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Abstract

In this dissertation, we present some of the recent advances made in solving
two-stage stochastic linear programming problems of large size and complexity.
Decomposition and sampling are two fundamental components of techniques to
solve stochastic optimization problems. We describe improvements to the current

techniques in both these areas.

We studied different ways of using importance sampling techniques in the con-
text of Stochastic programming, by varying the choice of approximation functions
used in this method. We have concluded that approximating the recourse function
by a computationally inexpensive piecewise-linear function is highly efficient. This
reduced the problem from finding the mean of a computationally expensive function
to finding that of a computationally inexpensive function. Then we implemented
various variance reduction techniques to estimate the mean of a piecewise-linear
function. This method achieved similar variance roductions in orders of magnitude
less time than, when we directly applied variance-reduction techniques directly on

the given problem.

In solving a stochastic linear program, the expected value problem is usually
solved before a stochastic solution is attempted. This enables us to understand the
value of the stochastic solution and also to speed-up the algorithm by making use ot
the information obtained from the solution of the expected value problem. We have
devised a new decomposition schete to nprove the convergence of this algorithm
We have shown that this method wives a monotonically decreasing sequence -
upper bounds whereas the regular decomposition scheme does not. We have al>
demonstrated that the added computational burden is insignificant compared
the reduction in the number of iterations and the resulting gain in CPU time.
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Preface

Uncertainty has been one of the most difficult aspects to incorporate into an
optimization model designed to solve complex real life problems. Often tirmnes. in
practice, the uncertain parameters of the problem are replaced by their mean values
or most probable values. While it was realised that a model that incorporates
uncertainty is bound to give superior results to the one that does not, the resuliting
increase in the size and complexity of the models and non-existence of software that
can solve such models quickly at a low cost has deterred modelers from abandoning

the simplistic approach of the past.

The search for algorithms that solve these larger problems in less time continues
to be a fundamental research goal. Advances in this area, together with the advances
in the speed and capacity of computers in the 1980's and ea.rly 90's has made it
possible to solve problems that were once considered intractable. In particular, it
is now, within the scope of existing technology to solve models that hedge against

some of the future uncertainties.

In this dissertation, we present some of the advances upto 1993 made in solving
stochastic optimization problems. Decomposition and sampling are two of the fun-
damental components of these newer techniques for solving stochastic optimization
problems. We describe improvements to the current techniques in both these areas,

improvements that enable us to solve much larger problems in a shorter time.

We begin in Chapter I by describing the formulation of a two stage stochas-
tic linear program, that can be used to model the uncertainty of many real-life
problems. We also review a few approaches used to solve these problems.

Chapter II discusses the incorporation of monte carlo sampling into existing

vii



algorithms to solve two-stage stochastic linear programs. [mprovements to the exist-
ing methodology are suggested. The efficiency of these improvements are reported

at the end of this chapter.

Chapter III illustrates the advances made in the area of decomposition tech-

niques for non-stochastic problems. This is followed by numerical results.

We conclude with Chapter IV which summarizes the advances made in this

dissertation and suggests future areas of research.
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Chapter 1

Introduction

1.1. Two-stage Stochastic Linear Program

Planning under uncertainty has been a rapidly growing subject in the field
of Operation Research. Since its inception in 1935 by Daatzig (1955) (8] and in-
dependently by Beale (1955) (3], many researchers have contributed to this area.
Wets and Kall (1976) [26], Dempster (1980) {13], Ermoliev (1988) [16] and Infanger
(1993) [24] are some of the books entirely devoted to this subject. Research in
this area is started by formulating models that incorporate uncertainty. A typical
stochastic programming problem can be formulated as: ‘

Min E(z(z))
(1.1)
st.zeCCR"

where z(z) is a random variable defined on the probability space (2, 7, P) and C
is a convex set. (In the remainder of this thesis, we also use Epz{z,w) to mean
the expected value of the random variable z(z). In general, the expectation of a
random variable X is represented either by E(X) or by EpX(w)). However, the
exact nature of the constraints and the dynamic nature in which realizations of the
random parameters are observed, give forth to different specific models. One such
formulation is the classic two-stage stochastic linear program which is expressed as
follows:

z* = min cz + EpQ(z,w)
s.t. Az =b
z 20 (1.2)



Chapter I: Introduction

where Q at any given decision r is a random variable defined on the probability
space (2, F, P). The value of Q at a given decision z and at a given point w € Q0 is
denoted by Q(z,w) and is given by the following expression:

Q(z,w) = mincy(wly(w)
s.t. D(w)y(w) =d(w) + B(w)z
y20 (1.3)

where c3, d are random vectors and D, B are random matrices defined on the same
probability space (2, F, P).

In this formulation, decisions are made in two stages. In the first-stage, some
decision z, an n; x 1 vector, is made subject to Az = b,z > 0 where A is a known
my x n; matrix and b is a known m,; x 1 vector. The first-stage cost associated with
this decision z is cz, where c is a known 1 xn; vector. After this, the spccific outcome
w of the underlying random vector is observed. This determines the coefficients
c2(w) which is a 1 x ng vector, B(w) which is an mz x n; matrix, D(w) which is
an m, x n, matrix and d(w) which is an m; x 1 vector . Then the second-stage
decision y(w), an na x 1 vector, is made so as to minimize the cost c2(w)y(w) subject
to the second-stage constraints D(w) = d(w) + B(w)z, y 2 0. Q(z,w) represents
this minimum second-stage cost of the decision r at the outcome w. It is also called
the recourse function. The objective of the model is to choose a first-stage decision
z, subject to the first-stage constraints, that minimizes the sum of first-stage cost

and the expected second-stage costs.

As an example, consider the problem of capacity expansion for an electric
utility company. Here the first stage decision would consist of the amount of new
capacity to be acquired, the choice of technology used to generate electricity and

placement of new facilities etc. The second stage decision would correspond to the

2



Chapter I: Introduction

daily operations of all the plants operated by the company. The uncertainties can
include demand for electricity, non-availability of built-in capacity due to random
failures, etc. This problem can be modelled as a two-stage stochastic linear program

described above.

1.2. Review of Solution Techniques

The two-stage stochastic linear program has been studied extensively. Solu-
tion techniques combine methods of Operations Research, like linear and non-linear
programming, with traditional statistical methods, like estimation and monte-carlo

sampling theory etc.

Some solution techniques are designed to take advantage of the special matrix
structure of the problem. For example, Van Slyke and Wets (1969) [35] describe how
Benders (1962) (4] decomposition can be applied to solve the two-stage stochastic

linear programs.

Mathematical programming techniques are applied in special cases by Nazareth
and Wets (1986) {30]. The same authors have given an overview of application of
non-linear programming techniques in stochastic programming, see e.g., Nazareth
and Wets (1988) [31]. However, in the case of stochastic optimization the ex-
act function evaluations and gradients required by general non-linear programming
techniques are difficult . To overcome this problem, stochastic quasigradient meth-
ods have been desigaed by Ermoliev (1988) [15]. Implementations of these methods
has been studied by Gaivoronski (1088) [18].

When the exact solution of the problem is not possible or not practical to do.

approximate schemes are devised to obtain bounds. This can efficiently be done in

3
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the case where uncertainty is restricted to the right-hand side of the linear program
in (1.3) . If so, the dual of (1.3) has a feasible region that is not random. Using
this fact and Jensen's (1906) [25] inequality for convex functions, a lower bound

for z* can easily be constructed. Upper bounds can be constructed as explained in
Edmundson (1956) [14] and Madansky (1959) [27].

Some of the techniques described above such as Van Slyke and Wets [35],
consider all the scenarios of the underlying random parameters. This limits the
application of such methods to problems with only a moderate number of scenarios.
To tackle problems with large number of scenarios, sampling techniques have been
combined with some of the m~thods mentioned above. For example, Gaivonron-
ski and Nazareth (1989) [17] use a combination of generalized programming with
sampling methods. Pereira et.al. (1989) [32] used the control variates technique
along with Benders decomposition. Higle and Sen (1989) [22] developed a modified
Benders Decomposition method that uses only one observation per iteration or a
very small sample size. Dantzig and Glynn (1990) (7] have devised a combination of
monte carlo importance sampling and decomposition techniques, which is further
developed by them and Infanger (1991) (23]. In this thesis, we make significant
improvements to their approach in both the areas of decomposition and sampling

techniques.

In the remainder of this chapter. we will briefly describe this approach so as
to lay the background for the enhancements we made. For more details on this

approach and numerical results. we refer to Infanger (1993) [24].
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1.3. Current Methodology

Let us consider a two-stage stochastic linear programming problem defined on
a discrete probability space with finitely many scenarios. For the purpose of this
discussion we will consider a model where randomness is restricted to the right-hand
side of the feasible region in (1.3) , i.e., only B and d are random and c; and D are
not random. Let Q@ = {w),...,wap}. We denote the probability of a scenario w, by
pi» B(wi) by By, y(w;i) by yi and d(w,) by di. Thus, the problem in (1.2) can be

restated as a single linear program as follows:

z* = min cz+pic2yn +... +pmCIymM

s.t. Az =}
-Byz+ Dy =d,
—Bpmz + Dym=dum
Z , Yi oy oo oy yMZO (14)

The current methodology adapted by Dantzig and Glynn (1990) (7] and In-
fanger [23] solves the problem in (1.4) by a combination of Benders Decomposition

and importance sampling.

Benders decomposition algorithm is an iterative scheme in which the succes-
sively refining outer approximations are built for the expected value of the recourse
function. Each iteration consists of a master problem and a set of subproblems.
The master problem solves an approximation of the original problem, in which the

recourse function is replaced by its current approximation. The subproblems are

5
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used to refine the current approximation to the recourse function by evaluating
the gradient of the recourse function at a given first-stage decision supplied by the

master problem of that iteration.

The master problem at iteration t has the following form:
czy + 87 =min ( cz +0)

s.t. Az =b

M
Yo pimt(wiyzioy)Biz+ 02 Y pim*(wi, zi_,)d;
>

=1 i=
T 0. . (1.5)

At iteration t = 0, there will not be any constraints involving and't‘he variable 8
will be dropped from the problem. There are M subproblems at every iteration, one
for each scenario w of the underlying random parameter vector. The subproblem
at iteration t, corresponding to scenario w; has the following form:
c2y®(wi, z7) =mincay;
s.t. Dy, =d, + B,z} | n*(wi, zi)
yi 20. (1.6)

The vectors 7*(w;,z%),i =1,...,M and s =0,...,t~1, used in the master problem
(1.5) are the optimal dual multipliers of the subproblem corresponding to scenario
w; in iteration s. Similarly, the z{ used in the right-hand side of the subproblem

(1.6) is the optimal solution of the master problem at iteration t.

Observe that the master problem (1.5) is equivalent to the following problem:
z{ = min cz + Q%(z)
s.t. Az =b

z 20 (1.7)

6



Chapter I: Introduction

where

Q'(z) = max Ep(r*(w,z})(d(w)+ B(w)z)). (1.8)

0<s<t—1
However, by writing the dual of (1.3) and by noting that »*(w,z}) is a feasible
solution for that problem, we can see that Q'(z) < EpQ(z,w). It then follows that,

z{ is a lower bound for z*.

