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Abstract

Collective Thomson scattering from ion-acoustic waves at 266nm is used to obtain

spatially resolved, two-dimensional electron density, sound speed, and radial drift profiles

of a collisional laser plasma (critical density, nc = lxl021 cm-3). An ultraviolet

diagnostic wavelength minimizes the complicating effects of inverse bremsstrahlung and

refractive turning in the coronal region of interest, where the electron densities approach

nc/10. Laser plasmas of this type are important because they model some of the aspects

of the plasmas found in high-gain laser-fusion pellets irradiated by long pulse widths (tL

_ 10nsec), where the laser light is absorbed mostly in the corona. The experimental

results and LASNEX [Comments Plasma Phys. Controlled Fusion 2, 51 (1975)]

simulations agree within a percent standard deviation of 40% for the electron density and

50% for the sound speed and radial drift velocity. Thus it is shown that the

hydrodynamics equations with classical coefficients and the numerical approximations in

LASNEX are valid models of laser-heated, highly collisional plasmas.

The versatility of Thomson scattering is expanded upon by extending existing

theory with a Fokker-Planck based model to include plasmas that are characterized by (0

< kia_.ii _< oo) and ZTe/Ti, where kia is the ion-acoustic wave number, _'ii is the ion-ion !

mean free path, Z is the ionization state of the plasma, and Te, T i are the electron and

ion temperatures in electron volts (eV), respectively. The model is valid for plasmas in

which the electrons are approximately coUisionless, (kia_.ei,kia_,ee > 1), and

quasineutrality holds, (o_,, 1), where c_ = 1/k_DE and _DE is the electron Debye length.
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This newly developed model predicts the lineshape of the ion-acoustic Thomson spectra

and when fit to experimental data provides a direct measurement of the relative thermal

flow velocity between the electrons and ions. The model also correctly predicts the

appearance of a zero-frequency or entropy peak in the Thomson spectra in the ion-ion

collisional limit.
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1

Chapter I: Laser-produced plasma diagnostics

Only one plasma diagnostic is needed to completely diagnose the parameters of

a given plasma. This plasma diagnostic provides one with the distribution function for all

species of the paVJcular plasma at every point in that plasma.for the entire evolution of

the plasma. With this distribution function, $'-(x,v,t) = r. fslzcies(x,v,t), any macroscopic

quantity as a function of position and time can be determined by calculating a weighted

average of the corresponding microscopic quantity over velocity space with the

distribution function. For example, the microscopic quantity l/2mv2 is the kinetic energy

of a particle. The macroscopic counterpart, temperature 0(x,t), can be calculated by

performing the integral 3/20(x,t ) = J'l/2mv2 oqr(x,v,t) d3v. Unfortunately, this perfect

plasma diagnostic does not exist, and it probably never will. Therefore, a plasma

physicist is left with choosing a diagnostic or multiple diagnostics each of which provide

a small piece of vital information about the plasma, and hopefully this information is

enough to investigate the problem of interest.

Plasma diagnostics fall under one of three categories: self-emissive,

refractive/absorptive, and scattering. The self-emissive diagnostics operate with a

detector, only, and the detector monitors some quantity which is supplied by the plasma.

Diagnostics which fall under the other two categories require both a detector and a probe.

The detector monitors a change in the probe due to an interaction with the plasma. There

are many diagnostics which fall under these categories; to cover all of them would be

nearly impossible and beyond the scope of this dissertation. Thereff_re, a small sampling
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of diagnostics will be presented that are useful in measuring characteristics of laser-

produced plasmas.

Laser-produced plasmas possess certain characteristics which limit the type of

diagnostics that can be used on them. These plasmas are small, typically less than one

millimeter in size. Therefore, a diagnostic must have submillimeter resolution to measure

the spatial scale lengths present in these plasmas. Pulsed lasers are normally used for

plasma production. The laser pulse durations can be as long as one hundred nanoseconds

(ns), but due to recent developments in laser technology, can be as short as one hundred

femtoseconds (fs) 1,2. The plasmas formed by these lasers evolve very quickly, and if

temporal information is required, a diagnostic must be able to provide resol,._tion on these

time scales. Laser-produced plasmas have a wide variation of electron densities ranging

from 1017-1021 cm "3 for gas targets to 1019-1023 cm -3 for solid targets to 1026 cm "3 for

Inertial Confinement Fusion (ICF) pellet targets. The temperatures of these plasmas cover

a broad range as well from only a few electron volts (eV) to several thousand electron

volts (keV). Therefore, laser-plasma diagnostics must be able to operate over a large

range of densities and temperatures.

Laser-produced plasma diagnostics must take into account the internally generated

electric (E) and magnetic fields (B) of laser-produced plasmas. One process by which an

internal electric field can be generated is easily demonstrated by considering the

fundamental criteria for plasmas, quasineutrality. The necessary condition imposed by

quasineutrality on any electric current density (j) that may be present in the plasma is,



Cf- o (1)

In other words, there can be no net charge flow into or out of a plasma. The electric

current density can be related to the electric field in a plasma through the generalized

Ohm's law3,

j - o- +-xB +_Vn,- + _'97', (2)
C ell e C_ll e )

where cr is the conductivity, v is the mass velocity, r is the thermoelectric coefficient at

constant density, and ne, Te, and e are the electron density, electron temperature, and

electron charge respectively. A sufficient condition for Eq. (1) is (j=0), and when

substituted into Eq. (2), neglecting magnetic field effects, an equation for the electric

field in terms of gradients in temperature and density is obtained. Therefore when the

sufficient condition (j =0) for quasineutrality is satisfied, electric fields are generated via

gradients in temperature and density. Spontaneous magnetic fields can also exist in laser-

produced plasmas 4,5,6. The source for magnetic field generation is derived by taking

Eq. (2), solving for the electric field (E), and substituting this expression into Maxwell's

equation 0B/& = -c V x E. The resulting equation for the time dependent magnetic field

is (Ref. 4),

oa _v x (vx _ + <Ca- c e x (_•_;) + _ (3)
c3t 4 rco en

where the (j x B) Hall term has been neglected. The final two terms bracketed in Eq. (3)
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are the source terms for the magnetic field. If the thermoelectric coefficient is a scalar

and independent of position, then the first term is zero, and a magnetic field is generated

only by non-parallel gradients in electron temperature and electron density. Electric field

effects are fairly easy to include in plasma diagnostic analysis, but considerable

complexity is added when magnetic fields are included. Therefore, the effect of magnetic

fields on laser-produced plasma diagnostics should be eliminated when possible. Magnetic

fields could be eliminated entirely by producing plasmas in which the source terms in Eq.

(3) are identically zero, but this method is not entirely practical. Another method involves

making the magnetic field effects small by properly choosing the conditions under which

a diagnostic is performed. The relative effect of magnetic fields on plasma diagnostics can

be quantified by the ratio of the cyclotron frequency (fl) to the characteristic frequency

of the process being measured (Oproeess)- The electron cyclotron f:equency (fle=eB/mec)

is used if the process involves electron motion, and the ion cyclotron frequency

(fli=ZeB/mi c) is used if the process involves ion motion. To the extent that diagnostic

conditions can be chosen to make this ratio small, magnetic field effects can be ignored.

One example of reducing magnetic field effects in laser-plasma measurements can

be demonstrated through the diagnostic technique of interferometry, which will be

discussed in more detail later in the refractive/absorptive diagnostic section.

lnterferometric diagnostics measure directly the spatially dependent refractive index of

a plasma which for a fully ionized, magnetic plasma is given by the Appleton-Hartree

formula to be7,
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1-

n2( ) = 1 - (4)

(_p -_sin20 1 cos201 - t)esin20 ± + -

where 0 is the angle between the direction of electromagnetic propagation and the

magnetic field, and _p is the electron plasma frequency given by 8,9,

= _l 4ne2ne = 5.64x 104n) rz

(5)

i

Therefore the refractive index is a direct function of the electron density ne(cm "3) and

unfortunately the magnetic field, a quantity which is typically unknown. Since

interferometry measures the refractive index, the electron density can also be measured

with an accuracy that is partially dependent on eliminating the magnetic field dependence

in Eq. (4). This is accomplished by choosing a diagnostic frequency (_) large enough

such that the ratio (fle/_) is small. Eliminating the complicating effect of the magnetic

field does allow for a more accurate measurement of the electron density in this case, but

does by no means indicate the magnetic field is not influencing the plasma quantifies
i

being measured. It is a well known fact that magnetic fields effect the transport

coefficients of a plasma 1°,I1, and can therefore impede heat flow 12'13 These

types of effects can make the characteristics of a magnetic plasma different from a plasma

with no magnetic field.
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The refractive index of a fully-ionized, non-magnetic plasma is obtained by setting

fle = 0 in Eq. (4),

n(_) = 1- t_p (6)

and is always less than or equal to 1.0 for to _< top. This optical characteristic is opposite

from all other forms of matter: gases, liquids, and solids, which exhibit an index of

refraction greater or equal to 1.0. Since the refractive index is a function of electron

plasma density and laser-produced plasmas typically have large density gradients, the

refractive index will also have large gradients and the plasma will appear as a short focal

length lens to electromagnetic waves. Therefore, electromagnetic waves will not travel

in a straight line through the plasma but Heir paths will bend by the process of refractive

turning. In the limiting case when the frequency (t_) in question approaches the plasma

frequency (cop), the wave will become evanescent and reflection will occur. The density

at which the wave becomes evanescent is defined as the critical density (nc), and can be

calculated as a function of (t_) by setting the index of refraction in Eq. (6) equal to zero

and using the definition in Eq. (5) for the plasma frequency.

=I me ) i0-IO_2 -3
n c /_j t_2 = 3.15 x cm (7)

Given a radiation frequency, the critical density defines an absolute limit to how far

radiation can propagate into or out of a plasma, and refractive turning can limit the
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accessible region even further 14. The combination of refractive turning and electron

densities above critical impose limitations on all three categories of laser-plasma

diagnostics.

Electromagnetic absorption and radiation are two other optical properties of

plasmas that play a role in laser-plasma diagnostics. The absorption and radiation

characteristics of laser-produced plasmas are governed predominately by the atomic

processes of bound-bound, free-bound, and free-free transitions {5,16 and to a lesser

extent by cyclotron and Cerenkov radiation (Ref. 7). Bound-bound transitions occur when

an electron in a bound state of an atom or an ion makes a transition to another bound

state. Line emission and resonant line absorption are the radiation and absorption

mechanisms respectively of bound-bound transitions. Radiative free-bound transitions

occur when an electron in a continuum state is captured by an ion by recombination. The

inverse absorptive transition is photoionization. Bound-bouitd and free-bound transitions

do not always need to involve the absorption or emission of a photon. For example,

collisional excitation and de-excitation can cause bound-bound transitions to occur without

involving a photon, and three-body recombination, coUisional ionization, dielectronic

recombination, and autoionization are non-photon associated free-bound transitions.

Finally, free-free transitions occur when an electron in a continuum state collides with

an ion and makes a transition to another continuum state. When the electron looses

energy, bremsstrahlung radiation is emitted, and when the electror gains energy, inverse

bremsstrahlung absorption occurs. Bound-bound transitions exhibit sharp features in their

absorption and radiation spectra, on the other hand free-bound and free-free absorption
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and radiation are characterized by broad spectral (continuum) structure. Cyclotron

radiation is due the acceleration of an electron in a magnetic field. If the electron-ion
I

collision frequency (Vei) is much less than the electron cyclotron frequency and the

magnetic field is spatially uniform, the radiation spectrum will appear as a series of

harmonic peaks broadened by Doppler and relativistic effects. In laser-produced plasmas

the opposite conditions typically occur. The electron-ion collision frequency is

comparable to or greater than the electron cyclotron frequency and the magnetic fields

will have large spatial variations due the small size of laser-plasmas. These two conditions

independently will randomize the motion of the electron, thereby destroying the cyclotron

resonance and eliminating the harmonic peaks from the emission spectrum of the plasma.

Cerenkov emission can be generated by either the relativistic motion of electrons in a

magnetized plasma (Ref. 7) or through the process of inverse Landau damping where no

magnetic field is necessary (Ref. 16).

These radiative and absorptive processes can be a mixed blessing for laser-plasma

diagnostics. For example, in a plasma with a Maxwellian distribution of velocities, the

bremsstrahlung emissivity eb(to) is unpolarized, spatially isotropic, and is given by (Ref.

15),

eb (to) 8.67 x 10-41 Zn_ - -W, (8)= e Gz

where the emissivity is in units of watts per cubic centimeter of plasma per steradian per
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unit frequency interval, ne(Cm-3) and Te(°K) are the electron density and temperature, Z

is the ionization state, and Gff is the Gaunt factor; it is a dimensionless quantity ranging

from 1 to 10. The log of the bremsstrahlung emissivity has a slope of 1/kTe as a function

of co, and this relationship can be used by spectroscopic diagnostics to accurately measure

the electron temperature of a plasma. Just as the bremsstrahlung emission helps in the
l

diagnosis of the plasma, inverse bremsstrahlung absorption can hinder spectroscopic

diagnostics by making the plasma opaque over some ranges of electromagnetic

frequencies. The inverse bremsstrahlung absorption length for electromagnetic frequencies

(t_) much greater than the electron-ion collision frequency (Vei) is given by (Ref. 14),

2 %, 2 (9)
IXb - t_PVei 1- --

(_2C Ca)2 )

This absorption mechanism can also be a hinderance to laser diagnostics. A diagnostic

laser beam can not only lose energy passing through the plasma, but if the energy loss

is large enough, local plasma heating can occur thus making the diagnostic undesirably

intrusive.

The first group of laser-produced plasma diagnostics that will be discussed fall

under the category of self-emissive diagnostics. As mentioned earlier, these diagnostics

require a only a detector which monitors some quantity supplied by the plasma. Most

diagnostics in this category are electromagnetic related, but there is a small group of

diagnostics that detect particle emission from laser-produced plasmas.

The energy and angular distribution of electrons emitted from a laser-produced
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plasma can be measured with magnetic spectrometers 17. The energy distribution of

electrons yields information about the high-energy tails that exist in the electron

distribution function of plasmas generated by high-intensity laser pulses. The suprathermal

electrons in the high-energy tail have very long mean-free paths and 'decouple' (Ref. 16)

from the rest of the plasma. This effect robs energy from the laser generating the plasma

that could otherwise be used for ablation and compression 18. The hot electrons can also

cause preheat in the fuel of ICF targets 19,20,21. The amount of laser radiation

expended in generating the fast electrons can be obtained by integrating over the energy

and angular measurements (Ref. 17). Ion emission from laser-produced plasmas can also

be measured with charge or Faraday cups 22 or by Thomson ion spectrometers 23. A

strong correlation has been shown to exist between the mean fast ion energy and the hot

electron temperatures of several laser-matter interaction experiments24: Therefore, ion

diagnostics might be used indirectly for hot electron diagnostics. Neutron diagnostics are

another form of particle diagnostics which prove useful for ICF plasmas, where the

neutron yields can be measured by Ag activation detectors and scintillators 25 or current-

mode time-of-flight detectors 26. Measurements of the neutron energy spectrum can

provide a value for the thermal ion fuel temperatures (Refs. 7, 25, 26).

All of the remaining self-emissive diagnostics can be placed under the subtitle,

plasma spectroscopy. Plasma spectroscopy has been used for a long time as an effective

diagnostic for laser-produced plasmas (Ref. 15). Spectroscopic techniques can be used to

measure many of the quantities characterizing laser-produced plasmas: electron densities,

electron and ion temperatures, magnetic and electric fields, particle velocities, velocity
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distributions, energy transport, mass ablation rate, and plasma evolution. The electron

density is obtained typically by measuring the Stark broadening of optical lines emitted

from bound-bound transitions. Lines in the x-ray region of the spectrum 27'28 are

normally used, but Stark broadened lines from the visible/ultraviolet region work as

well 29. The electron density can also be calculated from absolute line intensities or

ratios of optical lines which depend on electron density and not electron temperature 3°.

The ion temperature might be diagnosed through the Doppler broadening of optical lines

(Ref. 7). Doppler broadening is caused by the thermal motion of the ions, therefore the

magnitude of the effect is a direct measure of the ion temperature. Although both Stark

and Doppler broadening effects can be present in comparable amounts simultaneously,

thus making line width analysis difficult, the effects are easily decoupled by judicious

choice of diagnostic location in the plasma. Doppler broadening will dominate in regions

of the plasma which possess large ion temperatures and low electron densities, and Stark

broadening will be largest in regions of high electron density and moderate ion

temperature. The electron temperature of a laser-produced plasma can be measured in one

of three ways: the slope of the frequency spectrum of bremsstrahlung emission 31 as

outlined by Eq. (8), relative line to continuum measurements (Ref. 15), and optical line

intensity ratios (Refs. 28, 29, 30, 32, 33). Magnetic fields can cause line emission

profiles to be polarized through the Zeeman effect. The magnetic field strengths are

measured from the polarizatton dependence of these line profiles 34. The spontaneous

magnetic fields a laser-produced plasma have also been diagnosed with a magnetic field

probe in proximity of the plasma (Ref. 31), but due to the small size of laser-produced
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plasmas this diagnostictechnique has limited application. Electric fields can "also cause

polarization effects in line emission. An electric field, unlike magnetic fields, causes the

line intensity to be polarization dependent, and can be measured through this effect 35.

The measurement of electron densities, electron and ion temperatures, magnetic and

electric fields through the spectroscopic diagnostics outlined here require detailed

theoretical models. These models are dependent on the underlying conditions of the

plasma. Whether the plasma is in local thermal equilibrium (LTE), coronal equilibrium,

collision-radiative equilibrium (Ref. 16), or some other characteristic state definitely

effects the theoretical modeling necessary for analyzing data and the accuracy of the

results.

There exists a group of spectroscopic diagnostics which require much less

theoretical modeling for quantitative measurements of laser-produced plasmas. Doppler

effects from bulk ion motion will shift emission lines from their normal spectral

positions. The magnitude of this shift can yield information about the ion particle

velocities in the laser-plasma (Refs. 7, 32). Suprathermal electrons present in the electron

velocity distribution of a laser-produced plasma are detected through bremsstrahlung

emission. The interaction of suprathermal electrons with background plasma ions

produces a distinctive suprathermal component in the bremsstrahlung radiation spectrum

which can be detected experimentally 36'37'38,39. By layering targets with various

materials of different x-ray spectral emission characteristics, the energy transport and

mass ablation rate in a laser-produced plasma can be diagnosed by monitoring the spatial

and time dependent evolution of these layers through their characteristic x-ray spectra



13

(Ref. 21). Plasma evolution characteristics may be monitored by two-dimensional imaging

of selective regions of the x-ray emission spectrum of a laser-produced plasma. An x-ray

region is chosen by placing the appropriate x-ray spectral filter in the diagnostic line of

sight, and then using an imaging apparatus to record the spatially dependent, filtered, x-

ray emission. A common imaging technique involves the use of pinhole camera. Pinhole

cameras are attractive because they are cheap, simple, and provide fairly good spatial

resolutions. The resolution is on the order of the pinhole size, ignoring diffractive effects,

and can be as fine as 5-10 microns. Pinhole cameras have been used to look at the size

of x-ray emitting regions in laser-produced plasmas 4°. When pinhole cameras are used

in conjunction with microchannel plates (MCP) in a stripline configuration, gated, time

sequenced, snap shots of imploding (ICF) targets can be taken 41,42,43'44. This

represents a very powerful technique for monitoring the two-dimensional evolution of a

laser-produced plasma. X-ray microscopes 45 and x-ray shadowgraphy (Ref. 40) are

variations on the pinhole camera that have been used to provide better spatial resolution

under certain circumstances. The use of an annular (ring) aperture instead of a pinhole

is another variation that has been shown to improve the signal-to-noise in images as much

as a factor of ten. Three dimensional measurements can actually be made by utilizing the

data from several pinhole cameras along different lines of sight with computed

tomography. This diagnostic has produced three-dimensional images of electron density

and temperature in a laser-produced plasma 46.

The second group of laser-produced plasma diagnostics are filed under the

category of refractive/absorptive diagnostics. Refractive/absorptive diagnostics unlike the
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self-emissive diagnostics require both a detector and a probe to operate. Refractive
J

diagnostics probe the refractive index variations in a laser-produced plasma, and there are

several geometries employed for performing these measurements: interferometry,

holographic interferometry, schlieren imaging, and shadowgraphimaging, lnterferometry

and holographic interferometry require two optical beams, a reference beam and a probe

beam, which are both derived from the same source (Ref. 7). The probe beam develops

spatially dependent, wave front phase shifts when it passes through a plasma, and when

recombined with the reference beam produces an interferometric image of the plasma.

This image contains a series of fringes (isophase contours), and by measuring fringe shifts

in the image, the spatially dependent phase of the probe is obtained. Since thephase shifts

in the probe are due to refractive index variations in the plasma, the electron density can

be measured from these diagnostics 47,48,49. Interferometry has successfully been

used to study filamentation in laser-produced plasmas5°, and holographic interferometry

has also been utilized to look at radiation-pressure effects in laser-produced plasmas51.

Interferometry differs from holographic interferometry in that interferometry produces a

real image that can immediately be recorded on film. Holographic interferometry requires

a read out process after the fact to produce a real image. Holographic interferometry has

the advantage of allowh_gseveral different images to be recorded on the same piece of

film, from which each image can be read out individually at a later time52. Schlieren

and shadowgraph imaging require only one diagnostic beam to operate, and are sensitive

to the first and second spatial derivatives of the refractive index respectively (Ref. 7).

Schlieren imaging is performed by passing a parallel probe beam through the plasma and
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collecting only those rays that are refractively turned through a given range of angles.

The image produced from these rays is in the form of contours of deflection angle in the

plasma. The deflection contours are usually shaped like the electron density contours in

the plasma and are used for monitoring plasma expansion characteristics (Ref. 32).

Shadowgraph imaging involves sending a beam with a uniformly intense cross-section

through a plasma and imaging the modified beam profile on the other side. The beam

profile is modified by refractive turning in the plasma, and these effects appear as

intensity variationsacross the once uniform beam. Shadowgraph imaging diagnostics have

been used for monitoring whole beam self-focusing and filamentation on laser beams

passing through laser-produced plasmas53,54,55,56. All of the refractive

diagnostics share a common drawback, the refractive effects on the diagnostic beam are

line integrated as the beam passes through the plasma. Therefore, to deduce the

properties of the plasma at a given point along the diagnostic beam path requires some

theoretical modeling. However, when the plasma is cylindrically symmetric the problem

is simply reduced to performing an Abel inversion on the data (Ref. 7).

Absorptive diagnostics are used for measuring a variety of laser-produced plasma

quantities. Laser-produced plasmas can absorb light by many different processes. Two

of these absorption processes were outlined earlier: resonant line absorption due to bound-

bound transitions, and inverse bremsstrahlung (Eq. (9)). The resonant line absorption due
i

to bound-bound transitions has been used with x-ray backlighting diagnostics to measure

density, temperature and ionization profiles in laser-produced plasmas57,58,59. X-

ray backlighting is a technique which involves generating a separate laser-produced
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plasma as a source of x-rays. This source is placed behind the plasma to be diagnosed and

the absorptive characteristics of the plasma on the source emission are measured

spectroscopically. The inverse bremsstrahlung absorption processhas also been used with

x-ray backlighting to measure the Rayleigh-Taylor instability 60,61,62,63,64 and

nonuniformity imprints on laser-irradiated target surfaces65. The resonant line

absorption due to bound-bound transitions should not be confused with resonance

absorption which is a third importantabsorption mechanism in laser-producedplasmas.

Resonance absorption occurs when an optical wave passes through a plasma near its

critical density (Eq. (7)), and its electric field has a component pointing along the

electron density gradient (Ref. 14). Since the electron plasma frequency (top) is equal to

the light frequency (to) at the critical surface, electron plasma waves can be resonantly

excited at this point thus robbing energy from the optical wave. This resonance absorption

process has been used as a diagnostic for measuring density scale lengths in laser-

produced plasmas66.

Scattering diagnostics is the third category that laser-produced plasma diagnostics

can fall under. Light scattering of an optical beam in a plasma occurs when a charged

particle in the plasma is accelerated in the electromagnetic field of the beam. The

accelerating particle emits radiation in all directions and the emitted radiation is the

scattered wave (Ref. 7). The scattering is due primarily to electrons which are accelerated

more than ions in the field due to their small mass. The scattered radiation can be

coherent or incoherent depending on whether the electrons that are scattering the optical

beam exhibit correlated or uncorrelated motion. The scattering category is subdivided into
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two groups: self-scattering diagnostics and probe scattering diagnostics.

Self-scattering diagnostics use the same beam that forms the plasma as a probe

beam for the diagnostic. These diagnostics detect light scattering from high intensity laser

beams that generate parametric instabilities in the plasma they are forming. Common

laser-produced plasma instabilities include: stimulated Raman scattering (SRS), stimulated

Compton scattering (SCS), stimulated Brillouin scattering (SBS), self-focusing or

filamentation, ion acoustic parametric decay instability (IADI), and the two plasmon

decay instability. Describing each instability in detail would require a great deal of length

so the reader is directed to the literature on this subject matter 67'68,69'70. In brief,

self-scattering diagnostics are used to monitor instabilities generated in laser-produced

plasmas in attempt to understand the scaling laws that govern the instabilities and the

basic plasma physics issues that smxound them. For example, the collisional and Landau

damping effects on SRS spectra has been studied71,72 as well as stimulated Raman

scattering in long-scale-length plasmas73,74. Experiments on SCS have been

performed in laser-produced plasmas to measure the intensity dependence of the

instability75. By observing the temporal behavior of SBS backscattering in long-scale-

length plasmas, information about which plasma conditions are most likely to drive SBS

is obtained76 and energy loss due to SBS in a laser-produced plasma has been

monitored by integrating SBS sidescattering77. Experiments have been performed that

show filamentation due to the self-focusing of a laser beam in a plasma can be monitored

by second harmonic scattering78. Second harmonic spectrum can also result from

IAD179and experiments have been conducted to determine the threshold and intensity



18

dependence of the instability on the ionization state of the plasma 8°. The TPD

instability can be detected through 3/2 harmonic scattering and the influence of laser

beam smoothing techniques on this instability have been analyzed 81. Self-scattering

diagnostics are not only used for instability analysis; they can also be used for measuring

the electron temperature and peak electron density of a laser-produced plasma. For

example, the Landau cutoff in SRS backscattering has been used for an electron

temperature diagnostic 82 and spectrally narrow SRS emission has been used for peak

electron density measurements (Ref. 32).

The probe scattering diagnostics for laser-produced plasmas can be either Thomson

scattering or Compton scattering. Thomson scattering occurs when the incident photon

energy (hv) is much less than the rest energy of the electron (mec2). Compton scattering

results in the opposite limit where the incident photon energy is much greater than the

rest energy of the electron (hv • meC2). Probe wavelengths for plasma diagnostics are

typically in the visible-ultraviolet range of the spectrum in which photon energies are less

than six electron volts (6 eV). Since the rest energy of an electron is 511 keV, the

Compton effect will be negligible for 6 eV photons and only Thomson scattering

diagnostics need be considered at this point. The very first Thomson scattering

experiments on plasmas where conducted by radar scattering off of the

ionosphere 83,84. Thomson scattering utilizing lasers as probes soon followed on

electron beams 85 and theta-pinch plasmas 86,87,88,89 More recently, Thomson

scattering, coupled with theory, has been used to measure the electron and ion

temperatures, electron and ion drift velocities, and the ionization state of a laser-produce
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plasma 9°. The characteristics of a high density, cold, laser-induced, metal-vapor plasma

have also been studied using Thomson scattering 91. Thomson scattering has been used

successfully to diagnose some of the parametric instabilities mentioned in the last

paragraph that are associated with laser-plasma interactions: stimulated Raman

scattering 92'93,94,95,96, stimulated Brillouin scattering 97,98,99,100,101, and the two-

plasmon decay instability 1°2,103,1°4. Plasma wave mode coupling between SRS

and SBS generated waves has been investigated with Thomson scattering 1°5, and the

diagnostic has also been utilized to monitor the beat wave excitation of electron plasma

waves 1°6,1°7. Although widely used as a laser-produced plasma diagnostic,

Thomson scattering does have some disadvantages. In particular, Thomson scattering

efficiencies are quite small especially when scattering occurs from thermal level motion

in a laser-produced plasma. Thermal level scattering efficiencies can be as small as 10-11

of the incident probe energy and these scattered light levels make detection of the

Thomson scattered signals difficult.

This chapter has presented some of the basic properties of a laser-produced plasma

that must be considered when choosing a diagnostic. The laser-produced plasma

diagnostics available to a research scientist have been covered in some detail as well. All

laser-produced plasmas are not created equal and therefore there is no universal diagnostic

for investigating them. The two most important considerations involved in choosing a

diagnostic for a particular laser-produced plasma are 1) the limitations imposed by the

properties of the given plasma on the diagnostic and 2) what plasma parameters and/or

phenomena are trying to be measured. The plasma diagnostic should be ncnintrusive, i.e.
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not effect the quantities that are being measured, and if at all possible, a plasma

diagnostic should require a minimum amount of modeling for interpreting data and be

simple to operate.

