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Abstract

The Kuwabara solution for creeping fluid flow through periodic arrangement of cylinders is

widely used in analytic and numerical studies of fibrous filters. Numerical. solutions have shown

that the Kuwabara solution has systematic errors and when used for the particle trajectories in

filters it results in some error in the predicted filter efficiency. The numerical solutions although

accurate, preclude further analytic treatments and are not ms compact and convenient to use

as the Kuw_bara solution. By re-examining the outer boundary conditions of the Kuwabara

solution, we have derived a correction term to the Kuwabara solution to obtain an extended

solution that is more accurate and improves prediction of the filter efficiency. By comparison

with the numerical solutions, it is shown that the Kuwabara solution is the high porosity

asymptote and that the extended solution has an improved porosity dependence.

We explain a rectification which can make particle collection less efficient for periodic, in-

line arrangements of fibers with particle diffusion or body force. This rectification also results

in the alignment of particles with inertia (i.e., high Stokes number particles).



1 Introduction

Studies of fibrous filters commonly use the idealization of the creeping fluid flow through a

periodic arrangement of cylinders, as shown in Fig. l(a). The assumption of periodicity allows

for the analysis of single fiber with the appropriate boundary conditions. There is no exact

analytic, closed-form compact solution for this two-dimensional flow. The Kuwabara 1 creeping

fluid flow solution uses a cylindrical unit-cell to approximate the local flow through arrange-

ments of cylinders. When used in periodic arrangements of cylinders such as an in-!ine and

isotropic arrangement, the Kuwabaxa approximation to the square unit cells leads to errors,

because the Kuwabara solution does not satisfy the periodic boundary conditions.

The Kuwabaxa solution is widely used for studies of flow through fibrous filters (e.g., Banks 2,

Banks and Kurowski a, and Choo and Tien4). Despite this shortcoming with the periodic

boundary conditions, many useful results have been derived from the application of this solution

to particle capturing in fibrous filters. The Kuwabara solution is compact and can be calculated

with only a few operations which is important for example in the Monte Carlo simulations which

require repeated calculations. As will be shown, the Kuwabara solution is also valid as a high

porosity asymptote.

Accurate numerical solutions of the flow through equally spaced (i.e., isotropic), periodic

arrangement of cylinders has been given by Sangani and Acrivos s. Even though their method

can be used to obtain high accuracy, there axe still some advantages in having an analytic

solution as evidenced by the continued use of the Kuwabara solution. The Kuwabara solution

is widely used because it is simple and allows for analytic treatment of the particle capture.

However, as mentioned above it assumes a circular unit-cell, and therefore, lacks the accuracy



in simulating the flow field in a square unit-cell. Here improvement to the Kuwabara solution

is sought by using an extension that will improve the solution for the square unit-cell. This

extension of the Kuwabara solution uses a geometric perturbation in order to obtain the square

unit cell from the circular unit-cell. In order to access the accuracy of this approach, this

extended analytic solution is compared with the numerical solutions of fluid the flow t!_rough

the in-line arrangement of fibers shown in Fig. 1 (a). Then this improved analytic solution, the

Kuwabara and the numerical solutions are used to calculate the particle trajectories and the

particle capture efficiency. The capture mechanisms considered here are impaction and sieving.

Capture by impaction occurs when the particle touches the fiber and then it is assumed that

the particle adheres to the surface. Capture by sieving occurs when the particle diameter is

larger than the clearance between the fibers. Hence sieving is geometrical and occurs only in

the entrance region of the filter.

In Section 2 we introduce the numerical solution for isotropic and anisotropic, in-line ar-

rangements of cylinders. In Section 3 the analytic correction terms are derived. In Section 4

the local velocity and the stream function solutions and the errors are examined. Section 5

shows the comparisons of the impaction efficiencies. Section 6 evaluates the derived and the

numerical inertial collection efficiencies. Section 7 examines particle rectification effects found

in this study.

2 Numerical Solution

Sahraoui and Kaviany 6 solved the Navier Stokes equation for the fluid flow in in-line and

staggered arrangements of cylinders. Here the same numerical method is used to solve for



the Stokean flow through an in-line arrangement of fibers. The periodic arrangement of fibers

can be represented by the unit cell shown in Fig. 1 (b). Due to the presence of the fiber

. within the square unit cell, the Cartesian coordinates are not accurate for mapping the fiber

unless a very large number of grid points is, used. Accurate results can be obtained by using

a domain decomposition, where a cylindrical grid net is used near the fiber and a Cartesian

grid net is used away from the fiber. Iteration for the solution is performed in both grid

nets and a bilinear interpolation is used to communicate between them. In the case where

multiple fibers are used, the same procedure is repeated for every fiber. More details about

the domain decomposition can be found in Sahraoui and Kaviany 6 and Prata and Sparrow r.