Since z} is a feasible first-stage decision, an upper bound for the optimal value

z* can be constructed as follows:

M
z, =czp + Zczy‘(ui,z:). (1.9)

=1

The flow of information in this algorithm is shown in the following figure.

ey

[ “M(Ll)j [ Seb Problem (LM) L]

T~
)

{ Master Problem (t+1) J

Fig.1 : Flow of information in Benders Decomposition

According to the approach just described, one would have to solve M subprob-
lems at every iteration. This can be prohibitively expensive if M is large, as 1t
is likely to be in complex real-life models. Therefore a promising approach is to
modify the algorithm so that only a few subproblems have to be solved in each it-
eration. These can be selected through a statistical sampling scheme which enables

us to make probubilistics statements about how close the objective of the resulting

7
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solution is to the true optimum value. Thus, if we choose S, to be the set of samples

chosen in the t-th iteration, we would have a master problem which has the form:

czy +6f = mincr+46
s.t. Az =b
~ 15 é m*(w,25)B(w)z + 6 2 gy :‘:g **(w, 2 )d(w)
] 0 )

~ e; m*(w,zi)Blw)z +8 2 5l GZ; T (w, 7}, )d(w)
- t-1 w t=1

z 20 (1.10)

and n¢ = | S| subproblems defined by (1.6) . We would then have

..;f‘=ca:,'+Zczy'(u.,x:) (1.11)
1€S:

which is an unbiased estimator of an upper bound of z*. However, 7} = cz}§ + 67 is
not necessarily an unbiased estimator of a lower bound for z*. Infanger (1993) (23]
explains how to modify the lower bound in order to construct a confidence interval
for z*. The choice of sampling scheme used is crucial for fast convergence of this
algorithm. In their approach, Dantzig and Glynn (1990) [7] and Infanger (1993) (23]
used importance sampling with great success. We provide a detailed description of

their scheme in Chapter 2.

This basic framework for solving stochastic programs has been further devel.
oped in three directions. Morton (1993) (28] studied the stopping rules for algo-
rithms with sampled upper and lower hounds and applied them to solve stochastic
programs. Infanger (1993) (24| and Morton (1993) {28] studied extenstions of this
framework to Multi-stage stochastic programs. In this dissertation we study mod:-
fications to the sampling schemes and decomposition methods in order to improve
the speed of the algorithm.



Chapter 11
Sampling Strategies

2.1. Introduction

Multi-dimensional integration is an important aspect of stochastic program-
ming. In general, whenever one has to make an expected-value statement about
a model that incorporates uncertainty, one is faced with the problem of integra-
tion. When one incorporates many random parameters into a model ia order to
capture the nature of uncertainty, each additional random parameter contributes to
higher dimensionality of the problem. When the parameters are discrete this leads
to the explosion of the number of possible scenarios. Moreover, in stochastic pro-
gramming the functions that are to be integrated are rarely smooth and analytical.
Thus, higher dimensionality and the non-smooth nature of the integrand mainly

contribute to the challenges of multi-dimensional integration.

Multi-dimensional integration has been studied widely. Some of the survey pa-
pers are, e.g, Deak (1988) [12], Haber (1970) [21] and books , e.g., Stroud (1971) (34]
and Davis and Rabinowitz (1975) [11]. In particular, the first paper studies multi-

dimensional integration in the context of stochastic programming.

We begin our discussion by showing where multi-dimensional integration arises
in the context of stochastic programming. This enables us to exhibit their special
structure. We follow this with a brief discussion of variance-reduction techniques

used to improve the accuracy of the multi-dimensional integration. We then present

9



Chapter II: Sampling Strategies

importance sampling as a tool to address integration problems in the context of
stochastic programming. Next we describe the current usage of importance sam-
pling and a scope for its improvement. Finally, we suggest a new way of implement-

ing importance sampling and show its effectiveness through numerical examples.

Multi-dimensional integrals arise naturally in stochastic programs. They are
part of the models as well as the algorithms that are designed to solve the mod-
els. In the two-stage stochastic programming model, described in (1.2) , the second
stage costs are described as an integral. Even if we decide to solve this problem
through a deterministic approach by using the expected values of the inherent ran-
dom parameters, to understand the effectiveness of such a method we still would
need to perform a multi-dimensional integration. Clearly, in algorithms such as the
ones described in the previous chapter, which attempt to hedge against the uncer-
tainty, multi-dimensional integration has to be performed at every iteration. Also
in chance constrained models described in Prékopa (1988) [33], one often needs to
compute the probability with which a given constraint is satisfied. This too falls
under multi-dimensional integration. In the ensuing discussion, we treat integration

and evaluation of expectation synonymously.

There are many different techniques to carry out numerical integration. For a
review of these techniques refer to Deak [12]. Most methods except those based on
the concept of statistical sampling are not practical for large problems, especially
those problems having non-smooth functions or non-smooth probability distribu-
tions. Since, the problems we consider fall into this latter category, we will restrict

ourselves to sampling methods.

10



Chapter II: Sampling Strategies

2.2. Sampling methods

These are used for integrations that are too difficult to solve analytically. In
general, as the number of variables increases, sampling becomes the only viable
choice to evaluate expectations of multi-dimensional functions. The fundamental
idea behind a sampling method is to approximate the given probability distribution
by an empirical distribution having nice properties and then use it to approximate
the integral in question. Consider a random variable f defined on a probability
space (2, F, P). For the purpose of illustration we will assume the existence of a

density function p. Consider the problem of estimating 6, the mean of f, given by,

0= /n Flw)plw)d.

Let wy,...,wn be nindependently randomly drawn samples according to the density

p. Let p be the approximation to the density p given by

oyt ifwe{w .. wal} 921
?(u) {0 otherwise ' (1)
The integral using this approximate probability mass function is given by
R ) ] —
9=Zf(w)p(w)= ;Zf(u.-). (2.2)
Q 1=1

6 is an estimator of §. There are many nice properties of such an estimator,
like unbiasedness, which make it a very popular method to approximate integrals.

The variance of this estimator is given by

|

02
n

l{/ fHw)p(w)dw - 92}. (2.3)
n N

11
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An unbiased estimate of 0%/n is

52
=, (2.4)
where
1 < .
S? = n__lz_‘;(f(u.)-e)’. (2.5)

This variance can be quite large and in such a case we need a large sample size
to get the desired accuracy. The convergence rate of this estimator is 1/\/n. For
example if a sample of size ng gives us an estimator accurate to one decimal point,
it requires a sample of size 100n, using this method to give an estimator accurate

to two decimal places.

Clearly, this is unsatisfactory in many cases. Especially, in stochastic program-
ming, where expectations have to be evaluated at every iteration of an algorithm,
large sample sizes can slow down the algorithm considerably. However, sampling
need not be done naively, i.e., simply following the given probability distribution as
described above. It can be done instead in conjunction with special techniques, to
either improve accuracy or speed up convergence. One such class of special tech-
niques is known as variance-reduction techniques. Notable among these are impor-
tance sampling, control cariates technique, antithetic variates technique, common
random-numbers technique and Stratification. These techniques help to reduce the

variance of the estimator in different ways.

For example, suppose we are interested in estimating the expectation of the
difference of two random variables, which are positively correlated. Recall that, to
generate a sample from any probability distribution, we first generate a sequence
of random numbers uniformly in the interval [0,1] and apply a suitable transfor-

mation on these. The common random-numbers technique uses the same sequence

12
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of random numbers, instead of estimating both the parameters independently, to
reduce the variance. On the other hand, if the original random variables are neg-
atively correlated, we can use one stream of random numbers, say Uy,...,U,, to
generate sample points of one random variable and use 1 -~ U},...,1 = U, for the

other random variable where 0 < U, < 1.

On the other hand, suppose we want to estimate the expectation of one ran-
dom variable, by taking average values over a large number of replications. The
method of antithetic variates suggests creating dependence between replications in
order to reduce the variance of the estimator. Method of stratification refers to di-
viding the sample space into disjoint ‘strata’ and taking samples from each stratum
separately. This would enable us to sample more from a stratum that contributes
more to the overall variance. A detailed discussion of these methods is available in
Bratley et.al. (1983) (6]. However, in stochastic programming, we do not often have
enough information on the monotonicity of the functions involved or the variability
in different strata to apply these techniques. Thus we decided to use a combination

of importance sampling and control variate techniques as a variance-reduction tool.

In the future, we will refer to the scheme, described in (2.1) -(2.5) , where no
effort was made to reduce variance, as naive sampling. We define the merit of any

variance-reduction technique, in relation to that of the naive-sampling approach.

2.3. Importance Sampling

Importance sampling is a variance-reduction tool that is often used in sim-
ulation of complex phenomena. It is particularly designed to address the situa-

tion in which there are certain scenarios that are extremely rare, yet significantly

13
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contribute to the average measure of performance that is being estimated. Naive
sampling would take a long time before some of these rare events are picked up
in the sample. An estimate computed without observing these rare events might
not accurately represent the true value of the desired parameter. These consider-
ations usually translate into large variances of the estimator. In trying to rectify
this situation, importance sampling method tries to reassign the probabilities to the
events so that the new probability of an event represents both its natural frequency
of occurrence and its importance. The importance of an event is assessed by the
contribution of it to the parameter that is being estimated. Of course, a certain
corrective action has to be taken to eliminate the bias introduced through this re-
assignment. For more details on importance sampling we refer to Bratley et.al (6],
and Glynn and Iglehart (1989) [20].

First we formalize these ideas below. Then we describe the rare events that
are encountered in stochastic programming. We go on to describe why importance
sampling is a suitable tool even in cases where there are no special very rare events.

This discussion is followed by various implementation issues of importance sampling.

Let
6= /ﬂ F(w)p(w)dw

where the outcome w of the underlying random parameter is a vector with r com-
ponents (w!,...,w"). In naive sampling we choose a set of samples {(wy, ... ywn)}
according to the multivariate probability density p. At each of these points w = w,
we evaluate the function f(w). In imuportance sampling , we use a new probability
density g(w) to choose sample points. However, if we evaluate the function f(w) at

these points, we would be estimating

/ Flw (e oo
Q

14
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which is not the value # we want. Therefore, as a corrective action, we evaluate,

with respect to the probability density g(w), the expected value of

w)p(w)/q(w).

Observe that, this restricts the choice of the new probability density to those den-

sities that are positive for every w € Q. Thus we are estimating

/ £ w)p(w)
g(w)

which also equals 8, the desired parameter. The variance of this estimator is given

by
FAw)p?(w) (w)
2/n = {/ Z(u) (w)dw — 0’}

-{[ £ ne).

Clearly, the amount of variance reduction, if any, depends on the choice of g(w). For

(2.6)

example, as we said earlier, if g(w) is chosen to be proportional to f(w)p(w), then
it must equal f(w)p{w)/@. This is because, in order for g(w) to be a probability
density, it has to integrate to one. Using this choice of g(w) we will get a variance
of zero. However, this choice assumes we know the value of 8, the very parameter
which we are trying to estimate, and hence is not available to us as a correction
factor. However, it does provide us with a clue for finding a new density g(w) that
is approximately proportional to the product p(w) x f(w) and at the same time is
easy to use. In the future we refer to such a g(w) as an importance density. We will
discuss how to achieve this end after we motivate the use of importance sampling

in the context of stochastic programming.