Based on these considerations, collective Thomson scattering from thermal level

ion-acoustic waves is chosen as the diagnostic for the collisional laser-produced plasma

in this dissertation. Thecollisional laser-producedplasma being studied is generated from

a low-energy (EL _< 1 joule) long-_pulse(full width at half-maximum, FWHM = 9 ns)

laser (wavelength, _ = 1.06 #m or critical density, ne = 1 x 1021cm"3) focussed to a

spot size (FWHM = 100 + 10 #m) with peak intensity of 2 x 1011 W/cm2 onto a

rotating cylindrical target of aluminum. The high repetition rate (-_ 10 Hz) and high

stability ( -_ 2%) of the laser provides both repetitive and reproducible plasmaproduction,

and with the relatively low peak intensity used, there are no instabilities present in the

plasma that might hinder data analysis. Time integrated collective Thomson scattering

provides a way to thoroughly diagnose the corona of the plasma near the peak of the laser

pulse. The plasma is approximately stationary in the time during the diagnostic pulse

(FWHM _ 5 ns) so that time resolution is not required. The axial and radial profiles of

the electron density, sound speed, and the radial profile of the fluid velocity are

measured. Ultraviolet diagnostic light at 266 nm is used to minimize the complicating

effects mentioned earlier of inverse bremsstrahlung and refractive turning i_'_the region

of interest where electron densities -_ no/10. Noise reduction techniques are used to

generate high-quality Thomson scattering datawith very good signal-to-noise ratios and

the spatial profile of the corona (scale length Ls _> 100 #m) is well resolved by this
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diagnostic (axial resolution, Az _- 30 #m and radial resolution, Ar _ 30 #m). The data

obtained from these scattering experiments is used to test the computationalaccuracyof

two-dimensional LASNEX:°8 simulations, and the agreement between the experiment

and LASNEX is good. The experimental results and LASNEX simulations agree within

a percentstandarddeviation of 40% for the electrondensity and50% for the sound speed

andradial drift velocity. The data is also used to compare with a simple analytical model

for a laser-heated plasma.

Collective Thomson scattering from ion-acousticwaves can not only be used to

makeaccuratespatiallyresolvedmeasurementsof electron density, sound speed, and drift

velocity, the diagnosticcan also be used to obtain informationabout spatially dependent

relative thermal flow velocities between ions and electrons. This measurement requires

some new theory to be developed for Thomson scattering which is presented in this

dissertation. The theory is based on the Fokker-Planck equationand provides an analytic

model for predicting the lineshapeof the ion-acousticThomson spectra from the plasma

being studied which is characterizedby (0 < kia_.ii _< oo) and ZTe/Ti, where kia is the

ion-acoustic wave number, _'ii is the ion-ion mean free path, Z is the ionization state of

the plasma, and Te, Ti are the electron and ion temperatures(eV), respectively. The

electrons are assumed to be approximatelycollisionless on the scale of a wavelength of

the ion-acousticwave (kia_.ei,kia_.ee _ 1), and quasineutralityis assumed to hold (u • 1),

where c_ = 1/kia_DEand _'DEis the electron Debye length. The heat flux (q) can be

inferred with some degree of accuracy from the relative drift measurementsand since the

electron temperaturegradients (VTe) can be deduced from the spatially dependent sound
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speed data, the electron thermal conductivity (*:e)may be measured from (q = -,:eV Te).

The model also correctly predicts the appearance of a zero-frequency or entropy peak in

the Thomson spectra in the fluid limit (kia_ii --*0).

To summarize, this dissertation presents an experiment in which collective

Thomson scattering is, for the first time, used at 266 nm to make detailed measurements

of a laser-generated, collisional plasma. These detailed measurements are used to test the

accuracy of the simulation code LASNEX and a simple analytical model. The versatility

of Thomson scattering is expanded upon by extending existing theory and developing and

analytic model to help analyze Thomson spectra from collisional laser-plasmas. This

model allows new information to be obtained about the relative thermal flow velocity

between the electrons and ions.

The dissertation is organized as follows: In Chapter 2 a discussion on existihg

collisional and collisionless Thomson scattering theory will be presented. The existing

theory with some minor modifications will be appropriate for analyzing data from a

collisional laser-plasma to obtain electron density, sound speed, and drift velocity

measurements. Chapter 3 will describe in detail the experimental configuration used to

measure the three quantities mentioned above. The results of the experiments are analyzed

and discussed in Chapter 4. Chapter 5 presents a new theory for describing ion-ion

collision related effects in Thomson scattering. This new theory provides an analytic

model for interpreting Thomson spectra from collisional laser-produced plasmas. Chapter

6 outlines a proposed experiment for testing and utilizing the theory in Chapter 5 to

measure the relative thermal flow velocity between the electrons and ions in a collisional
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laser-produced plasma using Thomson scattering. Finally, the conclusions for the

dissertation are presented in Chapter 7 along with some thoughts about the future.
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Chapter II: Thomson scattering theory - fluid and kinetic limits

This chapter will present an outline of the current theory of Thomson scattering

as it applies to thermal level, ion-acoustic waves. The discussion will start with a

derivation of general formulas that are applicable independent of collisions to any

homogeneous, isotropic, two component (electrons and one ion species) plasma in quasi-

equilibrium. The requirements that the plasma be homogenous, isotropic, two component

and in quasi-equilibrium is ultimately chosen to simplify the theory, but these

requirements are not as stringent as they might appear. The homogeneous treatment is

valid as long as the scattering volume from which Thomson scattering occurs is small

enough compared to the scale lengths of density and temperature in the plasma. The

plasma is isotropic if there are no magnetic fields present, and is approximately isotropic

if the magnetic field strengths are small. The two component requirement is fulfilled if

the plasma is fully ionized or if a large percentage of the distribution of ions have one

charge state. Quasi-equilibrium requires that the electrons and ions in the plasma are in

equilibrium with themselves, but not necessarily with each other. The unperturbed

distribution functions for the electrons and ions will be Maxwellian and each species will
i

have a respective temperature Te, Ti, but the temperatures can be different (Te , Ti).

From the general formulas, two limits of the theory will be shown for plasmas which are

characterized in the fluid regime by collisional ions (kia_,ii _ 0) and plasmas which are

characterized in the kinetic regime by collisionless ions (kia_,ii ---'-co). In both cases, the

electrons are assumed coUisionless (kia_.ei,kia_,ee _ 1). The collisionality represents the
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degree to which collisional effects are important for an ion-acoustic wave of wave number

kia, and _'ee, )'ei, )'ii are the electron-electron, electron-ion, and ion-ion mean free paths

as defined by Braginskii (Ref. 10), respectively,

X,e = 1-02-'x1013 _ (cm)
tlelBhee

)'ei = l'44x10t3 _ (cm) (10)
Zn thL/_ei

_'it = 2"04x1013 _ (cm)
Z 3n ,lnAii

where the electron and ion temperatures Te, Ti are in (eV) and the electron density n e is

in (cm'3). Although the laser-produced plasma studied for this dissertation lies in the

intermediate collisional range for the ions (kia_.ii = 1), it will be shown that the fluid and

kinetic limits of Thomson theory are adequate for measuring the three quantities: electron

density, sound speed, radial drift. However, the exact collisionality of the ion-acoustic

waves does influence measurements that are sensitive to the shape of the Thomson

spectrum, such as line width analysis. A theory will be presented that can quantitatively

describe these effects in Chapter 5.

When an optical probe of wave vector kpr and frequency tOpr is incident upon a

plasma, Bragg scattering can occur off a plasma fluctuation (kfl,Ofl) and the resulting

scattered light satisfies the conditions,

/_ = /_p + /_B (11)
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o_ = (ovt ± o#) + /_'Oda0 (12)

where ksc and _re are the wave vector and frequency of the scattered light, respectively,

and the ef-/_t of a nonstationary plasma Lldrift on the frequency shift is added. The power

scattered, Pse(kse, tose), in the direction kse,into solid angle dfl and frequencyinterval tore
, .

tore + dtore is given by 109,

' P -" = -A°¢IA V) 2_sc(ksoto_tOdtosc Pt,re $(klt'_lt) _s_ x (ks_ x $,r)_dt'_d%_ (13)

where Ppr is the probe beam power with cross-sectional area A, aT is the classical

electron Thomson cross section (7.952x10 -26 cm2), k'sc and epr are unit vectors, epr is

along the probe beam polarization, V is the volume defined by the intersection of the

probe beam and the collection field of view, and S(kfl, toll) is the dynamical form factor.

The factor e"zxis included to represent possible absorption of the probe and scattered

waves due to inverse bremsstrahlung in the plasma. The quantifies in Eq. (13) are written

in terms of their spatial and temporal Fourier transforms (k,to). This form is most

convenient for working with the theory on Thomson scattering and will be used in the

rest of this chapter unless otherwise stated.

The dynamical form factor S(k, to) is the wave-vector/frequency-dependent part of

the Thomson cross section and represents the effects of scattering due to electron motion

as well as correlations between the electrons. The dynamical form factor is related to the

mean square fluctuations in the electron density of the plasma and is given by (Ref. 109),
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lira ._/[ 8ne(k.ta) _) (14)

where T and V are the time and volume that the average is taken over. The dynamical

form factor can be derived for a general homogenous, isotropic, two component plasma

in quasi-equilibrium with the use of Coulomb's law, the continuity equation, Ohm's law,

and the fluctuation-dissipation theorem 11°,111,112,113,114. The derivation

for the dynamical form factor will involve solving for the response of the plasma to

external perturbative fields in the presence of the self consistent fields.

The fluctuation-dissipation theorem provides a powerful tool for connecting the

power spectrum of fluctuations of a system in thermodynamic equilibrium to the

imaginary part of the relevant linear response function of the system. For example, in the

Coulomb gauge with no charge density sources, the current density j and the vector

potential A are related to one another through a wave equation (Ref. 8),

_72/[_ 1 o_,4_ 4_.f (15)
c 2 &2 c

The current density acts as a source for the vector potential in this equation and assuming

a linear response (_), a relation may be written between the current density and the vector

potential. The fluctuation-dissipation theorem then relates the mean square fluctuation of

the vector potential to the linear response (o0. The linear response and the mean square

fluctuation of the vector potential can be written (Ref. 113),
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h i [_(k._)-t_'(/_,.)]_ Z i [_(/_,_)_t_'(k-',_)](16)(Ar4i)_,= end,/r_ 1 t_

where the approximation holds for sufficiently high temperatures and the * refers to the

complex conjugate. The final step in deriving a general form for S(k, to) will involve Eq.

(16), but for now the derivation will start with Coulomb's law which for a medium with

no free charge density is given by,

//_'/3(/_,6o): i/_'_/_,to) - 4_:p._(/_,ta) : 0 (17)

where D and E are the electric displacement and electric field vectors, re_ectively, and

Pind is the induced charge density due to external perturbations. In the case of a plasma,

neglecting the free charge density is warranted because a plasma by definition is charge

neutral as long as kL ,, 1, where L is the minimum of the plasma scalelengths. Along

with Eq. (17) comes the following definitions,

/)(/_,(o): _/_,o)+4nff(/_,to)= ¢(/_,_)_/_,_)

(_(/_,(o)= 1 + E x;_k.o_)
j (18)

o,_(k%)= -_.r,(_,_)
j%(k',_): __,_)

where P is the polarization vector, e is defined as the dielectric response fimction of the

medium, Zj is the susceptibility of the jth species in the plasma, and j ind is the induced

current density. The induced charge and current densities can be related through the

continuity equation,
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-it_p,_(/_,o) + iE. f0,a(/_,o) - 0 (19)

and Ohm's law for a non-magnetic, homogenous plasma is given by Eq. (2) as,

where the last equality is found from Eq.'s (17), (18), and (19). External perturbing

fields Eext_ and Eexte which couple independently to the ions and electrons can be

introduced into the plasma. These fields induce charge and current densities which in turn

generate a self consistent electric field Eself. This process can be written in terms of the

induced current density for the electrons and ions through Eq. (20),

The self consistent field can in turn be written in terms of the total induced charge density

by combining Coulomb's law (Eq. (17)) and the continuity equation (Eq. (19)),

The self consistent field can be eliminated between equations (21) and (22), and the

solution for the induced current densities and external fields is given by,
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Since the external fields are assumed to act independently on the electrons and ions, the

fluctuations of each field are only determined by the temperature of the appropriate

subsystem. Therefore, the fluctuation-dissipation theorem Eq. (16) can be used with the

results of Eq. (23) to separately find the mean square fluctuations of each external field

due to the response of the induced current densities,

<o_ tx,)

where the last relation holds because the fields are assumed independent. The mean

square fluctuation of the induced electron current density is now found by combining Eq.

(23) and Eq. (24),

Q/if:> _ 2(oTe I 1+x,I: 2o Tt I Xe__im(zt) (25)

The induced current density is related to the induced charge density through the continuity

equation Eq. (19). The induced charge density is then related to the induced electron
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density by (Pind = "e6ne). These relationships can be used with Eq. (14) and Eq. (25)

to find the general form for the dynamical form factor in terms of the electron and ion

susceptibilities of the plasma,

S(k,o) = _ (1 + X, X,) + X,) (26)
6Oa2 E (_U2Te

where o_ m 1/kADE, and _'DE = (kBTe/4rnee2) 1/2 is the electron Debye length. Equation

(26) has been derived without using any assumptions about the collisional nature of the

plasma. The dependence of S(k,o) or the scattered frequency spectrum on the plasma

conditions is included through the response functions Xe, Xi of the electrons and ion

species in the plasma and the parameter or. Resonances appear in the scattered spectrum

when the real part of the dielectric function approaches zero (Re(e) -, 0) in Eq. (26). The

parameter o_can be used as a qualitative gauge for whether the sharp resonances will

appear or whether the scattered spectrum will contain only broad uncorrelated features.

When c_ < 1, the scattered spectrum is typically due to noncollective effects in the

plasma. Scattering occurs from electrons which exhibit uncorrelated, random, thermal

motion and the width of the broad spectral feature in this case can be related to the

electron temperature in the plasma. When cx > 1, the scattering process is referred to as

collective Thomson scattering. In this case, scattering occurs from electrons which are

undergoing collective motion either in response to a low frequency ion-acoustic wave or

from a high frequency electron plasma wave. As mentioned in Chapter I, this dissertation

involves using collective Thomson scattering from electron motion induced by ion-

acoustic fluctuations. Therefore, particular attention is paid to the low frequency, o_ >
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1 results of the following sections.

The first step towards investigating the _tral features predicted by the

dynamical form factor in Eq. (26), involves computing the electron and ion

susceptibilities of the plasma. In general, the susceptibilities are found by the use of

Ohm's law (Eq. (20)), the continuity equation (Eq. (19)), and the definitions for the

electric field in terms of the scalar potential 0E = -ikd) and the induced charge density

in terms of the perturbed density (Pinda =- Zae_na),

Z,,(k.,_)--4r_Z,,e bn_,(_.,_) (27)
k

where Ze = -1 for an electron. Unlike the argument leading to Eq. (21) which involved

including a self consistent field, Eq. (27) results from only considering the direct coupling

between an external potential and the induced change in density. The response of the

electrons or ions under this situation is defined as the susceptibility of that given species

in the plasma. The high frequency limit (to --, oo) of the susceptibility for the electrons

and ions is in general zero (za(k, to) = 0) due to the fact the electrons and ions are

massive and cannot respond at infinite frequencies. In the opposite, low frequency, D.C.

limit (to --, 0), the response of the electrons and ions is governed by Debye shielding.

When a static point charge is inserted into the plasma, the electrons and ions will respond

to eliminate the long range charge effects through Debye shielding. Since the electrons

and ions are assumed individually to be in thermal equilibrium, their distribution

functions are Maxwellian. When an external potential is introduced into the plasma that

couples with either the electron or ion species, the energy of the species is increased by
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(ZaeSext) and the distribution function is given by,

• (.: .)/I0 - _ +Z,e_ liT.

f_o(V'_a) = (2nkT,13/2e (28)

The perturbed density due to this external field can be found by integrating the difference

between the distribution function with and without the applied potential over all velocity

space,

ff_o(V _ tr. -Z,,enod_ (29)_)no = ,tb,_,a)-f_o(v,O) d3v = no e - 1 ._ kT
a

where the approximation holds for sufficiently high temperatures. The D.C.

susceptibilities for the electrons and ions can now be found from Eq.'s (27) and (29),

_:,(/_,0) = a 2
ZT (30)

z,(£,o)-
r,

The low and high frequency limits of the susceptibility for the electrons and ions

can be used to calculate the total cross section ST(k) which is defined by,

Direct substitution of Eq. (26) into the integral is not possible because the expression in

not analytic due to the I 12factor in the denominator. This problem can be eliminated

when the electron and ion temperatures are approximately equal (T e -_ Ti). In this case,
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Eq. (26) can be rewritten as,

((1:
S(_.,¢_)- 2 Im (32)

6oa2 1 + X, + Xi)

Since this function is analytic for Im(¢_) > 0, the integration can now be performed along

a closed contour in the upper half plane, indented on the real axis below the pole at zero.

The result is given by (Ref. 109),

s,_ = 2,_(_. xgo))x,/_.o)= 2_(]. _Vrjr,)) /o_r.--r, (33)
,,_(1+z.(_.o). x,_,o))1. _ . _'(zrjr,)
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Figure 1" Total cross section ST(k ) for a general plasma as a function of ZTe/T i & o_.
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where the D.C. results of Eq. (30) are used to obtain the last equality. The dependence

of the total cross section on u for different values of Z and (T e = Ti) is shown in

Figure 1. The cross section is equal to 1 for et = 0 and approaches the limit Z/(1 + Z)

for c_ --, oo. The total cross section in Eq. (33) applies to any homogeneous, isotropic,

two component plasma in quasi-equilibrium independent of collisions, but unfortunately

this is as far as the general approach can be taken. The fraction of the total cross section

which is responsible for scattering in the low frequency or ion-acoustic feature as well

as the exact form of the ion-acoustic spectrum can only be calculated from the specific

equations that govern the evolution of the particular plasma of interest.

The exact form of the dynamical form factor was first derived independently by

Fejer(1960) 115, Renau(1960) 116, Dougherty and Farley(1960) 117, and

Salpeter(1960) 118 for a plasma in which the electrons and ions can be considered

coUisionless (kia_.ii,kia_.ei,kia_.ee• 1). This subject has also been treated in review articles

since that time. li9,12° The evolution of the electron and ion distribution functions

in a plasma which is collisionless is given by the Vlasov equation,

Z_e ..., _,+v#L +--e.v,L - o <34)
Ot ma

This equation can be linearized by expressing the electric field in terms of the potential

(E = -V_b), the distribution function as f = fo + fl exp(i(kz - _t)), and the potential as

_b= fro + 4_1exp(i(kz - t_t)). The linearized Vlasov equations for the electrons and ions

then become,
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i(/a,_ - _ -iZke,, Of°
m_ _ - 0 (35)

where f_o - 1 e-V' ! 2_

(2_v_)st2

where the backgroundfoa distributionis MaxweUian.The perturbed density which arises

from the oscillating potentialcan now be solved for by rearrangingthe formulas in Eq.

(35) for the perturbeddistributionfunction fl a and integratingover velocity space,

- _,dSv = 1 + (36)m_v_ T_ _-a_ _

where the integral has been evaluated using the Landau prescription 121to incorporate

the pole that occurs at t_ = kvz, and Z(to/kva) is the plasma dispersion function, lEE

Equation (27) can now be used to fred the susceptibilities for the electrons and ions from

Eq. (36),

Complex to Real to

_._1 ZT. a2W(x,)
!

__2 (37)

where Z(x) = i_-_e'-T [1 +Erf(_2)]

-_ _ ,,_ r-- -_

W(x) = 1 - 2 x e 2 f @ + i_ 2xe 20

where xe = tMkve and xi = tMkvi are normalized frequencies. For complex frequencies,
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the susceptibilities are written in terms of a complex error function and for real

frequencies, the susceptibilities posses a much simpler form in terms of the W(x)

function. When a frequency is written as a complex quantity, the real part corresponds

to the mode frequency of the wave while the imaginary part is equal to the damping on

that wave. For real frequency to, the dynamical form factor for a collisionless plasma is

now written from Eq. (26) as,

2

ZT, 2
1 +  2Vx,)

= +

(38)
2

-X 1

I --r

z e

1 + t_21_x,)+ ZT"_x2W(x,) kv,r,

The specific characteristics predicted by Eq.'s (37) and (38) can now be

investigated as they apply to the ion-acoustic feature in Thomson scattering from a

collisionless plasma. First, the damping mechanisms for ion-acoustic waves in a

coUisionless plasma are electron and ion Landau damping. The source of these damping

mechan "mslies in the denominators of the terms in Eq. (38), that is really the dielectric

function e of the plasma. When the real part of e goes to zero (Re e --,0), a resonant peak

will appear in the scattered .spectrum. At the point where (Re E--, 0), the damping of the

resonant wave is governed by the magnitude of the imaginary part of E (Im E), which is

comprised of the imaginary parts of W(xe) and W(xi). Since xe is the frequency to

normalized to the electron thermal velocity, Im W(Xe)represents the electron Landau
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damping and likewise Im W(xi) represents ion Landau damping. For ion-acoustic waves

xi ~ 1 while xe • 1. Electron Landau damping can be turned off by setting xe = 0 and

then the effects of ion Landau damping can be studied. It can be shown that the electron

landau damping Ye can be added afterwards to obtain the total damping on an ion-

acoustic wave through the factor,

_ nZm e
y,.= Real(_ (39)

8 trti /

where _ia is the complex frequency of the ion-acoustic wave. Neglecting electron Landau
i

damping (xe - 0), the complex frequency for ion-acoustic waves can be solved for in the

c_ --, _ limit by utilizing the complex argument forms of the electron and ion

susceptibilities in Eq. (37) and solving for the low frequency, complex root of (¢ = 1 +

_¢e+ _¢i= 0). Figure 2 shows the result of these calculations as a function of ZTe/Ti.

As can been seen from the figure, the mode frequency (Re c_) of the ion-acoustic wave

increases with the ratio ZTe/Ti and the ion Landau damping (Im _) decreases quite

rapidly from ZTe/Ti = 1 where it a considerable fraction of the mode frequency to

ZTe/T i = 64 where it is twelve orders of magnitude smaller than the mode frequency.

For general _, it can be shown that the mode frequency of the ion-acoustic wave as a

function of ZTe/T i and t_ is given by,

Real(c°_a) - cs - l ZTe(' cc2 3Ti/ (40)k_av, v, T,[ tt2 + 1 + Z-Te)

wherecsisdefinedasthesoundspeedintheplasmaandthefactorof3 istheadiabatic
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Figure 2: Real and imaginary parts of the complex ion-acoustic frequency as a
function of ZTe/T i for a collisionless plasma with a _ oo neglecting electron Landau
damping.

index or ratio of specific heats Cp/C v for a collisionless plasma. This is an approximate

equation which is most accurate for large ZTe/T i ratios.

The spectral characteristics of Thomson scattering from collisionless ion-acoustic

waves can be analyzed through Eq. (38). This equation contains the complex W(x)

function which is plotted in Figure 3. From the figure, it can be seen that the real part

of W(x) attains a minimum value of-0.29 at x = 2.1, and this functional property of

W(x) can be used to qualitatively determine when ion-acoustic resonances will appear in

a Thomson scattered spectrum. Ion-acoustic wave resonances occur in the spectrum given

by S(k, _) in Eq. (38), when the real part of the denominator of the expression goes to



40

1.00

-050. '''' '''''''''' '' ' ' '
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

x

Figure 3" Real and imaginary parts of the function W(x).

zero. Ignoring electron Landau damping effects for the moment, i.e. xe = 0 and W(xe)

= ct2, the real part of the denominator is given by [1 + ct2 + (ZTe/Ti)a ,2 Re W(xi) ].

Since Re W(xi) > -0.29, the following condition is qualitatively necessary for resonant

peaks to occur in the ion-acoustic spectrum,

1 _+a 2)a2 ) < 0.29 (41)
ZT

T
l

This condition shows that when ct _ 1, there will be no resonant peaks in the low

frequency part of the Thomson spectrum for any value of ZTe/Ti, and for increasing
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Figure 4: Theoretical ion-acoustic Thomson spectra for a collisionless aluminum
plasma with ZTe/T i=4 and varying values of or.

values of ZTe/T i, successively lower values of ot are required to produce resonant peaks.

In fact, for ZTe/T i > 8 the requirement that ot > 1 for collective Thomson scattering

can be relaxed because resonant peaks will begin to appear in the spectrum for ot < i.

The ramifications of this resonance condition can be seen by plotting the dynamical form

factor in Eq. (38) for different values of ZTe/T i and or. Figure 4 shows ion-acoustic

spectra for an aluminum plasma (mi = 27mproton) with ZTe/T i=4 and varying values for

or, and as predicted by Eq. (41), the ion-acoustic feature comes into resonance as cx

increases. Figure 5 demonstrates the same principle but for increasing ZTe/T i and fixed

cx. As seen in the figures, when in resonance, the ion-acoustic feature for a collisionless
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Figure 5: Theoretical ion-acoustic Thomson spectra for a collisionless aluminum
plasma with o_= 1 and varying values of ZTe/T i.

plasma is comprised of two peaks. The two peaks result from scattering off of oppositely

traveling ion-acoustic waves which have the same wave vector magnitude kia, but cause

equal and opposite frequency shifts Oia due to their opposing directions. The separation

between the peaks is given by 2oia = 2kiac s which is the ion-acoustic dispersion relation

and the sound speed cs is given approximately by Eq. (40). Thus, the peak separation in

a collective Thomson spectrum can be used to measure the sound speed in the plasma.

An additional feature is predicted by the dynamical form factor in Eq. (38). The

peak heights become asymmetric when the thermal electrons drift relative to the thermal

ions. An asymmetry results because the ion-acoustic wave that is traveling opposite to the



43

400 , , , , , , , , , , , , , , , , _ , ,

350 y=O.O 15 y=O.030 y=0.045

300
03

250
3
N 2oo
0'?

150

-15 -12 -9 -6 -3 0 3 6 9 12 15
r_)/kvi

Figure 6: Peak height asymmetries due to a relative drift between electrons and ions
in an aluminum plasma with ZTe/Ti =8 , t_=3, and different values of y = (kiaOUd)/kVe.

electron drift encounters enhanced electron Landau damping while the ion-acoustic wave

traveling with the drift experiences a reduction in electron Landau damping. A driving

mechanism for this phenomena is the return current due to heat transport in the plasma.

A detailed discussion of this topic will be presented in Chapters 5 and 6, therefore, only

a qualitative picture will be drawn in this section. A relative drift between the thermal

electrons and ions can be examined by replacing the normalized frequency xe in Eq. (38)

with xe + (k_oUd)/kv e, where Ud is the directional drift relative to the wave vector kia

of the ion-acoustic waves. The results from this analysis are shown in Figure 6 for an

aluminum plasma with ZTe/Ti=8 , ct = 3, and various values of y=(k_,.Ud)/kv e.
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The effect of collisions in a fully ionizedplasmaon the dynamicalform factor has

been considered by several authors. Typical approaches include: the use of a Fokker-

Planck type collision term with the Vlasov equation (Eq. (34)) to derive a collisional

dependent form factor 123'124'125, a quantum-mechanical treatment of the

problem 126,and the use of the fluid equations to derive the collisional dependent form

factor. 127 Besides providing a theoretical model, reference 127 also provides

experimental results of collective Thomson scattering for the ion-acoustic feature in a

coUisional plasma. The dynamical form factor derived from the fluid equations fits the

data very well. Therefore, a similar but simplified approach will be used in this section

to investigate the effects of collisions on the ion-acoustic feature obtained from Thomson

scattering in a plasma where the ions are collisional (kia_,ii • 1) and the electrons are

assumed collisionless (kiaXei,kia_.ee _ 1).

Since the ions are considered collisional (kia_,ii • 1), the fluid equations can be

used to describe the evolution of the ion species in the plasma. The fluid equations for

the ions are given by (Ref. 10),

133/1/
-- +fT. =oOt

rain, -_ + m_, _,.W, = -Vp, - V. n,- Zen,Vdp,+ if,,, (42)

3 Or_ 3 = -.= -V'qi - zi "VaTi + Q,,i+ + - -
where p_ = n_Ti

-. ::t 4

closure ?ii = -r.,VTt n, = --_l_,Wt

where Pi, _ri,qi are the ion pressure, stress tensor, and heat flux, respectively. The linear
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closure relations have also been included which relate the heat flux and stress tensor to

gradients in the temperature and velocity through the thermal conductivity K:i and the

viscosity #i, respectively. The momentum and heat exchange coefficients Rei , Qei

between the electrons and ions will be neglected since the electrons are assumed

coUisionless. The fluid equations can be linearized in the same manner as the Vlasov

equation in the previous section and are given by,

-io_n 1 + iknov 1 = 0

-it_mnov t = -ikTon I - iknoT t - ikn I - iZeknodPt
3.

--_tonoT I + iknoTov 1 = -ikql
(43)

nv

closure ql = -t:°-_ikT1

4 mnovi.
-

where the subscripti for the ions has been assumed except for vi = (Ti/mi) 1/2, which is

the ion thermal velocity, the subscripts O and 1 refer to the background and perturbed

values of the quantifies, respectively, and the normalized transport coefficients are defined

by, i<° = 3.9 kLii and #o = 0.96 k_.ii. The system of formulas in Eq. (43) can be solved

for the ratio (ni/_bi) which in turn can be used in Eq. (27) to find the ion susceptibility

for a plasma with fluid ions,

2

4nZe nl ZT x_ + -i_:°3
Xi = - - --2" cz2

k2 '1 T, x: + 2i3 (21"t°+_:°)x2- 1(-_ 5 + -_t°#'8 )x,- 2ir_°3

(,14)

where xi = t_/kv i is the normalized frequency. Since the electrons are assumed
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Figure 7: Theoretical ion-acoustic Thomson spectra in the ion fluid (kia_ii = 0.1) and
ion collisionless limits for a plasma with ZTe/T i = 1 and cz = 300.

collisionless, the electron susceptibility from Eq. (37) can be used with the fluid ion

susceptibility of Eq. (44) to obtain the dynamical form factor for this ion collisional limit.

Figure 7 shows the effects of ion-ion collisions on the low frequency ion-acoustic

spectrum where the dynamical form factor in the fluid (kia_.ii = 0.1) and collisionless

limits is plotted for identical plasma conditions, ZTe/T i = 1 and et = 300. As can be

seen by Figure 7, resonant peaks can appear in the collisional limit when they are barely

visible in the collisionless limit under the same conditions. The resonant peaks emerge

due to a reduction in the ion Landau damping of the ion-acoustic waves by ion-ion

collisions which disturb the wave particle Landau resonance. The peak separation as in
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the collisional limit is given by 2COia= 2kiacs, but the sound speed (Cs) is modified due

to the ion-ion collisions. It can be shown that the sound speed in the coUisional limit

(kia).ii _ 0) is given exactly by,

Real(o_a) _ ca_ _ ZTe( 0t2 5T_ / (45)kiaV, ...... v, --T_i(a2 + 1 + -_,)

where the adiabatic index is now 5/3 instead of 3 as in the collisionless case, Eq. (40).

