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The Kuwabara solution for creeping fluid flow through periodic arrangement of cylinders is
widely used in analytic and numerical studies of fibrous filters. Numerical solutions have shown
that the Kuwabara solution has systematic errors and when used for the particle trajectories in
filters it results in some error in the predicted filter efficiency. The numerical solutions although
accurate, preclude further analytic treatments and are not as compact and convenient to use
as the Kuwabara solution. By re-examining the outer boundary conditions of the Kuwabara
solution, we have derived a correction term to the Kuwabara solution to obtain an extended
solution that is more accurate and improves prediction of the filter efficiency. By comparison
with the numerical solutions, it is shown that the Kuwabara solution is the high porosity
asymptote and that the extended solution has an improved porosity dependence.

We explain a rectification which can make particle collection less efficient for periodic, in-
line arrangements of fibers with particle diffusion or body force. This rectification also results

in the alignment of particles with inertia (i.e., high Stokes number particles).

o



1 Introduction

Studies of fibrous filters commonly use the idealization of the creeping fluid flow through a
periodic arrangement of cylinders, as shown in Fig. 1(a). The assumption of periodicity allows
for the analysis of single fiber with the appropriate boundary cenditions. There is no exact
analytic, closed-form compact solution for this two-dimensional flow. The Kuwabara! creeping
fluid flow solution uses a cylindrical unit-cell to approximate the local flow through arrange-
ments of cylinders. When used in periodic arrangements of cylinders such as an in-line and
isotropic arrangement, the Kuwabara approximation to the square unit cells leads to errors,
because the Kuwabara solution does not satisfy the periodic boundary conditions.

The Kuwabara solution is widely used for studies of flow through fibrous filters (e.g., Banks?,
Banks and Kurowski®, and Choo and Tien*). Despite this shortcoming with the periodic
boundary conditions, many useful results have been derived from the application of this solution
to particle capturing in fibrous filters. The Kuwabara solution is compact and can be calculated
with only a few operations which is important for example in the Monte Carlo simulations which
require repeated calculations. As will be shown, the Kuwabara solution is also valid as a high
porosity asymptote.

Accurate numerical solutions of the flow through equally spaced (i.e., isotropic), periodic
arrangement of cylinders has been given by Sangani and Acrivos®. Even though their method
can be used to obtain high accuracy, there are still some advantages in having an analytic
solution as evidenced by the continued use of the Kuwabara solution. The Kuwabara solution
is widely used because it is simple and allows for analytic treatment of the particle capture.

However, as mentioned above it assumes a circular unit-cell, and therefore, lacks the accuracy



in simulating the flow field in a square unit-cell. Here improvement to the Kuwabara solution
is sought by using an extension that will improve the solution for the square unit-cell. This
extension of the Kuwabara solution uses a geometric perturbation in order to obtain the square
unit cell from the circular unit-cell. In order to access the accuracy of this approach, this
extended analytic solution is compared with the numerical solutions of fluid the flow through
the in-line arrangement of fibers shown in Fig. 1 (a). Then this improved analytic solution, the
Kuwabara and the numerical solutions are used to calculate the particle trajectories and the
particle capture efficiency. The capture mechanisms considered here are impaction and sieving.
Capture by impaction occurs when the particle touches the fiber and then it is assumed that
the particle adheres to the surface. Capture by sieving occurs when the particle diameter is
larger than the clearance between the fibers. Hence sieving is geometrical and occurs only in
the entrance region of the filter.

In Section 2 we introduce the numerical solution for isotropic and anisotropic, in-line ar-
rangements of cylinders. In Section 3 the analytic correction terms are derived. In Section 4
the local velocity and the stream function solutions and the errors are examined. Section 5
shows the comparisons of the impaction efficiencies. Section 6 evaluates the derived and the
numerical inertial collection efficiencies. Section 7 examines particle rectification effects found

in this study.

2 Numerical Solution

Sahraoui and Kaviany® solved the Navier Stokes equation for the fluid flow in in-line and

staggered arrangements of cylinders. Here the same numerical method is used to solve for



the Stokean flow through an in-line arrangement of fibers. The periodic arrangement of fibers
can be represented by the unit cell shown in Fig. 1 (b). Due to the presence of the fiber
within the square unit cell, the Cartesian coordinates are not accurate for mapping the fiber
unless a very large number of grid points is used. Accurate results can be obtained by using
a domain decomposition, where a cylindrical grid net is used near the fiber and a Cartesian
grid net is used away from the fiber. Iteration for the solution is performed in both grid
nets and a bilinear interpolation is used to communicate between them. In the case where
multiple fibers are used, the same procedure is repeated for every fiber. More details about
the domain decomposition can be found in Sahraoui and Kaviany® and Prata and Sparrow’.
The equations are nondimensionalized using the length scale ¢, the size linear dimension of an
isotropic unit-cell. For anisotropic unit cells, we use the length scale {=,/¢;¢, where ¢; and ¢,
are the dimensions of the unit cellin the z- and y-directions, respectively. The volume-averaged,

z-component of the velocity (or Darcean velocity) is used as the velocity scale and is given by

u,,=<u>=/°'5udy. (1)