To construct a good importance density, we will look into both the function

f(w) and the probability density p(w) and try to approximate them. We denote the

15



Chapter II: Sampling Strategies

approximation function for f(w) by ['(w) and we denote the approximation function
for p(w) by n(w). Thus the importance density ¢(w) will be given by

[w)n(w)
- (2.7)

where [ = fn [(w)n(w)dw. In estimating the expected second stage costs of a
stochastic program, the variation in the function f(w) typically plays a larger role
than the variation in the probability of different scenarios. Therefore we will first

concentrate on only approximating the function f(w) in order to construct an im-

portance density. Thus we have

§=T w dw .
| swrate) (28)
where, ' = [ T'(w)p(w)dw, g(w) = [(w)p(w)/T and
p(w) = %%% (2.9)

Let us recall that the function that we are trying to integrate is given by

f(w) =mincly (2.10)
s.t. Dy=d(w)+ B(w)z
y20

where z is a known vector. By writing the dual of the above linear program, we
can also express it as
f(w) = max(d(w) + B(w)z)m]
s.t. DTr;<c,. (2.11)

Often, the random vector d and the random matrix B have a simple additive
form in terms of the components of the underlying random parameter vector. For
example,

dw)=do +dyw' +... +drw™ (2.12)
B(w)=Bo +Biw ™t + ...+ Br—pw" (2.13)
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where dy, . .., d,, are deterministic vectors and By, ..., B,_,, are deterministic ma-
trices and w!,...,w" are scalar components of the outcome w. This structure is
particularly useful if the components of the random parameter vector are indepen-
dently distributed, i.e., p(w) = II]_, pi(w").

2.3.1. Additive Approximation

To estimate the expected value of this function, R.Entriken and M.Nakayama
in Dantzig et.al {10]developed an approximation function that is additive in the
components of the underlying random parameter vector. This function has the
form:

D(w)=To+ (W) +...Trw"). (2.14)
To choose the constant I'y and the univariate functions I'y,...,[', they considered
what is called a base case scenario ¥. The approximation is designed to be an
additive function that equals the original function f(w) at all points obtained by
varying one coordinate from the base case scenario while keeping the others fixed

at the base case values. This definition leads us to the function:
D(w)=f(¥',...,¥")
+f(w1v"'7w's"'vwr)-’f(wli--'ywr)

+ f(¥r, W) = (Y, YT)

F Lt W) = f(W, L YT). (2.15)
Clearly, we have
F(tﬁ‘,...,u',...,wr) = f(w"...,u',...,tﬁr)

for every 1 < i < r and for every w'. Moreover, the univariate function I'; in

(2.14) is given by
Ti(w') = f(¥',...,w's . ¥T) = f(1, . ¥7) (2.16)
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and the scalar 'y is given by

= f(¥',... ¥"). (2.17)

In this case, application of importance sampling can be described as follows.
0= [ oo
f(w)
= f0)+ [ FAZL M) - T e

_ f(u £(¥) ;
= {0+ | 55T (;F( ))p(u>du (2.18)
_.f(‘I')+ZI’ / f‘: ‘p)r 1',?(“‘)@

—f(\I')+ZI‘/ —(-“’—f”’ﬁlm

=1 '

where p(w) = :;:ﬂ'” and ', = [ T\(w)p(w)dw

When the components of the underlying random parameter vector are inde-

pendently distributed, we have

9=f(\];) +Zf.‘/ p(w)l‘;(u')n_g':xpj(u-’)dw

I\
. (2.19)
=1+ T8 [ s [T o)
= it
where '
Gl = E-—‘Lf‘f’-(-“il (2.20)

Notice that, in this case of independent distributions, evaluating I'; is reduced

to a one dimensional integration. To evaluate this exactly, we need to be able

18



Chapter II: Sampling Strategies

to evaluate the function [i(w') at all possible outcomes w'. In practice, when
the random parameters are discrete, number of outcomes of any single random

parameter are not too high. Therefore, I'; can be computed easily.

Thus, to implement importance sampling in this case, first we perform r one
dimensional integrals to evaluate [',’s. Then we compute r modified one dimensional
densities ¢;(w'). The original parameter 6 is expressed as a sum of r integrals, each
of which is estimated through sampling. We select a sample size n; to estimate the
i-th integral. The n;’'s are chosen to add up to a fixed sample size n allocated to

estimate 6 and are chosen roughly proportional to T;.

To estimate the i-th integral, we choose a set of sample vectors {wy;,...,win,;}
where the i-th component of each vector is chosen according to the new probability
density ¢; and all the other components are chosen with respect to the original

probability densities. Let

. 1 &
;= — 2
M=~ ; ply) (221)
and
: 1 - / 2
st = n.--xg""“’”)“M")' (2.22)
The estimator for 0 is given by
6= f(¥)+) LM (2.23)
=1
with estimated variance of )
—~ [':§?
4t = ——1 (2.24)
ny

By choosing an appropriate base case, the variance in (2.24) can be much

smaller than the variance in (2.4) . The experiment of M.Nakayama in Dantzig
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et.al. {10]consisted of estimating the second stage costs of a multi-area capacity
expansion model with 192 universe scenarios. They used a sample size of 10 for

both importance sampling and naive sampling and achieved a variance-reduction of
20000 times.

2.3.2. Need for other approximations

The additive approximation described in the previous section works very well in
certain problems. In the capacity expansion example mentioned above, the second
stage costs expressed as a function of the random scenario are almost additive,
thereby giving us a very high degree of variance-reduction. This would be the case
if, for various levels of demand contingencies, the method of supplying remains
the same. For example, if the capacity built-in is very high, then all demand
contingencies can be met by simply operating the plants at appropriate levels. On
the other hand, if the capacity is very low, most of the time the demand is met
through an outside source with a different, and usually very much higher, cost. In
either case, the cost function would remain more or less additive. Mathematically
speaking, if the optimal basis in (2.11) remains the same for most values of w, then
the function would be very close to being additive in w. However, there will be cases
in which the built-in capacity is enough to meet the demand up to a certain level
but not beyond that. In such cases, the cost function would not be additive and
the additive approximation would not give very good results, though it still might

be a lot better than naive sampling.
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Fig. 1

The picture in Fig. 1 illustrates this point. In this example, the cost function
is made up of two planes of different slopes. By taking the base case to be the
scenario corresponding to the lower left hand corner of the box in Fig. 1, the
additive approximation function is exactly equal to the true function along the two
axes. Since all the points on the two axes have the same slope, the resulting additive
approximation is a additive linear function which simply projects the lower slope
onto the complete domain. It is easy to see that this would underestimate the real

function considerably in the neighborhood of the upper diagonal corner D.

The performance of additive approximation depends on the choice of the base
case ¥. For example, by taking the upper right hand side corner in Fig. 1 as the
base case, one can get a better approximation. In general, for the the new density
gi(w*) in (2.20) to be non-negative we must have [';(w') in (2.16) to be always
non-negative or always non-positive. This is easily achieved if we can identify a
scenario under which the second stage costs are minimized or maximized. For
example, if the random pal;a.meters involve exogenous demands and levels of built-in
capacity that are actually available, choosing lowest possible demands and highest
levels of available capacities gives us a scenario which minimizes the second stage
costs. However, when no such scenario is naturally available or when finding such a
scenario is computationally expensive we need a different strategy. We will address

this problem in later sections.

Finally, additive approximation by definition ignores the impact of joint vari-
ability of the arguments on the function. Therefore, it can be conjectured that
the higher the number of arguments, the greater the chance that additive approx- .
imation does not provide a good approximation to the original function. We will

demonstrate through numerical examples where this indeed is the case.

21



Chapter II: Sampling Strategies

For the above mentioned reasons we have decided to look at other approxi-
mation functions to implement importance sampling. First, let us identify some of
the important characteristics that a ‘good’ approximation function should posses.

These are described below.

e I'(w) should be a good approximation to f(w)

e [t should be easy to evaluate ['(w)
(2.25)
e It should be easy to sample with the new density g(w) obtained from I'(w).

o It should be easy to compute the mean of the approximation function, I

We can evaluate different schemes that we mentioned so far, under the above
criteria. Observe that naive sampling can be considered as an importance sam-
pling scheme in which a constant function is used as the approximation function.
Therefore, it satisfies the last three of the above criteria but fails in the first one.
Using the function f(w) itself as an approximation would do exactly the opposite.
It would satisfy the first criterion very well but fails in the last three. Additive ap-
proximation satisfies the last three criteria, except when finding a proper base case
becomes computationally expensive. However, it satisfies the first criterion only
in some cases. Thus we need to explore other ways of implementing importance

sampling.

2.4. Improved additive approximation

Before we study other approximation functions, we first tried to modify the

additive approximation function. This was done in mainly two different areas.
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First we studied the effects of using different base cases. We looked into ways of
implementing additive approximation scheme as is, by identifying a scenario that
would have least cost among all scenarios obtained by changing one coordinate of
the base case. Then we attempted to change the implementation to enable us to
use any scenario as a base case, by taking care of the positive and negative parts of
the approximation function separately. Finally, we tried an exponential smoothing
scheme to enhance the performance of additive approximation. We describe these

attempts in the following sections.

2.4.1. Finding a least cost scenario

One way to ensure that the importance density ¢;(w") in (2.20) is non-negative,
is to find a base case ¥ which is an argmin of the function f(w). Recall the form
of d(w) and B(w) expressed in (2.12) and in (2.13) . Also, assume that w* has a
compact support with a minimum value of w; and a maximum value of w!. Then,
the w component of the solution of the following linear program gives us a scenario

¥ which minimizes f(w).

min c,T ]

s.t Dy - i diw' - i Bi—r,zw' =dy + Byz

=1 v=rg+l (2.26)
wjw' Swl, V1< <r
y20
If the support of w' is not the entire interval {u,‘,u,‘,] , for example if w' is discrete.
then we need to make sure that p( ¥} i~ positive. Towards that end, let us suppose
that the problem (1.2) is of complete recourse, i.e., problems in which the linear
program in (2.10) is feasible for every . In that case the above problem becomes
min f(w)

st.w Sw Swy, V1<i1<r
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and f(w) is a proper concave function on the domain. Therefore, a minimum occurs
at an extreme point of the domain which gives us a scenario where each w" is either
equals w; or equals w}. This gives us a scenario where p(¥) is positive. On the
other hand, if we do not have full recourse, f(w) may not be finite on the entire

domain and we cannot prove that an optimal solution occurs at an extreme point.

2.4.2. Using any scenario as a base case

If we can not find a least cost scenario easily, we can modify the additive ap-

proximation function as follows to make the importance density g;(w*) in (2.20) non-

negative.
L(w) = fy!,... v")
+f(w1 ..... v w")—ll
+f(wl“ uJ‘, ‘wr)_l'
+ f(yr,. vt W)=, (2.27)
where
l, =mi.nf(w‘ ..... @Y. (2.28)

This ensures us that

N CRACH
gi(w') = T,

_ flot. et =k (2.29,
T LUt e = )p(w)d(w)
>0.

However, with tius modification we lose the property that the approximation func-

tion and the real function agree on the axes projected from the base case. But.
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the ability to consider any choice of w as a base case gives us an opportunity to

experiment with a few different cases and select a good one.

2.4.3. Exponential smoothing

The advantage of using an additive approximation is the ability to express the
original integral as a sum of a number of integrals, in each of which the probability
function retains the product form. Therefore, when an additive approximation
function does not perform very well, it is possible to tune it, without losing the

advantage of additivity. Consider the following function,

T(w) = To + e (@ =¥ (W) + ... e® (@ =¥ID (') 4 ... e (@ =¥ (u") (2.30)

where I';(w') are as defined in (2.16) . By controlling the parameters ay, ..., a, we
can control the ratio p(w) = ﬁ-:—; more efficiently. Note that the only difference in
the implementation of the importance sampling scheme is in the importance density

which is given by
ea\'(u'—w.‘)r.(ut)
J et =9T (w)py(w")du

Therefore, it still involves only one dimensional integrals to compute the importance

gi(w') =

density. The only extra work is in choosing the parameters a;.