The presence of a zero frequency or entropy wave is also predicted in the fluid limit as

shown in Figure 7. This wave is due to thermal level ion temperature fluctuations in the

plasma which are balanced by ion density fluctuations to produce no pressure gradients.

Since there are no pressure gradients, the wave does not propagate and has zero mode

frequency. The entropy wave is present ha the ion-acoustic spectrum only in the fluid

limit, and will be discussed in more detail in Chapter 5 and Chapter 6.

Based on the preceding results it can be shown that the fluid and kinetic limits of

the Thomson scattering theory are adequate for measuring the three quantities: electron

density, sound speed, and radial drift. The electron density can be measured from the ion-

acoustic Thomson spectrum by first integrating Eq. (13) over the low frequency part of

the spectrum which includes the ion feature,

where STi(k) is the total ion feature cross section. For Te = Ti, the ion cross section in

Eq. (46) will always be less than or equal to the total cross section predicted by Eq. (33)

independent of the collisionality of the plasma. For the collisionless and fluid limits, the
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Figure 8: Total ion cross section STi(k)in the collisionless (line) and fluid (circle) ion
limits as a function of o_for ZTe/T i ratios (1 --, 8) in an aluminum plasma.

total ion cross section can be theoretically computed by integrating the appropriate

dynamical form factors over low frequencies. Figure 8 shows the ion cross section in

both the collisionless and fluid limits as a function of c_for various ZTe/Ti ratios in an

aluminum plasma. The solid lines are the collisionless results and the circles are the fluid

results. As shown by the figure, the ion cross section approaches zero for c_--, 0 and a

constant for c_--, oo and is the same in both limits for a given c_ and ZTe/T i ratio.

Therefore, even though the spectral distribution of the ion-acoustic feature can be

markedly different in the two limits as seen in Figure 7, the total ion cross sections are

the same! Since the ion cross section is identical in the fluid and collisionless limits, it
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will be assumed a constant for all values of ion collision_l;/.ty(kiakii). With a constant ion

cross section, the electron density can be measured with some degree of accuracy by

using Eq. (46) and Figure 8 with a relative intensity calibrated experimental collection

system. The collection system and the exact method from which the electron density is

calculated will be described in detail in Chapter 3.

The sound speed varies from the fluid limit to the collisionless limit as shown by

Eq. 's (40) and (45). This variation is due to the collisionally dependent adiabatic index

which changes from 5/3 in the fluid ions to 3 for collisionless ions. Knowing the exact

value for the adiabatic index is crucial for calculating an accurate sound speed for low

ZTe/Ti ratios, but as this rat':o increases the value of the adiabatic index becomes less

important. In Chapter 4, it will be shown that the experimental conditions for this

dissertation fall in the range, 3 < c_ < 15 and 5 < ZTe/T i _< 8. The difference in the

sound speed between the fluid and collisionless limits under these conditions is no more

than 10%. Values ofkia_.ii for the experiments are always less than one (kiaXii < 1). The

ion-acoustic waves measured arefairly collisional and choosing the adiabatic index = 5/3

will introduce an error in the sound speed measurements much less than 10%.

Finally, the term kia.Udrif t in Eq. (12) is added to take into account the effect of

a nonstationary plasma on the frequency shifts in a Thomson spectrum. For the ion-

acoustic feature, a nonstationary plasma will shift the entire spectrum by a frequency

amount determined by kiaOUdrift . This Doppler shift will be used to measure the radial

drift velocity of the plasma under investigation in this dissertation. Since Eq. (12)

represents the conservation of energy in the scattering process and therefore has no
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dependence on the collisionality (kia_.ii), the _dial drift measurements are not effected

by the collisionality of the plasma either.

In conclusion, this chapter has presented an outline of the current theory of

Thomson scattering as it appliesto thermal level, ion-acoustic waves. General formulas

for the phase matching conditions of the Thomson scattering process and the Thomson

scattered power are given. The general formula for the dynamical form factor which

provides the spectral distribution of scattered light has been derived from first principles

and is applicable to all homogeneous, isotropic, two component plasmas in quasi-

equilibrium independent of collisions. The dynamical form factor can be written in the

collisionless (kia_ii --* oo) and fluid (kia_.ii _ 0) limits for the ions using the Vlasov and

fluid equations, respectively. It has been shown that the predictions made by the two

limiting forms of the dynamical form factor are adequate for use in measuring the

electron density, sound speed, and radial drift in a plasma for which the ions lie in

between the two limits of coUisionality (kia_ii _- 1). However, the exact form of the

dynamical form factor for plasmas with intermediate collisional ions is needed for

measurements relying on line shape analysis of the ion.acoustic spectrum. A theory for

this intermediate collisional regime will be presented in Chapter 5.
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Chapter III: Experimental configuration

This chapter will explain in det,_l the collective Thomson scattering experimental

configuration used for obtaining two-dimensional electa'on density, sound speed, and

radial drift profiles from a collisional laser plasma. The production of the diagnostic and

plasma generating beams will be discussed along with the collection system used for

monitoring collective Thomson scattering from the plasma. The Thomson-scattered signal

is small and noise reduction techniques are used to reduce stray light from the diagnostic

beam in order to increase the detectability of the Thomson-scattered signal. Since

measurements of the laser plasma are made on a single point basis and two-dimensional

information is required, the laser plasma generated for these experiments must be

reproducible in the quantities that are being measured. Therefore, the laser pulse that

generates the plasma in the experiment will have excellent energy stability, and smooth

temporal and mtiform spatial characteristics. The target used for plasma generation will

need to have a smooth surface and be rotated to provide fresh target material for each

laser shot. This combination of laser and target characteristics are sufficient to provide

a plasma with reproducible electron density, sound speed, and radial drift profiles. The

signal-to-noise in the collected data is improved by averaging multiple data shots at a

given point in the plasma. The rate of data collection is enhanced by the high, 10 Hz,

repetition rate of the system. Collecting data at this rate requires carefully integrated

timing of all of the components in the system, which will also be outlined in this chapter.

The experimental configuration is shown in Figure 9, Figure 10, and Figure 11.
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Figure 9: Experimentalconfiguration; top view.

As seen in Figure 9, a Q-switched Nd:YAG laser (Spectra Physics Model DCR-3)

operating at 10 Hz produces the optical pulses for both plasma generation and the

Thomson diagnostic beam. The Nd:YAG laser possesses three features that improve the

reproducibility of plasma generation. First, the pulse-to-pulse energy stability of the laser

is + 1% at 1.06#m which will provide reproducible energy deposition on target for

producing the plasma. Second, without intervention, a Q-switched laser cavity will lase

in several axial modes each separated by the characteristic frequency of the cavity, Av

= c/2L, where L is the cavity length and c is the speed of light. These axial modes will

beat with each other in f.rne and produce structure in the temporal profile of the laser

pulse as seen in Figure 12. The mode beating structure is not reproducible from shot to
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Figure 10: Experimental configuration; side view.

shot and therefore will hamper reproducible plasma generation. The mode beating can be

eliminated by injecting a narrow linewidth, less than Av, beam into the laser cavity. The

energy of the injected beam is far above the photon noise of the cavity when the Q-switch

is fired, thus lasing occurs only in the axial mode whose frequency coincides with that

of the injected beam. The temporal profile of the single axial mode pulse is shown in

Figure 13 (solid line). The narrow linewidth pulse (0.003 cm -1) is near transform limited

in time (Full width at half maximum (FWHM) = 9ns). A Gaussian prof'fle of the same

FWHM width (dashed line) is shown in the figure for comparison. As can be seen by the

comparison, the temporal profile of the laser pulse is not quite Gaussian, but it is smooth

and reproducible. The data for both Figure 12 and Figure 13 are taken with an ANTEL
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Figure 11: Experimental configuration; side view of target.

Model AR-S2 photodiode (35ps rise time) connected to a 500MHz transient digitizer with

the injection see,%r of the laser blocked and unblocked, respectively. Finally, as with the

axial modes, lasing will occur in several transverse modes of the standard hard edged

resonator design for an unstable Q-switched cavity. 128 A cross-section of the near-field

spatial profile of another (Spectra Physics Model DCR-3) in the laboratory with a hard

edged resonator cavity is shown in Figure 14. The profile consists of an annular ring,

denoted by the outside peaks in the figure, with a central "spot of Arago", see Ref. 128.

The target will not be uniformally irradiated by this beam. The near-field spatial profile

of the laser can be improved by replacing the hard edged output coupler of the resonator

with a variable reflectivity mirror (VRM). 129'130'131 The laser used for the
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Figure 12: Temporal profile of the Nd:YAG laser pulse during unseeded operation.

experiments described in this dissertation is equipped with a VRM. As seen by Figure 15,

the near-field beam cross-section (solid line) is much more Gaussian in nature than with

the hard edged resonator of Figure 14. The FWHM of the best fit Gaussian to the VRM

profile (dashed line) is 8.2mm. Unfortunately, the spatial profile in Figure 15 is not

entirely smooth due to diffraction effects resulting from over filling of the oscillator and

amplifier rods in the laser. The next section will show how the diffraction affects the size

of the focal spot obtained on target. The data in Figure 14 and Figure 15 is taken with

an EG&G 1024 element reticon array (25#m pixel spacing) and a digital sampling

oscilloscope.

As seen in Figure 9, the 1.06#m output from the laser is frequency doubled in
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Figure 13: Temporal profile of the Nd:YAG laser pulse during seeded operation (solid
line) with a Gaussian pulse shape of the same (FWHM = 9nsec) width for comparison
(dashed line).

KDP providing 375 mJ of 532nm light for diagnostics and 200 mJ of residual 1.06#m

radiation for plasma generation. The plasma is preformed by focusing the 1.06/_m light

with a 500mm focal length, anti-reflection coated lens through the top of the target

chamber onto a disk target of aluminum, Figure 10. The aluminum target is one inch

long, 3/4 inch in diameter and machined on a lathe to provide a smooth surface finish.

After machining, the target is promptly placed under vacuum in the target chamber to

reduce oxidation of the aluminum surface. As shown by Figure 10, the target is rotated

to a new surface for each laser shot by a rotary stage (AEROTECH Model 50SMB2-HM)

which is connected to the target through a linear/rotary vacuum feedthru. When a
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Figure 14: Near-field spatial profile of the 1.06#m pulse produced by a Q-switched,
Nd:YAG laser equipped with a hard edged output coupler.

complete revolution of the target has occurred, approximately 720 laser shots, the

feedthru provides linear motion to a new target circumference position. By moving the

target in this manner, several thousand new surface shots can be obtained from a single

aluminum disk target. A linear/rotary beating supports one end of the shaft and reduces

wobble during target rotation. The focused spot size on target of the 1.06#m beam is

monitored with the same reticon/digital sampling scope system that was used for the near-

field measurements of the previous section. As seen in Figure 10, the reticon array is

placed behind the final mirror that directs the 1.06#m light into the chamber and monitors

the leakage through that mirror. By placing the reticon at the equivalent target distance
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Figure 15: Near-field spatial profile of the 1.06#m pulse produced by a Q-switched,
Nd:YAG laser equipped with a variable reflectivity mirror (solid line). The best fit
Gaussian (dashed line) is included (FWHM width 8.2mm).

from the mirror, the spot size on target is measured. The spot size measurement is shown

in Figure 16, where the circles are the data from the individual pixels of the reticon

(25#m spacing) and the dashed line is the best fit Gaussian through those points. The best

fit Gaussian has a FWHM width of 92 + 10/_m and can be compared m the spot size

predicted by focusing the beam profile of Figure 15 (Gaussian FWHM = 8.2mm)

through a 500mm focal length lens. It can be shown that the relationship between the

FWHM spot size at focus (dfoeus) and the FWHM beam diameter (D) of a near Gaussian

beam profile at the input of a lens is given by,
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Figure 16: Focused 1.06/zm beam at the target surface (circles) with a best fit
Gaussian profile (dashed line). The best fit Gaussian to the data has a width (FWHM
= 92 + 10/_m).

dlo = (dift. limiO( 0"44_'Q (47)

where X is the wavelength of the light, f is the focal length of the lens, and (diff. limit)

- 1 for a diffraction limited beam. Assuming the beam profile of Figure 15 is diffraction

limited, the spot size on target should be dfoeus -- 28.7/zm (from Eq. (47) with D =

8.2mm, _. = 1.06/zm, f = 500mm). Since the measured spot size on target is actually

dfocus = 92 + 10#m, the input beam is 3.2 +_0.3 times diffraction limited. This number

agrees with the 3.1 times diffraction limit specification for the laser. A diffraction limited

beam is not obtained from the laser due to the diffraction effects present in the beam
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profile as mentioned earlier. The peak intensity on target due to focusing the 200 mJ, 9ns

pulse to a spot size of 92#m is 2 x l0 II W/cm2. This intensity is deliberately kept low

to avoid the production of filamentation, stimulated BriUouin scattering (SBS), and

stimulated Raman scattering (SRS) instabilities mentioned in Chapter 1 which could

complicate the measurements of the electron density, sound speed, and radial drift in the

plasma.

The coordinates assigned to the plasma are shown in Figure 11 which is a close

up view of the plasma interaction area. The axial dimension (z) will refer to the direction

parallel to the 1.06#m plasma generating beam and z = 0 at the target surface. The radial

dimension (r) is measured in a plane perpendicular to the z-axis and assuming a

cylindrically symmetric plasma, the z-axis lies along the axis of the cylinder where r =

0. As seen in Figure 11, the diagnostic 266nm beam lies in the radial plane.

The ultraviolet diagnostic beam is obtained by frequency doubling the 532nm light

with an additional KDP ,_,'ystal,see Figure 9. This produces a maximum energy of 30

rnJ in a pulse width (FWHM) of 5ns at 266nm with a pulse-to-pulse energy stability of

+4 %. A Pellin-Broca prism is used to separate the 266nm from the 532nm light and the

polarization of the diagnostic 266nm beam (6pr) is adjusted perpendicular to the radial

plane containing k_ and kpr. This geometry will optimize the polarization factor Ik^so

x (k'sc x 6pr)12in Eq. (13) to maximize the Thomson scattering signal. An anti-reflection

coated, 300mm focal length lens focuses the diagnostic beam into the plasma to a

calculated spot diameter (FWHM = 20#m); The spot size given is calculated by

assuming the diagnostic beam has approximately the same diffraction properties as the
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1.06tim beam from which it is derived. After interacting with the plasma, the diagnostic

beam passes out of the other side of the chamber where its energy is monitored with a

photodiode connected to a pulse height analyzer. This diagnostic serves two purposes: it

allows for energy normalization of the data, and it provides a measurement of the plasma

absorption on the diagnostic beam. Both of these measurementswill be discussed in more

detail in Chapter 4.

Figure 17 is a ray trace through the collection optics which couple the Thomson

scattered light from the plasma into the spectrometer.The Thomson signal is collected

at 0ohs = 45° with an f/12, 250mm focal length, anti-reflection coated lens. The

scattering angle 0ohs combined with Eq. (I1) defines the average wave vector of the

30x301_m
Portion of

f/12 stop Plasma 150mm the plasma
_-/ image J f.1. _.

] x3 magnification ,/" _./

2'_Omm // " Horizontal slit ¢
Target "f.l. Targ.et surface lO0_m Spectrometer
Chamber _nage V,rtical slit

lO0_m

Figure 17: Optical schematic of the collection system which couples the Thomson
scattered signal from the plasma into the spectrometer.
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fluctuations that the diagnostic beam scatters from,

4re.s_°ohs ] (48)
k/l = "_'_,_ _-_] = 180787cm -1

where _'pr - 266nm. Scattering from ion-acoustic fluctuations causes only a small

frequency shift in the scattered light, therefore to derive Eq. (48), the scattered @'se) and

probe (_'pr) wavelengths are assumed equal in Eq. (11). The f-number of the collection

lens defines the range of ion-acoustic wave vectors from which the scattered light is

collected. In this case, the f/12 optic collects light scattered from ion-acoustic fluctuations

with a maximum wave vector of kfl - 189850 cm"1 and a minimum wave vector of kfl

= 171646 cm "1. This range of wave vectors represents only a _+5% fluctuation around

the average and will not seriously effect the measurements of electron density, sound

speed, and radial drift. The sound speed and radial drift measurements could be affected

if the wave vector distribution t, ge enough to obscure the exact position of the

peaks in a collective Thomson scattc_ cd signal. Although the range of wave vectors does

not affect the measurements of the three plasma quantities considered, the collection of

a distribution of wave vectors must be taken into account when performing any type of

line width analysis on Thomson spectra. From the 250mm focal length lens, the scattered

light is imaged with magnification three onto a horizontal slit (100ttm wide). The light

is further relay imaged, with unity magnification, onto the vertical entrance slit (100/_m

wide) of a spectrometer. The cross-slit arrangement selects a 30x30#m portion of the

plasma from which scattered light is collected with a depth of observation equal to vc2

times the diagnostic beam diameter. The spectrometer is a 0.85 meter double
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monochrometer (SPEX Model 1404) with 1200g/mm gratings blazed at 750nm and the

detection of the 266nm scattered light is done in third order. Time-integrated spectral data

are acquired through a 1024-element single-intensified reticon array (EG&G Model

1420UV) mounted at the exit slit of the monochrometer. The spectral resolution achieved

by the reticon is 0.032/l./pixel.

Stray light at the diagnostic wavelength )'or can limit the detectability of the

Thomson scattered signal especially near the target surface where surface scatter can be

enormous. This noise source is reduced in two ways, as seen in Figure 9. First, small

apertures are placedjust before and after the target. These allow only the diagnostic beam

to enter the plasma area and reject most of the scattered light generated by the beam

passing through the input and output windows of the vacuum chamber. Second, the

1.06/zm beam generating the plasma is chopped at 5Hz so that odd-numbered spectra

contain only background noise at )'pr- This background is subtracted from the even-

numbered spectra leaving only the Thomson signal. Even with these methods, the

accessible region for data acquisition is limited to axial distances >_60/_m, below which

the scatter from the target surface completely saturates the collection system. The

background subtraction technique outlined here will be discussed in more detail in

Chapter 4.

The intricate timing system needed to coordinate all of the components in this

experimental configuration is shown in Figure 18. The timing pulse that synchronizes the

system components originates from the Stanford Research Systems, Inc. Model SR540

Chopper which is used to chop the 1.06/_mplasma generating beam at 5Hz. The chopper
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Figure 18: Timing schematic for the Thomson scattering experimental configuration.

controller provides a 60Hz synchronization signal which is exactly twelve times the

chopper frequency. This signal is reduced to a 10Hz repetition rate by a divide by 6

circuit and then is used to trigger a Stanford Research Systems, Inc. Model DG535

Pulse/Delay generatt_r. The pulse/delay generator provides pulses at the 10Hz repetition

rate to the lamp sync and Q-switch sync inputs of the DCR-3 laser used for the

experiment. For optimum pulse energy from the laser, the lamp sync pulses must arrive

approximately 220/zs before the Q-switch sync pulse. Prior to arriving at the laser, the

Q-switch sync pulse is sent through a fan out box. The pulses from the fan out box

outputs provide exact synchronization between the laser pulse and the EG&G reticon and

AEORTECH rotary stagecontroller circuits. When an experiment is not being conducted,
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the laser is shuttered by an enable/inhibit pulse from the rotary stage controller which

unblocks/blocks _e Q-switch pulse from reaching the laser. Without a Q-switch sync, the

lamps will continue to fire at 10Hz but the oscillator cavity is kept from lasing. With the

wholesystemsynchronizedat10Hz,thestepsnecessarytocollectingdatacannow be

discussed. As mentioned previously, stray light is reduced by alternating Thomson and

backgroundshotsandthensubtractingthebackgrounddatafrom theThomson datawhich

also contains the background. A data point then consists of two laser firings, one in

whichthechoppeli_notblockingtheplasmageneratingbeam (Thomsonshooand one

in which the chopper is blocking the plasma generating beam (background shoO. A series

of data points can then be added together to provide better signal-to-noise in the collected

Thomson signal. The collection of a series of data points begins with initialization of the

rotary stage controller by the IBM AT computer. Next, the pulse height analyzer which

resides in the IBM AT is started in a free running mode_ The analyzer monitors the

energy in the diagnostic pulses via a photodiode and will only register data when a pulse

is incident on the photodiode. The reticon controller is then started in its data acquisition

loop. The loop consists of 20 alternating data acquisitions, the odd data sets are

accumulated in one memory location and represent the Thomson signal and the even data

sets are accumulated in another memory location and represent the background signal. At

thebeginningofthedataacquisitionloop,thecontrollersendsa startsignal,indicated

by Go! inFigure18,totherotarystagecontroller.The rotarystagecontrollerinturn

enables the Q-switch to fire in the laser and simultaneously begins turning the target to

a new surface for each laser shot. At the end of the data acquisition sequence, the reticon
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controller sends a stop signal to the rotary stage controller. The rotary controller then

proceeds to disable the Q-switch in the laser and stops the target from rotating. At this

point, the spectral data from the Thomson and background shots resides in the reticon

controller memory and the pulse energies from the diagnostic beam are recorded in the

pulse height analyzer. The data reduction techniques used to analyze this raw data will

be discussed in detail in Chapter 4.

Two key elements not mentioned to this point have an impact on the experimental

operation, rough alignment of the diagnostic beam and target debris. First, a rough

alignment of the diagnostic 266nm beam with the 1.06#m plasma generating beam is

facilitated by the use of the CCD camera (COHU Model 4815-2000) shown in Figure 10.

This camera monitors the plasma interaction region of the target surface through a x6

zoom lens coupled with a x3 telescope which provides an overall magnification of 18.

After generating a plasma from a fresh surface on the target, the diagnostic beam is

steered by transverse movement of the 300mm f.l. focusing lens, Figure 9, until it

scatters from the crater in the target surface produced from the 1.06ttm beam. The

scattered light from the crater is monitored by the CCD camera and this rough alignment
,p

places the diagnostic beam radially at a distance no further away from the z-axis of the

plasma than the FWHM spot size of the 1.06gm heater beam -_ 100gm. The second

important element not mentioned to this point that affects the operation of the experiment

is target debris. Since the experiment runs at a 10Hz repetition rate and a fair amount of

energy is present in the plasma generating pulse, = 200 rrd, a large amount of aluminum

is stripped from the target surface over a short period of time. The ablated aluminum
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from the target acts not unlike a sputtering source in an optical coater and begins

depositing on the windows of the chamber. The windows, if left undisturbed, will

eventually become opaque thus blocking the diagnostic and plasma generating beams from

entering the chamber as well as inhibiting the scattered light from exiting the chamber.

Since the chamber is continuously being evacuated by a turbo pump, a steadyflow of

helium can be added to the chamber in front of all the windows. The helium is allowed

to raise the base pressure of the chamber from its lowest range of -_ 10-7 tort to _. 10"3

torr. At room temperature, the helium background has a number density of nile = 3 x

1014 cm "3 and represents an insignificant fraction of the number densities of aluminum

generated in the laser plasma which are greater than 1018 cm-3. Since the concentration

of helium is small, it will not affect the plasma generation. On the other hand, the helium

background does affect the mean free path of aluminum once it disperses from the plasma

generating area. The mean free path, l_d, of an aluminum atom in a binary mixture of

'_ helium and aluminum is given by, 132

4
lat = 2 (49)

4_oatnal + n(c_at + oH,)2nn,

where a is the diameter of the particle and n is the number density. Assuming the helium

has much higher number density than the aluminum far from the plasma source and the

diameter of aluminum and helium atoms is the same, -_ 3 Angstroms, hal can be set

equal to zero in Eq. (49) and OrAl= ane = 3 Angstroms. The mean free path for

aluminum with the background density of helium at nile = 3 x 1014 cm "3 from Eq. (49)

is then IAI = 1.2cm. Since the distance from the plasma to the windows of the chamber
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is 30cm, tile aluminum atoms will suffer approximately 25 collisions before reaching the

windows. In spite of helium presence, the windows of the chamber did have to be

replaced a couple of times over the duration of the experiment.

This chapter has described in detail the collective Thomson scattering experimental

configuration used for obtaining two-dimensional electron density, sound speed, and

radial drift profiles from a collisional laser plasma. Some effort has been made to

assemble a system which will repetitively generate a plasma which is reproducible in the

three quantities measured. The reproducibility allows a two-dimensional image of the

plasma to be generated from a collection of single point measurements from different

plasma shots. The high repetition rate at which the plasma is formed allows noise

reduction techniques to be used on the data. Other considerations such as stray light

reduction, system timing, rough diagnostic beam alignment, and target debris have also

been discussed. The actual, degree of reproducibility of the three quantities, electron

density, sound speed, and radial drift in the plasma will be analyzed in the next chapter.
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Chapter IV: Data acquisition and analysis

In this chapter, collective Thomson scattering from ion-acoustic waves will be

used as a diagnostic to obtain two-dimensional electron density, sound speed, and radial

drift profiles of a collisional laser plasma. The data presented in this chapter represents

the first time detailed measurements of a collisional, laser-generated plasma have been

made using 266nm collective Thomson scattering. The Thomson scattering measurements

will be conducted on a point to point basis, and ,dam from different plasma shots will be

collected together to form the overall two-dimensional image of the three plasma

quantities listed above. The plasma generated for these experiments must be reproducible

in order for the data to be meaningful. The techniques used to generate a reproducible

plasma have been outlined in Chapter 3, and this chapter will demonstrate that the plasma

is in fact reproducible in electron density, sound speed, and radial drift. Along with

plasma reproducibility, the diagnostic beam and the field of view of the collection optics

must be aligned absolutely so that the exact position is known in the plasma for each data

point. The techniques for positioning the diagnostic system absolutely at a given point are

different for the axial and radial directions in the plasma and will be discussed. After the

exact position in the plasma has been established, the process of data collection and

analysis can begin. The collection of Thomson spectra and the subsequent analysis needed

to measure the sound speed and radial drift is simple and straight forward, but in order

to make the electron density measurements, relative energy calibration of the Thomso-.

scattering collection system and a much more involved analysis are required. The process

I_' F qltr
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for energy calibrating the system using Rayleigh scattering will be discussed along with

the additional data analysis necessary for accurate electron density measurements from

collective Thomson scattering. The problems of background light from the plasma,

inverse bremsstrahlung and refractive turning of the diagnostic beam mentioned in

Chapter 1 will be considered as they affect the acquisition of the Thomson scattered

signal. The two-dimensional data obtained from the collisional plasma in these

experiments will be compared to the same quantities predicted by a LASNEX simulation

for the plasma. Detailed comparisons between experiments and computer simulations of

this type are important for benchmarking the simulations for future calculations. In

addition to LASNEX, several simple but physically based models will be presented to

demonstrate the self-consistency of the electron density, sound speed, __ndradial drift

measurements. The data from these experiments will also show inconsistent peak height

asymmetries which to first order cannot be accounted for by traditional heat transport

alone. New developments in Thomson scattering theory are needed to investigate the peak

height asymmetries and their relation to heat transport. These new developments will be

presented in the next chapter.

As outlined in Chapter 3, collective Thomson spectra are accumulated by

averaging two sets of ten shots for each point in the plasma. One set of ten shots is the

Thomson signal plus the background noise and the other set is just the background noise.

The accumulation of data increases the signal-to-noise ratio over that of single-shot

acquisition by approximately the square root of the number of shots accumulated. While

at high densities, signal-to-noise is not an issue, averaging allows for measurements at
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Figure 19: Raw ,data of collective Thomson scattering from a single point in the
plasma which entails signal + background and background data sets.

much lower densities than single-shot operation. Figure 19 shows actual Thomson

scattered data collected from one point in the aluminum plasma. The background signal

is due to scattered light from the target surface that enters the collection optics and lies

at the laser frequency which is at 0 on the x-axis of the graph. As seen in Figure 19, the

Thomson plus background signal not only contains background scatter from the diagnostic

beam but also a baseline level that is due to bremsstrahlung emission from the plasma.

The bremsstrahlung background is not entirely flat and the noise associated with the

background affects the lowest Thomson signal level that is detectable. Although in

ge,-:ral, background noise from plasma emission also contains resonant lines from bound-
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Figure 20: Collective Thomson scattered signal obtained after background subtraction.

bound transitions which can interfere with the signal, the aluminum plasma has no such

lines in the portion of the spectrum around 266nm. The reason for collecting the

background target surthce scatter separately from the Thomson plus background signal

is evident by Figure 19. The collective Thomson signal should have two peaks one of

which is obscured by the target surface scatter in the raw data. The target surface scatter

can be eliminated by subtracting a fraction of the background signal from the Thomson

plus background signal. The resulting spectra is shown in Figure 20. The two peaks in

the collective Thomson signal are now both visible with the bremsstrahlung baseline still

present. Since the amount of scatter from the target surface is influenced by the presence

of the plasma, the target surface scattering level in the Thomson plus background signal
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is different than the level collected in just the background signal with no plasma present.

This is the reason why only a fraction of the background signal need be subtracted to

eliminate the target scatter from the collective Thomson spectrum. This fraction typically

varies from 40-100% depending on the plasma shot and the exact amount subtracted

directly affects the valley depth between the peaks in the Thomson spectra. Since the

electron density is related to the total number of counts under the Thomson peaks, the

subjective background subtraction introduces some human error into the electron density

measurements. Fortunately the valley depth has a reasonable range of locations: low

enough to eliminate the target scattered peak from the Thomson spectrum but no lower

than the baseline of the Thomson spectrum. Since the valley represents a narrow section

of the Thomson spectrum in these experiments, the reasonable range of valley depths does

not significantly effect the number of counts under the Thomson peaks or the electron

density measurements. Unfortunately even with background subtraction, the scatter from

the target surface becomes too large at axial distances _<60ttm to back out a discernable

Thomson scattered signal. It should also be noted that at axial distances _> 100/_m,

background subtraction is not typically needed since the target surface scatter at these

axial distances is much smaller than the Thomson signal.

