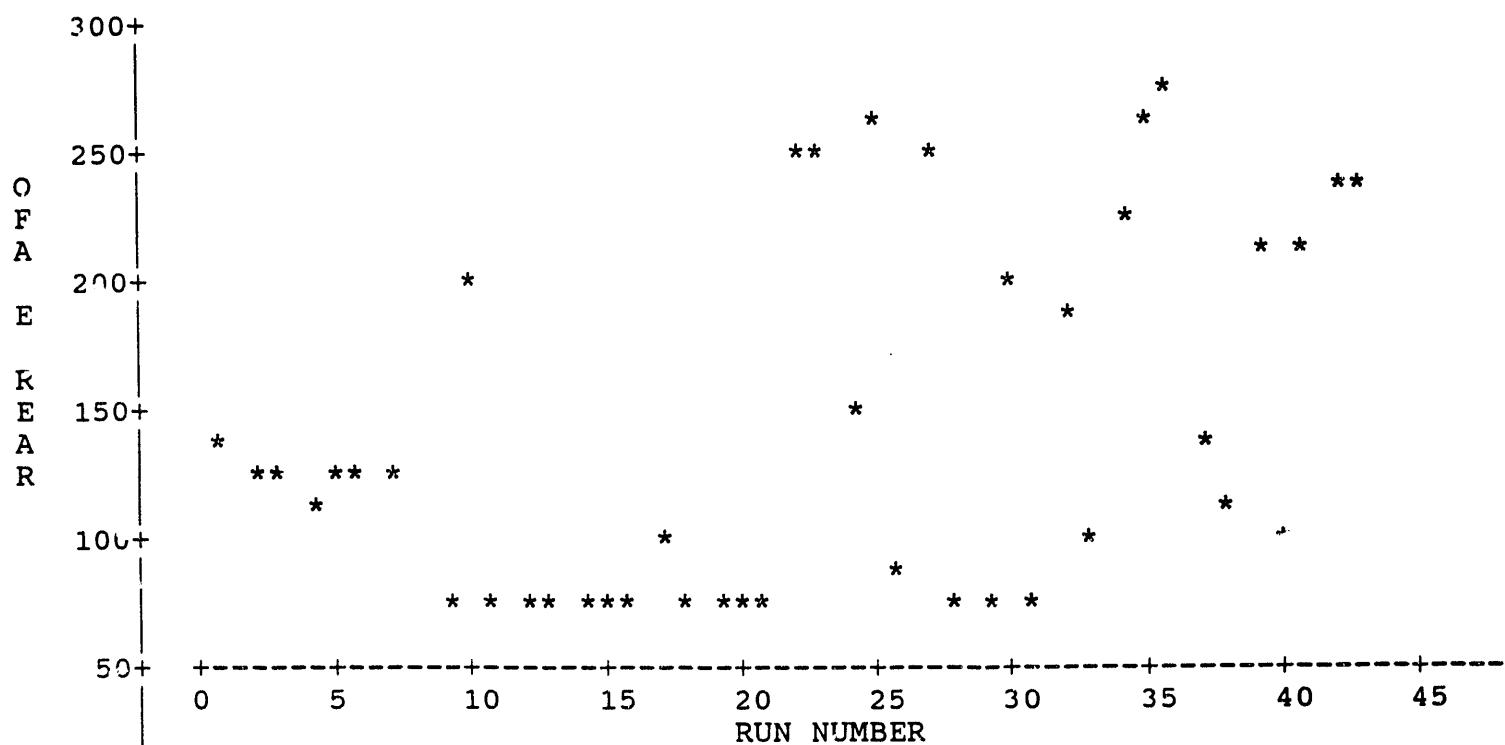
ULTRAMAX 4.1 (R): Copyright 1982-90, Ultramax Corp. All rights reserved.  
14:54 MON, 03 AUG 1992

