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Abstract

A dispersion relation is derived for resistive modes of arbitrary parity in a tokamak

plasma. At low mode amplitude, tearing and twisting modes which have nonideal MHD

behavior at only one rational surface at a time in the plasma are decoupled via sheared

rotation and diamagnetic flows. At higher amplitude, more unstable 'compound' modes

develop which have nonideal behavior simultaneously at many surfaces. Such modes

possess tearing parity layers at some of the nonideal surfaces, and twisting parity

layers at others, but mixed parity layers are generally disallowed. At low mode number,

'compound' modes are likely to have tearing parity layers at all of the nonideal surfaces

in a very low-j3 plasma, but twisting parity layers become more probable as the plasma

is increased. At high mode number, unstable twisting modes which exceed a critical

amplitude drive conventional magnetic island chains on alternate rational surfaces, to

form an interlocking structure in which the O-points and X-points of neighboring chains

line up.
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I Introduction

The study of resistive instabilities in tokamak plasmas is important because long wavelength

resistive modes are thought to be responsible for current terminating disruptions, l which are

of particular concern in the ongoing International Tokamak Experimental Reactor (ITER)

Engineering Design Activity, 2 whereas short wavelength resistive modes may _ve rise to

stochastic magnetic field lines and, hence, anomalous transport of energy and momentum, a

In a recent paper, Fitzpatrick, Hastie, Martin, and Roach 4 (henceforth referred to as

FHMR) investigated the stability of coupled long wavelength resistive modes in a tokamak

plasma. It was found that differential rotation of rational surfac.es in a high temperature

device effectively decouples low amplitude modes, so that they only reconnect magnetic flux

at orm surface in the plasma, and behave ideally at the remaining surfaces. However, above

a threshokl mode amplitude, the rational surfaces start to 'lock' together, permitting modes

to develop which simultaneously reconnect flux at more than one surface. Such modes are

always more unstable than the uncoupled modes.

The analysis of FHMR is restricted to the study of tearing parity modes, for which the

perturbed normal magnetic field is even across resonant layers. In principle, however, there

is no reason why modes of the opposite parity _ so-called twisting modes _ should not also

be present. The stability of twisting parity modes is usually studied using the well-known

'ballooning transformation. '_ Unfortunately, the resulting analysis, which takes place in an

abstract 'ballooning space,' is only valid at very short wavelengths and is also difficult to

reconcile with the conventional analysis of coupled tearing modes, which takes place in real

space. Recently, however, Connor, Hastie, and Taylor 6 (henceforth referred to as CHT) have

shown how ballooning analysis for low-/3 resistive modes can be performed in real space, and

have developed a formalism which is valid at arbitrary wavelength.



The aim of this paper is to combine the analyses of FHMR and CHT aid thereby inves-

tigate the stability of resistive modes of arbitrary parity in a differentially rotating tokamak

plasma. It is of particular interest to ascertain under what circumstances the conventional

approach of neglecting twisting parity modes at long wavelengths/and tearing parity modes

at short wavelen_hs, 3 is valid.

II The Dispersion Relation for Coupled Tearing and

Twisting Modes

A. Introduction

The analysis of resistive instabilities in a high temperature tokamak is generally facilitated

by dividing the plasma into two regions, s In the 'outer' region, which comprises most of the

plasma, a general instability is governed by the equations of ideal magnetohydrodynamics

(MHD), which are equivalent to the requirement of force balance in an incompressible, per-

fectly conducting fluid. 9 The 'inner' region is localized around so-called rational flux surfaces,

where the helical pitch of equilibrium magnetic field lines resonates with that of the insta-

bility. The ideal-MHD equations are, in fact, singular at the rational surfaces. The physical

solution is obtained by asymptotically matching the outer solution across a set of thin layers

centered on the rational surfaces. In these layers nonideal effects such as plasma resistivity,

inertia, viscosity, and compressibility are important.

In the immediate vicinity of a nonideal layer the instability is conveniently described

in terms of the resonant plasma displacement ¢(x) and perturbed poloidal magnetic flux

_P(x), where x is the radial distance from the rational surface (see Appendix B). Most layer

equations me parity conserving; i.e. they are invariant under tile transformation x -_ -x,

¢ -_ +¢, _p --, _p. This implies that the twisting parity mode [¢(-x) = ¢(x), _b(-x) =

-_p(x)] completely decouples from the tearing parity mode [¢(-x) = -¢(x), _p(-x) = _p(x)]

inside the layer. However, the ideal-MHD equations in the outer region are not parity
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conserving because of radial gradients in the equilibrium plasma current and pressure, as

well as the underlying toroidal geometry. This leads to the coupling of tearing and twisting

modes in the outer region. Moreover, toroidicity and flux surface shaping lead to the coupling

of different poloidal harmonics in the outer region. Thus, asymptotic matching between the

inner and outer regions is a complicated procedure which involves the simultaneous matching

of many poloidal harmonics in the outer region to tearing and twisting parity layer solutions

at the various rational surfaces in the plasma.

The layer equations are most easily solved in Fourier transform space, m Let ¢(k) be the

Fourier transform of the resonant plasma displacement ¢(x) for a particular layer. The parity

conserving properties of the layer allow ¢(k) to be split into independent even (twisting) and

odd (tearing) parity components:

1 i¢(k) = _+( kl)- 5¢-(Ikl)sgn(k). (1)

The most general small-k asymptotic behavior of the transformed displacement is written °

_ ¢+(,k,)'_ _-[1 A_(w),k,_,_l+,kl__,+. ..] ,

¢-(Ikl) _ _+ _x+(_)lkl_-a + Ikl-_ +... (2)

Here, L, represents the effect of average field-line curvature in the vicinity of the layer; it

1 11
is related to the well-known Mercier stability criterion _ - _, > 0. The parameter A+(w)

is termed the stability index for tearing parity modes, and is entirely determined by the

solution of the tearing parity 1_ _r equations. In general, it is a function of the mode rotation

frequency w. Likewise, A-(_) is the stability index for twisting parity modes, determined

by the solution of the twisting parity layer equations.

Equations (2) can be inverted to give the asymptotic behavior of the layer solution as it

merges into the outer region:

¢(x) = ¢+(Ixl) + ¢-(Ixl) sgn(x) , (3)
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where

¢+(Ixl)-_- -- Izl_-1+ _ -- A-(_)Ixl-_+... +C,

¢-(Ixl) -_*+ Izl_-1+ _ A+(_)lxl-_ +... , (4)

for Ivl << 1. In the above, _P+ is termed the 'tearing amplitude' and _- the 'twisting

amplitude.' The parameter C is an arbitrary constant. In the outer region ¢ = x¢, so

¢(x) =¢+(Ixl)+¢-(Izl)sgn(z), (5)

where

¢+(Izl)_-_+ Izl_+_ (_)lzl +'" ,

¢-(Ixl) -__ I_1_+ _ A-(_)Izl'-_ +... + c Ixl. (6)

In a low-,3, large aspect-ratio tokamak the Mercier index t_ is O((2), where _ << 1 is the

ratio of the minor and major radii of the plasma. In the limit y --, 0, Eqs. (4) and (6) yield

[ 1 A-(w)In Ix] +'" "] + C' (7a)¢+(Izl)_-_- _(Ixt)- 7

¢-(,x,) _+[_ 1 ]_- +_A +(_)+... , (Tb)

and

¢+(Izl)-_¢+ 1+ 5_+(_)lxl+... , (8a)

¢-(Ixl) -_ *- [_! zx-(_)lxlIn Ixl +" "] + C' Ixl. (8b)
L ?r J

Thus, in the zero-curvature limit the tearing stability index A+(w) corresponds to the jump

in logarithmic derivative of ¢(x) across the layer, s The twisting parity stability index can

be written 6

7r_ x coeff. In Ixl
A-(w) = - , (9)

coeff. 5(Ixl)
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where the coefficients refer to the expansion of ¢(x) in the vicinity of the layer. When

added to the original plasma equilibrium, the tearing parity mode reconnects magnetic flux

at the rational surface to produce a chain of magnetic islands. The X-points form where the

odd parity displacement in (7b) is directed into the layer, and the O-points form where the

displacement is directed out of the layer. The tearing mlaplitude qJ+ is sometimes termed the

'reconnected flux' at the rational surface. Equations (7a) and (8b) imply that the twisting

parity mode is essentially interchange-like; i.e. it is strongly localized inside the layer. The

twisting amplitude _P- is a measure of the localized even parity plasma displacement at the

rational surface.
J

l B. The outer solution
The physics of the outer region is discussed in detail in Appendix A. Suppose that there are

N rational surfaces in the plasma resonant with toroidal mode number n. Let rl < r2 <

• ''rN be the minor radii of these surfaces, and ml, m2,"'mN the resonant poloidal mode

numbers. The most general dispersion relation for coupled tearing and twisting modes takes

the form: T'12'I3

{A+(_)_ E +} @+ _ H_- = O, (lOa)

{ A-(a;)- E-} @- - Ht@+ =0, (10b)

where E+ is an N x N real symmetric matrix, H is an N x N real matrix and Ht is its

transpose, A+(w) is the N x N complex diagonal matrix of the A_=(w) values, and @* is

the 1 x N complex ved_torof the _: values. Here, A+(u;) is the tearing parity stability index

for the layer at rational surface j, and A_ (a;) is the corresponding twisting parity stability

index. Also, _P] is the tearing amplitude at surface j, and _" the corresponding twisting

amplitude.

The E+ Matrix determines the intrinsic stability and mutual interaction of tearing parity
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modes in the plasma. In general, it can only be evaluated by solving the full coupled

ideal-MHD equations in the outer region. This can be achieved for a large aspect-ratio,

low-_3,weakly shaped tokamak equilibrium using the recently developed T7 code. 4 The basic

T7 ordering assumptions are that the Shafranov shift and departure from circularity of

flux surfaces are both O(_) with respect to the plasma minor radius. This implies that

/3 =, jpo/B2o ,-_O(¢2), where po is the central plasma pressure and B0 the on-axis vacuum

toroidalfield strength.

C :1sider a plasma with a monotonic safety factor profile containing no rational surfaces

resonant with poloidal mode number m = 1. (The restriction to m > 1 modes is necessary

because the m = 1 mode generally requires special treatment in toka_ak plasmas. TM) In such

a plasma the diagonal elements of the E+ Matrix take the form

E+= +

where A° is the standard cylindrical tearing stability index for the rnj/n mode (normalized

with respect to rj). The off-diagonal elements of the E+ Matrix are (.9(Q. Coupling of tearing

parity modes with poloidal mode numbers differing by unity is effected by the Shafranov shift

of fltLXsurfaces, which is driven by toroidicity and the plasma pressure. Coupling of modes

with poloidal mode numbers differing by two or three is effected by flux-surface ellipticity or

triangularity, respectively.

The E- Matrix determines the intrinsic stability and mutual interaction of twisting parity

modes in the plasma. In Appendix A it is demonstrated that the ordering v ,_ O(_ 2) (which

is consistent with the T7 ordering scheme) can be exploited to greatly simplify the evaluation

of this matrix. This technique, first described in CHT, _ allows the elements of the matrix to

be calculated using a combination of local equilibrium parameters evaluated at the rational

surfaces and cylindrical basis functions. For a plasma with a monotonic safety factor profile

the E- Matrix is diagonal, indicating that there is no direct coupling of twisting modes
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possessing different poloidal mode numbers. The jth diagonal element can be written

= , (12)

where

( 2R°#°p'q2 ) (13)

is a measure of the local pressure gradient at rational surface j. Here, Ro is the major

radius of the plasma, r the minor radius of flux surfaces, p(r) the equilibrium pressure

profile, q(r) the safety factor profile, and ' denotes d/dr (see Sec. A.I). Note that a1 ,-_O(_)

in the T7 ordering scheme. In Eq. (12), ej is an O(1) parameter which can be evaluated

using my :h 1/n cylindrical basis functions (see Sec. A.VI). In the cylindrical limit, _ ---,0, the

diagonal elements of the E- Matrix asymptote to zero. This indicates that in the outer region

twisting parity modes are intrinsically toroidaJ in nature. 6 In fact, unit twisting amplitude

at rational surface j drives (9(e) of the toroidally coupled sidebands (with poloidal mode

numbers m_ + 1) in the outer region, but only O(_2) of the resonant harmonic (with poloidal
J

mode number m3) (see Sec. A.VI).

The H Matrix determines the mutual interaction of tearing and twisting parity modes in

the plasma. The ordering u _ O(e 2) can again be exploited to simplify the evaluation of this

matrix (see Appendix A). For a plasma with a monotonic safety factor profile the H Matrix

is tridiagonal, indicating that tearing modes can couple to twisting modes with the same

poloidal mode number and also with mode numbers differing by unity, and trice versa. The

jth diagonal element is written

Hi j= _r_cj I-O(e 2), (14)
2 sj

where

_J = -qr _r _r rj



is a measure of the local equilibrium current gradient at rational surface j, and 8j -- (rq_/q)rj

is the local magnetic shear. The element of the H Matrix which couples the tearing mode

resonant at rational surface j to the twisting mode resonant at surface k takes the form

I-[jk = hjk mjak , (16)

provided mk - m1 + 1. The (9(1) parameter h3k can be evaluated using my/n cylindrical

basis functions (see Sec. A.V).

C. The inner solution

The physics of the inner region is discussed in detail in Appendix B. The basic aim of this

study is to derive tile simplest possible expressions for the tearing and twisting parity layer

dispersion relations which retain certain fundamental pieces of physics. For instance, plasma

perpendicular viscosity is considered to play a very significant role in resonant layers, so

much of Appendix B is devoted to a systematic study of the effect of viscosity on single-fluid

layer physics (see Sec. B.I). Plasma compressibility is particularly important because it dif-

ferentiates between tearing and twisting parity layers and is, of course, a vital element in thc

physics of twisting parity interchange modes (see Sec. B.II). Plasma differential rotation and

multi-fluid effects are even more important because they cause twisting and tearing modes

to resonate at different frequencies, thereby profoundly affecting their mutual interaction 15

(see Sec. B.III). Many other effects, such as field-line curvature, 16 semi-collisionality, 1_and

trapped particles, TMwhich are not considered to play a vital role in the mutual interactions

of tearing and twisting parity modes, are neglected for the sake of clarity.