Of the three quantities, electron density, sound speed, and radial drift, the

measurement of electron density from collective Thomson scattering is the most involved

part of the data acquisition. The electron density is measured by utilizing Eq. (13) which

relates the electron density to the Thomson scattered power. The time integral of the

scattered power, the scattered energy, is monitored by the reticon detector on the back
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end of the collection system used in these experiments, see Chapter 3. The reticon

detector records the time integrated ion-acoustic Thomson spectrum and the sum of the

counts under the ion-acoustic spectrum can be related to the total scattered energy when

the collection system is properly calibrated. The total scattered energy collected (EseT)

that comprises the ion-acoustic part of the Thomson spectrum can be found by integrating

Eq. (13) over low frequencies and over all time,

(50)

j

where Epr is the energy in the diagnostic pulse, the polarization factor [k'_ x (k'_ x

6pr) I has been set equal to 1 because 6pr ± k^sc, kia is the ion-acoustic or fluctuation

wave vector from Eq. (48), and the provision for a time-dependent electron density

i*
[ne*(t)] and total ion cross section [S T (kia,t)] is included through Bad j. The quantities

i*
ne and STi(kia) represent the maximum values that [ne*(t)] and [ST (kia,t)] obtain,

respectively, and fiadj <_ 1 contains the temporal integration, i.e.,

* i* t(,)s.(k.. (51)
13_dj=

t k

i*
If ne*(t ) and ST (kia,t) are stationary over the width of the diagnostic pulse, _adj _" 1.

The fiadj parameter is necessary for analysis of the data for these experiments because of

the length of the diagnostic pulse compared to the length of the plasma generating pulse.

The 266nm diagnostic pulse length is 5ns (FWHM) and the pulse length of the 1.06#m

beam generating the plasma is 9ns (FWHM). Therefore with the peak of the diagnostic
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Figure 21: Time dependent electron density at r=0 and z=65tzm as computed by
LASNEX. The 5ns (FWHM) Gaussian diagnostic pulse is included for reference.

and plasma generating pulses overlapped in time, a fraction of the time development of

the plasma is probed around the peak of the plasma generating pulse, and the plasma

quantifies being measured can by no means be considered constant over the 5ns diagnostic

pulse length. The only way to approximate the value of Badj for the laser plasma being

studied is to assume the temporal development of the plasma quantities: electron density

* $

(ne (t)), electron temperature (Te (t)), and average ionization state (Z*(t)) predicted by

LASNEX are generally correct. Figure 21, Figure 22, and Figure 23 show the temporal

development of tile electron density, electron temperature, and average ionization state

predicted by LASNEX as a function of time at axial distance z = 65#m and radial
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Figure 22: Time dependent electron temperature at r=0 and z=65#m as computed by
LASNEX. The 5ns (FWHM) Gaussian diagnostic pulse is included for reference.

distance r = 0/_m. Since the LASNEX calculation is only carried out for times less than

0ns, the temporal development of the quantities for times greater than 0 in the figures

have been approximated to be symmetric with the values at times less than 0. The peak

of the diagnostic and plasma generating pulses lie at time = 0ns, and the 5ns (FWHM)

Gaussian diagnostic pulse, Ppr(t) = exp(-(t/3)2)/3_r, is shown in the figures for

reference. As shown by Figure 21, Figure 22, and Figure 23, the plasma quantities are

not quite constant over the duration of the diagnostic pulse. The time dependent electron

Debye length (_'DE "- (kBTe/47rnee2) 1/2 ) Can be calculated from the electron density and

temperature data which in turn can be used to calculate the time dependent c_*(t) with
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Figure 23: Time,dependent average ionization state at r=0 and z=65gm as computed
by LASNEX. The 5ns (FWHM) Gaussian diagnostic pulse is included for reference.

cz*(t) = 1/kiaZDE(t ). The time dependent total ion cross section STi*(kia,t) is then found

from Figure 8 using the tr*(0 and Z*(0 data under the assumption that the electron and

ion temperatures in this collisional aluminum plasma are about the same, ZTe/T i = Z.

Since the plasma is collisional and the electron-ion energy equilibration time is less than

the plasma generating beam pulse length, a result that will be calculated from the

experimental data, the approximation that the electron and ion temperatures are about the

same is justified. With ne*(0 , STi*(kia,t), and Ppr(t), 13adj can be calculated from Eq.

(51). Figure 24 displays the results for Badj at radial position r=0 and axial positions

between 65gm and 235gm as determined by LASNEX. The average f_adjover the range
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Figure 24: The parameter Badj at r=0 as a function of the axial distance z.

of axial positions is =.9 and these calculations show that the Thomson scattering

efficiency into the ion-acoustic feature will be reduced by 10% from the efficiency that

would be obtained if the quantities ne*(t ) and STi*(kia,t) where constant in time. The

effects of non-stationary plasma conditions on the Thomson scattering efficiency could

be eliminated entirely if a shorter ( -- lns) diagnostic pulse where used, but unfortunately

this pulse duration cannot be achieved with the current experimental configuration.

The values of l]adj, STi(kia), and e-_ are needed in Eq. (50) to determine the

electron density from the Thomson scattered power. As in the previous section, STi(kia )

can be determined from Figure 8 with knowledge of t_ and the average ionization state

Z again with the assumption that the electron and ion temperatures are about equal. As
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will be shown later, the sound speed data from the experiment indicates that the range

of values for ct and Z in the region of interest in the plasma is 3 ____ < 15 and 5 <_Z

___8, yielding STi(kia ) -- 0.80 -t- 0.06 from Figure 8. The factor e"z is a measure of how

much of the diagnostic beam is absorbed by the plasma through inverse bremsstrahlung.

The absorption is monitored by the photodiode/pulse height analyzer combination

described in Chapter 3. In performing the experiments, there is no detectable absorption

due to the plasma in the accessible region (axial distances > 60#m) in excess of the

inherent +4% amplitude noise on the 266nm diagnostic beam. Therefore, the absorption

factor is given by e"a = 0.96 + 0.04.

As mentioned earlier, the number of counts monitored by the reticon array can be

related to the Thomson scattered energy Esc T with a properly calibrated collection system.

This calibration is obtained through Rayleigh scattering. Once the system has been aligned

to maximize the Thomson signal, the plasma is turned off by blocking the 1.06#m

generating beam. The chamber is then filled with a gas and Rayleigh scattering is

performed. The gas passes through a 5ttm filter before entering the chamber. This

removes the dust particles that can scatter large amounts of light, especially in the

forward direction, thereby producing spurious results133. In the experimental geomeWy

used for these experiments, the Rayleigh scattered energy (EsoR) is given by a formula

similar to Eq. (50) for the Thomson scattered energy (EscT),

2t]( P__P]( V___]dfl (52)e:dO: e. x' )tk r)t'4)

where Ymol is the molecular polarizability of the gas, _. is the wavelength of the
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Figure 25: Pulse. height analyzer output of 266nm diagnostic beam energy from the
Rayleigh calibration. The RMS pulse-to-pulse amplitude fluctuation of the diagnostic
beam energy is +4 %.

diagnostic beam, kB is the Boltzmann constant, and P and T are the pressure and

temperature of the gas, respectively. Taking the ratio of Eq. (50) to Eq. (52) and

rearranging, the electron density becomes,

42 T A

The Thomson and Rayleigh scattered signals can be normalized (i.e. Esc/Epr--, < Esc> )

by monitoring the diagnostic power Epr with the photodiode/pulse height analyzer

combination. This normalization provides a relative calibration between the counts
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Figure 26: Calibration curve for the normalized counts <EscR> from Rayleigh
scattering in oxygen. The best fit (line) to the data (circles) has a slope of m = 3.96
x 10-4 Torr "1.

recorded by the reticon array and the scattered energy. The absolute calibration of the

coUection system involves performing Rayleigh scattering at several different gas

pressures. Extensive signal averaging is used to reduce the effects of noise sources such

as dust particles. At each point, the scatter from 2500 laser shots is integrated by the

reticon array and normalized to the recorded diagnostic energy on the photodiode/pulse

height analyzer. The output from the pulse height analyzer from one of the data points

is shown in Figure 25. The noise on the diagnostic beam is found from the RMS

fluctuation of the signal and as stated before is +__4%. The normalized signal collected by

the reticon array is plotted versus gas pressure and the linearity from Eq. (52) is
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confirmed and shown in Figure 26 for scattering from oxygen (02) gas at room

temperature T = 293 K. Deviations in the linearity at higher gas pressures are indicative

of gas breakdown and the pressure must be kept below this breakdown threshold in order

to produce an accurate calibration. An appropriate choice of gas must be made on the

basis of the diagnostic wavelength. The intensifies at which the Rayleigh scattering is

performed are typically > 101° W/era 2, therefore, one- and two-photon resonant

transitions in the gas at the probe wavelength should be avoided. Such resonances can

unpredictably change the polarizability of the gas. For example, the Lyman-Birge-

Hopfield lines 134 of N2 are two-photon allowed in the vicinity of 266nm. On this

basis, 0 2 is chosen for calibration and its molecular polarizability is Ymol = 1.76 x 10-24

cm 3 at the diagnostic wavelength _ = 266nm 135. From the Rayleigh scattering results

in Figure 26, the normalized Rayleigh scattered energy is related to the pressure of the

gas P by a slope m = 3.96 x 10-4 Torr -1 (<EscR> --- mP). This relation with the

normalized Thomson scattered energy < EscW> can be substituted into Eq. (53) to yield,

16-n4y2___-_li(<Esrc>et_i=l.46+O.29xlotg<Esrc>Cm-3 (54)

n,= _.4orS_(k_))_mknT_'--'---__ )

where the final equality is found by substitution of the values for the quantities given

earlier and the error associated with the electron density measurements is 5:20%.

The sound speed and radial drift measurements of the plasma are easier to obtain

than the electron density measurements because they are evaluated from the peak positions

in the collective Thomson spectra. The sound speed cs is related to the peak separation

copeakin the collective Thomson scattered signal through the dispersion relation for ion-
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acoustic waves,

2ncA _'p_o_= 2co_. = 2.k_ac_ (55)
A_ = _2

where _ = 266nm is the diagnostic wavelength, c is the speed of light, and kia = 180787

cm 1 is the ion-acoustic wave vector. Since the resolution at the reticon detector is 0.032

angstroms/pixel, Eq. (55) can be rewritten for the sound speed in terms of the separation

of the peaks in pixels on the reticon array,

cs = 2.36 x 105A_pt_t_ c._ff_m (56)

The sound speed is given by Eq. (45) for this collisional plasma, the average ionization

state/electron temperature product ((Z+5/3)Te), which is basically the sound speed

squared, can also be written in terms of the peak separation in pixels. Since 3_< c_ <

15 for this experiment, the ar2/(a2+ 1) ratio in Eq. (45) can been set equal to 1. With the

mass of the aluminum ion given as mi = 4.51 x 10-23 g and the electron and ion

temperatures assumed equal, Eq. (56) and Eq. (45) are combined to yield the (Z + 5/3)T e

product,

(z ,+ T_ = 1.58 A3.t,t_t_ eV (57)

The sound speed measurements from the experiment will be displayed in terms of the

(Z+5/3)T e product from this equation instead of just cs from Eq. (56). The error

associated with the measurements is given by a plus or minus pixel error reading of the

peak separation on the reticon array, A kpixel -- -+-1. The radial drift velocity is measured
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by the Doppler shift in the collective Thomson spectrum. The shift is measured by

f'mding the position exactly halfway between the peaks in the spectrum and comparing

that position to the position of the diagnostic wavelength _'pr on the reticon array. The

shift A_-shift from _'pr can be related to the radial drift velocity Urad. Since the Thomson

scattering process takes place solely in the radial plane, see Chapter 3, the ion-acoustic

wave vector kin lies in the radial plane, see Eq. (11), and the frequency shift term

(kfl.Udrif t) in the Thomson scattered frequency given by Eq. (12) can be written as,

2ncA_,a_$

where & is the angle between the ion-acoustic wave vector kia and the radial drift velocity

Ura d. Eq. (58) can be rearranged for the radial drift velocity in terms of the Thomson

spectral shift in pixels on the reticon array,

4.72 x lOSALshe(pixels) cm (59)
Urad = COS_# $

The error in the radial drift velocity measurements results from a + 1 pixel uncertainty

in the spectral shift when read from the reticon array. The radial drift velocities will be

normalized to the sound speed (U,.ad/Cs)for presentation of the data. This allows for easy

location of the radial sonic point in the plasma where Urad/Cs = 1. The unresolved factor

in Eq. (59) is the cosine of the angle • between the ion-acoustic wave vector and the

radial drift which can be determined by absolute alignment of the diagnostic beam in the

plasma.

Absolute distances in the plasma are measured differently for the axial and radial
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Figure 27: Radial x-y plane at an arbitrary z position in the plasma. Assuming a
cylindrically symmetric plasma, an on-axis diagnostic beam will produce a symmetric
Doppler shift in the Thomson signal about x=0.

directions. In the axial direction, the target surface is used as a reference point. With only

the diagnostic beam grazing the target surface, the horizontal slit in the collection system,

see Figure 17, is moved to maximize the scattered signal at _'pr" A spatially sharp

maximum occurs when the slit is aligned with the image of the target surface and the
[

accuracy of the position is given by one-half the effective slit width (i.e. -4-_15_m). The

slit is then moved to the desired axial position and the diagnostic beam is aligned axially

with the slit by maximizing the detected Thomson signal. Measurements in the radial

direction are performed by translating the image of the plasma across the vertical slit of

the spectrometer, scc Figure 17, which selects a different portion of the diagnostic beam
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to scatter from. The position of the diagnostic beam in the radial plane can be found

through the use of the radial drift velocity measurements. Figure 27 depicts the radial x-y

plane (r = (x2 + y2)1/2) at an arbitrary z position in the plasma. Values of x>0 refer

to the front of the plasma where the diagnostic beam enters and values of x < 0 refer to

the back of the plasma. As seen in the figure, the pair of ion-acoustic wave vectors

integrated by the 45 degree scattering geometry are oriented at 67.5 degrees with respect

to the x-axis. This orientation is determined by the phasematching condition for Thomson

scattering in Eq. (11). The ion-acoustic wave with wave vector kia produces the blue

shifted peak in the Thomson spectrum and the ion-acoustic wave with wave vector -kia

produces a red shift. Assuming the plasma is cylindrically symmetric, the radial drift

velocity is zero at the center of the plasma (r=0) and increases uniformly in all directions

away from the center of the plasma. If the diagnostic beam lies on the x-axis, then the

magnitude of cos¢I, in Eq. (59) is cos(67.5) for any position 'along the diagnostic beam

and changes sign from plus to minus when crossing from x > 0 to x < 0. In this case, the

Doppler shift in the Thomson spectrum will be symmetric when scattering is monitored

from a portion of the diagnostic beam to either side of x =0. In other words, a red shift

will occur towards the back of the plasma for x =-x o, an equivalent blue shift for x = Xo,

and no shift will occur for x =0 as depicted by the Thomson spectra shown in Figure 27.

If the probe is off axis, the magnitude of cos,I, is not constant along the probe path and

its sign will be predominantly plus or minus depending on which side of the x-axis the

probe is on. For example, the off-axis probe in Figure 27 will produce a red Doppler

shift for most of the probe path. The symmetric Doppler shift is used to position the
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Figure 28: Plasma reproducibility. The dots (...) represent eight independent
Thomson spectra collected at the same point in the plasma. The solid line (--) is the
average of the independent spectra.

diagnostic beam along the x-axis. When the diagnostic beam is coincident with the x-axis,

the factor cos(I, is a constant in Eq. (59) and the radial drift velocity can be measured

directly from the Doppler shift in the spectrum. The z-axis reference is found, with an

accuracy of +_15/%m, when no Doppler shift due to the drift velocity occurs. The

existence of a symmetry in the shift proves the plasma is cylindrically symmetric in its

radial expansion velocity.

The laser produced plasma generated in this experiment must be reproducible in

the context of the three quantities being measured: electron density, sound speed, and

radial drift. The reproducibility guarantees that pointwise measurements from different
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plasma shots are correlated. Figure 28 shows the collective Thomson spectrum from an

arbitrary point in plasma for eight independentdata sets from different plasma shots. The

data is given by the dots and the solid line is the average of the eight sets. The absolute

fluctuation of the integral of the normalized counts under the spectra (electron density)

around the eight set average is ___7%. Therefore, theelectron density is reproducible from

plasma shot to plasma shot. The sound speed which is proportional to the separation of

the peaks is constant from shot-to-shot within the + 1 pixel reading error of the peak

separation. The radial drift which is proportional to the Doppler shift of the spectrum

from the diagnostic wavelength _'pris also constant from shot-to-shot within the + 1 pixel

reactingerror. In this case, the Doppler shift is approximately zero because the diagnostic

is aligned with the z-axis of the plasma. These results experimentally verify that the

plasma is reproducible on average in the three measured quantities.

The diagnostic beam must also be nonintrusive in order for the data to be

meaningful. In other words, inverse bremsstrahlung absorption of the diagnostic beam

must be small to avoid local heating in the plasma which would affect the sound speed

measurements. The photodiode/pulse height analyzer detection system already indicates

that the absorption of the diagnostic beam due to the plasma is small, less than = 4 %, in

the region of interest. The small absorption is corroborated by the results of the

measurement conducted in Figure 29. The measurement involved lowering the diagnostic

(probe) intensity by a factor of three while monitoring the peak separation (sound speed)

from the Thomson spectra at the same point in the plasma. Since the sound speed does

not vary over the full range of probe intensities, the diagnostic is assured to be
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Figure 29: Thomson spectra taken at the same point in the plasma for different-
diagnostic intensifies. The sound speed, peak separation, is independent of diagnostic
intensity.

nonintrusive within the measurement errors of the experiment.

The results from the collective Thomson scattering measurements of the laser

produced plasma are shown in Figure 30, Figure 31, and Figure 32. The quantities:

normalized electron density (ne/n e) where ne = 1 x 1021 cm -3 is the critical density of

the 1.06#m plasma generating beam, sound speed squared %2 = (Z + 5/3)T e (eV), and

normalized radial drift velocity (Undies) are measured in the x-z plane in the plasma. The

graphs are a result of taking a linear interpolation between data points on a 6x9 grid, 6

axial points and 9 radial points. Since error bars on the data cannot be displayed in this

fashion, the graphs are meant to provide only a global view of the plasma quantities.
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Figure 30" Contour plot of the experimentally measured normalized electron density
(ne/ne) from collective Thomson scattering.

Radial distances > 100#m are not included to limit the number of grid points, and

therefore the amount of data to a reasonable level. A scan at z = 165#m and r < 350ttm

is taken for comparison with LASNEX for r > 100#m and will be presented shortly.

Before a comparison is made between the data and LASNEX, some insight can

be gained by applying simple physical modeling to the two-dimensional data. First, the

electron density contours of Figure 30 are constant in the radial dimension. This

dependence is expected because the measurements are made only from the central portion

of the plasma to just outside of the FWHM = 100#m plasma generating beam diameter

and the spherical nature of the plasma expansion will only become apparent at larger
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collective Thomson scattering.

radial distances.

Figure 31 is the contour plot of the product of the two-dimensional average

ionization state (Z) and electron temperature (Te). The average ionization is a function

of the electron temperature and by applying the appropriate equilibrium model, the two

quantities Z and Te can be independently approximated from the data. Assuming the

plasma has reached a steady ionization state by the peak of the plasma generating pulse,

one of three equilibrium models may be applied: LTE equilibrium model, Coronal

equilibrium model, or Ionization balance model. The time re necessary to reach steady

state for an average ionization Z can be approximated by 136,
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Figure 32: Contour plot of the experimentally measured normalized radial drift
velocity (Urad/Cs) from collective Thomson scattering. The circles are the sonic surface
position predicted by modeling.

_ 1 (6o)

where ci°nize(Z,Te) is the electron temperature dependent ionization coefficient for a ion

of charge Z in its ground state. The ionization coefficient is given approximately by (Ref.

136),

9 1o-' z(r, / xz) exp cm3s -1 (61)

C_ze(Z'T') = _3zt2(4.88+ (Tel)_z))

where the electron temperature and ionization energy of an ion of charge Z are in (eV)
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Figure 33: Approximate time % necessary to reach a given ionization state Z in a
plasma with Te = 40 eV and a range of electron densities (1019-1020cm'3).

and _z is the number of electrons in the outer most shell corresponding to a charge state

Z. For the aluminum plasma studied in this experiment, Eq. (60) and Eq. (61) are used

to find the ionization time required to reach a given charge state for an approximate

plasma electron temperature of 40 eV. Figure 33 shows the results for the range of

election densities (1019-1020cm-3) measured from the contours in Figure 30 for this

experiment. Because of the density dependence in Eq. (60), a given charge state at the

highest electron density 1020 cm3 will arrive at steady state faster than the lowest

electron density 1019cm-3 as seen in the figure. The charge states (Z < 6) are reached

in less time than the time scale of the plasma generating pulse (9ns) are most likely to be
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Figure 34" Electron densities required as a function of electron temperature for an
aluminum species to be in LTE. An aluminum species is in LTE when the density lies
above the line for that species.

in steady state at the peak of the pulse, while the highest charge states (Z=7,8) generated

in this plasma may not be in steady state. However, the plasma charge states are

approximately in steady state. The three equilibrium models used to relate the average

ionization state to the electron temperature are applicable under different plasma

conditions. LTE or local thermodynamic equilibrium 137 applies to high density

plasmas in which the collisional excitation rates of energy levels in a given ion are much

faster than the deexcitation rates due to spontaneous emission of a photon. Under these

conditions the excited state levels of an ion are populated according to a Boltzmann

distribution. The order of magnitude criteria for the plasma electron density in which an
r
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ion can be in LTE is given by (Ref. 137),

n, _ 1.34x101'T)rz(,_ E,,,,)3 "cm -3 (62)

where the electron temperature Te and energy gap /_tEnm are in (eV). The energy gap

Z_Enmfor an ion is given by the energy difference between the ground state (shell =n) and

lowest excited state for which an electron lies in (shell =n+ 1). Using the energy levels

for aluminum ions ]38, the criteria for an ion of charge state Z to be in LTE can be

calculated from Eq. (62). Figure 34 shows the results of the calculation for species Al

I - A1 IX along with the approximate plasma conditions for this experiment. As seen by
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the figure, neutral through doubly ionized aluminum ions (AII - AI III) are definitely in

LTE for the laser plasma, but species AI IV and higher are only approximately in LTE.

The coronal model 139 holds in the opposite limit of LTE in low density plasmas where

radiative de,excitation rates are much larger than collisional excitation rates. The ions the

coronal model are all in their ground state and the average ionization state is

approximated by, 14o

I r, 1'n
Z,_=2 1 + /]/26_2T_ (63)

where the electron temperature in is (keV) and ZA is the atomic number. Since the

plasma for this experiment is almost in LTE, the coronal equilibrium model will not

apply. When a plasma lies between the LTE and coronal electron density limits, an

intermediate model must be applied and the ionization balance model 141 can be used

for this purpose. The ionization balance model includes all of the appropriate

excitation/ionization and deexcitation/recombination processes for the ions without making

approximations about their relative magnitudes as is done with the LTE and coronal

models. The average ionization state predicted by all three models for the aluminum

plasma in this experiment as a function of electron temperature are shown in Figure 35

for a electron density of ne = 1 x 1019 cm"3. The LTE and ionization balance model,

NLTE in the figure, calculations where graciously done by Y.T. Lee, author of Ref. 141,

and the coronal model results are given by Eq. (63). As noted by the figure, the

ionization balance (NLTE) and LTE results are identical for electron temperatures in
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which the average ionization less than 3. This result is expected from the calculations in

Figure 34 which show the low lying charge states to be in LTE for the aluminum plasma.

For higher electron temperatures the LTE model over estimates the average ionization

state from the ionization balance model becau,_:eions of higher charge states will not be

completely in LTE. The coronal model on the other hand under estimates the ionization

state in the aluminum plasma for almost the entire range of electron temperatures. From

the arguments above, the ionization balance model seems adequate to relate the average

ionization state of the aluminum plasma in this experiment to the electron temperature.

Also, the ionization balance model calculations for an electron density of 1 x 1020cm"3

do not differ appreciably from those values predicted by the model at ne = 1 x 1019cm"3

in Figure 35. Therefore utilizing the ionization balance model results of Figure 35, the

two-dimensional (Z + 5/3)Te data from Figure 31 yields a maximum electron temperature

of 45 eV with average ionization of 8.2 for a product (Z + 5/3)T e - 440, and a minimum

electron temperature of 25 eV with average ionization of 6.2 for a product (Z + 5/3)Te

= 200 in the region covered by the two-dimensional contour plots. So as promised much

earlier in this chapter, this analysis has shown the average ionization ,stateZ does lie in

the range 5 <__Z < 8, and with the two-dimensional electron density data from

Figure 30, the approximate range for c_is 3 < ot < 15.

Another physical model can be used to approximate the radial sonic point in the

plasma, (Urad/Cs= 1). These results can then be compared to the actual position of the

sonic point measured by the experiment. The electron and ion steady state equations of

motion in the radial direction along the x-axis are given by (Ref. 10),
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eE + 1 igP,, c3T+A " -0

n, Ox Ox (64)

dvl= IOPl + ZeE + A ntOTe
mlV'ax-- n__ n,

where the e and i subscripts refer to the electron and ion quantities, respectively, E is the

electric field, P is the pressure, v is the velocity, m is the mass, and the last term in each

equation is the thermal force in which the coefficient A is a slowly varying function of

Z with A --- 1 (Ref. 10). By eliminating the electric field between the two equations, the

derivative of the ion velocity can be written in terms of the electron and ion pressures,

re,avE _ 10P,_ Z 0P_ _ 1 0(P, + Pc) (65)
2 0x ni ax ne Ox n_ 0x

where the last equality is obtained by assuming quasineutrality (ne = Zni). The pressure

is related to the density and temperature through the perfect gas law (P=nT), therefore

(Pe/Pi) = (neTe/niTi) = Z when the electron and ion temperatures are approximately

equal. With this approximation and the assumption that the electron density is a constant

in the radial direction, a fact corroborated by the contour plot of Figure 30, Eq. (65) can

be rewritten to yield,

_ _T_(1 + I/Z)) (66)m_Ov2 -Z.
20x Ox

This equation can be integrated from the center of the plasma (x=0) where vi = 0 to

(X=Xo) where the ion radial drift velocity equals the sound speed (vi = %). The integral
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of the term on the fight side of the equation cannot be done in general and must be

approximated by letting the ionization term equal its average of the interval 0 < x < Xo,

i.e. Z ._ <Z>,

m x, C3V2

2 _ Ox (67)
Xa

= - f z0(T'(1 + l/LO)dx _. <Z>[(T,(x,,)(1 + I/Z(x,,))) - (T,(0)(1 + I/Z(0)))]Ox
x=O

With the sound speed given by %2 = (Z+5/3)Te/mi for equal electron and ion

temperatures Eq. (67) can be rearranged and written in its final form,

Te(x")[(Z(x") + 51312+ <Z>(I + llZ(x,,))] = <Z>(I + I/Z(O))T,,(O) (68)

This equation relates the electron temperature and ionization state at the radial sonic point

to the same two quantifies at the center of the plasma. By solving Eq. (68) with the

(Z + 5/3)T e data of Figure 31 and the ionization balance model, the radial position of the

sonic point can be predicted and compared to the somc point (Urad/Cs = 1) measured in

the actual radial drift velocity data of Figure 32. The circles in Figure 32 represent the

sonic point positions as calculated by Eq. (68). For positive radial positions, the model

and the experiment actually agree within the error bars for the data which cannot be

displayed on the contour plot. For negative radial positions, the sonic surface lies mostly

outside of the experimental region. The predicted points that do fall within r > -100_m

still agree fairly well with the data. As a final note, for large and constant values of Z

in Eq. (68), th,. electron temperature at the sonic surface is simply related to the electron
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Figure 36: Measured electron density (*) on axis as a function of axial distance.
Results from a LASNEX simulation (---) and the analytical spherical model (- - -) are
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temperature at the centeI of the plasma by, Te(Xo)=(2/3)Te(0) [J.S. De Groot].

Now that the two-dimensional data has been shown to be consistent with some

physical models, it can be compared with LASNEX. LASNEX is a two-dimensional,

Lagrangian, hydrodynamic simulation performed in a cylindrical r-z geometry. The time

step is on the order of 1 psec. The spatial extent of the plasma is divided into 2000

Lagrangian zones that represent cylindrical macroparticles that move, expand, compress,

and change shape according to pressure gradients. The laser that produces the plasma is

modeled by several hundred rays that are traced from the (f/50) source through the

plasma including refraction, absorption, and possible exit from the problem. For each
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time step, laser-light energy absorbed by electrons is transported and equilibrated to ions,

radiation, expansion, and compression. Ionization levels are determined by nonlocal-

thermodynamic-equilibrium models that advance rate equations. 142 These various

models feed back to each other self consistently to form the temperatures, densities,

positions, velocities, and opacities for the next time step. LASNEX should model the

plasma in this experiment quite well because the electron heat transport is in the Spitzer

(Ref. 3) regime, where the electron-ion mean-free path is much less than the temperataare

scale length so that hydrodynamic fluid equations with classical coefficients should apply.

The plasma studied in this experiment can be shown to be in the Spitzer regime by the
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appropriate calculation. The electron-ion mean free path (Xei) is defined as,

_',t = 1.38 x 1013 T_e cm (69)
n e Z lllAei

where ne is the electron density hq l'cm'3), Z is the ionization state, lnAei is the Coulomb

logarithm for electron-ion interactions, and Te is the electron temperature in (eV). The

temperatalre scale length (LT) is defined as,
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r, (70)
L r -

(orffOx)

and has a computed minimum of about LT = 60_m at radial positions 75-100t_m from

the experimental data. The maximum electron-ion mean free path at those positions where

LT is a minimum is J_ei = 0.3/_m. Therefore, the criteria for the Spitzer regime (_'ei <

br/100 ) is satisfied for this plasma. Figure 36 through Figure 40 compare the

experimental results with the LASNEX simulation (run# 211020g) of the plasma. The

axial dependence of the electron density and sound speed are shown in Figure 36 and

Figure 37 for axial positions 65/zm < z < 235_m and radial position r=0. The radial
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dependence of the electron density, sound speed, and radial drift velocity is shown in

Figure 38, Figure 39, and Figure 40 at an arbitrary axial position of z = 1651tm and

radial positions 0 < r < 350ttm. in Figure 38 and Figure 39 the results from the

LASNEX calculation at z= 150/zm and z= 180/zm are displayed to represent the + 15/_m

uncertainty in the axial position of the experimental data. The radial drift velocity

predicted by LASNEX does not vary appreciably from z=150ttm m z=180ttm.