2.5. Piecewise-linear approximation function

Since the additive approximation may or may not perform adequately in a

specific problem, we want to design an approximation function that works well in a
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larger number of problems. Towards that end, we will propose and demonstrate the
use of a piecewise-linear function as an approximation function for use in importance
sampling. Consider the form of the function f(w) as expressed in (2.11) . If the
feasible region of this linear program is empty, it would mean the second stage costs
are unbounded below. Thus, the problem (1.2) is unbounded below. On the other
hand, if the linear program in (2.11) is unbounded above, it would mean, for some
w the second stage costs in (1.3) are unbounded, there by making the parameter
8, which in this case is E(Q(z,w)) in (1.3) , to be infinity. Therefore, the only
interesting case that needs to be addressed is, the case in which the second stage
costs are finite for each w. This allows us to assume that the feasible region in
(2.11) is non-empty and to restrict our attention to its extreme points and ignore

the extreme rays if any.

Hence, we can express the function f(w) as follows.
f(w) = max w,(d(u) + B(w)z) (2.31)

where 74,1 < i < L are all the extreme points of the dual feasible region in (2.11) .
Considering the form of this function, it is natural to try the following function as

an approximation function.

[w) = nsxa.%c 3 (d(w) + B(w)z) (2.32)

where ji, ..., Ji are a sequence of distinct integers between 1 and L. Approximation
function of this form is also used by Pereira et.al. (1989) [32] in conjunction with a
control variates technique. As the following picture demonstrates, often piecewise-
linear function with only few pieces can give a very good approximation to the

original function.
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Fig 2

To asses the performance of such an approximation function in an importance

sampling procedure let us look at the criteria defined in (2.25) .

2.5.1. Accuracy of approximation

It is clear that if we choose [ = L then I'(w) = ¢(w). However from a computa-
tional point of view, this observation is of no use, since generating all the extreme
points of a polyhedron and checking that we have all of them is impractical in large
problems because L is too large in practice, or so it would appear. On the other-
hand, it often turns out in practice that L is not too large, and so it is reasonable
to expect that a small ! will suffice to obtain a very good approximation of the

polyhedral set.

Therefore, it is worthwhile to investigate how many dual extreme points do we
expect to see in practice. Repeated experiments have shown that this number can
be surprisingly small compared to what we might expect from the large number of
‘possible’ combinations that could result from the dimensions of the problem. For
example, in a linear program with coefficient matrix of dimensions 4 x 10 there can
be at most (’40) = 210 possible feasible dual bases. However in randomly generated
problems, there will be on the average only four dual extreme points! This claim is

substantiated by the following result.

Theorem: Consider the following linear program

minclr
st. Ar=b
20
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where A is an m x n matrix. Suppose all the elements of 4 and c are independently
and identically distributed with uniform distribution on the interval [-1 1]. Then

the expected number of dual extreme points for this linear program equals (") 5=

n
m/2n=m"

n

r) different square matrices in 4 that we need to

Proof: Note that there are (
consider as possible dual feasible bases. Let us denote them as B, fori =1.....(")
and define .V, as the remaining part of the matrix 4. Observe that each of the
matrices B; is non-singular with probability one, as the probability that the con-
tinuous random variable det(B,) assumes the value zero, equals zero. Let T be the

total number of dual feasible bases. The value of T is given by:
T = # {B, L CN, — CB'B,’_l.’Vi 2 0} .

Let I(C) be the indicator function that assumes value 1 if the condition C is true
and 0 otherwise. Since expectation is an additive operator the expected value of T
is given by:
(m)
E(T)=Y_ E((cy, - c,B,"'N, 2 0)).
=1
Without loss of generality, let us assume that B, consists of the first m columns

of A. Since for each i the joint distribution of ( B,,.V,,ca,,cn,) is the same, we have

E(T) = (m) E(I(cn, - c8, By Ny 2 0))

m

(n>Eca\B{'l(E(I(C.V| -cg, B{' Ny 2 0|cp, B7")))

= (")Eulal.l(f:( [T ftc, 2 c8,Bi' 4,18, BT))

m
1=m+1

For j = m +1,...,n the conditional distributions of (c;, A ;) are identical and

independent, given cg, B{''. Therefore

BT) = () By (BT (6o = ca, B A men 2 01ca, B )™
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However, cm4; is a symmetric random variable and given cg, B! we also have
cg, By '4 41 symmetric, as linear combinations of symmetric random variables
is symmetric. Therefore their difference cm41 — cp, By 'Ams: has a symmetric
distribution. The probability of a symmetric continuous random variable being
non-negative is 1/2. This can be easily seen from the following argument. Let Z be
a continuous symmetric random variable, i.e., Z and —Z have the same distribution.
P(Z>20)=P(-220)=P(Z2<0)=1-P(Z220)= ,}, Hence,

: n 1
E(T) = (m)EcmBr‘m

_{(n 1
“\m on-m’

Note that there is no loss of generality in assuming that the elements of coeffi-

cient matrix 4 and cost vector ¢, belong to the interval (-1 1]. However, in a typical
problem, one does not expect to see the elements distributed uniformly. Moreover.
real-life problems are more sparse and some of the coefficients have inherent inter-
dependencies, so that the assumption of independence is not valid. Nevertheless it
has been observed in real-life problems that the number of dual extreme points is

remarkably small like randomly generated problems.

Given a particular sparse structure of a coefficient matrix and cost row of a
particular problem, it is possible to get an idea of how big the dual number of

extreme points is. The following corollary sheds some light on this aspect.

Corollary 1: Suppose the coefficient matrix A and cost row ¢ have a given sparse
structure. Assume that each non-zero element has a uniform distribution on the

interval (-1 1]. Denote by S the number of non-singular submatrices of size m x m

29




Chapter II: Sampling Strategies

of A. Then, S is a constant with probability one and the expected number of dual

extreme points equals §/2"~™

Proof: Observe that the determinant of a given set of m columns from A4 has a
determinant that equals the sum of products of different continuous random vari-
ables. (It could be an empty sum, making it possible that a given set of columns
is singular). However, given that it is a not identically zero, the probability of it
equalling zero is zero. So if a set of columns are non-singular for one realization of
the random elements of A and ¢, then it is so with probability one. From the proof
of the above theorem it follows that a given non-singular matrix corresponds to a
dual extreme point with a probability of st=. Therefore the expected number of

extreme points for the dual problem is §/2"~™.

Note that the above two proofs used only the fact that the distribution of the
random elements in 4 and ¢ are independent and symmetric around zero. In partic-
ular, they can be any other symmetric distribution, such as the Normal distribution.
and each one can be a different symmetric distribution. Thus we have the following

corollary.

Corollary 2: The above two results are true, when the elements of A and c are
distributed independently (not necessarily identically) and symmetrically around

Zero.

Therefore, we have reason to believe that a function of the form described in
(2.32) can be constructed in a computationally inexpensive way which will be a
good approximation to the original function. Now, we'll look into the other three

criteria that define a ‘good’ approximation function.
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As we mentioned earlier regarding the additive approximation function, we
need to be able to ensure that the piecewise-linear approximation function is non-
negative. In practice, we know that the function f(w) is non-negative. Even then,
[ in (2.32) need not be non-negative. However, if the dimension of the vector 3
is bigger than the number of random parameters, r, then a vector n3° can be found
that makes 73°(d(w) + B(w)z) positive for all w. If we include this one in the
approximation function, we will get a positive approximation function. This, in
fact, can be done even if the function f(w) takes on negative values. However, it is
not advisable in that case. In such cases, it is better to split the function I'(w) into

a positive part ['*(w), and negative part [~ (w) and rewrite 8 as follows.

0= [ fwptwids
T+ f(w) F+(u )p(w) do - T= / f(w) P-(w)p(w) (2.33)
B S YO R =

This will work well if I'(w) is bounded away from zero with probability one. If that
is not the case, we can simply add a positive constant to both I'*(w) and to ['~(«)

to overcome the problem.

2.5.2. Ease of evaluation

It is clear that, being maximum of some linear functions, this function is ex-
tremely easy to evaluate. The original function we have is also a maximum of linear
functions, i.e., a linear program. However, the fact that we don’t know all of the
linear pieces explicitly, makes it necessary to apply an algorithm like the Simplex
algorithm to find it. That is more expensive than evaluation of our approximation

function.
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2.5.3. Evaluating the Importance Density

We want a sampling scheme that would choose an n-dimensional vector w
with probability E(—"i?i‘f-) When I'(w) is an additive function and p(w) is the joint
probability of independent discrete random variables, evaluating this is easy, as it
involves evaluating i one-dimensional integrals to set-up new probabilities. But
when the function I' is the maximum of certain linear functions, as it is in our
case, this is no longer easy. This is because evaluating [ is a difficult problem in
itself. Therefore we use the following three step sampling strategy to select w with
probability I'(w)p(w)/T, without evaluating ' explicitly.

To do this, first find a function u(w) that dominates the function I'* ). For
example, u(w) = M where M is an upper bound for ['(w). Let 4 be the .. _ _~*ation
of u(w) where w has the density p(w). Suppose for the moment, that we know how
to select an w with probability 5(—“—1‘&(5—) (This is used in Step 1 below and we'll

discuss how to do this later).
o Step 1 Randomly choose w = wg with probability u(w)p(w)/a
e Step 2 Randomly choose a ty uniformly from [0 u(wp)].

o Step 3 If I'(wy) < tp then declare vy as the sample point selected, otherwise

reject wo and go to step 1.

Let r be the probability of going through Steps 1 through 3 and coming back
to Step 1 as one iteration. Let r denote the probability of one iteration. Also, let

g(w) be the probability of selecting an w using the above three-step procedure.
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g(w) = Z P(: rejections and accepting w in i + 1st cycle)
1=0
“Z P(w) U(w ['(w)

u(w)

1=0
= p(w)[(w)
a(1 -~ r).

From the above discussion it also follows that r = 1 - % and ¢(w) = ['w)p(w)/T
as required. From this we can see that the expected number of iterations the
procedure takes is i/T". Therefore, the smaller the mean of the upperbound function.

the less time consuming this method will be.

Now, coming back to Step 1, we have to specify, how to choose w with proba-
bility u(w)p{w)/a. This is exactly the same kind of problem we started with, i.e.. to
choose w with probability I'(w)p(w),/T. Moreover, we are free to choose a function
u that is easy to deal with. For example, we can take u(w) = M where, M is an
upper bound for the function ['(w). In this case, Step 1 requires choosing w with
probability p(w). When I'(w) = max;<i<i 7, w and 7, w > 0 with probability one.
one can use u(w) = Z:=1 mi,w as an upperbound function. Since this is an additive
function choosing an w with probability u(w)p(w)/a is easy. It only involves com-
puting n one-dimensional integrals. Therefore if i thus obtained is smaller than .M.

it is better to use this u(w) in Step 1.

The following diagram shows using the maximum of I'(w) for sampling.
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Fig 3

The shaded area is the area of rejection. It is clear that the rejection area is large
for this particular case. In cases like this, one could divide the sample space into

rectangles Ry,..., R, and define
u(w) = ?é?z’f ['(y) if w € R;.

sampling with a function like this easy and it has a much smaller rejection region

than the constant upper bound function. This is shown in the following diagram.