The equations are nondimensionalized using the length scale g, the size linear dimension of an

unit-cell. For anisotropic unit cells, we use the length scale g= gg_gy where g= andisotropic g_

are the dimensions of the unit cell in the x- and y-directions, respectively. The volume-averaged,

z-component of the velocity (or Darcean velocity) is used as the velocity scale and is given by

.5
= udg. (i)_'° <_>= o._

The governing equations for the fluid flow in the Cartesian coordinates are

Ou Ov

Oz _ Oy = o (2)
8p c_2u O_u

-0--7+ _ + a-_v= = o (a)
8p 02v O_v

-- a--y-F _z 2 + 0y--_ = 0 (4)

and in the cylindrical coordinates, the radial and tangential components of velocity (v_ and vo)

• are given by

(iT_'r 0V0

a_ + 0-7 = o (5)



ar+ - +- +S, = 0 (6)--- _ \ a_j _ ae]

-Ta-] + 7_ \ _j + 7_ -_-] + a_ = o (7)

where the source terms Sr and S'e are

s, = - ,._+ ,._ae _7_ \ a,.] + -_ _ (8)

Se -- -_ 4- r2 o':98 (9)

The above equations are solved by using the no-slip boundary condition on the surface of the

fiber and the periodic boundary conditions at the boundaries of the unit-cell, as shown in

Fig. 1 (b).

The momentum equations are solved using the finite-volume method and the pressure cor-

rection method, as suggested by Patankar s. As will be shown, for low porosities the numerical

solutions are more accurate than the Kuwabara solution for the fluid flow in periodic arrange-

mentsof cylinders. The numerical integration also allows examination of the flow field in the

entrance region of the filter. In this region the condition of periodicity is not valid. For the

study of the particle capture this entrance effect can be important. In Section 6.2 we exam-

ine the results of the numerical simulations of the flow in the entrance region for the in-line

arrangement of cylinders. For these entrance simulations, we use three fibers aligned in the

direction of the flow (i.e., z-direction). Since the fluid flow is not periodic at the inlet, then

different boundary conditions are used. At the inlet (i.e., x=O), we use

t

=1 , v=O z=O. (10)



At the exit (i.e., x=L) we use the periodic boundary condition

u(L,y):u(L- 1,y) , v(L,y):v(L-. 1,y) x:L. (11)

2.1 Two-Dimensional Anisotropy

In modeling the flow through fibrous filters, the in-line arrangements of cylinders are usually

used. In these models, the periodic unit-cell is chosen to have the same length in the longitudinal

(along the flow) and the transverse (orthogonal to the flow) directions. However, examination

of the micrographs of fibrous filters shows that the fibers are very close in the longitudinal

direction and far apart in the transverse direction. This anisotropy, among other geometrical

factors, contributes to the discrepancy between the predicted and the experimental results

for the pressure drop in fibrous filters . Using the two-dimensional numerical simulation, we

examine the effect of this anisotropy on the pressure drop by varying the cell dimensions in

the z and y directions, asshown in Fig. 2 (a). The same porosity and the average flow rate

are maintained the same and the pressure drop over the same distance, which is the dimension

of the isotropic cell (_=1), is determined. The results of these computations are given in

Fig. 2 (b) and they show that as the transverse period (_y) increases, the pressure drop across

the same distance e decreases significantly. This result is consistent with the experimental

results which give a pressure drop that is lower by about 60% than that for the square (i.e.,

isotropic) unit-cells (as reported by Liu and Rubowl°). For g_/_=4 (_y=2 and e_=0.5) the

pressure drop is about 25% of the pressure drop for the isotropic structure. This shows that a

significant portion of the pressure drop is due to flow restriction between the cylinders. This is

also shown by decreasing _, which results in a significant pressure drop, as shown in Fig. 2 (b).



3 Analytic Solutions

First, in Section 3.1 the Kuwabara solution for the Stokean flow in a cylindrical domain, as
4

shown in Fig. l(c), is reviewed. Then in Section 3.2 the extension to this solution for the

square unit-cell, also shown in Fig. 1 (c), is developed. In Section 3.3, the extension to the

anisotropic, periodic arrangements is developed.

3.1 Kuwabara Solution

As mentioned above, the Kuwabara solution 1 approximates the periodic structure by using a

cylindrical outer boundary. The governing equation for the stream function _ is given by

V4¢ = 0. (12)

The boundary conditions at the surface of the fiber are

v_ = vo = 0 at r = R, (13)

where v_ and vo are given by

I 0¢ (9¢
vr = --- and vo = • (14)r O0 Or

For the outer boundary, Kuwabara uses

v_ = cos 0 and co= 0 at r = R + AR, (15)

where co is the vorticity. The solution to Eq. (12) is

r 3 r R r r
_(r,O)=R[C,(-_) + C2_- C3--+C4r _ln(-_)]sinO (16)



The coefficientsCi and ¢4 arefoundusingtheboundary conditions(13)-(15)and theyare

givenby

4

C4 = -21ne + 3 - 4e + ee (17)

eC4
c_= (is)

4

C3 = C1 + C4-f (_9)

02 = -01 - 03 (20)

where e is the porosity given by!

e= i - vR 2 (21)

and for the circular unit-cell it is given by

(1 (22)c = - \R R

3.2 Extended Analytic Solution

The purpose of extending or improving the Kuwabara solution are three fold. It is practical to

find new solution which is more accurate, but still compact and not of overwhelming complexity

nor a slowly converging series such as the one suggested by Hasimoto 11.