According to Appendix B, the tearing parity layer dispersion relation at rational surface

j takes the form

a; = - 7)



and the associated twisting parity dispersion relation is well approximated by

Aj'(u;) = -i (u; - wj-)r3 + A_ , (18)

where
I t13s/6\

[rH rn ) , (1.9): 2.1o4k .,
and

As : 2.104_]/2 / _7_:i__/3_ ' (20)
\ rH rV / rj

In the above, rH(r) = (Ro/Bo)?l_P(r)/ns(r) is the hydromagnetic timescale, rn(r) =

por2/r/tl(r) the resistive timescale, rv(r) = r2p(r)/#l(r) the viscous timescale, and r3 the

reconnection timescale at surface j. Here, p(r) is the plasma mass density, r]ll(r) the parallel

resistivity, #.L(r) the perpendicular viscosity, and s(r) = rq'/q the magnetic shear. The pa-

rameter/3j = %#op(rj)/B2o is a measure of the stabilizing effect of plasma compressibility at

surface j, where % is the standard ratio of specific heats. In Eqs. (17) and (18), _ is the mode

rotation frequency [all layer quantities are assumed to vary like exp(-iwt)], w+ is termed

the natural frequency for tearing parity modes at surface j, and u;_" is the corresponding

natural frequency for twisting parity modes. Both natural frequencies are determined by

local equilibrium plasma flows. Broadly speaking, w+ is the sum of the E A B and electron

diamagnetic frequencies at surface j, while w_- is the E A B frequency. The above dispersion

relations are valid provided

,,, fff )[aJ- _:[ << wj - / 27g__2/a , (21a)
\ TH TV rj

I',-'- _'f:l<<,-,.'j- 2/a_/a ,
TH TR r;

/3j<< <<-. (21c)
,j /3_
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In Eq. (18) A_. is the critical twisting parity stability index required to overcome the

stabilizing effect of plasma compressibility in the jth layer. It is convenient to regard -A_

as the cylindrical part of the outer matrix element E_, so that

A_ (a;) ---,A}"(w) - A_ -- -i (a; - w_-)v1 , (22a)

E_(w) ---,E_(w) - A_ = -A_ + ej mj(aj) _ (22b)

[see Eq. (12)]. The twisting parity dispersion relation (10b) is invariant under the above

transformation. According to this reformulation of the dispersion relation, the layer response

of twisting modes [i.e. Eq. (22a)] is analogous to that of tearing modes [i.e. Eq. (17)], apart

from the difference in natural frequencies. Note also the similarity of Eqs. (11) and (22b).

Clearly, in the cylindrical limit twisting modes act very much like stable tearing modes. The

cylindrical part of the twisting parity stability index (22b) is determined in the inner, rather

than the outer, region because in a cylinder twisting modes are entirely localized within the

various resonant layers.

D. Electromagnetic and viscous torques

The nonlinear toroidal electromagnetic torque acting at rational surface j is given by

_T_EM(rj)- 2mr2R° x [Im(n_)]_f] 2+ Im(A_)l_;[ 2] (23)#o

(see Sec. A.IV). Note that according to Eqs. (10)

N 2mr2 _ N

TeEM = E 6TcEM(ri) = X E [Ei+ (_+)*_+ + E_ (_;)*_'] = 0, (24)
j=l #0 j,k=l

since E + and E- are symmetric, so there is zero net electromagnetic torque acting on the

plasma.

The electromagnetic torques which develop in the plasma modify the bulk toroidal "

rotation. 4'_9a° (It is assumed that any modifications to the bulk poloidal rotation are pre-

vented by strong poloidal flow damping.) Such modifications are opposed by the action of
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perpendicular plasma viscosity. For a steady-state plasma, the change in the toroidal angular

rotation velocity fie(r) satisfies 4'm2°

d (r#.t) d_]
dr dr j=0.

(25)

The toroidal rotation of the plasma is assumed to be 'clamped' at the edge (r = a), 19'21

so that Fie(a) -- 0. The viscous restoring torque which develops in the vicinity of rational

surface j is written

da*] (2616Tcvs(rj) = 47r2Ro × (r#zRg)--_-_-rjrj - .

In a steady-state plasma the viscous and electromagnetic torques must balance at every

rational surface, giving

5TeEM(r1) + 5Tcvs(r_) = 0 (27)

for j = 1 to N. Finally, the changes induced in the plasma toroidal angular velocity profile

Doppler shift the natural frequencies of the various resonant layers, so that

--. - (28)

where w]: now denotes the natural frequency in the unperturbed plasma.

E. Summary

Sections [I.A to II.D describe the basic elements of the stability analysis for resistive modes

of arbitrary parity in a tokamak plasma possessing sheared rotation and diamagnetic flows.

In the following sections, these elements are employed to investigate the stability of both

long wavelength and short wavelength modes.
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III Stability of a Plasma Containing a Single Rational
Surface

A. Introduction

Consider the stability of low-n modes for which there are only a comparatively small number

of rational surfaces in the plasma. The simplest possible situation is where there is only a

single rational surface, radius rl, resonant with poloidal mode number ml. In this case the

dispersion relation (10) reduces to

ffJ_" H:I -i (w - 0J+) v: - E +
-- (29)

9+ -i (_ - _i-) rl - E5 HIL

with the aid of Eqs. (17) and (22a). Here, 9+ is the tearing amplitude at the rational

surface, 9_" the twisting amplitude, rl the reconnection timescale, w+ the natural frequency

of tearing parity modes, and 0Ji- the natural frequency of twisting parity modes. Also,

E,+,=Z_0+ O(__) ,

E5 = -A_ + O(__) ,

Hi1 = _5 __Zl + (D(_) (30)
281

[see Eqs. (11), (14), (22b)], where A ° is the ml/n cylindrical tearing stability index, A_ > 0

is a measure of the ideal-MHD free energy needed to destabilize the resistive interchange

mode, g_ is proportional to the equilibrium current gradient at the rational surface, and sl

is the local magnetic shear.

B. Effect of diamagnetic flows

The difference between the natural frequencies of _,earing and twisting parity modes at the

rational surface is of order the local electron diamagnetic frequency, implying that [_+ -

13



_i-I_'l >> 1 in a typical high temperature to'karnak plasma. 15,19In this limit, the dispersion

relation (29) yields a predominaz_tly tearing parity mode (i.e. I_]-[ << [_+[) with

(H,I) u E +
+i--, (31)

and a predominantly twisting parity mode (i.e. [_+[ << l_']) with

(HI1)2 +i Ei-1. (32)--- + _

The tearing parity modes rotates close to its natural frequency w +, is unstable if E + > 0,

stable if E + < 0, and evolves on the reconnection timescale _'l. The twisting parity mode

rotates close to its natural frequency wi-, and is always stable, since Ei] < 0. Note that

the current gradient coupling parameter Hi1 gives rise to a small frequency shift such as to

bring the rotation frequencies of the two modes closer together.

C. Effect of no diamagnetic flows

If the rather unphysical limit Ix + -w_']ri << 1 is adopted the dispersion relation (29) has

two roots with

7v, = _ _ + (Hi1) 2 ,

where w = w_ + i-y. Thus, if there is no substantial difference between the two natural

frequencies, the tearing and twisting parity modes merge to form two hybrid modes. The

'tearing/twisting' hybrid [+ sign in (33)] has the larger tearing component, and is more

unstable than either of the pure parity modes. The 'twisting/tearing' hybrid [- sign in (33)]

has the smaller tearing component, and is more stable than either of the pure parity modes.
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D. Conclusions

The difference in the natural frequencies of tearing and twisting parity modes in a conven-

tionaJ tokamak plasma leads to the effective decoupling of the two parities, giving rise to

a pure tearing parity mode whose stability is determined by the standard tearing stability

index (i.e. E+), and a pure twisting parity mode which is always stable at low-n. If there

is no difference in natural frequencies, the tearing and twisting parity modes merge to form

two hybrid modes with more complicated behavior.

I

IV Stability of a Plasma Containing Two Rational
Surfaces

A. Linear stability

Consider a plasma containing two rational surfaces, radii rl and r2 (rl < r2), resonant with

poloidal mode numbers m_ and ml + 1, respectively. In this case, the dispersion relation

(10) reduces to

-i (w- _a+)rl _+ = E + _+ + E + 4 + + H t, _- + g_2 _" ,

-i (a; - as+)v2 _+ = E + qJ+ + E + 4 + + H2_ _" + g_l _i" ,

-i (w - w;)r2 _" = E_ _" + H_2 4 + + H,_ 4 +, (34)

with the aid of Eqs. (17) and (22a). In the physically relevant limit where the four frequencies

_ and w_ are well separated (i.e. ]w+ -w+[r, :>> 1, etc.), Eqs. (34) possess the following

four roots:

(n")2 (H'2)2 (E+)2 +i E+ (35a)
_ _t _ (_+_ _i-)¢_- (_t - _;)¢,¢_- (_+_ _1)¢,¢_ ¢--T'

15



(H_)2 (H2_)_- (E_)_ E_
.... +i_ (35b)
- _* - (_+- _)_'_ (.4 - _i-)_,_ (_* - ._,*)_,_-_ _ '

- (Hi1)2 (H21)2 +i E{] (35c)
-__ - (_ _ _7)_?- (_ _ _+)_ _--7-'

_ (g2_)_ (HI_)2 E_
_-w2 - (w_- + 2- +i--. (35d)

The eigenfunctions associated with these roots are

[$i-I, [$_]<<15+l, (36a)

I¢_1, I¢_1<<I¢+i, (365)

I¢_+l,I_'_1<<I¢?1, (36c)

1¢2+1,I¢_1<<I%-I, (36d)

respectively. Thus, diamagnetic flows and sheared rotation give rise to a splitting of the

two parities as well as a decoupling of the two rational surfaces, so that the four roots of

the dispersion relation correspond to a tearing mode which only has finite tearing amplitude

at surface 1 [Eqs. (35a), (36a)], a tearing mode which only has finite amplitude at surface

2 [Eqs. (35b), (36b)], a twisting mode which only has finite twisting amplitude at surface

1 [Eqs. (35c), (36c)], and a twisting mode which only has finite amplitude at surface 2

[Eqs.(35d),(36d)].

According to Eqs. (35) and (36), there is a pure tearing and a pure twisting parity

mode associated with each rational surface in a plasma possessing sheared rotation and

diamagnetic flows. The tearing mode associated with surface j (j = 1 or 2) only has finite

tearing amplitude at this surface, rotates at the appropriate natural frequency (w+), has its

stability determined by the jth diagonal element of the E+ Matrix (E+), and evolves on

the local reconnection timescale (rj). The twisting mode associated with surface j only has

16



finite twisting amplitude at this surface, rotates at the appropriate natural frequency (w_-),

has its stability determined by the jth diagonal element of the E- Matrix (E_), and also

evolves on the local reconnection timescale (rj). Note that twisting parity modes are always

stable at iow-n, because the diagonal elements of the E- Matrix are always negative.

B. Nonlinear stability

Suppose that the tearing mode associated with surface 1 is linearly unstable (i.e. E + > 0),

whereas that associated with surface 2 is stable (i.e. E + < 0). Let _+ be the nonlinearly

saturated 22 tearing amplitude at surface 1, and let w be its rotation frequency.

According to Eqs. (17), (22a), (23), and (34)

_--___0, (37_)

?£ ~ Ei_ (3rb)
V +--i(_-_+)_-2-E + '

__.j___ Hi2 (37c)
_+- -i (aJ - _i_-)'r2-.E22 '

2n_ (E_)_(_- _+)_
6T¢,EM(r2) _ X_o (_- _+)_ + (-E_)_

(gl2)2(w - w_-)'r2 12
+ (a.,- w_)2r_ + (-E_) z x [_+ , (37d)

(E+)2 (- E+) (H,2)2 (- E_)

Re(A+) __E + + (_ , ,+_2_.2 (w_ w_-)2r_ + (_E_)2 ,--"'2/ '2 + (-E2_) 2 + (37e)

provided I_+ -_i-lrx >>1 and @+- _-Ir2 >>1.

As described in Sec. II.D, the nonlinear electromagnetic torques which develop in the

plasma modify the bulk toroidal plasma rotation. Note that 6T_EM(rt) = --6T, EM(r2),

according to Eq. (24). The steady-state shift in the plasma toroidal angular rotation velocity

17



is written [see Eq. (25)]

f_¢(r) = f_¢(rl) r2 _dr _" dr (38)
r#±(r) r#l(r) rl <_r < r2

0 r2<r,

so the viscous restoring torques acting at the two rational surfaces take the form

_r, vs(r2)= -6r_vs(r_)= 47r2P_x a,(r_) _ r#a(r)

The changes induced in the toroidal velocity profile Doppler shift the mode rotation fre-

quency, which in the unperturbed plasma is equal to the natural frequency of tearing parity

modes at surface 1, giving

= w'+ - n_c(rl) (40)

[see (28)]. There is no Doppler shifting of frequencies at surface 2 since _¢(r2) = 0 [see

Eq. (38)]. Also, _o+ -coi- is unaffected by modifications to the plasma velocity because both

frequencies are Doppler shifted by the same amount, so if [w+ -co_']rl >> 1 (as is likely to

be the case in a high temperature tokamak plasma) then there is always negligible twisting

amplitude at surface 1 (see Sec. III).

Torque balance at the rational surfaces [see Eq. (27)] yields

1 y+(1-/) 1 y-f =/-/_, (41)
4 (b+)2 + (1 - f)2 4 (b-) 2 + f2

where

w- _- (42a)
/= _.+__:_-,

co+ - a;_" (42b)f_= _+- _i- '

b+ = -Eg , (42c)I_+- _i-I_
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v+= IE_*tf_A2 , (42d)

[H12 _+[2
y- = A2 , (42e)

Here, f is the normalized mode frequency with f = fl in the unperturbed plasma.

In the physically relevant asymptotic limit b:e << 1, Eq. (41) possesses bifurcated solu-

tions. Bifilrcations occur in the y+-y- plane when the curve of locus

y+ = 4(2f - f_)(1- f)2,

y- = 4(1 - 2f + fl)f 2 (43)

is crossed in the direction of increasing y+ and y-. This critical curve is plotted in Fig. 1 for

various values of the unperturbed (normalized) mode frequency fl. The solution can either

bifurcate to the tearing resonance at surface 2 (f = 1), or the associated twisting resonance

(f = 0). Prior to bifurcation,

Re (At)__ E+l , (44)

whereas after bifurcation to the tearing resonance,

___1, (4_)

¢2+_ E+ (45b)_t- (-E_) '

¢--T---o, (4_¢)
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(E+) 2

Re (At) _--E + + (_E+) , (45d)

and after bifurcation to the twisting resonance,

-_ _2 , (46a)

+
_P2

_+ "" O, (46b)

•._.____ Hi2 (46c)
_p+ - (_E_-2) ,

(H12)2 (46d)
Re (A +) "_ E + -t (-E_) '

Clearly, bifllrcation or 'locking' to the tearing resonance at surface 2 leads to the close

coincidence of the mode frequency, oa, and the natural frequency for tearing parity modes,

co+. After locking, substantial tearing amplitude is driven at surface 2 and the original mode

consequently becomes more unstable [i.e. A t increases -- see Eq. (45d)]. Likewise, locking to

the twisting resonance leads to the close coincidence of w and w_-, with substantial twisting

amplitude driven at surface 2 and an associated destabilization of the mode [see Eq. (46d)].

According to Fig. 1 and Eqs. (42), locking occurs to either the tearing or twisting res-

onance at surface 2 depending on the value of the unperturbed mode frequency (w+) and

the relative strengths of the coupling coefficients E + and Hi2. In fact, locking always occurs

to the twisting resonance for w + < co_', whereas locking always occurs to the tearing reso-

nance for co+ > w+. Here, it is assumed that w+ - w_ > 0 for the sake of definiteness. For

co+ > w+ > w_, locking to the twisting resonance takes place provided

E+[ w:-w+* (47)

and locking to the tearing resonance occurs when the converse is true. Of course, locking to

either resonance can only take place once the mode amplitude I_+l has exceeded a critical

value of order A [see Eqs. (42), (43), and Fig. 11.
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At small, but finite, b+ it is possible for either the tearing or the twisting resonance at

surface 2 to 'disappear' if the associated mode becomes too stable. A resonance effectively

ceases to exist once there is no associated zero in the normalized electromagnetic torque

[i.e. in the left-hand side of (41)]. This follows because at high mode amplitude (i.e. y+ >> 1

and y- >> l) the system can only 'lock' to a frequency which lies very close to a zero of

the normalized torque. It is easily demonstrated that the tearing resonance at surface 2

disappears when

]H12[_ 2b+c+ - E--_l_[1 + (b-) 2 > 1, (48)

whereas the twisting resonance disappears when

2b-
c-- H12[ l+(b+) _ > 1. (49)

Equations (37b), (37c), (42a), and (42c) yield

_+ E + b+

_---__ (-E +) -i (f - l) + b+ ' (50a)

9..j_._ H12 b- (505)
• +- (-E_) -if+b- '

so it can be seen by comparison with (455), (45c), (46b), and (46c) that the linear sup-

pression of driven tearing and twisting amplitude at surface 2, due to sheared rotation and

diamagnetic flows, only occurs when the parameters b+ and b- are much less than unity,

respectively.