=====

VERTICAL VARIABLE(S): 4 OFA W REAR

HORIZONTAL VARIABLE: 0 RUN NUMBER




PLOT REPORT

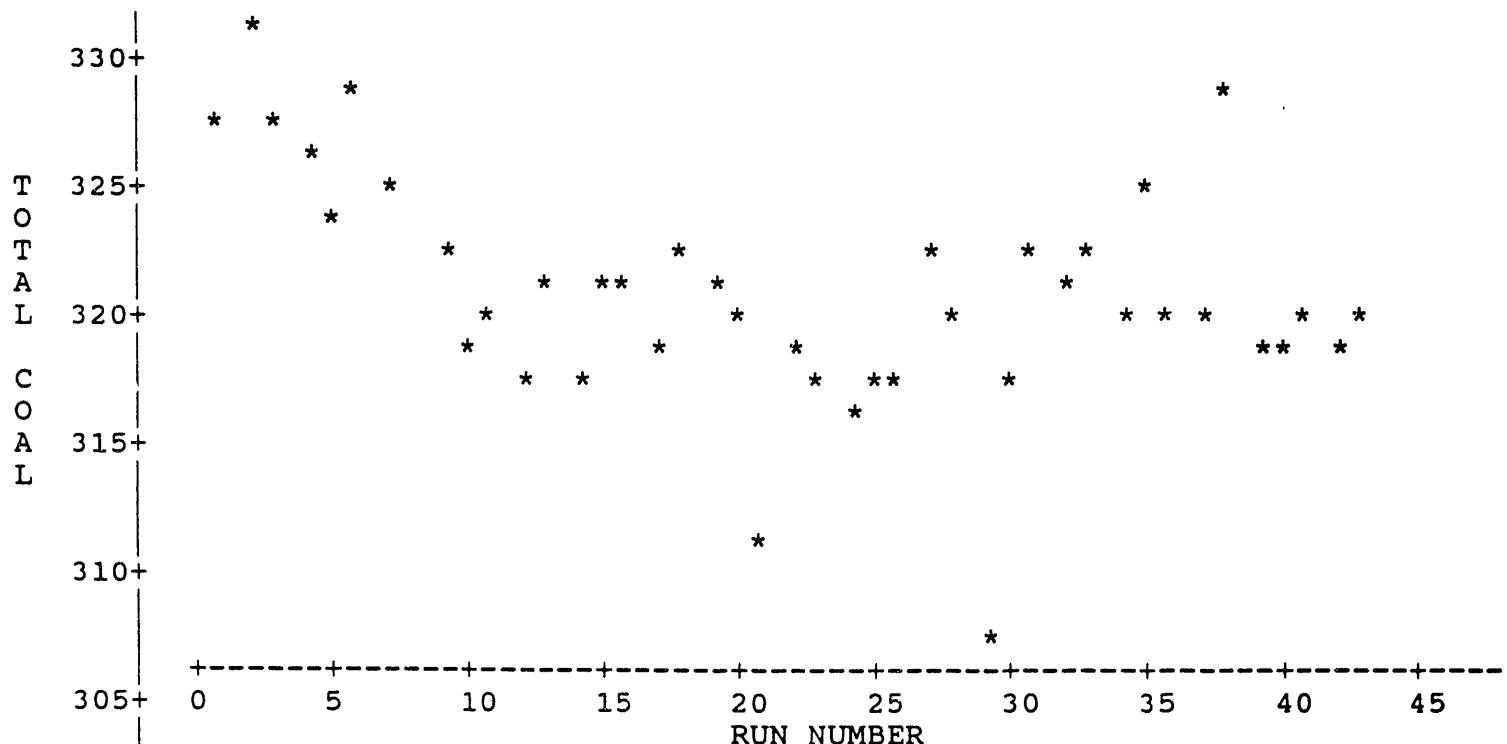
PROBLEM: PLANT HAMMOND EXPLORATORY EXPERIMENT

ULTRAMAX 4.1 (R): Copyright 1982-90, Ultramax Corp. All rights reserved.  
14:54 MON, 03 AUG 1992

VERTICAL VARIABLE(S): 5 OFA E REAR

HORIZONTAL VARIABLE: 0 RUN NUMBER




PLOT REPORT

-----  
PROBLEM: PLANT HAMMOND EXPLORATORY EXPERIMENT

ULTRAMAX 4.1 (R): Copyright 1982-90, Ultramax Corp. All rights reserved.  
14:55 MON, 03 AUG 1992  
=====

VERTICAL VARIABLE(S): 6 TOTAL COAL

HORIZONTAL VARIABLE: 0 RUN NUMBER



**APPENDIX D**  
**Ultramax Exploratory Experiment - September 1992**

## ULTRAMAX PROBLEM FORMULATION

PLANT HAMMOND - EXPERIMENT #2.

16:38 THU, 01 OCT 1992

| VAR # | NAME         | UNITS | TY |    |    | PRIOR |      |     | REGION |    | CONSTRAINTS |  |
|-------|--------------|-------|----|----|----|-------|------|-----|--------|----|-------------|--|
|       |              |       | PE | MO | TR | LO    | HI   | LO  | HI     | LO | HI          |  |
| 1     | TOTAL AIR    | MPPH  | 0  | H  | 0  | 3.4   | 3.6  | 2.4 | 5.     |    |             |  |
| 2     | AIR EAST     | MPPH  | 1  | H  | 0  | 1.8   | 2.   | 1.8 | 2.3    |    |             |  |
| 3     | AIR WEST     | MPPH  | 1  | H  | 0  | 1.3   | 1.6  | 1.3 | 1.6    |    |             |  |
| 4     | OFA W FRONT  | KPPH  | 1  | H  | 0  | 50.   | 250. | 25. | 260.   |    |             |  |
| 5     | OFA E FRONT  | KPPH  | 1  | H  | 0  | 50.   | 250. | 25. | 260.   |    |             |  |
| 6     | OFA W REAR   | KPPH  | 1  | H  | 0  | 50.   | 250. | 25. | 260.   |    |             |  |
| 7     | OFA E REAR   | KPPH  | 1  | H  | 0  | 50.   | 250. | 25. | 260.   |    |             |  |
| 8     | COAL FLOW    | KPPH  | 5  | H  | 0  | 120.  | 370. | 0.  | 0.     |    |             |  |
| 9     | FLUEGAS TEMP | F     | 5  | H  | 0  | 200.  | 800. | 0.  | 0.     |    |             |  |
| 10    | KVB NOX      | PPM   | 5  | H  | 0  | 200.  | 250. | 0.  | 220.   |    |             |  |
| 11    | KVB CO       | PPM   | 5  | H  | 0  | 5.    | 20.  | 0.  | 30.    |    |             |  |
| 12    | OPACITY      | PCT   | 5  | H  | 0  | 5.    | 20.  | 0.  | 30.    |    |             |  |
| 13    | HTR O2       | PCT   | 5  | H  | 0  | 3.    | 10.  | 3.  | 10.    |    |             |  |
| 14    | LOI EAST     | PCT   | 5  | C  | 0  | 0.    | 10.  | 0.  | 0.     |    |             |  |
| 15    | LOI WEST     | PCT   | 5  | C  | 0  | 0.    | 10.  | 0.  | 0.     |    |             |  |
| 16    | LOSSES       | PCT   | 6  | H  | 0  | 0.    | 10.  | 0.  | 15.    |    |             |  |

MINIMIZING variable # 16 LOSSES (Type 6)

LIST of NON-DEFAULT PARAMETERS (if any). Parameters control Operations, Data entry, or Reports. See Users Guide Ch.9, "Problem Formulation". Parameters with no description should be reset to default.

PAR(10) = 3. Size of AREA OF CONFIDENCE  
 PAR(20) = 4. Fixed # of columns in Results and Advice Report  
 PAR(30) = 1. What-if, Synthesis w/LEARN models, ignore CALC models  
 PAR(40) = 0. Do not limit ADVICE to AREA OF CONFIDENCE  
 PAR(45) = 2. Descriptive models, rather than local  
 PAR(48) = 3. Display all Curvatures  
 PAR(49) = 0. Static System, old data counts just as much  
 PAR(55) = 2. Terminal: NORMAL MODE (Needs ANSI.SYS Driver)  
 PAR(56) = 0. Line printer: LPT1  
 PAR(57) = 0. Reports not saved automatically  
 PAR(58) = 1. Record ALL session on file USESSION.WRK

LIST of GLOBAL FACTORS (if any)

