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Abstract

Inthisdissertation,we presentsome oftherecent_dvancesmade insolving

two-stagestochasticlinearprogrammingproblemsoflargesizeand complexity.

Decompositionand samplingaxetwo fundamentalcomponentsof techniquesto

solvestochasticoptimizationproblems.We describeimprovementstothecurrent

techniquesinboththeseareas.

We studied different ways of using importance sampling techniques in the con-

text of Stochastic programming, by varying the choice of approximation functions

used in this method. We have concluded that approximating the recourse function

by a computationaUy inexpensive piecewise-linear function is highly efficient. This

reduced the problem from finding the mean of a computationaUy expensive function

to finding that of a computational/y inexpensive function. Then we implemented

various variance reduction techniques to estimate the mean of a piecewise-linear

function. This method achieved similar variance t..-ductions in orders of magnitude

less time than, when we directly applied variance-reduction techniques directly on

the given problem.

Insolvings stochasticlinearprogram,theexpectedindueproblemisusually'

solvedbeforea stoch_ticsolutionisattempted.Thisenablesustounderstandthe

valueofthestochasticsolutionand al._oro _peed-upthealgorithmby makinguse,_(

the_ion obtainedfromthe_,,l_ti,_noftheexpectedvalueproblem.We ha_,•

devised& new decompositionscheme_,,improvetheconvergenceofthisalgorithm

We have shown tlmt this methanol gaw._ a monotonically decreasing sequence ,,(

upper bounds whereas the regular _lec,_mposition scheme does not. We have ai,,,

demonstrated that the added computational burden is inaigniflcant compared ',,

the reduction _n the number of iterations and the resulting gain in CPU time.
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Preface

Uncertainty has been one of the most dii_cult aspects to incorporate into an

optimization model designed to solve complex real life problems. Often times, in

practice, the uncertain parameters of the problem axe replaced by their mean v_tues

or most probablevalues.While itwas realisedthata model thatincorporates

uncertainty is bound to give superior results to the one that does not, the resulting

increase in the size rand complexity of the models and non-existence of softwaxe that

can solve such models quickly at a low cost has deterred modelers from abandoning

the simplistic approach of the past.

The semrch for algorithms that solve these larger problems in less time continues

to be a fundmmental rese=rch goal. Advances in this area, together with the advances

in the speed and capacity of computers in the 1980's and early 90's has made it

possible to solve problems that were once considered intractable. In p=rticulax, it

is now, within the scope of existing technology to solve models that hedge ag_ins_

some of the future uncertainties.

In this dissertation, we present some of the advances upto 1993 made in solving

stochastic optimization problems. Decomposition and sampling =re two of the fun-

damental components of these newer techniques for solving stochastic optimization

problems. We describe improvements to the current techniques in both these axeas,

improvements that en_le us to solve much larger problems in a shorter time.

We begin in Chapter I by describing the formulation of a two stage stochas-

tic line=it pro$xszn, that can be used to model the uncertmnty of many real-Life

problems. We _so review • few approaches used to solve these problems.

, Chapter II discuu_ the incorporation of monte carlo sampling into existing
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algorithms to solve two-stage stochastic line& progrsms. Improvements to the exist.

ing methodolo_D" are suggested. The e_iciency of these improvements are reported

at the end of this chapter.

Chapter III illustrates the advances made in the area of decomposition tech-

niques for non-stochastic problems. This is followed by numerical results.

We concludewithChapterIV which summarizestheadv_.ncesmade inthis

dissertationand suggestsfutureareasofresearch.
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Chapter I
Introduction

1.1. Two-stage Stochastic Linear Program

Planmng under uncertainty has been a rapidly growing subject in the field

of Operation Research. Since its inception in 1955 by DImtzig (1955) [8] and in-

dependently by Beale (1955) [3], many researchers have contributed to this area.

Wets and KaU (1976) [26], Dempster (1980) {13], Ermoliev (1988) [16] and Iafanger

(1993) [24] are some of the books entirely devoted to this subject. Research in

this area is started by formulating models that incorporate uncertainty. A typical

stochutic programming problem can be formulated u:

Min E(z(z))
(1.1)

s.t. =ECC_ _

where z(z) is a random variable defined on the probability space (:_,_', P) and C

is s convex set. (In the remainder of this thesis, we _ use Epz(=,w) to mean

the ¢._xpected value of the random variable z(z). In general, the expect&tioa of

random v_ri&ble X is represented either by E(X) or by EpX(w)). However, the

exact nature of the conJtraints and the dynamic nature in which re_diz&tioas of the

random parameters rareo_erved, give forth to different specific models. One such

formulation is the clamfi¢ two-stase stochastic linear program which is expressed as

follows:

z"= rainc=+ EpQ(=,w)
s.t. Az =b

z >_0 (1.2)

1



Chapter I: Introduction

where Q at any given decision z is a random variable defined on the probability

space (f_, t', P). The value of Q at a given decision z and at a given point w E fl is

denoted by Q(z, w) and is given by the following expression:

Q(z,w) = minc2(w}y(w)

s.t.D(w)y(w)= d(w)+ S(w)z

>0 (1.3)

where c2, d are random vectors and D, B are random matrices defined on the same

probability space (f_, _', P).

In this formulation, decisions are made in two stages. In the first-stage, some

decision z, an nl x 1 vector, is made subject to Az = b, z >_0 where A is a known

m, x nx matrix and b is a known ml x 1 vector. The first-stage cost associated with

this decision z is cz, where c is a known 1 xnl vector. After this, the specific outcome

w of the underlying random vector is observed. This determines the coefficients

c2(w) which is a 1 x n2 vector, B(w) which is an m2 x n, matrix, D(w) which is

an m2 x n2 matrix and d(w) which is an m2 x 1 vector . Then the second-stage

decision y(w), an n2 x 1 vector, is made so as to minimize the cost c2(w)y(w) subject

to the second-stage constraints D(w) = d(w) + B(w)z, y >_O. Q(z,w) represents

this minimum second-stage cost of the decision z at the outcome w. It is also called

the recourse function. The objective of the model is to choose a first-stage decision

x, subject to the first-stage constraints, that minimizes the sum of first-stage cost

and the expected _,*cond-stage costs.

Am an example, consider the problem of capacity expansion for an electric

utility company. Here the first stage decision would consist of the amount of new

capacity to be acquired, the choice of technology used to generate electricity and

placement of new facilities etc. The second stage decision would correspond to the

2
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dmiy operstionsofalltheplantsoperstedby thecompany. The uncertaintiescan

includedemand forelectricity,non-availabilityofbuilt-incapacitydue torandom

failures,etc.Thisproblemcanbe modelledasa two-stagestochasticlinearprogram

describedabove.

1.2. Review of Solution Techniques

The two-stagestochasticlinearprogramhas been studiedextensively.Solu-

tiontechniquescombinemethodsofOperationsResearch,likelinearand non-linear

programming,withtraditionalstatisticalmethods,likeestimationand monte-carlo

samplingtheoryetc.

Some solutiontechniquesaredesignedtotakeadvantageofthespecialmatrix

structureoftheproblem.Forexample,Van Slykeand Wets (1969)[35]describehow

Benders(1962)[4]decompositioncan be appliedtosolvethetwo-stagestochastic

linearprograms.

Mathematicalprogrammingtechniquesareappliedinspecialcasesby Nazareth

and Wets (1986)[30].The same authorshavegivenan overviewofapplicationof

non-linearprogramming techniquesinstochasticprogramming,seee.g.,Nazareth

and Wets (1988) [31].However,in the caseofstochasticoptimizationtheex-

actfunctionevaluationsand gradientsreqtdredby generalnon-linearprogramming

techniquesaxedi_cult.To overcomethisproblem,stochasticquasigradientmeth-

ods havebeendesignedby Ermoliev(1988)[15].Implementationsofthesemethods

hasbeen studiedby Gaivoronski(1988)[IS}.

When theexactsolutionoftheproblemisnotpossibleornotpracticaltodo.

approximateschemesaredevisedtoobtainbounds.Thiscan efficientlybe done_n

3



Chapter I: Introduction

thecasewhereuncertaintyisrestrictedtotheright-handsideofthelinearprogram

in(1.3).Ifso,the dualof(1.3)has a feasibleregionthatisnot random. Using

thisfactand Jensen's(!906)[25]inequalityforconvexfunctions,a lowerbound

for:° caneasilybe constructed.Upper boundscan be constructedasexplainedin

Edmundson (1956)[14]and Madansky (1959)[27].

Some of the techniques described above such as Van Slyke and Wets [35],

consider all the scenarios of the underlying random parameters. This limits the

application of such methods to problems with only a moderate number of scenarios.

To tackle problems with :arge number of scenarios, sampling techniques have been

combined with some of the m'._thods mentioned above. For example, Gaivonron-

ski and Nazareth (1989) [17] use a combination of generalized programming with

sampling methods. Pereira et.al. (1989) [32] used the control variates technique

along with Benders decomposition. Higle and Sen (1989) [22] developed a modified

Benders Decomposition method that uses only one observation per iteration or a

very small sample size. Dantzi$ ,_nd Glynn (1990) [7] have devised a combination of

monte carlo importance sampling and decomposition techniques, which is further

developed by them and Infanger (1991) [23]. In this thesis, we make significant

improvements to their approach in both the areas of decomposition and sampling

techniques.

Inthe remainderofthischapter,we willbrieflydescribethisapproachsoas

to laythe backgroundforthe enham'-mentswe made. For more detailson this

approach and numerical results, we r,.fi.r rc_Infanger (1993) [24].



Chapter I:Introduction

1.3. Current Methodology

Let usconsidera two-stagestochasticlinearprogrammingproblemdefinedon

a discreteprobabilitysp_cewithfinitelymany scenarios.Forthe purposeofthis

discussionwe willconsidera modelwhererandomnessisrestrictedtotheright-hand

sideofthefeasibleregionin(1.3),i.e.,onlyB and d axerandom and c2and D are

notrandom. Let f/- {wl,...,_M }.We denotetheprobabilityofa scenario_, by

p,,B(_,) by B,, y(_,)by y,and d(_,)by di.Thus, theproblemin(1.2)canbe

restatedasa singlelinearprogramasfollows"
i

Z" = rain cx +plc2_/l +... +pMc2yM

s.t. Ax = b

-Blx+ Dyl -dl

.-BMX + D!lM =dM

x , Yl , ... , YM _>0. (1.4)

The currentmethodologyadaptedby Dantzigand Glynn (1990)[7]and In-

ranger[23]solvestheproblemin(1.4)by a combinationofBendersDecomposition

and importancesampling.

Bendersdecompositionalgorithmisan iterativescheme inwhich thesucces-

sivelyreliningouterapproximationsaxebuiltfortheexpectedvalueoftherecourse

function.Each iterffitionconsistsofa masterproblemand a setofsubproblems

The mamtetproblemsolvesan approximationoftheorigimdproblem,inwhich the

recoursefunctionisreplacedby itscurrentapproximation.The subproblemsare

5
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used to refine the current approximation to the recourse function by evaluating

the gradient of the recourse function at a given first-stage decision supplied by the

master problem of that iteration.

The master problem at iteration t has the following form:

cz; + e; = rain ( cz+ 0)
s.t. Az = b

M M

i----'l s--I

M M ,

i:=l i--'--I

z >0. (1.5)

At iteration t = 0, there will not be any constraints involving 0 and the variable 8

will be dropped from the problem. There axe M subproblems at every iteration, one

for each scenario w of the underlying random parameter vector. The subproblem

at iteration t, corresponding to scenario w, has the following form:

c2_'(w,,z_) = winc2y,
s.t.D_,.=,/,+ B,z; I _r'(_,,z;)

y, _>0. (1.6)

The vectors 7r°(w,, z:), i - 1,... ,M and s = 0,... ,t-I, used in the master problem

(1.5) are the optima/dual multipliers of the subproblem corresponding to scenario

wi in iteration s. Similarly, the z; used in the right-hmad side of the subproblem

(1.6) is the optimal" solution of the master problem at iteration t.

Oboe that the manter problem (1.5) is equivalent to the following problem:

z I = min cz + Q'(z)

s.t. Az =b

x >_0 (1.7)

6



Chapter I: Introduction

where

Q'(x) = max Ep(Tr'(w,x*,)(d(w) + B(w)z)). (1.8)0<_,<t-I

However, by writing the dual of (1.3) and by noting that 7r'(w,z]) is a feasible

solution for that problem, we can see that Q'(x) _<EeQ(x,w). It then follows that,

z_ is a lower bound for z*.

Sincez_ isa feasiblefirst-stagedecision,an upperbound fortheoptimalvalue

z*can be constructed as follows:

M

' +  c2u'( 1 (1.9)
_----'1

The flowofinformationinthisalgorithmisshown inthefollowingfigure.