C. Conclusions

The above analysis can be extended to deal with the case of three or more rational surfaces

in the plasma in a relatively straightforward manner. In the linear regime the conventional 4'7

neglect of twisting parity modes in the dispersion relation for low-n modes is justified, since

these modes are always stable. However, in the nonlinear regime twisting modes cannot be
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neglected in the dispersion relation, since unstable tearing modes can access additional free

energy by coupling to stable twisting modes.

V Stability of a Plasma Containing Many Rational
Surfaces

A. Introduction

Consider the stability of high-n modes for which there are many closely spaced rational

surfaces in the plasma. In the vicinity of rational surface j, radius rj, resonant with poloidal

mode number m3, the safety factor profile can be expanded

q(r) _- qj (1 + six +...) , (51)

where x = (r- rj)/rj, qj = q(rj), and s3 = s(rj). The minor radii and resonant poloidal

mode numbers of the neighboring surfaces are then given by

rj+k __r_ (l + m_.s_) , (52a)

m_+k _- mj + k. (52b)

B. The E + matrix at high-n

Consider the behavior of the ideal-MHD equations (A.6) in the high-n limit. Suppose that

mj>>l,

mj >>_j, (53)
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where nj is the current gradient parameter at surface j [see Eq. (15)]. Expansion in the

inverse aspect ratio, _, yields

¢_j (r) = -mj (54)

to lowest order, where the cylindrical tearing basis solution _cj (r) is defined in See. A.V.

The cylindrical tearing stability index for the mj/n mode takes the form 6

a° (55)

so at high-n the diagonal elements of the E+ Matrix reduce to

E+ -_ -2m_ [1 + O(e2)] (56)

[see Eq. (11)]. Clearly, high-n tearing modes are intrinsically very stable (i.e. E+ << -1).

Expansion of the ideal-MHD equations to first order in e gives the following expression

for the off-diagonal elements of the E+ Matrix: 23a4

[a T,_i +k r d¢_j r d¢_Cj+k
Jo -rnj mj dr mi + k dr

mj(mj + k) p.,j+k c c
- (m_ + k - nq)(mj - ha) -'_J Cmj ¢,_j+k

(mj + k) r d¢_
+ (ml + k- nq) M_'_+k--_" Cejmj dr +k

d c ]dr
m_ _¢..;+k r ¢.,+k ¢_j --. (57)(mj - nq) -.mj m i + k dr r

where the O(e) coupling coefficients L_+k(r), P._+k(r), M_+k(r) and N_+k(r) are evaluated

for a large aspect-ratio, low-/3, weakly shaped tokamak equilibrium in FHMR. 4 Consider such

an equilibrium in which the flux surfaces are specified by

R = Ro - r cosw - A(r) + E(r) cosw + T(r) cos2w + O((2a) ,
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a = rsinw + E(r) sin_ + T(r)sin2a2 + O(e2a) . (58)

Here, (R, ¢, Z) are standard cylindrical polar coordinates (with Z in the direction of the

toroidal symmetry axis), Ro is the plasma major radius, r is a radius-like flux-surface label,

02 is the poloidal angle about the magnetic axis (r = 0), A(r) is the Shafranov shift of flux

surfaces, E(r) is the flux-surface ellipticity, and T(r) is the flux-surface triangularity. The

outermost plasma flux surface lies at r = a, where a is the plasma minor radius. The ordering

assumptions are that e - a/Ro << 1, and A(a), E(a), T(a) ,_ O(ea). After considerable

algebra, Eqs. (52), (54), (57), and the expressions for the coupling coefficients contained in

FHMR, yield

E+ 2mj exp -1 sjA_.+ +_sj _ +_exp - I(sj)j j4-1 '_ Sj 8j _j

8--7- -- [1 -t- sj]E} + 3 Ej ,

E+jj+3 _" 2m3 exp(- s---7 -_)([2+sjlTj+8_) , (59)

where Aj = A(rj), Ej = E(rj), Tj = T(rj), and' denotes d/dr, with a_ given by Eq. (13).

In the above,

I(s) = (2 + s)[7 + In(2/s)] + s exp(2/S)El(2/s)- 1 , (60)

where 7 is Euler's constant and El(x) is a standard exponential integral function. 2s Clearly,

the diagonal elements of the E+ Matrix are O(m_), whereas the off-diagonal elements are

O(e mj). Note that E+j,k is negligible for k > 3.

C. The H matrix at high-n

The diagonal elements of the H Matrix can be written

71"Nj + O(e2mj ) , (61)
Hi3 =. 2 sj
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according to Eq. (A.40). The off-diagonal elements take the form

7r mjaJ (2 + sj) exp (1) (62)1ti _+1_- _ 2 sj - '

where use has been made of Eqs. (52), (54), and (A.48). Thus, the diagonal elements of

the H Matrix are O(i), whereas the off-diagonal elements are O(emj). Note that Hj 1_k is

negligible for k > 1.

D. The E- matrix at high-n

At high-n the cylindrical basis solutions cLi_l(r ) and Ca +i(r ), defined in Sec. A.VI, can

be built up out of a linear combination of r "_' and r-m,. It is easily demonstrated that

L __ /ka
Am,+ 1 -- -- rni_ l _' ?'rtj ,

1 + exp(-2/s/) (63)A_ _ AR
mj-1---- m,+l_ mj I--exp(-2/s_)'

where use has been made of Eqs. (52) and (A.53). Thus, according to Eqs. (22b) and (A.56)

the diagonal elements of the E- Matrix take the form

c 7r2rnja_ (2+sj)[1 (2+sj)exp( 2)] (64)E_--Aj+ 4 sj sj -s_ '

Clearly, high-n twisting modes can become intrinsically unstable (i.e. E_ > 0) provided

e2mj ... O(1). Note that E_'j+ k is negligible for k > 0.

E. The dispersion relation at high-n

The dispersion relation for coupled tearing and twisting modes at surface j is written [see

Eq. (10)]:

k

A_(w) _P; = _] (E]_ q'; 4- Ykj _P:) . (65)
k
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Let

_mj >> 1 ,

_2mj~ O(1), (66)

which is consistent with Eqs. (53) and also allows twisting modes to become intrinsically

unstable. It follows from Sees. V.B to V.D that

Eft+ _ O(m_), E+_k ,-.,O(c mj) ,

H# ,-_O(1) , HI 3_1 "" O(eml) ,

Eh _ O(1) (67)

for I < k _<3, with all other matrix elements negligible in the adopted ordering scheme.

Suppose that

• + _<O(e)_" • (68)

for all k [see Eqs. (87)]. The dispersion relation at surface j then reduces to

A+(w) _+ = E_+ _+ + Hj j+, _+, + Hj j_x _L, + O(_-) ,

nT(.;)_7 =E_'_7 + gj+,j'_h, + gj-,jV+-, +O(_V;) (69)

with the aid of Eqs. (66) and (67). Thus, at high-n the direct coupling between tearing modes

(i.e. the off-diagonal elements of the E+ Matrix) can be neglected with respect to the coupling

between tearing and twisting modes (i.e. the off-diagonal elements of the H Matrix). The

dominant coupling is that between tearing and twisting modes whose poloidal mode numbers

differ by unity. Accocding to Eqs. (23) and (69), the electromagnetic torque acting at surface

j is given by
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_o

+Hi.,__h,(_;)'+H__,___(_;)']. (70)

Equations (69) govern the behavior of tearing and twisting modes at a general rational

surface j. An analogous set of equations can be written for all of the neighboring rational

surfaces, giving rise to a net dispersion relation consisting of a very large number of cou-

pled equations. However, this dispersion relation can be greatly simplified by noting from

Eq. (52a) that at high-n the coupled rational surfaces are very closely spaced. Suppose that

the surfaces are sufficiently close together that there is very little variation in equilibrium

parameters from surface to surface. Then,

E_+ __ E+(r) = -2nq , (71a)

Hi '-' "_ -Hi '+' _- H'(r) = Tr nqa (2 + s)exp (-_) '2s (71b)

w2noa2(2+s)[ 1 (2+s)exp (_2)1 (71c)E]_ "_ Eo (r) = -At(r) + 4 s s

for rational surfaces in the vicinity of minor radius r, where use has been made of Eqs. (56),

(62), and (64). Here, q(r) is the safety factor, s(r) = rq'/q the magnetic shear, a(r) =

-(2Rol_op'q2/B2o) the pressure gradient parameter, and At(r) -- A_(rj --, r) [see Eq. (20)] a

measure of the stabilizing effect of plasma compressibility on twisting modes. Let

•_ =-_,_ =_,... =_o_(_),

and

67_EM(rj) = --6TcEM(rj+,) = _TcEM(r3+2)''" = To(r) , (73)
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with

I

= = (74)

then Eqs. (69) and (70) yield

{A+(w)- E+ } _+ = -2H1_i" , (75a)

{Ao(w)- Eo }_o = 2H,_+, (75b)

{A+(w)- E+} _+ = 2H,_o , (75c)

{A_(w)- Eo} @_"=-2H,_0 + (75d)

and

To = 2nzr2R° x 2H1 x Im IV + (_o)* + _+ (_i')*] • (76)_o

Thus, according to Eqs. (72), at high-n coupled twisting and tearing modes form a nonlocalized

periodic structure which repeats every fourth rational surface. According to (73), equal and

opposite electromagnetic torques act on alternate rational surfaces. These torques modify

the plasma toroidal velocity profile. Let

1

f_¢(rj) = -f_c(rj±l) = 12¢(rj+2) • • • = _ f_(r) , (77)

where 12¢(rk) is the change in the plasma toroidal angular velocity at surface k, then bal-

ancing viscous and electromagnetic torques in the plasma gives

4_r2Ro x #j. I:_ x 2nqs 12o= To , (78)

where tLj.(r) is the plasma perpendicular viscosity, and use has been made of Eqs. (25)-(27),

(52a), and (73).
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F. Linear stability at high-n

The analysis of the linear stability of Eqs. (75) in a plasma possessing sheared rotation and

diamagnetic flows yields decoupled tearing and twisting modes whose stability is determined

by E+ and Eo, respectively (see Sec. IV). The tearing modes are found to be very stable,

since E + << -1 at high-n [see Eq. (71a)], whereas the twisting modes become unstable for

n sufficiently large to ensure that Eo > 0 [see Eq. (71c)].

G. Nonlinear stability at high-n

Consider the nonlinear stability of linearly unstable twisting modes. The changes induced

in the toroidal velocity profile by the electromagnetic torques Doppler shift the natural fre-

quencies of twisting modes so that modes on alternate rational surfaces rotate differentially.

Thus, modes on 'even' surfaces (i.e. j, j _ 2, etc.) rotate at

7%

a; = a;-(r) - _ rio(r) , (79)

whereas those on 'odd' surfaces (i.e. j + 1, j =i=3, etc.) rotate at

n

= +  0(r) (80)

[see Eqs. (28) and (77)]. In the above, w-(r) =- w;(rj _ r) is the natural frequency of

twisting parity modes resonant close to minor radius r in the unperturbed plasma. The

modifications to the plasma toroidal velocity also Doppler shift the natural frequencies of

tearing modes, which become w+(r) - (n/2)f_o(r) at even surfaces and w+(r) + (n/2)fto(r)

at odd surfaces. Here, w +(r) = w+(ri _ r) is the natural frequency of tearing parity modes

resonant close to radius r in the unperturbed plasma.

According to Eq. (75a), the twisting amplitude at odd rational surfaces drives co-rotating

tearing amplitude at even surfaces, so that

_+ -2Ht

_"7 = -i(w- -_+ + nf_o)r + (-E +) ' (81)
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where use has been made of (17) and (80). In the above, r(r) - r3(rr _ r) is the recon-

nection timescale for rational surfaces located close to minor radius r. Likewise, according

to Eq. (75c), the twisting amplitude at even surfaces drives co-rotating tearing amplitude at

odd surfaces, with

• + 2HI

q/--'_= -i (02- - 02+ - nflo)V + (-E+) '" (82)

It follows from (76), (81), and (82) that

To = 2nTr2R° x 4(H1) 2 x
/-to

(_- - c_+- n_o)_"I%12 (_- - _++n_o)rI_'_12 ]
(_- -_+ - _o)2_2+ (-Eo+)2- (_- -_+ ¥_5_¥ (-_o+)2j ' (83)

Finally, the stability of twisting modes at even and odd surfaces is governed by

4(Yl)2(-E+) (84)
Re (Ao) : Eo + (02_ -02+ _ nflo)2-r2 + (-E+) 2 ,

and

4(H1)2(-E +)

Re (Ai") : Eo + (02_ _ W+ + rt_0)27. 2 + (_E+)2 , (85)

respectively [see Eqs. (75b) and (75d)].

Let

nfto
f(r) = 02- _ 02+ , (86a)

b(r) = 2nq
(w- - 02+)T ' (865)

2_o s3 (_) (_-- _+)2rA2(r) = _ x exp × #x/_ x (86c)
nTr2 q(2 + s) 2 (not) 2 '

y0,_(r) - ]_' ' (86d)
A 2

then according to Eqs. (81) and (82) the tearing amplitudes driven at the even and odd
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rational surfaces are given by

_i 2 s -i(l+f)+b '

9o 2 s -i(1-f)+b'

Note that the above equations are consistent with the ordering assumption (68). In addition,

Eqs. (84) and (85) yield

7r2 nqa2 (2 + s ) l + b2Re(A°)=-Ac+ 4 s +(l-f)2 s

7r2nqa2 (2 + s) l + b2Re(AT)=-AC+ 4 s +(l+f)2 s

where use has been made of (71). Finally, the torque balance equation (78) reduces to

i yo(l-/) i Yi(l+$)
= f, (89)

2 52+ (1 - f)2 2 52 + (1 + f)2

with the aid of Eq. (83).

According to Eqs. (87), twisting modes at the even and odd rational surfaces share the

stability index

Re (A°) _- Re (A_) -_ -A_ + 4 s l+b 2 s

in the linear regime (i.e. f = 0). This suggests that the twisting fluxes at both sets of

surfaces have the same initial amplitudes. Suppose that

_o -_ @i -_ _- , (91)

and

yo-_yl_-y- A2 • (92)

Now, the left-hand side of Eq. (89) represents the normalized electromagnetic torque, tEM(/),

acting at rational surfaces, whereas the right-hand side represents the viscous restoring
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torque, tvs(f). The roots of (89) are equivalent to the stationary states of an imaginary

particle located at coordinate f and moving in the potential

V(f) = _0/'(tvs - tEM) dr. (93)

Thus, stable stationary states are characterized by V_(f) = 0 and V"(f) < 0. Equations

(89), (92), and (_3) yield
i

V(f) = 5i f2 +sY In _/ba + (1 + f)2 + 5YIn y/b2 +(1- f)2. (94)

It is easily demonstrated that f = 0 is always a stationary state of the potential (94),

but is only stable for

(1 + b2)_

Y<Yc= (1-52 ) ' (95)

For b < v_- 1, the solution bifurcates to either

[ (1 + 25 - b2)(1 - 25 - 52)f + (96)
(1 - b_)

or

| (1 + 25 - b2)(1 - 25 - ha)f (97)..._.