Since the Kuwabara solution is in much use, and as we shall show later, in the limit of

high porosity it is a good approximation, the new analytic solution is obtained by adding a

" correction term to the Kuwabara solution. This additive correction form is possible because of

the linear superposition of the eigenfunctions of the biharmonic operator.

From the boundary conditions for the Kuwabara solution in Eq. (15), we note that the

only element of a periodic cell or even a square surrounding cell is that the outer radius can



be chosen so that the solid fraction of this cylindrical region is the same as the square unit

cell. This is indeed how the Kuwabara solution is used (e.g., Banks2). No other influence of

the square unit cell is found in the Kuwabara solution. This greatly reduces the mathematical

complexity since the eigenfuncdons of the equations have a convenient form in the cylindrical

coordinates, but reduces the accuracy of the solution away from the cylinder which in turn

affects the accuracy of the prediction of the particle trajectories and collections.

In this extended analytic solution we attempt to correct for this problem. Due to the

symmetry of the geometry and the flow considered, we can fold the domain into one quarter as

shown in Fig. 1 (c). The boundary conditions we use along the cylinder surface are the same as

the no-slip boundary in the Kuwabara solution. These are the appropriate boundary conditions

as long as the mean free path of fluid molecules is much smaller than the fiber diameter. The

equations to be solved for this creeping flow are

V2¢ =oJ (23)

V2w - 0. (24)

The stream function solution, which satisfies these governing equations in a square unit cell

and the no-slip boundary conditions in the cylindrical coordinates, is known (e.g., Sangani and

Acrivos s) and is

{ [ 41nr (_)221nR-1 (_)'] [ 21nr (R) 2 1 ]}_P= alra 1-21nR+l 21nR+l +blR=r 1-21nR+l- 21nR+l

sinO+_ a,_r2'_+1 1-2n +(2n-l) +
n'-2

10



Sangani and Acrivos s have used the collocation method (a spectral numeric method) to solve for

the spectral coefficients e_ and b_. This is done by using the appropriate boundary conditions

at 'some discrete points on the Cartesian boundary of the square unit cell. Then they form linear

equations for the coefficients a,, and b,_for each boundary collocation point. This provides an

accurate Lumerical method of solving for the fluid flow.

The outer boundaries of the square unit-cell in Fig. 1 (c) can be represented, in the cylin-

drical coordinates, as having a distance r from the center point and an angle 8 . Then we can

define 6(8) such that when it is added to the outer radius R + AR, it gives the square unit cell

in the polar coordinates as

= (n +  xR)+6(0). (z6)

Note that 6(0) for the square geometry is always less than 0.23. Thus 6(0) is always a small

parameter and can be considered as a perturbation. This is a perturbation expansion from a

cylinder to a square. The expansion of the stream function is given by

¢ = ¢0 + 6¢1 + _2¢2 (27)

Substituting this into the linear biharmonic Eq. (12) gives

V'4¢o = 0 at order _o (28)

V4¢1 = 0 at order 61. (29)

The boundary conditions we will use are

0V
= 0 at z = 0.5. (30)Oz

11



and

Ow

= o at y = 0.5. (31) "

The problem with these boundary conditions is that there is no explicit dependence on

6(0). This can be obtained by a perturbative expansion of the boundary condition a ad a

Taylor expansion about R + AR. The result is

Ovo , Ovo 0 Ovo, I"_z _r'O)= -_z (r'O) _ Or -_z kr'O) _(0). (32)
R+AR R+AR

The order 6° boundary condition is

Ov--2(r,0)1 = 0 (33)
OZ IN+AN

and for the 6_ is

"-_z_ ' a+_xa = O'''_(r' O) R+aR 6(0). (34)

Note the explicit dependence of the boundary condition, on the geometry. Then 6t can be

expanded in a Fourier series in sin[(2n- 1)O]and the boundary conditions are used to calculate

the coefficients in Eq. (25).

The resulting solution is not very accurate for low truncations. For high truncations the

formula becomes excessively large. Sangani and Acrivos S used 6 to 40 terms for accurate

numerical solutions. This analytic method will produce accurate results if enough terms are

included from the expansions. However, it does not provide a useful, compact formula. For

this analytic form, each successive coefficient depends on the previous coefficients. Thus the

length of the analytic solution becomes overwhelming for this method. In contrast our goal is

to obtain a reasonably compact analytic solution.

12



The problem is that the basic state of the perturbation is not a very efficient approximation.

The Kuwabara solution is a better approximation than the lowest term in Eq. (25) with

. the above approximations. The above solution method is more accurate only when enough

expansion terms are included. Since our goal is to have both an accurate and compact formula,

the Kuwabara solution is used as our basic state. Note that the stream function obtained by

Kuwabara is essentially the sin 0 term in Eq. (25) with a particular choice of the coefficients.