Fig 4

Therefore, we have shown that an explicit piecewise-linear function with small
number of pieces is a good approximation function according to the first three

criteria defined in (2.25) . Now, let us turn to the last criterion.
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2.5.4. Evaluation of the mean of approximation

Recall from (2.8) that the mean of the approximation function plays a role in
two different places. The first one is in determining the importance density q(w).
We have described how to achieve this without explicitly computing I. The second
role it plays is in the form of a rmultiplicative factor to g which is a sample mean

for [, p(w)q(w)dw. Hence, we do need to address this latter problem.

Because the approximation function that we propose is of the same structure
as the original function, evaluating the mean of this function is clearly of the same
nature as the problem we started out with. However, we know all the pieces of the
approximate function which is not the case with the original function. Moreover,
the approximate function has fewer pieces than the original function. It is these

differences that we would like to take advantage of.

We consider two different approaches for evaluating the mean, [ of the approx-

imation function.
e Select I for which ' can be easily evaluated exactly.

e Consider estimating [ using sampling or other means.

Exact evaluation of [':

Recall from (2.9) that § = ['5. If we can evaluate [ exactly, then an estimator
for § would be given by

6= f‘f): T {p(wl)+»--P(""n)}

S|
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with an estimated variance of

where w1, ...,wn are chosen according to the importance density ¢(w). Under cer-
tain conditions, it is possible to evaluate the mean of the approximation function
exactly. For example, suppose B(w) and d(w) can be expressed linearly in the com-
ponents of the vector w as described in (2.12) and in (2.13) . This would enable us

to express [ as follows.

Q
=/ma.x{ (do+Bor+Zw di + Z Bkz)}p(w)du
l<is k=rq+1
!
=Z {do+Boz+Zw"dg+ Z k(Bkz) } w)dw
=1 k=rys+1

where H; = {w |7 (d(w) + B(w)z) > 74 (d(w) + Bw)z), ¥ 1<s< 1}

r

=§:Za,,/ o plw)dw

1=1 k=0 H;
where aix= 73’ (dy + Boz) ifk=0 (2.34)
3 di if1<k<ry
3 Biz fra<k<r
Wwi= 1.0
and H; = {ul Za.gw > Za,ku v 1<s< r} . (2.35)
k=0
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Therefore, the problem of evaluating ' has been reduced to that of integrating
a linear function on a polyhedron. Suppose that the components of w are inde-
pendently distributed on a compact set with certain continuous densities. When
this is the case, the intersection of the polyhedron H; in (2.35) with the compact
probability space gives us a polytope to work with. Thus we have the following

problem.

/w‘p(w)dw
P
k k
where P = {wlu: ZA.[),’; ZA; =1 A 20}
1=1 1=1
k—r .
=Z/w'p(w)du

1315

k-r

=Z / w'p(w)dw
I=H 0 w=G; A eTALL; AD0)
k=r r

=ZZG“|GJ‘ / Aep(GA)dA. (2.36)

1=1t=l {r1eTagl: 220}

The S — j’s in the above equations are simplicies that make up the polytop S, and
G, is the matrix corresponding to the simplex S;. Hence, the original integral can
be performed if the integral in (2.36) can be evaluated exactly. In the following

discussion, we give examples of some densities p(w) under which the integrals

Ap(GA)dA
{AI:TX§1;A20}
p(GA)dA

{r1eTacl; 420}
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can be computed analytically, where G is a non-singular deterministic matrix.

Uniform Density
p(A) = Constant

d\ = —1'-
ri
{r1eTa<c12>0} (2.37)
1
AdA =
! (r + 1)!
{r1eTagla>0}
Exponential Density
p(A) = cxe” LimbN (2.38)
Let Gb = a.
e~Zv=l a'A' dA = rl — Z ’_e-‘.
{r1eTag1.220} [lai *=tag [](a; - ai)
= = B
/\re_Z:-ta"\‘ d\ =
{r1eTa<1,220} ar ]I;Il @
-1 (- (2.39)
- r
k=1 (ax)(ar — ar) [] (a; — ax)
Tk
r=1
—e 0 1 "".ar + e ar Z 1+ arr':lak
ar [] ai t=1 (ar)(ar - ak) [] (a; —ar)
= H
Polynomial density
p(A) =c+ [ AV (2.40)
)=l
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When the density is of this form, p(G,A) will be in the form of a sum of certain
terms, each of which is again in the form described in (2.40) . Therefore, it is enough

to be able to integrate the function in (2.40) .

kl!+---+kn!
A d\ = . 2.
{ 0}’1—1 it kg (2:41)
AleTa<la>

When the given exogenous probability density p(w) does not take any of the
above forms, it might still be possible to approximate the given probability density

with one of the above. Thus, by expressing 0 as,

6= / (w)plw)dw

- (et { L5555 T )

we can approximate the function f(w) by I'(w) and the probability p(w) with g(+)

and successfully implement the importance sampling scheme. The biggest obstacle
in this approach is the amount of work involved in breaking a polytope into a series
of simplicies. In practice, this is a complex task and essentially forces us to abandon
this approach in all but few cases. Therefore, we will now describe, how we can

carry out importance sampling scheme without computing the exact value of I
Estimating the mean of the approximation function

Since we can not easily evaluate [" exactly, we have to resort to approximation

techniques. We can take one of the following two approaches.

¢ Find deterministic bounds for T.
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e Estimate I’ and obtain an estimate of its variance and construct a confidence

interval.

If we get deterministic lower and upper bounds I'; and T, for [, and estimate
p by p with an estimated variance of c'rg then |Ty(p - 230,) Tu(p + fg0p)| is a p%
confidence interval for 8. The sharper the bounds for T are, the smaller this interval
will be.

If we estimate [ by [', with an estimated variance 61 and independently esti-
mate 5 by p with an estimated variance af, then ['5 is an unbiased estimator for 6
with an estimated variance ﬁ’ag +T 20,23 + &l?.&;"-,. Therefore, the square of coefficient

of variation is given by

= cf-, + clz, + cf-,c;{.
Therefore, by designing an approximation function that approximates the real func-
tion very well, we can control cf, significantly. Then, the dominating factor in the
variability of 8 would be the variability in . Therefore, we should find means of
estimating [’ with as little variance as possible. This we attempted in three different

ways.
o Apply other variance-reduction techniques.
e Apply importance sampling with additive approximation.

¢ Apply naive sampling with a very large sample size.
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We have also experimented with the use of control-variate techniques as de-

scribed below.

Let us rewrite I as follows.
[ = / [(w)p(w)dw
)

- / (T(w) = Gw))p(w)dw + / G(w)plw)dw
Q [}

where G(w) is an approximation for I'(w) and is positively correlated with it. Ve
can also use a G(w) whose expectation [ G(w)p(w)dw can be computed exactly.

Thus T is estimated by

1<~
~{3_(D(wi) = Gwn)) + ... + (F(wn) = G(wa))} + G (2:43)
=1
where wy, . ..,wy are chosen according to the probability density p(w). The variance

of such an estimator is given by
;1-1(012- + 0% - 2COV(T,G)).

By a good choice of the function G(w), this can be made much smaller than Lo}
To choose a function than can be easily integrated, we observe that integrating a
linear or constant function on hyper-rectangles is easy. Therefore, we divide the
sample space 2 into a finitely many rectangles define G(w) to be either constant or
a linear function on each of the rectangles. Both these versions are described below

and are shown in graphs.
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nr

g(“") = Z Z""')a".')[ﬂs(w)

1=1 =0
where ry,...,rn, is & sequence of integers between 1 and [, and a,,; are as defined

in (2.34) .

As our numerical results show, this is a good approach when the number of
random parameters r is not too high. However, when it is too high , it becomes
computationally too expensive to partition the sample space into a sufficiently fine

partition to give a good G(w).

When no special techniques can be devised to estimate [, we resort to two of the
methods we discussed earlier, i.e., importance sampling with additive approximation
and naive sampling. It might look counterintuitive that an approach that did not
work well with the estimation of 6 will work with estimation of I'. However, one
should note that, both naive sampling and usage of additive approximation will
always give good results if sufficiently large sample sizes are easy to process. Using
a higher sample size is a very expensive proposition when it comes to estimating 6.

but not so in estimating T.
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2.6. Numerical Results

We have used the software developed by Dr. Gerd Infanger to solve two-stage
stochastic linear programs. This software combines Benders decomposition with
importance sampling, using an additive-approximation scheme. It also solves the
universe problem (if possible), the expected value problem and uses an advanced
importance sampling techniques like the exponential smoothing. It is written in
FORTRAN and uses MINOS (Murtagh and Saunders (1982) {29] ), as a subroutine
to solve linear programs. We have modified the above software to incorporate the

different implementations of importance sampling described in previous sections.

’ The extreme points 7' in (2.32) are obtained by solving the linear program
(2.10) for a predetermined number of scenarios w and storing the corresponding dual
extreme points. To select these scenarios we start out by using the scenario that
assumes the smallest values of each of the random components. We then generate
successive scenarios by replacing i-th component of the vector by the maximum
of that random parameter, where i is increased from 1 to r. We also include the
scenario consisting of the mean values of all the random parameters. In this way.
we include the scenario that has all the smallest values, the scenario that has all
the largest values and the scenario that has the mean values. If the predetermined
number of scenarios is larger than r + 2, the rest of the scenarios are randomly
generated according to the given probability distribution. A new 7r§" is added to
the list only if it is significantly different from the existing ones in a least squares

sense.

In the implementation of piecewise-linear approximation scheme there are two

sample sizes. Sample size n refers to the size used to estimate 5 and sample size
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m refers to the size used to estimate ['. However, in the additive approximation
scheme there is only one relevant sample size. Thus, plotting sample sizes against
variances is not an appropriate cornparison. Therefore, to compare these approx-
imation schemes we compute the CPU time spent by the sampling routine of the
program and record the length of the confidence interval produced. We used sample
sizes, ranging from 20 to 500 for the additive approximation scheme and for the es-
timation of g in the piecewise-linear approximation scheme. Sample sizes, ranging
from 500 to 50000 are used to estimate [ in the the piecewise-linear approximation

scheme.