~0.5

The governing equations for the fluid flow in the Cartesian coordinates are

du Ov
a2ty T 0 (2)
dp 0w 0w
*-a;+é;§+5y7 = 0 (3)
2 2
_?E v 0% 0 (4)
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dy  0z* Oy?
and in the cylindrical coordinates, the radial and tangential components of velocity (v, and vg)
are given by

orv.  Oug

o T8 =0 (

Ut
~—



op |10 [ Ovr 10 (10w, _—

‘5:+[;57("ar)+:55(;59)}+ r =0 (®)
10p 10 OJvg 10 (10vg
T [;5: (5‘) t o (F"a‘e")] to =0 ")
where the source terms S, and Sy are
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The above equations are solved by using the no-slip boundary condition on the surface of the
fiber and the periodic boundary conditions at the boundaries of the unit-cell, as shown in
Fig. 1 (b).

The momentum equations are solved using the finite-volume method and the pressure cor-
rection method, as suggested by Patankar®. As will be shown, for low porosities the numerical
solutions are more accurate than the Kuwabara solution for the fluid flow in periodic arrange-
ments of cylinders. The numerical integration also allows examination of the flow field in the
entrance region of the filter. In this region the condition of periodicity is not valid. For the
study of the particle capture this entrance effect can be important. In Section 6.2 we exam-
ine the results of the numerical simulations of the flow in the entrance region for the in-line
arrangement of cylinders. For these entrance simulations, we use three fibers aligned in the
direction of the flow (i.e., z-direction). Since the fluid flow is not periodic at the inlet, then

different boundary conditions are used. At the inlet (i.e., z=0), we use



At the exit (i.e., z=L) we use the periodic boundary condition
u<Lay):u(L_"lsy) ) U(L$y)=v([’ _'lay) z = L. (ll)

2.1 Two-Dimensional Anisotropy

In modeling the flow through fibrous filters, the in-line arrangements of cylinders are usually
used. In these models, the periodic unit-cell is chosen to have the same length in the longitudinal
(along the flow) and the transverse (orthogonal to the flow) directions. However, examination
of the micrographs of fibrous filters shows that the fibers are very close in the longitudinal
direction and far apart in the transverse direction. This anisotropy, among other geometrical
factors, contributes to the discrepancy between the predicted and the experimental results
for the pressure drop in fibrous filters . Using the two-dimensional numerical simulation, we
examine the effect of this anisotropy on the pressure drop by varying the cell dimensions in
the z and y directions, as shown in Fig. 2 (a). The same porosity and the average flow rate
are maintained the same and the pressure drop over the same distance, which is the dimension
of the isotropic cell (\/Z:Ezzl), is determined. The results of these computations are given in
Fig. 2 (b) and they show that as the transverse period (£,) increases, the pressure drop across
the same distance ¢ decreases significantly. This result is consistent with the experimental
results which give a pressure drop that is lower by about 60% than that for the square (i.e.,
isotropic) unit-cells (as reported by Liu and Rubow!®). For ¢,/¢,=4 ({,=2 and £.=0.5) the
pressure drop is about 25% of the pressure drop for the isotropic structure. This shows that a
significant portion of the pressure drop is due to flow restriction between the cylinders. This is

also shown by decreasing £, which results in a significant pressure drop, as shown in Fig. 2 (b).



3 Analytic Solutions

First, in Section 3.1 the Kuwabara solution for the Stokean flow in a cylindrical domain, as
shown in Fig. 1(c), is reviewed. Then in Section 3.2 the extension to this solution for the
square unit-cell, also shown in Fig. 1 (c), is developed. In Section 3.3, the extension to the
anisotropic, periodic arrangements is developed.

3.1 Kuwabara Solution

As mentioned above, the Kuwabara solution! approximates the periodic structure by using a

cylindrical outer boundary. The governing equation for the stream function ¥ is given by
Vi = 0. (12)

The boundary conditions at the surface of the fiber are

v,=vg=0 at r=R, (13)
where v, and vy are given by
16y oy
=27 = ——, 14
vr = - 56 and vy 5y (14)

For the outer boundary, Kuwabara uses
v,=cosf and w=0 at r=R+ AR, (15)

where w is the vorticity. The solution to Eq. (12) is

w(r,8) = R[C\( Cz-—~—03~+04 In(—

R) B 7 )] sin 6 (16)
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The coefficients C, and Cy are found using the boundary conditions (13)-(15) and they are

given by

where € is the porosity given by

C4 =

4
—21116-{-3—46-{—62

e=1-rR?

and for the circular unit-cell it is given by

3.2 Extended Analytic Solution

€=1

R 2
- <R+AR> '

(21)

(22)

The purpose of extending or improving the Kuwabara solution are three fold. It is practical to

find new solution which is more accurate, but still compact and not of overwhelming complexity

nor a slowly converging series such as the one suggested by Hasimoto!!.