With the Kuwabara solution as the basic state, we proceed with a stream function given by

(35)

where CK is the stream function obtained from the Kuwabara solution ¢E is the extension

which is that part of Eq. (25) having the higher order terms of sin[2(n- 1)0]. The advantage of

this formulation is that the Kuwabara solution is a more efficient choice than the appropriate

boundary conditions applied to the first term of Eq. (25). The problem with this formulation is

that Kuwabara's boundary conditions are not appropriate to the square unit-cell. In order that

I,,i,,the total stream function, have the correct boundary conditions we must impose a boundary

condition on ¢ and then subtract the Kuwabara solution to obtain the boundary condition for

_s. The two boundary conditions on the total stream function we use are

ox/2u dy = A_b (36)

fol/2v dy = 0 (37)

More general boundary conditions that include these as a subset can be used. We have
t

used other and more general boundary conditions and no improvement in predicting the local

velocity is achieved. Higher order terms greatly complicate the analytic formula and reduce

13



theerrorintheformulaby lessthana few percentperterm .Thus ourextendedsolutiononly

includes one higher order sin 0 term than does the Kuwabara solution. However as we shall show

in Section 4 the above boundary conditions are adequately satisfied for many situations. Other

expansion terms need to be included for the anisotropic unit cells and this will be discussed in

Section 3.3.

The resulting extended solution for the total streaxn function is

r)3 r R r r_(r, O) - R[CI(-_ + C2-_ -t- C3 r + C4-_ ln(_)] sin0

+{CsR_'ra[1+ 2(--R)6- 3(--R)4]+ C6r511+ 3(---R)s - 4(---R)6]}sin(30), (38)
7" r r 7'

where Us and C6 are given by

i

Cs = -C7(-8R 2 + 256R s - 384R _°) - Cs(-R 2 + 256 Rs - 768R _°) (39)

C6 = -C7(16R 4 - 192R s + 256R t°) -C8(4R 4 - 192R s + 512R t°) (40)

where C7 and Cs are given by

4C_- 16R 2 -t- 16C2R 2 + 64C3R 4 -F 16C4R2 ln(.1--_)

C7= C9
L I'I, (41)

1
16C_- 32R2+ 32C2R2+ 64C3R 4+ 32C4R 2In(,NZo)

V_It

Cs = C9
(42)

and C9 is given by

C9 = 16R s - 1344R 1° + 6912R 12 - 10572R 14 -b 8192R is (43)

The coefficients C_ through C4 are the coefficients of the Kuwabara solution and are given by

Eqs. (17)-(20). The coefficients of this extended solution depend only on the porosity and the

14



radius of the fiber and for a set of porosity and radius they are constants. The equations were

manipulated using the Mathematica software 1.

3.3 Anisotropic Extension of Kuwabara Solution

Many filters have fibers that are spaced closer together in the flow direction than in the per-

pendicular direction. To study the effect of this anisotropic distribution of fibers, we have

examined anisotropic extension of the Kuwabara solution to an anisotropic array of fibers.

More appropriately, this is an extension of the extended solution discussed in the last section.

As we will show this anisotropic extension to the Kuwabara solution does improve the

accuracy of the solution for fibers spaced unequally in the x and y directions. However, the

compactness of the coefficients found in the last section is lost.

The same geometry is used as in Figs. l(b) and (c). However the periodic rectangular cells

with sides g, and gu are used and the total area is still gzgu=i. Equation (2.4) from Sangani

and Acrivos s is no longer valid. It implicitly assumes the distance from the cylinder to the edge

of the cell is equal in 3oth z and y-directions. We find that one more extended term plus the

one we added in the last section are needed to obtain reasonable solutions with at least some

degree of compactness.

The method of solution is much the same as in Section 3.2, so we wi!l only point out to

the differences. The basic Kuwabara solution is not the most efficient zeroth order term, but

" with some small modifications it can be made into a first order term. We modify the Kuwabara

• solution by applying the boundary conditions on an ellipse with axes equal to the rectangular

1Mathematica is a Copyright of the Wolfram Research Inc.
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axes. We retain the extended term with undetermined coefficients of the last section. Finally

we add a sin 2t_ term thai, is the lowest order term and is not found in Eq. (24) because of the

previously assumed symmetry. The same boundary condition is used as in the previous section

only the integrals in Eqs. (36) and (37) are divided into smaller segments of the top boundaries.