1

( ,J
Fig.1 ' Flow of information in Benders Decomposition

Accordingtotheapproachjustdescribed,one wouldhavetosolveM subprob-

lems at everyiteration.This can be prohibitivelyexpensiveifM islar_ge,as it

islikelyto be incomplex real-lifemodels.Thereforea promisingapproachisto

modifythe Mgorithm sothatonlya few subproblemshavetobe solvedineachit-

eration.Thesecan be selectedthrougha statisticalsamplingschemewhichenables

us tomake prob_bilisticsstatementsabouthow closetheobjectiveoftheresulting

7



Chapter I: Introduction

solution is to the true optimum value. Thus, if we choose St to be the set of samples

chosen in the t-th iteration, we would have a master problem which has the form:

i

cz t +0_ = mincz+8

s.t. Ax =b

Z: +e>_ Z:
_ESo ,_ESo

1 • 1 ,
Z, +O>r-sT:T[ Z,

z >_0 (1.10)

and n, = [S,[ subproblems defined by (1.6) . We would then have

S', = cz_ + _ c2g'(_,, z_ ) (I 11)
,ES,

which is an unbiased estimator of an upper bound of z'. However, _ = cz'_ + 8'_ is

not necessarily an unbiased estimator of a lower bound for z'. Infanger (1993) [23]

exph_ins how to modify the lower bound in order to construct a confidence inter_

for z'. The choice of sampling scheme used is cr_z.cial for fast convergence of this

algorithm. In their approach, Dantzig and Glynn (1990) [7] and Infanger (1993) [23]

used importance sampling with great success. We provide a detailed description of

their scheme in Chapter 2.

This basic framework for solving stochastic programs has been further devel-

oped in three directions. Morton (1993) [28] studied the stopping rules for algo-

rithms with sampled upper and lower bounds and applied them to solve stochastic

programs. In/anger (1993) [24] aml ._[_,rton (1993) [28] studied extenstions of th_s

framework to Multi-stage stocha_tw i_r_rams. In this dissertation we study modi-

fications to the sampling schemes add _tecomposition methods in order to improw.

the speed of the algorithm.



Chapter II

Sampling Strategies

2.1. Introduction

Multi-dimensionalintegrationis an important aspect of stochasticprogram-

ming. In general,whenever one has to make an expected-valuestatement about

a model that incorporatesuncertainty,one isfaced with the problem of integra-

tion. When one incorporatesmany random parameters intoa model in order to

capturethe natureofuncertainty,each additionalrandom parameter contributesto

higherdimensionalityofthe problem. When the parameters arediscretethisleads

to the explosionof the number of possiblescenarios.Moreover, in stochasticpro-

gramming thefunctionsthataxe to be integratedare rarelysmooth and analytical.

Thus, higher dimensionalityand the non-smooth nature of the integrandmainly

contributeto the challengesofmulti-dimensionalintegration.

Multi-dimensional integration has been studied widely. Some of the survey pa-

pers are, e.g, Desk (1988) [12], Haber (1970)[21] and books, e.g., Stroud (1971)[34]

and Davis and R_binowitz (1975) [lll. In particular, the first paper studies multi-

dimensional integration in the context ,_f _ochastic programming.

We begin our discussionby ._ll,,wiI_wl_elemulti-dimensionalintegrationarises

in the context of stochasticprogra1111_l_g.This enablesus to exhibittheirspecial

structure.We followthiswith a bl'iefdiscussionof variance-reductiontechniques

used to improve the accuracyof the multi-dimensionalintegration.We then present

9



Chapter II: Sampling Strategies

importance sampling as a tool to address integration problems in the context of

stochastic programming. Next we describe the current usage of importance sam-

piing and a scope for its improvement. Finally, we suggest a new way of implement-

ing importance sampling and show its effectiveness through numerical examples.

Multi-dimensionalintegralsarisenaturallyinstochasticprograms.They are

partofthe modelsas wellas thealgorithmsthata_edesignedtosolvethemod-

els.Inthetwo-stagestochasticprogrammingmodel,describedin(1.2),thesecond

stagecostsaxedescribedas ar_integral.Even ifwe decidetosolvethisproblem

througha deterministicapproachby usingtheexpectedvaluesoftheinherentran-

dom parameters,to understandtheeffectivenessofsucha method we stillwould

needtoperforma multi-dimensionaJintegration.Clearly,inalgorithmssuchasthe

onesdescribedinthepreviouschapter,whichattempttohedgeagainsttheuncer-

tainty,multi-dimensionalintegrationhas tobe performedateveryiteration.Also

inchanceconstrainedmodelsdescribedinPrdkopa(1988)[33],one oftenneedsto

compute theprobabilitywith which a givenconstraintissatisfied.Thistoo falls

undermulti-dimensionalintegration.Intheensuingdiscussion,we treatintegration

and evaluationofexpectationsynonymously.

There axemany differenttechniquestocarryoutnumericalintegration.Fora

reviewofthesetechniquesrefertoDeak [12].Most methodsexceptthosebasedon

theconceptofstatisticalsamplingarenotpracticalforlargeproblems,especially

thoseproblemshavingnon-smoothfunctionsor non-smoothprobabilitydistribu-

tions.Since,theproblemswe considerfallintothislattercategory,we willrestrict

ourselvestosamplingmethods.

I0



Chapter II: Sampling Strategies

2.2. Sampling methods

These areused for integrations that axe too difficult to solve analytically. In

general, as the number of variables increases, sampling becomes the only viable

choice to evaluate expectations of multi-dimensional functions. The fundamental

idea behind a sampling method is to approximate the given probability distribution

by an empirical distribution having nice properties and then use it to approximate

the integrM in question. Consider a random variable f defined on a probability

space (f_, F, P). For the purpose of illustration we will assume the existence of a

density function p. Consider the problem of estimating 0, the mean of f, given by,

0-/o f(w)p(_)d_.

Let wl,..., wn be n independently randomly drawn samples according to the density

p. Let/_ be the approximation to the density p given by

t ifw e {_l _,,}
•" . (2.1)

_w) - 0 otherwise

The integral using this approximate probability mass function is given by

n

1 (2.o)
fl ill

l_is an estimatorof#. There axemany nicepropertiesofsuchan estimator,

likeunbiasedness,which make ita verypopularmethod toapproximateintegrals.

The varianceofthisestimatorisgivenby

11
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An unbiased estimate of a2/n is
5,2
--, (2.4)
rt

where

o2 I "
n - I - (2.5)

t----'|

This variancecan be quitelargeand in such a casewe need a largesample size

to get the desiredaccuracy.The convergencerateof thisestimatorisI/v/'_.For

example ifa sample of sizeno givesus an estimatoraccurateto one decimalpoint,

itrequiresa sample of sizelOOn0 usingthismethod to givean estimatoraccurate

to two decimal places.

Clearly, this is unsatisfactory in many cases. Especially, in stochastic program-

ming, where expectations have to be evaluated at every iteration of an algorithm,

large sample sizes can slow down the algorithm considerably. However, sampling

need not be done naively, i.e., simply following the given probability distribution as

described above. It can be done instead in conjunction with special techniques, to

either improve accuracy or speed up convergence. One such class of special tech-

niques is known as variance-reduction techniques. Notable among these are impor-

tance sampling, control cariates technique, antithetic variates technique, common

random-numbers technique and Stratification. These techniques help to reduce the

variance of the estimator in different ways.

For example, suppose we are interested in estimating the expectation of the

difference of two random variables, which are positively correlated. Recall that, to

generate a sample _om any probability distribution, we first generate • sequence

of random numbers uniformly in the interval [0, 1] and apply a suitable transfor-

mation on these. The common random-numbers technique uses the same sequence

12
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of random numbers, instead of estimating both the parameters independently, to

reduce the variance. On the other hand, if the original random variables are neg-

atively correlated,we can useone streamofrandom numbers,sayUl,...,U,, to

generatesamplepointsofone random variableand use I - Ul,...,I - U,,forthe

otherrandom variablewhere0 < U, < I.

On theotherhand,supposewe want toestimatetheexpectationofone ran-

dom variable,by takingaveragevaluesovera largenumber ofreplications.The

method ofantitheticvariatessuggestscreatingdependencebetweenreplicationsin

ordertoreducethewaxianceoftheestimator.Method ofstratificationreferstodi-

vidingthesamplespaceintodisjoint'strata'and takingsamplesfromeachstratum

separately.Thiswould enableus tosamplemore from a stratumthatcontributes

more totheoverallvariance.A detaileddiscussionofthesemethodsisavailablein

Bratleyet.al.(1983)[6].However,instochasticprogramming,we donotoftenhave

enoughinformationon themonotonicityofthefunctionsinvolvedorthevariability

indifferentstratatoapplythesetechniques.Thus we decidedtousea combination

ofimportancesamplingand controlvariatetechniquesasa variance-reductiontool.

In thefuture,we willrefertothescheme,describedin(2.1)-(2.5),where no

effortwas made toreducevariance,as nazvesampling.We definethemeritofany

variance-reductiontechnique,inrelationtothatofthenaive-saznplingapproach.

2.3. Importance Sampling

Importance sampling is a variance-reduction tool that is often used in sim-

ulation of complex phenomena. It is particularly designed to address the situa-

tion in which there are certain scenarios that are extremely rare, yet significantly

13
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contribute to the average measure of performance that is being estimated. Naive

sampling would take a long time before some of these rare events are picked up

in the sample. An estimate computed without observing these rare events might

not accurately represent the true value of the desired parameter. These consider-

ations usually translate into large variances of the estimator. In trying to rectify

this situation, importance sampling method tries to reassign the probabilities to the

events so that the new probability of an event represents both its ,_Qt,_ralfreq,_ency

of occ,_rrence and its importance. The importance of an event is assessed by the

contribution of it to the parameter that is being estimated. Of course, a certain

corrective action has to be taken to eliminate the bias introduced through this re-

assignment. For more details on importance sampling we refer to Bratley et.al [6],

and Glynn and Iglehart (1989) [20].

Firstwe formalizetheseideasbelow.Then we describetherareeventsthat

areencounteredinstochasticprogramming.We go on todescribewhy importance

samplingisa suitabletoolevenincaseswherethereareno specialveryrareevents.

Thisdiscussionisfollowedbyvariousimplementationissuesofimportancesampling.

Let

0 = Jn/(_)p(_)dw

#J

where theoutcomew oftheunderlyine;tandom parameterisa vectorwithr com-

ponents(wl,...,wr).Innaivesampli11_we choosea setofsamples{(wl,...,_,)}

accordingtothemultivariateprobal_ilir.vc{ensityp.At eachofthesepointsw = ,_,

we evaluatethefunctionf(w).hlit1_l_,,tt_ti_cesampling,we usea uew probability

densityq(w)tochoosesamplepomt._ H,_wever,ifwe evaluatethefunctionJr(w)at

thesepoints,we would be estimating

f f(_ )q(_ )d_

14
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which is not the value 8 we want. Therefore, as a corrective action, we evaluate,

with respect to the probability density q(_), the expected value of

Observe that,thisrestrictsthe choiceof the new probabilitydensityto thoseden-

sitiesthat are positiveforeveryw E f/.Thus we are estimating

flf(w)P(W)q(_)dw

which alsoequals0,the desiredparameter. The varianceof thisestimatorisgiven

by

q2() q()dw-
(2.6)

=l{_n fe(_)P(w)P(w)d_-OZ}q(_)

Clearly,theamount ofvariancereduction,ifany,depends on the choiceofq(w). For'

example, as we saidearlier,ifq(w) ischosen to be proportionalto .f(w)p(w),then

it must equal f(w)p(w)/O. This isbecause,in order for q(w) to be a probability

density,ithas to integrateto one. Using thischoiceof q(w) we willget a variance

of zero.However, thischoiceassumes we know the valueof 8, the very parameter

which we are tryingto estimate,and hence isnot availableto us as a correction

factor.However, itdoes provideus with a clueforfindinga new densityq(_) that

isapproximatelyproportionalto the product p(w) x f(w) and at the same time is

easy to use. In the future we refer to such a q(_) as an importance denJity. We w:ll

discuss how to achieve this end after we motivate the use of importance sampling

in the context of stochastic programming.

To constructa good importance density,we willlook intoboth the functi()t_

f(_o)and the probabilitydensityp(w) and tryto approximate them. We denote the

15
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approximation function for f(_) by F(w) and we denote the approximation function

for is(w) by q(_). Thus the importance density q(w) will be given by

_, - (2.7)

where ["= ff_l"(,,_)r/(w)dw.[n estimatingthe expectedsecondstagecostsofa

stochasticprogram,thevariationinthefunctionf(_)typicallyplaysa largerrole

than thevariationintheprobabilityofdifferentscenarios.Thereforewe willfirst

concentrateon onlyapproximatingthefunctionf(w) inordertoconstructan im-

portancedensity.Thus we have

0 = r' In p(w)q(w)d_ (2.8)

where, r' = fr_ F(_)p(w)dw,q(_)= F(_)p(w)/r'and

p(w)= r(_-"_" (2.9)

Let usrecallthatthefunctionthatwe aretryingtointegrateisg_venby

f(w) = mincTy (2.10)

s.t. DV = d(_) + B(w)x

y>0

where x is a known vector. By writing the dual of the above linear program, we

can alsoexpressitas

=
s.t. DTTr2< c2. (2.11)

Often,therandom vectord and therandom matrixB have a simpleadditive

form intermsofthecomponentsoftheunderlyingrandom parametervector.For

example,

d(w) = do + dxw I +... + d,_ "_ (2.12)"

B(w) = Bo + BI_ "d+t +... + B,--,'d t#" (2.13)

16
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where do,...,d,-d are deterministicvectorsand Bo,..., B,._,., are deterministicma-

tricesand _l... ,_r arescalarcomponentsoftheoutcome _. Thisstructureis

particularlyusefulifthecomponentsoftherandom parametervectorareindepen-

den1,1ydistributed,i.e.,p(_)- l'Ii_Ip,(w').

