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•_ _==.° Abstract. Momentum distributions for the lZLi _ 9Li+n+n breakup re-

o =_. _ action, generated by Coulomb dipole excitations, are calculated in a 3-body
_ _-.= model for n Li. The relative momentum distribution of the two neutrons,.. r- ,.- ._ ® u £

Eo,,_'__ _ is in good agreement with recent 3-body coincidence mea.surements but the
==._=_ _. _, momentum distribution for the aLi recoil and the decay energy spectrum are

= =" =° ° much narrower than observed. These discrepancies may be due to higher
order dynamical effects which have been ignored.

1. Introduction '/ {:_i;;'i'_

The construction of the secondary beam facilities at RIKEN, GANIL, Michigan State
University and at GSI has made it possible to study the properties of nuclei far from
stability. A large effort has been devoted to the study of light, neutron rich nuclei, and
the aim has been to extract information about the structure properties of these nuclei

from measurements of fragmentation reactions.
A particularly interesting example is the nucleus _Li. It has only one bound state

and it contains two loosely bound valence neutrons. Correlations between the valence
neutrons must play a prominent role for the binding of this nucleus since _°Li is unbound.
One of the best ways to probe the structure of _ZLi, associated with the loosely bound
valence neutrons, is to study (nLi,9Li) breakup reactions. The cross section is very large
for a heavy target like lead (several barns at intermediate energies), and it is dominated
by Coulomb excitations of the low-lying dipole response. This is very fortunate since
Coulomb excitation is a well understood reaction mechanism, which provides a close
connection between reaction data and the dipole response of _Li.

Many different measurements of (_ZLi,9Li) reactions have been performed in recent
years. They include measurements of cross sections for various targets [1], momentum
distributions of the °Li fragment [2,3], and of the single-neutrons emitted in the reaction

[4,5], and finally also the first complete 3-body coincidence measurements of the °Li
fragment and tw, neutrons [6,7,8].

The simplest theoretical approach, which focuses directly on a realistic description
of the valence neutrons and which may be applied to describe the available (_Li,OLi)

reaction data, is to describe _Li as zt 3-body system, consisting of an inert 9Li core and
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two interacting neutrons. This approach requires as input a realistic n-n and n-core
interaction. The n-n interaction is well known from low-energy n-n scattering, but there
has been some uncertainty in the n-core interaction because of a poor knowledge of the
structure of the unbound nucleus 1°Li. There are at least two groups that have taken this
approach, based on Faddeev calculations [9,10] and on the two-particle Green's function
method [11,12], respectively.

In my talk I will discuss the results obtained from the 3-body model that is based on
the two-particle Green's function method. I will make comparisons to the predictions
obtained from Faddeev calculations and to the available data, in particular to those
obtained in the 3-body coincidence measurements reported in Ref. [8].

2. Two-particle Green's function method

The two-particle Green's function technique has been applied to study the ground state
[11] and the dipole response [12] of 1aLi and similar nuclei that consist of an inert core
and two interacting valence neutrons. I shall here summarize the main ingredients of
the model. The starting point is a two-particle Hamiltonian of the form

H2(rl,r2) = Hl(ra) + Hl(r2) + v(ra,r2), (i)

where Ha is the single-particle Hamiltonian for a valence neutron interacting with the
core, and v(ra,r2) is the interaction between the two valence neutrons. The single-
particle Hamiltonian is parameterized in the usual way, with a kinetic energy operator,
Wood-Saxon potential and spin-orbit interaction. It is adjusted to describe known prop-
erties (bound states or scattering states) of the n-core system. In the case of 1aLi, it has
been adjusted to produce a pl/2 resonance in 1°Li at 0.8 MeV. It is noted that it is very
difficult in the present approach to treat the full effect of the core motion exactly and it
has therefore been neglected in the Hamiltcaian (1).