The resulting solution is not as compact as Eq. (38). However, it becomes compact once a

porosity and a ratio of fv to G is chosen. The reason is the dependence of the coefficients on

the porosity and the geometry is rather complex. For a porosity of 0.95 and a fv/£_=1.44, the

solution is

_(r,9)= 9.362x 10-2[7"714x 10-2 _ 4.723r- 7.809r3 + 9.943rIn(7.927r)]sin
T

8.063x 10-6 7.600x 10-4 2.533x lO-4

+[3.132x 10-I(i+ r8 - r4 )r4 - 1.203x 10-I(I+ r4

3.183x 10-2 1.925x 10-7 1.613x lO-s

- r2 )r2] sin28 + [1.043 x i0-1(1 + rS - r6 )r s

8.063 x 10-6 7.600 x 10-4
-2.252x 10-I(1+ r6 - r4 )r3]sin38. (44)

The same anisoLropy and a porosity of 0.80 gives the following expression

_,(r,O) = 1.593 x 10-1[ 4640 x 10-1 - 6.478r- 12.72r3 + 16.20rln(3.963r)]sin8
r

5.160 x 10-4 1.216 x 10-2 4.053 × 10-3

+[1.172(1 + r6 - r 4 )r 4- 5.625 x 10-_(1 + r4

1.273 x 10-1 4.928 x 10-s 1.032 x 10-3

- r= )r=]sin20 + [2.374 x 10-=(1 + rS - r6 )P

5.160 x 10-4 1.216 x 10-2
-4.770x 10-1(1 + re - r4 )r3lsin3/_. (45)

Equations (44) and (45) have been derived for an angle 0 between 0 and _r/2. Using the same

formula for angles larger than r,/2 leads to errors. For these angles symmetry is used to calculate

thestream function.

16



We have a closed-form analytic solutions for the coefficients of the above equation. These

can be provided via e-mail (however, the length approximates the length of this article). These

solutions can be manipulated via a computer algebra program such as Mathematica or Maple.

In Section 4 we show the results of this solution as compare them with the numerical results.

4 Comparison of Various Solutions

As previously discussed, numerical solutions to this problem are known (e.g., the numerical

solutions of Sangani and Acrivos s) and are more accurate than the analytic solutions. Thus

the numerical ,'esults from Section 2 will be our standard for the comparison.

The stream function contours using the Kuwabara, the extended, and the numerical solu-

tions are shown in Fig. 3. Note that the Kuwabara solution in Fig. 3 (a) has streamlines

crossing the upper boundary of the unit-cell in error. As we shall show later this has negative

consequences for calculations of the particle collection efficiency. The extended analytic solu-

tion, Fig. 3 (b), and the numerical solution Fig. 3 (c), show that the flow does not cross the

upper boundary of the cell as expected.

In Figs. 4 (a) and (b) we show the velocity errors in both the Kuwabara solution and the

p

extended analytic solution. The velocity error fields for both are constructed by subtracting the

velocity fields from that of the numerical solution. Both Fig. 4 (a) and (b) are scaled similarly.

. The magnitude of the largest error vector for the Kuwabara solution is 0.349 while that of the

extended analytic solution is 0.119 and occurs at the inlet and exit boundaries of the unit cell.

These results show that the extended analytic solution improves the prediction of the local flow

field over the Kuwabara solution, especially near the upper boundary of the cell. This is also

17



shown in Fig. 3 (b), where the stream function contours near the upper bc)undary is almost

rectilinear, as expected. This is an important feature of the analytic solution since mass flow

conservation is satisfied at every cross section of the square unit cell. The Kuwabara solution

has a discontinuity in the upper boundary stream function when connected to the adjoint cell.

We have also made the same comparisons for e=0.8 and we have found that the discrepancy

between the Kuwabara solution and the numerical solution is larger. The magnitude of the

maximum error vector is 0.690 which occurs at the inlet and exit boundaries of the unit cell.

The maximum error for the extended analytic solution is 0.205.

The various solutions are also compared bv evaluating the pressure drop for different porosi-

ties. The results are presented in Table i. These results show that for high porosity (i.e., ¢ > 0.8)

excellent agreement between the numerical solution and the analytic solutions is obtained. Note

that for fibrous filters the porosity is larger than 0.8. For e = 0.7, the difference between the

extended analytic solution and the numerical solution is about 7% which is acceptable. For

lower porosity (i.e., e < 0.6), the accuracy of the analytic solutions in predicting the pressure

drop deteriorates further and a difference of 20% is obtained. Since the extended analytic so-

lution is intended to correct the t(uwabara solution near the outer boundary of the unit-cell,

the flow near the cylinder is not altered significantly. Thus, the Kuwabara and the extended

analytic solutions predict pressure drops that are very close.

In Figure 5 we show the error for the extended anisotropic solution with g_/f_=l.44. The

magnitude of the maximum error vector is 0.182 which is slightly larger than that for the square

cell. Most of the error in the velocity vector occur near the exit boundaries of the unit cell. Thus .

for small stretches in the _-direction, the anisotropic analytic solution gives good estimates of

18



the particle collection efficiency (this will be discusses below).

5 Particles Impaction Etticiency

I"o examine the utility of the extended solution, we begin with the particle impaction and the

study of particle capture in filters with negligible diffusion, negligible surface forces, and for

particles with negligible inertia. \Vithout the inertial effects, the particle paths are entirely

determined by the fluid flow. The opposite extreme is the case where the particle inertia is so

large (i.e., the Stokes number is large) such that there are no fluid flow effects on the particle

collection.