2.3.1.Additive Approximation

To estimatetheexpectedvalueofthisfunction,R.Entrikenand M.Na_kayama

in Dantziget.al[10]developedan approximationfunctionthatisadditiveinthe

components of the underlyingrandom parametervector.This functionhas the

form:

r(_)= r0+ r,(wI)+...rr(J). (2.14)

To choosetheconstantF0 and theunivariatefunctionsrl,...,rr theyconsidered

what iscalleda basecasescenario9. The approximationisdesignedto be an

additivefunctionthatequalstheoriginalfunctionf(w) at allpointsobtainedby

varyingone coordinatefrom the basecasescenariowhilekeepingtheothersfixed

atthebasecasevalues.Thisdefinitionleadsus tothefunction:

r(w)=f(_,...,_ ")

+f(wl,...,_;',...,_)-f(_bl,...,_ _)
• • .

4'-f(g,l, .... _,, .... W,-)_ f(g,l,,..., g,r)
• • •

4- f(g,l,..., ¢,, .... .,.,,) _ f(g,l,..., g,,.). (2.15)

Clearly, we have

... w' ,. wl ... g,r1-,(¢1, , , .... _ ) =. f( ,...,_' , )

forevery I < i < r and forevery_'. Moreover,the univariatefunctionri in

(2.14)isgivenby

ri(wi) __f(_l,... ,w',..., _") -/(_x, ..., _,r) (2.16)

17
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and thescalarF0 isgivenby

ro = f(_',..., _,'). (2.17)

Inthiscase,applicationofimportancesamplingcanbe describedasfollows.

0 - L f(w)p(w)dw

/n f(_) - f(_) (r(_)- F(_))p(w)d_= f(@)+ F(w)- r(@)

r _ F(_)f(_)--f(q_)F(_)r'(w]JP(w)d_r,= f(_) + _ F, ,
m=l

/. r,(_')p(w)
= f(_) + y_ t, / p(_) &o

,----I Jr/ m

where p(_)= _ and F, = fnF,(_)p(_)d_

When thecomponents oftheunderlyingrandom parametervectorareinde-

pendentlydistributed, we have
f

" _ r,(_')lli=_m(,_J)o= f(_) + _ t, p(_,,) f,
t----1

,. ,. (2.19)

=f(_,)+_ _,/_o(_)q,(_,')l'Im(,,v)lgl .,at
SI_W

where

F,i-" )O,(_') (2.20}
rl,(-")= C',

Noticethat,inthiscaaeofindependentdistributions,evaluatingr,isreduced

to a one dimensionalintegration.To evaluatethisexactly,we need to be able

18



Chapter If: Sampling Strategies

to evaluate the function Fi(w _) at all possible outcomes w'. In pr_tice, when

the random parameters are discrete, number of outcomes of any single random

parameter are not too high. Therefore, f', can be computed easily.

Thus, to implement importance sampling in this case, first we perform r one

dimensional integrals to evaluate f','s. Then we compute r modified one dimensional

densities qi(w' ). The original parameter 0 is expressed sa a sum of r integrals, each

of which is estimated through sampling. We select a sample size nt to estimate the

i-th integral. The n,'s axe chosen to add up to a fixed sample size n allocated to

estimate 0 and are chosen roughly proportional to r',.

To estimate the i-th integral, we choose a set of sample vectors (_,l,..., _,,,_ }

where the i-th component of' each vector is chosen according to the new probability

density q, and all the other components are chosen with respect to the original

probability densities. Let

n_

ni
j=l

and
]. n,

d; = ,,_ z (2.22)
j=!

The estimator for 0 is given by
r"

=/(if/) + _ F,,_, (2.23)
l-----|

with estimated variance of
r _,_ 2

"_ m. ---

tT_ r_ "
_|

By choosing an appropriate base case, _he variance in (2.24)can be much

smaller than the variance in (2.4). The experiment of M.Nakayama in Dr_atzig
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et.ai. [10]consisted of estimating the second stage costs of a multi-area capacity

expansion model with 192 universe scenarios. They used a sample size of 10 for

both importance sampling and naive sampling and achieved a variance-reduction of

20000 times.

2.3.2. Need for other approximations

The additiveapproximationdescribedintheprevioussectionworksverywellin

certainproblems.Inthecapacityexpansionexamplementionedabove,thesecond

stagecostsexpressedas a functionof the random scenarioare almostadditive,

therebygivingusa veryhighdegreeofvariance-reduction.Thiswouldbe thecase

if,forvariouslevelsof demand contingencies,the method of supplyingremains

the same. For example,ifthe capacitybuilt-inisveryhigh,then alldemand

contingenciescan be met by simplyoperatingtheplantsatappropriatelevels.On

theotherhand, ifthe capacityisverylow,most ofthe timethedemand ismet

throughan outsidesourcewitha different,and usuallyverymuch higher,cost.In

eithercase,thecostfunctionwould remainmore orlessadditive.Mathematically

speaking,iftheoptimalbasisin(2.11)remainsthesame formost valuesof_, then

thefunctionwouldbe veryclosetobeingadditiveinw. However,therewillbecases

inwhich thebuilt-incapacityisenough tomeet thedemand up toa certainlevel

but not beyond that.Insuchcases,thecostfunctionwould not be additiveand

theadditiveapproximationwould not giveverygood results,thoughitstillmight

be a lotbetterthannaivesampling.
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Fig. 1

The picture in Fig. I illustrates this point. In this example, the cost function

is made up of two planes of different slopes. By taking the base case to be the

scenario corresponding to the lower left hand corner of the box in Fig. 1, the

additive approximation function is exactly equal to the true function along the two

axes. Since all the points on the two axes have the same slope, the resulting additive

approximation is a additive linear function which simply projects the lower slope

onto the complete domain. It is easy to see that this would underestimate the real

function considerably in the neighborhood of the upper diagonal corner D.

The performance of additive approximation depends on the choice of the base

case q_. For example, by taking the upper right hand side corner in Fig. 1 as the

base case, one can get a better approximation. In general, for the the new density

qi(_ i) in (2.20)to be non-negative we must have F,(w i) in (2.16)to be always

non-negative or always non-positive. This is easily achieved if we can identify a

scenario under which the second stage costs are minimized or maximized. For

example, if the random parameters involve exogenous demands and levels of built-in

capacity that are actually available, choosing lowest possible demands and highest

levels of available capacities gives us a scenario which minimizes the second stage

costs. However, when no such scenario is naturally available or when finding such a

scenario is computationally expensive we need a different strategy. We will address

this problem in later sections.

Finally, additive approximation by definition ignores the impact of joint vari-

ability of the argumenta on the function. Therefore, it can be conjectured that

the higher the number of arguments, the greater the chance that additive approx-

imation does not provide a good approximation to the original function. We will

demonstrate through numerical examples where this indeed is the case.
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For the above mentioned reasons we have decided to look at other approxi-

mation functions to implement importance s_mpling. First, let us identify some of

the important characteristics that a 'good' approximation function should posses.

These are described below.

• F(w) should be a good approximation to f(w)

• It should be easy to evaluate F(w)

(2.25)

• It should be easy to sample with the new density q(w) obtained from F(w).

• It should be easy to compute the mean of the approximation function, r'.

We can evaluate different schemes that we mentioned so far, under the above

criteria. Observe that naive sampling can be considered as an importance sam-

piing scheme in which a constant function is used as the approximation function.

Therefore, it satisfies the last three of the above criteria but fails in the first one.

Using the function f(W) itself as an approximation would do exactly the opposite.

It would satisfy the first criterion very well but fails in the last three. Additive ap-

proximation satisfies the last three criteria, except when finding a proper base case

becomes computationaUy expensive. However, it satisfies the first criterion only

in some cases. Thus we need to explore other ways of implementing importance

sampling.

2.4. Improved additive approximation

Beforewe studyotherapproximationfunctions,we firsttriedtomodify the

additiveapproximationfunction.This was done in mainly two differentareas.
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First we studied the effects of using different base cases. We looked into ways of

implementing additive approximation scheme as is, by identifying a scenario that

would have least cost among all scenarios obtained by changing one coordinate of

the base case. Then we attempted to change the implementation to enable us to

use any scenario as a base case, by taking care of the positive and negative parts of

the approximation function separately. Finally, we tried an exponential smoothing

scheme to enhance the performance of additive approximation. We describe these

attempts in the following sections.

2.4.1. Finding a least cost scenario

One way to ensure that the importance density q,(w') in (2.20) is non-negative,

is to find a base ease _ which is an argmin of the function f(w). Recall the form

of d(w) and B(w) expressed in (2.12) and in (2.13) . Also, assume that w' has a

i Then,compact support with a minimum value of _ and a maximum value of _o,.

the w component of the solution of the following linear program gives us a scenario

which minimizes f(w).

rainc_ll
rtl r

s.tDy- _E]d,_'- _ B.__,_,'= do+ Box
,=l ,=,_+l (2.26)

' Vl<e<r

V>0

If the support of w i is not the entire interval I.,_i,_], for example if w' is discrete,

then we need to make sure that p{ @I i., positive. Towards that end, let us suppose

that the problem (1.2) is of complete recourse, i.e., problems in which the linear

prog_ in (2.10) is feuible for ever>" .,,'. In that case the above problem becomes

minf(w)

_ ' Vl<i<rs.t.w_ _<_' <.... _ _
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and f(w) is a proper concave function on the domain. Therefore, a minimum occurs

at an extreme point of the domain which gives us a scenario where each w' is either

equals _ or equals _,_.' This gives us a scenario where p(_) is positive. On the

other hand, if we do not have full recourse, f(w) may not be finite on the entire

domain and we cannot prove that an optimal solution occurs at an extreme point.

2.4.2. Using any scenario as a base case

If we can not find a least cost scenario easily, we cma modify the additive ap-

proximation function as follows to make the importaaxce density qi(w i ) in (2.20) non-

negative.

F(_)-f(wl,...,W r)

+f(_t ..... UJ'..... U)_')- II
, .

+ f(_,l ..... ,,_,..... Wr)_li
• . • •

• •

+ f(_l, .... w' ..... _")-I,. (2.27/

where

l, = rain f(_,l ,z' ¢,r). (2 0$/
_J

This ensures us that

r,(_,')p,(.,' )

f( ,.,t ...... ., .... , _,") -1, (2.29 _

- fn(f(u" ..... -"..... w
>0.

However, with ti,as modification we lose the property that the approximation func-

tion mad the real function agree on the axes projected from the base case. But.
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the ability to consider any choice of _ _ a base case gives us a_aopportunity to

experiment with a few different cases and select a good one.

2.4.3. Exponential smoothing

The advantage of using an additive approximation is the ability to express the

original integral as a sum of a number of integrals, in each of which the probability

function retains the product form. Therefore, when an ",_dditive approximation

function does not perform very well, it is possible to tune it,, _thout losing the

advantage of additivity. Consider the following function,

r(w)= F0+e_'_'-_'_r_(_)+..,e°'i_'-_')r,(_')+...e°,_'-_,_r,(w_)(2.30)

whereF,(w')axeasdefinedin(2.16). By controllingtheparametersal,...,c_ we

can controltheratiop(w)--_ more efficiently.Note thattheonlydilYerencein

theimplementationoftheimportmacesamplingschemeisintheimportancedensity

whichisgivenby

e_,lw'-_,ir,(_,)
q,(,_')= f eo,_'-_'lr,(_')p,(_')a_ _"

Therefore, it still involves only one dimensional integrals to compute the importance

density. The only extra work is in choosing the pmrmmeters ai.

2.5. Piecewise-linear approximation function

Since the additive approximation may or may not perform adequately in a

specific problem, we want to design an approximation function that works well in a

25
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larger number of problems. Towards that end, we will propose and demonstrate the

use of a piecewise-linear function as an approximation function for use in importance

sampling. Consider the form of the function/(w) as expressed in (2.11). If the

feasible region of this linear program is empty, it would mean the second stage costs

are unbounded below. Thus, the problem (1.2) is unbounded below. On the other

hand, if the linear program in (2.11)is unbounded above, it would mean, for some

,J the second stage costs in (1.3) axe unbounded, there by making the parameter

0, which in this case is E(Q(z,w)) in (1.3) , to be infinity. Therefore, the only

interesting case that needs to be addressed is, the case in which the second stage

costs are finite for each w. This allows us to assume that the feasible region in

(2.11) is non-empty and to restrict our attention to its extreme points and ignore

the extreme rays if any.

Hence, we can express the function/(w) as follows.

max r_(d(w) + B(w)z) (2.31)
f(w) = I<_,SL

where _'_, 1 _<i <_L are all the extreme points of the duM feasible region in (2.11) .

Considering the form of this function, it is natural to try the following function as

an approximation function.

r(w) = max 7r_'(d(,_)+ B(w)z) (2,32)
l<_,<_t

where jz,..., jl are a sequence of distinct integers between 1 and L. Approximation

function of this form is also used by Pereira e_.al. (1989) [32] in conjunction with a

control variates technique. As the following picture demonstrates, often piecewise-

Linear function with only few piece,, can give a very good approximation to the

original function.
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Fig 2

To asses the performance of such an approximation function in an importance

sampling procedure let us look at the criteria defined in (2.25) .

2.5.1. Accuracy of approximation

It is clear that if we choose I = L then F(_) - c(w). However from a computa-

tional point of view, this observation is of no use, since generating all the extreme

points of a polyhedron and checking that we have all of them is impractical in large

problems because L is too large in practice, or so it would appear. On the other-

hand, it often turns out in practice that L is not too large, and so it is reasonable

to expect that a small I will sui_ce to obtain a very good approximation of the

polyhedral set.