The n-n interaction is parameterized as a density-dependent contact interaction,

p), (2)
v(rx,r2) = 6(rl - r2)(v0 + v0( Po ....)

where pc is the nuclear density of the core and po = 0.16 fm -3. A contact interaction is
only meaningful in a truncated space of two-particle states, and we have chosen a cutoff
at Ec = 40 MeV. The strength of the density-independent part of the interaction, v0,
has been chosen to give an infinite scattering length. This is slightly stronger than the
empirical n-n interaction, which gives a scattering length of about -17 fm. The param-
eters for the density-dependent part of the interaction, vp and P, have been adjusted so
that the calculations described in the following reproduce the binding of 12Be and a4C.
We find that the resulting effective n-n interaction essentially vanishes inside the core.

The use of a contact interaction simplifies the calculation of the ground state and
excited states considerably. For a total angular momentum (JM) of the two valence
neutrons one can construct the non-interacting two-particle Green's function

Ge0)/r,_ _ _ = . (3)JMt--J = (Hx(1)+ H,(2) E irl)-1 _ [(jlj2)JM)((J,J2)JM[el + e2 -- E- iT]

The sum is over all two-particle states (e_g_j,;e292j2)which are below the cutoff, el +e2 <_

Ec, and excludes states that are occupied by core neutrons. The correlated Green's



function can now be constructed from

GjM(E) = (H,(1)+ H,(2)+ v - E - it/)-'= (i+ G(°)M(E)v)-'GjM(E).(°)(4)

This Green's function describes the dynamical propagation of two neutrons with the
total energy E, interacting with each other and with the core. It is a function of four
coordinate positions, (r,,r2) and (r_,r_), but since we use a contact interaction it is

n(o) lE)v) for rl = r2 andactually sufficient to construct the inverse of the operator (1 + _jM_,
r_ = r_. Thus the calculations become quite similar to those performed in ordinary RPA
calculations for particle-hole excitations [13] and the inverse operator can be constructed
in a two-dimensional, radial coordinate space.

Ground state of 1*Li

The ground state of the two valence neutrons is a 0+ state (we ignore the spin of the
core), and the ground state energy is the lowest pole of the associated correlated Green's
function. The ground state wave function, 1_9,), can also be extracted from this Green's
function (see Ref. [11] for details). Adjusting the n-core interaction to produce a pl/2
resonance at 0.8 MeV, as suggested by the measurement of Wilcox et al. [14], the model
predicts a two-neutron separation energy of 0.20 MeV for 11Li, a RMS distance of 6.24
fm between the two valence neutrons, and a RMS distance of 4.93 fm between their
center of mass and the 9Li core.

It is interesting to compare these results to the predictions obtained from Faddeev
calculations [9,10] which treat the 3-body kinematics correctly. The calculations are
based on a somewhat stronger n-core interaction, with a pal2 resonance close to 0.5 MeV,
and a more realistic, finite range n-n interaction. The resulting two-neutron separation
energy is 0.21 MeV, and the RMS distance between the two valence neutrons is 6.32 fm,
in good agreement with our results. The RMS distance between the core and the center
of mass of the two valence neutrons is 4.48 fm, which is smaller than our result as one
would expect for a, stronger n-core interaction.

Recent measurements [15,16] indicate that the neutron resonance in 1°Li is close to
0.65 MeV. This is lower than the earlier measurement [14], which we used to calibrate
our n-core interaction. A recent measurement [17] also indicates that the two-neutron
separation energy for 11Li is somewhat larger ($2, = 0.34 =t=0.05 MeV) than the value
we predict. The new measurement is consistent with the result obtained by Wouters et
al. [18] ($2_ = 0.33 + 0.12 MEV), but it is significantly larger than the old result, of
0.17 + 0.08 MeV, measured by Thibault et al. [19].