Since the Kuwabara solution is in much use, and as we shall show later, in the limit of

high porosity it is a good approximation, the new analytic solution is obtained by adding a

correction term to the Kuwabara solution. This additive correction form is possible because of

the linear superposition of the eigenfunctions of the biharmonic operator.

From the boundary conditions for the Kuwabara solution in Eq. (15), we note that the

only element of a periodic cell or even a square surrounding cell is that the outer radius can
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be chosen so that the solid fraction of this cylindrical region is the same as the square unit
cell. This is indeed how the Kuwabara solution is used (e.g., Banks®). No other influence of
the square unit cell is found in the Kuwabara solution. This greatly reduces the mathematical
complexity since the eigenfunciions of the equations have a convenient form in the cylindrical
coordinates, but reduces the accuracy of the solution away from the cylinder which in turn
affects the accuracy of the prediction of the particle trajectories and collections.

In this extended analytic solution we attempt to correct for this problem. Due to the
symmetry of the geometry and the flow considered, we can fold the domain into one quarter as
shown in Fig. 1 (c). The boundary conditions we use along the cylinder surface are the same as
the no-slip boundary in the Kuwabara solution. These are the appropriate boundary conditions
as long as the mean free path of fluid molecules is much smaller than the fiber diameter. The

equations to be solved for this creeping flow are
Vi =w (23)
Viw = 0. (24)

The stream function solution, which satisfies these governing equations in a square unit cell
and the no-slip boundary conditions in the cylindrical coordinates, is known (e.g., Sangani and

Acrivos®) and is

b= g 1___%1_*11_@)?221_@:_1(5)“ bR 1___21131___(_@)2;__}
vEAa 2InR+1\r/ 2lnR+1\r ! 2ln R+ 1 r/ 2lnR+1

N 4n-2 4n
sinf + Z {anr%‘+l [l —2n (§> +(2n - 1) (E) ] +

n=2

10



b a2r2r=1 [1 (2n — 1) (E) o +2(n —1) (?) 471—2} } sin(2n — 1)8. (25)

r
Sangani and Acrivos® have used the collocation method (a spectral numeric method) to solve for
the spectral coefficients a, and b,. This is done by using the appropriate boundary conditions
at 'some discrete points on the Cartesian boundary of the square unit cell. Then they form linear
equations for the coefficients a, and b, for each boundary collocation point. This provides an
accurate r.umerical method of solving for the fluid flow.

The outer boundaries of the square unit-cell in Fig. 1 (c) can be represented, in the cylin-
drical coordinates, as having a distance r from the center point and an angle § . Then we can
define 6(6) such that when it is added to the outer radius R + AR, it gives the square unit cell
in the polar coordinates as

r=(R+AR)+6(6). (26)

Note that §(8) for the square geometry is always less than 0.23. Thus 6(6) is always a small
parameter and can be considered as a perturbation. This is a perturbation expansion from a

cylinder to a square. The expansion of the stream function is given by

P = o + 61 + 8%¢r (27)
Substituting this into the linear biharmonic Eq. (12) gives

Vi =0 at order &° (28)

V4%, =0 at order &' (29)

The boundary conditions we will use are

% _0at z=05 (30)
oz
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and

ow
e 0 at y =0.5. (31)

The problem with these boundary conditions is that there is no explicit dependence on
§(8). This can be obtained by a perturbative expansion of the boundary condition and a

Taylor expansion about R + AR. The result is

8v0 81)0 6 Bvo
= (r8) = 5=(r,0) + 5= == (r,0) 6(9). (32)
oz Oz rear Or 0z R+AR
The order §° boundary condition is
600
—(r,9) =0 (33)
9z R+AR
and for the 8 is
Oun, Ovo
—(r, 8) = —(r,0) 5(9). (34)
0z rRtar 9% R+AR

Note the explicit dependence of the boundary condition on the geometry. Then ' can be
expanded in a Fourier series in sin[(2n — 1)6] and the boundary conditions are used to calculate
the coefficients in Eq. (25).

The resulting solution is not very accurate for low truncations. For high truncations the
formula becomes excessively large. Sangani and Acrivos® used 6 to 40 terms for accurate
numerical solutions. This analytic method will produce accurate results if enough terms are
included from the expansions. However, it does not provide a useful, compact formula. For
this analytic form, each successive coefficient depends on the previous coefficients. Thus the
length of the analytic solution becomes overwhelming for this method. In contrast our goal is

to obtain a reasonably compact analytic solution.