GLOBAL( 1) = 5.6 PERCENT MOISTURE IN COAL BY WEIGHT  
 GLOBAL( 2) = 14093. HEAT OF COMBUSTION OF CARBON (BTU/lb)  
 GLOBAL( 3) = 0.0974 PERCENT ASH IN COAL (9.74%)  
 GLOBAL( 4) = 970.3 LATENT HEAT OF FLUEGAS (BTU/lb)  
 GLOBAL( 5) = 0.085 WATER IN COAL (8.5%)  
 GLOBAL( 6) = 12862. HEAT OF COMBUSTION OF COAL (BTU/lb)  
 GLOBAL( 7) = 0.005 RADIATION LOSSES (0.5%)  
 GLOBAL( 8) = 0.02 "UNCOUNTED FOR" LOSSES (2%)

\* S I G N A L S \*

-----  
Count, Latest, Active : 72 72 72.00

16 LOSSES 71. %

|    |              |       |
|----|--------------|-------|
| 8  | COAL FLOW    | 72. % |
| 9  | FLUEGAS TEMP | 70. % |
| 10 | KVB NOX      | 94. % |
| 11 | KVB CO       | 88. % |
| 12 | OPACITY      | 71. % |
| 13 | HTR O2       | 90. % |
| 14 | LOI EAST     | 93. % |
| 15 | LOI WEST     | 93. % |

## MODEL SHAPE REPORTS

PROBLEM: PLANT HAMMOND - EXPERIMENT #2.

ULTRAMAX 4.1 (R): Copyright 1982-90, Ultramax Corp. All rights reserved.

16:39 THU, 01 OCT 1992

# 10 KVB NOX MIN. PREDICTION ERROR = 5.9

% VAR. EXPL. (R2, Adj.R2, Signal): 92.5 87.8 94.2

MODEL TYPE : LOCAL FIXED-POINT-CENTERED QUADRATIC

Count, Latest, Active : 72 72 72.00

# COEF.FIT, # DEG.FREED, # PRIOR : 28 44.00 0.00

DISCRIMINATION PARAMETERS : 0. 0.000 0.00 0.00

| # VARIABLE     | UNITS | T E | REF. | 2S-SPREAD | EFFECTS IN 2S-SPREAD |            |       |       |
|----------------|-------|-----|------|-----------|----------------------|------------|-------|-------|
|                |       |     |      |           | Linear               | Curvatures | 1     | 2.    |
| <b>DEGREE:</b> |       |     |      |           |                      |            |       |       |
| 10 KVB NOX     | PPM   | 5 H | 231. | 33.       | 1.58                 | 5.38       | 0.38  | -0.33 |
| 2 AIR EAST     | MPPH  | 1 H | 2.11 | 0.18      | 0.97                 | 1.77       | 0.00  | 0.00  |
| 3 AIR WEST     | MPPH  | 1 H | 1.48 | 0.11      | -0.16                | -1.46      | 0.00  | 0.00  |
| 4 OFA W FRONT  | KPPH  | 1 H | 108. | 136.      | -0.21                | -0.31      | 0.21  | 0.03  |
| 5 OFA E FRONT  | KPPH  | 1 H | 162. | 160.      | -0.84                | -0.38      | 0.08  | -0.07 |
| 6 OFA W REAR   | KPPH  | 1 H | 142. | 177.      | -0.55                | -0.58      | -0.01 | 0.19  |
| 7 OFA E REAR   | KPPH  | 1 H | 156. | 144.      | -0.68                | -0.89      | -0.07 | -0.03 |

Standard Distance of REFERENCE 1.6 Set at Default: LOCAL CENTER

| # VARIABLE     | REFERENCE | 2S-SPREAD | CURVATURES |       |      |
|----------------|-----------|-----------|------------|-------|------|
|                |           |           | 2.         | 2.    | 2.   |
| <b>DEGREE:</b> |           |           |            |       |      |
| 10 KVB NOX     | 231.      | 33.       | -0.18      | -0.07 | 0.02 |
| 2 AIR EAST     | 2.11      | 0.18      | 0.01       | 0.00  | 0.01 |
| 3 AIR WEST     | 1.48      | 0.11      | -0.02      | 0.03  | 0.00 |
| 4 OFA W FRONT  | 108.      | 136.      | -0.01      | -0.01 | 0.00 |
| 5 OFA E FRONT  | 162.      | 160.      | 0.09       | 0.00  | 0.00 |
| 6 OFA W REAR   | 142.      | 177.      | 0.05       | 0.00  | 0.00 |
| 7 OFA E REAR   | 156.      | 144.      | 0.00       | -0.03 | 0.00 |

| RUN # | ACTUAL<br>KVB NOX | MODEL<br>KVB NOX | ERROR |  |
|-------|-------------------|------------------|-------|--|
|       |                   |                  |       |  |
| 72.00 | 217.0             | 221.9            | -4.9  |  |
| 71.00 | 210.0             | 207.8            | 2.2   |  |
| 70.00 | 210.0             | 208.9            | 1.1   |  |
| 69.00 | 220.0             | 217.3            | 2.7   |  |
| 68.00 | 215.0             | 216.8            | -1.8  |  |
| 67.00 | 210.0             | 205.0            | 5.0   |  |
| 66.00 | 210.0             | 212.4            | -2.4  |  |
| 65.00 | 208.0             | 205.8            | 2.2   |  |
| 64.00 | 212.0             | 214.3            | -2.3  |  |
| 63.00 | 215.0             | 218.4            | -3.4  |  |
| 62.00 | 209.0             | 208.4            | 0.6   |  |
| 61.00 | 211.0             | 222.5            | -11.5 |  |
| 60.00 | 208.0             | 211.2            | -3.2  |  |
| 59.00 | 226.0             | 241.3            | -15.3 |  |
| 58.00 | 218.0             | 229.0            | -11.0 |  |