(1 - b2)

at y = Yc. Both states are equally likely, since V(f) is even in f. For 1 > b > v/2- I, there

is no jump in f at the bifurcation point. Instead, the solution connects smoothly to either

an f > 0 or an f < 0 branch at y = yc. Note from Eq. (95) that yc ---, ¢x)as b --_ 1. In fact,

for b > 1 there are no bifurcations, and f = 0 remains a stable stationary state of (94) for

all values of y.

H. Discussion

The nonlinear behavior of high-n twisting modes is governed by the parameter b, defined in

Eq. (865).
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Consider the limit b << 1, for which the difference in natural frequencies of tearing

and twisting modes is sufficiently large to suppress driven magnetic reconnection in the

unperturbed state. In fact, it can be seen from Eqs. (87) and (90) that in the unperturbed

state (f = 0) there is very little tearing amplitude driven at rational surfaces, and the

twisting mode stability index consequently reduces to

Re(Aft) _ Re (A_) -_-A _ + 4 s s

The system remains in the unperturbed state as long as the magnitude of the twisting

amplitude 19-1 lies below the critical value A, defined in Eq. (86c). As the critical amplitude

is exceeded there is a sudden change in the plasma toroidal angular velocity profile such as

to bring the twisting frequency at one set of rational surfaces (either the 'even' or the 'odd'

surfaces defined in the previous section) into close coincidence with the tearing frequency of

the other set (i.e. f _ 1 or f _- -1). This process is (rather loosely) termed 'locking.' After

locking, substantial tearing amplitude is driven at one set of surfaces -- the even swf_es,

say- so that according to Eqs. (87)

• + 7r a (2 + s)exp (I) (99)qJ? 2 s

while there is still very little driven tearing flux at the odd surfaces. The stability index for

twisting modes at the odd surfaces becomes

r2 nqa2 (2 + s) 1+ exp - (100)Re (Ai') "" -A _ + 4 s s

after locking, whereas the stability index at the even surfaces is unchanged [see Eqs. (88)

and(98)].

Thus, above a certain critical twisting amplitude there is a transition from an initial state

which is symmetric with respect to the even and odd rational surfaces, to a final state which

is highly asymmetric. There are no driven magnetic islands in the initial state, whereas the
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final state is characterized by magnetic islands on alternate rational surfaces. According to

Eqs. (72) and (99), the driven islands form an interlocking structure in which the O-points

of a given island chain line up with the X-points of the neighboring chains. This structure

repeats every fourth rational surface. The initial and final states are sketched in Fig. 2. In

the initial state twisting modes on all rational surfaces have the same stability index [see

Eq. (98)]. However, in the final state twisting modes on the rational surfaces with no driven

magnetic islands become significantly more unstable than those on surfaces with islands

[compare Eqs. (98) and (100)].

Consider the limit b >> 1, for which the differences in the natural frequencies of tearing

and twisting modes are too smali to suppress driven magnetic reconnection. In this limit,

there is no modification to the plasma toroidal velocity profile. According to Eqs. (87) and

(88), substantial tearing amplitude is driven on both sets of rational surfaces, and twisting

modes on all surfaces have the stability index (100). If the mutual coupling between tearing

modes, which was previously neglected, is taken into account it is found that the islands

on odd surfaces lock in phase quadrature with respect to those on even surfaces, giving rise

to a symmetric configuration in which there is a 7r/2 phase shift between island chains on

neighboring surfaces. This state, which is sketched in Fig. 3, is that predicted by conventional

ballooning mode theory. 26The 7r/2 phase shift between island chains corresponds to 00 = 7r/2,

where _0 is the ballooning phase angle, and Eq. (100) is equivalent to

__(2+s) i_ exp - , (101)8

where A_ is the ballooning stability index. It is clear that ballooning mode analysis is only

valid in the limit where there is no substantial difference between the natural frequencies of

tearing and twisting parity modes (i.e. b >> 1).

Note that the mismatch between the twisting and tearing frequencies, w- -w+, scales

like a diamagnetic frequency (i.e. like n). It follows from (86b) that the parameter b is
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approximately independent of mode number (there is, in fact, some weak dependence of the

reconnection timescale r on n). This implies that b << 1 is the physically relevant ordering

for high-n modes, just as it is for low-n modes (see Secs. III and IV). It can be seen from

Eq. (86c) that the threshold amplitude scales like n -_/2. So at sufficiently high mode numbers

there are bound to be magnetic islands driven in the plasma by unstable twisting modes.

It follows from Eq. (99) that when the threshold amplitude is exceeded the driven tearing

amplitude is O(e) with respect to the twisting amplitude.

I. Conclusions

In the linear regime the conventional neglect of tearing parity modes in the high-n disper-

sion relation s is justified because high-n tearing modes are very stable and are effectively

decoupled from high-n twisting modes via diamagnetic flows. However, in the nonlinear

regime the neglect of tearing parity modes is not justified. It has been demonstrated that

in a plasma possessing diamagnetic flows there is a threshold amplitude for twisting modes

below which there are no driven high-n magnetic islands. As the threshold is exceeded,

however, substantial magnetic islands are driven on every second rational surface, giving

rise to an interlocking structure which repeats every fourth surface. Conventional ballooning

analysis 26 is found to give a poor description of coupled high-n tearing and twisting modes

in situations where diamagnetic flows are important.

VI Implications for Ohmically Heated Tokamaks

The aim of this section is to make some quantitative predictions regarding the stability of

low-n coupled tearing and twisting modes in ohmically heated tokamaks.

Consider the stability of n = 1 modes in a family of idealized tokarnaks of constant

aspect ratio, a = 0.35 Ro, with a toroidal magnetic field strength which scales like B0(T) =

1.38 p_.r (m). Broadly speaking, most modern tokamaks of conventional design are members
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of this family; [br instance, COMPASS-C (RO = 0.56 m, a = 0.20 m, Bo = 1.1 T), 27 DIII-D

(tto = 1.67 m, a = 0.64 m, B0 --- 1.3 T), 2s JET (tto = 3.0 m, a = 1.1 m, B0 = 3.0 T), l

ITER (1991) (Ro _ 6.0 m, a ~ 2.2 m, Bn ,-, 4.9 T), 29 and ITER (1993) (tto _-, 8.0 m,

a ,_ 2.8 m, Bo -,, 6.0 T). a° Plausible temperature and electron density profiles are adopted

[i.e. T(r) or (1 - r2/a2) a/2 and he(r) o_ V/1 - r2/a 2, which imply a parabolic pressure profile

p(r) cx (1 - r2/a2)2]. The central electron temperature is estimated from ohmic power

balance, using the standard neo-Alcator energy confinement timescale, zl No provision is

made for the neoclassical enhancenmnt of resistivity or the shaping of plasma cross-sections,

but this is offset to some extent by adopting an artificially high value of Ze_ (i.e. Ze_ =

4). The central ion temperature is estimated by balancing the volume averaged rate of

heating by the electrons, calculated using the classical energy exchange timescale, against the

volume averaged rate of energy losses, calculated using the neo-Alcator energy confinement

timescale. The viscosity profile is assumed to be flat (for want of a better assumption), and

the anomalous momentum confinement timescale (i.e. the exponential decay timescale of an

unsupported velocity profile) is set equal to the neo-Alcator energy confinement timescale. 19

The discharges investigated have deuterium as the fueling ion species and a line averaged

electron number density _._= 2x 10_9m -z. The adopted safety factor profile is that described

in FHMR, 4 which reduces to

r2/a 2

q(r) = q"l - (1 - r2/a2)qo/qo (102)

in the cylindrical limit, where qo is the safety factor on the magnetic axis (r = 0), and q, is

the safety factor at the plasma edge (r = a). In the following calculations the central q value

is fixed at q0 = 0.7. Table I shows basic plasma parameters, including the central electron

and ion temperatures and the central beta [fl_ = pop(0)/Bo2], estimated as a function of

major radius, using the method outlined above, for discharges with qa = 4.5.

Consider the interaction of the unstable m --- 2 tearing mode with the stable m = 3
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Ro(m) a(m) Bo(T)!T,e(keV) T_e(keV) fie
0'.50 0.18 0.85 0.55 0.35 6.41 x 10-a
0.75 0.26 1.13 0.82 0.64 5.84 x 10-a!
1.00 0.35 1.38 1.09 0.92 5.40 x 10-a_
1.50 0.53 1.83 1.62 1.48 4.74 x 10-3'
2.00 0.70 2.24 2.15 2.03 4.27x 10-a
3.00 1.05 2.98 3.21 3.11 3.65 x i0 -a
4.00 1.40 3.64 4.26 4.17 3.26 x I0 -a
6.00 2.10 4.84 6.35 6.29 2.77 x I0 -a
8.00 2.80 5.92 8.43 8.37 2.44 x I0 -a

Table h Basic plasma parameters estimated for ohmically heated tokamaks with a =
0.35 tto, Bo(T) = 1.38 R°Z(m), qo = 0.7, qa = 4.5, and _ie = 2 x 1019m -a, including the
central electron temperature (Tee), the central ion temperature (Tic), and the central plasma
beta (13c).

tearing and twisting modes. The former mode is resonant at the q = 2 surface (radius

r_ = 0.658 a, with magnetic shear s_ = 1.74), whereas the latter modes are resonant at q = 3

(ra = 0.816a, s3 = 1.98). The presence of a q = 1 surface in the plasma (rl = 0.366a,

sl = 0.694) strongly modifies the stability of the 2/1 tearing mode due to coupling with the

1/1 internal kink mode, but does not unduly affect either the stability of the modes resonant

at q = 3 or the coupling of these modes to the 2/1 tearing mode, provided that the plasma

cross-section is circular (as is assumed to be the case). 14 Table II shows various interesting

plasma parameters evaluated at the q = 3 surface using data from Table I. The chosen
I

parameters _e the local hydromagnetic, resistive, and viscous timescales (TH, rR, and rv,

respectively), the reconnection timescale [r_, calculated in accordance with (19)l, the local

beta [_3, calculated in accordance with Sec. II.C, assuming % = 5/3], the critical twisting

mode stability index needed to overcome the stabilizing effect of plasma compressibility

[A_, calculated in accordance with (20)], the local electron diamagnetic frequency (w]), the

critical frequency (relative to the natural frequency) above which compressibility is negligible

in the tearing and twisting mode dispersion relations [w_ - V_vH -- see Eq. (B.32b)], and

the critical frequencies w_) and _2) defined in Eqs. (21a) and (21b).
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0,50 0.73 9.21× I0 ° 1.06x 101 3.78× I0 -I 1,19× 10 -3 3.47x I0 ° 2.33× I0 i 1.46× I0 ° 3.95× 101 4.54x 101

0.75 0.83 3.70× I01 3.59 x I01 1,02x 10 ° 1.09x 10 -3 5.35x I0 ° 1.16x I01 8.33× I0 -I 2,56x I01 2.49x I01

1,000.909,84× I0 i 8.46x 101 2.06x I0 ° 1.00x 10 -3 7.22x I0°! 7.11x I0 ° 5.57x 10 -I 1.90× 101 1.63x 101

1,50 1,02 3.91 × 102 2.86 x 102 5.54 x I0 ° 8.82 x 10 -4 1.08 x I0 i 3.55 x I0 ° 3.11 x 10 -I 1.23 x I01 8,98 x I0 °

2,00 I.II 1.05 × 103 6.79 x 102 1.12 x 101 7.94 x 10 -4 1.44 x I0 i 2.17 x I0 ° 2.05 x I0 -i 9.03 × I0 ° 5.87 x I0 °

3.00 1.26 4,18 × 103 2,29 x 103 3.02 x 101 6.79 x 10 -4 2.16 x 101 1.08 × I0 ° 1,13 × I0 -I 5.88 × I0 ° 3.22 x I0 °

4.00! 1.37 I.II× 104 5.43x 103 6.10x 101 6,06x 10 -4 2.85x 101 6.59× I0 -i 7.44x 10-2 4.33x I0 ° 2.11x I0 °

6,00 1,55 4,47× 104 1.83× 104 1,65x 102 5.15x 10 -4 4.25x I01 3.29x I0 -I 4.10x 10 -2 2.82× I0 ° 1.16x I0 °

8.00! 1,68 1.19× 105 4.35x 104 3.33x 102 4.54 x 10 -4 5.59x I0 i 2.00x 10 -I 2.67x 10 -2 2.08× I0° 7.56x I0 -I...........

Table II: Various plasma parameters evaluated at the q - 3 surface as a function of major
radius Ro (in meters) using data from Table I. The parameters are the hydromagnetic,
resistive, viscous, and reconnection timescales (_'H is in units of 10-7 seconds, the other
timescales are in milliseconds), the local beta, and the critical twisting stability index needed
to over come the stabilizing effect of plasma compressibility, the local electron diamagnetic
frequency, and three other critical frequencies described in the text. All frequencies are
evaluated in kilo-Hertz.

It can be seen that the critical twisting stability index needed to overcome compressibility

is modest in small, relatively cold tokamaks, but becomes quite high in large, relatively hot

tokamaks. The difference between the natural frequencies of the tearing and twisting modes

resonant at q = 3 is taken to be of order the local electron diamagnetic frequency, w_ [see

Sec. B.III], and this is also assumed to be the typical frequency mismatch between the

q = 2 and q = 3 surfaces due to velocity shear and diamagnetic flows. It follows that since

_3* ,(< _d3(l), uJ_2), the inequalities (21a) and (21b) are likely to be satisfied in an ohmically

heated tokamak plasma. The third inequality (21c) is also easily satisfied according to

Table I[. This implies that the visco-resistive dispersion relations (17) and (18), for tearing

and twisting modes, respectively, are the most physically relevant in ohmic discharges. 19Note

that w] >> w_, so compressibility is only important in tearing and twisting dispersion relations

in a relatively narrow band of frequencies centered on the natural frequency. This justifies

the absence of the compressional Pfirsch-Schliiter enhancement of inertia 16 (by 1 + 2q2) in

the layer dispersion relations (see Sec. B.II.2).

Table III shows various critical parameters associated with the locking of the 2/1 tearing
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mode to the tearing and twisting modes resonant at q = 3, evaluated as a function of major

radius using data from Table II. The poloidal beta (_p) is defined in FHMR. The elements of

the E+ Matrix are calculated as an expansion in the inverse aspect ratio and poloidal beta

using the T7 code. 4 For a free boundary plasma

_½+= -4.631 - 25.26 e2 - 3.454 e2/_ - 29.73 _2/_p,

E+ = -6.295 _ + 4.757 x 10-2 e/_p. (103)

The elements of the E- Matrix and the H Matrix are evaluated with the aid of a modified

cylindrical tearing mode code using the method outlined in Appendix A and Sec. II.B. For

a free boundary plasma

E_ = -A_ + 1.115/3p2 ,

H23 = - 1.843/_p. _104)

It can be seen from Table III that E+, which governs the intrinsic stability of the 3/1 tearing

mode, is much less than -1, indicating that this mode is fairly stable. E+ also has relatively

little variation with major radius. On the other hand, E_, which governs the intrinsic

stability of the 3/1 twisting mode, varies strongly with major radius because of its dependence

on the layer quantity A_, which scales as S 2/z (S = TR/TH is the magnetic Reynolds number).