Therefore, it is worthwhile to investigate how many dual extreme points do we

expect to see in practice. Repeated experiments have shown that this number can

be surprisingly small compared to what we might expect from the large number of

'possible' combinations that could result from the dimensions of the problem. For

example, in a linear program with coefficient matrix of dimensions 4 × 10 there can

be at most (l°) = 210 possible feasible dual bases. However in randomly generated

problems, there will be on the average only four dual extreme points! This claim is

substantiated by the following result.

Theorem" Consider the following linear program

min crz

s.t. ,4z = b

z>O
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where ,4 is an m x n matrix. Suppose a/1 the elements of .4 and c are independently

and identically distributed with uniform distribution on the interval [-1 1]. Then

the expected number of dual extreme points for this linear program equals (_") _.

Proof: Note that there are (_,) different square matrices in A that we need to

consider as possible dual feasible bases. Let us denote them as B, for i = 1..... (_")

and define N, as the remaining part of the matrix A. Observe that each of the

matrices B, is non-singul_ with probability one, as the probability that the con-

tinuous random variable det(Ba) assumes the value zero, equals zero. Let T be the

total number of dual feasible bases. The value of T is given by:

r -# {B, CN,- B,-'N, >_0}.

Let I(C) be the indicator function that assumes value 1 if the condition C is true

and 0 otherwise. Since expectation is an additive operator the expected value of T

is given by:
(=)

E(T) = Z E(l(CN, - ca, B,-IN, >_0)).

Without loss of generality, let us assume that B1 consists of the first m column_

of A. Since for each i the joint distribution of (B,, N,, ce,, CN,) is the same, we have

E(T)=(n) E(I(¢N'-cB'B_'N'm >0))

= (:)Ec,_e_,(E(I(c.vL-cB_B'{l.Vt > OlcetB_l)))

= Ees,e_,(E( [(c_ >_cetB'_tA._ ]catB_'t))).
)=rn+l

For j = m + 1,..., rt the conditional distributions of (cj, A i) axe identica/and

independent, given cBt B[ "l. Therefore

(:)Ec., s_,(E(l(c.+,- ce,B_t A .+l > OJcs,B_t)))"-'.
E(T) =

28



Chapter II: Sampling Strategies

However, Cm+1 is a symmetric random variable and given ce_ Bt I we also have

ca_BllA,n+i symmetric, as linear combinations of symmetric random variables

is symmetric. Therefore their difference c,,+i -cB_B'(IA.,,+I has a symmetric

distribution. The probability of a symmetric continuous random variable being

non-negative is 1/2. This can be easily seen from the following argument. Let Z be

a continuous symmetric random variable, i.e., Z and -Z have the same distribution.

P(Z >_0) = P(-Z _>0) = P(Z <_0) = 1-P(Z>_0)= _ Hence,

E(T) = E_., s_" 2.-"--'_

Note that there is no loss of generality in assuming that the elements of coeffi-

cient matrix A and cost vector c, belong to the interval [-1 iI. However, in a typical

problem, one does not expect to see the elements distributed uniformly. Moreover.

real-life problems are more sparse and some of the coefficients have inherent inter- IL
i

dependencies, so that the assumption of independence is not valid. Nevertheless it

has been observed in real-life problems that the number of dual extreme points is

remarkably small like randomly generated problems.

Given a particular sparse structure of a coefficient matrix and cost row of a

particular problem, it is possible to get an idea of how big the dual number of

extreme points is. The following corollary sheds some light on this aspect.

Corollary 1: Suppose the coefficient matrix A and cost row c have a given sparse

structure. Assume that each non-zero element has a uniform distribution on the

interval [- 1 1]. Denote by S the number of non-singular submatrices of size m x m
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of A. Then, S is a constant with probability one and the expected number of dual

extreme points equals S/2 '_-_

Proof. Observe that the determinant of a given set of m columns from .4 has a

determinant that equals the sum of products of different continuous random vari-

ables. (It could be an empty sum, making it possible that a given set of columns

is singular). However, given that it is a not identically zero, the probability of it

equalling zero is zero. So if a set of columns are non-singular for one realization of

the random elements of A and c, then it is so with probability one. From the proof

of the above theorem it follows that a given non-singular matrix corresponds to a

l Therefore the expected number ofdual extreme point with a probability of y_--_-.

extreme points for the dual problem is S/2 n-re.

Note that the above two proofs used only the fact that the distribution of the

random elements in A and c axe independent and symmetric around zero. In partic-

ular, they can be any other symmetric distribution, such as the Normal distribution,

and each one can be a different symmetric distribution. Thus we have the following

corollary.

Corollary 2: The above two resultsaretrue,when theelementsofA and c are

distributedindependently(notnecessarilyidentically)and symmetricallyaround

zero.

Therefore, we have reason to believe that a function of the form described in

(2.32} can be constructed in a computationally inexpensive way which will be a

good approximation to the original function. Now, we'U look into the other three

criteria that define a 'good' approximation function.
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As we mentionedearlierregardingthe additiveapproximationfunction,we

need tobe abletoensurethatthepiecewise-linearapproximationfunctionisnon-

negative.Inpractice,we know thatthefunctionf(w)isnon-negative.Even then,

['in(2.32)need not be non-negative.However,ifthedimensionofthevector7r_'

isbiggerthanthenumber ofrandom parameters,r,thena vectorr_° can be found

thatmakes Ir_°(d(_)+ B(_)z) positiveforall_. Ifwe includethisone in the

approximationfunction,we willgeta positiveapproximationfunction.This,in

fact,can be done evenifthefunctionf(_)takeson negativevalues.However,itis

not advisableinthatcase.Insuchcases,itisbettertosplitthefunctionr(_)into

a positivepartr+(_),and negativepartF-(_) and rewrite0 asfollows.

j,

dtl
(2.33)

Thiswillwork wellifF(_) isbounded away fromzerowithprobabilityone.Ifthat

isnot thecase,we can simplyadd a positiveconstanttoboth r+(_) and toF-(_.)

toovercometheproblem.

2.5.2.Ease ofevaluation

Itisclearthat,beingmaximum ofsome linearfunctions,thisfunctionisex-

tremelyeasytoevaluate.The originalfunctionwe haveisalsoa maximum oflinear

functions,i.e.,a linearprogram. However,thefactthatwe don'tknow Ml ofthe

linearpiecesexplicitly,makes itnecessaryto applyan algorithmliketheSimplex

algorithmtofindit.That ismore expensivethanevaluationofour approximation

function.
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2.5.3. Evaluating the Importance Density

We want a sampling scheme that would choose an n-dimensional vector

with probability r(_)p(_) When F(_) is an additive function and p(_) is the jointf, .

probability of independent discrete random variables, ev'aluating this is easy, as it

involves evaluating _ one-dimensional integrals to set-up new probabilities. But

when the function F is the maximum of certain linear functions, as it is in our

case, this is no longer easy. This is because evaluating f' is a di_cult problem in

itself. Therefore we use the following three step sampling strategy to select _ with

probability F(_)p(_)/f', without evaluating f' explicitly.

To do this, first find a function u(_) that dominates the function r' ). For

example, u(_) = M where M is an upper bound for F(_). Let ti be the . ,..._:ation

of u(_) where _ has the density p(_). Suppose for the moment, that we know how

to select an _ with probability _. (This is used in Step 1 below and we'Llu

discuss how to do this later).

• Step 1 Randomly choose w= _0 with probability u(w)p(w)/fi

• Step 2 Randomly choose a to uniformly from [0 u(w0)].

• Step 3 If F(w0) < to then declare _0 as the sample point selected, otherwise

reject w0 and go to step 1.

Letrbe theprobabilityofgoingthroughStepsI through3 and comingback

toStepI asoneiteration.Letr denotetheprobabilityofoneiteration.Also,let

q(_o)be theprobabilityofselectingan_ousingtheabovethree-stepprocedure.
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_o

q(_)= Z P(i rejectionsand acceptingw ini+ Istcycle)
z--'-0

-- Z r' P(_)u(_) r(_)

a(l- r).

/

From the above discussion it also follows that r = 1--_ and q(w) = r(_o)p(_)/_'

as required. From this we can see that the expected number of iterations the

procedure takes is fi/r'. Therefore, the smaller the mean of the upperbound function,

the less time consuming this method will be.

Now, coming back to Step 1, we have to specify, how to choose _o with proba-

bility u(w)p(w)/fi. This is exactly the same kind of problem we started with, i.e., to

choose ¢0 with probability r(_o)p(co)/r'. Moreover, we are free to choose a function

u that is easy to deal with. For example, we can take u(w) = M where, M is an

upper bound for the function r(w). In this case, Step 1 requires choosing w with

probability p(w). When r(¢o) = maxl<t<t rri,_0 and 7rl,w >_0 with probability one.

= )"_t=l 7ri,_oas an upperbound function. Since this is an additiveone can useu(_) t

functionchoosingan w withprobabilityu(_)p(_)/fiiseasy.Itonlyinvolvescom-

putingn one-dimensionalintegrals.Thereforeiffithusobtainedissmallerthan?.I.

itisbettertouse thisu(w) inStepI.

The followingdiagramshows usingthemaximum ofr(w)forsampling.
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Fig 3

The shaded area is the area of rejection. It is clear that the rejection area is large

for this particular case. In cases like this, one could divide the sample space into

rectangles R1,..., R,, and define

u(¢o) = max F(y) if w E R i._eRi

sampling with a function like this easy and it has a much smaller rejection region

than the constant upper bound function. This is shown in the following diagram.

I "¢.

\ :i
'% .;

i.l
i

Fig 4

Therefore,we haveshown thatan explicitpiecewise-llnearfunctionwithsmall

number of piecesisa good approximationfunctionaccordingto the firstthree

criteriadefinedin(2.25).Now, letusturntothelastcriterion.

34



Chapter II: Sampling Strategies

2.5.4. Evaluation of the mean of approximation

Recall from (2.8) that the mean of the approximation function plays a role in

two different places. The first one is in determining the importance density q(_).

We have described how to achieve this without explicitly computing f'. The second

role it plays is in the form of a multiplicative factor to _ which is a sample mean

for fn P(_)q(ca)dcu" Hence, we do need to address this latter problem.

Because the approximation function that we propose is of the same structure

as the original function, evaluating the mean of this function is clearly of the same

nature as the problem we started out with. However, we know all the pieces of the

approximate function which is not the case with the original function. Moreover,

the approximate function has fewer pieces than the original function. It is these

differences that we would like to take advantage of.

We consider two different approaches for evaluating the mean, f' of the approx-

imation function.

• Select F for which t can be easily evaluated exactly.

• Considerestimating['usingsamplingorothermeans.

Exact evaluation of r:

Recall from (2.9) that 0 = f'_. If we can evaluate f' exactly, then an estimator

for 0 would be given by

n
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with an estimated variance of

a_ = t '2 1,_(n- z)_ (P(")- _12i---I

where wl, .... w, are chosen according to the importance density q(w). Under cer-

tain conditions, it is possible to evaluate the mean of the approximation function

exactly. For example, suppose B(w) and d(w) can be expressed linearly in the com-

ponents of the vector w as described in (2.12) and in (2.13) . This would enable us

to express r' as follows.

_"=/. r(_)p(,_)_

{ ( r )}l_<i_<l k--"--I k=rd+l

= Z L 7rg' do+ Box + wkd. + ._l'(Bl,z) p(w)dws-- 1 w k-- 1 k-- rd + 1

{ ' }where Hi = _oI_'_' (d(_) + B(_o)x) >_7r_° (d(_o) + B(_o)z), V 1 _<s <__l

! r

*----l k=0 i

where ail,= _r__(d0 + B0z) if k = 0 (2.34)

7r__dh ifl <k<_ra

_r_'Bex if ra < k <_r

w°= 1.0

and Hi = w l aa,w I' >_. as,_ I* V I <_s <_r . (2.35)
k=O k-O
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Therefore, the problem of evaluating F has been reduced to that of integrating

a linear function on a polyhedron. Suppose that the components of _ are inde-

pendently distributed on a compact set with certain continuous densities. When

this is the case, the intersection of the polyhedron Hi in (2.35) with the compact

probability space gives us a polytope to work with. Thus we have the following

problem.

P

whereP= _;[w= X,pi; Xi=l; X>O
a=l I=I

1=*Sj

k--r

J=t{_lw=GiA; erA__l;A__O}

_--r r

= a,,la,I j Atp(G)A)dA. (2.36)

j=l t=l {Al,r_<l:_>0}

The 5'- j's in the above equations axe simpIiciesthat make up the polytop S, and

G i isthematrixcorrespondingtothesimplexSi.Hence, theoriginalintegralcan

be performedifthe integralin(2.36)can be evaluatedexactly.In the following

discussion,we giveexamplesofsome densitiesp(w)underwhich theintegrals

A_p(GA)dA
{Aler_<l; A>O}

p(GA)dA
{A j,r,_<l; _>0}
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can be computed analytically, where G is a non-singular deterministic matrix.

Uniform Density
p(A)= Constant

dA = r!

{x I,rx<l,_>O} (2.37)

X_d,_- (r + 1)!
{xl _rx<_l,x>O}

Exponential Density

p( A) = c • e - _ ,=t b,X, (2.38)

Let Gb = a.

e _':_,-t:'x' dA - ,. ,.