|       |       |       |      |
|-------|-------|-------|------|
| 57.00 | 211.0 | 208.4 | 2.6  |
| 56.00 | 202.0 | 203.5 | -1.5 |
| 55.00 | 205.0 | 207.1 | -2.1 |
| 54.00 | 218.0 | 222.0 | -4.0 |
| 53.00 | 219.0 | 222.8 | -3.8 |
| 52.00 | 208.0 | 211.7 | -3.7 |
| 51.00 | 222.0 | 215.1 | 6.9  |
| 50.00 | 223.0 | 215.9 | 7.1  |
| 49.00 | 221.0 | 218.9 | 2.1  |
| 48.00 | 221.0 | 225.9 | -4.9 |
| 47.00 | 224.0 | 226.1 | -2.1 |
| 46.00 | 222.0 | 222.1 | -0.1 |
| 45.00 | 228.0 | 227.8 | 0.2  |
| 44.00 | 250.0 | 253.2 | -3.2 |
| 43.00 | 237.0 | 246.0 | -9.0 |
| 42.00 | 233.6 | 237.8 | -4.2 |
| 41.00 | 230.0 | 224.9 | 5.1  |
| 40.00 | 233.2 | 231.4 | 1.8  |
| 39.00 | 237.8 | 239.1 | -1.3 |
| 38.00 | 234.1 | 227.7 | 6.5  |
| 37.00 | 232.7 | 230.6 | 2.1  |
| 36.00 | 237.8 | 232.8 | 5.0  |
| 35.00 | 251.9 | 244.6 | 7.3  |
| 34.00 | 242.1 | 240.6 | 1.5  |
| 33.00 | 225.7 | 224.1 | 1.6  |
| 32.00 | 227.2 | 219.8 | 7.4  |
| 31.00 | 221.5 | 226.4 | -5.0 |
| 30.00 | 235.2 | 241.4 | -6.2 |
| 29.00 | 233.3 | 233.3 | 0.0  |
| 28.00 | 250.4 | 249.8 | 0.5  |
| 27.00 | 216.5 | 218.4 | -1.9 |
| 26.00 | 255.2 | 250.3 | 4.8  |
| 25.00 | 243.7 | 246.0 | -2.3 |
| 24.00 | 233.6 | 231.4 | 2.1  |
| 23.00 | 212.7 | 211.6 | 1.1  |
| 22.00 | 217.3 | 218.9 | -1.5 |
| 21.00 | 234.7 | 242.3 | -7.6 |
| 20.00 | 238.9 | 237.7 | 1.2  |
| 19.00 | 232.0 | 226.8 | 5.2  |
| 18.00 | 236.2 | 232.1 | 4.2  |
| 17.00 | 254.3 | 252.7 | 1.6  |
| 16.00 | 235.2 | 235.3 | -0.1 |
| 15.00 | 231.7 | 231.6 | 0.1  |
| 14.00 | 227.3 | 225.7 | 1.6  |
| 13.00 | 240.8 | 237.4 | 3.4  |
| 12.00 | 243.5 | 239.0 | 4.6  |
| 11.00 | 245.9 | 247.9 | -2.0 |
| 10.00 | 276.4 | 272.3 | 4.1  |
| 9.00  | 261.2 | 262.0 | -0.8 |
| 8.00  | 259.4 | 258.2 | 1.2  |
| 7.00  | 244.4 | 242.7 | 1.7  |
| 6.00  | 243.6 | 239.0 | 4.7  |
| 5.00  | 235.9 | 233.0 | 2.9  |
| 4.00  | 227.7 | 228.0 | -0.3 |
| 3.00  | 247.4 | 248.5 | -1.1 |
| 2.00  | 264.9 | 254.0 | 10.8 |
| 1.00  | 276.8 | 278.5 | -1.8 |

## MODEL SHAPE REPORTS

PROBLEM: PLANT HAMMOND - EXPERIMENT #2.

ULTRAMAX 4.1 (R): Copyright 1982-90, Ultramax Corp. All rights reserved.

16:39 THU, 01 OCT 1992

# 11 KVB CO MIN. PREDICTION ERROR = 44.

% VAR. EXPL. (R2, Adj.R2, Signal): 75.5 60.4 88.1

MODEL TYPE : LOCAL FIXED-POINT-CENTERED QUADRATIC

Count, Latest, Active : 72 72 72.00

# COEF.FIT, # DEG.FREED, # PRIOR : 28 44.00 0.00

DISCRIMINATION PARAMETERS : 0. 0.000 0.00 0.00

| # VARIABLE     | UNITS | T E | REF. | 2S-SPREAD | EFFECTS IN 2S-SPREAD |            |       |       |
|----------------|-------|-----|------|-----------|----------------------|------------|-------|-------|
|                |       |     |      |           | Linear               | Curvatures |       |       |
| <b>DEGREE:</b> |       |     |      |           |                      |            |       |       |
| 11 KVB CO      | PPM   | 5 H | 65.  | 138.      | 1                    | 2.         | 2.    | 2.    |
| 2 AIR EAST     | MPPH  | 1 H | 2.11 | 0.18      | -0.55                | 2.14       | -0.10 | 0.11  |
| 3 AIR WEST     | MPPH  | 1 H | 1.48 | 0.11      | -0.53                | -2.20      | -0.12 | 0.00  |
| 4 OFA W FRONT  | KPPH  | 1 H | 108. | 136.      | -0.12                | -1.23      | -0.17 | 0.00  |
| 5 OFA E FRONT  | KPPH  | 1 H | 162. | 160.      | 0.40                 | -0.16      | 0.36  | -0.02 |
| 6 OFA W REAR   | KPPH  | 1 H | 142. | 177.      | 0.20                 | -0.12      | 0.26  | 0.03  |
| 7 OFA E REAR   | KPPH  | 1 H | 156. | 144.      | 0.29                 | -0.40      | 0.03  | 0.51  |