Therefore, only the z= 165/zm calculations from LASNEX are included in the gTaph of

the radial dependence of the radial drift velocity, Figure 40. The axial and radial electron

densities from the LASNEX simulation agree with the experimental data within a percent
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standard deviation of 40%. The axial and radial sound speeds and the normalized radial

drift from the LASNEX simulation agree with the experimental data within a percent

standard deviation of 50%. The agreement between LASNEX and the experimental data

is very good. Therefore, LASNEX has been shown to perform quite well as a simulation

code at least in the parameter regime of the plasma in this experiment.

A simple analytical model has been developed that can also be used to understand

a laser-heated plasma. This model is an extension of a previous planar model

developed 143,144 for a spherical geometry. This model is one-dimensional and will

only apply to measurements made on the z-axis in the axial direction. The plasma is

divided into t, vo regions: the conduction region that extends from the ablation surface

(essentially the target surface) to the sonic surface, and the corona. The axial fluid

velocity is subsonic and the electron temperature increases sharply in the conduction

region. The laser light is mainly deposited in the conduction region and the absorbed laser

energy is transported by electron conduction to the ablation surface. The axial fluid

velocity is supersonic and the electron temperature is _lmost constant in the corona.

The conduction region for a steady-state, planar plasma extends from the target

surface to a distance (Ref. 144),

[ K T 7t2
,_ = 0.3/ o--, (71)

L io

where Io is the incident laser energy flux (W/cm2), Ko is the heat conduction coefficient

(Ko = 1.8 x l029 / ZlnAei cm'lsec'lkeV "5/2, from Ref. 143), and Ts is the electron

temperature at the axial sonic surface (keV). Using the axial sonic surface temperature
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from the LASNEX simulation, the conduction region extends to a distance Ass = 50#m

from the target surface. The planar approximation is approximately valid since the width

of the conduction re#on is less than the full width at half maximum of the laser focal

spot (FWHM -_ 100#m). Because the accessible region of this experiment is limited to

axial distances greater than 65#m, the measurements in this experiment are limited to the

corona.

The time history of the corona is divided into periods: an early planar expansion

followed by an approach to spherical steady state. Early in the laser pulse, the plasma

expansion is well approximated by a planar, isothermal expansion into vacuum (Ref.

143). The scale length for the plasma density is,

L,o' = c_tL (72)

At the peak of the laser pulse, Lnp = 190#m, where the measured value for the sound

speed on axis, cs _. 4 x 106cm/s, is taken from the experimental data in Figure 31, and

tL -_ 0.53*FWHM of the plasma generating pulse is used. The radial dimension of the

plasma is of the order of the full width at half-maximum of the laser focal spot

100#m. Thus, since Lnp > 100#m, the planar phase of the plasma expansion is over

before the peak of the plasma generating pulse.

In a steady-state spherical corona, the electron density is approximately given by

(Ref. 144),

n, n,(s,/s)3 (73)

where ns is the electron density at the sonic surface, s is the spherical coordinate and ss



| i

107

is the radius of the sonic surface. The usual model for a finite dimensional laser spot

assumes a sphericalgeometry in which the radius of the ablation surface is the full width

at half-maximum of the laser focal spot sa _-. 100#m, so the density scale length at the

sonic surface (ss = sa + Ass -_ 150/_m)is,

L,_ = 501.tin (74)

The electron density and temperature at the sonic surface are given by (Ref. 144),

ns 2.2x1016 ItotSA_6- cm -s (75)

Ts = 1.1xlO-6[loX]4tg[AsslnA,,_zt9 keY (76)

where Io[W/cm2] is the intensity of the plasma generating beam, _.[_tm]is the plasma

generating wavelength, A is the atomic weight of the target material, Z is the ionic

charge state of the plasma, and ss is the radius of the sonic point ss = 0.015 cm. Using

the parameters for this experiment, Io = 2x1011 W/cm2 and Z=8 on axis, the sonic

surface electron density is ns = 2x102° cm"3and the sonic surface electron temperature

is Ts = 135 eV. Equation (76) includes the average energy (Ei) used per electron for

ionization and E i - 130 eV for aluminum with Z=8. Therefore the electron temperature

is ITs - (2/3)Ei] -_ 48 eV at the sonic surface.

Equations (73) through (75) are in good agreement with the axial density data and

the LASNEX simulations as shown in Figure 36. The steady-state spherical model

predicts that the corona should be isothermal with a temperature equal to the sonic

temperature, Eq. (76). With Z=8, the predicted (Z + 5/3)Ts product agrees with the
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experimental data and the LASNEX simulations as shown in Figure 37. Thus the steady-

state, spherical plasma model appears to be a valid approximation _for this experiment.

Since the model assumes a steady-state plasma, the good agreement with the experimental

data infers that the plasma is approximately stationary during the Thomson scattering

experiments. This conclusion is corroborated by the well-defined peaks in the collective

Thomson data and a predicted 13adj _- 0.9.

Two questions can now be addressed with the presentation of the experimental

data and its comparison with LASNEX: 1) Are the electron and ion temperatures of the

plasma approximately equal as assumed throughout the analysis?, 2) Could a 532nm

diagnostic beam have been used instead of a 266nm diagnostic beam in this experiment?.

The rate (v i/e) at which the ion temperature will equilibrate with the electron temperature

is given by 145,

vii" 3.2X,10 -9 n,,Z21nAei _= sec I (77)

where A is the atomic weight of the plasma material, for aluminum A = 27, the electron

density is in cm -3, and the electron temperature is in eV. With the most pessimistic values

for Z, lnAei , ne, and Te of the plasma that are measured from the experiment (i.e. Z= 5,

lnAei=5, ne= lxl019 cm 3, and Te=45 eV), the maximum time that it takes the ions to

thermally equilibrate with the electrons is (1/v i/e = 2ns). Since this time is less than the

FWHM =9ns width of the plasma generating pulse, the answer to the first question is

and the ion temperature will approximately be equal to the electron temperature. In fact,

LASNEX predicts the electron and ion temperatures to be equal as well. Two factors
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determine whether a diagnostic wavelength will be suitable for Thomson scattering from
i

a plasma: inverse bremsstrahlung absorption and refractive turning. Inverse

bremsstrahlung absorption of the diagnostic beam can cause local heating in the plasma

and artificially change the sound speed that is being measured. The inverse

bremsstrahlung absorption length t_b for a beam of frequency t_ is given by Eq. (9) as c_b

-_ t_p2V ei/_2C. The plasma frequency and the electron-ion collision frequency are defined

by (t_p = 5.64 x 104 ne1/2) and (v ei = 3 x 10-6 (neZlnAei)/Te3/2), respectively, with the

electron density in cm-3 and the electron temperature in eV. For a diagnostic beam

passing through the central portion of the measurement region of the plasma (z= 130/zm),

the parameters are ne = 5 x 1019 cm"3, Te = 45 eV, Z = 8, and InAei = 5. The

interaction length (1) is approximately 250#m, therefore the predicted inverse

bremsstrahlung absorption {1 - exp(-O_bl)} on the 532nm and 266nm diagnostic beams is

5 % and 20%, respectively. The calculated 5 % absorption on the 266nm diagnostic beam

is in line with the less than 4% absorption measured in the experiment. The 20%

absorption exhibited by a 532nm diagnostic beam is large and might begin to affect the

sound speed in the plasma. The refractive turning of the two diagnostic wavelengths in

the plasma have been calculated by post processing the data from the LASNEX simulation

[thanks to M.K. Prasadl. Since the LASNEX simulation has been shown to fit the

experimental data, the refractive turning calculations should be fairly accurate. Figure 41

displays the results of the calculation as a function of axial distance of the diagnostic

beams from the target surface. The refractive turning angle should be kept smaller than

the acceptance angle of the (f/12) Thomson collection lens used in this experiment and
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Figure 41" Refractive turning calculations for a 532nm and 266nm diagnostic beam
as a function of axial distance in the laser plasma. The calculations are based on the
LASNEX simulation results for the plasma.

the acceptance angle of 2.38 degrees is shown in Figure 41 for comparison. As seen by

the figure, the refraction of the 532nm diagnostic beam is greater than or equal to the

acceptance angle for a fair amount of the region measured in the plasma (65#m < z <

130t_m), and the refraction of the 266nm diagnostic beam is always less than the

acceptance angle over the entire measurement region (65_m < z < 235_m). Therefore,

based on the inverse bremsstrahlung and refractive turning calculations, the answer to the

second question is no and a 532nm diagnostic wavelength would not be suitable for

conducting collective Thomson scattering experiments on the laser-produced plasma

studied in this dissertation.
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Despite the self-consistencyof the measurements of electron density, sound speed,

and radial drift velocity in the laser produced plasma and the excellent agreement of the

experimental data with the LASNEX simulation and simple analytical model,

discrepancies exist. As mentioned in Chapter 2, a peak height asymmetry in the collective

Thomson spectrum is a result of a relative thermal drift between the electrons and ions

in the plasma. The most probable source for the drift is the return current driven by heat

transport in the plasma, although other mechanisms such as beam nonuniformities could

be important. In the Spitzer regime, the relative drift vector (IJd) is related to the heat

flux vector q by the following relationship 146,

where the factor containing the Spitzer transport coefficients 147, "Y'T, YE, _T, and c,

is a slowly varying function of the ionization state Z and only changes from a value of

5 for Z = 1 to a value of 2.5 for Z --, oo. The heat flux vector, in turn, is related to the

temperature gradient in the plasma by,

where _¢eis the electron thermal conductivity. Combining Eq. (78) and Eq. (79), the

relative drift vector is found to be proportional to the temperature gradient in the plasma.

In the radial plane of the plasma in this experiment, the temperature gradient is directed

towards the center of the plasma (r=0) from the outside and has a maximum around

r = 100/_m. The relative drift will be pointed in the same direction as the temperature

gradient, towards (r=O). Based on this argument, the product of the ion-acoustic wave
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Figure 42: Raw collective Thomson scattering data showing inconsistent peak height
asymmetries for different radial positions at an axial distance of z= 200#m.

vector with the drift vector (kia.Ud)/kve will change sign while passing from negative

radial positions (r < 0) to positive radial positions (r > 0) in this experiment. The product

should be zero at r=0 because the gradient of the temperature in the radial direction is

zero at r=0, and the product should be a maximum around r= 100#m where the

temperature gradient is a maximum. Since the magnitude and direction of the peak height

asymmetries in the collective Thomson spectrum are proportional to the product

(kia.Ud)/kve, see Chapter 2, the Thomson spectra from this experiment should show

equal peak heights at r=0 with a gradual increase in the asymmetry to a maximum at

r _ 100#m. One of the Thomson peaks should be consistently higher for negative radial
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values while the opposite should hold for positive radial values. As shown in Figure 42,

the analysis presented does not hold in general for the data taken in this experiment.

Figure 42 is a graph of the raw data taken for the radial positions at an axial distance

z= 200/_m. The left peak in the Thomson spectrum should be lower than the right for

r <0 and higher than the right for r>0. Also at r=0, the peak heights should be

identical. Obviously this is not the case for the data presented in Figure 42, and for all

the data taken in the experiment, the peak height asymmetries appeared to have little

correlation with the measured temperature gradient in the plasma. This apparent

inconsistency deserves further investigation.

Since measurement of the peak height asymmetry involves line shape analysis of

the Thomson spectrum, and the line shape is sensitive to the collisionality (kia_,ii), a new

theory is needed for Thomson spectrum analysis with general values of kia_,ii. This new

theory is important because the existing theories presented in Chapter 2 are only

applicable in the small kia_,ii _ 0 and large kia_.ii "* oo limits of collisionality of the ion-

acoustic wave and the values for kiakii based on the experimental measurements in this

chapter are kia).ii _- 0.1. This new theory is presented in Chapter 5 and will allow a

direct measurement of the relative drift Ud from the peak height asymmetries. Along the

theory, the experimental configuration must be changed to perform meaningful

measurements relating to the peak height asymmetry. Due to the stochastic nature of the

peak asymmetries, the relative drift may not be a reproducible quantity in the plasma.

Therefore, the experiment should be performed on a single shot basis. Single shot

detection of a Thomson signal will require a more sensitive detector than the reticon array
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used for the data acquisition on this chapter. Also, because of the questionable

reproducibility of the relative drift, multiple radial positions should be measured at the

same time to provide a single shot measurement of the radial temperature gradient for

comparison. These issues will be addressed in Chapter6 along with a presentation of the

experimental configuration needed to begin a peak height asymmetry analysis.

This chapter has presented in some detail the data acquisition and analysis of the

two-dimensional electron density, sound speed, and radial drift data from 266nm

collective Thomson scattering in a coUisional laser-produced plasma. Accurate

measurement of the three plasma quantities is possible with a well-resolved, Rayleigh-

calibrated, collection system and a high-repetition rate, highly reproducible plasma. The

use of a 266nm diagnostic beam is necessary to reduce the intrusive effects of inverse

bremsstrahlung absorption and the complicating effect of refractive turning which can

reduce the collection efficiehcy of the scattered signal. With some simple but physically

based models, the experimentally obtained plasma quantities are shown to be self-

consistent and the electron density, sound speed, and radial drift are used to benchmark

the simulation code LASNEX in the parameter regime of the plasma in this experiment.

LASNEX is shown to perform fairly well with percent standard deviations from the

measured data less than 50%. A simple spherical model is also shown to be a valid

approximation for the experimental data and predicts that the plasma is approximately

stationary over the width of the diagnostic pulse. This conclusion is experimentally

corroborated by the well-defined peaks in the collective Thomson data and a predicted

fJadj _ 0.9. Despite the self-consistency of the experimental data and good agreement
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between the measurements and simulations, the peak height asymmetries in the collective

Thomson spectrum are inconsistent and do not correlate with the measured radial

temperature gradients in the plasma. This indicates that although the electron density,

sound speed, and radial drift velocity are reproducible and well behaved from shot to

shot, the relative thermal drift (Ud) between the electrons and ions may not be

reproducible. The investigation of the peak height asymmetry issue and how it relates to

the relative thermal drift (lid) will be conducted in Chapter 5 and Chapter 6.
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Chapter V: Thomson scattering theory- intermediate ion-ion collisional regime

In Chapter II, the existing theory for analyzing Thomson scattered spectra from

a plasma was presented. The present theory, as it stands, only applies to scattering from

waves that can be considered either in the coUisionless limit (kfl_.ii _ oo) or in the

collisional limit (kfl_.ii --*0). Although the Thomson scattering experiments in Chapter

4. were conducted from ion-acoustic waves in the intermediate collisional range (kia_.ii

1), it was shown in Chapter 2 that the coUisionless and collisional theories were _dequate

for obtaining the electron density, sound speed, and radial drift velocity fromthe ion-

acoustic Thomson spectra. Unlike the electron density, sound speed, and radial drift

measurements, the measurement of the relative drift velocity (Ud) between the thermal

electrons and ions relies on knowledge of the spectral distribution in the ion-acoustic

feature, i.e. the peak height asymmetry. As shown in Chapter 2, the spectral distribution

of the ion-acoustic feature changes dramatically from the collisionless to collisional limits,

see Figure 7, and the exact relationship between the peak height asymmetry and the

relative drift velocity will change as well between the two limits. Therefore, the existing

theories cannot be used to obtain the relative drift velocity from the peak height

asymmetries in the Thomson spectrum for intermediate collisional ion-acoustic waves

(kja_.ii = 1). This chapter will present a model based on the Fokker-Planck equation

coupled with modified fluid equations that will accurately predict the peak height

asymmetry in an ion-acoustic Thomson spectrum given the values for the relative drift

(Ud), ionization/temperature ratio (ZTe/Ti) and collisionality of the ion-acoustic wave
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(kia_.ii). The approach to developing the model first involves defining general closure

relations for the linearized ion fluid equations which can be applied for any value of

collisionality (kia_.ii). The ion fluid equations are then used to find the ion susceptibility

as was done in Chapter 2. The dynamical form factor S(k, to) which describes the spectral

distribution of the Thomson spectra is then known because it is a function of the ion

susceptibility. Application of the model requires knowledge of the collisionaUy dependent

transport coefficients that appear in the closure relations. Since the transport coefficients

can be calculated with the use of the perturbed ion distribution function (fl), the

linearized ion Fokker-Planck equation will be used to solve for fl assuming collisionless

electrons. In obtaining the perturbed ion distribution function, the linearized ion Fokker-

Planck equation will be treated as an eigenvalue problem which represents a new and

better approach to solving the equation reported in previous publications. In addition to

allowing for accurate measurements of the relative drift from the peak height asymmetry

in the Thomson spectrum, the model developed in this chapter has the potential of

describing the entropy wave feature in the Thomson spectrum which was introduced in

Chapter 2.

An obvious, but possibly overlooked fact, is that any one or combination of the

fluid equations given in Eq. (42) is equivalent to the basic plasma kinetic equation

(Fokker-Planck equation). The reason for this relationship is that the fluid equations are

simply moments of the Fokker-Planck equation. Since the Fokker-Planck equation in the

collisionless limit (kfl_ii _ 00) becomes the Vlasov equation (Eq. (34)) and predicts

Landau damping, so can the fluid equations if properly applied. In fact, the fluid
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equationscan be made valid over the entire range of collisionality (kfl_.ii) by using the

proper set of general closure relations. Chang & Callen z48 use a Chapman-

Enskog 149 like approach to derive a general set of closure relations for the perturbed

stress tensor (_rl) and heat flux (ql) in terms of the perturbed flow velocity (ul) and

temperature (T i) for the ions. These relations are given by,

2 _ ir_noVlT1ql = -KlminoVi ul (80)
_1 - -il'tlminoV,al - _2noTl

where the real quantities K1, r.2, _1, #2 are pseudo transport coefficients normalized to

kflXii , and the perturbed quantifies are a result of expressing the total stress tensor (r),

heat flux (q), flow velocity (u), and temperature (T) in the form h = ho + h I exp(i(kz-

c_t)), where perturbed quantity (hi) is much less than the background quantity (ho), hl/h o

,, 1. It will be shown in the ion-collisional limit (kfl_.ii _ 0) that K1 and/z 2 go to zero,

while K2 and /z1 approach the familiar Braginskii ion thermal conductivity (r,2 --,

3.9kflkii ) and ion viscosity (/z1 _ (4/3)0.96kfl_.ii). In the ion-collisionless limit (kfl_.ii

oo), the viscosity coefficients/z 1 and/z 2 go to zero while the conductivity coefficients K1

and r,2 remain finite. Chang & Callen derive expressions for the transport coefficients

which are complicated functions of the plasma dispersion Z function and the

Chandrasekhav function, see Ref. 148, and therefore are not easily applied. Chang &

CaUen also show that the transport coefficients can be greatly simplified by approximating

them as a single function of the Z function or its derivative of modified argument.

Although more tractable, this simplification does not guarantee any degree of accuracy

for computing the transport coefficients. The proper solution to the problem of calculating
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the transport coefficients accurately is to first express the perturbed quantifies u 1, T1, ql,

and a-I from Eq. (80) in terms of the perturbed ion distribution function (f]). The

standard definitions for the flow velocity, heat flux, and stress tensor is in terms of a

moment of the total distribution function (f) are given by,

n_

_ = _fdavl iTIv/2j(v_ (82)

"_ = m i f(v - nT

where v' = v - u, and n = J"d3v f(v'). The temperature is also defined in terms of the

of a moment of the total distribution function (f),

T = (P - 1)mifd3v/v /,: yCv5 (84)

This equation is not the standard definition for temperature because the usual factor of

1/3 is replaced with (r - 1)/2, where r is the ratio of the specific heats r = (Cp/Cv)

defined by,

fd'v (.' - 3)r,<v)
The definitions in Eq.'s (84) and (85) are necessary for applying the model developed in

this chapter to arbitrary collisionality (kfl_.ii). Equations (81) through (84) can be

linearized by writing the distribution function as f -- fo + fl exp(i(kz-_t)) with fl/fo
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1. Upon substitution, the expressions for the perturbed quantifies u I, T1, ql, 7rl are then

found to be,

u_ - Iofd3v v,:f_(v) (86)

- - Rm'q:a'v(: - 3):#) (s7)
2no J

3

ql- 2

2 3 2 flCv)] _ noT1 (89)r:x = [m,v_f d v v_

With the perturbed ion distribution function fl, equations (85) through (89) can be

combined with the complex closure relations of Eq. (80) to find the transport coefficients

Xl, x2, 1'1, and/z 2.

Invoking the closure relations of Eq. (80), the ion susceptibility (Xi) is modified

from the form appearing in Eq. (44) of Chapter 2. As in Chapter 2 the ion fluid

equations can be linearized to yield,

-ion I + iknou t = 0

-i6°mtnoUl - -ikTonl - iknoT1 - ik_l - iZeknodPl (90)
1

io_noTl + iknoTou I = -ikqt
(1"- 1)

where the factor of (3/2) from the linearized fluid equations in Chapter 2, Eq. (43), has

been replaced with (1/(I'-1)) to allow for general application of the equations for any

collisionality (kfl_.ii). The factor (1/(I'-l)) reduces to (3/2) in the collisional limit (kfl_.ii
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-_ 0) where P = 5/3 and is equal to (1/2) in the collisionless limit (kfl_.ii --} co) where

I_ = 3. The linearized fluid equations, Eq. (90), coupled with the closure relations, Eq.

(80), can be solved for the ratio (nl/$1) which in turn can be used to find the ion

susceptibility (Xi) as in Chapter 2,

4nZe nl _ ZTea2 .... xt + iyr_X_ =- _" -

k 2 _1 Tt xSi+i(_t1+yr_?-(y(l-l.t2)(l-K,)+l+ylx1_}x,-iyr_

(91)

where xi = ¢n/kvi is the normalized frequency and y = P-1.The model which is being

developed in this chapter and which is based on the modified form of the ion

susceptibility will be referred to as the modified fluid model. For simplicity, the electrons

will be assumed collisionless (kfl_.ei,kfl_.ee s 1), and the electron susceptibility under this

collisionless condition is given by Eq. (37),

Z_ = _1 + x,_x,)] (92)

where xe = ¢o/kve is the normalized frequency and Z is the plasma dispersion function

introduced in Eq. (37) of Chapter 2. A relative drift (Ud) between the thermal electrons

and ions can be easily added to the analysis by replacing the normalized frequency xe

with xe + (kfl.Ud)/kflV e in Eq. (92). Also, the complex frequency for the normal modes

of the plasma can be found by solving for the roots of the dielectric function e=0, where

= 1 + )_e + _i"

The dynamical form factor S(k,e) which predicts the spectral distribution in the

Thomson spectrum is defined in terms of the electron and ion susceptibilities,
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S(k.m) - 2 (1 + X,) Ira(X.) + lm(x,) (93)
tOa 2 E _ ot2Te

Using Eq.'s (91), (92) and (93), the ion-acoustic Thomson spectra can be predicted

accurately under the condition of collisionless electrons for any value of kfl_.ii, ZTe/Ti,

and U d. This claim can first be verified in the ion-collisionless limit where the exact form

of S(k, o) is already known.

The transport coefficients in the collisionless Landau limit are calculated from the

perturbed ion distribution function (fl) for ion-acoustic waves which is obtained from the

linearized Vlasov equation (Eq. (35)),

OFo

Ze_z c3v
ft(v)- (94)

Here FO = [no/(27rvi2)l/21exp(-v2/2vi2) is the Maxwellian background ion distribution

and Oia is the complex ion-acoustic frequency. Because there are no collisions, the

perturbed distribution function is one-dimensional in Eq. (94). With the collisionless

perturbed ion distribution function and the definitions from Eq.'s (86) - (89), the

perturbed plasma quantities n1, u1, T1, ql, and _r1 in the Landau limit are given by,

Ze¢, _ ZeC,
- f av- ,, z(x,))  95)
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c3Fo

Ze+,_, rv a, ze+,
ut - j dv - v, x, (1 + x, Z(x,)) (96)

mi no (,, to_ mi

k_vi

aFo
mtv?Ze_ 1

f(:- t) W d_: Ze+,v_ (1+ (x;-IX1 + xtT,(x,_ 7)

aFo
Ze+l,,,,v: av Ze+,",:,_

- f+:- 3:> dv: 2 _,(1+(_,=-3)<1+:_x,)))ql

o,: (v
(98)

gx = 0 (99)

where x i = t_ia/kiav i is again the normalized frequency and the perturbed stress tensor "Jr1

is identically zero because the problem is one-dimensional. The complex ion-acoustic

frequency xi = tOia/kiaVi in the equations is calculated by solving for the complex roots

of the dielectric function ¢ = 1 + Ze + Zi which is given exactly by, see Eq. (37),

= 1 + X, + X, : 1+ a211 + xT-;(x.)] + ZT_a2[1 + xT.(x,)] : 0 <100)7', ,

in the Landau limit. When calculating the ion transport coefficients, the electron Landau
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damping is neglected by setting xe = 0 and the roots of the dielectric function are found

in the quasineutral c_--, co limit by,

zr,
I + --_i[I+ xrZ(x,)] = 0 (101)

Therearetwo complexrootstothisequationfora givenZTJT iratio,xi = (4-{aia-

iYia)/kiavi,where ¢Oia_ 0 istileion-acousticfrequencyand Yiaistheion Landau

damping.The transportcoefficientscar,.now be calculatedinthequasineutral,ion-

collisionless limit with the ion-acoustic root from Eq. (101), Eq.'s (96) - (99) and the

modified closure relations in Eq. (80). The results for _:1and K2 are given in Table I for

different ZTe/T i ratios, and the coefficients /zI and P-2 are equal to zero in the

collisionless limit since the perturbed stress tensor is identically zero. The real and

imaginary parts of the ion-acoustic frequency in the quasineutral, Landau limit as

predicted by Eq. (101) are also in Table I. To test the accuracy of the modified fluid

model in the collisionless limit, the ion susceptibility from the model, Eq. (91), is

substituted in Eq. (100) for the exact expression in Landau limit and the roots of the

dielectric function are recalculated with xe = 0, ct --, co, #1 = /z2 = 0, P =3, and the

values of 1¢1 and K2 from Table I. The results for the real and imaginary parts of the ion-

acoustic frequency predicted by the modified fluid model ion susceptibility are listed in

Table I and agree exactly with the correct values in the landau limit. Therefore, the

modified fluid model based on the fluid equations correctly predicts ion Landau damping.

The accuracy of the modified flui:i model for predicting the ion-acoustic spectrum

in the collisionless limit can be investigated by using the dynamical form factor, Eq. (93),



Table 1" Conductivity coefficients (rl,g2) in the quasineutrai Landau limit. 125
Also, the ion-acoustic frequency from Landau theory and the modified fluid model.
II I I . IIIIII I III Illlll I I I III Ill II I I II I II II II I]L Ill l - " I

ZTe/Ti Kl K2 (Or/kVi (or/kVi (oi/kv i (oi/kv i
Landau 3-Pole Landau 3-Pole

,11 ills 1,,, " 2: ',',, ,,'I,,, ' , ' ,, , ,, ill ',,_11, ,i,, , i ' 1' ,, jl, lilt ,',|'' ,,,,, '11_11" ' ''' , ,,_1-| / ,'I _ i-illli ,,, '' , 1,

4 -0.8577 0.7998 2.83 2.83 0.307 0.307
• ,, ,, . ,= , ,,, , ,,, ,,, ..... , ,,, i

6 -0.6938 0.5757 3.17 3.17 0.177 0.177
,, , ,,,, , ,,, ,, , , ,i ,, , , ,

8 -0.5747 0.4078 3.47 3.47 0.103 0.103
,,,.. ,, ,,,., , ,. , ,

10 -0.4796 0.2790 3.73 3.73 0.0583 0.0583
.,, t, , , ,,.,,,, ,.i,, , , ,,, ,= ,,, , ,, , ,,

12 -0.4008 0.1822 3.97 3.97 0.0321 0.0321
,, , , , .,, , ,

14 -0.3354 0.1128 4.20 4.20 0.0170 0.0170
, , ,, ,i , ,,,, ,,

16 -0.2822 0.06609 4.42 4.42 0.00866 0.00866
,, ,,, ,., ,,,.......... i ,,,,,.....

20 -0.2061 0.01947 4.84 4.84 0.00201 0.00201
.... i ............ i

24 -0.1594 0.004881 5.23 5.23 4.14e-4 4.14e-4
p L ................

28 -0.1299 0.001094 5.59 5.59 7.91e-5 7.91e-5
I ' ...... • ...................

32 -0.1099 2.271e-4 5.93 5.93 1.43e-5 1.43e-5
....... ........... :

IIII II II I I II II III I IIII I I III I

with the collisionless electron susceptibility and interchanging the ion susceptibility

between the exact form Xi -- (ZTe/Ti)cx2ll + xiZ(xi)l and the expression given by the

modified fluid model in Eq. (91). The spectral distribution predicted by the dynamical

form factor S(k,o) using the two different forms of the ion susceptibility is shown in

Figure 43 for an aluminum plasma with ionization/temperature ratio (ZTe/T i = 8), in the

quasineutral limit (c_ • 1), and with a relative drift (kia*Lld)/kiav e = 0.02. The dashed

line in Figure 43 is the ion-acoustic spectrum predicted using the exact ion susceptibility

and the solid line is the spectrum predicted when using the ion susceptibility from the

modified fluid model with/_1 = tz2 = 0, r=3, and g I = -0.5747, g2 = 0.4078 from
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Figure 43" The ion-acoustic spectrum calculated from coUisionless theory (- -) and
from the modified fluid model (--) with ZTe/Ti = 8 and (kia*l.Jd)/kiavc = .02.