12



The problem is that the basic state of the perturbation is not a very efficient approximation.
The Kuwabara solution is a better approximation than the lowest term in Eq. (25) with
the above approximations. The above solution method is more accurate only when enough
expansion terms are included. Since our goal is to have both an accurate and compact formula,
the Kuwabara solution is used as our basic state. Note that the stream function obtained by
Kuwabara is essentially the sin 6 term in Eq. (25) with a particular choice of the coefficients.

With the Kuwabara solution as the basic state, we proceed with a stream function given by

Y =Yg + YE, (35)

where ¥y is the stream function obtained from the Kuwabara solution g is the extension
which is that part of Eq. (25) having the higher order terms of sin[2(n — 1)6]. The advantage of
this formulation is that the Kuwabara solution is a more efficient choice than the appropriate
boundary conditions applied to the first term of Eq. (25). The problem with this formulation is
that Kuwabara’s boundary conditions are not appropriate to the square unit-cell. In order that
1. the total stream function, have the correct boundary conditions we must impose a boundary
condition on ¥ and then subtract the Kuwabara solution to obtain the boundary condition for

¥g. The two boundary conditions on the total stream function we use are

1/2
/0 udy = A (36)

1/2
/o vdy = 0 (37)

More general boundary conditions that include these as a subset can be used. We have

used other and more general boundary conditions and no improvement in predicting the local
velocity is achieved. Higher order terms greatly complicate the analytic formula and reduce

13



the error in the formula by less than a few percent per term . Thus our extended solution only

includes one higher order sin § term than does the Kuwabara solution. However as we shall show

in Section 4 the above boundary conditions are adequately satisfied for many situations. Other

expansion terms need to be included for the anisotropic unit cells and this will be discussed in

Section 3.3.

The resulting extended solution for the total stream function is
Ty st o lys
R) +C2R+CBT +C'4Rln( )] siné

R
Byt coron 4 329" — o)) singa0),

#(r,0) = RIC
OB+ 22 - 3(2

where Cs and Cg are given by

Cs

il

—C7(~8R? + 256 R® — 384R'®) — Cs(—R* + 256 R* — 768R'°)

Cs = —C.(16R* — 192R® + 256 R'°) — Cs(4R* — 192R® + 512R'°)

where C7 and Cjy are given by

4Cy — 16R? + 16C, R? + 64C3R* + 16C4R? ln(—L)
C, = 2R
Co
1
16C; — 32R? + 32C, R? + 64Cs R* + 32C,R? In( \/ﬁﬁ)
Cs =

Ce

and Cg is given by

Co = 16R® — 1344R™ + 6912R*? — 10572R* + 8192R™®

(38)

(41)

(43)

The coefficients C; through C4 are the coefficients of the Kuwabara solution and are given by

Egs. (17)-(20). The coefficients of this extended solution depend only on the porosity and the
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radius of the fiber and for a set of porosity and radius they are constants. The equations were

manipulated using the Mathematica software’.

3.3 Anisotropic Extension of Kuwabara Solution

Many filters have fibers that are spaced closer together in the ﬂ;)w direction than in the per-
pendicular direction. To study the effect of this anisotropic distribution of fibers, we have
examined anisotropic extension of the Kuwabara solution to an anisotropic array of fibers.
More appropriately, this is an extension of the extended solution discussed in the last section.

As we will show this anisotropic extension to the Kuwabara solution does improve the
accuracy of the solution for fibers spaced unequally in the z and y directions. However, the
compactness of the coefficients found in the last section is lost.

The same geometry is used as in Figs. 1(b) and (c). However the periodic rectangular cells
with sides ¢, and ¢, are used and the total area is still £,£,=1. Equation (2.4) from Sangani
and Acrivos® is no longer valid. It implicitly assumes the distance from the cylinder to the edge
of the cell is equal in voth z and y-directions. We find that one more extended term plus the
one we added in the last section are needed to obtain reasonable solutions with at least some
degree of compactness.

The method of solution is much the same as in Section 3.2, so we will only point out to
the differences. The basic Kuwabara solution is not the most efficient zeroth order term, but
with some small modifications it can be made into a first order term. We modify the Kuwabara

solution by applying the boundary conditions on an ellipse with axes equal to the rectangular

'Mathematica is a Copyright of the Wolfram Research Inc.
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axes. We retain the extended term with undetermined coefficients of the last section. Finally
we add a sin 28 term that is the lowest order term and is not found in Eq. (24) because of the
previously assumed symmetry. The same boundary condition is used as in the previous section
only the integrals in Eqs. (36) and (37) are divided into smaller segments of the top boundaries.