Standard Distance of REFERENCE 1.6 Set at Default: LOCAL CENTER

| # VARIABLE     | REFERENCE | 2S-SPREAD | CURVATURES |       |       |
|----------------|-----------|-----------|------------|-------|-------|
|                |           |           | 2.         | 2.    | 2.    |
| <b>DEGREE:</b> |           |           |            |       |       |
| 11 KVB CO      | 65.       | 138.      | 0.32       | -0.26 | -0.06 |
| 2 AIR EAST     | 2.11      | 0.18      | 0.04       | 0.01  | 0.01  |
| 3 AIR WEST     | 1.48      | 0.11      | 0.09       | 0.06  | 0.00  |
| 4 OFA W FRONT  | 108.      | 136.      | -0.04      | -0.03 | 0.02  |
| 5 OFA E FRONT  | 162.      | 160.      | 0.10       | -0.03 | 0.01  |
| 6 OFA W REAR   | 142.      | 177.      | -0.05      | 0.10  | 0.01  |
| 7 OFA E REAR   | 156.      | 144.      | 0.00       | -0.02 | 0.00  |

| RUN # | ACTUAL<br>KVB CO | MODEL<br>KVB CO | ERROR |  |
|-------|------------------|-----------------|-------|--|
|       |                  |                 |       |  |
| 72.00 | 95.              | 63.             | 32.   |  |
| 71.00 | 193.             | 182.            | 11.   |  |
| 70.00 | 281.             | 203.            | 78.   |  |
| 69.00 | 62.              | 48.             | 14.   |  |
| 68.00 | 36.              | 17.             | 19.   |  |
| 67.00 | 90.              | 117.            | -27.  |  |
| 66.00 | 30.              | 23.             | 7.    |  |
| 65.00 | 124.             | 109.            | 15.   |  |
| 64.00 | 74.              | 54.             | 20.   |  |
| 63.00 | 43.              | 21.             | 22.   |  |
| 62.00 | 120.             | 93.             | 27.   |  |
| 61.00 | 175.             | 84.             | 91.   |  |
| 60.00 | 141.             | 138.            | 3.    |  |
| 59.00 | 10.              | 14.             | -4.   |  |
| 58.00 | 39.              | 49.             | -10.  |  |

|       |      |      |      |
|-------|------|------|------|
| 57.00 | 86.  | 128. | -42. |
| 56.00 | 209. | 215. | -6.  |
| 55.00 | 117. | 143. | -26. |
| 54.00 | 72.  | 80.  | -8.  |
| 53.00 | 93.  | 84.  | 9.   |
| 52.00 | 291. | 235. | 56.  |
| 51.00 | 2.   | 65.  | -63. |
| 50.00 | 7.   | 54.  | -47. |
| 49.00 | 11.  | 26.  | -15. |
| 48.00 | 4.   | 23.  | -19. |
| 47.00 | 13.  | 65.  | -52. |
| 46.00 | 23.  | 80.  | -57. |
| 45.00 | 17.  | 40.  | -23. |
| 44.00 | 0.   | -29. | 29.  |
| 43.00 | 0.   | -28. | 28.  |
| 42.00 | 48.  | 12.  | 36.  |
| 41.00 | 98.  | 24.  | 74.  |
| 40.00 | 53.  | 35.  | 18.  |
| 39.00 | 20.  | 12.  | 7.   |
| 38.00 | 31.  | 77.  | -46. |
| 37.00 | 22.  | 51.  | -29. |
| 36.00 | 19.  | 37.  | -18. |
| 35.00 | 8.   | -37. | 45.  |
| 34.00 | 40.  | 53.  | -12. |
| 33.00 | 142. | 141. | 1.   |
| 32.00 | 181. | 162. | 20.  |
| 31.00 | 275. | 178. | 97.  |
| 30.00 | 58.  | 60.  | -2.  |
| 29.00 | 82.  | 78.  | 3.   |
| 28.00 | 13.  | 20.  | -7.  |
| 27.00 | 131. | 153. | -22. |
| 26.00 | 19.  | 9.   | 10.  |
| 25.00 | 5.   | 13.  | -8.  |
| 24.00 | 7.   | 27.  | -20. |
| 23.00 | 75.  | 82.  | -7.  |
| 22.00 | 66.  | 91.  | -24. |
| 21.00 | 25.  | 15.  | 10.  |
| 20.00 | 8.   | -23. | 31.  |
| 19.00 | 10.  | 87.  | -77. |
| 18.00 | 16.  | 12.  | 5.   |
| 17.00 | 11.  | 12.  | -1.  |
| 16.00 | 26.  | 52.  | -27. |
| 15.00 | 25.  | 21.  | 3.   |
| 14.00 | 44.  | 95.  | -52. |
| 13.00 | 10.  | 16.  | -5.  |
| 12.00 | 7.   | 3.   | 4.   |
| 11.00 | 10.  | 0.   | 10.  |
| 10.00 | 5.   | 53.  | -48. |
| 9.00  | 6.   | -12. | 18.  |
| 8.00  | 6.   | 9.   | -3.  |
| 7.00  | 7.   | 4.   | 3.   |
| 6.00  | 10.  | 23.  | -13. |
| 5.00  | 13.  | 18.  | -5.  |
| 4.00  | 57.  | 41.  | 15.  |
| 3.00  | 26.  | 92.  | -66. |
| 2.00  | 7.   | 36.  | -29. |
| 1.00  | 6.   | -40. | 45.  |

## MODEL SHAPE REPORTS

PROBLEM: PLANT HAMMOND - EXPERIMENT #2.

ULTRAMAX 4.1 (R): Copyright 1982-90, Ultramax Corp. All rights reserved.

16:40 THU, 01 OCT 1992

# 12 OPACITY MIN. PREDICTION ERROR = 3.8  
 % VAR. EXPL. (R2, Adj.R2, Signal): 47.0 14.4 71.1  
 MODEL TYPE : LOCAL FIXED-POINT-CENTERED QUADRATIC  
 Count, Latest, Active : 72 72 72.00  
 # COEF.FIT, # DEG.FREED, # PRIOR : 28 44.00 0.00  
 DISCRIMINATION PARAMETERS : 0. 0.000 0.00 0.00