In Fig. 6, the geometry in aspects of the particle impaction are shown. A particle of radius

/gp is collected if it impacts the fiber, otherwise it is uncollected. There is a critical streamline

which distinguishes between the collected and the uncollected particles for a given /_. For

these calculations, we assume that the fluid entering this unit cell has a uniform distribution of

particles. The efficiency is simply the ratio of the collected particles to the total particles. For

particies larger than the openings between fibers, sieving occurs and then they are all collected.

For each particle radius there is a limiting streamline that separates the flow region where

particles are collected from the flow region where the particles are not collected. Thus the stream

function with 0 set to _/2 and the radius r replaced by the fiber radius R plus the particle

radius Rp in Eq. (38), becomes a,n analytic relationship for the particle collection which is the
t

advantage of having an analytic solution for the fluid flow. We can derive a particle collection

formula rather than having to recalculate the efficiency for each particle. The particle capture

19



efficiency is given by

7i"

r1 = 200_,(Rp+ R,-_) (46)

+ Rp+R R P_+R /_+R= 200R[C,(R_R)3+ C2 + C3 _C,_ In( )]-
R R

2oo{" _ 2( )_- 3( R.)"]c_R(.&,+ R)_[1+ _%+ R &,+
R )8 R,,+ R)_,,j_,

+c_[1 + 3(n, + d - 4(-7-
(47)

For small particle (Rp < R), the above efficiency expression can be simplified

77 = 200R[Cl + C2 + C3 + --_(3C1+ C2 - C3) + C4-_(1+ --_)]

R_ R _
- 200(12Cs_--ff+ 24C6_-_7) (48)

From Fig. 7 (a) and (b) one can see that close to the cylinder both the Kuwabara and the

extended analytic solution are accurate. The extended analytic solution is also accurate from

the cylindec to the edge of the periodic uuit cell. The particle collection efficiency derived from

the extended analytic solution is in excellent agreement with those from the numerical results.

The results from the Kuwabara so!ution are less accurate than the extended analytic solution

especially for lower porosity as shown in Fig. 7 (b). The Kuwabara error increases linearly

while increasing the porosity. This is shown in Fig. 8 where the particle collection efficiency

for Rp=R/10 is shown for a variable porosity. For low porosity the discrepancy between the

numerical and the Kuwabara solutions is large but tile extended solution in in good agreement

i

for the entire range of porosity shown.

Figures 9 (a) and (b) depict the efficiency predicted by the anisotropic extended solution

given by Eqs. (44) and (45) and computed in the same manner as above for the squaxe cell,
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i.e., Eq. (47). The results are for g_/G = 1.44. As shown, a good agreement is found with the

numerical results for both porosities.

6 Inertial Particle Collection Efficiency

One major mechanism for collection of heavier particles in the absence of external forces, is

the inertial impaction. In the previous section we ignored the particle inertia. The extent of

the particle collection can be determined once the particle trajectories through the fiber lattice

is known. The trajectories can be calculated by using the force balance on a particle. The

Lagrangian particle momentum equation is given by (Tien 12)

4 .3 du; .. "'_"u
c, srrR , pp-_ = oTr# _,k " - u;) (49)

where R; is the radius of the particle, u" is the fluid velocity vector, u_ is the particle velocity

vector, #" is the dynamic viscosity of the fluid, and c, is the Cunningham correction factor

which accounts for the velocity slip when the particle size is comparable to the mean free path

of the fluid. The nondimensi.mal form of Eq. (49) is

st-_t_ = (u- u,), (50)

where St is the Stokes number defined by

.2

2p;(_')G (51)
st =c,-6 u'g"

6.1 Periodic Flow Regime

For high Stokes numbers, the fluid flow has less influence on the particle trajectory and par-

ticle inertial effect dominates. For low Stokes numbers, the fluid flow dominates the particle
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trajectory. Thus the previous section on impaction is the limit for the small Stokes Numbers.

Figure 10 shows some sample trajectories for St=0.1 using the different solutions methods. The

extended analytic solution predicts better the particle trajectories than the Kuwabara solution

and both are compared with the numerical solution.

In Figs. 11 (a) and (b) we examine the particle collection efficiency for the Kuwabara, the

extended and the numerical solutions. The results for two Stokes numbers are included. As in

the previous section, we have assumed that the particles entering the unit cell are uniformly

distributed in the fluid and have a local velocity equal to that of the fluid at the inlet boundary

of the unit cell. The results of the previous section on the particle impaction, agree well with

the small Stokes number results in Fig. ll(a).