It is obvious that if we adopt a lower p1/2 resonance in our calibration of the n-core
interaction we would also obtain a larger binding energy. We have chosen not to change
the calibration of our model at present, since we find it important to have a consistent
set of results, which are based on identical assumptions. In future calculations, it would
be useful to modify not only the n-core interaction but also the the n-n interaction. The
density independent part is too strong, since it produces an infinite scattering length.
It would also be better to use for example 8He to calibrate the density dependent part
of the interaction, instead of 12Be and x4C, since deformation of the core may play a
significant role for these two nuclei.



Dipole Response

Having determined the ground state wave function, _gs, we can now calculate the dipole
response of the valence neutrons. The effective dipole operator is

Dr = Ze + (5)

and the dipole matrix element to a specific two-particle final state is

M(°)(EI,t*) '1 "21 D _ s= ((: : ).1 .I ), (6)

where the two single-particle final states are solutions to the n-core Hamiltonian. We
have here ignored the interaction between the two neutrons in their final state. It is
actually possible, within our model, to include this interaction to all orders. To do this
we first note that the free propagation of the two neutrons, after they have been excited
by the dipole field, is governed by the non-interacting Green's for J=l, given in Eq.
(3) and evaluated at the two-particle energy, E = el --[-e2. The effect of the final state
n-n interaction can now be treated in terms of a series of successive propagation and

scattering of the two neutrons. The resulting "correlated" dipole matrix eleme._t is,

(o) (o)
M(EI,p) = ((jlj2)_] (1 - vG_(E) + vG1, (E)vGI_, (E) -...)D_,]t_g,)

= ((j,j2)_[(1 4-vG_(E))-'D_,l_g,), (7)

where we have expressed the scattering series in a closed form. Summing over M1 final
states (fist.) one can now derive the following compact expression for the dipole response,

dB(E1)
- __, ]M(EI,I_)]2,5(E - el - e2)dE

#,f .st.

__ ! Im __,(Og.ID*,,GI,,(E)D,,IOg.), (8)
7r

p

which contains the correlated Green's function defined in Eq. (4). A detailed derivation,
and also a discussion of the numerical technique used to calculate this response, is given

in Ref. [12].
The total strength we obtain is 1.57 e2 fm2. This is slightly smaller than the sum

rule value,

3 ,Ze)2B(E1) = _-_ (--_- (r_ + r_ 4- 2r,. rs), (9)

which is related to the mean square distance between the core and the center of mass of
the two neutrons in the ground state. The sum rule strength is 1.73 es fms. It includes
contributions from the forbidden transitions to occupied core states, which are excluded

explicitly in the actual response. The total strength obtained from Faddeev calculation _.
[10] ranges from 1 to 1.4 es fm s, which is slightly smaller than our prediction in accord
with the smaller RMS radius.

The dipole response of 11Li is shown by the fully drawn curve in Fig. 1 (left panel).
The dotted-dashed curve shows the response we obtain when we ignore the effect of
the n-n interaction in excited states. Clearly, the final state interaction has a very

dramatic effect on the response and shifts the strength to lower excitations. However,



the total strengths of the two distributions are identical. The dashed curve in Fig. 1
shows the dipole response obtained from an independent particle model which has been
adjusted to reproduce the ground state single-particle density we obtain from the two-
particle Green's function method. The shape of this response is similar to the correlated
response at low excitations but the total strength of the correlated response is about
50% larger. This enhancement can easily be explained by the sum rule (9). The RMS
radii of the valence neutrons are identical in the two models (by construction) but the
last term in (9), 2(rx. r2/, which vanishes in the independent particle model, gives an
additional 50% contribution to the total strength of the correlated response. It is also
interesting to note that the last term in Eq. (9) would be identical to the first two terms
if we assume that the two neutrons form a point particle.