The resulting solution is not as compact as Eq. (38). However, it becomes compact once a
porosity and a ratio of £, to £, is chosen. The reason is the dependence of the coefficients on
the porosity and the geometry is rather complex. For a porosity of 0.95 and a ¢, /¢.=1.44, the

solution 1s

7.714 x 1072
r
8.063 x 107  7.600 x 10~*

6 4

w(r,8) = 9.362 x 1073 — 4.723r — 7.809r° + 9.943r In(7.927r)] sin §

2.533 x 10~4

e
r

1.925 x 1077 1613 x 10°°

r8 B

+(3.132 x 107}(1 + )rt —1.203 x 1071(1

_3.183 x 10-2

re

)r?]sin 26 + [1.043 x 1071 (1 + )r

r6

n 8.063 x 10~° _7.600 x 10—4

4

—~2.252 x 1071(1 )°}sin36 . (44)

r6 r
The same anisotropy and a porosity of 0.80 gives the following expression

4.640 x 107!
T

5.160 x 10™*  1.216 x 1072

6

w(r,0) = 1.593 x 107! — 6.478r — 12.72r% + 16.20r In(3.963r)] sin 4

4.053 x 1073
T'4

4.928 x 10~5 1032 x 10-3
ra

+{1.172(1 + )rt —5.625 x 1071(1 +

T r

1273 x 10-1

r

)73 sin 26 + [2.374 x 107%(1 + )r®

7.6
5.160 x 10~* B 1.216 x 1072

—4.770 x 107(1 + )73] sin 36. (45)

Equations (44) and (45) have been derived for an angle 6 between 0 and 7 /2. Using the same
formula for angles larger than 7 /2 leads to errors. For these angles symmetry is used to calculate

the stream function.
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We have a closed-form analytic solutions for the coefficients of the above equation. These
can be provided via e-mail (however, the length approximates the length of this article). These
solutions can be manipulated via a computer algebra program such as Mathematica or Maple.

In Section 4 we show the results of this solution as compare them with the numerical results.

4 Comparison of Various Solutions

As previously discussed, numerical solutions to this problem are known (e.g., the numerical
solutions of Sangani and Acrivos®) and are more accurate than the analytic solutions. Thus
the numerical vesults from Section 2 will be our standard for the comparison.

The stream function contours using the Kuwabara, the extended, and the numerical solu-
tions are shown in Fig. 3. Note that the Kuwabara solution in Fig. 3 (a) has streamlines
crossing the upper boundary of the unit-cell in error. As we shall show later this has negative
consequences for calculations of the particle collection efficiency. The extended analytic solu-
tion, Fig. 3 (b), and the numerical solution Fig. 3 (c), show that the flow does not cross the
upper boundary of the cell as expected.

In Figs. 4 (a) and (b) we show the velocity errors in both the Kuwabara solution and the
extended analytic solution. The velocity error fields for both are constructed by subtracting the
velocity fields from that of the numerical solution. Both Fig. 4 (a) and (b) are scaled similarly.
The magnitude of the largest error vector for the Kuwabara solution is 0.349 while that of the
extended analytic solution is 0.119 and occurs at the inlet and exit boundaries of the unit cell.
These results show that the extended analytic solution improves the prediction of the local flow

field over the Kuwabara solution, especially near the upper boundary of the cell. This is also
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shown in Fig. 3 (b), where the stream function contours near the upper boundary is almost
rectilinear, as expected. This is an important feature of the analytic solution since mass flow
conservation is satisfied at every cross section of the square unit cell. The Kuwabara solution
has a discontinuity in the upper boundary stream function when connected to the adjoint cell.

We have also made the same comparisons for ¢=0.8 and we have found that the discrepancy
between the Kuwabara solution and the numerical solution is larger. The magnitude of the
maximum error vector is 0.690 which occurs at the inlet and exit boundaries of the unit cell.
The maximum error for the extended analvtic solution is 0.205.

The various solutions are also compared by evaluating the pressure drop for different porosi-
ties. The results are presented in Table 1. These results show that for high porosity (i.e., ¢ > 0.8)
excellent agreement between the numerical solution and the analytic solutions is obtained. Note
that for fibrous filters the porosity is larger than 0.8. For € = 0.7, the difference between the
extended analytic solution and the numerical solution is about 7% which is acceptable. For
lower porosity (i.e., ¢ < 0.6), the accuracy of the analytic solutions in predicting the pressure
drop deteriorates further and a difference of 20% is obtained. Since the extended analytic so-
lution is intended to correct the Kuwabara solution near the outer boundary of the unit-cell,
the flow near the cylinder is not altered significantly. Thus, the Kuwabara and the extended
analvtic solutions predict pressure drops that are very close.

In Figure 5 we show the error for the extended anisotropic solution with €,/¢-=1.44. The
magnitude of the maximum error vector is 0.182 which is slightly larger than that for the square
cell. Most of the error in the velocity vector occur near the exit boundaries of the unit cell. Thus .

for small stretches in the y-direction, the anisotropic analytic solution gives good estimates of
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the particle collection efficiency (this will be discusses below).

5 Particles Impaction Efficiency

To examine the utility of the extended solution, we begin with the particle impaction and the
study of particle capture in filters with negligible diffusion, negligible surface forces, and for
particles with negligible inertia. Without the inertial effects, the particle paths are entirely
determined by the fluid flow. The opposite extreme is the case where the particle inertia is so
large (i.e.. the Stokes number is large) such that there are no fluid flow effects on the particle
collection.