{x I,rx<l,x>_O} _:, ,.t
j t,ttl

/ *
{_1_<1,_>0 } ar [I a,-- - 1=1

r-t (2.39)
e -al

-E P

.: _(a_1(a, - a_) I'I (a_- a. )
j,=t

r-1

l +a,. ,, _ l +a,.-ak
--e-a" r "_- e- " z __ r--I

a,. lI a, _=, (a_.)(a,.-at) H (a)-ak)
1:1 j=t

,_tlJ

Polynomial density
ft

p(_)=_"I-[_' (2.4o_
2--I
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When the density is of this form, p(G_A) will be in the form of a sum of carton

terms, each of which is again in the form described in (2.40) . Therefore, it is enough

to be able to integrate the function in (2.40) .

/ fi k,'+,..+k.'A_'dA = (k_ +... + k. + n)!" (2.41)
{x i,rx<_l,_>O } jfl

When the given exogenous probability density p(w) does not take any of the

above forms, it might still be possible to approximate the given probability density

with one of the above. Thus, by expressing 0 as,

f

0 = .]..

, = r(o)

we can approximate the function f(_0) by r(w) and the probability p(w) with g(-')

and successfully implement the importance sampling scheme. The biggest obstacle

in this approach is the amount of work involved in breaking a polytope into a series

of simplicies. In practice, this is a complex task and essentially forces us to abandon

this approach in all but few cases. Therefore, we will now describe, how we can

carry out importance sampling scheme without computing the exact value of F.

Estimating the mean of the approximation function

Since we can not easily evaluate I" exactly, we have to resort to approximation

techniques. We can take one of the following two approaches.

• Find deterministicbounds forI'.
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• Estimate r' and obtain an estimate of its variance and construct a confidence

interval.

If we get deterministic lower and upper bounds, r't and f'_ for [', and estimate

"2then [r't(_-z )r' a_)] isap_cby b with an estimated variance of ao _a_ . _(_ + z§

confidence interval for 0. The sharper the bounds for [" are, the smaller this interval

will be.

If we estimate [' by I_, with an estimated variance b t, and independently esti-

mate _ by _ with an estimated variance a_ then I'b is an unbiased estimator for 0

with an estimated variance _2at,2+ F"2ai_2+ at`ai_.-2- 2 Therefore, the square of coefficient

of variation is given by

"2
a0

C0 _ -.r-02

_2 2 "2 2 " "2at` + F ao + cr._cro

t2 2
2 2 2 2

= ci, + c r, + %ct,.

Therefore, by designing an approximation function that approximates the real func-

2 significantly. Then, the dominating factor in thetion very well, we can control %

variability of 0 would be the variability in f'. Therefore, we should find means of

estimating [' with as little variance as possible. This we attempted in three different

ways.

• Apply othervariance-reductiontechniques.

• Apply importancesamplingwithadditiveapproximation.

• Apply nmve sampling witha verylargesamplesize.
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We have also experimented with the use of control-vm-iate techniques as de-

scribed below.

Let us rewrite [' as follows.

t =/n r(_)p(_)dw
(2.42/

= _(F(w)-G(_))p(w)dw+ _ G(w)p(_)dw

where G(w) is an approximation for F(w) and is positively correlated with it. We

can also use a G(w) whose expectation fn G(w)p(_)dw can be computed exactly.

Thus r' is estimated by

n

- +... + - + (2.43)n
I=.l

where w,,..., _;.axe chosen according to the probability density p(w). The variance

of such an estimator is given by

_(_. + _ - 2coy(r, G)).
rl

1if2By a good choice of the function G(w), this can be made much smaller than ; r

To choose a function than can be easily integrated, we observe that integrating a

linear or constant function on hyper-rectangles is easy. Therefore, we divide the

sample space fl into a finitely many rectangles define G(w) to be either constant or

a linear function on each of the rectangles. Both these versions axe described below

and axe shown in graphs.

g(_) = _ g,fa,(w)
I----I
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rlr r

,:1 j:O

where rl,..., r,_r is a sequence of integers between 1 and l, and ar, i are as defined

in (2.a4).

As our numerical results show, this is a good approach when the number ,>f

random parameters r is not too high. However, when it is too high , it become_

computationally too expensive to partition the sample space into a su_ciently fine

partition to give a good G(_).

When no special techniques can be devised to estimate r', we resort to two of the

methods we discussed earlier, i.e., importance sampling with aziditive approximation

and naive sampling. It might look counterintuitive that aa approach that did not

work well with the estimation of 0 will work with estimation of r'. However, one

should note that, both naive sampling and usage of additive approximation will

always give good results if sufficiently large sample sizes are easy to process. Usin_

a higher sample size is a very expensive proposition when it comes to estimating 0.

but not so in estimating r'.
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2.6. Numerical Results

We have used the software developed by Dr. Gerd Infanger to solve two-stage

stochastic linear programs. This software combines Benders decomposition with

importance sampling, using an additive-approximation scheme. It also solves the

universe problem (if possible), the expected value problem and uses am advanced

importance sampling techniques like the exponential smoothing. It is written in

FORTRAN and uses MINOS (Murtagh and Saunders (1982) !29] ), as a subroutine

to solve linear programs. We have modified the above software to incorporate the

different implementations of importance sampling described in previous sections.

The extremepoints7r_'in(2.32)axeobtainedby solvingthelinearprogram

(2.10)fora predeterminednumber ofscenarios_0and storingthecorrespondingdual

extremepoints.To selectthesescenarioswe startout by usingthescenariothat

assumesthesmallestvaluesofeachofthe random components.We thengenerate

successivescenariosby replacingi-thcomponent of the vectorby themaximum

of thatrandom parameter,where i isincreasedfrom I tor. We alsoincludethe

scenarioconsistingofthemean valuesofallthe random parameters.In thisway.

we includethe scenariothathas allthe smallestvalues,thescenariothathas all

thelargestvaluesand thescenariothathasthemean values.Ifthepredetermined

number of scenariosislargerthan r + 2,the restofthe scenariosare randomly

generatedaccordingto thegivenprobabilitydistribution.A new r__ isadded t,)

the listonlyifitissignificantlydifferentfrom theexistingonesina leastsquar_,s

sense.

In the implementation of piecewise-linear approximation scheme there are tw,,

sample sizes. Sample size n refers to the size used to estimate _ and sample s_z_
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m refers to the size used to estimate F. However, in the additive approximation

scheme there is only one relevant sample size. Thus, plotting sample sizes against

variances is not an appropriate comparison. Therefore, to compare these approx-

imation schemes we compute the CPU time spent by the sampling routine of the

program aa-_drecord the length of the confidence interval produced. We used sample

sizes, ranging from 20 to 500 for the additive approximation scheme and for the es-

timation of _ in the piecewise-linear approximation scheme. Sample sizes, ranging

from 500 to 50000 are used to estimate F in the the piecewise-linear approximation

scheme.

We show numericalresultsfrom fourproblemsthatwe solved.Each ofthem

isformulatedas a two-stagestochasticlinearprogram. In eachofthe problems

we have solvedthe expectedvalueproblemand estimatedthe expectedsecond-

stagecoststhesolutionvectorobtained.Resultsfrom fivedifferentstrategiesare

compared.These are,

• Naive sampling

• Importance sampling with additive approximation

• Importancesamplingwithpiecewise-linearapproximationwherer'isestimated

usingnaivesampling.

• Importancesamplingwithpiecewise-linearapproximationwhere['is estimated

usinga control-variatetechnique.

• Importancesamplingwithpiecewise-linearapproximationwherer'isestimated

usingan importancesamplingapproachusingan additiveapproximation.
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For each of" the strategies, we have solved the problem with different sample

sizes and computed the lengths of 95% confidence intervals and the CPU time taken

for this. The CPU time does not involve the setup time for the problem, but includes

the time to estimate the sample cut as described in'previous chapter. Each of the

problems is described in detail below and the results are shown in graphical aad

tabular form at the end.
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Problem" WRPM

This is a multi-area capacity expansion planning problem for the western US

and Canada. A detailed description of this model can be found in Dantzig et.al.

(I989) [10]. The objective of the model is to determine optimum discounted least-

cost levels of generation and transmission facilities for each region covered in the

model over time. We considered a one period version of this model that fits into the

two-stage stochastic linear programming framework. The random elements of the

model are the availabilities of generators and transmission lines and the demands.

The size of the subproblem and the number of scenarios are given in Table 9. The

results from this problem are presented in Table 1 and Graph 4.
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, i . ,|l ii

Sample Size I 0 °_s I ,, CPU
........ Naive s'ampling ............

......... 'o, arr927z+od'0.s682487g+03 0,2558000E+02
200 0.1379870E+06 0.5716234E+03 0.4878000E+02
300 0.1380090E+06 0.4293819E+03 0.7026000E+02

i

500 0.1381891E+06 0.3378813E+03 0.I173900E+03
700 0.1381084E+06 0.271 I093E+03 0.1613600E+03

I000 0.1380742E+06 0.2199263E+03 0.2263900E+03
. ii i i i l i ill i ii i i ii ill ,

Additive approximation

100 0.1382268E+06 0.3260952E+03 0.2902000E+02
400 0.1381554E+06 0.1570986E+03 0.9517000E+02
800 0.1380747E+06 0. I044069E+03 0.1835800E+03

1600 0.1380473E+06 0.7064273E+02 0.3533800E+03
l u i a i i J ii i i

Piecewise-linearapproximationwithnaivesampling
i i i i

,, n,= 50,m,= 1000I0.13siSlsZ406i0.2456612Z+03 0.2641000E+02

n, = 50, rn, -- 10000 0.1381055E+06 i 0.7501227E+02 0.4910000E+02

n, = 50, m, = 20000 0.1381026E+06 0.5260600E+02 0.7462000E+02

n, = 50, m, = 40000 0.1381041E+06 0.3741754E+02 0.1244800E+03
i i i i i i i . , ill | , ,

Piecewise-lineax approximation with Importance sampling
i i i

n, 50,m, = 16'00 0.1380821E+06 I 0.1009098E+03 0.o.708000E+02

n, -50, m, -- 10000 0.1380743E+06 0.2944668E+02 0.5004000E+02

n, = 50, m, - 20000 0.1380749E+06 0.2090695E+02 0.7561000E+02

n, = 50, m, - 40000 0.1380752E+06 0.1468641E+02 0.1255700E+03
.i i i ...............i i li

Pieeewise-line_ approximation with control v_iat_

n, 50, m, I000 T 0.1379015E+06 0.2455194E+03 0.3584000E.02
"n, = 50,m, = I0000 0.1380581E+06 0.7790319E+02 0.6753000E+02

n, 50, m, = 20000 0.1380780E+06 015537660E+02 0.i019100E+03

n' = 50, m, = 40000 011380484E+06 0.3902989E+02 0.1716800E+03
• i i ii , ,,,,, ,, ,, i

Table 1
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WRPM Log plot
103 ..........................., , ,' .................................................., , ,

102 '... k :.._PieceWi_.Linear_ ................... i........... ). .

• ,

• .

1010 50 100 150 200 250 300 350 400
CPU time

Graph 1
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Problem: CAP

A manufacturing plant produces m different part types on any one of n ma-

chines. Each machine j has a fixed number of hours , hi, currently available per

week. The number of hours of new capacity j acquired is denoted by z i and costs

ci dollars per hour. The total usage of machine j should not exceed Uj hours per

week. Each machine j requires t j hours of maintenance for every hour of opera-

tion. The total scheduled maintenance for all machines is not to exceed T hours

per week. Part i is produced on machine j at a rate of a O parts per hour at a cost

of g,j. Each week an order of w, units of part i must be met. If the total demand

exceeds the total capacity then the excess parts are obtained from a subcontractor

at a premium price, p,, for part i. It is assumed that pi _ gij for all parts i and

machines j. The weekly demands are treated as i.i.d, random variables with known

distribution. With the objective of minimizing the cost of new capacity plus the

expected operating costs plus the expected cost of meeting excess demand from the

subcontractor, the above problem is formulated and solved as two-stage stochastic

linear program.

Problem data

The above problem is solved with the following data.

m=3

n=4

c i = (2.5, 3.75, 5.0, 3.0)

tj = (0.08,0.04,0.02,0.01) (2.44)

T= 100

5_ = (2000, 2000, 2000, 2000)

p, = (400,400,400)
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gij
t

L '- 1 2 3 4
1 2.6 3.4 3._ 2.5
2 115 2.3 2.0 3.6
3 4.0 3.8 3.5 3.2.......

Table2

i _- 1 2 3 4L

z 0.6 0.6 ...... 6.9 ....0.8,,,

2 0.1 0.9 0.6 0,8
3 0.05 0.2 0.5 0.8...........

Table3

Each element of the random vector w takes the values 300,600,..., 3000 with

probability of 0.1, independently of other elements. The results from this problem

are presented in Table 4 and Graph 2.