We show numerical results from four problems that we solved. Each of them
is formulated as a two-stage stochastic linear program. In each of the problems
we have solved the expected value problem and estimated the expected second-
stage costs the solution vector obtained. Results from five different strategies are

compared. These are,

Naive sampling
e Importance sampling with additive approximation

e Importance sampling with piecewise-linear approximation where I' is estimated

using naive sampling.

e Importance sampling with piecewise-linear approximation where [ is estimated

using a control-variate technique.

e Importance sampling with piecewise-linear approximation where [ is estimated

using an importance sampling approach using an additive approximation.
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For each of the strategies, we have solved the problem with different sample
sizes and computed the lengths of 95% confidence intervals and the CPU time taken
for this. The CPU time does not involve the setup time for the problem, but includes
the time to estimate the sample cut as described in'previous chapter. Each of the
problems is described in detail below and the results are shown in graphical and

tabular form at the end.
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Problem: WRPM

This is a multi-area capacity expansion planning problem for the western US
and Canada. A detailed description of this model can be found in Dantzig et.al.
(1989) [10]. The objective of the model is to determine optimum discounted least-
cost levels of generation and transmission facilities for each region covered in the
model over time. We considered a one period version of this model that fits into the
two-stage stochastic linear programming framework. The random elements of the
model are the availabilities of generators and transmission lines and the demands.
The size of the subproblem and the number of scenarios are given in Table 9. The

results from this problem are presented in Table 1 and Graph 4 .
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é

Sample Size g, CPU
Naive sampling
100 | 0.1377927E+06 | 0.8682487E+03 | 0.2558000E+02
200 | 0.1379870E+06 | 0.5716234E+03 | 0.4878000E+02
300 | 0.1380090E+06 | 0.4293819E+03 | 0.7026000E+02
3500 | 0.1381891E+06 | 0.3378813E+03 | 0.1173900E+03
700 | 0.1381084E+06 | 0.2711093E+403 | 0.1613600E+03
1000 | 0.1380742E+06 | 0.2199263E+03 | 0.2263900E+03
Additive approximation
100 | 0.1382268E+06 | 0.3260952E+03 | 0.2902000E+02
400 | 0.1381554E+06 | 0.1570986E+03 | 0.9517000E+02
800 | 0.1330747E+06 | 0.1044069E+03 | 0.1835800E+03
1600 | 0.1380473E+06 | 0.7064273E+02 | 0.3533800E+03
Piecewise-linear approximation with naive sampling

n, = 50,m, = 1000 | 0.1381816E+06 | 0.2456612E+03 | 0.2641000E+02
n, = 50, m, = 10000 | 0.1381055E+06 | 0.7501227E+02 | 0.4910000E+02
n, = 50, m, = 20000 | 0.1381026E+06 | 0.5260600E+02 | 0.7462000E+02
ny = 50, m, = 40000 | 0.1381041E+06 | 0.3741754E+02 | 0.1244800E+03

Piecewise-linear approximation

with Importance sampling

n, = 50,m, = 1000 | 0.1380821E+06 | 0.1009098E+03 | 0.2708000E+02
n, = 50,m, = 10000 | 0.1380743E+06 | 0.2944668E+02 | 0.5004000E+02
n, = 50, m, = 20000 | 0.1380749E+06 | 0.2090695E+02 | 0.7561000E+02

ny = 50, m, = 40000

0.1380752E +06

0.1468641E+-02

0.1255700E+03

Piecewise-linear approximati

on with control variates

ns = 50,m, = 1000

0.1379015E+06

0.2455194E+03

0.3584000E+02

n, = 50, m, = 10000

0.1380581E+06

0.7790319E+02

0.6753000E+02

n, = 50, m, = 20000

0.1380780E+06

0.5537660E+02

0.1019100E+03

n, = 50, m, = 40000

0.1380484E +06

0.3902989E+02

0.1716800E+03

Table 1
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WRPM Log plot
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Problem: CAP

A manufacturing plant produces m different part types on any one of n ma-
chines. Each machine ; has a fixed number of hours , hj, currently available per
week. The number of hours of new capacity j acquired is denoted by z; and costs
¢; dollars per hour. The total usage of machine j should not exceed U, hours per
week. Each machine j requires t; hours of maintenance for every hour of opera-
tion. The total scheduled maintenance for all machines is not to exceed T hours
per week. Part i is produced on machine j at a rate of a;; parts per hour at a cost
of gij. Each week an order of w; units of part i must be met. If the total demand
exceeds the total capacity then the excess parts are obtained from a subcontractor
at a premium price, p;, for part i. It is assumed that p; » g;; for all parts i and
machines j. The weekly demands are treated as i.i.d. random variables with known
distribution. With the objective of minimizing the cost of new capacity plus the
expected operating costs plus the expected cost of meeting excess demand from the
subcontractor, the above problem is formulated and solved as two-stage stochastic

linear program.
Problem data

The above problem is solved with the following data.

m=3

n=4

¢j =(2.5,3.75,5.0,3.0)

tj = (0.08,0.04,0.02,0.01) (2.44)
T =100

U; = (2000, 2000, 2000, 2000)
pi = (400, 400,400)

49



Chapter II: Sampling Strategies

9i;
L - 1 2 3 4
1 2.6 3.4 3.4 2.5
2 1.5 2.3 2.0 3.6
3 4.0 3.8 3.5 3.2
Table 2
a.-,

: j— 1 2 3 4
1 0.6 0.6 0.9 0.8
2 0.1 0.9 0.6 0.8
3 0.05 0.2 0.5 0.8

Table 3

Each element of the random vector w takes the values 300,600,...,3000 with

probability of 0.1, independently of other elements. The results from this problem
are presented in Table 4 and Graph 2.
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Sample Size 6 s CPU
Naive sampling

20 | 0.2116483E+06 | 0.1307643E+06 | 0.3300000E+00

200 | 0.3028722E.+06 | 0.4785451E+05 | 0.2730000E+01

2000 | 0.2608951E+06 | 0.1343476E+05 | 0.2901000E+02

20000 | 0.2603107E+06 | 0.4323950E+04 | 0.2850900E+03

Additive approximation

20 | 0.2327514E+06 | 0.8196999E+05 | 0.5200000E+00

200 | 0.2898255E+06 | 0.3031747E+05 | 0.2740000E+01

2000 | 0.2618426E+06 | 0.9065203E4+04 | 0.2663000E+-02

20000 | 0.2614249E+06 | 0.2900156E+04 | 0.2623000E+03

Piecewise-linear approximation with naive sampling

ny =20,m, = 1000 | 0.2556709E+06 | 0.2082914E+05 | 0.9900000E+00

ne =20,m, = 3000 | 0.2596231E+06 | 0.9348429E+04 | 0.2350000E+01
n, = 20,m, = 20000 | 0.2611956E+06 | 0.4647089E+04 | 0.7530000E+01

n, = 20, m, = 50000

0.2598432E+06

0.2928713E+04

0.1744000E+02

Piecewise linear approximation

with Importance sampling

ny = 20,m, = 1000 | 0.2566923E+06 | 0.1411260E+05 | 0.1010000E+01 |
ng =20,m, = 5000 | 0.2579674E+06 | 0.6289137E+04 | 0.2370000E+01
n, = 20,m, = 20000 | 0.2605898E+06 | 0.3116273E+04 | 0.7410000E+01
n, = 20,m, = 50000 | 0.2600434E+06 | 0.1974844E+04 | 0.1761000E+02 '
Piecewise linear approximation with control variates
n, =20,m, = 1000 | 0.2655022E+06 | 0.9526401E+04 | 0.1080000E+01
n, =20,m, = 5000 | 0.2599874E+06 | 0.4077356E+04 | 0.2660000E+01
n, =20, m, = 20000 | 0.2603536E+06 | 0.2039508E+04 | 0.9160001E+01 .
ny = 20, m, = 50000 | 0.2596919E+06 | 0.1291688E+04 | 0.2121000E+02
Table 4
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CAP Log-Log Plot
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Problem: CAPGEN
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This problem is a modified version of the previous problem. It has higher

dimensions and higher number of scenarios. This modification is done to observe

the effect of increased size of the problem, while the structure of the problem is

kept the same. The description of the problem remains the same. The data is given

below.

¢; =(2.5,3.75,5.0,3.0,5.0,2.5,3.75, 5.0, 3.0,5.0)
t, = (0.08,0.04,9.02,0.01,0.02,0.08,0.04,0.02,0.01,0.02)

T =200

h,=500V1§j$n
U, = (2000, 2000, 3000, 3000, 1000, 2000, 2000, 3000, 3000, 1000)

1 )= 1,59 2,6,10 3,7 4,8
1,4,...,28 2.6 3.4 3.4 2.5
2,5,...,29 1.5 2.3 2.0 3.6
3,6,...,30 4.0 3.8 3.9 3.2

Table 5
ay,

L= 15 | 26 | 3.7 | 48 9 | 10
1,4,...,28 0.6 0.6 0.9 0.8 0.3 0.3
2,5,...,29 0.1 0.9 0.6 0.8 0.8 0.5
3,6,...,30 0.05 0.2 0.5 0.8 0.2 0.9

Table 6

The results from this problem are presented in Table 7 and Graph 3.
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Sample Size 6 7 CPU
Naive sampling

200 | 0.7227804E+06 | 0.9912831E+05 | 0.2335000E+02

1000 | 0.6759398E+06 | 0.4146293E+05 | 0.1151100E+03

2000 | 0.6544522E+06 | 0.2848225E+05 | 0.2285600E+03

Additive approximation

200 | 0.6999338E+06 | 0.7569911E+05 | 0.2606000E+02

1000 | 0.6706608E+06 | 0.3181763E+05 | 0.1158500E+03

2000 | 0.6499043E+06 | 0.2231446E+05 | 0.2260300E+03

Piecewise linear approximation with naive sampling

ny =20,m, = 1000 | 0.6483633E+06 | 0.4261268E+05 | 0.9110001E+01
ny, = 20,m, = 3000 | 0.6435018E+06 | 0.1904751E+05 | 0.1339000E+02
n, = 20,m, = 30000 | 0.6448479E+06 | 0.5983151E+04 | 0.6035000E+02

Piecewise linear approximation

with Importance sampling

n, = 20,m, = 1000 | 0.6470257E+06 | 0.3322023E+05 | 0.9420000E+01
ny = 20,m, = 5000 | 0.6413708E+06 | 0.1496077E+05 | 0.1381000E+02
n, = 20, m, = 50000 | 0.6439548E+06 | 0.4718087E+04 | 0.6050000E+02

Piecewise linear approximati

on with control variates

n, = 20,m, = 1000 | 0.6278739E+06 | 0.2099258E+05 | 0.5221000E+02

n, =20,m, = 5000 | 0.6395258E+06 | 0.9475039E+04 | 0.5728000E+02

n, = 20,m, = 50000 | 0.6422440E+06 | 0.3062884E+04 | 0.1102500E+03
Table 7
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Problem: RAND This is a randomly generated test problem. We have built a

problem generator that generates problems of the form

min ¢mIm + Cm+Im+ + Cm~Lm- + E(fsys(u) +fs+ys+(“)) +fs-ys—(“’))

s.t.  Arm+ Im4 — Im- = b
Im <Unm
-Bzm + Dy,(w)+  yer(w)=  yo-(w)= d
ys(w) < U,
all variables are non-negative.
(2.46)

It takes as input, the dimensions of the matrix A, B, D, the sparsity of the matrices
A, B, D, the penalty cost vectors ¢m4,Cm~,Cs4,Cs~ and the upperbounds Up,, U’,.
The rest of the cost vector and the right hand side are generated as dense vectors.
with the individual elements picked randomly from the interval (0, 1). Every element
of the matrices 4, B, D is given a probability, equal to the specified sparsity, of being

non-zero. These non-zero elements are randomly picked from the interval (—-1,1).