In Fig. 6, the geometry in aspects of the particle impaction are shown. A particle of radius
R, is collected if it impacts the fiber, otherwise it is uncollected. There is a critical streamline
which distinguishes between the collected and the uncollected particles for a given R,. For
these calculations, we assume that the fluid entering this unit cell has a uniform distribution of
particles. The efficiency is simply the ratio of the collected particles to the total particles. For
particies larger than the openings between fibers, sieving occurs and then they are all collected.

For each particle radius there is a limiting streamline that separates the flow region where
particles are collected from the flow region where the particles are not collected. Thus the stream
function with 6 set to /2 and the radius r replaced by the fiber radius R plus the particle
radius R, in Eq. (38), becomes an analytic relationship for the particle collection which is the
advantage of having an analytic solution for the fluid flow. We can derive a particle collection

formula rather than having to recalculate the efficiency for each particle. The particle capture
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efficiency is given by

n = 2006(R, + R, g) (46)
= 200R{Cl(Rpg R)3 + Cs R”; i + Ca&i B 04&; f ln(R’”;L R)] -
200{Cs R*(R, + R)*[1 + Q(Rp‘i R)G - 3(Rpi R)“]
+Cer®[1 + 3(&}?_ R)8 - 4(R”: R)G}} (47)
For small particle (R, < R), the aktove efficiency expression can be simplified
7 = 200R[C, +Cy+ Cs + %’i(sa +Cy—C3) + 04%(1 + %)]
- 200(1205% + 2406%%-) (48)

From Fig. 7 (a) and (b) one can see that close to the cylinder both the Kuwabara and the
extended analytic solution are accurate. The extended analytic solution is also accurate from
the cylinder to the edge of the periodic uait cell. The particle collection efficiency derived from
the extended analytic solution is in excellent agreement with those from the numerical results.
The results from the Kuwabara so'ution are less accurate than the extended analytic solution
especially for lower porosity as shown in Fig. 7 (b). The Kuwabara error increases linearly
while increasing the porosity. This is shown in Fig. 8 where the particle collection efficiency
for R,=R/10 is shown for a variable porosity. For low porosity the discrepancy between the
numerical and the Kuwabara solutions is large but the extended solution in in good agreement
for the entire range of porosity shown.

Figures 9 (a) and (b) depict the efficiency predicted by the anisotropic extended solution

given by Egs. (44) and (45) and computed in the same manner as above for the square cell,
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i.e., Eq. (47). The results are for ¢, /¢, = 1.44. As shown, a good agreement is found with the

numerical results for both porosities.

6 Inertial Particle Collection Efficiency

One major mechanism for collection of heavier particles in the absence of external forces, is
the inertial impaction. In the previous section we ignored the particle inertia. The extent of
the particle collection can be determined once the particle trajectories through the fiber lattice
is known. The trajectories can be calculated by using the force balance on a particle. The
Lagrangian particle momentum equation is given by (Tien!?)

4 du- - - - -
c,-s-wR;Jp;a—t:’i = 6" Ry(u* - uj) (49)

where R; is the radius of the particle, u® is the fluid velocity vector, u; is the particle velocity
vector, u* is the dynamic viscosity of the fluid, and ¢, is the Cunningham correction factor
which accounts for the velocity slip when the particle size is comparable to the mean free path
of the fluid. The nondimensional form of Eq. (49) is

du,

St 5

=(u-—u,), (50)

where St is the Stokes number defined by

6.1 Periodic Flow Regime

For high Stokes numbers, the fluid flow has less influence on the particle trajectory and par-
ticle inertial effect dominates. For low Stokes numbers, the fluid flow dominates the particle
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trajectory. Thus the previous section on impaction is the limit for the small Stokes Numbers.
Figure 10 shows some sample trajectories for St=0.1 using the different solutions methods. The
extended analytic solution predicts better the particle trajectories than the Kuwabara solution
and both are compared with the numerical solution.

In Figs. 11 (a) and (b) we examine the particle collection efficiency for the Kuwabara, the
extended and the numerical solutions. The results for two Stokes numbers are included. As in
the previous section, we have assumed that the particles entering the unit cell are uniformly
distributed in the fluid and have a local velocity equal to that of the fluid at the inlet boundary
of the unit cell. The results of the previous section on the particle impaction, agree well with
the small Stokes number results in Fig. 11(a).