50



Chapter II: Sampling Strategies

ii i i |l ill i i i i i

S pleSizeI I L
Naive sampling

20 0.2116483'E+06 0.1307643E+06 I 0.3300000E+00

200 0.3028722E+06 0.4785451E+05 t 0.2730000E+01

2000 0.2608951E+06 0.1343476E+05 0.2901000E+02

..... 20000 0.2603107E+06 0.4323950E+04 0.2850900E+03
Additive approximation

.... 20 " b.2327514E+06 0.8i96999E+05 0.5200000E+00
200 .....0:2898255E+06 0.303i747E+'05 0.2740000E+01

2000 ....0.26i8426E+06 0.9065203E+04 0.2663000E+02

20000 0.26i4249E+06 0.2900156E+04 0.2623000E+03 j
Piecewise-linear approximatlon with naive sampling

-- !

ns = 20,m, = I000 0.2556709E+06 0.2082914E+05 0.9900000E+00 ,
ns = 20, ms = 5000 0.2596231'E+06 0.9348429E+04 0.2350000E+01

nj .... 20, m, = 20000 0.2611956E+06 0.4647089E+04 0.7530000E+01

nj = 20, ms = 50000 0.2598432E+06 0.2928713E+04 L().1744000E+02

Piecewise linear approximatior with Importance sampling

n, = 20, m, = 1000 0.2566923E+06 0.141i260E+05 0:1010000E_-01 '

n, = 20,m, ' 5'000 0:2579674E+06 0.6289137E+04 0.2370000E+0i

n, = 20, m, ='20000 ......0.2605898 E + 06 0.3116273E+04 0174i0bb0E_-01

n, = 20, m, = 50000 " 0.2600434E+06 0.1974844E+04' _ 0.1761000E.02

Piecewise linear approximation with control variates

n,=20, m,-1000 0.2655022E+06 0.952640iE+04 0.1080000E.0i '

n, = 20,'m, = 5000 0.2599874E.06 ......0.4077356E+04 0.2660000E+01

ns = 20, m, "" 20000 0.2603536E+06 0.2039508E+04 0":!)160001E+01

nj = 20, m, = 50000 0.2596919E+06 0.1291688E+04 0.2i21000E+02
i i i ii i i ii i

Table 4
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CAP Log-Log Plot
10e ................ ,............ ..... ,,,.,

................... ..................... , ......
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•

,.. • .
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103 ........ ,, ................. , .......
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CPU time

Graph 2
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Problem: CAPGEN

This problem is a modified version of the previous problem. It has higher

dimensions and higher number of scenarios. This modification is done to observe

the effect of increased size of the problem, while the structure of the problem is

kept the same. The description of the problem remains the same. The data is given

below.

m=30

n=lO

c) = (2.5,3.75,5.0,3.0,5.0,2.5,3.75,5.0,3.0,5.0)

t_ = (0.08, 0.04, 0.02, 0.01,0.02, 0.08, 0.04, 0.02, 0.01, 0.02)
(2.45)

T = 2O0

hj=500Vl_j_<n

Ui = (2000, 2000, 3000, 3000, 1000, 2000, 2000, 3000, 3000, 1000)

p,=400Vl_<i<m go
,,,

, I
L _- 1,5,9 2,6,10 3,7 4,8

1,4,..., 28 2.6 3.4 3.4 2.5

2,5,...,29 1.5 2.3 ' 2.0 3.6

3,6,...,30 " 4.0 3.8.....3.5 3.2

Table5

a U
,,, ,,, , , ,,,,,

' j- 1,5 2,6 3,7 4,8" 9 I0t

1,4,...','28 0.6 0.6 0.9 0.8 0.3 0.3
2, 5,... ,'29 0. i 0.9 0.6 ....0.8' 0.8 ' 0.5

3, 6,..., 30 0.05 0.2 0.5 0.8' 0.2 0.9.... , ,

Table 6

The results from this problem are presented in Table 7 and Graph 3.
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....... ii -- m __ ,,,

Sample Size 0 d_ CPU

mpli g .....
200" 0.7227SO4E+06 0'.991283iE+05 '0.2335000E+02

1000' 0.6759398E+06 014146293E+05 0.'I151100E+03
" 2000 0.6544522E+06 0.2848225E+05 0.2285600E+03

Additive approximation

.... 200 0.6999338E+06 0.7569911E+05 0.2606000E+02
1000 0.6706608E+06 0.318i763E+05 0.1158500E+03

- 2000 0.6499043E+06 0.2231446E+05 0.2260300E+03
i

Piecewise linear approximation with naive sampling

n, = 20,m, = 1000 0.6483633E+06 0.426i268E+05 ........0.9110001E+01
,,, __

n= = 20, m, = 5000 0.64350i8E+06 0.1904751E+05 0.1339000E+02
n, = 20, m, = 50000 0.6448479E+06 0.5983151E+04 0:6035000E+02

i __ i ii i iii iii ,lnnm

Piecewise linear approximation with Importance sampling
ill __ iii i ii

n, = 20, m, = 1000 '0.6470257E+06 0.3322023E+05 0.9420000E+01

n,= 20,m, = 5000 0.6413708E+06 0.1496077E+05 0.138i00()E+02

n, = 20, m, = 50000 0.6439548E+06 0.4718087E+04 0'.6050000E+02
Ill III II I

Piecewise linear approximation with control variates
ii __ __ ii

n, = 20,m, = 1000 0.6278739E+06 0.2099258E+05 0.5221000E+02
, _ [

n, = 20,m, = 5000 0.6395258E+06 0.9475039E+04 0.5728000E+02

ns= 20, mj = 50000 0.6422440E+06 0.3062884E+04 0.1102500E+03
i i ,, i ii

Table7
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10s CAPGEN Log-LogPlot

• . . _,:..:::: :!:.
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Problem: RAND This is a randomly generated test problem. We have built a

problem generator that generates problems of the form

min c,nx,n + c,n+z,,,+ + cm-xm- + E(f,y,(w) + f,+y,+(w) + f,-y,_(_))

s.t. Ax,_ + x,.n+ - xm- = bl

x,,, < U,,,

-Bz_ + Oy,(_) + y,+(w) - y,_(w) = d

all variables are non-negative.

(2.46)

It takes as input, the dimensions of the matrix A, B, D, the spaxsity of the matrices

A, B, D, the penalty cost vectors c,n+, c,n-, cs+, cs- and the upperbounds Urn, [',.

The rest of the cost vector and the right hand side are generated as dense vectors.

with the individual elements picked randomly from the interval (0, 1). Every element

of the matrices A, B, D is given a probability, equal to the specified spatsity, of being

non-zero. These non-zero elements are randomly picked from the interval (-1, 1).

In this specific problem, we have the following data.

dimensions of .4 = 50 x 75

spaxsity of A = 0.15

dimensions of B = 50 × 75

spatsity of B = 0.05

dimensions of D = 50 × 75
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spaxsity of D = 0.15

c,,,+, c,,,._,c,+, c,_ = [I00,..., tO0]

_'.,=[o+.... ,oo]

t:, = Is,.... s].

The resultsfromthisproblemarepresentedinTable8 madGraph4.
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i iii ii |1 i _ i

--" S'ample"Size 'I '_ ..... ,,,"[ ...... o:b ..... CPU
............... Naive sampling ............

........... I"00 0.5214188E+05 0.1646'190E+04 01142400()E+02
150 0.5231466E+05 0.1446825E+04 0.2033000E+02
200 0.5236909E+05 0.1229894E+04 0.2723000E+02
500 0.5188471E+05 0.7712272E+03 0.6799000E+02

I000 0.5204281E+05 0.5244157E+03 0.1350400E+03
.i i i i i i i m | i

Additive approximation
.... I00 0.5 i 79057E-_05 0.4954130E+03 0.'].672000E_+02

1,.50 0.5178824E+05 0.4033533E+03 0.2359000E+02
200 0.5178476E+05 0.3587222E+03 0.2994000E+02

500 0.5170700E+05 0.2396645Z+03 0.7095000E+02
1000 0.5177767E+05 0.1571604E+03 0.1383300E+03

i i i imUlli ii I , ,,nlnm,

......... l_iecewise-linear' approximation with naive s_Pling

tl ti ii iii i ii ilii tl, i iii ii i _ in, = 20,m, = 1000 0.5190968E+05 0.5438035E+03 0.8389999+0i

n, = 20, m, = 5000 0.5177486E+05 0.2436146E+03 0.1724000E+02

n, = 20, m, = I0000 0.5160949E+05 0.1738789E+03 0.2794000E+02

n, = 20, m, = 20000 0.5171334E+05 0.1226858E+03 0.5120000E+02 [

n_ = 20, m, = 50000 0.5175249E+05 0.7731601E+02 0.I16730OE+03
l i ii i ii i i Jill i i

...... Piecewise-linear approximation with Importance sampling

.... ,, , | i

n, = 20,m, = 1000 0.5177416E+05 0.f163oi2 +o3 0.s710o01E+01
n, = 20, m, = 5000 0.5173189E+05 0.5525127E+02 0.1789000E+02

n, = 20,ms = 10000 0.5168477E+05 0.3995796E+02 0.2926000E+02
n, = 20, m, = 20000 0.5171093E+05 0.2822614E+02 0.5132000E+02

n, = 20, m,, = 50000 0.5172611E+05 0.1776708E+02 0.1198400E+03_
iiii ii iiii iiii ii i i i i ii _

Pieeewise-linear approximation with control v_ates
i i i _ • lli i iiIll -

n, = 20,mo = 1000 0.5166554'E+05 b.8041535E+02 0.1286500E+03

n, = 20,m° = 5000 0.5170490E+05 0.3714952E+02 0.13767001_+03

n° = 20, m, = 10000 0.5169956E+05 0.2637908E+02 0.1493100E+03
,,, __

n, = 20, m°= 20000 0.5172025E+05 0.1896132E+02 0.1726100E+03

n, = 20, m, = 50000 0.5171697E+05 0.1218426E+02 0.2422100E+03
................... ii iii il _ i ii i illl i ii

Table 8
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RAND Log Plot
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These results are summarized in the Table 9. Let vs_ be the least variance

obtained through strategy s on a specific problem p. Let tap be the time taken to

achieve this variance. Let tnsp be the amount of time that naive sampling would

have taken to achieve a variance of vs_ Then the number _ represents how much
• top

more e_cient strategy s is, for problem p. We have given these numbers in the

following table, for the previous four problems and for four of the five strategies

mentioned earlier. Observe that, using a piecewise-linear approximation function

with additive approximation and with control variates seem to be superior to the

other strategies. The efficiency of the control variate technique as we implemented.

depends on the underlying grid size mentioned in section 5.4. Clearly, this becomes

more and more expensive as the number of random parameters increases. This is

reflected in the two problems CAP and CAPGEN.

In conclusion, we have explored different ways of implementing importance

sampling strategies for stochastic programming problems. Different implementa-

tions perform with different levels of efficiency on different problems. However, we

have seen that it is always better to reduce the integrand from a mathematical

program to an explicit function.
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SUMMARY
IIIIII I , _ ,

Problem Size Scenarios Additive Piecewise-2 Plecewise.3
Ill II IlllII II I

$ 6
WRPM 302 x 289 3 4 6.21 404.29 41.86

I I I Ill IIIlll I I I

CAP 9 x 16 103 2.42 7"/.61 150.62
Ill I II Ill I

1o
CAPGEN 30 x 300 10 1.54 1.37.68 179.27

Ill II I II Illl

RAND 50 x 75 510 10.87 981.70 1430.00
I H, •

Piecewise-2 : Piecewise linesr function used with additive approximation

Mecewtse-3 : Plecewtse ilnesr function used with control varlate method

Table 9
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Decomposition methods

3.1. Introduction

Decomposition methods have been in use for a number of years, to solve large

scale optimization problems. These have been motivated by problems of a specialy

structure, such as problems with a stair case structure. Techniques that decompose

and solve the problem, generally speak!:_g, are far superior to techniques that do

not. Sometimes, the size of the problem is so large that it is not possible to solve the

original problem without decomposing it into smaller problems. For example, the

deterministic equivalent of a typical two-stage stochastic linear program will have

so many scenarios that they cannot be solved without some kind of a decomposition

scheme.

Different kinds of decomposition techniques have been investigated in the liter-

ature. Notable among them are Dtmtzig-Wolfe decomposition or the Primal Decom-

position scheme, (Dantzig (1960) [9]), Benders decomposition or the Dual Decom-

position scheme, (Benders (1962) [4]), A Nested Decomposition approach for solving

staircase structured linear programs due to Abrahamson (1983) [1], A Nested De-

composition algorithm for stochastic linear programs due to Birge (1985) [5], etc.

The underlying principles in various decomposition schemes are outer linearization

and inner linearization, as explained in, Geoffrion (1970) [19].

In this chapter, we introduce a Primal-Dual decompoaition technique and com-

pare it with the existing techniques. We plan to use it in the context of two-stage
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stochastic linear programming. However, as we describe it we illustrate its use to

solve the "expected value problem' associated with the stochastic program.

This chapter is organized as follows. In section 2 we discuss Benders decom-

position for linear programs. In section 3 we introduce a new approach called

Primal-Dual decomposition. We then discuss some of its properties and describe

why it is an improvement over Benders decomposition. Section 4 discusses various

implementation issues and strategies. Finally in section 5, we present numerical

results and directions for future research.

3.2. Benders Decomposition

Consider the two-stage stochastic linear program described in (1.2) .

The expected value problem is obtained by replacing all the random elements

by their expectations. Thus we have the problem:

z" =rain cz+c2y

s.t. Ax = b

-Bx + D=d
z,_>0 (3.11

where/} = _en p(w)B(w),d = _en p(,z)d(w). In their current methodology to

solve stochastic linear programs, Dantzig, et.al. [10], use Benders decomposition

to solve the above problem, see also [35]. This method can be described briefly as

follows.
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Let us first define the recourse function g(.) for the expected value problem and

show that under reasonable assumptions, it is finite. We assume that the problem

in (1.2) has full recourse, i.e., for every _ E (2 and z satisfying Az = b, z >_.O, there

is a y(_) such that Dy(w) = d(_z) + B(_)x, y(_) >_0. In practice, this cart be

ensured by incorporating appropriate penalty variables into the recourse function.