In this specific problem, we have the following data.

dimensions of 4 =50 x 75
sparsity of 4 =0.15
dimensions of B = 50 x 75
sparsity of B = 0.05
dimensions of D = 50 x 75
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sparsity of D = 0.15

Cm+1Cm=1Cat, €~ = [100,...,100]
Um = [00,...,00]
U, =1(5,....5]

The results from this problem are presented in Table 8 and Graph 4.
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g

Sample Size A CPU
Naive sampling

100 | 0.5214188E+05 | 0.1646190E+04 | 0.1424000E+02

150 | 0.5231466E+05 | 0.1446825E+04 | 0.2033000E+02

200 | 0.5236909E+05 | 0.1229894E+04 | 0.2723000E+02

500 | 0.5188471E+05 | 0.7712272E+03 | 0.6799000E+02

1000 | 0.5204281E+05 | 0.5244157E+03 | 0.1350400E+03

Additive approximation

100 | 0.5179037E+05 | 0.4954130E+03 | 0.1672000E+02

150 | 0.5178824E+05 | 0.4033533E+03 | 0.2359000E+02

200 | 0.5178476E+05 | 0.3587222E+03 | 0.2994000E+02

500 | 0.5170700E+05 | 0.2396645E+403 | 0.7095000E+02

1000 | 0.5177767E+05 | 0.1571604E+03 | 0.1383300E+03

Piecewise-linear approximation with naive sampling
n, = 20,m, = 1000 | 0.5190968E+05 | 0.5438035E+03 | 0.8389999E+01
n, = 20,m, = 5000 | 0.5177486E+05 | 0.2436146E+03 | 0.1724000E+02
ns = 20,m, = 10000 | 0.5160949E+05 | 0.1738789E+03 | 0.2794000E+02
n, = 20,m, = 20000 | 0.5171334E+05 | 0.1226858E+03 | 0.5120000E+02
n, = 20,m, = 50000 | 0.5175249E+05 | 0.7731601E+02 | 0.1167300E+03
Piecewise-linear approximation with Importance sampling

ny = 20,m, = 1000 | 0.5177416E+05 | 0.1163012E+03 | 0.8710001E+01
n, = 20,m, = 5000 | 0.5173189E+05 | 0.5525127E+02 | 0.1789000E+02
n, = 20,m, = 10000 | 0.5168477E+05 | 0.3995796E+02 | 0.2926000E+02
n, = 20,m, = 20000 | 0.5171093E+05 | 0.2822614E+02 | 0.5132000E+02
n, = 20,m, = 50000 | 0.5172611E+05 | 0.1776708E+02 | 0.1198400E+03

Piecewise-linear approximation with control variates

n, = 20,m, = 1000 | 0.5166554E+05 | 0.8041535E+02 | 0.1286500E+03

n, = 20,m, = 5000 | 0.5170490E+05 | 0.3714952E+02 | 0.1376700E+03

n, = 20,m, = 10000 | 0.5169956E+05 | 0.2637908E+02 | 0.1493100E+03

n, = 20,m, = 20000 | 0.5172025E+05 | 0.1896132E+02 | 0.1726100E+03

n, = 20,m, = 50000 | 0.5171697E+05 | 0.1218426E+02 | 0.2422100E+-03
Table 8
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These results are summarized in the Table 9. Let v,, be the least variance
obtained through strategy s on a specific problem p. Let t,, be the time taken to
achieve this variance. Let t,,, be the amount of time that naive sampling would
have taken to achieve a variance of v,,. Then the number 'T"."," represents how much
more efficient strategy s is, for problem p. We have given these numbers in the
following table, for the previous four problems and for four of the five strategies
mentioned earlier. Observe that, using a piecewise-linear approximation function
with additive approximation and with control variates seem to be superior to the
other strategies. The efficiency of the control variate technique as we implemented.
depends on the underlying grid size mentioned in section 5.4. Clearly, this becomes
more and more expensive as the number of random parameters increases. This is
reflected in the two problems CAP and CAPGEN.

In conclusion, we have explored different ways of implementing importance
sampling strategies for stochastic programming problems. Different implementa-
tions perform with different levels of efficiency on different problems. However, we
have seen that it is always better to reduce the integrand from a mathematical

program to an explicit function.
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SUMMARY
Problem| Size |Scenarios | Additive | Piecewise-2 | Piecewise-3
wRPM  |302x289] 34" 6.21 404.29 41.86
CAP 9x 16 103 2.42 77.61 150.62
CAPGEN |30 x 300] 100 1.54 137.68 17927
RAND 50 x 78 510 10.87 981.70 1430.00

Piecewise-2 : Piecewise linear function used with additive approximation
Plecewise-3 : Piecewise linear function used with control variate method

Table 9
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Decomposition methods

3.1. Introduction

Decomposition methods have been in use for a number of years, to solve large
scale optimization problems. These have been motivated by problems of a special
structure, such as problems with a stair case structure. Techniques that decompose
and solve the problem , generally speakir.g, are far superior to techniques that do
not. Sometimes, the size of the problem is so large that it is not possible to solve the
original problem without decomposing it into smaller problems. For example, the
deterministic equivalent of a typical two-stage stochastic linear program will have
so many scenarios that they cannot be solved without some kind of a decomposition

scheme.

Different kinds of decomposition techniques have been investigated in the liter-
ature. Notable among them are Dantzig-Wolfe decomposition or the Primal Decom-
position scheme, (Dantzig (1960) {9]), Benders decomposition or the Dual Decom-
position scheme, (Benders (1962) [4]), A Nested Decomposition approach for solving
staircase structured linear programs due to Abrahamson (1983) [1], A Nested De-
composition algorithm for stochastic linear programs due to Birge (1985) [5], etc.
The underlying principles in various decomposition schemes are outer linearization

and inner linearization, as explained in, Geoffrion (1970) [19).

In this chapter, we introduce a Primal-Dual decomposition technique and com-

pare it with the existing techniques. We plan to use it in the context of two-stage
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stochastic linear programming. However, as we describe it we illustrate its use to

solve the ‘expected value problem’ associated with the stochastic program.

This chapter is organized as follows. In section 2 we discuss Benders decom-
position for linear programs. In section 3 we introduce a new approach called
Primal-Dual decomposition. We then discuss some of its properties and describe
why it is an improvement over Benders decomposition. Section 4 discusses various
implementation issues and strategies. Finally in section 5, we present numerical

results and directions for future research.

3.2. Benders Decomposition
Consider the two-stage stochastic linear program described in (1.2) .

The expected value problem is obtained by replacing all the random elements

by their expectations. Thus we have the problem:

z* =min ¢z 4c2y

s.t. Az =b
~Br+Dy=d
r,y20 (3.1)

where B =3 _cqp(w)B(w),d = 3 _cq P(w)d(w). In their current methodology to
solve stochastic linear programs, Dantzig, et.al. [10], use Benders decomposition
to solve the above problem, see also [35]. This method can be described briefly as

follows.
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Let us first define the recourse function g(.) for the expected value problem and
show that under reasonable assumptions, it is finite. We assume that the problem
in (1.2) has full recourse, i.e., for every w € Q and r satisfying Az = b,z > 0, there
is a y(w) such that Dy(w) = d(w) + B(w)z, y(w) 2 0. In practice, this can be
ensured by incorporating appropriate penalty variables into the recourse function.
Clearly, this assumption implies that for every z satisfying Az = b,z > 0 thereis a
y such that Dy = d + Br,y > 0. Therefore the ‘recourse function for the expected
value problem’ defined by

g(z) =mincyy
s.t. Dy=d + Bz
y20 (3.2)

is less than +o00 at every z satisfying Az = b,z > 0. Similarly, we assume that the
recourse function Q(z,w) in (1.3) is bigger than —oc at some w € 2 and z satisfying
Az = b,z > 0. This is equivalent to assuming that the dual of the linear program
in (1.3) is feasible. Since that feasible region is the same as the feasible region of
the dual in (3.2) , we know that g(.) is bigger than —oo. Therefore, the function

g(.) is finite at every r that satisfles Az = b,z > 0.

Problem (3.1) can be shown to be equivalent to :

z* = min cr+8

s.t. Az =b
-9(zr)+620
r20

Let us use the dual representation of g(.) given by,

g(z) =max n(d + Bz)
s.t.tD < ¢3.
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Thus (3.1) is equivalent to

2* =min cx+ 8

s.t. Az =b
~7Bz+ 6>nd Vrst. 7D <c
z>0. (3.3)

Under Benders decomposition scheme, the set of constraints
—rBr +60>nd VYrst vD<c

are augmented by one per iteration. An iteration is defined as a pair of problems
called master problem and Sub Problem which will be defined latter. These con-
straints are also called cuts, as they cut away part of the feasible region of the
master problem before the augmentaion. Problem (3.3) with only ¢(> 0) of the
cuts generated, is called the master problem at iteration t. This problem has the

following form after the t-th iteration for ¢t > 1.

min cx+6
s.t. Az =b
"Bz +6>nr"d for1<i<t
r>0 (3.4)

Y]
~ce
il

when ¢ > 0. When t = 0, no cuts are placed and the variable 6 is temporarily

ignored. Let z!°,6*° be the optimal solution vector of this problem.

This represents solving the original problem with the recourse function ¢(.)

replaced by an outer approximation given by

=t — 1 g A
§i(z) = lnsx‘s'rr (d + Bz).
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The 7t” to be used in the t-th cut, where t > 1, is generated from an optimiza-
tion problem which is called the Sub Problem at iteration ¢ — 1. This problem has

the following form.

9(z{*=Y") = mincyy
s.t. Dy=d + Bz(*-1"*
y 20

where z{*~1" is the solution of the master problem at the (t — 1)-th iteration. This
subproblem at the (t—1)-th iteration represents the computation of the second stage
cost of the first stage decision z(*~1)". The optimal dual solution for this subproblem
will be used in updating the outer approximation of the recourse function in the

t-th iteration, and will be called =",

Thus one solves a sequence of master problems and subproblems alternatingly.
The master and subproblems interact by sending the necessary information to each
other at every iteration. We send the optimal decision variable, z*°, of the master
problem of iteration ¢ to the righthand side of the subproblem of the t-th itera.ion.
The optimal dual vector for the subproblem of the t-th iteration, =* * . will be used

in the (¢ + 1)-st master problem as a new constraint given by:
-2 Bz +6> r°d.

Moreover, we can generate lower and upper bounds for the optimum value z* from
the master and subproblems. As the master problem in (3.4) is a relaxation of the
(3.3) , the optimum value z{ is a lower bound for z*. Moreover, as the successive
master problems are obtained by restricting the feasible region by imposing cuts. it

is clear that the lower bounds form a non-decreasing sequence. Thus we have
0 1 .
5 <z ... 2%
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On the other hand every z!" is a first stage feasible decision and so

2, =zt +g(z"")

is an upper bound for z*. However, unlike the lower bounds the upper bounds need
not form a monotone sequence. This is one of the ways in which the new scheme
that we propose is going to be better. Another way it is better is demonstrated by

the following picture.

N

’
LY
3
)
5
5 3

I o
” —
' —L - L . i}
T 1 1 T
x.l x,‘ x“ xz. xl.
Benders Decomposition
Fig 1

3.3. Primal-Dual Decomposition

To achieve faster convergence we modify the Benders decomposition scheme

for linear problems as described below. In the standard method, at every iteration

68



Chapter III: Decomposition methods

t, we send the optimal solution of the master problem, z**, to the subproblem to
evaluate the second stage costs. In the modified version, we maintain the first stage
decision vector at which the best upper bound has been found, say z!, in the first
t iterations. Instead of sending just one first stage decision to the subprobiem, we
send a variable linear convex combination of both the decision vectors, r*", r!,. We
modify the objective function of subproblem from evaluating the second stage costs
at a given decision, to evaluating the best total of first and second stage costs at a
convex combination of z!", z¢,. We define z{!*1) as this best convex combination of
¢

z'" and z{. Thus, the subproblem at iteration t is of the following form:

2 =min  (cz'")A+ (czt)pe+ c2y

s.t. = (Bz!")A\ = (Bz!)ue + Dy =d
/\g+ He =1
Ae20,  pe20,y20 (3.5)

and
= A(',_”.r("'” + K ,_1)1' “Dfort>0

=" fort=0
where z(t=D" is the first stage decision vector obtained from the solution of (t — 1)-

st master problem and A[,_,,,4(,_;, are the weights obtained from the optimal
solution of (t — 1)-st Sub Problem.