Table I. The spectrum predicted from the modified fluid model perfectly reproduces the

peak height asymmetry and shape of the resonant features of the exact collisionless theory

near o/kv i = + 3.47. The only discrepancies between the modified fluid model and the

exact result occur away from the ion-acoustic resonances at o/kv i -- -{-3.47. The feature

at o/kv i = 0 predicted by the modified fluid model is not the entropy wave, which cannot

supported by a collisionless plasma. Instead, the feature results from holding the transport

coefficients constant as a function of frequency. The transport coefficients are frequency

dependent and by using the values for the coefficients at the ion-acoustic frequency, only

the predicted spectrum near and at the ion-acoustic resonance is quantitatively correct.
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Since the primary motivation of the model in this chapter is to predict the peak height

asymmetry as a function of relative drift, reduced accuracy in the spectral features

predicted away from the peaks is not a concern. In the ion-collisionless limit (kfl_,ii --*

oo), the modified fluid model accurately reproduces the peak height asymmetry for a

given relative drift (Ud). The model can now be extended into the intermediate ion-

collisional regime (kfl_.ii _- 1) by solving the Fokker-Planck equation for the perturbed

ion distribution function (fi), and then using the distribution function to calculate the

transport coefficients _:I,_, #1, P,2and the ratio of the specific heats I' as a function of

kfl_ii and ZTo/T i. Once these quantities are known, the ion-acoustic spectrum, again

assuming collisionless electrons, can be calculated with Eq.'s (91), (92), and (93) as was

done in the ion-collisionless case presented in this section.

The linearized Fokker-Planck equation has been used by Ono and Kulsrud15°,

and Randall151 to study the ion-ion collisional effects on ion-acoustic waves in the

intermediate regime (0.1 < kia_,ii _< 10). Their calculations involved solving the

linearized Fokker-Planck equation as an initial value problem for the perturbed ion

distribution function of an ion-acoustic wave using an Alternating-Direction-lmplicit

(ADI) technique. Although this technique did provide the correct solution, absolute

convergence was not optimum. Since the method involves an initial value problem, a

fairly accurate guess is needed in advance for the unknown perturbed ion distribution

function to start the calculation. Even with an accurate guess, averaging techniques where

necessary to eliminate the backward wave and transients that developed over time in the

distribution function. In addition to these drawbacks, this method of solution will only
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work for propagating waves, and therefore could not be used to obtain information about

the stationary entropy wave. The technique used in this chapter will treat the linearized

Fokker-Planck equation as an eigenvalue problem. The three normal modes of the

plasma, the entropy wave and the forward and backward traveling ion-acoustic waves,

appear as the three least damped eigenvalues in the solution. The perturbed ion

distribution functions do not need to be approximated in advance and are simply the

corresponding eigenvectors of the normal mode eigenvalues. The perturbed ion

distribution functions can then be used to calculate the transport coefficients K1, r.2, Iz1,

#2 and the ratio of specific heats I'.

The Boltzmann equation with a Fokker-Planck collision term describes the

evolution of the distribution function (Fa(r,v,0) for a given species c_ in a plasma. In a

non-magnetic plasma this equation is given by, 152

0t " m_ 13

--Ec(e, ,co)

and is commonly referred to as the Fokker-Planck equation. Za is the charge state of

species t_ (Ze = -1 for electrons), m a is the mass, and E is the electric field vector. The

summation is carried out over all species g that collide with species c_. Hag , G an are the

Rosenbluth potentials 153 and Fag is the collision strength parameter of species ot and

B given by (Ref. 152),
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HM_(_ = me' + m_fdff' Fp(_'/) I _7 - _7' I-l (103)
m_

_H_,ls = _ 4_(m a + mp)Fp (105)
m_

_.p = 2mdt"P (lo0(m, ,,,p)

( Z Z e 2_2

I'_,13=47c[ _-_a J lnA,_p (107)

where In Aaa is the Coulomb logarithm for collisions between ceand fl in Eq. (107).

Equation (102) can be linearized by making the following substitutions for

electrostatic waves,

F_(_',V,0=fo(V-3+if(V) e_C_-_'> (_08)
ff_= -CTdpwheredp= dpo+ dpie _<k_-_o

where fo a = na exp(-v2/2va2)i(2rva 2)3/2 is assumed to be Maxwellian, the perturbations

are assumed small (fl/fo ,, 1, _bl/_ o ,, 1), and the thermal velocity (va) of species ce is

given by, vcz = (kBTa/ma) 1/2. The perturbations are written with wave vectors in the z-

direction so fla(V) will possess azimuthal symmetry. The azimuthal symmetry of fla(v)

coupled with the spherical symmetry of foa(V) will simplify the expressions for the

collision terms in the following section. The linearized Fokker-Planck equations for the

ions and electrons are now written with the aid of Eq. (108) as,
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•
:r, .ro- C¢g,:;)-,-¢ ,:o) 1o9)

where all terms are first order in the perturbation. Equations (109) and (110) have been

written under the assumption that the electrons are collisionless (kfl_ei , kfl_ee • 1). The

perturbed potential 4'1 is found by solving Eq. (110) for the perturbed electron density

nle using the standardLandauprescription (Ref. 121),

where Z is the plasma dispersion function def'med in Eq. (37). The solution for 4'i in the

limit (t_/kve _ O)is,

dp,- T_n[ ~ Ten_ (112)¢ i
J el/0 e/t O

where quasineutrality (o_--, co) has been assumed for the approximation in terms of the

ion density noi and perturbed ion density nl i = J'fli d3v. By taking the limit (tMkve

0), electron Landau damping is ignored. Since the electrons and ions are decoupled (k_ei

1), the electron Landau damping can be included afterwards by adding

1/2
0rZme/8mi) Re(_ia/kiavi) where _ia is the complex ion-acoustic wave frequency. Note,

that the effects of electron-ion collisions, kkei _ 1, on the electron damping of ion-

acoustic waves has been recently calculated by Epperlein154et al.
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The collision terms in Eq. (109) can be simplified by working in spherical

coordinates: v = Ivl/vi, # = Vz/V, and _b, and by utilizing the spherical symmetry of

foi(v) and the azimuthal symmetry of fli(v),

no_ v_o_oo_1
c _o,A) - r_ 4_yd_- -Z-_o. YoI2v, 2v: o: .l

c ¢_,:o)- ,,_: _ 2 _, _,. 2v_v: _' (1- ,_)
(113)

The ion superscripts are inferred in Eq. (113) where (Hol,Gol) and (Hlo,Glo) refer to

the Rosenbluth potentials of the perturbed fl and background Maxwellian fo ion

distribution functions, respectively. The collision strength parameter ]_ii and the

Maxwellian Rosenbluth potentials HlO and Glo are given by (Ref. 152),

4nZ4e 4 3V/-_v4
Iaii - hi A/i ""2

m i Xiino

OHio _ (114)
Ov v 2

where Erf(x) is the error function.

The perturbed ion distribution function fl can now be written as an expansion in

Legendre polynomials PL,
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f1(v,l_)= _ aL(V)pt.(l.t) (If5)
L=0

By making thenormalizations,fo _ (nol(2rvi2)3/2)fo and fl_ (nol(2rvi2)3/2)fl,

equations(109),(I12),(I13),and (114)can be combinedintoa seriesof coupled

equationsofthecoefficientaL(v)inthefollowingform,

" 1(Lvazl (L+1)_.va_.L,I. / ZTe 4nvf°fa°(v)v2dv- + + _ 0 81,1 +
_2CL_-i3_ 1 2CL+1)+ 1) r_ C2_)3_

k),// - 23t2"-_./i_, 2 2 o_v2 +

( -
where 5L1 is the Kronecker delta and the Legendre term Rosenbluth potentials HL and

:GL/dV 2 are given by (Ref. 153),

HL(V)- (2L+I)v L(V/)V/2+L dV/ + VL+I L(V/) VI I-£ d31Y

_GL(V) _ -4_ f,.,x.(v/_ ,L(L-1) _ (L+I)(L+2)(L_I/2)v/2 dv / (117)_
av2 (4L2-I)o vL+I (L+3/2)vL.:3

4_ iaL(v/)(L(L_I)vL_2_(L+I)(L+2)(L-112)VLIdv/(4L'_-l) v/ L-3 (L+3/2)v/2

Equations (116) and (117) can be expressed in the form of an eigenvalue problem by

finite differencing the derivative terms and discretizing the integrals on a velocity grid v j

= {Vl, v2, ..., Vjmax} = {vmax/jmax, 2*vmax/jmax, ..., vmax}, where vmax is the

maximum velocity used and jmax is the number of grid points. A grid point at v=0 is
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not used to avoid divergence of Eq. (116) as v _ 0. The general eigenvalue problem now

takes the form,

a°(vl) I a°(vx)

... A" h'_'(t"_+') [ ao(Vj,,_) = co I a°(vi"'=) (118)

latmar.fvim,_)kat,,,ax(vyma_)

whereImaxisthemaximum numberofLegendrepolynomialsconsideredintheproblem.

The dimension of the matrix (dmax = jmax*(lmax + 1)) is determined by the product of

the number of velocity grid points and Legendre polynomials used.

The source code for the program entitled 'FOKKER.FOR' that solves Eq. (118)

is listed in the APPENDIX. The solution of Eq. (118) yields dmax eigenvalues of which

three are least damped, i.e. smallest imaginary part: two have real frequencies at plus and

minus the phase velocity of the ion-acoustic wave and correspond to the forward and

backward traveling waves, respectively, and one has zero real frequency which

corresponds to the stationary entropy or zero frequency wave. Once the eigenvalues for

these three modes have been determined, the eigenvectors, perturbed distribution

functions fl, can be found and then used to calculate the transport coefficients 1<1, r_,

/z1, tt2 and the ratio of specific heats F for the plasma conditions of interest. The

accuracy of the eigenvalue method depends on the number of grid points (jmax), the

maximum velocity (vmax), and the total number of Legendre modes (lmax+ 1). The
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values of the quantities jmax, vmax, and lmax needed for convergence to a desired level

of accuracy depend on the plasma parameters ZTe/T i and k_ii and this dependence will

be discussed in the following sections.

Table II: The damping coefficients Yia° and Yent° for the ion-acoustic and entropy
waves in the collisional limit.

I] I Ir I IIII I I I II II I II I I I IIIIII _1 III I I

yo 1ZTe/Ti "tia° ent

1 0.9650 0.5000
|

2 0.8763 0.5453

4 0.7929 0.5882

8 0.7297 0.6207

16 0.6891 0.6418

32 0.6657 0.6531

48 0.6575 0.6576

64 0.6532 0.6599

I I I I II I III I I

To guarantee that the results from the Fokker-Planck calculations approach the

proper collisional and collisionless limits, a brief overview of the complex frequency of

the entropy and ion-acoustic waves in the two limits will be discussed for comparison

with the calculations. The complex frequencies for the normal modes of the plasma are

found from the roots of the dielectric function (e = 0). This has already been done for

the quasineutral, collisionless limit ignoring electron Landau damping in Eq. (I 01), where

only ion-acoustic waves are supported by the plasma. The complex frequency of the ion-

acoustic wave for certain ZTe/T i values is listed in Table I. The dielectric function (e =
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1 + Xe + Xi) call be expressed in the quasineutral (ct -+ co), collisional limit by again

ignoring the effects of the electrons (Xe = °+2)and using the fluid limit expression for the

ion susceptibility, Eq. (44) from Chapter 2. The equation e=0 for the quasineutral, ion-

collisional limit is given by,

zr, xi + 2i'e
1 - -- 3 = 0 (119)

1( +8 oo" _2_.iror+ +e)++- 5 3
There are three complex roots to this equation for a given ZTe/T i ratio. Two roots are

xi -- (-I-_ia- i¥ia)/kiavi, where mia/kiaVi = ((ZTe/Ti)+(5/3)) 1]2 is the ion-acoustic

frequency and Yia is the collisional damping of the wave, and the third root represents

the entropy wave, where xi = (tOent - iYent)/kentVi, COent - 0 and Yent is the damping of

the wave. Using Eq. (119), it can be shown that the collisional damping of the ion-

acoustic waves is proportional to kiakii and is given by, Yia = "/ia°kiakii • The damping

of the entropy wave is proportional to kent_ii with "/ent -- Yent °I¢° -- 3.9 Yent°kentkii . The

damping coefficients _,ia° and "tent° are a function of the ratio ZTe/T i and the values of

the damping coefficients determined from Eq. (119) are listed in Table II for a few

representative ZTe/T i ratios.

Although the primary motivation of this chapter is to develop a model for the peak

height asymmetry in the ion-acoustic Thomson spectrum in the intermediate collisional

regime, the new entropy wave results from the Fokker-Planck calculation are also

significant and deserve some discussion. The presence of an entropy wave in a plasma

has been studied to a limited extent by recent Thomson scattering experiments in



Table llI: Damping and ion thermal conductivity for the entropy wave as 136
a function of kentXii for ZTe/T i ratios of 2, 4, and 8.
I I II I III II II I I I I I II I '11

, ....... , , ,,,,, ,, ........ _ , ,.

kent_.ii Yent/kvi Yent/kvi Yent/kvi g2/k_.ii r,2/k_.ii r,,2/k_.ii
ZTe/T i ZTe/T i ZTe/T i ZTJT i ZTe/T i ZTe/T i

=2 =4 =8 =2 =4 =8

0.034 0.0702 0.0758 0.0800 3.87 3.87 3.88
,,. ,. | , , , , ,, , ,,, ,. ,, , ,, .

0.067 0.133 0.146 0.151 3.71 3.71 3.72
, , ,,, ,,, L ,, ,,,, , , , ,,

0.133 0.232 0.253 0.263 3.32 3.34 3.34
,, , , ,, , , , ,,,, ,t

0.266 0.370 0.395 0.411 2.75 2.78 2.80
, , , • . ,, , , •., ...... . ,,

0.398 0.459 0.487 0.504 2.39 2.44 2.47
, j , ,...........

0.532 0.526 0.552 0.569 2.14 2.20 2.24
,. ,,, , , ,

0.798 0.620 0.645 0.660 1.83 1.91 1.96

1.064 0.688 0.708 0.721 1.64 1.74 1.81
.......... • ......

1.33 0.740 0.760 0.772 1.51 1.61 1.69

II II I I I I !1 IIIIII III I I I I I

moderate-density (ne _ 1 x 1017 cm'3), low ionization/temperature ratio (ZTe/T i _ 1),

highly collisional plasmas (Ref. 127). The entropy wave forms from thermal level ion

temperature fluctuations in the plasma which are balanced by ion density fluctuations to

produce zero pressure. Since there are no pressure gradients, the wave is stationary and

has zero mode frequency. Because the entropy wave is driven by ion temperature

fluctuations, the damping of the wave is primarily due to the ion thermal conductivity of

the plasma. The entropy wave has a comparable damping rate to a corresponding ion-

acoustic wave of the same wave number in the collisional (kfl_ii _ 0) limit, but in the

collisionless (Landau) limit (kflZii --, oo), propagating ion-acoustic waves are present with

finite damping, while the entropy wave cannot be supported. The theory developed prior
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Figure 44: Reduction in the damping of the entropy wave from collisional 'Braginskii'
theory when kent_.ii -_ 1 for a ratio of ZTe/T i=4.

to the work presented in this thesis is based on the Braginskii transport equations and is

strictly valid only in the collisional or fluid limit (Ref. 127). The fluid theory breaks

down in the region of kfl_.ii _ 1, because the Braginskii transport coefficients are

modified due to finite collisional effects. Specifically, the damping of the entropy wave

will be modified from the fluid result in the region of kflkii = 1 due to a reduction in

the ion thermal conductivity. The Fokker-Planck equation must be used to study this

phenomenon. Utilizing the eigenvalue approach to solving the Fokker-Planck equation,

the damping of the entropy wave is found as a function of kentkii for ZTe/T i ratios of 2,

4, and 8 where kent is the wave number of the entropy wave. The numerical results are
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Figure 45: Reduction in the ion thermal conductivity r,2 for the entropy wave from
the collisional 'Braginskii' limit when kentkii ._ 1 for a ratio of ZTe/T i =4.

listed in Table III and displayed graphically in Figure 44 for ZTe/T i = 4. The damping

rate predicted by collisional theory, Eq. (119), is included in Figure 44 for comparison.

As shown by the figure, the computed damping of the entropy wave is equivalent to the

collisional theory of Eq. (119) for small kent_.ii and approaches an infinite value as kent_.ii

--, oo, but at a reduced rate from the collisional prediction. Since the electrons are

assumed collisionless, the damping of the entropy wave is due solely to the ion thermal

conductivity, and a reduction from the collisional damping rate implies the ion thermal

conductivity constant must decrease from the Braginskii value of 3.9 as kentkii increases.

The transport coefficients _¢1,r'2, #1, P-2can be calculated from the perturbed distribution
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functions for the entropy wave using the modified closure relations (Eq. (80)) and Eq.'s

(85) - (89). It is found that only the transport coefficient r,.2 is non-zero independent of

the value of ZTe/T i and kent_.ii. In addition, the viscosity coefficients/_! and #2 are

always zero for the entropy wave, since the wave does not propagate. Because r.2

multiplies the V T term in the closure relation for the heat flux (q), it can be directly

associated with the ion thermal conductivity (ri). The computed ratio r,,2/kent_.ii is given

in Table III for the ZTJT i ratios 2, 4, and 8 and shown graphically in Figure 45 for

ZTJT i = 4. As shown by the table and the figure, the ion thermal conductivity for the

entropy wave does indeed decrease from the Braginskii limit of 3.9 for small kent_.ii as

kent_.iiincreases.

The calculations for the entropy wave are currently limited to values of kent_.ii <

1.33 because of the number of Legendre modes required for convergence of the computed

damping at larger values of kent_.ii. A three significant figure accuracy is obtained for the

damping of the entropy wave for kent_.ii values of 0.034 and 0.067 with only 3 Legendre

modes while for kentkii = 1.33, 10 Legendre modes are needed for the desired accuracy.

As kent_.ii _ 00, an infinite number of Legendre modes would be needed to compute the

correct answer. The requirement of a large number of Legendre modes in the collisionless

limit was similarly found by Epperlein et al. (Ref. 154) when considering electron-ion

coUisionaleffects on ion-acoustic waves. Sincea three significant figure accuracy requires

a velocity grid of = 100 points on the interval V/Vi -- {0,7}, the damping at kent_.ii ---

1.33 is derived from the eigenvalues of a 1000 x 1000 complex matrix. The damping of

the entropy wave at higher values of kent_.ii would require the eigenvalues of even larger
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matrices which is time prohibitive on the computers being used for these calculations.

"Fable IV" Eigenvalue results for the complex ion-acoustic frequency with

ZTe/Ti=8. (ADI) results from Ref. 151 are included tbr comparison.
II IIII II IIII I III III I I II I III I II IIIIIIIIIIIIIIIII III I III I III IIII

kiaXii Oia/kiaVi Yia/kiavi t0ia/kiavi Via/kiavi
(Eigenvalue) (Eigenvalue) (ADI) (ADI)

0.034 3.111 0.0247 N/A N/A
, • ,, , i .,, . , ,, ,, , , , .

0.067 3.116 0.0474 N/A N/A
, ,, , , ,, ,

0.133 3.133 0.0866 3.13 0.084
i i ,,,,. ,, , ,,.

0.266 3.179 0.140 3.18 0.139

0.398 3.225 0.169 3.22 0.168
,.... , ,, , ,. • .... .,, ,, , ,,,t

0.532 3.264 0.181 3.26 0.181
..... , .

0.798 3.319 0.185 3.31 0.185
,, ,.... , ,, , ,, , , ,,,,, , ,...... , .... , , _ ..............

1.064 3.353 0.179 3.35 0.179
...... , , ,,,, ,, . ,, ...... _ .....

1.33 3.375 0.172 3.37 0.172
,, ,,.

1.597 3.391 0.166 3.39 0.166
, , ,, ,,. , , , ,. , ,., , ,. ,, , , , ,,,

2.128 3.410 0.155 3.41 0.155
.........

2.66 3.422 0.147 3.42 0.146
,., ,,, , , ,,,, , ,

3.192 3.430 0.141 3.43 0.141
.............. , ,,, ..... ,,,

3.724 3.436 0.137 3.43 0.136
,,, , , , L ,. ,, . • ,,, .,. , ,,H,

5.32 3.445 0.128 3.44 0.127
_ _ ,,, ,, ..........

10.64 3.456 0.116 3.46 0.115
" " ' " I ....

21.28 3.461 0.109 3.47 0.103
, ....

42.56 3.464 0.106 N/A N/A
........... l ,,, .... ,,,

85.12 3.465 0.104 N/A N/A
..............

II I II I I I III I III I

The complex frequencies and perturbed distribution functions are calculated as a
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Figure 46: Damping of the ion-acoustic wave found from the solution of the Fokker-
Planck equation fQr ZTe/Ti=8. Collisional 'Braginskii' theory and the coUisionless
'Landau' limit are included.

function of kia_.ii tbr ratio ZTe/T i = 8 for the ion-acoustic wave. The

ionization/temperature ratio of 8 is chosen because a portion of the laser plasma

diagnosed in Chapter 4 lies in this parameter regime. The complex frequencies for the

ion-acoustic wave are listed in Table IV and the damping values are shown graphically

in Figure 46. The damping rates predicted from collisional theory, Eq. (119), and

collisionless theory, Table I, are shown in the figure for comparison. As shown by the

figure, the computed damping of the ion-acoustic wave is equivalent to the collisional

theory for small kia_,ii and approaches the collisionless Landau limit for kia_ii _ 00. Also

included in Table IV are the complex frequencies computed for the same ZTe/T i = 8
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ratio from Reference 151 using the (ADI) technique. For the common values of kiakii ,

the real and imaginary parts of the complex frequency from the eigenvaiue solution of

the Fokker-Planck equation and the (ADI) results of Ref. 151 agree to the third

significant figure. A precision of three significant figures is reasonable for these

calculations because experimental verification of the theory cannot typically be done to

better than 1% accuracy.

_ 1 _ ' I" _ I " _' '1 i' 1 ' t I 1 I i "' 1 "1 1

,,5

i 1

_ _-_ 1:

k • ,7
\ ''/

, 1 , i t 1 1 ..1 l I i I I 1 i I i i l

-5 -4 -3 -2 -1 0 1 2 3 4 5

cv/kiavi

Figure 47: Phase-amplitude normalized real part of the perturbed distribution function

for the ion-acoustic wave with ZTe/T i=8 and kia_.ii=0.133 (dashes), 0.532 (dots), and
2.66 (line).

To calculate the peak height asymmetry in the ion-acoustic Thomson spectra for

a ratio ZTe/T i = 8 given the collisionality (kia_,ii) and the relative drift (Ud), the

collisionally dependent transport coefficients _:1,4,/z l, #2 and the ratio of specific heats
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Figure 48' Phase, amplitude normalized imaginary part of the perturbed distribution
function for the ion-acoustic wave with ZTe/Ti=8 and kia_ii=0.133 (dashes), 0.532

(dots), 2.66 (line).

r must be found. These quantifies are obtained from the perturbed ion distribution

function for the ion-acoustic wave [eigenvector with corresponding eigenvalue (Oia-

i_¢ia)/kiaVi]computed by the Fokker-Planck code. The phase-amplitude normalized real

and imaginary parts of the perturbed ion distribution function are shown in Figure 47 and

Figure 48, respectively, for the ratio ZTe/Ti=8 and various values of kia_.ii. The values

of Kl, r,2, #], tz2, and I' are found with the distribution functions, Eq.'s (85) through

(89), and the closure relations Eq. (80), and are listed in Table V.

When used in Eq. (119) to find the complex frequencies of the ion-acoustic wave,

the values for KI , _2, #1, #2, and I' from Table V must reproduce the real and imaginary
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specific heats for the ion-acoustic wave with ZTe/T i--8.
III I III II IIII I I III1' II I III II I

.......

[ kia_.ii I" [ ,, 1¢1...... I¢¢2 /Zl /*2

0.0 4 o.o4,,
, _, ,,, , • ,,, ,, ,, ,L , ,

0.067 1.741 -.003796 0.2387 0.08175 0.03932
., , , ,,, ,,

0.133 1.906 -0.01654 0.3843 0.1435 0.09845
, , ,,,, ,. n ,, ...... ,, .

0.266 2.252 -0.07964 0.5121 0.2089 0.1459
,, , ,,, . ,, ......

0.398 2.488 -0.1572 0.5490 0.2249 0.1387
, , ,. , ,, , ,,.

0.532 2.636 -0.2252 0.5532 0.2197 0.1197
, ., ,,. ,.....

0.798 2.788 -0.3192 0.5351 0.1926 0.08677
, ,,. , , ., , , ,, , , , , ,

1.064 2.860 -0.3763 0.5145 0.1657 0.06575
,, , .......... ,

1.33 2.900 -0.4132 0.4989 0.1438 0.05227
.............. , ...........

1.597 2.925 -0.4387 0.4861 0.1265 0.04309
..............

2.128 2.954 -0.4710 0.4692 0.1014 0.03168

2.66 2.968 -0.4914 0.4577 0.08440 0.02488
,, , , , ........

3.192 2.978 -0.5040 0.4498 0.07229 0.02050
, ,.,, , .,. , . ,,,, ,,

3.724 2.984 -0.5139 0.4443 0.06301 0.01735
....

5.32 2.992 -0.5320 0.4342 0.04529 0.01181
, ,,....... , ,. ......

10.64 2.998 -0.5531 0.4212 0.02328 0.005670
,, , , , ,, , , , .

21.28 3.000 -0.5643 0.4148 0.01170 0.002749
................................

42.56 3.000 -0.5695 0.4113 0.005848 0.001349
,, , ,, , .... , ....... , .... | ............

85.12 3.000 -0.5720 0.4096 0.002854 .0006523

II I I I

parts of the ion-acoustic frequency predicted by the Fokker-Planck code in order to be

self-consistent. The comparison for the imaginary part (damping) is shown in Figure 49

where the solid line (N) is the damping predicted by the Fokker-Planck code and the

circles (O) are the damping results predicted by Eq. (119) with the values for _¢1,r"2,
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Figure 49: The .ion-acoustic damping calculated from the modified fluid model
(circles) compared to the exact damping from the eigenvalue solution of the Fokker-
Planck equation (line) for ZTe/Ti=8.

/z1,/x2, and I' from Table V. The damping values from the Fokker-Planck code and Eq.

(119) agree to the third significant figure, and agreement to the fourth significant figure

is obtained for the real part of the ion-acoustic frequency, which is not shown.

Since the complex frequencies of the ion-acoustic wave are accurately reproduced

over the entire range of ion-coUisionality (kia_t.ii) with the modified fluid equation

approach, the peak height asymmetry may be predicted accurately. This is again

accomplished with the general equation for the dynamical form factor (Eq. (93)) which

gives the spectral distribution in the ion-acoustic Thomson spectrum. The electron

susceptibility in the dynamical form factor is expressed by Eq. (92) and the ion



146

600 , i , , , , , "1 " , ' I ", ' i , i , I r i ,

kiah=O.133 kiaA=0.266 kiah=0.532

500

cq 400

3

A 300
O3

200

a_//kvi

Figure 50: Peak.height asymmetry variation with the ion collisionality (kia_.ii) for
J fixed ZTe/T i = 8 and relative drift (kia'Ud)/kiav e = 0.02.

susceptibility is given by Eq. (91). For an ionization/temperature ratio of ZTe/Ti--8, the

values of _¢1, r'2, _tl, t_2, and F in the ion susceptibility are given as a function of

collisionality (kiaXii) ill Table V. The dependence of the peak height asymmetry for a

freed relative drift (Ud) on the collisionality can been seen in Figure 50, where the ion-

acoustic spectra predicted by the model are shown for ZTe/T i = 8, (kia'Ud)/kiav e =

0.02 and values of kia_.ii = 0.133, 0.266, and 0.532. For all three cases, the Landau

damping contribution from the electrons is fixed while the coUisional damping from the

ions gradually increases from 0.0866 at kia_.ii -- 0.133 to 0.181 at kiaXii -- 0.532 (see

Table IV for ion damping). As seen by Figure 50, the peak height asymmetry for the
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given relative drift decreases dramatically as the ion damping contribution increases over

the small range of collisionality represented in the figure. This dependence is expected

since the peak height asymmetry is due to a reduced/enhanced electron Landau damping

of the ion-acoustic waves from the relative drift. The reduction/enhancement in the

electron Landau damping occurs for the ion-acoustic wave that is traveling with/against

the relative drift respectively, and the amount of electron Landau damping compared to

the total damping (electron Landau + ion collisional) determines the sensitivity of the

peak height asymmetry to the relative drift. In other words, for a given change in the

electron Landau damping due to a relative drift, the total damping of the ion-acoustic

wave will be affected more for the cases where the electron Landau damping is a large

part of the total damping.

The modified fluid model developed in this chapter can now be applied to the ion-

acoustic Thomson spectra taken in Chapter 4. Figure 51 shows the Thomson data (dashed

line) from a position in the plasma (z = 200#m, r = -25/zm). The measured quantities

at this position from the Thomson spectrum are electron density Ine = 2.4 x 1019 cm "3]

and sound speed [(Cs/Vi) = 20]. Using the ionization balance model presented in Chapter

4, the sound speed measurement indicates an electron temperature of Te = 42eV and an

average ionization state of Z = 7.9. With kia = 180787 cm -l for the Thomson

measurements (see Eq. (48)), c_ = 1/kia_.DE = 5.6 and the ion-ion and electron-ion

collisionality given by equation (10) are kia_ii = 0.705 and kia_.ei = 4.7, respectively.