Clearly, this assumption implies that for every z satisfying Az = b, z > 0 there is a

y such that Dy = d + Bz, y >_O. Therefore the 'recourse function for the expected

value problem' defined by

g(x) = minc2y

s.t. Dy = d +/}z

y>0 (3.2)

is less than +oo at every z satisfying Az = b, x _>0. Similarly, we assume that the

recourse function Q(z, _) in (1.3) is bigger than -oo at some _ae f_ and z satisfying

Az = b, x >_O. This is equivalent to assuming that the dual of the linear program

in (1.3) is feasible. Since that feasible region is the same as the feasible region of

the dual in (3.2) , we know that g(.) is bigger than -co. Therefore, the function

g(.) is finite at every x that satisfies .4x = b, z > 0.

Problem (3.1) can be shown to be equivalent to '

z" =rain cz +0

s.t. .4x = b

-g(z)+8>0.

z>0

Let us usethedualrepresentationofg(.)givenby,

g(z) = max r(d+/}z)

s.t.rD < c_.
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Thus (3.1) is equivalent to

z* = min cz + 0

s.t. Az = b

-TrBz+ 0_rd Vrs.t. rD<c2

z>0. (3.3)

Under Benders decomposition scheme, the set of constraints

-r/_x+0 >_rrd Vr s.t. rD <c2

are augmented by one per iteration. An iteration is defined as a pair of problems

called master problem and Sub Problem which will be defined latter. These con-

straints are also called cuts, as they cut away part of the feasible region of the

master problem before the augmentaion. Problem (3.3) with only t(> 0) of the

cuts generated, is called the master problem at iteration t. This problem has the

following form after the t-th iteration for t >_1.

~t
"t = min cz + 0

s.t. Az = b

-r"Bz +0>_ r"d for 1 _<i < t

z>0 (3.4)

when t > 0. When t --- 0, no cuts are placed and the variable 0 is temporarily

ignored. Let z t°, 0t° be the optimal solution vector of this problem.

This represents solving the original problem with the recourse function g(.)

replaced by an outer approximation given by

l(x) = max + Bx).
l<i<t
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The _"t° to be used in the t-th cut, where t >_1, is generated from an optimiza-

tion problem which is called the Sub Problem at iteration t - 1. This problem has

the following form.

g(x (t-l)°) = minc2y

s.t. Dy=d+ Bz (t-t)°

y>O

where z (t-l)° is the solution of the master problem at the (t- 1)-th iteration. This

subproblem at the (t- 1)-th iteration represents the computation of the second stage

cost of the first stage decision z (t- l )° The optimal dual solution for this subproblem

will be used in updating the outer approximation of the recourse function in the

t-th iteration, and will be called _"t°.

Thus one solves a sequence of master problems and subproblems alternatingly.

The master and subproblems interact by sending the necessary information to each

other at every iteration. We send the optimal decision variable, z t*, of the master

problem of iteration t to the righthand side of the subproblem of the t-th itera,lon.

The optimal dual vector for the subproblem of the t-th iteration, _rt*, will be used

in the (t + 1)-st master problem as a new constraint given by:

-_rt*Bz + 0 > _'t'd.

Moreover, we can generate lower and upper bounds for the optimum value z" from

the master and subproblems. As the master problem in (3.4) is a relaxation of the

(3.3) , the optimum value z_ is a lower bound for z'. Moreover, as the successive

master problems are obtained by restricting the feasible region by imposing cuts, it

is clear that the lower bounds form a non-decreasing sequence. Thus we have

..0 __ Z_ °.-t < ...<z
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On the other hand every z t" is a first stage feasible decision and so

.,t t e._ = cz + g(z t°)

is an upper bound for z°. However, unlike the lower bounds the upper bounds need

not form a monotone sequence. This is one of the ways in which the new scheme

that we propose is going to be better. Another way it is better is demonstrated by

the following picture.

I

0

z

1

o __ ,!,!!; . ,::' ¢.

Z! . ':-_

to
| ----

t I ' '1

x¢ xY zg x_" xl"

BendersDecomp_Jflou

Fig 1

3.3. Primal-Dual Decomposition

To achieve faster convergence we modify the Benders decomposition scheme

for linear problems as described below. In the standard method, at every iteration
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t, we send the optimal solution of the master problem, x t*, to the subprob|em to

evaluate the second stage costs. In the modified version, we maintain the first stage

t in the firstdecision vector at which the best upper bound has been found, say x u,

t iterations. Instead of sending just one first stage decision to the subprobiem, we

t Wesend a variable linear convex combination of both the decision vectors, z t°, z_.

modify the objective function of subproblem from evaluating the second stage costs

at a given decision, to evaluating the best total of first and second stage costs at a
(t+t)t We define x= as this best convex combination ofconvex combination of x t° , x u.

x t° and x_. Thus, the subproblem at iteration t is of the following form:

.t = min (cx")At + (cz_)_t + c2y"U

s.t. (- t =- - Bz=)p,+ Dy d

At + Pt = 1

At>O, _,>_O,y>_O (3.5)

and

t t_l)X(t-I)* _(t-l) for t > 0

=x °° for t =0

where x (t-l) ° is the first stage decision vector obtained from tee solution of (t - 1 )-

st master problem and A_t_l),p_=_l) are the weights obtained from the optimal

solution of (t - 1)-st Sub Problem.

The master problem still has the same structure as expressed in (3.4} . How-

ever, the r t° in (3.4) is now only part of the optimal dual vector of the subproblem.

Let (r t°, r/t=) be the complete set of dual multipliers for the subproblem given in

(3.5) , where r/t" corresponds to the last constraint and xt. corresponds to the rest

of the constraints. These satisfy the dual constraints given by:

rt'D < c2

r/t* 71.t* - t t- Bx= < cx= . (3.6)

0_" _ rrC'Bzt" < cz t"
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As 7rt"s generated by this method satisfy the constraints _'D <_¢2, it is valid to use

them in the master problem. This scheme is depicted in Figure 2.
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I,

, ::, .. -
gi ,:.."

| ,

"+,o
I

I I

Xo" If x_ Xn°

xO..l x_- x_

J'Vinud.l::)u_dDeCOml_tloe

Fig 2

Note that, in Figure 2, we have the optimal solution at the end of iteration 1.

in the form of z_. This will always be true in the trivial cases when the first stage

decision vector z has only one component, as is the case in the above graph. In the

more realistic cases, we will not achieve optimality so quickly. We call this scheme

the Primal-Dual decomposition scheme.

From this description of the scheme, we clearly have the following result.

Theorem 3.1: In Primal-Dual decomposition scheme, the upper bounds .t•.. are

monotonically decreasing in t and the lower bounds z_ are monotonically increasing
in t.

Sincewe havechanged the decompositionscheme,we need toproveitscon-

vergence.ConsidertheproblemdescribedinFigure2. At theend ofiterationone
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we got the optimal vector z_, however we did not have enough cuts at that point

to realize that it was an optimal solution. In other words, our upper bound had

converged to z ° but the lower bound had not. Therefore we proceeded to place new

cuts. The 7rt" obtained by solving (3.5) is a subgradient of the function

c. + 9(*)

atthepointz_. However,itmightnotbe an extremepointoftheset

Therefore,ifwe implementedtheschemeexactlyaswe described,thecutswe would

haveobtainedarelikelytobe asshown inFigure3.

0

Zl , "";_"" "',

"'. CM

!

,,,f t '

Sl* IC li ° 11'

li..l II. IIIQII --0

IL'rlmill.l)ull_mlmiltlel

Fig 3

In other words, we could get cuts that do not coincide with any of the 'pieces'

of the given piecewise linear function, such as the 2nd cut. Because of this, the
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convergence of the lower bounds could be slow mad it is even possible that the

algorithm will not stop in finite time. However, by changing the impleraentation of

this scheme, we can easily ensure not only that the algorithm converges, but it does

so much faster than :"e Benders decomposition. These modifications are described

in the next section. In the reminder of this section we describe a natural extension

of the above scheme and justify the name 'Primal-Dual Decomposition'.

t ,that givesWe could accelerate the convergence of the algorithm by passing =.

the best upper bound in the first t iterations, to the (t + 1)-st subproblem. This

t is a convex combination of solutions of the first t master problems.solution x.

Thus,itisnaturaltoinvestigatetheeffectsofpassingz°',...,z",insteadofjust

one convexcombinationofthem,tothe(t+ 1)-stsubproblem.Inotherwords

considerthefollowingsubproblem

t = rain (ca 1")/_1+ + (czt')/_t + c2YZ u ...

s.t.-(k=_')_,-..- (kxt')_,+ D_= d

#l +... + /_t = 1

_ , ... , #t>0,y_0. (3.7)

Theorem 3.2:Let(P)betheprimalproblemdescribedin(3.1)and(D)denoteits

dual.Let(S)be thesubproblemdescribedin(3.7)underthenew decomposition

schemeand (M) be themasterproblemdescribedin(3.4).Ifwe usethesame

decompositionschemeon (D),theresultingmasterproblem(M') and (S')are

respectivelythedualsof(S)and(M).

Proof:The duM of(P)isgivenby

z'=min a'd+ r/b

s.t. _rD <_c2

-TrB + rlA <_c. (3.8)
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Notice that this has the same structure as the problem in (3.1). Therefore, applying

the new decomposition scheme, we get the following master and subproblems.

t =min rd+6Zu

s.t. rrD = c2

-rrBz i_ + 6 < cz i" for 1 < i < t (3.9)

where z g° are dual multipliers corresponding to the first set of constraints in the

following Sub problem.

~t 7rl ° 71.ts"t =min ( )'rl +...+ ( )'rt + r/b

s.t. -(rrl'B)Tt -...- (rt'B)Tt + oA < c

71 +...+ 7t =1

7t , ... , 7t>_0, y>_0 (3.10)

where r" is the solution of the i-th master problem described in (3.9) . Note that.

since the problem in (3.8) i ' _imization problem, the inequality sign in the cuts

in the master problem is n ad we get upper bounds from the master problem

and lower bounds from the _a_,problem. From the above it is clear that (3.10) is

the dual of (3.4) and (3.9) is the dual of (3.7) . Hence the theorem is proved.

Note that in general, applying Benders decomposition on the primal is equiva-

lent to applying Dantzig-Wolf decomposition on the dual. However, from the above

theorem, we see that this new scheme remains same, whether applied to the primal

or dual problems. Therefore we call this Primal-Dual decomposition.
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3.4. Implementation Issues

We have implemented the ,_cheme described in i3.7) . The following modifica-

tions are made to ensure convergence and to speed up the algorithm. If at iteration

(t + 1), the lower bound has not increased by a significant amount, we try one of

the three following methods to pick a 'good' 7r to be sent to the master problem.

In the first attempt, we try to pick a r that has a small absolute value, by

obtaining a good solution for the following problem.

min rrrTr

s.t 7rD< c2

El=0 " '" ')=z,. (3.11)

Observe that, this problem has all the subgradients of the function cz + g(x) at

_"_,=0/_z as the feasible region and tried to select a 7r that is as close to the null

vector as possible. However, it is not necessary to solve this problem to optimality.

We use an outer linearization and solve the corresponding linear program once.

to get a 7r which is different from the previous one. It is also computationally

convenient to do this since we need to make only a few changes to the subproblem

to achieve this.

Ifincorporatingtheresulting_rdid notyielda betterlowerbound,we resolve
t

• thesubproblem.This time,we onlysend_,=0 P_'z'°asinputto thesubproblem.

Thiswouldensurethatthe7rthatwe getisanextremepointoftheset{_'I_rD < c2}.

With thisstrategy,the onlyway thisalgorithmcan stall,or even cycle,isifwe

choosethesame extremepointoverdifferentiterations.Ifwe noticethis,i.e.,ifwe

havethesame upper bound for5 ormore iterations,we resolvethesubproblemby

75



Chapter III: Decomposition methods

sending a randomly perturbed solution _t - •,=0 _z* to the subproblem. This would

have the effect of choosing one of the extreme points of {Tr[7rD <_c2} which is a
t *

subgradient at _],=0 _s z° ' • Since there are only finitely many such extreme points,

with probability one we will eventually pass all the necessary extreme points of

{Tr[TrD <_c2} to the master problem.

While, these strategies have to be incorporated into the algorithm to ensure

theoretical convergence, we do not often need them in practice. To measure the

real work involved, we count every extra sub problem solved as an extra iteration.

In practice, we do not incorporate solutions of all the previous master problems

into the current subproblem. That could blow up the size of the subproblem and

render the usage of Decomposition moot. Therefore, we only make room for a pre-

specified number, usually about 10, of master problem solutions to be incorporated

into the current subproblem. This necessitates a scheme to choose which solutions

to discard if we have more than we have space for. We use the following hueristics

to determine that.

(1) When discarding a former solution, we discard the one with the smallest weight

in the previous solution of the subproblem. In case of a tie, we discard the one

• among them that entered the Sub problem first.

(2) If we discard a solution that has positive weight in the previous iteration, we

retain the best linear combination of solutions that gave the current upper

bound. This enables us to maintain monotonicity of upper bounds.

We compared Primal-DualdecompositionschemewithBendersdecomposition.