The master problem still has the same structure as expressed in (3.4) . How-
ever, the 7** in (3.4) is now only part of the optimal dual vector of the su'bprobleml
Let (7*°,n'°) be the complete set of dual multipliers for the subproblem given in
(3.5) , where n'* corresponds to the last constraint and " corresponds to the rest
of the constraints. These satisfy the dual constraints given by:

r'D<ec
n'" —n'" Bzl < ezt . (3.6)
nt* =" Bz < cz*’
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As m'"'s generated by this method satisfy the constraints #D < ¢, it is valid to use

them in the master problem. This scheme is depicted in Figure 2.
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-

T 1 1 T
x* L x’
x8ax! xie x}

Primai-Dual Decomposition
Fig 2

Note that, in Figure 2, we have the optimal solution at the end of iteration 1.
in the form of z1. This will always be true in the trivial cases when the first stage
decision vector r has only one component, as is the case in the above graph. In the
more realistic cases, we will not achieve optimality so quickly. We call this scheme

the Primal-Dual decomposition scheme.

From this description of the scheme, we clearly have the following result.

Theorem 3.1: In Primal-Dual decomposition scheme, the upper bounds :} are
monotonically decreasing in ¢t and the lower bounds z{ are monotonically increasing

in t.

Since we have changed the decomposition scheme, we need to prove its con-

vergence. Consider the problem described in Figure 2. At the end of iteration one
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we got the optimal vector z2, however we did not have enough cuts at that point
to realize that it was an optimal solution. In other words, our upper bound had
converged to z* but the lower bound had not. Therefore we proceeded to place new

cuts. The 7' obtained by solving (3.5) is a subgradient of the function
ez +g(z)
at the point z{. However, it might not be an extreme point of the set
{x | #D < c;}.

Therefore, if we implemented the scheme exactly as we described, the cuts we would

have obtained are likely to be as shown in Figure 3.

e

O L
T B L\ T
xf ¥ x!
xtex Hexd
Primal-Dual Decomposition
Fig 3

In other words, we could get cuts that do not coincide with any of the ‘pieces’

of the given piecewise linear function. such as the 2nd cut. Because of this, the
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convergence of the lower bounds could be slow and it is even possible that the
algorithm will not stop in finite time. However, by changing the implementation of
this scheme, we can easily ensure not only that the algorithm converges, but it does
so much faster than :"'e Benders decomposition. These modifications are described
in the next section. In the reminder of this section we describe a natural extension

of the above scheme and justify the name ‘Primal-Dual Decomposition’.

We could accelerate the convergence of the algorithm by passing z¥, ,that gives
the best upper bound in the first ¢ iterations, to the (¢ + 1)-st subproblem. This
solution z! is a convex combination of solutions of the first ¢ master problems.
Thus, it is natural to investigate the effects of passing %%, ..., 2", instead of just
one convex combination of them, to the (t + 1)-st subproblem. In other words

consider the following subproblem

z{ =min (cx")p; F.oo.4 (2 + cry

s.t. —(Bz'"uy —... —(Bz*")ue + Dy = d
wm+...+ e =1
Hi v vy NtZO'yEQ (37)

Theorem 3.2: Let (P) be the primal problem described in (3.1) and (D) denote its
dual. Let (S) be the subproblem described in (3.7) under the new decomposition
scheme and (M) be the master problem described in (3.4) . If we use the same
decomposition scheme on (D), the resulting master problem (M') and (S') are
respectively the duals of (S) and (M).

Proof: The dual of (P) is given by
z*=min nrd+ nb
st. =D <cy
-rB+nA<e. (3.8)
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Notice that this has the same structure as the problemin (3.1) . Therefore, applying

the new decomposition scheme, we get the following master and subproblems.

z{ =min rd+§
s.t. D =cy
—mBri" +6<cz'" forl<i<t (3.9)

where z'" are dual multipliers corresponding to the first set of constraints in the

following Sub problem.

=min (M n+...+ () + nb

st =(m1 By —...—(x"" By + nA<c
"+ .+ 7t =1
o ve20,y>0 (3.10)

where 7" is the solution of the i-th master problem described in (3.9) . Note that.
since the problem in (3.8) i ximization problem, the inequality sign in the cuts
in the master problem is n 1d we get upper bounds from the master problem
and lower bounds from the suuproblem. From the above it is clear that (3.10) is
the dual of (3.4) and (3.9) is the dual of (3.7) . Hence the theorem is proved.

Note that in general, applying Benders decomposition on the primal is equiva-
lent to applying Dantzig-Wolf decomposition on the dual. However, from the above
theorem, we see that this new scheme remains same, whether applied to the primal

or dual problems. Therefore we call this Primal-Dual decomposition.
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3.4. Implementation Issues

We have implemented the scheme described in (3.7) . The following modifica-
tions are made to ensure convergence and to speed up the algorithm. If at iteration
(t + 1), the lower bound has not increased by a significant amount, we try one of

the three following methods to pick a ‘good’ 7 to be sent to the master problem.

In the first attempt, we try to pick a = that has a small absolute value, by

obtaining a good solution for the following problem.

T

min '
s.t tD< ¢
r(d+ i ourz’ )=zt (3.11)

Observe that, this problem has all the subgradients of the function cz + g(z) at
S0k z'" as the feasible region and tried to select a  that is as close to the null
vector as possible. However, it is not necessary to solve this problem to optimality.
We use an outer linearization and solve the corresponding linear program once.
to get a v which is different from the previous one. It is also computationally
convenient to do this since we need to make only a few changes to the subproblem

to achieve this.

If incorporating the resulting 7 did not yield a better lower bound, we resolve
the subproblem. This time, we only send Zfzo urz'" as input to the subproblem.
This would ensure that the r that we get is an extreme point of the set {r | 7D < c,}.
With this strategy, the only way this algorithm can stall, or even cycle, is if we
choose the same extreme point over different iterations. If we notice this, i.e., if we

have the same upper bound for 5 or more iterations, we resolve the subproblem by
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sending a randomly perturbed solution Z:.-:o ﬁ,‘-‘x" to the subproblem. This would
have the effect of choosing one of the extreme points of {r|7D < ¢;} which is a
subgradient at Z:zo yl‘x". Since there are only finitely many such extreme points,
with probability one we will eventually pass all the necessary extreme points of

{n| 7D < c2} to the master problem.

While, these strategies have to be incorporated into the algorithm to ensure
theoretical convergence, we do not often need them in practice. To measure the

real work involved, we count every extra sub problem solved as an extra iteration.

In practice, we do not incorporate solutions of all the previous master problems
into the current subproblem. That could blow up the size of the subproblem and
render the usage of Decomposition moot. Therefore, we only make room for a pre-
specified number, usually about 10, of master problem solutions to be incorporated
into the current subproblem. This necessitates a scheme to choose which solutions
to discard if we have more than we have space for. We use the following hueristics

to determine that.

(1) When discarding a former solution, we discard the one with the smallest weight
in the previous solution of the subproblem. In case of a tie, we discard the one

among them that entered the Sub problem first.

(2) If we discard a solution that has positive weight in the previous iteration, we
retain the best linear combination of solutions that gave the current upper

bound. This enables us to maintain monotonicity of upper bounds.

We compared Primal-Dual decomposition scheme with Benders decomposition.
The results from three different problems are presented in the following table. First

problem WRPMisa capacity expansion planning problem, described in the previous
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chapter. This has 2 rows and 34 columns in the master problem and 302 rows and
289 columns in the subproblem. HYDRO-1 is a two-stage hydroelectric scheduling
problem in which the subproblem has 31 rows, and 158 columns in the first iteration
and the master problem has 31 rows and 158 columns in the first iteration. A
detailed description of this problem is available in Morton (1993) (28]. The last
problem SSN is in the area of telecommunications capacity planning in which the
subproblem has 176 rows, and 706 columns in the first iteration and the master

problem has 2 rows and 90 columns in the first iteration.

In each case, the expected value problem is solved and the number of iterations,
i.e., number of master problem subproblem pairs solved, is reported. Though the
subproblems in the Primal-Dual decomposition are slightly larger in size than the
ones in Benders decomposition, the difference in time to solve them was insignificant
in all the cases. We have also reported on the number of iterations under Benders

Decomposition when the upper bound has actually improved.

Empirical Results
Name Benders Primai-Dual
lteraticas | Improvements
WRPM ” 28 18
HYDRG-1 | 119 17 10
SSN n 23 10
Table 1
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Conclusion

We have presented enhancements to the current algorithms to solve stochastic
linear programs. In adapting importance-sampling techniques for stochastic linear
programs, we have seen that considerable amount of computational burden can be
reduced, by reducing the estimation problem from one that involves an implicit
function that is expensive to evaluate, to one that is explicit and easy to evaluate.

We have detailed several approaches to estimate the mean of this explicit function.

We have also demonstrated how a modified Decomposition scheme can reduce
the number of iterations required to solve the expected-value problem corresponding
to a stochastic linear program. We observed through numerical examples, that
the reduction in computational time obtained through less number of iterations

outweighs the added computational time needed by the modified method.

These enhancements give rise to faster algorithms and enable us to consider
larger models which could not have been considered before. Some of the test prob-
lems we included have more than a million possible scenarios. Corresponding de-
terministic equivalent program will have more than a hundred million constraints.
Clearly, problems of this size can not be solved by traditional mathematical pro-

gramming methods.

However, problems in real life have even larger number of stochastic parameters
and larger number of scenarios. The search for faster algorithms should continue in
order to solve these problems. Based on our research we can suggest the following

topics for future research.
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Conclusion

The decomposition ideas presented in this dissertation are only applicable to
the deterministic case. However, extending this approach to the stochastic case as
well, should result in significantly large reduction in the computational time for this
class. At present, a direct extension of the ideas presented in this dissertation is not
possible to the stochastic case since, all the Sub problems have to have the same
first stage decision in their right hand side. This makes it difficult to pass variable
combinations of first stage decisions to different Sub problems since each Sub prob-
lem might choose a different convex combination. However, a further iterative loop

that enforces the non-anticipativity condition may overcome this difficulty.

In sampling schemes, further research can be done to extend importance-
sampling ideas to the case of dependent random variables. The case of dependent
variables will not pose any difficulty in reducing the problem from integrating an
implicit expensive function to integrating an explicit inexpensive function. How-
ever, newer techniques would have to be devised to integrate the resulting explicit

function.
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Abstract

In this dissertation, we present some of the recent advances made in solving
two-stage stochastic linear programming problems of large size and complexity.
Decomposition and sampling are two fundamental components of techniques to
solve stochastic optimization problems. We describe improvements to the current

techniques in both these areas.

We studied different ways of using importance sampling techniques in the con-
text of Stochastic programming, by varying the choice of approximation functions
used in this method. We have concluded that approximating the recourse function
by a computationally inexpensive piecewise-linear function is highly efficient. This
reduced the problem from finding the mean of a computationally expensive function
to finding that of a computationally inexpensive function. Then we implemented
various variance reduction techniques to estimate the mean of a piecewise-linear
function. This method achieved similar variance reductions in orders of magnitude
less time than, when we directly applied variance-reduction techniques directly on

the given problem.

In solving a stochastic linear program, the expected value problem is usually
solved before a stochastic solution is attempted. This enables us to understand the
value of the stochastic solution and also to speed-up the algorithm by making use of
the information obtained from the solution of the expected value problem. We have
devised a new decomposition scheme to unprove the convergence of this algorithm
We have showr. that this method gives a monotonically decreasing sequence f
upper bounds whereas the regular decomposition scheme does not. We have also
demonstrated that the added computational burden is insignificant compared to
the reduction in the number of iterations and the resulting gain in CPU time.
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