As the Stokes number increases, the efficiency increases. In all cases the extended analytic

solution gives a better prediction of the particle collection efficiency than does the Kuwabara

solution. For small particle diameters, the Kuwabara solution and the extended solutions

underpredict the particle collection efficiency. This is because the particle trajectories are

strongly dependent on the initial conditions. Both the Kuwabara and the extended analytic

solutions have a nonzerov-component of the velocity at the inlet of the unit cell. For the

numerical solution, due to assumed symmetry, this velocity is very small compared to the u-

component. The nonzero v-component of velocity in the analytic solution and for high Stokes

numbers (i.e., St > 10) makes the particle path oblique with respect to the x-axis of the unit-

cell. Hence the p,_rticle capture efficiency is lower than the numerical prediction. The effect

of making the v-component of velocity zero at the inlet is shown in Fig. 12, for high Stokes

numbers. The analytic solutions predict higher efficiency than the numerical solution. Note
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that for the numerical solution the trajectory of the particle is a straight line along the z-axis for

high Stokes numbers, and therefore, the particle e_ciency can be predicted from the geometry

• consideration and inlet velocity.

6.2 Entrance Flow Regime

In addition to the accuracy that the numerical method presents over the analytic solutions, it is

able to simulate flow in the entrance to the filter. In this region the condition of periodicity of

the fluid flow does not to apply. These numerical simulations show that for creeping flows the

fluid flow becomes periodic beyond the first unit cell. The numerically obtained flow field is used

tocompute the particle collection for low and high Stokes numbers. For low Stokes numbers,

the e_ciencies are very close to those predicted using the flow field solution for the periodic

(i.e., bulk). For high Stokes numbers, Fig. 13 shows that the efiiciencies for the entrance region

and the bulk region are different, because the particle trajectory is influenced by the initial

conditions. For small particle diameters, the numerical results for the entrance region predict

eificiencies which are closer to the analytic solutions. For large particles, the Kuwabara solution

deviates, but the extended solution follows the same trend as the numerical results.J

7 Rectification of Particle Trajectories

In the section on impaction, particles leaving one unit cell could not be collected in the next

periodic celt unless some diffusion and/or a body force such as the gravity, an electrostatic or the

van der Waals force are added. Since the limiting streamlines are periodic, then for all following

cells in a periodic structure all particles on the dividing streamline (i.e., capturing streamwise
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mentioned in Section 5) barely miss collection oil each downstream fiber past the first. The

addition of an infinitesimal diffusion or a body force causes collection on these downstream

fibers.

We propose that for the inertial impaction it may be possible for the in-line arrangement

offibers and downstream ofthe first fiber to have no collection of particles for a small but

finite body force. To illustrate the phenomena, particle trajectory are given in Fig. 14 for

the numerical, extended analytic and the Kuwabara solution. After the first fiber is missed,

the particle gradually, after passing through a number of unit cells (fibers), moves toward the

center point between the fibers. All trajectories of the particles moving parallel to the flow and

not collected at the first fiber display this behavior.

To explain this behavior consider the extended analytic solution. To simplify the problem

we will assume a large Stokes number. Thus to a first approximation, the trajectory is parallel

to the z-axis. The fluid velocity in the Cartesian coordinates can be found from Eq. (25)

by using the chain rule. To the first approximation, we assume that y is nearly constant for

large Stokes numbers and v=0 at the boundary. The nondimensional equation for the particle

velocity is given by Eq. (50). To estimate the time it takes for the particle to transverse unit

cell we can note that the fluid flow is symmetric about z=0. Thus the amount U is retarded

upstream it is accelerated by the fluid an equal amount down stream. This approximation is

valid only as long as y=constant is a reasonable approximation. Thus the time for crossing the

unit cell is approximated by

t= (52)
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where (u)_ is the area average velccity along the z-direction is given by

/_.5 u(x,y) (53)
dz.

To a first approximation we can assume dt---dz/(u}A By use of the integration factor exp(t/St)

we can cast the y-component of the velocity as

fot_ vet/S t dt (54)et_/Stvp_ _ Vpo = -_

Recasting the equation in x rather than t it becomes

e-=_l((_)A so _=_l(_)A ._t st)v,, -- {u)A exl((_')A dx, (55)

where we have substituted t=x/(u). We integrate once more to obtain an equation for 5y,

the displacement perpendicular to the x-axis a trajectory receives as it p_sses through a unit

cell is

/(2(_>A)e-=,/((_>ASt)fox,/(_) _ V---e=/((_>Ast)dx dx_ (56)6y= u - y0= St

This formula can be ana:ytically integrated using the extended analytic solution and a

symbolic algebra package such as Mathematica. The resulting formula is unwieldy. However, by

breaking up the integration into two sections, before and aft of the the fiber, we can understand

the effect analytically. From the above formula we can see that the positive v-component of

velocity encountered before the cylinder displaces the near horizontal trajectory toward larger

y values. The velocities aft the fiber and in the opposite direction try to counter act the

displacement that occurred upstream of the current fiber. The downstream fluid v-component

of velocity are not able to counter act the full y displacements resulting from the fluid upstream
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of the fiber. The reason that the positive 5y displacement occurring upstream of the fiber moves

the trajectory up a bit and as it enters the downstream side the particle see smaller velocities

because the particle is far_'.ler from the fiber. Thus in each unit cell the particle receives a net

displacement towards the center line between cylinders. Then there is a "rectification" of the

particle displacement from the fluid flow. This effect occurs for any finite Stokes numbers. The

Stokes number just determines how quickly this rectification occurs and over what number of

ceils it takes place. The final result is that after passing enough fiber particles move to the

center line between fibers.