Thus, in small, relatively cold devices the 3/1 twisting mode is moderately stable, whereas

in large, relatively hot devices the mode becomes extremely stable. The matrix element

E+, which governs the coupling between the 2/1 and 3/1 tearing modes, has virtually no

variation with major radius due to its very weak dependence on pressure. On the other hand,

the element H2z, which governs the coupling of the 2/1 tearing mode to the 3/1 twisting

mode, has a strong variation with m.ajor radius due to its/_p dependence.

The parameters b+ and b-, defined in Eq. (42c), govern the nature of locking to the

3/1 tearing and twisting modes, respectively. (Note that surfaces 1 and 2 in Sec. IV.B are
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Ro 13_-E+3-E_-E + -H23 b+ b- c + c- D + D- Ac "A

0.500.71110.51 2.91 2.23 1.30 0.1900,0532.2x 10 -l 0.3010,4730,5810.25 4.99x 10 -3

0.75 0.64 10.24 4.89 2.23 1.19 0.138 0.066 7.8 × 10 -2 0.46 0.486 0,290 0.22 2.51 × 10 -3

1.00 0,60 10.04 6,S2 2.23 1.10 0,109 0,074 5.3 × 10 -2 0.60 0.495 0.177 0.20 1,55 x 10 -3

1.50 0.52 9.74 10.50 2.23 0.96 0.079 0.085'2.9 × 10 -2 0.91 0.511 0,088 0.16 7,80 × 10 -4

2.000.47 9.53 14.20 2.23 0.87 0.062 0.093 1.9x 10-2 1.220.522 4.79× 10-4

3.000.40 9.26 21.42 2.23 0.74 0.045 0.I05]9.9x 10-3 1.810.537 2.42× 10-4

4,00 0.36 9,09 28.36 2.23 0.66 I0.036 0,112 6.3 x 10 -3 2.53 0.547 1.48 x 10 -4

6.00 0.31 8.88 42.40 2.23 0.56 0.026 0.124 3.2 x 10 -3 3.92 0.560 7.49 x 10 -5

8.00 0.27 8.74 55.82 2.23 0.50 0.021 0.133 2.0 x 10 -3 5,37 0.568 4.55 x 10 -5
....

Table llI: Critical parameters governing the locking of the 2/i tearing mode to the tearing
and twisting modes resonant at q = 3 evaluated as a function of the major radius It0 (in
meters) using data from Table II. The various parameters are described in the text.

equivalent to surfaces 2 and 3 here.) In Table Ill these parameters are calculated assuming

that _+ - ,_ = w_, as discussed previously. According to Sec. IV.B, if b+ << I there is very

little driven tearing amplitude at q = 3 prior to locking [see Eq. (50a)]. However, as the

locking threshold is exceeded, there is a sudden bifurcation to a state where the driven tearing

amplitude is given by Eq. (45b). As b+ is increased, the transition from the initial to the

final state becomes gradually less sudden, until there is eventually no bifurcation, and there

is substantial tearing amplitude driven at q - 3 even in the initial state. In the absence of

the twisting resonance, the bifurcation disappears for b+ > I/v/_ = 0.1925. 4 Locking to the

twisting resonance at q = 3 is, likewise, governed by the parameter b-. It can be seen from

Table Ill that b+ decreases with increasing major radius, indicating an increasingly sharp

locking transition to the 3/1 tearing resonance. Conversely, the parameter b- increases with

It0, indicating an increasingly smooth locking transition to the 3/1 twisting resonance. Both

b+ and b- are sufficiently small to ensure that bifurcations occur during locking to the tearing

and twisting resonances at q = 3.

The tearing resonance at q = 3 disappears when the parameter c+, defined in Eq. (48),

becomes greater than unity. Likewise, the twisting resonance disappears when c- > I,

where c- is defined in Eq. (49). Table Ill indicates that the tearing resonance is present
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at all major radii, whereas the twisting resonance is only present in small, relatively cold

tokamak plasmas.

In the limit b+ << 1, locking to the 3/1 resonance gives rise to an increase in the stability

index for the 2/1 tearing mode by D + -- (E+)2/(-E +) [see EQ. (45d)]. Likewise, in the

limit b- << 1, locking to the 3/1 twisting resonance gives rise to an increase in the 2/1

tearing mode stability index by D- __ (H23)2/(-E_) [see Eq. (46d)]. Table III indicates

that locking to the 3/1 tearing mode gives rise to a modest further destabilization of the 2/1

tearing mode at all major radii. In very small devices, locking to the 3/1 twisting mode also

gives rise to modest destabilization of the 2/1 mode, but this effect attenuates rapidly with

increasing Ro.

The 2/1 tearing mode locks to either the 3/1 tearing resonance or the 3/1 twisting

resonance, depending on its initial rotation frequency, w+. For w+ < w_ + _(w + -w_')

the locking is to the twisting resonance (assuming w+ > aJ_'). Otherwise, the locking is to

the tearing resonance. Here, Ac = (1 + IE+I2/IH2312) -1 [see Eq. (47)]. It can be seen from

Table III that as the major radius increases, locking to the tearing resonance becomes more

likely. For tt0 _ 2.0 m, the twisting resonance disappears, so locking to the tearing resonance

occurs at all values of w+ in this regime.
i

According to Eqs. (42) and (43), the critical 2/1 tearing amplitude for locking to the

tearing resonance at q = 3 is of order A/IE+I, whereas the critical amplitude for locking to

the twisting resonance is approximately A/[H231. Table III shows values of the dimensionless
A

quantity A =- A/(aBo) evaluated as a function of major radius. It can be seen that the

critical 2/1 tearing amplitude needed to lock to the q = 3 resonances decreases rapidly with

increasing machine dimensions. 4

The data shown in Table III is calculated for qa = 4.5. It is found that increasing the

edge-q tends to favor locking to the twisting resonance, since the local beta at q = 3 rises,

leading to an increase in the coupling coefficient H2z. Conversely, decreasing the edge-q
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tends to favor locking to the tearing resonance.

VII Summary and Conclusions

A. The form of the dispersion relation

A dispersion relation has been derived for resistive modes of arbitrary parity in a tokamak

plasma [see Eqs. (10)]. In a plasma containing N rational surfaces (resonant with a given

toroidal mode number n) there are, in general, 2N independent resistive modes. It is con-

venient to resolve a general mode into components of N basis tearing modes and N basis

twisting modes. The jth basis tearing mode (1 _< j <_ N) is defined to have unit tearing

amplitude and zero twisting amplitude at rational surface j (rational surfaces are numbered

in order of increasing minor radius), with zero tearing or twisting amplitude at any other

surface. Likewise, the jth basis twisting mode has unit twisting amplitude and zero tearing

amplitude at surface j, with zero tearing or twisting amplitude at any other surface. Here,

the tearing amplitude at surface j is basically the even (with respect to the rational surface)

component of the perturbed normal resonant magnetic field, whereas the twisting amplitude

is the odd component (see Appendix A for more exact definitions).

The intrinsic stability and mutual interactions of the N basis tearing modes are specified

by a real symmetric N x N matrix known as the E+ Matrix (see Sec. II.B). The elements

of this matrix can, in general, only be evaluated by solving the full coupled ideal-MHD

equations in the outer region. This can be achieved for a large aspect-ratio, low-_, weakly

shaped tokamak equilibrium using the recently developed T7 code, as described in FHMR. 4

In a plasma with a monotonic safety factor profile containing no rational surfaces resonant

with poloidal mode number m = 1, the jth basis tearing mode is made up of O(1) of the

poloidal harmonic resonant at rational surface j (poloidal mode number mi, say), with O(_)

side-band poloidal harmonics (i.e. m3 :h 1 coupled by toroidicity and pressure, m1 :i=2 coupled

by the ellipticity of equilibrium flux surfaces, and mj:h3 coupled by flux surface triangularity).
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Here, the inverse aspect-ratio, _ << 1, is the ratio of the minor and major radii of the plasma.

The jth diagonal element of the E+ Matrix, which governs the intrinsic stability of the jth

basis tearing mode, is made up of the standard cylindrical tearing stability index for the

m.i/n mode s plus a O(_ 2) correction. The off-diagonal elements of the E+ Matrix, which

govern interaction between different basis tearing modes, are O(e). At high poloidal mode

number (m s >> 1), the jth basis tearing mode becomes localized in the vicinity of rational

surface j, but the side-band harmonics remain O(¢) with respect to the resonant harmonic.

In this limit, the jth diagonal element of the E+ Matrix asymptotes to -2m i (i.e. the jth

basis tearing mode becomes very stable), whereas the off-diagonal elements become O(e ms).

See Secs. [I.B and V.B for more details.

The intrinsic stability and mutual interactions of the N basis twisting modes are specified

by another real symmetric N × N matrix known as the E- Matrix (see Sec. II.B). In a low-_

plasma the ordering v ,-_ O(_2), where v is the Mercier index related to the well-known

Mercier stability criterion ¼- _ > 0,11 can be exploited to greatly simplify the calculation

of this matrix, as described in CHT 6 and Appendix A. In a plasma with a monotonic safety

factor profile, the jth basis twisting mode is made up of O(1) of the m1 poloidal harmonic,

localized inside the resonant layer at surface j, with O(a) of the ms:t= 1 side-band harmonics,

and only (2(_ 2) of the m s harmonic, exterior to the layer. Here, _ is a O(e) parameter

proportional to the local pressure gradient at rational surface j. The jth diagonal element of

the E- Matrix, which governs the intrinsic stability of the jth basis twisting mode, is made

up of a stabilizing term emanating from the layer at surface j plus an O(a _) destabilizing

correction. The layer term is due to the effect of plasma compressibility, and scales like

_l/_S2/Z (where _ is the usual ratio of plasma and magnetic pressures, and S is the magnetic

Reynolds number). The off-diagonal elements of the E- Matrix are zero, indicating that

there is no direct interaction between different basis twisting modes. At high poloidal mode

number, the jth basis twisting mode becomes localized in the vicinity of rational surface j,
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but the relative magnitudes of the various poloidal harmonics inside and outside the layer

remain the same. In this limit, the destabilizing correction to the jth diagonal element of

the E- Matrix is O(a 2 mi), so the jth basis twisting mode can become intrinsically unstable

when a2mi _>O(1). See Secs. II.B, II.C, and V.D for more details.

It is clear from the above discussion that the jth basis tearing mode is the generalization

of the ml/n cylindrical tearing mode in toroidal geometry, whereas the jth basis twisting

mode is the toroidal generalization of the ml/n resistive interchange mode.

The interaction of the N basis tearing modes with the N basis twisting modes is governed

by a real N × N matrix known as the H Matrix (see Sec. II.B). In a low-13plasma the ordering

v -_ O(¢ 2) can again be exploited to greatly simplify the calculation of this matrix (see

Appendix A). In a plasma with a monotonic safety factor profile the H Matrix is tridiagonal.

The jth diagonal element, which governs the interaction of the jth basis tearing and twisting

modes, is O(1) and proportional to the local current gradient at rational surface j. The

off-diagonal elements, which govern the interaction of basis tearing and twisting modes with

resonant poloidal mode numbers differing by unity, are O(a). At high poloidal mode number,

the diagonal elements remain O(1) but the off-diagonal elements become (9(am_). See

Secs. II.B and V.C for more details.

The responses of the resistive layers at the N rational surfaces in the plasma to tearing

and twisting parity perturbations from the outer region are specified by the diagonal matrices

A+ and A-. (The jth diagonal element of A+ specifies the response of the jth layer to a

tearing parity perturbation, and the jth diagonal element of _- specifies the response to a

twisting parity perturbation.) It turns out that the responses of resistive layers to external

perturbations are resonant in nature. _5'a2That is, there is virtually no tearing or twisting

amplitude driven in a layer unless the external tearing or twisting parity perturbation rotates

in a certain very narrow band of frequencies. The optimum frequency for externally driven

tearing amplitude at surface j is equal to the 'natural frequency' of the jth basis tearing
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mode (i.e. the propagation frequency of the uncoupled, intrinsically unstable jth basis tearing

mode). Likewise, the optimum frequency for externally driven twisting amplitude at surface

j is equal to the natural frequency of the jth basis twisting mode. Typically, the natural

frequencies of the jth basis tearing and twisting modes differ by of order the local electron

diamagnetic frequency at surface j. In addition, sheared rotation and diamagnetic flows

in the plasma ensure that the natural frequencies of basis modes associated with different

rational surfaces do not match up.

In Appendix B the response of a resistive layer to an external perturbation is investigated

in detail, and the model layer dispersion relations (17) and (22a) are derived. In addition,

an expression for the stabilizing contribution to the diagonal elements of the E- Matrix, due

to plasma compressibility, is obtained [see Eq. (20)]. Appendix B is largely concerned with

the effects of anomalous plasma viscosity and plasma compressibility. However, many other

effects are neglected for the sake of clarity. Among the important effects which are left out of

the analysis are finite ion-Larmor radius, field-line curvature, 18 diamagnetism 33 (excepting

the different propagation frequencies of tearing and twisting modes), and trapped particle

destabilization. Is The neglect of these effects ' is justified, to some extent, because none of

them modify the resonant nature of the layer response, which is the crucial factor governing

the interaction of the various resistive modes in the plasma.

B. Low-n stability

Low-n stability is investigated in Secs. III, IV, and VI of this paper. It is found that the

differing natural frequencies of basis tearing and twisting modes, due to sheared rotation and

diamagnetic flows, lead to the effective decoupling of the 2N basis modes at low amplitude.

Now, at low-n, the basis twisting modes are all intrinsically stable due to the dominant sta-

bilizing effect of plasma compressibility. So, at low amplitude only the intrinsically unstable

basis tearing modes are of practical interest.
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At finite amplitude, an intrinsically unstable basis tearing mode exerts nonlinear elec-

tromagnetic torques at the various rational surfaces in the plasma which act so as to bring

the different natural frequencies of basis tearing and twisting modes closer together. This

process eventually allows modes to develop which have finite tearing or twisting amplitude

simultaneously at more than one rational surface in the plasma. These 'compound' modes

are always found to be more unstable than the basis modes from which they are constructed.

In a conventional tokamak plasma this process takes place in a highly discontinuous manner.

Below a certain threshold in mode amplitude, there is some bringing together of the various

natural frequencies, but they still remain sufficiently disparate to decouple the basis modes.

However, as the threshold amplitude is exceeded, there is a discontinuous change in the

plasma toroidal rotation profile, leading to the 'locking' together of the natural frequencies

of basis modes associated with two or more rational surfaces in the plasma. This allows the

formation of compound modes.

An intrinsically unstable basis tearing mode can 'lock' the natural frequency of either

the tearing or the twisting basis mode associated with a given rational surface. However, it

is unable to lock both frequencies simultaneously, because they are generally substantially

different. It follows that after locking the perturbed magnetic field in the immediate vicinity

of the surface possesses either pure tearing or pure twisting parity (i.e. there is either sub-

stantial driven tearing amplitude, or substantial driven twisting amplitude, at the surface,

but not both at the same time). The locking of a surface in tearing parity leads to the for-

mation of a symmetric chain of magnetic islands whose width is proportional to the square

root of the mode amplitude. 34 Locking a surface in twisting parity leads to the formation

of a much narrower chain of 'skewed' magnetic islands whose width is directly proportional

to the mode amplitude. Thus, locking a surface in twisting parity is likely to cause less

degradation of the plasma confinement than that caused by locking it in tearing parity.