The value for kia_.ei allows the plasma at this point to be approximated by collisionless

electrons and the value of tx allows for the assumption of quasineutrality. Since the
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Figure 51" Modified fluid model fit (solid line) to Thomson spectra (dashed line) from
a point in the plasma with axial position = 200/zm, radial position = -25/_m.

conditions of quasineutrality and collisionless electrons approximately hold, the modified

fluid model can be used to fred the relative drift from the peak height asymmetry. The

best. fit from the modified fluid model to the Thomson spectrum with ZTe/T i = 8 and

kia_,ii --- 0.705 is shown in Figure 51 (solid line). The discrepancy in the peak widths

between the modified fluid model and the experimental data in Figure 51 is due to

broadening of the experimental peaks from instrument response, f'mite Akia collection,

and nonstationarity of the plasma quantities during the duration of the 266nm diagnostic

pulse. Assuming the relative drift is directed radially, the scattering geometry for the

Thomson experiments yields (kia*lJd)/kiav e -- (Ud/Ve) cos(67.5 °) and the best fit is
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accomplished with a normalizedvalue for the relative drift of (Ud/Ve) -- 0.029 or (Ud/Cs)

= 2.1. The second normalization shows the relative drift is on the order of the sound

speed. This value for the relative drift can be contrasted with the relative drift predicted

from the return current due to the radial temperature gradient measured in the plasma.

Combining equations (78) and (79) in Chapter 4, the normalized relative drift [Od/Ve] due

to the radial temperature gradient (VI e) is given by,

v_ - _0 yeS_ n.v_T_ (3.1) T,, (120)

where the approximation is made by substituting the values for (yT/Ye/3-l-¢) = 3.1 and Ke

= 8 neVe_,ei when ZTe/Ti=8 (Ref. 147). The normalized relative drift predicted by Eq.

(120) with VIe = 1400 eV/cm from the experimental data is (Ud/Ve) = 0.00095 which

is a factor of 30 smaller than the relative drift given by the best fit of the model to the

peak height asymmetry of the data. The discrepancy between the two values for the

relative drift could be a result of the drift not being directed radially at that point in the

plasma and/or mechanisms other than heat transport driving a relative drift such as laser

beam nonuniformities in the plasma generating beam. For example if the drift where

directed along the ion-acoustic wave, then the cos(67.5°) = 0.38 factor used in

calculating (Ud/ve) from the peak height asymmetry would be a factor of 3 smaller. The

discrepancies in the Thomson data presented here and at the end of Chapter 4 deserve

further investigation. A potential experimental configuration for performing the

investigation systematically is discussed in the next chapter.

In this chapter, a modified fluid model has been developed that can be used to
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measure the relative drift velocity between the thermal electrons and ions from the peak

height asymmetry in a Thomson spectra when given the values for the

ionization/temperature ratio ZTe/T i and ion-collisionality kia_.ii. The transport coefficients

and the ratio of specific heats that appear in the model are found as a function of ZTJT i

and kia_ii using the perturbed ion distribution functions from the eigenvalue solution of

the linearized Fokker-Planck equation. Since the modified fluid model correctly

reproduces the complex frequencies of the ion-acoustic wave for the entire range of ion-

collisionality (kia_.ii) in the quasineutral limit (oe_ oo) with coUisionless electrons, the

model is self-consistent. The limitations for the current model are the need for

collisionless electrons (kia_,ei _ 1), quasineutrality (oe,_1), and weak ion coupling (lnAii

1). When the quantities kia_.ei and/or t_are approximately < 1, the effects of electron

collisions and/or non-quasineutrality mustbe included through the Fokker-Planck equation

for calculating the transport coefficients and the ratio of specific heats. Also, the Fokker-

Planck equation does not account for the large angle scattering effects when the ions

become strongly coupled. The strongly coupled condition occurs when the ion-ion

Coulomb logarithm is of order 1 (lnAii _ 1). These conditions add complexity to the

solution of the Fokker-Planck equation which is beyond the scope of this dissertation.

Finally, the modified fluid model does not at this point accurately predict the ion-acoustic

spectrum near zero frequency where the entropy wave feature resides. With the

information obtained from the Fokker-Planck results regarding the entropy wave, it

should be possible to develop a model to reliably calculate the spectrum of the entropy

wave in the future.
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Chapter VI: Experimental configuration II (peak asymmetry investigation)

In this chapter, changes will be proposed in the experimental configuration

described in Chapter 3 which will allow for a systematic investigation of peak height

asymmetries in collective Thomson spectra. As mentioned at the end of Chapter 4, the

peak height asymmetries in the laser-produced plasma studied in this dissertation do not

correlate as one might expect with the radial temperature gradients measured in the

plasma. Although the peak asymmetry in the data collected for Chapter 4 was

reproducible in some instances, it was not reproducible in general. A reproducible

asymmetry would suggest the possibility of relative drifts driven by beam nonuniformities

in the plasma generating beam. Since the peak asymmetry is not always reproducible, the

signal averaging techniques used for measurement of the electron density, sound speed,

and radial drift in Chapter 4 will not allow for acquisition of meaningful peak height

asymmetry data. Therefore, the collective Thomson scattering data must be collected on

a single shot basis for a proper analysis. At the same time, since there is a question

concerning the relationship between peak height asymmetry and the radial temperature

gradients in the plasma, Thomson scattering data from multiple radial points should be

collected simultaneously. The Thomson scattering collection system shown in Figure 17

of Chapter 3 only allows for single point measurements in the plasma and is obviously

incompatible with the requirements imposed by single shot measurement of the entire

radial temperature gradient. The conditions of single shot, multiple point data acquisition

can be satisfied by modifying the Thomson scattering collection optics, astigmatic
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compensation of the spectrometer in the collection system, and replacing the one-

dimensional reticon detector on the back of the spectrometer with a two-dimensional CCD

detector.

The detector used for acquiring the collective ion-acoustic Thomson spectrum for

electron density, sound speed, and radial drift velocity measurements is an 1024-element

single-intensified reticon array (EG&G Model 1420UV). As discussed in the experimental

configuration of Chapter 3, this detector is mounted at the exit plane of a 0.85 meter

double monochrometer (SPEX Model 1404) which spectrally disperses the Thomson

scattered light onto the detector. The reticon detector has an overall quantum efficiency

(Q.E.) -_ 10% at the Thomson scattering wavelength of 266nm. This means that for

every 10 photons incident per pixel element on the detector, 1 count is registered. For

a typical Thomson scattering shot, 70 counts are registered per pixel at peak maximum.

This implies that for an average single Thomson scattering plasma shot, assuming a Q.E.

-_ 10%, 700 photons are incident on each 2.5mm high by 25/zm wide element of the

detector. The signal-to-noise (S/N) of the Thomson peaks for a single shot is only = 3:1.

The relatively low signal-to-noise is the reason for integrating 10 shots per point

measurement in the plasma. By averaging 10 shots, the signal-to-noise is improved by

approximately a factor of _fl0. The single shot signal-to-noise obtained with the reticon

detector would introduce an error of 30% in the peak height asymmetry measurements.

For this reason, the Princeton Instruments Intensified CCD detector (Model ICCD) is

chosen to replace the reticon detector for the peak height asymmetry measurements. The

specifications for the efficiency of this two-dimensional detector are,
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1 photoelectron (pe-) = 80 counts (121)
Q.E. of (pe-) generation from photons = 15% (at 266nm)

Since the CCD detector is made up of a two-dimensional grid of 25#m x 25#m detector

elements, I00 CCD pixels is equivalent to one reticon element. Using the previously

estimated 700 photons incident on each reticon pixel per plasma shot, an equivalent

Thomson experiment using the CCD detector would generate a signal,

Signal - 700 photonsllO0 pixelslshot (122)

Since the Q.E. t'or photoelectron generation from Eq. (121) is 15%,

Signal - 105 pe -/100 pixels[shot (123)

Also from Eq. (121), 80 counts are generated for every photoelectron, therefore,

Signal = 8400 countsll O0 pixelslshot (124)

The total noise (NT) associated with the signal of Eq. (124) is given by,

Nr = _/N_+ N_t + N_ + N:,2h (125)

where NR is the read out noise, NEBI is the photocathode noise, ND is the dark noise of

the CCD, and Nph is the photon shot noise. For the CCD detector, the read out noise is

NR = 1 count and for the intensifier in the gated mode, NEBI _- 0. The dark noise of

the CCD is given by, ND = 1 count/pixel/(second of readout time), and the photon shot

noise is equal to the square root of the number of photoelectrons generated, Nph = (# pe-

)1/2. From Eq. (121), 105 photoelectrons are generated for each equivalent reticon

element of the CCD detector during a Thomson spectrum acquisition, therefore the
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photon shot noise associated with the signal is, Nph = (105) 1/2 = 10.2 pc-. Since 80

counts are registered for every photoelectron, Nph = 820 counts/shot. Using 100 CCD

pixels in one shot with an average read out time of 1 see, the total noise associated with

the Thomson signal on the CCD detector is given by,

N r = _/i2 + 02 + 100_ + 8202 - 826 counts RMS (126)

The signal-to-noise obtained in the Thomson spectrum by the CCD detector under

equivalent conditions to that of the reticon detector is now found through the ratio of Eq.

(124) to Eq. (126),

SIN - Signal = 8400 counts = 10 (127)
Nr 826 counts RMS

Therefore, the CCD will collect a single shot Thomson spectrum with a signal-to-noise

comparable to that obtained with the reticon detector by averaging 10 plasma shots. A

signal-to-noise of 10will introduce an acceptable 10% error in the peak height asymmetry

measurements.

In addition to providing reasonable signal-to-noise levels in a single shot Thomson

spectrum, the CCD detector also solves the second problem associated with the peak

height asymmetry analysis, multiple point data acquisition. Since the detector is two-

dimensional, one axis of the detector can be used to record the spectral content of the

Thomson scattered light from a given point in the plasma, while the other axis can be

used to monitor the spatial information from multiple radial positions in the plasma with

an appropriately modified collection and imaging system.

The collection system from Chapter 3 must be modified slightly to allow tbr the
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Figure 52: Optical schematic of the collection system which couples the Thomson
scattered signal from the plasma onto the CCD detector for the peak height asymmetry
analysis.

acquisition of Thomson scattered light simultaneously from several radial positions.

Figure 52 shows the proposed collection system for the peak height asymmetry analysis.

The Thomson scattered light is collected with an 300mm focal length (f/12) lens and

imaged with a magnification of 5 onto the entrance slit of the spectrometer. The image

is rotated in between the lens and entrance slit by makinga right angle turn through a two

mirror periscope. The rotation is necessary to align the image of the horizontal dia_,-astic

beam, and therefore the scattered light, parallel with the vertical entrance slit of the

spectrometer. The scattered light is also sent through a 266nm zero-order, half-wave

(M2) plate before reaching the entrance slit. The half-wave plate is used to rotate the
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polarization of the scattered light to a vertical orientation which minimizes polarization

losses in the spectrometer. With this arrangement, different points along the entrance slit

correspond to different radial positions in the plasma along the scattered diagnostic beam.

The spectrometer disperses the light passing through the entrance slit onto the CCD

detector. Each point from the slit, which corresponds to a radial scattering point from the

plasma, produces a Thomson spectrum along the wavelength axis on the CCD detector,

and the Thomson spectrum from different radial points are stacked along the position axis

on the CCD detector as shown in Figure 52.

A magnification of x5 in the collection system is chosen to optimize the spatial

resolution of the CCD detector along the radial direction in the plasma, while at the same

time not affecting the wavelength resolution of the system. The 20_tmdiameter diagnostic

beam is imaged to a 100#m diameter beam at the 100/_mwide entrance slit. The beam

image diameter matches the entrance slit width so there is optimum coupling of the

scattered light into the spectrometer. With a magnification of 5, each 25_tmhigh element

in the CCD detector corresponds to 5#m in the radial direction in the plasma. The CCD

detector has about a 4 pixel cross-talk which means that a point image will appear to be

4 pixels in diameter on the detector. This cross-talk limits the spectral resolution in the

wavelength direction from 0.032 ,g,/pixel to about 0.12 angstroms and limits the radial

resolution from 5#m/pixel to about 20/zm. Because 100#m along spectral axis

corresponds exactly with the 4 pixel cross-talk, the 100/zmentrance slit is optimum for

use with the CCD detector. A larger entrance slit width would only produce additional

spectral broadening in the Thomson scattered peaks, and lower the resolution. Because



157

the entrance slit width is fixed, an increase in the magnification of the collection system

would improve the radial position resolution of the CCD detector, but at the expense of

light collection efficiency due to imperfect coupling of the diagnostic beam image with

the entrance slit width. Since there is cross-talk, the amount of light integrated for each

radial Thomson spectra can be improved by grouping three rows of elements on the CCD

array as one radial position. As seen in Figure 52, the groups of three rows are separated

by two rows of elements and in this fashion several radial Thomson spectra can be

recorded at the same time with a center separation of 25_m in the plasma.

The extent to which the CCD detector can be used to make two-dimensional

measurements of scattered wavelength vs. radial position in the plasma relies sensitively

on the imaging properties of the spectrometer. Most spectrometers only provide low

aberration image compensation from the entrance slit to the exit plane along the

dispersion or wavelength axis because aberrations along the axis orthogonal to the

dispersive direction do not affect spectral measurements. The spectrometer used in the

previous experimental configuration of Chapter 3 exhibits a significant amount of

aberration along the orthogonal axis. The source of the aberration can be identified from

the optical schematic for the spectrometer shown in Figure 53. The spectrometer is a flat-

field imager but due to off-axis reflections from the interior curved mirrors, the system

is astigmatic. The astigmatism causes the dispersion and orthogonal axes to have different

image planes. For reference, the dispersion axis is in the plane of the diagram and the

orthogonal axis points out of the paper. The astigmatism can be compensated for by

introducing a long focal length (10 meter f.l.) cylindrical len_ into the optical path
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Figure 53: Optical schematic of the spectrometer used for the Thomson scattering
experiments. A cylindrical lens is added to provide astigmatic compensation for two-
dimensional imagiT';_

between the final tu_ ,or and image plane. When properly orientated, the lens will

only affect the position of the image plane for the orthogonal axis. The image plane for

the orthogonal axis can then be made to coincide with the position of the image plane for

the dispersion axis. The method for aligning the compensating lens is as follows; First,

the entrance slit is illuminated by the 253nm fine from a mercury (Hg) calibration lamp
i

and the CCD detector is aligned with the image plane of the spectrometer. The CCD

detector coincides with the image plane when the measured spectral width of the 253nm

line is a minimum. Next, the entrance slit is replaced with a wire mesh with 100tLm

°_--" diameter wires on a 150t_mcenter-to-center spacing. The mesh is illuminated with the
el



159

253nm Hg line and orientated so the wires are parallel to both the dispersion and

orthogonal axis. The 253nm Hg line is used for alignment of the CCD detector and

compensating lens because of its proximity to the wavelength of the Thomson scattered

light at 266nm. Since the focal length of the compensating lens is wavelength dependent,

illumination with the 253nm line will allow for proper placement of the lens for use with

the Thomson scattered light. A narrow line width source, like the,253nm Hg line, must

also be used to eliminate spectral blurring of the two-dimensional mesh image at the CCD

detector. The distance of the mesh from the spectrometer is now changed until the

vertical wires from the mesh are brought into focus on the CCD detector. At this point,

the mesh is in the original position of the entrance slit. Figure 54 shows the two-

dimensional image of the mesh recorded by the CCD detector at this point. The vertical

wires which are perpendicular to the dispersion axis are in focus while the horizontal

wires are badly out of focus due to the astigmatism of the spectrometer. The

compensating lens is now inserted and rotated to a position which causes the smallest

change in the focus of the vertical lines. The proper rotation position insures that the

curvature axis of the cylindrical lens is aligned with the orthogonal astigmatic axis and

therefore will only affect the position of the orthogonal axis image plane. The position

of the orthogonal axis image plane is made to coincide with position of the dispersion axis

image plane by translating the compensating lens along the optical path until the

horizontal wires from the mesh come into focus. Since the compensating lens does add

some optical path length, the CCD detector position needs to be adjusted slightly to

produce the best two-dimensional image of the mesh. Figure 55 shows the improved
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Figure 54: CCD/Spectrometer imaging of 100_tm wire mesh with 150/_m spacing. Tht;
horizontal wires are not visible due to the astigmatism of the spectrometer.

image of the wire mesh from the astigmatic compensated spectrometer. Since the 100tim

wires are well resolved, the same resolution can be expected for the Thomson scattering

experiments when the entrance slit is in place. With the magnification of 5 in the

collection system, the effective resolution of the CCD detector in the radial direction in

the plasma will be better than 20/_m.

As a final note, the wire mesh is rotated 45 degrees in Figure 55 tbr a reason.

Since the mesh is a periodic structure, the compensating lens will produce many image

planes due to diffraction from the mesh which are separated along the optic axis by a

Talbot cycle 155. Only one of these image planes corresponds with the true geometrical

image which contains all of the spatial Fourier components of the mesh pattern. The other
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Figure 55" CCD/Compensated Spectrometer imaging of 100#m wire mesh with
150/_m spacing.

image planes result from reconstructions of only a subset of the Fourier components. The

true geometrical image is found when a rotation of the mesh, which produces a change

in the spatial Fourier components, does not change the focus quality of the mesh wires

on the CCD detector. One way to avoid the Talbot cycle in aligning the system would

be to use a non-periodic structure like a cross-hair.

Other than the collection system changes mentioned here, the experimental

configuration and data acquisition procedures which were used to collect the electron

density, sound speed, and radial drift data in Chapter 4 will remain the same for the peak

height asymmetry experiments. Continued monitoring of the electron density and sound

speed is required for an estimation of the ion-ion mean free path (_'ii)" The ion-ion mean
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free path is a function of the electron density, ion temperature, and ionization state of the

plasma, see Eq. (10). The electron temperature and ionization state can be obtained from

the sound speed data by using the ionization balance model discussed in Chapter 4, and

since the laser plasma is collisional, see Chapter 4, the ion temperature is approximately

equal to the electron temperature. With the ion-ion mean free path, the collisionality

(kia_ii) of the ion-acoustic wave is known. The theory presented in Chapter 5 can then

be used to analyze the peak height asymmetries since the theory is a function of the

collisionality (kia_.ii).

This chapter has presented the changes necessary in the collection system from that

described in Chapter 3 for an investigation of the peak height asymmetries in collective

Thomson spectra for the laser-produced plasma studied in this dissertation. The new

collection system allows for single shot, multiple radial point data acquisition. The data

must be collected on a single shot basis because there is some questions as to the shot-to-

shot reproducibility of the relative thermal drift between the electrons and ions. Multiple

radial point data acquisition is necessary for single shot measurements of the radial

electron temperature gradient (VTe). With the theory in Chapter 5, the peak height

asymmetry can be related to the relative thermal drift (Ud) between the electrons and

ions. The most probable source for the relative drift is a return current driven by a heat

flux (qe). Verification of the direct relationship between relative drift (Ua) and the heat

flux (qe) through a consistency check (qe = -reVI'e) is a very important measurement to

make in a laser plasma. If there is not a self-consistent relationship between the relative

drift and the heat flux, then other mechanisms may be driving the relative drift, such as
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beam nonuniformities in the plasma generating beam. Nonuniformities or 'hot spots' in

the plasma generating beam could be triggering the onset of thermal filamentation in the

plasma. The filaments are stochastic and tend to flicker on a time scale much shorter than

the 266nm diagnostic pulse width of 5ns. Therefore, the steep temperature gradients

produced in the filaments would not be directly detectable under the current Thomson

scattering conditions. But, the steep gradients may impulsively drive the relative drifts

that are producing the inconsistentpeak height asymmetries in the Thomson spectra. This

hypothesis could be experimentally investigated by placing a random phase plate (RPP)

in the 1.06#m plasma generating beam. The introduction of the RPP would remove beam

nonuniformities, and should affect the peak height asymmetries if the hypothesis is

correct.
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Chapter VII: Conclusions

Although there exists no universal laser-plasma diagnostic, collective Thomson

scattering from ion-acoustic waves has proved to be the most convenient and useful

diagnostic for investigating the characteristics of the collisional, laser-produced, aluminum

plasma studied in this dissertation. Using the existing Thomson scattering theory reviewed

in Chapter 2, it was possible to accurately measure the two-dimensional electron density,

sound speed, and radial drift velocity profiles of the laser plasma. The measurements

were facilitated by generating a reproducible plasma in the three quantities being

measured. The reproducibility of the electron density, sound speed, and radial drift

velocity was verified in Chapter 4, and owing to this reproducibility, single point

Thomson measurements from different plasma shots could be correlated. This correlation

permitted the single pointThomson measurements to be assembled into a two-dimensional

picture of the plasma. The reproducibility also allowed for signal averaging to be used

which improved the signal-to-noise of the Thomson spectrum from the low density

portions of the plasma.

Besides performing the most detailed measurements of a laser-produced plasma

to date, the Thomson scattering experiments of this dissertation 156,157 are the first

done at a wavelength as short as 266nm. The ultraviolet diagnostic wavelength is

necessary to minimize the complicating effects of inverse bremsstrahlung and refractive

turning in the high density regions of the plasma that are being studied (ne = 1 x 1020

cm-3). As was discussed in Chapter 4, a diagnostic wavelength of 532nm would have
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been unacceptable for performing Thomson scattering from the plasma studied in this

dissertation. A 532nm diagnostic beam would cause local heating of the plasma due to

inverse bremsstrahlung which would change the value for temperature dependent sound

speed being measured. Also, the refractive turning of a 532nm diagnostic beam would

limit accessibility in the plasma and reduce the amount of scattered light collected.

The two-dimensional data for the electron density, sound speed, and radial drift

velocity was used to benchmark the hydrodynamics code (LASNEX) in the parameter

regime represented by the plasma in this dissertation. The laser-plasma studied is

produced with a moderate intensity laser pulse _ 2 x 1011 W/cm2 so that instabilities

such as SBS and SRS that occur at higher irradiance levels do not develop. Instabilities

could complicate the data analysis and comparison with LASNEX and are therefore

undesirable for fundamental studies of this type. The laser-plasma is collisional and as

shown in Chapter 4, has an electron-ion mean free path (_ei) which is much shorter than

the temperature scale lengths (To/VIe) measured from the Thomson scattering data. The

condition (J_ei " Te/VIe.) is necessary for the plasma to be in the Spitzer regime where

classical electron heat transport theory applies. Since I.,ASNEX is based on the

hydrodynamic fluid equations with classical transport coefficients, the computer model

should accurately predict the features of the plasma, and in fact it does. The values for

the electron density, sound speed, and radial drift velocity predictex!by LASNEX and

measured through collective Thomson scattering all agree within a percent standard

deviation of 50%. This type of detailed comparison between a computer model and an

experiment are important for raising the confidence level in the accuracy of the computer
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model for predicting the characteristics for other similar plasmas.

A detailed investigation of a plasma allows one to gain a basic understanding of

the physical principles governing the plasma and its evolution. In Chapter 4, simple

models based on first principles where presented that demonstrate the self-consistency of

the experimentaUymeasured electron density, ound speed, and radial drift velocity. For

example, the predicted radial sonic point in the plasma obtained from the steady state

equations of motionfor the electrons and ions matches the experimentally measured radial

sonic point within the error bars of the experiment. The simple models presented not only

verify the accuracy of the experimental measurements self-consistently, but also show that

some aspects of a very complicated coUisional laser-produced plasma can be predicted

without a intricate 'black box' code like LASNEX. When possible, a simplistic approach

to modeling a plasma is desirable b_ause it permits intuition to be used in understanding

the characteristics of the plasma.

Despite the self-consistency of the electron density, sound speed, and radial drift

measurements, the peak height asymmetries in the measured ion-acoustic Thomson

spectrum do not appear to correlate with the temperature gradients of the plasma. The

peak height asymmetry in an ion-acoustic Thomson spectrum is directly related to the

relative drift velocity (Ud) between the thermal electrons and ions. As discussed in

chapters 4, 5, and 6, the relative drift is usually thought to be a result of the return

current driven by heat transport due to a temperature gradient in the plasma. The first

step in a more thorough investigation of the relationship between the peak height

asymmetry and the measured temperature gradients involves extending the existing
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Thomson theory. As discussed in Chapters 2 and 5, the existing Thomson scattering

theo.ry accurately predicts the peak height asymmetry in the ion-acoustic Thomson

spectrum in the collisionless (kiaXii --* oo) and collisional (kia_,ii _ 0) plasma regimes for

a given relative drift (Ud) and ionization/temperature ratio (ZTe/Ti). For plasmas of

intermediate collisionaliry (kia_.ii _-- 1), like the one studied in this dissertation, a new

theory had to be developed to accurately predict the peak height asymmetry for a given

collisionality (kia_,ii), relative drift (Ud) , and ionization/temperature ratio (ZTe/Ti). The

new theory is presented in Chapter 5 and is based on the fluid equations with modified

closure relations. The coUisionaUydependent transport coefficients (K1,4, #1,/z2) and

ratio of the specific heats (I') that appear in the closure relations and the fluid equations

are found from the perturbed ion distribution function for the ion-acoustic wave. The

perturbed ion distribution function is in turn calculated from the eigenvalue solution of

the Fokker-Planck equation158. The new theory which is termed 'the modified fluid

model', self-consistently reproduces the real and imaginary parts of the complex

frequency for the ion-acoustic wave for any value of kia_.ii and ZTe/Ti, andwill therefore

accurately predict the change in the damping of the ion-acoustic waves due to a relative

drift which produces the peak height asymmetry in the Thomson spectrum. The current

limitations of the modified fluid model are the electrons must be collisionless (kia_.ei ,, 1),

quasineutrality must hold (et • 1), and the ions must be weakly coupled (lnAii _ 1).

Armed with the modified fluid model, an experimental configuration is presented

in Chapter 6 that can be used to investigate the relationship between the relative drift

(Ud), measured from the peak height asymmetry, and the temperature gradient, obtained
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from the spatially dependent sound speed. The experiments will be performed on a single

shot basis with the Thomson scattered signal collected simultaneously from several

different radial positions in the plasma. The single shot detection is facilitated with an

intensified CCD camera and is necessary to eliminate any reproducibility issues related

to the plasma. The CCD camera is re4uired for the simultaneous multiple point detection

of the Thomson signal which will be used to measure the spatially dependent sound

speed o

The results from the proposed peak height asymmetry experiments are expected

to address the issue of heat transport in a collisional, laser-produced plasma. If the

relative drift measurements do not correlate with the expected values from classical

transport theory, then some mechanism other than the return current driven by heat

transport may be causing the relative drift, for example nonuniformities in the plasma

generating beam. One important reason for investigating the mechanisms which generate

a relative drift in the plasma is that the relative drift can drive ion-acoustic waves above

thermal levels by what is referred to as the relative drift instability. The ion-acoustic

waves could then act as a seeding mechanism for SBS. Regardless of the outcome, the

peak height asymmetry experiments will certainly result in the first detailed spatially

dependent relative drift measurements of a laser-produced plasma. This information can

be added to the electron density, sound speed, and radial drift measurements conducted

for this dissertation to yield even a greater understanding of the physics associated with

a laser-produced plasma.
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Appendix: Code for eigenvalue solution of the Fokker-Planck equation

C_______________

c* Program: FOKKER.FOR
C*

c* This program computes the eigenvalues and corresponding
c* eigenvectors for the matrix solution of the ion Fokker-Planck
c* equation for a given collisionality (k_.ii)and (ZTe/Ti) ratio. The
c* matrix size is determined from the product of the number of
c* velocity grid points (jmax) used in the radial velocity direction
c* and the number of Legendre modes (lmax+ 1) used in the angular
c* velocity direction. The accuracy of the solution is dependent on
c* the size of jmax, lmax, and the maximum normalized radial velocity
c* (umax). Obviously, more accuracy requires a larger matrix and more
c* computation time. The actual values of jmax, lmax, and umax
c* required are a function of kkii, ZTe/Ti, and the user desired
c* accuracy.
C*

c* The input parameters for the program are listed in the user
c* supplied input data file (EIGEN.DAT). The definition of the
c* parameters are as follows:
C*

c* zteonti _ ZTe/T i ratio
c* npoints --, number of k_.ii points to be computed for the given
C* ZTe/T i ratio
c* akl(50) --, array of kZii points to be computed
c* jmax -, number of velocity grid points between 0 and umax
c* lmax --, number of Legendre modes to include in problem minus
c* one

c* duratio --, allows for variable spacing of the velocity grid
c* points, but a constant spacing is highly recommended!
c* So set duratio = 1.0

c* fr _ limits the output to eigenvectors with an eigenvalue
c* of absolute real pan greater than fr
c* fi --, limits the output to eigenvectors with an eigenvalue
c* of absolute real pan less than -fi
C*

c* The output is written to a series of files with f'flenames
c* (B:\OUTPUT?.DAT), where the ? is replaced with A, B, C, and so on
c* for each successive output file. Each output file contains the
c* eigenvectors and associated eigenvalues for one k_ii point. The
c* eigenvectors are decomposed into the velocity dependent
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c* coefficients of the Legendre modes from 0 to umax listed in order
c* from Legendre mode = 0 to mode = Imax. The eigenvector is only
c* written to the file if its eigenvalue is the lowest damped zero
c* frequency solution (entropy wave) or if the absolute value of the
c* real part of the eigenvalue falls between fr and -fi (ion-acoustic
c* wave).
C*

c* Other important variables for the code are:
C*

c* ar(600,600) --, real part of the matrix to be solved
c* ai(600,600) --, imaginary part of the matrix to be solved
c* wr(600) --, real part of the eigenvalues
c* wi(600) --, imaginary part of the eigenvalues
c* zr(600,600) --, column matrix of real part of eigenvectors
c* zi(600,600) -, column matrix of imaginary part of eigenvectors
c* ui(200) _ radial velocity grid
C*

c* The subroutines used from the SLATEC library:
C*

c* CG(nm,n,ar,ai,wr,wi, matz,zr, zi, fv 1,fv2, fv3,ierr)
c* CBABK2(nm,n,low,igh,scale,m,zr,zi)
c* CBAL(nm,n,ar,ai,low,igh,scale)
c* CDIV(ar,ai,br,bi,cr,ci)
c* COM2(nm,n,low,igh,ortr,orti,hr,hi,wr,wi,zr,zi,ierr)
c* CORTH(nm,n,low,igh,ar,ai,ortr,orti)
c* CSROOT(xr,xi,yr,yi)
c* PYTHAG(a,b)
C*

c* The subroutines written for the error function calculation:
C*

c* ERFUN(x)
c* GAMMP(a,x)
c* GAMMLN(xx)
c* GSER(gamser,a,x,glm)
c* GCF(gammcf, a,x,gin)
C*

c* One additional note - All variables are in double precision!