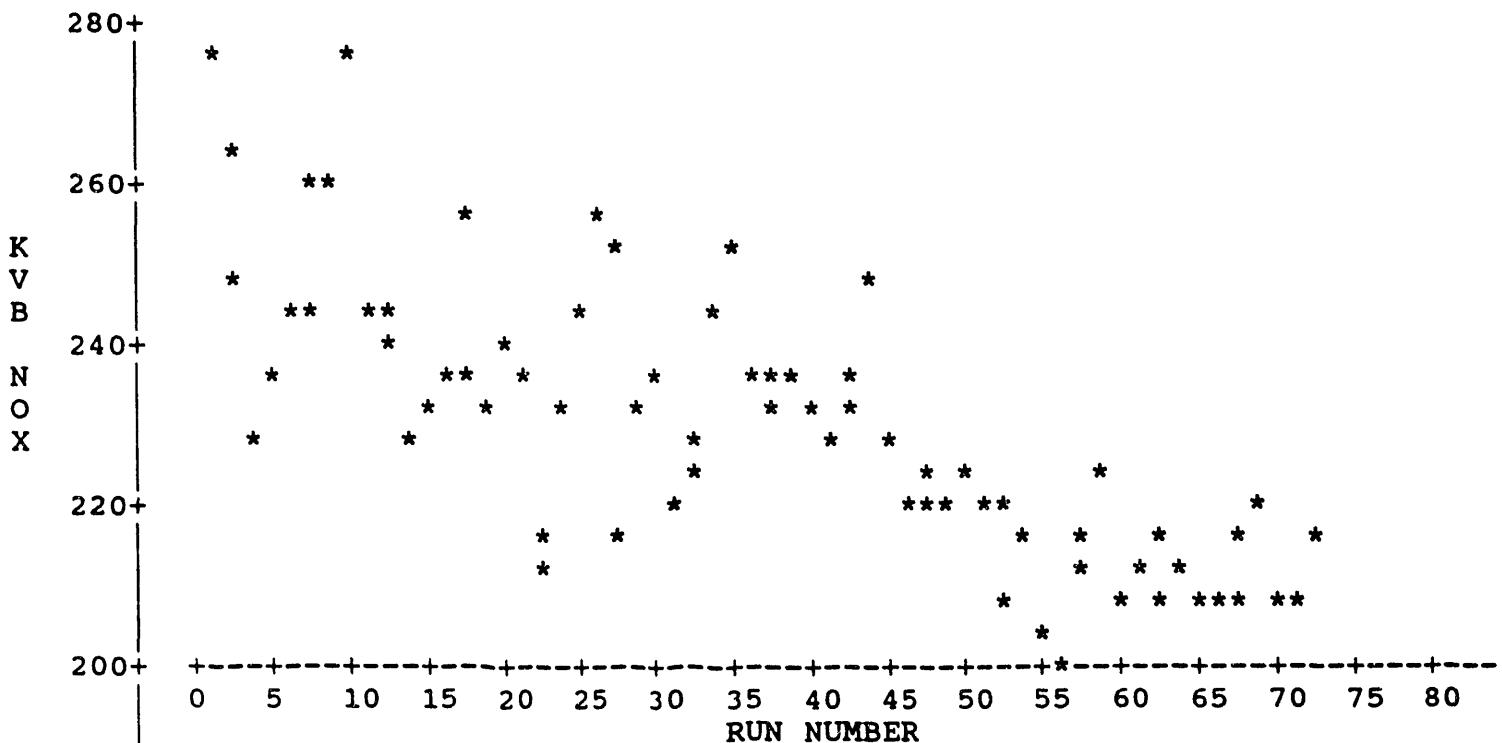
| # VARIABLE    | UNITS | T E | REF. | 2S-SPREAD | EFFECTS IN 2S-SPREAD |            |       |       |
|---------------|-------|-----|------|-----------|----------------------|------------|-------|-------|
|               |       |     |      |           | Linear               | Curvatures | 1     | 2.    |
| DEGREE:       |       |     |      |           |                      |            |       |       |
| 12 OPACITY    | PCT   | 5 H | 21.1 | 8.1       | 1.11                 | -7.15      | 2.05  | -0.56 |
| 2 AIR EAST    | MPPH  | 1 H | 2.11 | 0.18      | 0.71                 | -1.34      | -0.66 | 0.01  |
| 3 AIR WEST    | MPPH  | 1 H | 1.48 | 0.11      | -0.57                | 3.41       | -0.04 | 0.09  |
| 4 OFA W FRONT | KPPH  | 1 H | 108. | 136.      | -0.19                | 0.27       | 0.00  | -0.01 |
| 5 OFA E FRONT | KPPH  | 1 H | 162. | 160.      | -0.59                | 0.18       | 0.14  | 0.22  |
| 6 OFA W REAR  | KPPH  | 1 H | 142. | 177.      | -0.09                | 1.91       | -0.12 | -0.19 |
| 7 OFA E REAR  | KPPH  | 1 H | 156. | 144.      | -0.13                | -0.05      | 1.08  | -0.03 |

Standard Distance of REFERENCE 1.6 Set at Default: LOCAL CENTER

| # VARIABLE    | REFERENCE | 2S-SPREAD | CURVATURES |       |      |
|---------------|-----------|-----------|------------|-------|------|
|               |           |           | 2.         | 2.    | 2.   |
| DEGREE:       |           |           |            |       |      |
| 12 OPACITY    | 21.1      | 8.1       | 0.41       | -0.28 | 0.06 |
| 2 AIR EAST    | 2.11      | 0.18      | -0.02      | 0.02  | 0.02 |
| 3 AIR WEST    | 1.48      | 0.11      | -0.04      | -0.04 | 0.01 |
| 4 OFA W FRONT | 108.      | 136.      | 0.29       | 0.00  | 0.01 |
| 5 OFA E FRONT | 162.      | 160.      | 0.01       | 0.13  | 0.00 |
| 6 OFA W REAR  | 142.      | 177.      | -0.01      | 0.09  | 0.00 |
| 7 OFA E REAR  | 156.      | 144.      | -0.03      | 0.00  | 0.02 |

| RUN # | ACTUAL<br>OPACITY | MODEL<br>OPACITY | ERROR |   |   |
|-------|-------------------|------------------|-------|---|---|
|       |                   |                  |       | 1 | 2 |
| 72.00 | 14.0              | 13.5             | 0.5   |   |   |
| 71.00 | 16.0              | 14.7             | 1.3   |   |   |
| 70.00 | 20.0              | 18.6             | 1.4   |   |   |
| 69.00 | 13.0              | 12.4             | 0.6   |   |   |
| 68.00 | 18.0              | 15.7             | 2.3   |   |   |
| 67.00 | 16.0              | 19.0             | -3.0  |   |   |
| 66.00 | 22.0              | 20.1             | 1.9   |   |   |
| 65.00 | 15.0              | 17.1             | -2.1  |   |   |
| 64.00 | 15.0              | 18.5             | -3.5  |   |   |
| 63.00 | 17.0              | 20.8             | -3.8  |   |   |
| 62.00 | 22.0              | 17.5             | 4.5   |   |   |
| 61.00 | 14.0              | 16.5             | -2.5  |   |   |
| 60.00 | 21.0              | 19.9             | 1.1   |   |   |
| 59.00 | 13.0              | 19.8             | -6.8  |   |   |
| 58.00 | 32.0              | 22.3             | 9.7   |   |   |