Section VI examines the implications of the above results for ohmically heated tokamaks.
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It is found that in large, relatively low-3 [see Table I] devices, compound modes are likely to

have tearing parity at all of the coupled rational surfaces, whereas in small, relatively high-_

devices, compound modes may have twisting parity at some (but not all) of the coupled

surfaces. Compound modes with some twisting parity surfaces are more likely to occur in

auxiliary heated plasmas, which generally have higher _ values than ohmic plasmas.

C. High-n stability

High-n stability is investigated in Sec. V. At large toroidal mode number, basis tearing modes

become highly stable, whereas basis twisting modes can become unstable for n a 2 _ O(1).

The dominant coupling is that between basis tearing and twisting modes whose resonant

poloidal mode numbers differ by unity. This coupling is mediated by the off-diagonal elements

of the H Matrix, which are O(na). Other couplings, for example those between different

basis tearing modes, or those between basis tearing and twisting modes of the same resonant

poloidal mode number, are negligible in the high-n limit.

In Sec. V the close spacing of coupled rational surfaces at high-n is exploited to sim-

plify the analysis. A dispersion relation is constructed for a periodic mode which repeats

after every fourth rational surface [see Eqs. (75)]. The mode structure also repeats every

second surface with a 180° phase shift. The structure is, in general, significantly different

at neighboring surfaces. This type of mode is a generalization of the conventional low-_

resistive ballooning mode, whose structure repeats at every surface with a 90° phase shift. 26

In fact, the conventional ballooning mode is only obtained in the analysis of Sec. V when

the difference in natural frequencies of basis tearing and twisting modes is negligible.

At low amplitude, the generalized mode has twisting parity at all of the coupled rational

surfaces, and is significantly more stable than a conventional ballooning mode. However,

as a certain critical mode amplitude is exceeded, there is a bifurcation to a new mode

structure which has significant driven tearing amplitude at every alternate surface. After
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the bifurcation, the stability of the mode becomes the same as that of a ballooning mode,

but its structure is still significantly different. The driven tearing amplitude leads to the

formation of (Rutherford type) island chains at every alternate surface. The driven islands

form an interlocking structure in which the O-points on a given chain line up with the X-

points of neighboring chains (see Fig. 2). This type of structure is likely to severely degrade

the plasma confinement.

D. Conclusions

It is clear that the conventional approach of neglecting twisting parity modes at low wavelength T

[i.e. n -_ O(1)] is only appropriate in extremely low-B plasmas. 13 In fact, many ohmically

heated plasmas are not sufficiently low-_ for this approximation to be valid, and it is almost

certainly invalid in auxiliary heated plasmas. The conventional approach of neglecting tear-

ing parity modes at short wavelength 3 [i.e n >> O(1)] is never appropriate, although under

certain circumstances this approach yields the correct twisting mode stability index.
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A Physics of the Outer Region

I The marginally-stable ideal-MHD equations

The coordinate system (r, 0, ¢), where ¢ is the toroidal angle, 0 is an angle-like variable in

the poloidal plane, and r is a flux-surface label with dimensions of length, is chosen so that

the magnetic field lines appear straight. The Jacobian for these coordinates is given by a5

j = (Vr A V0. V¢) -l = ---rR2 (A.1)Ro'

where R is the major radius, and Ro is the average major radius of the outermost plasma

flux surface. For an axisymmetric equilibrium the magnetic field B can be written

B = BoRo[f(r)V¢ A Vr + g(r)V¢] , (A.2)

where B0 is the vacuum magnetic field strength at R = Ro. The safety factor, the slope of

the field lines in the/9-¢ plane, is then given by

q(r)- rg(r) (A.3)
Rof(r) "

The perturbed magnetic field 5B is completely specified by two sets of flux-surface func-
i

tions, ¢,_(r) and Zm(r), where

P_ ¢,_(r) exp[i(m_- he)],6B. Vr = i _--_ _ ----_--

P_ [Z,n(r) + AmCm(r)] exp[i(m0 he)],Ro6B. V¢ = n _ _ - (A.4).., Ro(m- nq)

with

[ < > }]/lzorp_ R2 1 m (m_ nq)_ 1
Am- m_ N IVrl i - -n- IVrl 2 L_,

49



r."= m 1 +,, ,
1

f(...) dO (A.5)(...>= _

Here, _ denotes differentiation with respect to r, and p(r) is the plasma pressure.

Throughout the bulk of the plasma the perturbed field is governed by the marginally-

stable equations of ideal magnetohydrodynamics (MHD), which take the form:

d¢,_ L_Z,_ (L_+kZ_+k + M_+_¢,_+k)

r d---;-= (m- nq) + _ (m+ k - nq) 'k#O

d[Z,_] P,_¢,_ (N_+kZm+k+P_nm+kCm+k) (A.6)(m - nq)r "_r (m --"nq) = (m- nq) + _-" (m + k- nq) "k#o

The coefficients L_ +k, M_ +k, N_ +k and p_+k are evaluated for a general low-_, large

aspect-ratio tokamak equilibrium in FHMR. 4 The ordering adopted is such that the Shafra-

nov shift and departure from circularity of plasma flux surfaces are both O(e) with respect

to the average minor radius of the outermost plasma flux surface, a, where e = a/Ro << 1

is the inverse aspect-ratio. This implies that L,_ _ O(1) + O(e 2) and -,nr"_+__ O(e), with

a similar ordering for the other coefficients. Coupling of harmonics of the perturbed field

whose poloidal mode numbers differ by unity is effected by the Shafranov shift of flux sur-

faces, which is driven by toroidicity and the plasma pressure. Coupling of harmonics whose

mode numbers differ by two or three is effected by flux-surface ellipticity or triangula_ty,

respectively. The ordering adopted for the Shafranov shift and flux-surface shaping implies

that g = 1 + O(e _) and #op/B2o _ O(e2).

II The outer solution in the vicinity of a rational surface

The marginally-stable ideal-MHD equations (A.6) become singular on flux surfaces where

the safety factor q takes the rational value m/n. Such surfaces are termed rational surfaces

resonant with poloidal mode number m. The most general solution of Eqs. (A.6) in the
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vicinity of a rational surface, radius rm, is written: 4

Cm _ A L'R[xlu[1 + Ax] + B L'Rlxl l-u + Cx +... ,

LoZ,., _ A L'R Ix]u[v + 7x] + B L'R (1 - v)lxl l-" + Dx +... ,

_)m+k _--A L'R aiclX[u + BL'R ak[xl l-u q _m+k +"" ,

Zm+k _--AL'R bklxl v + BL'Rbklxl l-u + _m+k +"" , (A.7)

where x = (r - rm)/r,_, Lo = -(Lmm)r./ms, and

(P_)_m [ 2porp'(l _ q2)] (A.8)Y "_ 82 -" B_oS2 r..

represents the effect of average field-line curvature. II Here, s = (rq _/q)r., is the local magnetic

shear; A L'R - A L for x < 0 and A R for x > 0, where A L and AR are arbitrary constants, and

similarly for B L,R. The quantities _,,+k and :Zm+k are also arbitrary constants. Furthermore,

7=_ -'_v(l+v)+l+kq,].,,, -,n -...,,_....,,.,.,,

C- m 1 :N.,+k,zsv # -_ t m m+k +

1

D = C- __, -_ (L_+k_,_+k + M_+k¢._+k),..k#o

I(N_ '+k L_ +_)
ak = _ -] ,

?22 81/ 17t r m

ak 1 ( N'_+k L"_+k)/D, 8 //% rm

bk - ---1 ( Mmm+k t- Prom+k)m m sv r., '
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= _ + . (A.9)
_ rm

The parameter

_= m2 s dr r" "_ -qr'_r _r ,m

is a measure of the local equilibrium toroidal current gradient. The relationship between A L,

B L and AR, B R is determined by asymptotically matching Eqs. (A.7) across a thin nonideal

layer centered on the rational surface. In the high mode number limit, m >> 1, the expansion

(A.7) is valid provided _ie2m << 1, where _i is the layer width (normalized to r,,).

III Asymptotic matching between the inner and outer regions

The region of the plasma governed by the ideal-MHD equations is usually termed the outer

region, whereas the thin layer centered on the rational surface where ideal-MHD breaks

down is termed the inner region, s Asymptotic matching between the inner and outer regions

is conventionally performed using the normalized displacement

¢,n(x) = -msBof _,,(x) , (,_,.11)

where

_. Vr = _ _,_exp[i(m8 - n¢)] (A.12)

and _ is the actual plasma displacement. In the outer region ¢,_ = ¢,,,/x.

The layer equations in the inner region are most easily solved in Fourier transform space, m

so it is convenient to write

¢,_(x) = Cm(k)exp(ikx)dk. (A.13)

The layer equations are assumed to be parity conserving (see Appendix B). l° This is reason-

able because the principle parity breaking effects, which are associated with radial gradients
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in the equilibrium plasma current and pressure, are generally not important in the layer. Let

.. I i

¢,,(k) = _ _+(Ikl) - _ ¢_(Ikl) sgn(k), (A.14)

where the even-parity and odd-parity displacements are completely independent. The most

general small-k asymptotic behavior of the Fourier transformed displacement is6

$+([k[) ___1B-lk["-' + m-lk[-" + ... ,
7r

¢7_([k[) _ 1 B+[k[`'_ , + A+[k[_ _ +.... (A.15)7r

The two ratios
B_:

A*(w) = A---_ (A.16)

are completely determined by the solution of the even and odd parity Fourier transformed

layer equations, and are in general functions of the mode rotation frequency w [where all
i

layer quantities are assumed to vary like exp(-iwt)] (see Appendix B). In configuration space

Eqs. (A.15) yield the following asymptotic behavior of the inner solution as it merges into

the outer region:

¢_(z) =¢+_(Izl)+ ¢7_(Izl)sgn(x), (A.17)

where

¢+,(Ixl) _ _ A-Ixl`'-' + "_ B-Ix]-" +"" ,

¢_,(Ixl)-_A+Ixl_-' + ½B+Ixl-_ +'" (A.18)

for It'l <<1, or

¢,,(z) - ¢+(Ixl)+ ¢7_(Ixl)s_(z), (A.19)

where

1 B+lxll_`"¢+(]xl) _" A+lxl" + _ +"" ,

¢7_(Izl)_- A-Ixl_+ -_ B-lzl'-_ +.... (A.20)
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Asymptotic matching of Eqs. (A.7) and (A.19)-(A.20) yields the following expression for

the solution of the ideal-MHD equations in the vicinity of a rational surface:

1[ 1+_ B ++ B-sgn(x) Ix[ t-_+Cx+... ,

+ 5 B+ + B- sgn(x) (1 - v)lx[ l-u + Dx +... ,

/271"

[ 3+ B++ B-_gn(x) _klxl_-"+ _,,+, +... ,

[ ]+ B + + B-sgn(x) bk]x] '-_ + Z,,,+k +"" , (A.21)

where A_"and B _"are related via Eqs. (A.16).

According to Eq. (A.8) the Mercier index v is O(e 2) in the adopted ordering scheme.

It can be seen that there are many terms in Eqs. (A.9) and (A.21) which depend on v -t,

suggesting that the zero curvature limit v --, 0 i:; nonuniform. In fact, this limit is perfectly

well behaved, as is easily demonstrated by making the substitutions

¢_+k = -A+a_. + ¢,_+k , (A.22a)

"2,,.,+k= -A+bk + ,_m+_ , (A.22b)

B+ = ___Tra A- +/_+ (A.22c)28
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7rm _ 1 (/_Z._+k
B-= 7r teA++ _

[_ 1 1 (rq"h ]A++rru- _ru + _ + _ \ q, ],_ -_- B- , (A.22d)

and expanding in small-u, after which Eqs. (A.21) reduce to

1

¢,_ "_ m+[1 + Xx(inIxl- 1)]+ A-Xlxl+ 5 (D+Ixl+/_-z)

+ Ox + DAx(ln Izl- x)+ O(x2)+ o(_),

1

LoZ._ _- A+_x In Ixl+ _(B+I=I+ _-x) + _x In I=1+ O(x2)+ o(v),

¢_+k _ A + In Izl + _ A-sgn(x) ak + ¢,,,+k + O(x) + O(u) ,

Z_+k "_ A + In Ixl+ _ A-sgn(x) bk + Zm+k + O(x) + O(u) (A.231

in the zero curvature limit. In the above,

X- as msl _ 1 (L_+kp,_+k A%m+k_rm+k_-_ -- ""rn " "m /rm ,

X = 7r2msl _ 1(L_+kpg+k a,m+k_m+k_

8

1

0 = _, -k(L_,+k2,,,+k+ M,_+k¢,,+k),..., ,
k#o

m8

bk = _(pg+k),.. (A.24)
m8
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IV The dispersion relation for coupled tearing and twisting modes

Suppose that there are N rational surfaces in the plasma radii rl < r2... < rN, resonant

with poloidal mode numbers ml, m2"'mN (for a fixed toroidal mode number n). The

toroidal electromagnetic torque acting in the vicinity of rational surface j is given by

[/j ]"+5T¢(ri) = R_V¢ •5J A 5B jdOd¢ , (A.25)
rj_

where r_, is the outer/inner radius of the associated nonideal layer, and 5J is the perturbed

current. It can be shown that 4

5T¢(r_)- 2nTr2R° x [_ Im{(¢_)*Z_}] rj+po (k-nq) rJ-

2nTr2Ro [(1 - 2vj)]= x ._, × Im [(AR)*B R + (AL)*BL]j
#o Lm_ "i

2nTr2Ro

[(1 - 2vj)] [(A+).B+ + ,- x ,_, x Im (A-)*B-] (A.26)
#o L,_j _j

wherev_istheMercierindexforsurfacej [seeEq.(A.8)],and where(AL'R)j,(BL'R)I,(A*)j,

and (B+)j are coefficients in the expansions (A.7) and (A.21) evaluated in the vicinity of

this surface.

It is useful to define the quantities 4

q_ = [(1- 2vJ)] 1/2L_j (A±)J 'r1

c, l (A.27)rj

where _+ is termed the 'tearing amplitude' at surface j and _" is the associated 'twisting

amplitude.' The tearing amplitude is sometimes referred to as the 'reconnected flux.' It

follows from (A.16) that

-_, (A.28)
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where A+(w) is the tearing parity layer dispersion relation at surface j, and _-(_a) is the

associated twisting parity dispersion relation. Equation (A.26) simplifies to

6T¢(ri ) 2nr2Ro [(qj+),A_+ += x Im ,_;,*A_]
( -_ ]

/to

- 2n_'2R°x [Im(A;-)I_+I2+ Im(A;)I_;'I" ] . (A.29)Po

The system has 2N degrees of freedom (i.e. two degrees for each rational surface in the

plasma), so a general mode can be built up from a linear superposition of 2N independent

basis modes. It is convenient to define N basis tearing modes, denoted ¢+ (for j = 1 to N).