One can also extract the. dipole strength as a differential in the kinetic energies (in

the rest frame of laLi) of the two emitted neutrons [12]. This quantity is illustrated in Fig.
1 (right panel) as a contour plot. The maximum of the strength function is not shown
in the figure; it is located at el = e2 = 80 keV. An interesting feature of this plot is the
ridges that appear around 0.7 MeV. They disappear when the final states are replaced by
plane waves (see Fig. 3 in Ref. [12]). The ridges reflect the physical process in which one
of the neutrons is emitted with a large kinetic energy whereas the other neutron remains

as a spectator near the pl/2 resonance of 1°Li. it would be very useful to get information
about the structure of the unbound nucleus 1°Li from measurements of this kind, i. e.

from coincidence measurements of the 3-body breakup reaction (11Li,gLi+n+n) induced
by the Coulomb field from a high Z target. This reaction mechanism is simpler and
better understood (as we shall see in the next section) than the multi-nucleon exchange
reactions that have been used up till now [14-16].
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Fig. 1. Calculated dipole strength of the valence neutrons in 11Li. The
left panel shows the correlated response (fully drawn curve), the response
obtained by ignoring the n-n interaction in the final state (dot-dashed
curve), and the independent-particle response (dashed curve), as functions
of excitation energy. The right panel is a contour plot of the correlated

response as a function of the energies of the two emitted neutrons.



3. Coulomb Dissociation and Momentum Distributions

We have previously calculated the cross section for (tlLi,gLi) reactions on different
targets at 800 MeV/u [20], and found a surprisingly good agreement with the data [1].
Almost 60% of the calculated cross section for a lead target is due to Coulomb disso-
ciation, generated by excitations of the dipole response illustrated in Fig. 1. At lower
energies we expect that an even larger fraction of the cross section is due to this reaction
mechanism. It is therefore reasonable to analyze the 3-body coincidence measurements
[8], obtained at 28 MeV/u on a lead target, in terms of Coulomb dissociation. Moreover,
the data analysis [8] suggests that the nuclear part of the breakup is strongly suppressed
in the measured 3-body events, consisting of a 9Li fragment in coincidence with two
neutrons.

We have also studied the angular correlation between the two neutrons emitted in
(ltLi,gLi) reactions [12] and we have recently applied this formalism to calculate the
associated momentum distributions in the rest frame of the excited ttLi nucleus [21].
The basic cross section can be expressed as a differential in the momenta of the two
neutrons as follows,

d6a d6BL(E1) d6BT(E1) (10)
dk_dk2 = gL(_) dktdk2 + gT(_) dk_dk2 "

This cross section has two components, a longitudinal (L) and a transverse (T), which
are generated by the Coulomb force from the target nucleus, acting along the beam
direction and perpendicular to the beam direction, respectively. The magnitudes of the
two components are determined by the functions,

(4_rZTe)2_2gL(_) =, _v (g_(_) - g02(_))(1 - (lla)

2

gT(_) = (4_rZTe)2_2(g'_(_)3h"---"_- - g_(_) -t- -_K0(_)gt (_)), (llb)

where _ is the adiabaticity parameter, which depends on the excitation energy AE,
"- RAE/(hTv), and R is determined by the minimum impact parameter for which a

strong nuclear absorption sets in, c.f. Eq. (5.10) of aerl [12].
We have introduced two dipole strength distributions in Eq. (10), a longitudinal

and a transverse, which depend on the directions of the two momenta. If one integrates
the two distributions over all orientations one obtains the same result, which is (triv-

ially) related to the dipole strength distribution illustrated in Fig. 1. The longitudinal
distribution is defined by,

d_BL(E1) 3 ,ft0 (k,, k2)12 (12)
hl h2

where the sum is over the helicities of the two neutrons. The expression for the f-

amplitudes is fairly complicated. It is given in Ref. [12] in terms of dipole matrix
elements, phase shifts of the two emitted neutrons and two-particle D-functions. The
distribution is invariant under rotations around the beam direction. The symmetry

axis for the transverse component is perpendicular to the beam direction and falls in
the scattering plane determined by the incident projectile and the target nucleus. The
two distributions are otherwise identical, i. e. they are related by a simple rotation
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of 90°. We shall make use of this fact in the following, lt is important to realize that
transverse dipole excitations dominate the (11Li,9Li) Coulomb dissociation cross section
at intermediate energies; they generate 78% of the cross section at 28 MeV/u on lead,
and 95% at 800 MeV/u.