|       |      |      |      |
|-------|------|------|------|
| 57.00 | 19.0 | 17.6 | 1.4  |
| 56.00 | 20.0 | 18.8 | 1.2  |
| 55.00 | 21.0 | 19.6 | 1.4  |
| 54.00 | 15.0 | 19.2 | -4.2 |
| 53.00 | 15.0 | 19.4 | -4.4 |
| 52.00 | 17.0 | 17.5 | -0.5 |
| 51.00 | 14.0 | 16.8 | -2.8 |
| 50.00 | 16.0 | 16.0 | 0.0  |
| 49.00 | 17.0 | 16.4 | 0.6  |
| 48.00 | 18.0 | 18.5 | -0.5 |
| 47.00 | 16.0 | 15.6 | 0.4  |
| 46.00 | 19.0 | 20.0 | -1.0 |
| 45.00 | 16.0 | 18.8 | -2.8 |
| 44.00 | 15.0 | 10.9 | 4.1  |
| 43.00 | 21.0 | 22.3 | -1.3 |
| 42.00 | 21.3 | 21.9 | -0.6 |
| 41.00 | 21.9 | 21.6 | 0.2  |
| 40.00 | 19.2 | 20.5 | -1.4 |
| 39.00 | 19.2 | 20.6 | -1.4 |
| 38.00 | 26.4 | 22.6 | 3.8  |
| 37.00 | 20.3 | 21.9 | -1.7 |
| 36.00 | 27.2 | 20.9 | 6.3  |
| 35.00 | 25.8 | 21.9 | 3.9  |
| 34.00 | 22.8 | 21.4 | 1.4  |
| 33.00 | 22.6 | 20.9 | 1.7  |
| 32.00 | 17.3 | 20.0 | -2.7 |
| 31.00 | 28.2 | 24.1 | 4.2  |
| 30.00 | 22.5 | 18.8 | 3.6  |
| 29.00 | 24.7 | 20.5 | 4.2  |
| 28.00 | 23.6 | 25.6 | -2.0 |
| 27.00 | 22.1 | 21.3 | 0.9  |
| 26.00 | 24.0 | 19.5 | 4.5  |
| 25.00 | 21.5 | 19.7 | 1.8  |
| 24.00 | 23.2 | 19.7 | 3.4  |
| 23.00 | 18.2 | 19.3 | -1.1 |
| 22.00 | 22.6 | 24.2 | -1.7 |
| 21.00 | 18.0 | 19.4 | -1.5 |
| 20.00 | 20.8 | 19.9 | 0.9  |
| 19.00 | 20.3 | 19.5 | 0.8  |
| 18.00 | 21.3 | 17.2 | 4.1  |
| 17.00 | 18.1 | 20.3 | -2.2 |
| 16.00 | 21.0 | 20.3 | 0.7  |
| 15.00 | 16.7 | 17.6 | -0.8 |
| 14.00 | 15.8 | 19.9 | -4.1 |
| 13.00 | 14.7 | 19.1 | -4.4 |
| 12.00 | 17.3 | 16.4 | 0.8  |
| 11.00 | 18.2 | 19.0 | -0.8 |
| 10.00 | 21.6 | 25.2 | -3.6 |
| 9.00  | 25.9 | 24.3 | 1.7  |
| 8.00  | 22.8 | 23.5 | -0.7 |
| 7.00  | 20.7 | 20.4 | 0.3  |
| 6.00  | 17.9 | 20.8 | -3.0 |
| 5.00  | 14.5 | 18.5 | -4.0 |
| 4.00  | 18.4 | 19.2 | -0.7 |
| 3.00  | 14.1 | 17.8 | -3.7 |
| 2.00  | 16.2 | 20.0 | -3.8 |
| 1.00  | 28.7 | 25.6 | 3.1  |


PLOT REPORT

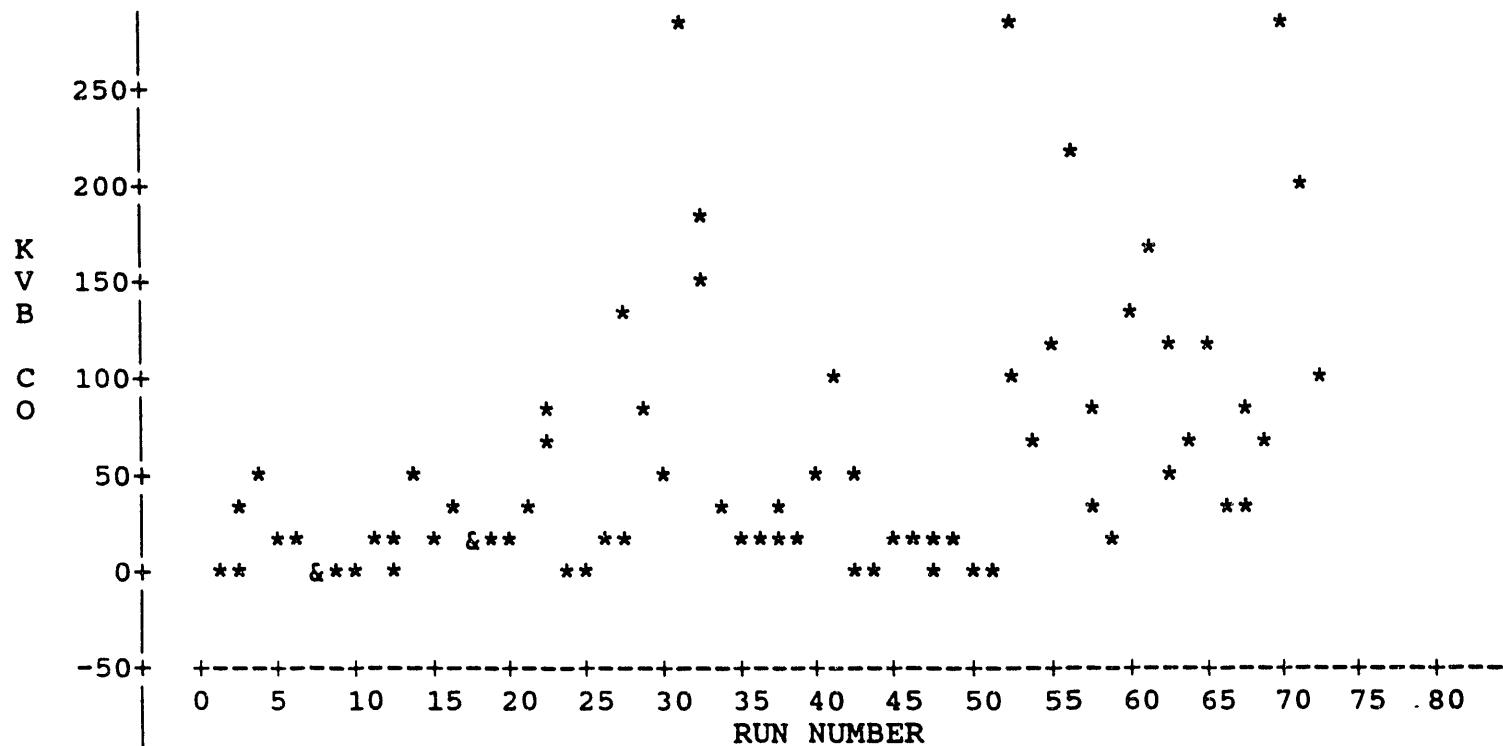
PROBLEM: PLANT HAMMOND - EXPERIMENT #2.