These are solutions of Eqs. (A.6) which satisfy the physical boundary conditions at r = 0

and r = a and are subject to the additional constraints:

V:= &j ,

_; =0,

A_ + = Ek+ ,

A_; = H_. (A.30)

Thus, the jth basis tearing mode has unit tearing amplitude and zero twisting amplitude at

surface j, with zero tearing or twisting amplitude at any other surface. It is also convenient

to define N basis twisting modes, denoted ¢_'. These are solutions of Eqs. (A.6) which

satisfy the physical boundary conditions and are subject to the constraints:

_+=0,

'_; = 6kj,
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A_; = E_. (A.31)

Thus, the jth basis twisting mode has unit twisting amplitude and zero tearing amplitude

at surface j, with zero tearing or twisting amplitude at any other surface. Note that the

quantities E_ and /-/_ must be real because the ideal-MHD equations (A.6) contain no

complex coefficients.

A general mode is written

N

= + (A.a2)
k=l

yielding

N

Vk E;k + _'H;),
k=l

N

A,_" = _-'_(_+H_ + *_E_'k). (A.33)
k=l

Conservation of toroidal angular momentum requires that there is zero net.toroidal electro-

magnetic torque acting on _ isolated plasma. 4 So, makinguse of (A.29),

N N

T¢ _eT¢(r_) 2nzr2R° x _ Im [E_( +_*_+
j:l ]J,O j, k- I

+H]_ (_+1'_; + H_ (_7)*_+] = 0, (A.34)

which implies that

E_ = E_+ ,

ETk= E_ ,

H_ = It_ = H_k . (A.35)
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The general resistive mode dispersion relation can be expressed as two coupled matrix

equations: .

{A +(w)- E +} @+- H@- : O,

{A-(w)- E-} @- - Ht@+ =0, (A.36)

where use has been made of (A.28), (A.33), and (A.35). In the above, E :e is the N x N real

symmetric matrix of the E_:_values, H is the N x N real matrix of the Hil values and Ht is

its transpose, Aq-(w) is the N x N complex diagonal matrix of the A]:(w) values, and @_"

is the 1 x N complex vector of the _]: values.

V Basis tearing modes

The construction of the basis tearing mode solutions and evaluation of the elements of the

E+ Matrix, using the T7 code, is described in FHMR. Consider the jth basis tearing mode

solution, satisfying (A.30). According to (A.22d)

A_---_r[_J-- +2t,j)+vj+vj[r¢'_ ]

7r _ 1 +k2 Rm,+k.7: _ r v# (1}-)1 + O(es) , (A.37)+Z + + mj
rni 2

where use has been made of Eqs. (A.27) and L,_j = m_ + O(e2).4 Here, ,¢j is the current

gradient parameter evaluated at the jth rational surface [see Eq. (A.10)], and s_ = (r¢/q),_

is the local magnetic shear. It can be shown that 4

(_..j:e,_ 1
.._j ,,j = _ (m, ± 1)aj,

(p._j_l_ 1
• '_ J_J = 5 (1 + s_)% , (A.38)

where

/ 2R°p°Idq2) (A.39)
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parameterizes the local pressure gradient at rational surface j. It can also be shown that

hTrnj 4-k_ ( Dmj :t:k
('"_J J,i = t" "_ jr_ = 0 for k > 1.4 It follows that

Hii = A,_" = __.r2 sj_'_ (1 + 2vj) + vi + _9 k,'_],j

7r _j

w2sjvj [Z'_j(rj . 5)- Zmj(rj6 -- (_) + 2gj(_ln (_lJ + 0(_3) (h.40)

in the limit f --_ 0, where use has been made of Eqs. (A.23), (A.24), and (A.30). Thus,

the jth diagonal element of the H Matrix can be evaluated from the jth basis tearing mode

solution by reading off the values of the toroidally coupled sidebands at the rational surface

[i.e. ¢,,j_-l(rj) and Zm,4-1(rj)] and the value of Z,_j at two points which straddle this surface

[i.e. Z,_,(rj =h5)1.

Consider the behavior of the jth basis tearing mode solution in the vicinity of rational

surface k (where k =fij). According to (A.22d), (A.27), and (A.30)

A_" 7r 1 ,.j-- ,,,j - ,= -- (n_, Z,,_ + P_ ¢,_j)r_ + O(e 9-) (A.41)
sk m1 - mk

assuming m s =_mk. Thus, making use of (A.23), (A.30), (A.35), and (A.38)

(1+ + (A.42)

for mk = m i -4-1, and Hik = 0 for mk _ m i + 1.

In Eq. (A.42) the functions Z,,_ and ¢,,_ need only be evaluated to leading (i.e. cylindri-

cal) order in e. Now, in the cylindrical limit

L_ =ms ,

P_ = (m- ha) 2 - (m - ha) _o , (A.43)m
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1
where

ao(r) = -qr _rr _r ' (A.44)

Thus, the ideal-MHD equations (A.6) reduce to

Zm(r) = (ra- nq) dCmm2 r d-_' (A.45)

and

d (_¢.,) rex0r "_r r dr ] - ra2¢'_ + (m - nq)Cm = 0. (A.46)

The above equation is usually referred to as the 'cylindrical tearing mode equation.'

Let ¢_j(r) be a solution of the cylindrical tearing mode equation (with ra = m_) which

satisfies the physical boundary conditions at r = 0 and r = a, and is subject to the constraint

¢C,(rj) = 1. (A.47)

It follows from (A.27), (A.42), (A.43), (A.45), and (A.47) that

H_k 7rak[ d¢Cj (rk) ]
= rk :]=(1 + s_)m_¢C_(rk) + O(e 2) (A.48)2 s_ dr

for mk = m s =i=I, and Hik = 0 for mk¢ mj =i=1. Thus, the off-diagonal elements of the

H Matrix can be evaluated using standard cylindrical basis functions.

VI Basis twisting modes

Consider the jth basis twisting mode solution, satisfying (A.31). According to (A.23), (A.24),

(A.27), and (A.38) the resonant harmonic is O(e2), whereas the two toroidally coupled

sidebands are O(e) and satisfy 8

[¢._j_l]rj+= _-a_ (mj + 1) ,rj_ 2 St

[_ ]rj+_ 7r aj (1 + si). (A.49)
_'_J±t]ri-- 2 sj
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In fact, the toroidally coupled sidebands can be constructed from cylindrical basis functions

which obey

r__ 2 sj

r = _g -- (mj + 1)2(1+ s_), (h.50)
r1 _ 8j

where use has been made of (A.45).

Let ¢_j4.1(r) be a solution of the cylindrical tearing mode equation (A.46) (for poloidal

mode number m1 :i: 1) in the interval 0 < r < r1 which satisfies the physical boundary

conditions at r = 0, and is subject to the constraints

¢Li± l (rL,) -- 0,

¢_j±l(rj-) = 1. (A.51)

Here, the rL, are the radii of any rational surfaces resonant with poloidal mode number mj=h 1

which lie in the interval 0 < r < r1 Likewise, let n• ¢,_±1 (r) be a solution of the cylindrical

tearing mode equation in the interval r > r3 which satisfies the physical boundary conditions

at r = a, and is subject to

¢2,_(rR,) =0,

CmRj±l(rj+) = 1. (A.52)

Here, the rRj are the radii of any rational surfaces resonant with poloidal mode number

mj -4-1 which lie in the interval r > rj. It is also useful to define the quantities

L [ dCLj±lhmj±l -- _" dr "_- '

a2,., - [rd¢_'_' ] (A.53)- dr J.j+"
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The solution of the cylindrical tearing mode equation which satisfies (A.50) takes the

form

[A_j_.l :1: (m i + 1)(1 + si) _L
=_5 (mj + 1) .......R L ...,,(r)

.t_A nj,l 4- (m_ 4- 1)(1 + sj)
............r At, ¢,,,j+t(r) . (A.54)

Amj:t:l -- mj4-1

According to (A.22d), (A.27), (A.31), (A.38), and (A.45)

E]j = A_" -- __rsi_ kl (N_ +k2,,,,+_ + P.m'+k¢,_,+k),,,_, + O(e 3) (A.55)

raj [ 1 d ¢,n,., (rj) ]-2 s_ _ mill ri dr 4- (l + s/) ¢,_,,l(rj) +O(ez).

Thus, 6

_2 a_. x (A.56)=-7
R L

A +,A ,j., 4- (rnI 4- 1)(1 + si)(A_j:e , + AL,+,) + (m i 4- 1)e(1 + sj) 2AR AL
4- mj4-, -- mj :1:1

where use has been made of (A.54). It can also be shown that E_ = O(e a) for mk _ m i, so

for a monotonic q-profile the E- Matrix is diagonal to O(e2). Equation (A.22c) yields

HIi=A_+= rr,_j +O(_2 ), (A.57)
2 sj

which is consistent with (A.40).

It follows from (A.23), (A.27), (A.30), (A.35), and (A.54) that

Hk_=n_k += r a i Ar
,,,_ - ink(1 + si) d¢_(rk)

2 si A_, -- AL,, rk dr + O(e 2) , (A.58)

provided mk = m_ - 1 and rk < ri. It is easily demonstrated that

r---d-_-r ¢,,, - r "_r ¢_ = 0, (A.59)rl
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where ¢_ and ¢_ are two solutions of the cylindrical tearing mode equation (A.46) (for

poloidal mode number m) which are continuous in the interval rl to r2. Equation (A.59)

can be used to show that

rk dr

d¢_,(ri) (A.60)As_¢_(rj) = rj dr "

Thus, (A.58) reduces to

Hkj - 2 s i rl dr - (1 + si)mk ¢,-k (rj) + O(e 2) , (A.61)

which is consistent with (A.48).

VII Conclusions

The general dispersion relation for tearing and twisting modes in a plasma containing N

rational surfaces takes the form:

{A+(w)-- E+} @+- H@- = 0 ,

(A-(w)- E-} - Ht I,+ = 0, (A.62)

where E _=is an N x N real symmetric matrix, H is an N x N real matrix and Ht is its

transpose, A_:(_) is the N x N complex diagonal matrix of the A_:(w) vahms, and @* is the

1 x N complex vector of the _= values. Here, A +(co) is the tearing parity dispersion relation

for the layer at rational surface j, and A_"(w) is the corresponding twisting parity dispersion

relation (see Appendix B); _P+is the 'tearing amplitude' (i.e. the reconnected flux) at surface

j, and _P_is the associated 'twisting amplitude.'

The E+ Matrix, which determines the intrinsic stability and mutual interaction of tear-

ing modes, can only be evaluated by solving the full coupled mode equations (A.6). For a
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low-/_, comparatively weakly shaped plasma this is possible using the T7 code, as described

in FHMR. The E- Matrix, which determines the intrinsic stability of twisting modes, and

the H Matrix, which determines the coupling of tearing and twisting modes, are more easily

evaluated using a combination of standard cylindrical basis functions and data readily ob-

tained from the T7 code. It has been demonstrated how all matrix elements appearing in

the dispersion relation (A.62) can be evaluated to the accuracy required by the T7 ordering

scheme; i.e. diagonal elements to O(ea), and off-diagonal elements to O(e) (for plasmas with

monotonic q-profiles).

The E- Matrix is found to be diagonal (assuming a monotonic q-profile), indicating that

twisting modes do not couple to one another directly. The diagonal elements are O(e2), and

are driven exclusively by the equilibrium pressure gradient. The H Matrix is found to be

tridiagonal, indicating that twisting modes couple to tearing modes with the same poloidal

mode number (via the equilibrium current gradient), and also to tearing modes with mode

numbers which differ by unity (via the equilibrium pressure gradient).

B Physics of the Inner Region

I Incompressible single-fluid layer theory

1 Introduction

The Ohm's law and vorticity equation in the inner region take the form 3a

d2¢ -iw'rR(¢ x¢)dx 2

d2¢ Jr_ d4¢
xT_z_= (_'rn)_d2¢dx2_" dx4, (B.1)"ry

respectively, for a single-fluid, zero-_, incompressible plasma in cylindrical geometry. Here,

the radial perturbations in the magnetic field and plasma displacement are written aB, =

i¢/r and {, = -¢/ms(r,)Bo(r,), respectively. All perturbed quantities are assumed to vary
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like f(x)exp[i(mS-nz/Ro-wt)], where (r, 8, z) are standard right-handed cylindrical polar

coordinates, Ro is the simulated major radius, and x = (r - rs)/r_ is the normalized radial

distance from the rational surface q(r,) = m/n. The safety factor is written q = rBo/RoBo,

where [0, B0(r), B0] is the equilibrium magnetic field, and the magnetic shear is defined

s = r(dq/dr)/q. The hydromagnetic, resistive, and viscous time-scales at the rational surface

are written rH = (Ro/Bo)¢pop(r,)/ns(r,), rR = por2,/_tl(rs), and rv = r_p(r,)/#±(r,),

respectively, where p is the plasma mass density, r/iI the parallel resistivity, and #± the

perpendicular viscosity. Finally, the Doppler shifted layer frequency is defined w' = w - wo,

where w is the externally imposed rotation frequency of perturbed quantities and w0 is the

'natural' frequency determined by local equilibrium plasma flows.

Note that the layer equations (B.1) are parity conserving; i.e. they are invariant under

the transformation x ---, -x, ¢ ---* +¢, ¢ _ _¢. This implies that the twisting parity

mode [¢(-x) = ¢(x), ¢(-x) = -¢(x)] completely decouples from the tearing parity mode

[¢(-x) = -¢(x), ¢(-x) = ¢(x)] inside the layer.

Fourier transforming Eqs. (B.1) yields 3r

d( k 2 de) _i(V3S)k,_ + (V3S, v)k,_ (B.2)d-"k k2-i-_ =

where

¢(x) = ¢(k) exp(ikxv_) dk, (B.3)

and

V = tO'rH, S = ra/rH , u -- rH/rV • (B.4)

In the above it is assumed that w' > 0. The dispersion relation for w' < 0 is easily obtained by

taking the complex conjugate of the w' > 0 dispersion relation and making the substitution

U21 ---4 --0J.

Physically acceptable solutions of Eq. (B.2) must be well behaved in the limit ]kl ---*oc.
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The most general small-k asymptotic behavior is

¢+(k),,_ A- 1
7r_ k + l +... (B.5)

for twisting parity modes, and

¢-(k) _- + 1 sgn(k) +... (B.6) rv -g k

for tearing parity modes. Here, A+ is the stability index for tearing parity modes, and A- is

the index for twisting parity modes (the labeling is conventional). In an incompressible layer

both parities are indistinguishable in Fourier transform space [i.e. ¢-(k > 0) = ¢+(k > 0)]

so that

_+= A-. (B.7)

Notethatina compressiblelayerthetwo paritiescanbe distinguishedinFouriertransform

spacebecauseofdifferentboundaryconditionsappliedtotheperturbedpressure.Thus,

(B.7)isonlylikelytoholdwhen plasmacompressibilityisnegligible.