Let us first consider the spherical part of the momentum distributions associated
with the 9Li recoil and with the relative motion of the two neutrons. Using the fact that
the transverse dipole strength distribution can be obtained from the longitudinal by a
simple rotation of 90°, we can obtain for the following expressions for the two momentum
distributions, expressed in terms of the longitudinal dipole strength,

dlp_ + p2l = dkxdk2 (gL(_) "-F-gT(_))d6BL(E1)dk_dk26(IPa + P2I- Ik_ -l- k2l). (13)

When comparing to the data we also include the detection efficiency. It has been pa-
rameterized as a simple function of the decay energy, c. f. Fig. 11 in Ref. [8], and it
can therefore easily be included in the calculations. The two distributions we obtain are
shown in Fig. 2 together with the data [8]. The calculated distributions have arbitrarily
been normalized to 100, and the data points were normalized to minimize the X2. The
data for the relative motion of the two neutrons are in surprisingly good agreement with

our calculation, whereas the measured recoil momentum distribution is shifted to higher
momenta and has a significantly larger width.
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Fig. 2. Momentum distributions for the relative motion of the two
neutrons (A) and the 9Li recoil (B)in the rest frame of the 11Li _ 9Li+n+n
breakup reaction on lead at 28 MeV/u. The data are from Ref. [8]. The
calculated curves (normalized to 100) include the detection efficiency.

The calculation of the decay energy spectrum is even simpler, since the angle inte-
gration over the orientations of the two momenta becomes trivial,

dB(E1) (14)
do" = (gL(_) + gw(_)) dE "dE



Tile result (including detection efficiency) is shown in Fig. 3 of Ref. [21] together with
the data. The measured spectrum is shifted towards higher excitations when compared
to the model prediction. The shift is similar to that observed for the recoil momentum
distribution shown irt Fig. 2B. In fact, the discrepancies are probably related.

lt was noted in Ref. [8] that the average velocity of the aLi fragments is larger
than the average velocity of the two neutrons. This was ascribed to a post acceleration
effect on the ali fragment, when it is liberated in close vicinity of the target nucleus,
and it was interpreted in terms of a life-time, which is much shorter than what one

would expect from the width of the low-lying dipole response (see Ref. [8] for details).
Our calculations, which are based on first order perturbation theory, do not include a
post acceleration effect. The measured momentum distribution shown in Fig. 2B has
been corrected for the average velocity shift. The post acceleration effect will also lead
to fluctuations in the velocity of the heavy fragment but it is not possible to correct
for that. There may also be additional fluctuations for example from energy loss in
the target. The discrepancy between our predictions and the data may be due to these
fluctuations. In this connection, it is important to emphasize that the data for the
relative motion of the two neutrons are insensitive to post acceleration effects, and they
are in good agreement with our prediction, c. f. Fig. 2A.

Let us also make a comparison to the total cross sections measured in Ref. [8].
The Coulomb dissociation cross section we obtain is ac = 4.5 b. We expect that the

nuclear part of the (XlLi,OLi) cross section is of the order of cr,,_c = 14-0.3 b, based on
the independent-particle model calculations performed by Sustich [22]. He also assumed
a two-neutron separation energy of 0.2 MeV but spatial correlations between the two
valence neutrons may reduce his estimate slightly, c. f. Ref. [20]. Our estimated total
cross section is 5.5 b, which is slightly higher than the 5.14-0.3 b obtained from the
telescope data. The neutron coincidence measurements appear to be insensitive to large
decay energies, say larger than 1.5 MeV. The Coulomb dissociation cross section we
obtain with this cut-off is &c = 3.9 b, which can be compared to the 3.64-0.4 b obtained
from the two-neutron coincidence data. This does not leave much room for nuclear

induced reactions. The measured single-neutron cross section is 8.34-0.5 b. This can be
compared to our estimate of 2&c + crn,,c= 8.8 b, assuming for simplicity that the neutron
multiplicities for Coulomb and nuclear induced reactions are 2 and 1, respectively. The
three estimated cross sections are in reasonable agreement with the measured values but
they are all slightly larger. This trend may be related to the fact that the experimental
binding energy [17] is somewhat larger than our model prediction.