ULTRAMAX 4.1 (R): Copyright 1982-90, Ultramax Corp. All rights reserved.  
19:06 DEC, 04 OCT 1992

VERTICAL VARIABLE(S): 10 KVB NOX

HORIZONTAL VARIABLE: 0 RUN NUMBER



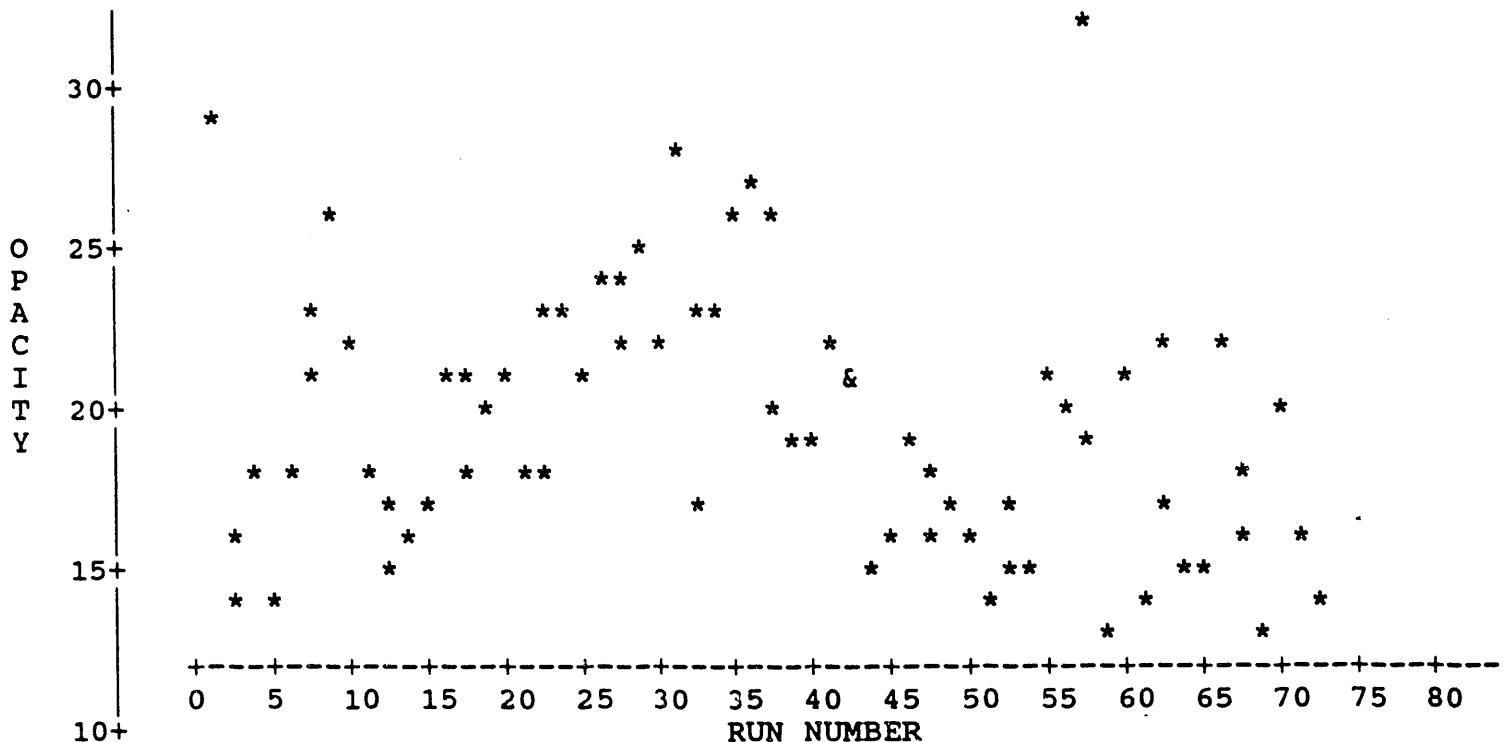

PLOT REPORT

-----  
PROBLEM: PLANT HAMMOND - EXPERIMENT #2.

ULTRAMAX 4.1 (R): Copyright 1982-90, Ultramax Corp. All rights reserved.  
19:07 DEC, 04 OCT 1992  
=====

VERTICAL VARIABLE(S): 11 KVB CO

HORIZONTAL VARIABLE: 0 RUN NUMBER




PLOT REPORT

-----  
PROBLEM: PLANT HAMMOND - EXPERIMENT #2.  
ULTRAMAX 4.1 (R): Copyright 1982-90, Ultramax Corp. All rights reserved.  
19:09 DEC, 04 OCT 1992  
=====

VERTICAL VARIABLE(S): 12 OPACITY

HORIZONTAL VARIABLE: 0 RUN NUMBER



END DATE

5-11-93