As the Stokes number increases, the efficiency increases. In all cases the extended analytic
solution gives a better prediction of the particle collection efficiency than does the Kuwabara
solution. For small particle diameters, the Kuwabara solution and the extended solutions
underpredict the particle collection efficiency. This is because the particle trajectories are
strongly dependent on the initial conditions. Both the Kuwabara and the extended analytic
solutions have a nonzero v-component of the velocity at the inlet of the unit cell. For the
numerical solution, due to assumed symmetry, this velocity is very small compared to the u-
component. The nonzero v-component of velocity in the analytic solution and for high Stokes
numbers (i.e., St > 10) makes the particle path oblique with respect to the z-axis of the unit-
cell. Hence the particle capture efficiency is lower than the numerical prediction. The effect
of making the v-component of velocity zero at the inlet is shown in Fig. 12, for high Stokes

numbers. The analytic solutions predict higher efficiency than the numerical solution. Note
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that for the numerical solution the trajectory of the particle is a straight line along the z-axis for
high Stokes numbers, and therefore, the particle efficiency can be predicted from the geometry

consideration and inlet velocity.

6.2 Entrance Flow Regime

In addition to the accuracy that the numerical method presents over the analytic solutions, it is
able to simulate flow in the entrance to the filter. In this region the condition of periodicity of
the fluid flow does not to apply. These numerical simulations show that for creeping flows the
fluid low becomes periodic beyond the first unit cell. The numerically obtained flow field is used
to compute the particle collection for low and high Stokes numbers. For low Stokes numbers,
the efficiencies are very close to those predicted using the flow field solution for the periodic
(i.e., bulk). For high Stokes numbers, Fig. 13 shows that the efficiencies for the entrance region
and the bulk region are different, because the particle trajectory is influenced by the initial
conditions. For small particle diameters, the numerical results for the entrance region predict
efficiencies which are closer to the analytic solutions. For large particles, the Kuwabara solution

deviates, but the extended solution follows the same trend as the numerical results.

7 Rectification of Particle Trajectories

In the section on impaction, particles leaving one unit cell could not be collected in the next
periodic cell unless some diffusion and/or a body force such as the gravity, an electrostatic or the
van der Waals force are added. Since the limiting streamlines are periodic, then for all following

cells in a periodic structure all particles on the dividing streamline (i.e., capturing streamwise
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mentioned in Section 5) barely miss collection on each downstream fiber past the first. The
addition of an infinitesimal diffusion or a body force causes collection on these downstream
fibers.

We propose that for the inertial impaction it may be possible {or the in-line arrangement
of fibers and downstream of the first fiber to have no collection of particles for a small but
finite body force. To illustrate the phenomena, particle trajectory are given in Fig. 14 for
the numerical, extended analytic and the Kuwabara solution. After the first fiber is missed,
the particle gradually, after passing through a number of unit cells (fibers), moves toward the
center point between the fibers. All trajectories of the particles moving parallel to the flow and
not collected at the first fiber display this behavior.

To explain this behavior consider the extended analytic solution. To simplify the problem
we will assume a large Stokes number. Thus to a first approximation, the trajectory is parallel
to the z-axis. The fluid velocity in the Cartesian coordinates can be found from Eq. (25)
by using the chain rule. To the first approximation, we assume that y is nearly constant for
large Stokes numbers and v=0 at the boundary. The nondimensional equation for the particle
velocity is given by Eq. (30). To estimate the time it takes for the particle to transverse unit
cell we can note that the fluid flow is symmetric about z=0. Thus the amount U is retarded
upstream it is accelerated by the fluid an equal amount down stream. This approximation is
valid only as long as y=constant is a reasonable approximation. Thus the time for crossing the

unit cell is approximated by
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where (u) is the area average velccity along the z-direction is given by

W, = [ uzy) dz. (53)

-0.5

To a first approximation we can assume dt=dz/ (u) . By use of the integration factor exp(t/St)

we can cast the y-component of the velocity as

t
ety — vy, = A —_et/5t 4t (54)

St

Recasting the equation in z rather than ¢ it becomes

RENOIED)

S0 v S0
—_—— AT T u d
vPl (u) /0 Ste A z, (55)

where we have substituted t=z/ (u) . We integrate once more to obtain an equation for éy,
the displacement perpendicular to the x-axis a trajectory receives as it passes through a unit

cell is

1/(2(w) ) ==/ S8 rzy f(u)
A E__:—__/ 1 A _B_er/((u)A St) dz dl‘1 (56)
0

fy=y=w= ), St

This formula can be anc.ytically integrated using the extended analytic solution and a
symbolic algebra package such as Mathematica. The resulting formula is unwieldy. However, by
breaking up the integration into two sections, before and aft of the the fiber, we can understand
the effect analytically. From the above formula we can see that the positive v-component of
velocity encountered before the cylinder displaces the near horizontal trajectory toward larger
y values. The velocities aft the fiber and in the opposite direction try to counter act the

displacement that occurred upstream of the current fiber. The downstream fluid v-component

of velocity are not able to counter act the full y displacements resulting from the fluid upstream
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of the fiber. The reason that the positive éy displacement occurring upstream of the fiber moves
the trajectory up a bit and as it enters the downstream side the particle see smaller velocities
because the particle is fariaer from the fiber. Thus in each unit cell the particle receives a net
displacement towards the center line between cylinders. Then there is a "rectification” of the
particle displacement from the fluid flow. This effect occurs for any finite Stokes numbers. The
Stokes number just determines how quickly this rectification occurs and over what number of
cells it takes place. The final result is that after passing enough fiber particles move to the
center line between fibers.