An interesting question is whether the angular correlation between the two neutrons
has any effect on the distributions with respect to the two momenta, [px 4- P2I. The
total spread of these two momenta are essentially identical in the experiment [8] and
our model predicts the same result (within 6-8 %, the spread of Pa - Ps being the
larger). This result does not necessarily mean that the momenta of the two neutrons
are uncorrelated. A possible way to see an effect of angular correlations is to study the
different components of the momentum distribution for the ali recoil. We have discussed
that in Ref. [21] and the following is a summary of the results we obtained. Thus, one
can decompose the recoil momentum distribution into three orthogonal components, a
longitudinal (along the beam direction) and two transverse,

d,, f d% + k,.,+ i= 1 2,3. (tS)d--_i = dkldk_ dkl dk-----22

The longitudinal component (i=3) has been measured by Orr et al. [3], and our model
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(including the effect of angular correlations) reproduce the data very well. The two
transverse components are an out-of-plane (i=1) and an in-plane (i=2) distribution,
where the plane in question is the scattering plane defined by the incident projectile and
the target nucleus.

The longitudinal and transverse in-plane distributions are illustrated in Fig. 4 for
28 MeV/u on a lead target. The longitudinal distribution (fully drawn curve) has a
maximum at zero, whereas the transverse in-plane distribution (dashed curve) has a
local minimum at zero. These features can be understood from the angular correlations
discussed in Ref. [12]. There it was found that the emission probability is enhanced
when the two neutrons are emitted on opposite sides of the symmetry axis, with an
opening angle close to 90°. For this configuration one finds that the component of the
9Li recoil momentum, which is along the symmetry axis, is generally larger than the
other two perpendicular components. This trend is consistent with the results shown in
Fig. 3, since the relevant symmetry axis is the in-plane transverse direction because of
the dominance of transverse dipole excitations. The transverse out-of-plane distribution
is not shown. It is similar to the longitudinal momentum distribution and peaks at zero.
A detailed discussion of these results is given in Ref. [21].
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Fig. 3. Calculated longitudinal (fully drawn curve) and transverse
in-plane (dashed curve) momentum distributions for the 9Li recoil in
(llLi,gLi) reactions on lead at 28 MeV/u. The distributions have been
normalized to 100.

Finally, it is also interesting to study the energy dependence of the longitudinal
momentum distribution for the 9Li recoil. The naive expectation is that the width of
this distribution will increase with increasing beam energy, simply because the average

excitation energy increases. This is indeed the case if we ignore the angular correlation
be'tween the emitted neutrons. However, if we include this correlation, as we did in Fig.

3, the width decreases slightly [21], from 34 to 32 MeV/c (FWHM) going from 28 to 800
MeV/u. It will be interesting to see whether experiments will confirm this trend.



4. Conclus':ons

The tlLi_gLi+n+n breakup reaction on a heavy target is dominated by Coulomb
dipole excitations at intermediate energies. This reaction mechanism, combined with
a previously developed 3-body model for 11Li, provides a good description of the mo-
mentum distribution for the relative motion of the two emitted neutrons obtained in

recent 3-body coincidence measurements. The calculated momentum distribution for
the 9Li recoil and the decay energy spectrum are much narrower than measured. These
discrepancies may be related to Coulomb acceleration effects, which can only be treated
in a higher order reaction theory. Calculations indicate that the different components
of the 9Li recoil momentum distribution may contain important information about the

angular correlation between the two emitted neutrons.
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