In other words, by integrating the velocity to obtain the small y displacement we show that

dy upstream of a fiber is positive and always greater than the smaller negative dy aft of the fiber.

Since dy starts the downstream trajectory farther from the fiber, the v-component of velocities

are less and the particle does not move to the original y value. For large Stokes numbers, this dy

is small, but accumulates for each fiber that is passed. The net effect is a rectification and after

many ceils the particle is moved away from the fiber and the possibility of collection is reduced

even if small forces are included. Some sample 5y values are presented in Table 2 for different

Stokes numbers. This process can be generalized for the in-line arrangement of fibers, beyond

the doubly periodic arrangement considered here. This effect can be used to align particles.

8 Conclusions

The Kuwabara solution for flow through an in-line arrangement of cylinders has been extended

and a compact extended solution is found. The extended analytic solution improves prediction

for the efficiency of particle collection by fibrous filters. The advantage of this improved analytic
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solution is thatit can be used for further analytic investigations of fluid flow in fibrous filters

without undo complexity. The formula for the stream function is given by Eq. (38).

. We calculate the analytic efficiencies for particle collection by impaction and show that the

results agree well with the numerical simulations. We also investigate anisotropic arrangements

c,f cylinders. The formulae for the stream function are given by Eqs. (44) and (45) using two

porosities e=0.95 and 0.8, respectively.

The "trajectory rectification", where the particles are less likely to be collected as they

are moved away from the fiber by the fluid flow, is also discussed. A small body force would

not alter this conclusion, because no collection past the first cell would occur beyond the first

cell. However, a body force greater than a critical value determined by the Stokes number can

alter this. Thus only diffusion and body forces larger than a critical magnitude would cause

collection of particles beyond the first unit cell in the fiber lattice. In the case of negligible

diffusion and body force, the fluid flow through these periodic structures can be used to align

particles.
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Table 1 Pressure drop predictions for the Kuwabara solution, the extended, and the

numerical solutions for the in-line arrangement of cylinders.

e Kuwabara extended numerical

0.5 368.2 344.6 533.4

0.6 184.1 177.9 218.3

0.7 96.88 95.25 103.2

0.8 49.94 49.64 50.26

0.9 25.15 25.15 24.87

0.95 15.74 15.76 15.57
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Table 2 Rectification of the particles trajectories crossing many cells shown by the vertical

displacement of tile particle at the boundarF of each cell (St=0.1 and e=0.95).

Cell Numerical Integration Analytic Integration

Numerical Extended
Velocity Field Velocity Field

0 0.095 0.095 0.095

1 0.140 0.151 0.156

2 0.178 0.187 0.194

3 0.211 0.218 0.226

4 0.239 0.245 0.255

5 0.262 0.268 0.274

6 0.281 0.287 0.289
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Figure Captions

FIG. 1. (a) Periodic arrangement of cylinders with square unit-cell. (b) Boundary conditions

used for the numerical solution. (c) Solution domain for the analytic solutions.

FIC. 2 (a) Unit-cell used to examine the effect of cell anisotropy on the pressure drop. (b)

Pressure drop for creeping flow over an anisotropic, in-line arrangement of cylinders.

The pressure drop is normalized with the isotropic arrangement.

FIG. 3 Constant stream function contours for the (a) Kuwabara solution, (b) extended ana-

lytic solution, and (c) numerical solution (e = 0.95).

FIG. 4 Comparison of the local velocity vector between the two analytic solution and the

two-dimensional numerical solution (a) extended analytic solution and (b) Kuwabara solution

(e=0.95).

FIG. 5 Comparison of the local velocity vector between the extended analytic solution for

anisotropic unit-cell for e=0.95 and gy/g,:=l.44

FIG. 6 Impaction Schematic.

FIC. 7 Particle impaction efficiency for uniformly distributed particles in the flow using (a)

e=0.95 and (b) e=0.5.

FIG. 8 Collection efficiency error as a function of porosity.

FIG. 9 Particle impaction efficiency' for amsotropic unit ceils using uniformly distributed

particles in the flow (a) e=0.95 and (b) e=0.8 (g_/g_,=l.44).

FIG. 10 Sample trajectories for the different solutions.

FIG. II Particle collection eflqciencies for (a) St=0.001 and (b) for St=100.

FIG. 12 Effects of initial conditions on particle collection efficiency using vp(--0.5, y) = 0
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(St=lO0 and ¢=0.95).

FIG. 13 Particle collection efficiency at the entrance region of the packed bed of cylinders

• compared to the extended analytic solution, Kuwabara and the numerical solution in bulk for

St=lO0 (_=0.95).

FIG. 14 Particle displacement after crossing multiple cells.
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