In other words, by integrating the velocity to obtain the small y displacement we show that
dy upstream of a fiber is positive and always greater than the smaller negative dy aft of the fiber.
Since dy starts the downstream trajectory farther from the fiber, the v-component of velocities
are less and the particle does not move to the original y value. For large Stokes numbers, this dy
is small, but accumulates for each fiber that is passed. The net effect is a rectification and after
many cells the particle is moved away from the fiber and the possibility of collection is reduced
even if small forces are included. Some sample éy values are presented in Table 2 for different
Stokes numbers. This process can be generalized for the in-line arrangement of fibers, beyond

the doubly periodic arrangement considered here. This effect can be used to align particles.

8 Conclusions

The Kuwabara solution for flow through an in-line arrangement of cylinders has been extended
and a compact extended solution is found. The extended analytic solution improves prediction

for the efficiency of particle collection by fibrous filters. The advantage of this improved analytic
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solution is that it can be used for further analytic investigations of fluid flow in fibrous filters
without undo complexity. The formula for the stream function is given by Eq. (38).

We calculate the analytic efficiencies for particle collection by impaction and show that the
results agree well with the numerical simulations. We also investigate anisotropic arrangements
of cylinders. The formulae for the stream function are given by Egs. (44) and (45) using two
porosities €=0.95 and 0.8, respectively.

The “trajectory rectification”, where the particles are less likely to be collected as they
are moved away from the fiber by the fluid flow, is also discussed. A small body force would
not alter this conclusion, because no collection past the first cell would occur beyond the first
cell. However, a body force greater than a critical value determined by the Stokes number can
alter this. Thus only diffusion and body forces larger than a critical magnitude would cause
collection of particles beyond the first unit cell in the fiber lattice. In the case of negligiblé
diffusion and body force, the fluid flow through these periodic structures can be used to align
particles.
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Table 1 Pressure drop predictions for the Kuwabara solution, the extended, and the

numerical solutions for the in-line arrangement of cylinders.

¢ Kuwabara extended numerical

0.5 368.2 344.6 533.4
0.6 184.1 177.9 218.3
0.7 96.88 95.25 103.2
0.8 49.94 49.64 50.26
0.9 25.15 25.15 24.87
0.95 15.74 15.76 15.57
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Table 2  Rectification of the particles trajectories crossing many cells shown by the vertical

displacement of the particle at the boundary of each cell (5t=0.1 and €¢=0.95).

Cell Numerical Integration Analytic Integration

Numerical Extended
Velocity Field Velocity Field

0 0.095 0.095 0.095
1 0.140 0.151 0.156
2 0.178 0.187 0.194
3 0.211 0.218 0.226
4 0.239 0.245 0.255
5 0.262 0.268 0.274
6 0.281 0.287 0.289
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Figure Captions
FIG. 1. (a) Periodic arrangement of cylinders with square unit-cell. (b) Boundary conditions
used for the numerical solution. (c) Solution domain for the analytic solutions.
FIG. 2 (a) Unit-cell used to examine the effect of cell anisotropy on the pressure drop. (b)
Pressure drop for creeping flow over an anisotropic, in-line arrangement of cylinders.

The pressure drop is normalized with the isotropic arrangement.
FIG. 3 Constant stream function contours for the (a) Kuwabara solution, (b) extended ana-
lytic solution, and (c) numerical solution (e = 0.95).
FIG. + Comparison of the local velocity vector between the two analytic solution and the
two-dimensional numerical solution (a) extended analytic solution and (b) Kuwabara solution
(€=0.93).
FIG. 5 Comparison of the local velocity vector between the extended analytic solution for
anisotropic unit-cell for ¢=0.95 and ¢, /¢, =1.44
FIG. 6 Impaction Schematic.
FIG. 7 Particle impaction efficiency for uniformly distributed particles in the flow using (a)
€=0.95 and (b) €=0.5.
FIG. 8 Collection efficiency error as a function of porosity.
FIG. 9 Particle impaction efficiency for anisotropic unit cells using uniformly distributed
particles in the flow (a) €=0.95 and (b) e=0.8 ({,/€,=1.44).
FIG. 10 Sample trajectories for the different solutions.
FIG. 11 Particle collection efficiencies for (a) St=0.001 and (b) for St=100.

FIG. 12 Effects of initial conditions on particle collection efficiency using v,(—0.5,y) = 0
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(St=100 and ¢=0.95).
FIG. 13 Particle collection efficiency at the entrance region of the packed bed of cylinders

compared to the extended analytic solution, Kuwabara and the numerical solution in bulk for
St=100 (e=0.95).

FIG. 14 Particle displacement after crossing multiple cells.
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