2 High viscositysolutions

Tokamak plasmasareobservedtopossessanomalouslylargeperpendicularviscositywithan

effectivemomentum diffusivitysimilarinmagnitudetotheanomalousenergydiffusivity.27,_

ItfollowsthatSu >> l (i.e.Tn >> rv) isthe most physicallyrelevantorderingoflayer

parameters. _0

Consider the limit V3S2u >> 1, in which Eq. (B.2)reduces to the standard Whittaker

form z9

d2X 1

du 2 4 u2X - aX = 0 (B.8)

for [u[ <<:(VZS2u) I/4, where X = k¢, a = -exp(iTr/4)(1/2)(V3/u) 1/2and u = exp(-iTr/8)Vr2

(V3S2u)l/4k. For small u, the solution which is regular as u _ c_ is written
i

X _ i -exp(-br/8)2F(¼+])(V3S2u)I/,ik -}-... (B.9)
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from which the dispersion relation

A*=- exp(ilr/8) 7r F(¼+_)(Vv)_l/4 (B.10)
2 r(_+_)

is obtained using Eqs. (B.5)-(B.7). In the limit [a[ >> 1 (i.e. V >> u */z) Eq. (B.10) yields the

'ideal-inertial' result,

7r (B.11)At = -i V ,

in which inertia dominates both resistivity and viscosity in the layer. In the opposite limit

[a[ << 1 (i.e. V << u l/a) Eq. (B.10) yields the 'ideal-viscous' result,

A_=- exp(br/8)7r P(¼)(Vv)_l/4 (B.12)
2 r(_,)

in which viscosity dominates inertia and resistivity in the layer.

Consider the limit VzS2_ , << 1, in which Eq. (B.2) reduces to

d"-k k2 - i dk] _- 0 (B.13)

for k _<O(1), with solution

where a is an arbitrary constant. For k >_O(1), Eq. (B.2) takes the form

d2_ _-_ (V3S2v)k4_ (B.15)dk2 -

The solution which is regular as k --, c_ has the expansion 4°

" 62/3F(_) (VZS2v)l/_k +... (B.16)
¢,_ 1 rcA)

for (VZS2_,)l/ek << 1. Equations (B.5)-(B.7), (B.14), and (B.16) yield the 'visco-resistive'

dispersion relation,

/x_= -i 62/3_r(_)_VS5/%, 1/8 , (B.17)

in which viscosity and resistivity are of equal importance in the layer but inertia is negligible.
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3 Low viscosity solutions

The low viscosity ordering of layer parameters Su << 1 (i.e. 7"n << rv) is only relevant to

the relatively cold edge regions of tokamak plasmas. In the limit V3S >> 1, Eq. (B.2) can

be transformed into Eq. (B.8) with a _ (V3/t,) 1/2 >> 1. It follows that in this limit the

dispersion relation reduces to the ideal-inertial result.

Consider the limit V3S << 1, in which Eq. (B.2) reduces to (B.13) for k _<O(1), with the

solution (B.14). For k _>O(1), Eq. (B.2) takes the form

d2¢ - iu2¢ + ( St/_Y_ ua¢ (B.18)) '
where u = (V3S)l/4k. In the limit SI/2v/V 3/2 >> 1, Eq. (B.18) can be transformed into

Eq. (B.15) and the dispersion relation reduces to the visco-resistive form. In the limit

St/2v/V 3/2 << 1, Eq. (B.18) can be transformed into the standard Whittaker form, and the

solution which is regular as u --, c_ has the small-u asymptotic behavior

1 exp( ' "_'2r(_)
,_ - -llr/_)_(V3S)I/4k +.... (B.19)

Equations (B.5)-(B.7), (B.14), and (B.19) yield the Well-known 'resistive-inertial' result' 8

A+ . I (_) Vs/4Sa/4 (B.20)= - exp(,a/812V(
in which resistivity and inertia are important in the layer but viscosity is negligible.

4 Summary and discussion

In an incompressible plasma tearing and twisting parity modes have the same dispersion

relation, so that A+ = A-. The high viscosity results, valid when Sv >> 1, are

(I) /X_ =-i V IVl>> v'l_

(II) A +- -4.647exp[isgniV)lr18 ] (IVIv) -114 rill>> IVI >> S-ll3v -113 ,

(III) A _ = -2.104i VSS/6v _/6 S-l/3v -il3 >> IVI • (B.21)
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The low viscosity results, valid when Su << 1, are

71"

(I) A+= -i V IVl>> s -'/_ ,

(IV) A_=-2.124exp[isgn(V) 37r/8] [VIS/4S 3/4 S-1/3_>_>Ivl >> sl/3v2/3 ,

(III) A±=-2.104i VSS/eu_/6 S'/3u2/3>>IVl. (B.22)

The various regimes are termed the ideal-inertial (I), ideal-viscous (II), visco-resistive (III),

and resistive-inertial (IV). The layer widths are given by

(1) 6,a_r~ IVl,

(II) (_layer~ (iris),/, ,
rs

(III) 6"Y_----L._ (S)'/e ,rs

(Iv) e'_---z_~ . (B.23)
rs

The constant-¢ approximation 8 is valid whenever the resistive diffusion rate across the

layer exceeds the Doppler shifted mode frequency a/. This yields the criterion

-- << 1 (B.24)
\ r, ] \ r, ]

for the validity of the approximation. It is easily demonstrated that regimes (III) and (W)

are constant-¢ using Eqs. (B.21)-(B.24).

In Fig. 4 the boundaries of the various regimes are plotted in P-Q space, where P = Su

and Q = Sl/3[V[. In ohmically heated tokarnaks (P _, 10, w' _ W,e) resonant layers usually

lie in the visco-resistive regime. In tokamaks heated by unbalanced Neutral Beam Injection

(NBI) relative rotation velocities can become sufficiently large to allow layers to enter the

ideal-viscous regime, l° In edge plasmas the viscosity parameter P becomes less than unity but

generally remains large enough to prevent layers from entering the resistive-inertial regime.
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II Compressible single-fluid layer theory

1 The inviscid dispersion relation

In cylindrical geometry (i.e. neglecting field-line curvature and Pfirsch-Schliiter effects) the

tearing parity dispersion relation in an inviscid, compressible, single-fluid plasma is written *l

A+ = -2.124exp[i sgn(V) 31r/8] ]V]5/*S z/4 . (B.25)

This is equivalent to the resistive-inertial limit of Sec. B.I, which is the relevant limit for

resistive modes in an inviscid plasma. It is concluded that plasma compressibility does not

affect the dispersion relation for tearing parity modes.

The twisting parity dispersion relation in an inviscid, compressible, single-fluid plasma

takes the form 41'42

A- - exp[i sgn(l/) 3_/al 1-
A-'-'_= F(¼) P(¼ + _Q) (B.26)

in cylindrical geometry, where

Ac -- 2.124 _/6S_/_ , (B.27a)

_/3 (S.27b)V=S- ,

Q - exp[-i sgn(V)37r/4] I]V]_
3/2

\ Vc ] ' (B.27c)

= %#0 p(r,)
So2 , (B.27d)

Here, p(r) is the plasma pressure and % the usual ratio of specific heats.

The dispersion relation (B.26) has two distinct asymptotic limits:

A- __ -2.124crp[isgn(V)3_r/8] [V[5/4S 3/4 IV[ >> V_, (S.28a)

A- __2.704exp[i sgn(V) _r/8] _tSl/4
[V[1/4 IV] << V_. (B.28b)
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So, for IVI >> V_, (B.26) asymptotes to the tearing parity dispersion relation (B.25). On

the other hand, for IV I << V_, (B.26) reduces to a typical resistive interchange dispersion

relation. 1°It can be demonstrated that the imaginary part of A- is zero when IV I = 0.5615 V_

and Re (A-) = 1.130 Ac. This corresponds to the marginal stability point for the undriven

interchange mode. For A- < 1.130 Ac there are no intrinsically unstable roots of (B.26),

whereas for A- > 1.130A c the resistive interchange mode becomes intrinsically unstable

with a typical growth-rate 7rH _ V_.

Equations (B.28) suggest that the response of a twisting parity layer to a rotating external

magnetic perturbation is similar to that of a tearing parity layer, except when the imposed

frequency lies within a typical interchange growth-rate of the natural frequency (i.e. IVI <

½), in which case the response is greatly modified. This modification is such as to ensure

that IA-I never falls significantly below the critical twisting parity stability index needed to

destabilize the resistive interchange mode (i.e. IA-I _>AC).

The twisting parity dispersion relation can be modelled by writing

A- = A . + A c , (B.29)

where A+ is given by (B.25) and A _ by (B.27a). This formula reproduces all of the salient

features of the true dispersion relation, bor instance, it yields A- __ A+ for IV I >> V_,

with V_ given by (B.27b). It also implies that the marginal stability point of the resistive

interchange mode is A- = A c, with A- > Ac needed for instability. Finally, (B.29) suggests

that ]A-] _>A_ for an externally driven twisting parity layer as the driving frequency is

scanned across the natural frequency.

2 The viscous dispersion relation

It is not possible to obtain an exact analytic twisting parity dispersion relation for a viscous,

compressible plasma. 41 However, the model dispersion relation (B.29) can be generalized to
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take viscosity into account using the following arguments. The usual criterion for the neglect

of plasma compressibility in resonant layers is

w'>> kll cs, (B.30)

where kll is the typical parallel wavenumber, and c, = y[Tsp/p is the sound speed. Equa-

tion (B.30) can be shown to reduce to

IWl>>Vc- _ _,.y_r. (n.31)
rs

Thus,intheideal-viscous(If),visco-resistive(Ill),and resistive-inertial(IV)regimes:

(II) Vc= _2/3v'/3, (B.32a)

,_,12u 1/6 (B.32b)(m) v_= p, s-_ '

/3_/3 (B.32c)(Iv) Vc= s,/---q ,

where use has been made of Eqs. (B.23). Note the identity of Eqs. (B.27.b) and (B.32c).

Clearly, the parameter V_ in Sec. B.II.1 is equivalent to the (normalized) mode frequency

above which compressibility effects are negligible. Thus, (B.28a) is the incompressible twist-

ing mode dispersion relation [note that this is equivalent to the tearing mode dispersion

relation (B.25), as hypothesized in Sec. B.I.1], and (B.28b) is the related compressible dis-

persion relation.

A comparison of Eqs. (B.25), (B.27a), and (B.2To) shows that the critical stability index,

Ac, needed to destabilize the resistive interchange mode in the resistive-inertial regime (IV) is

equal to IA+(V_)I,where A+ is the tearing mode (or incompressible twisting mode) dispersion

relation. It is assumed that this equality holds in all regimes, which yields the generalized

result:

4.647
(II) Ac = (B.33a)

/_/6/2113 '
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(III) Ac = 2.104 _12S21:_v11_ , (B.33b)

(IV) Ac = 2.124 _/6S'/a, (B.33c)

where use has been made of Eqs. (B.21) and (B.22). It is easily demonstrated that Eqs. (B.32c)

and (B.33c) are valid when Sv << _t, Eqs. (B.32b) and (B.33b) when _t << Sv << 1/f_t, and

Eqs. (B.32a) and (B.33a) when 1/f_t << Sv. In a typical ohmically heated tokamak plasma

Sv _ 10, so (B.32b) and (B.33b) are the most physically relevant critical parameters. 19The

boundary between compressible and incompressible layer physics (i.e. IV] = Vc) is plotted in

Fig. 4. It can be seen that ideal-inertial (I) layers are always incompressible.

Compressible layers are subject to the well known Pfirsch-Schliiter enhancement of inertia

(by 1 + 2q2) in toroidal geometry. 16This implies that

7"H --4 V/1 + 2q2(rs)rH,

Zt -* [1 + 2q2(rs)l _t , (B.34)

for IVI < ½. In fact, V_ is usually quite small compared toa typical diamagnetic frequency

(see Sec. VI), so the enhancement of inertia is generally unimportant when dealing with the

interaction of layers possessing widely dispersed natural frequencies.

III Two-fluid layer theory

The most important consequence of introducing two-fluid effects into the inner region is to

cause the various different types of instability to propagate at different frequencies. Accord-

ing to Coppi, a3 tearing modes propagate at the EAB plus the electron diamagnetic frequency,

resistive interchange modes at the E A B frequency, and inertia dominated (i.e. ideal) modes

at the E A B plus the ion diamagnetic frequency. Thus, the natural frequency of tearing

parity resistive modes (i.e. the propagation frequency of uncoupled drift tearing modes) is
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likely to differ from the natural frequency of twisting parity resistive modes (i.e. the propaga-

tion frequency of uncoupled resistive interchange modes) by a typical electron diamagnetic

frequency. This statement is, of course, a gross oversimplification but is, nevertheless, in

general agreement with conclusions drawn from detailed stability calculations for tearing

and twisting parity drift modes. See, for example, Figs. 4 and 9 in Finn et al.,48 Fig. 4 in

Kim eta/., 44 and Figs. 2 and 5 in Kim and Choi. 45

IV Conclusions

In a typical ohmically heated tokarnak plasma the response of a tearing parity layer to a

rotating external magnetic perturbation is governed by the visco-resistive dispersion relation

of Sec. B.I, so that
THII3_.516

IR

A+(a;) = _2.104 i (a; _ a;+) l/e , (B.35)
rv

where a; is the applied frequency, a;+ is the natural frequency for tearing parity modes, and

r_, rR, and rv are the local hydromagnetic, resistive, and viscous time-scales, respectively

(see Sec. B.I.1). The natural frequency a;_"is the propagation frequency of the uncoupled

drift tearing mode, and is determined by local equilibrium fluid flows.

In a typical ohmically heated tokamak plasma the response of twisting parity layer to a

rotating external magnetic perturbation is well approximated by

rHl13_.516

°R A cA-(a;) = -2.104i (w- Wo) l/e + (B.36)
rv

where

r_/3 (8.37)A e = 2.1048_/2 1/s l/s
rI4 rV

is the critical twisting parity stability index needed to destabilize the resistive interchange

mode. The parameter 13tis a measure of the stabilizing effect of plasma compressibility [see

(B.27d)]. In Eq. (B.36), a;o is the natural frequency for twisting parity modes (i.e. the prop-
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agation frequency of the uncoupled resistive interchange mode). In general, the difference

between w+ and w_- is of order the local electron diamagnetic frequency.
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Figure Captions

1. Bifurcation curves for locking to the tearing and twisting resonances at a general ra-

tional surface, y+ [defined in Eq. (42d)] is the normalized locking torque due to the

tearing resonance, and y- [defined in Eq. (42e)] is the normalized locking torque due

to the twisting resonance. The solid curves correspond to locking to the tearing res-

onance, whereas the dashed curves correspond to locking to the twisting resonance.

Curves are shown for various different values of the unperturbed normalized frequency

fl [defined in Eq. (42b)].

2. The plasma displacements associated with a high-n global resistive instability before (a)

and after (b) the bifurcation. The dashed lines represent rational surfaces. Before the

bifurcation all the rational surfaces possess local twisting parity. After the bifurcation

alternate rational surfaces possess local tearing parity (outside the resistive layers),

leading to the formation of interlocking mn_etic islands. In both cases the structure

repeats after every fourth rational sur

3. The plasma displacements associated with a high-n global resistive instability in thei

limit where the difference between the natural frequencies of tearing and twisting modes

is negligible. The dashed lines represent rational surfaces. All of the rational surfaces

possess local tearing parity (outside the resistive layers), leading to the formation of

magnetic islands on every surface. The structure repeats after every fourth rational

surface.

4. Boundaries of the various layer regimes in P-Q space, where P = Su and Q = S1/a[VI

[see Eqs. (B.4)]. The solid lines are the boundaries between the major regimes: i.e. the

ideal-inertial (I), ideal-viscous (II), visco-resistive (III), and resistive-inertial (IV). The
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dashed line represents the boundary between compressible and incompressible layer

physics (compressible layer physics lies on the low-Q side of this line).
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