The resultsfrom threedifferentproblemsarepresentedinthefoilowingtable.First

problemWRPM isa capacityexpansionplanningproblem,describedintheprevious
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chapter. This has 2 rows and 34 columns in the master problem and 302 rows and

289 columns in the subproblem. HYDRO-1 is a two-stage hydroelectric scheduling

problem in which the subproblem has 31 rows, and 158 columns in the first iteration

and the master problem has 31 rows and 158 columns in the first iteration. A

detailed description of this problem is available in Morton (1993) [28]. The last

problem SSN is in the area of telecommunications capacity plarming in which the

subproblem has 176 rows, and 706 columns in the first iteration and the master

problem has 2 rows and 90 columns in the first iteration.

In each case, the expected value problem is solved and the number of iterations,

i.e., number of master problem subproblem pairs solved, is reported. Though the

subproblems in the Primal-Dual decomposition are slightly larger in size than the

ones in Benders decomposition, the difference in time to solve them was insignificant

in all the cases. We have also reported on the number of iterations under Benders

Decomposition when the upper bound has actually improved.

Empirical Results

Name Benders Primal-Dual
IIIIII II

WRPM 72 28 IS

HYDRO-I 119 17 10

SSIq 37 23 l0
, ,,,, ,,, ,, ,

Table 1
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Conclusion

We have presented enhancements to the current algorithms to solve stochastic

linear programs. In adapting importance-sampling techniques for stochastic linear

programs, we have seen that considerable amount of computational burden can be

reduced, by reducing the estimation problem from one that involves an implicit

function that is expensive to evaluate, to one that is explicit and easy to evaluate.

We have detailed several approaches to estimate the mean of this explicit function.

We have also demonstrated how a modified Decomposition scheme can reduce

the number of iterations required to solve the expected-value problem corresponding

to a stochastic linear program. We observed through numerical examples, that

the reduction in computational time obtained through less number of iterations

outweighs the added computational time needed by the modified method.

These enhancements give rise to faster algorithms and enable us to consider

larger models which could not have been considered before. Some of the test prob-

lems we included have more than a million possible scenarios. Corresponding de-

terministic equivalent program will have more than a hundred million constraints.

Clearly, problems of this size can not be solved by traditional mathematical pro-

gramming methods.

However, problems in real life have even larger number of stochastic parameters

and larger number of scenarios. The search for faster algorithms should continue in

order to solve these problems. Based on our research we can suggest the following

topics for future research.
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Conclusion

The decomposition ideas presented in this dissertation are only applicable to

the deterministic case. However, extending this approach to the stochastic case as

well, should result in significantly large reduction in the computational time for this

class. At present, a direct extension of the ideas presented in this dissertation is not

possible to the stochastic case since, all the Sub problems have to have the same

first stage decision in their right hand side. This makes it di_cult to pass variable

combinations of first stage decisions to different Sub problems since each Sub prob-

lem might choose a different convex combination. However, a further iterative loop

that enforces the non-anticipativity condition may overcome this difficulty.

In samplingschemes,furtherresearchcan be done to extendimportance-

samplingideastothecaseofdependentrandom variables.The caseofdependent

variableswillnot poseany di_cultyinreducingtheproblemfrom integratingan

implicitexpensivefunctionto integratingan explicitinexpensivefunction.How-

ever,newer techniqueswould havetobe devisedtointegratetheresultingexplicit

function.

79



4b

w

Bibliography

[1] Abzahamson P.G (1983): A Nested Decomposition Approach for Solving Stair-

case Line ar Programs. Technical Report SOL 85-4, Department of Operations

Research, Stanford University

[2] Avriel M., Dantzig G.B. and Glynn P.W. (1989): Decomposition and Parallel

Processing Techniques for Large Scale Electric Power System Planning Under

Uncertainty. Proceedings of the Workshop on Resource Planning under Uncer-

tainty

[3] Beale E.M.L: On Minimizing a Convex Function Subject to Linear Inequalities.

J.Roy.Stat.Soc. 17b, I77-184

[4] Benders J.F. (1962): Partitioning Procedures for Solving Mixed-Variable Pro-

gramming Problems. Numerische Mathematic 4, _38._51_

[5] Birge, J.R. (1985): Decomposition and Partitioning Methods for Multi-Stage

Stochastic Linear Programs. Operations Research $8, 989-i007

[6] Bratley P., Fox B.L., Schrage L.E.: A guide to Simulation. Springer. Verla9

I983

[7] Dantzig G.B. and Glynn P. (1990): Parallel Processors for Planning Under

Certainty.Annals of Operations Research _9, i-$I

[8] Dantzig G.B (1955): Linear Programming under Uncertainty. Maaa9ement Sct.

ence 1 197.,_06

[9] Dantzig G.B and Wolfe P. (1960): The Decomposition Principle for Linear

Programs. Operations Research 8, I I O-I I I

80



Bibliography

[10] Dantzig G.B., Glynn P.W., Stone J., Entriken R., Nakayama M (1989): De-

composition Techniques for Multi-area Generation and Transmission Planning

Under Uncertainty. EPRI report _9_0-I

[11] Davis P.J. and Rabinowitz: Methods of Numerical Integration. Academzc Pres_.

New York, I975

[12] De£k, I. (1988): Multidimensional Integration and Stochastic Programming,

in: Ermoliev, Y. and Wets R.J. Eds.. Numerical Techniques for Stochastic

Optimization, 187-$00, Springer Verla9

[13] Dempster M.A.H (1980) (ed.): Introduction to Stochastic Programming. Aca.

demie Press, 3-59

[14] Edmundson H.P (1956): Bounds on the Expectation of a Convex Function for

a Random Variable. The Rand Corporation Paper 98t,, Santa Monies, CA

[15] Errnoliev Y. (1988): Stochastic Quasigradient Methods, in Ermoliev Y. and

Wets R.J Eds. (1988). Numerical Techniques for Stochastic Optimization, 141.

186: Springer. Verlag

[16] Ermoliev Y. and Wets R.J Eds. (1988): Numerical Techniques for Stochastic

Optimization. Springer. Verlag

[17] Gaivaronski A. and Nazareth L (1989): Combining Generalized Progr_unming

and Sampling Techniques for Stochastic Programs with Recourse, in. Pro-

ceeding8 of the Workshop on Resource Planning under Uncertainty for Electric

Power Systenu, Department of Operatton_ Research, Stanford University

[18] Gaivoronski A. (1988): Stochastic Quasigradient Methods and their Implemen-

tation: in Ermoliev Y. and Wets R.J Eds. (1988). Numerical Techniques for

Sfochastic Optimization, 313-35I: Springer. Verlag

[19] Geoffrion, A.M (1970): Elements of Large Scale Mathematical Programming

Management Science 16, No II. 65_.675

81



6

=

@

Bibliography

[20] Glynn P.W and Iglehart D. L. (1989): Importance Sampling for Stochastic

Simulation. Management Science, Vol 35, I86%139_

[21] Haber S.(1970)" Numericed Evaluation of Multiple Integrals. SIAM Review ie

(97o), sI.se

[22] Higle J.L and Sen S. (1989): Stochastic Decc.nposition: An Algorithm for Two

Stage Linear Programs with Recourse. Mathematics of Operations Research

za/saso.aa9

[23] Infanger G. (1991): Monte Carlo (Importance) Sampling within a Benders

Decomposition Algorithm for Stochastic Linear Programs, Extended Version:

Including Large-Scale Results. Technical Report SOL 91-6, Department of Op-

eration_ Research, Stanford University, to appear in Annals of Operation_ Re.

3egrc_

[24] Infanger G.' Planning Under Uncertainty. The Scientific Pres_

[25] Jansen J.L • Sur les fonctions convexes et les inegalites entres les valeurs

moyennes. Acta Mathematica, 30, I75-I93

[26] KaU P. (1976): Stochastic Linear Programming. Springer. Verlag

[27] Madansky A.: Bounds on the Expectation of a Convex Function of a Multi-

variate Random Variable. Annal_ of Mathematical Statistics 30, 7_3-746

[28] Morton D.P. (1993): Algorithmic Advances in Stochastic Programming. Tech-

nical Report 93-6, Systems OptimizationJ Laboratory, Stanford University

[29] Murtagh B.A. and Saunders M.A." MINOS User's Guide, SOL 82-20. Depart-

ment of Operations Research, Stanford, CA 94305

[30] Nazareth L. and Wets R.J. (1986): Algorithms for Stochastic Programs: The

Case of Non-stochastic Tenders. Mathematical Programming Study _8, 48-6_

82



J

.#

m

Bibliography

[31] Nazareth L. and Wets R.J. (1988)' Non-linear Programming Techniques Ap-

plied to Stochastic Linear Programs with Recourse, in Ermoliev Y. and Wets

R.J Eds. (1988). Numerical Techniques for S_ochastic Optimization, 95-i_:

Springer- Verlag

[32] Pereira M.V, Pinto L.M.V.G., Oliveira G.C. and Cunha S.H.F (1989)' A

Technique for Solving LP-problems with Stochastic Right-Hand Sides. CEPEL.

Centro del Pesquisas de Energia Electria, Rio de Janeiro, Brazil

[33] Prdkopa A.: Numerical Solution of Probabilistic Constrained Programming

Problem, in: Ermoliev, Y. and Wets R.J. Eds.' Numerical Techniques for

Stochastic Optimization, 123-139. Springer Verlag

[34] Stroud A.H: Approximate Calculation of Multiple Integrals. Prentice.Hall

Englewood Cliffs, N.J., I971

[35] Van Slyke R.M. and Wets R.J. (1969): L-Shaped Linear Programs with Ap-

plications to Optimal Control and Stochastic Programming. SIAM Journal of

Applied Mathematics, Vol 17, 638-663

°

83



,. II # imr" IIIIIIIII I I I I • I ' !

II I I I i I ' """_" IIIII

1, AGENCY USE ONI, Y (Ae4ve 044r_) I_' REPORT DATE |. I_POlT TYPE ANO OAT|S COVtltO

......... ! S_=__t_=mb__r1993 r_k_l. _'_nn_,
4. TITI, E ANO SUiITITI,,E S, FUNDING NUMIIE'RS ......

Enhanced Algorithms for Stochastic Programming DE-FGO3-92ER5116
|IH I I I r IIIIII II

_. muTHOm(S)

Alamuru S. Krishna

7. P|RFORMING ORGANIZATION NAME(S) ANO ADDRESS(IS) ............. _. PERFORMING ORGANIZATION -
REPORT NUMBER

Department of Operations Research - SOL

Stanford University

Stanford, CA 94305-4022 IIIIMA

tl. SPONSORING. MON_TORING AGENCY NAME(S) ANO ADOPtKSS(ES)" "I0. SPONSORING / MONITORING
AGENCY R|PORT NUM|ER

Office of Energy Research

U.S. Department of Energy S_L q_-8
Washington, DC 20585

12a. OISTA,iI_T,ON_ AVAILAIIII,IT¥ SI'ATEM[NT ....... l'Zbl OISTIIII|uTION COO£ t

Unlimited UL

i in II ii ii I I ii3. AISTI_ACT t_a_,mum 200 .0r_S)

(Abstract on back page)

'T'! ................14. SU|JE_,T RMS 1S. NUMIEII OP PaGI$

Stochastic programming, Decomposition, Monte Carlo Sampling, 83
Stopping rules, Large-Scale I_, PRICECOOt

_?. SICUR_TVC_A$S_CA'T_ON 11. SECURITYCLaSSIfICATION _. SECURITYCLaSSificaTION'"Z'0._IM_TAT_O,O' Ae_":"_'-"
OF REPORT Of THIS PAGE OP ABSTRACT

UNCLASSIFIED , .,
Ill II n IIll Ill I " _ " '_ • • " •



I#

Abstract

In thisdissertation,we presentsome oftherecentadvancesmade insolving

two-stagestochasticlinearprogramming problemsof largesizeand complexity.

Decompositionand samplingare two fundamentalcomponentsof techniquesto

solvestochasticoptimizationproblems.We describeimprovementsto thecurrent

techniquesinboth theseareas.

We studieddii_'erentways ofusingimportancesamplinstechniquesinthecon-

textofStochasticprogramming,by varyingthechoiceofapproximationfunctions

usedinthismethod.We have concludedthatapproximatingtherecourse/unction

by a computationallyinexpensivepiecewise-linearfunctionishighlye_cient.This

reducedtheproblemfromfindingthemean ofa computationallyexpensive/unction

toRndins thatofa computationallyinexpensivefunction.Then we implemented

variousvariancereductiontechniquestoestimatethemean ofa piecewise-linear

function.Thismethod achievedsimilarvariancereductionsinordersofmagnitude

lesstimethan,when we directlyappliedvariance-reductiontechniquesdirectlyon

thegivenproblem.

In solving a stochutic linear program, the expected value problem is usually

solved be/ore a stochMtic solution is attempted. This enables us to understand the

value of the stochutie solution and also to _peed-up the algorithm by making use of

the inform_ion obtained from the _,_l_tic_nof the expected value problem. We ha_e

devised a new decompo.,ition scheme T,, _mprove the conversence of this algorithm

We have shown thatthismethanol_v,_,a monotonicallydecreaqinssequence,,f

upper bounds w_ the regular_iec_mpositionschemedoesnot. We have al_,_

demon|tratedthatthe added computationalburden isinaipiflramtcompared _,_

the reduction in the number of iterations and the resulting gLin in CPU time.
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