REAL*8 ar(600,600),ai(600,600),wr(600),wi(600),fv 1(600)
RE&L*8 f-v2(600),fv3(600),term,term I,akion,el,t 1,el 1,el2
REAL*8 zr(600,600), zi(600,600)
REAL*8 ui(200),fi0(200),r I (200),r2(200),fr,fi,du,erfun
REAL*8 usum,umax,zteonti,uarg,duratio,rtp,trp,tr2,fact



171

REAL*8 akion I ,ak,bk,damp,akl(50),dux
INTEGER r

eye=CMPLX(0., I.)
rtp = SQRT(2./3.1415926535)
trp= 3. *SQRT(3.1415926535)
tr2 =3.*SQRT(2.)

c.. read input parameters

OPEN (10,file =' eigen, dat')
READ(10,*) zteonti
READ(10,*)npoints .,
do 600 i= 1,npoints

READ(10,*) aid(i) .
600 continue

READ(10,*) jmax
READ(10,*) lmax
READ(10,*) umax
READ(10,*) duratio
READ(10,*) fr
READ(10,*) fi
CLOSE(10)

c..set up velocity grid

du=l.
usum = .5

do 3 j=2,jmax
du= du*duratio
usum=usum+du

3 continue
du=umax/(usum+ .5*du)

ui(1)=du
fi0( 1) = exp(-.5*ui( 1)**2)
do 5 j=2,jrnax
du= du*duratio

ui(j) =ui(j-l) +du
uarg =. 5*ui(j)*ui(j)
ri0(j) =cxp(-uarg)

5 continue
dux=ui(2)-ui(1)

c.. set up maxweUian rosenbluth potentials
c.. rl =dH/dv ; r2=dG/dv
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do 71 j = l,jmax
r1(j)= 2. *(rtp*ui(j)*fi0(j)-erfun(ui(j)/SQRT(2.)))/ui(j)**2
r2(j) = erfun(ui(j)/SQRT(2.)) + r l 0)/2.

71 continue

c.. begin main loop

DO 700 ii= l,npoints

akion= akl(ii)

c.. intialize matrix

do 91 j = l,jmax*(lmax+ 1)
do 92 k= 1,jmax*(lmax+ 1)

ar(j,k)=0.0
ai(j,k) =0.0

92 continue
91 continue

akionl = 1.0

c.. set up matrix

do 20 l=O,lmax
el=float(l)
ell =el*(el-1.)
el2 =(el + 1.)*(el+ 2.)*(el-.5)/(el + 1.5)
term=8.*3.1415926535/(2.*el + 1.)
terml =4.*3.1415926535/(4.*e1"'2-1 .)
do 30 k= 1,jmax

r=l*jmax+k
t1= 3.*riO(k)/(2.*'2.5"3.1415926535*akion)
ak = ((1. + ui(k)**2)*r 1(k)+ 2. *ui(k)*rtp*fi0(k))*fi0(k)/2.
bk=ui(k)*rl(k)*fiO(k)/2.

c.. diagonal term

a';(r,r)= ai(r,r) +tr2*fi0(k)/akion-trp*r2(k)*el* (el+ 1.)/
&(2. *akion*ui(k)**3)

c.. side diagoaal terms

IF (r-jmax.gt.0) ar(r,r-jmax)=ar(r,r-jmax)+(el*ui(k)/(
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&2.*(el-1.)+ 1.))*akionl
IF (r +jmax.le.jmax*(imax + 1)) ar(r,r +jmax) = ar(r,r +jmax) +

&((el+ 1.)*ui(k)/(2.*(el+ 1.)+ l.))*akionl

c.. derivative term

IF (k.ne. 1) THEN
IF(k.ne.2) THEN
IF(k.ne.jmax) THEN
IF(k.ne.jmax- 1) THEN

ai(r,r-2) = ai(r,r-2)+ trp*(ak/12. +bk/(12.*dux))/(fi0(
&k-2)*akion*ui(k)**2*dux)

ai(r,r- 1) = ai(r,r- l)-trp*(2.*ak/3. + 4.*bk/(3.*dux))/
&(ri0(k- 1)*akion*ui(k)**2*dux)

ai(r,r) = ai(r,r) + trp*5. *bk/(2. *fi0(k)*akion*ui(k)**2*dux**2 )
ai(r,r + 1)= ai(r,r + 1)-trp*(-2.*ak/3. + 4.*bk/(3.*dux))/

&(fi0(k + 1)*akion*ui(k)**2*dux)
ai(r,r + 2)= ai(r,r + 2)-trp* (ak/12.-bk/(12.*dux))/(fi0(

&k + 2)*akion*ui(k)**2*dux)
ELSE

ai(r,r + 1) = ai(r,r + l)-trp*(-ak/4. + 11.*bk/(12.*dux))/(fi0(
&k + 1)*akion*ui(k)**2*dux)

ai(r,r) = ai(r,r) + trp*(5.*ak/6. + 5.*bk/(3.*dux))/(fi0(k)*
&akion*ui(k)**2*dux)

ai(r,r- 1)= ai(r,r- 1)-trp*(3.*ak/2. + bk/(2.*dux))/(fi0(k- 1)
&*akion*ui(k)**2*dux)

ai(r,r-2) = ai(r,r-2)-trp*(-ak/2. + bk/(3.*dux))/(fi0(k-2)*
&akion*ui(k)**2*dux)

ai(r ,r-3) = ai(r,r- 3)-trp*( ak/12.-bk/( 12.*dux))/( fi0(k-3)*
&akion*ui(k)**2*dux)

ENDIF
ELSE

ai(r,r) = ai(r,r)-trp*(- 1l.*ak/6. + 2.*bk/dux)/(fi0(k)*akion*
&ui(k)**2*dux)

ai(r,r- 1) = ai(r,r- 1)-trp*(3. *ak-5. *bk/dux )/( ri0(k- 1)*
&akion*ui(k)**2*dux)

ai(r,r-2) = ai(r,r-2)-trp*(-3.*ak/2. + 4.*bk/dux)/(fi0(k-2)*
&akion*ui(k)**2*dux)

ai(r,r-3 )= ai(r,r-3 )-trp*(ak/3 .-bk/dux)/( fi0(k-3 )*akion*
&ui(k)**2*dux)

ENDIF
ELSE

ai(r,r-1) = ai(r,r-1)-trp*(ald4. + 11.*bk/(12.*dux))/(fi0(
&k- 1)*akion*ui(k)**2*dux)
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ai(r,r) = ai(r ,r)-trp*(5. *ak/6.-5. *bk/(3. *dux) )/( ri0(k)*
&akion*ui(k)**2*dux)

ai(r,r + 1)= ai(r,r + l)-trp*(-3.*ak/2. + bk/(2.*dux))/(riO(k + 1)
&*akion*ui(k)**2*dux)

ai(r,r + 2) = ai(r,r + 2)-trp*(ak/2. + bk/(3.*dux))/(riO(k + 2)*
&akion*ui(k)**2*dux)

ai(r,r + 3) = ai(r,r + 3) + trp*(ak/12. +bk/(l 2.*dux))/(riO(k + 3)*
&akion*ui(k)**2*dux)

END[F
ELSE

ai(r,r) = ai(r,r)-trp*(11 .*ak/6. + 2.*bk/dux)/(fiO(k)*akion*
&ui(k)**2*dux)

ai(r,r + 1)= ai(r,r + 1)+ trp*(3.*ak + 5.*bk/dux)/(fiO(k + 1)*
&akion*ui(k)**2*dux)

ai(r,r + 2)= ai(r,r + 2)-trp*(3.*ak/2. + 4.*bk/dux)/(fiO(k + 2)*
&aldon*ui(k)**2*dux)

ai(r,r + 3) = ai(r,r + 3) + trp*(ak/3. + bk/dux)/(fiO(k + 3)*akion*
&ui(k)**2*dux)

ENDIF

c.. tOonfl term (vprime < v)

jc =0
do 40 j=i*jmax+ 1,1*jmax+k

jc=jc + 1
fact= 1.0

if(k.ge.4) then
if(jc.eq. 1) fact = 23./12.
if(jc.eq.2) fact=7./12.
if(jc.eq.k-1) fact= 13./12.
if(jc.eq.k) fact=5./12.
else

if(k.ge.2) then
if(jc.eq. 1) fact = 3./2.
if(jc.eq.k) fact= 1./2.
endif
endif

c.. h potential

ai(r,j) = ai(r,j)-t l*term*ui(jc)*(ui(jc)/ui(k))**(l + I)
&*dux*fact

c.. g potential
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ai(r,j) = ai(r,j)- t I*term I*ui(jc)*'3 *(el I*(ui(jc)/
&ui(k))**(l- 1)-el2*(ui(jc)/ui(k))**(I + l))*dux*fact

40 continue

c.. fOonfl term (vprime > v)

jc=k-I
if(k.eq.jmax) goto 900
do 42 j =l*jmax+k,(l+ 1)*jmax

jc=jc + 1
fact= 1.0
if(k.le.jmax-3) then
if(fjc.eq.k).or.tjc.eq.jmax)) fact= 5./12.
if(tjc.eq.k+ 1).or.(jc.eq.jmax-1)) fact= 13./12.

else

if(k.le.jmax-1) then
if((jc.eq.k).or.(jc.eq.jmax)) fact= 1./2.

endif
endif

c.. h potential

ai(r,j) = ai(r,j)-tl *term*ui(jc)*(ui(k)/ui(jc))**l
&*dux*fact

c.. g potential

ai(r,j) = ai(r,j)-t 1*term 1*uifjc)**3 *(el 1*(ui(k)/
&ui(jc))**l-el2*(ui(k)/ui(jc))**(l + 2))*dux*fact

42 continue
900 continue

c.. ion density term

IF(l.eq. 1) THEN
do 44 j= 1,jmax

fact= 1.0

IF(j.eq. 1) fact=23./12.
IFfj.eq.2) fact=7./12.
iffj.eq.jmax-l) fact= 13./12.
if(j.eq.jmax) fact=5./12.
ar(r,j) = ar(r,j) + 2. *zteonti*ui(k)*fiO(k)*ui(j)
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&**2*dux* fact*akion 1/SQRT(2. *3.1415926535)
44 continue

ENDIF

30 continue

20 continue

WRITE(*,*) 'made it!'

c.. fred eigenvalues and eigenvectors

n =jmax*(lmax + 1)
matz =0

call cg(n,n,ar,ai,wr,wi,matz,zr,zi,fv l,fv2,fv3,ierr)

c.. write solutions to output files

c.. write entropy wave eigenvector

OPEN( 10,file = 'b :output'//char(64 + ii)//', dat')
jsave = 1
damp=-lel0
do 710 j= 1,jmax*(Imax + 1)

IF((ABS(wr(j)).le.0001).and.(wifj).gt.darnp)) THEN
damp=wi(j)
jsave =j

ENDIF
710 continue

WRITE(10,*) ' zteti = ',zteonti
WRITE(10,*) ' akion = ',akion
WRITE(10,*) ' lmodes = ',lmax
WRITE(10,*) ' umax = ',umax
WRITE(10,*) ' npoints = ',jmax
WRITE(10,*)' eigenvalue = ',wr(jsave),wi(jsave)
WRITE(10,*) ' eigenvector - '
do 410 k= 1,jmax*(lmax + 1)
kk= k-jmax*INT((k-l)/jmax)
WRITE(10,*)ui(kk),zr(k,jsave),zi(k,jsave)

4I0continue

c.. write ion-acoustic eigenvectors
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DO 110 j = l,jmax*(lmax + 1)
IF((ABS(wr(j)). ge. fr). and. (ABS(wr(j)). le. ABS(fi))) THEN

WRITE(10,*) ' zteti = ',zteonti
WRITE(10,*) ' akion = ',akion
WRITE(10,*) ' lmodes = ',lmax
WRITE(10,*) ' umax = ',umax
WRITE(10,*) ' npoints = ',jmax
WRITE(10,*) ' eigenvalue = ',wr(j),wi(j)
WRITE(10,*) ' eigenvector -'
DO 500 k = 1,jmax*(lmax + 1)

kk = k-jmax*lNT((k- l)/jmax)
WRITE(10,*) ui(kk),zr(k,j),zi(k,j)

500 CONTINUE
ENDIF

110 continue

CLOSE(10)

700 continue

end

SUBROUTINE CG(NM,N,AR,AI, WR, WI, MATZ,ZR,ZI,FV 1,FV2,FV3, IERR)
C***BEGIN PROLOGUE CG
C***DATE WRITrEN 760101 (YYMMDD)
C***REVISION DATE 881108 (YYMMDD)
C***CATEGORY NO. IMA4
C***KEYWORDS LIBRARY=SLATEC(EISPACK),TYPE=COMPLEX(RG-S CG-C),
C EIGENVALUES,EIGENVECTORS
C***AUTHOR SMITH, B. T., ET AL.
C***PURPOSE Compute the eigenvalues and, optionally, the
C eigenvectors of a complex general matrix.
C***DESCRIPTION
C
C This subroutine calls the recommended sequence of
C subroutines from the eigensystem subroutine package (EISPACK)
C to find the eigenvalues and eigenvectors (if desired)
C of a COMPLEX GENERAL matrix.
C
C On INPUT
C
C NM must be set to the row dimension of the two-dimensional

C array parameters, AR, AI, ZR and ZI, as declared in the
C calling program dimension statement. NM is an INTEGER
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C variable.
C
C N is the order of the matrix A=(AR,AI). N is an INTEGER
C variable. N must be less than or equal to NM.
C
C AR and AI contain the real and imaginary parts, respectively,
C of the complex general matrix. AR and AI are two-dimensional
C REAL arrays, dimensioned AR(NM,N) and AI(NM,N).
C
C MATZ is an INTEGER variable set equal to zero if only

C eigenvalues are desired. Otherwise, it is set to any
C non-zero integer for both eigenvalues and eigenvectors.
C
C On OUTPUT
C
C WR and Wl contain the real and imaginary parts, re_vely,
C of the eigenvalues. WR and WI are one-dimensional REAL
C arrays, dimensioned WR(N) and WI(N).
C
C ZR and ZI contain the real and imaginary parts, re.rely,
C of the eigenvectors if MATZ is not zero. ZR and ZI are
C two-dimensional REAL arrays, dimensioned ZR(NM,N) and
C ZI(NM,N).
C
C IERR is an INTEGER flag set to
C Zero for normal return,
C 10*N if N is greater than NM,
C J if the J-th eigenvalue has not been
C determined after a total of 30 iterations.
C The eigenvalues should be correct for indices
C IERR + 1, IERR + 2, ..., N, but no eigenvectors are
C computed.
C
C FV1, FV2, and FV3 are one-dimensional REAL arrays used for
C temporary storage, dimensioned FVI(N), FV2(N), and FV3(N).
C

C Questions and comments should be directed to B. S. Garbow,
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C
C***REFERENCES B.T. SMITH, J.M. BOYLE, J.J. DONGARRA, B.S. GARBOW,
C Y. IKEBE, V. C. KLEMA, C. B. MOLER, *MATRIX EIGEN-
C SYSTEM ROUTINES - EISPACK GUIDE*, SPRINGER-VERLAG,
C 1976.
C***ROUTINES CALLED CBABK2,CBAL,COMQR,COMQR2,CORTH
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C***END PROLOGUE CG
C

INTEGER N,NM,IS 1,1S2,1ERR,MATZ
REAL*8 AR(600,600),AI(600,600), WR(600), Wl(600)
REAL*8 ZR(600,600),ZI(600,600),FV I(600),FV2(600),FV3(600)

C
C***FIRST EXECUTABLE STATEMENT CG

IF (N .LE. NM) GO TO 10
IERR = 10 * N
GO TO 50

C

10 CALL CBAL(NM,N,AR,AI,ISI,IS2,FV1)
CALL CORTH(NM,N,IS 1, IS2, AR,AI,FV2,FV3)

C IF (MATZ .NE. 0) GO TO 20
C .......... FIND EIGENVALUES ONLY ..........

C CALL COMQR(NM,N,IS 1 ,IS2,AR,AI,WR,WI,IERR)
C GO TO 50
C .......... FIND BOTH EIGENVALUES AND EIGENVECTORS ..........

20 CALL COM2(NM,N,ISI,IS2,FV2,FV3,AR,AI,WR,WI,ZR,ZI,IERR)
IF (IERR .NE. 0) GO TO 50
CALL CBABK2(NM,N,IS I,IS2,FV 1,N,ZR,ZI)

50 RETURN
END

SUBROUTINE CBABK2(NM,N,LOW,IGH,SCALE,M,ZR,ZI)
C***BEGIN PROLOGUE CBABK2

C***DATE WRITTEN 760101 (YYMMDD)
C***REVISION DATE 881108 (YYMMDD)
C***CATEGORY NO. IMC4

C**KEYWORDS LIBRARY =SLATEC(EISPACK),TYPE=COMPLEX(BALBAK-S
CBABK2-C),
C EIGENVALUES,EIGENVECTORS
C***AUTHOR SMITH, B. T., ET AL.
C***PU_E Form the eigenvectors of a complex general matrix from
C the eigenvectors of matrix output from CBAL.
C***DESCRIPTION
C

C This subroutine is a translation of the _L procedure
C CBABK2, which is a complex version of BALBAK,
C NUM. MATH. 13, 293-304(1969) by Parlett and Reinsch.
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 315-326(1971).
C

C This subroutine forms the eigenvectors of a COMPLEX GENERAL
C matrix by back transforming those of the corresponding
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C balanced matrix determined by CBAL.
C
C On INPUT
C
C NM must be set to the row dimension of the two-dimensional

C array parameters, ZR and ZI, as declared in the calling
C program dimension statement. NM is an INTEGER variable.
C
C N is the order of the matrix Z=(ZR,ZI). N is an INTEGER
C variable. N must be less than or equal to NM.
C
C LOW and IGH are INTEGER variables determined by CBAL.
C
C SCALE contains information determining the permutations and
C scaling factors used by CBAL. SCALE is a one-dimensional
C REAL array, dimensioned SCALE(N).
C

C M is the number of eigenvectors to be back transformed.
C M is an INTEGER variable.
C

C ZR and ZI contain the real and imaginary parts, respectively,
C of the eigenvectors to be back transformed in their first
C M columns. ZR and ZI are two-dimensional REAL arrays,
C dimensioned ZR(NM,M) and ZI(NM,M).
C
C On OUTPUT
C

C ZR and ZI contain the real and imaginary parts,
C respectively, of the transformed eigenvectors
C in their first M columns.
C

C Questions and comments should be directed to B. S. Garbow,
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C

C***REFERENCES B.T. SMITH, J.M. BOYLE, J.J. DONGARRA, B.S. GARBOW,
C Y. IKEBE, V. C. KLEMA, C. B. MOLER, *MATRIX EIGEN-
C SYSTEM ROUTINES- EISPACK GUIDE*, SPRINGER-VERLAG,
C 1976.

C***ROUTINES CALLED (NONE)
C***END PROLOGUE CBABK2
C

INTEGER I,J,K,M,N,II,NM,IGH,LOW
REAL*8 SCALE(600), ZR(600,600), ZI(600,600)
REAL*8 S
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C
C***FIRST EXECUTABLE STATEMENT CBABK2

IF (M .EQ. 0) GO TO 200
IF (IGH .EQ. LOW) GO TO 120

C
DO 110 1 = LOW, IGH

S = SCALE(1)
C .......... LEFT HAND EIGENVECTORS ARE BACK TRANSFORMED
C IF THE FOREGOING STATEMENT IS REPLACED BY

C S= 1.0E0/SCALE(I) ...........
DO 100J = 1, M

ZR(I,J) = ZR(I,J) * S
ZI(I,J) = ZI(I,J) * S

100 CONTINUE
C

110 CONTINUE
C .......... FOR I= LOW- 1 STEP -1 UNTIL l,
C IGH + 1 STEP 1 UNTIL N DO-- . .........

120 DO 140 II = 1, N
I = II

IF (I .GE. LOW .AND. I .LE. IGH)GO TO 140
IF (I .LT. LOW) I = LOW- II
K = SCALE(I)
IF (K .EQ. I) GO TO 140

C
DO 130J = 1, M

S = ZR(I,J)
ZR(I,J) = ZR(K,J)
ZR(K,J) = S
S = ZI(I,.I)
ZI(I,J) = ZI(K,J)
ZI(K,J) = S

130 CONTINUE
C

140 CONTINUE
C

200 RETURN
END

SUBROUTINE CBAL(NM,N,AR,AI,LOW,IGH,SCALE)
C***BEGIN PROLOGUE CBAL
C***DATE WRITTEN 760101 (YYMMDD)
C***REVISION DATE 881108 (YYMMDD)
C***CATEGORY NO. D4CIA
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C***KEYWORDS LIBRARY = SLATEC(EISPACK),TYPE- COMPLEX(BALANC-S
CBAL-C),
C EIGENVALUES,EIGENVECTORS
C***AUTHOR SMITH, B. T., ET AL.
C***PURPOSE Balance a complex general matrix and isolate
C eigenvalues whenever possible.
C***DESCRIPTION
C

C This subroutine is a translation of the ALGOL procedure
C CBALANCE, which is a complex version of BALANCE,
C NUM. MATH. 13, 293-304(1969) by Parlett and Reinsch.
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 315-326(1971).
C
C This subroutine balances a COMPLEX matrix and isolates

C eigenvalues whenever possible.
C
C On INPUT
C
C NM must be set to the row dimension of the two-dimensional

C array parameters, AR and AI, as declared in the calling
C program dimension statement. NM is an INTEGER variable.
C

C N is the order of the matrix A =(AR,AI). N is an INTEGER
C variable. N must be less than or equal to NM.
C

C AR and AI contain the real and imaginary parts,
C respectively, of the complex matrix to be balanced.
C AR and AI are two-dimensional REAL arrays, dimensioned
C AR(NM,N) and AI(NM,N).
C
C On OUTPUT
C

C AR and AI contain the real and imaginary parts,
C re_vely, of the balanced matrix.
C

C LOW and IGH are two INTEGER variables such that AR(I,J)
C and AI(I,J) are equal to zero if
C (1) I is greater than J and
C (2) J = 1,...,LOW- 1 or I= IGH + 1,...,N.
C

C SCALE contains information determining the permutations and
C scaling factors used. SCALE is a one-dimensional REAL array,
C dimensioned SCALE(N).
C
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C Suppose that the principal submatrix in rows LOW through IGH
C has been balanced, that p(J) denotes the index interchanged
C with J during the permutation step, and that the elements
C of the diagonal matrix used are denoted by D(I,J). Then
C SCALE(J) = P(J), for J = I,...,LOW-I
C = D(J,J) J = LOW,...,IGH
C = P(J) J = IGH+ I,...,N.
C The order in which the interchanges are made is N to IGH + 1,
C then 1 to LOW-1.
C
C Note that 1 is returned for IGH if IGH is zero formally.
C

C The ALGOL procedure EXC contained in CBALANCE a_ in
C CBAL in line. (Note that the ALGOL roles of identifiers
C K,L have been reversed.)
C

C Questions and comments should be directed to B. S. Garbow,
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C

C***REFERENCES B.T. SMITH, J.M. BOYLE, J.J. DONGARRA, B.S. GARBOW,
C Y. IKEBE, V. C. KLEMA, C. B. MOLER, *MATRIX EIGEN-
C SYSTEM ROUTINES- EISPACK GUIDE*, SPRINGER-VERLAG,
C 1976.

C***ROUTINES CALLED (NONE)
C***END PROLOGUE CBAL
C

INTEGER I,J,K,L,M,N,JJ,NM,IGH,LOW,IEXC
REAL*8AR(600,600),AI(600,600),SCALE(600)
REAL*8 C,F,G,R,S,B2,RADIX
LOGICAL NOCONV

C
C THE FOLLOWING PORTABLE VALUE OF RADIX WORKS WELL ENOUGH
C FOR ALL MACHINES WHOSE BASE IS A POWER OF TWO.
C

C***FIRST EXECUTABLE STATEMENT CBAL
RADIX = 16

C
B2 = RADIX * RADIX
K=I
L=N
GOTO 100

C .......... IN-LINE PROCEDURE FOR ROW AND
C COLUMN EXCHANGE ..........

20 SCALE(M) = J
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IF (J .EQ. M) GO TO 50
C

DO301 = I,L
F = AR(I,J)
AR(I,J) = AR(I,M)
AR(I,M) = F
F -- AI(I,J)
AI(I,J) = AI(I,M)
AI(I,M) = F

30 CONTINUE
C

DO401 = K, N
F = AR(J,I)
AR(J,I) = AR(M,I)
AR(M,I) = F

, F = AI(J,I)
AI(J,I) = AI(M,I)
AI(M,I) = F

40 CONTINUE
C

50 GO TO (80,130), IEXC
C .......... SEARCH FOR ROWS ISOLATING AN EIGENVALUE
C AND PUSH THEM DOWN ..........

80 IF (L .EQ. 1) GO TO 280
L=L-1

C .......... FOR J=L STEP-1 UNTIL 1 DO--. .........
100 DO 120 JJ = 1, L

J=L+I-JJ
C

DOll01 = 1, L
IF (I .EQ. J) GO TO 110
IF (AR(J,I).NE. 0.0E0 .OR. AI(J,I).NE. 0.0E0)GO TO 120

110 CONTINUE
C

M=L
IEXC = 1
GO TO 20

120 CONTINUE
C

C_If)TO 140
C .......... SEARCH FOR COLUMNS ISOLATING AN EIGENVALUE
C AND PUSH THEM LEFT ..........

130K =K+ 1
C
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140 DO 170J = K,L
C

DO 1501 = K,L
IF (I .EQ. J) GO TO 150
IF (AR(I,J) .NE. 0.0E0 .OR. AI(I,J) .NE. 0.0E0) GO TO 170

150 CONTINUE
C

M=K
IEXC = 2
GO TO 20

170 CONTINUE
C .......... NOW BALANCE THE SUBMATRIX IN ROWS K TO L ..........

DO 180I = K,L
180 SCALE(1) = 1.0E0

C .......... ITERATIVE LOOP FOR NORM REDUCTION ..........
190 NOCONV = .FALSE.

C
DO 2701 = K,L

C = 0.0E0
R = 0.0E0

C
DO 200 J = K,L

IF (J .EQ. I) GO TO 200
C = C + ABS(AR(J,I))+ ABS(AI(J,I))
R = R + ABS(AR(I,J)) + ABS(AI(I,J))

200 CONTINUE
C .......... GUARD AGAINST ZERO C OR R DUE TO UNDERFLOW ..........

IF (C .EQ. 0.0E0 .OR. R .EQ. 0.0E0) GO TO 270
G = R/RADIX
F = 1.0E0
S=C+R

210 IF (C .GE. G) GO TO 220
F = F* RADIX
C =C'B2
GO TO 210

220 G = R* RADIX

230 IF (C .LT. G) GO TO 240
F = F / RADIX
C = C/B2
GO TO 230

C .......... NOW BAI.,ANCE ..........

240 IF ((C + R) / F .GE. 0.95E0 * S) GO TO 270
G= 1.0E0 / F

SCALE(1) = SCALE(1) * F
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NOCONV = .TRUE.

C
DO 250J = K,N

AR(I,J) = AR(I,J) * G
AI(I,J) = AI(I,J) * G

250 CONTINUE
C

DO 260J = I,L
AR(J,I) = AR(J,I) * F
AI(J,I) = AI(J,I) * F

260 CONTINUE
C

270 CONTINUE
C

IF (NOCONV) GO TO 190
C

280 LOW = K
IGH = L
RETURN
END

SUBROUTINE CDIV(AR,AI,BR,BI,CR,CI)
C***BEGIN PROLOGUE CDIV
C***REFER TO EISIX_
C

C Complex division, (CR,CI) = (AR,AI)/(BR,BI)
C***ROUTINES CALLED (NONE)
C***END PROLOGUE CDIV

REAL*8 AR,AI,BR,BI,CR,CI
C

REAL*8 S,ARS,AIS,BRS,BIS
C***FIRST EXECUTABLE STATEMENT CDIV

S = ABS(BR) + ABS(BI)
ARS = AR/S
AIS = AI/S
BRS = BR/S
BIS = BI/S
S = BRS**2 + BIS**2

CR = (ARS*BRS + AIS*BIS)/S
CI = (AIS*BRS- ARS*BIS)/S
RETURN
END

SUBROUTINE COM2(NM,N,LOW,IGH,ORTR,ORTI,HR, HI,WR,WI,ZR,ZI,_)
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C***BEGIN PROLOGUE COMQR2
C***DATE WRITTEN 760101 (YYMMDD)
C***REVISION DATE 890531 (YYMMDD)
C***CATEGORY NO. IMC2B

C***KEYWORDS LIBRARY = SLATEC(EISPACK),TYPE = COMPLEX(HQR2-S
COMQR2-C),
C EIGENVALUES,EIGENVECTORS
C***AUTHOR SMITH, B. T., ET AL.
C***PURPOSE Compute the eigenvalues and eigenvectors of a complex
C upper Hessenberg matrix.
C***DESCRIPTION
C

C This subroutine is a translation of a unitary analogue of the
C ALGOL procedure COMLR2, NUM. MATH. 16, 181-204(1970) by Peters
C and Wilkinson.

C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 372-395(1971).
C The unitary analogue substitutes the QR algorithm of Francis
C (COMP. JOUR. 4, 332-345(1962)) for the LR algorithm.
C

C This subroutine finds the eigenvalues and eigenvectors
C of a COMPLEX UPPER Hessenberg matrix by the QR
C method. The eigenvectors of a COMPLEX GENERAL matrix

i C can also be found if CORTH has been used to reduce
C this general matrix to Hessenberg form.
C
C On INPUT
C
C NM must be set to the row dimension of the two-dimensional

C array parameters, HR, HI, ZR, and ZI, as declared in the
C calling program dimension statement. NM is an INTEGER
C variable.
C

C N is the order of the matrix H=(HR,HI). N is an INTEGER
C variable. N must be less than or equal to NM.
C

C LOW and IGH are two INTEGER variables determined by the
C balancing subroutine CBAL. If CBAL has not been used,
C set LOW = 1 and IGH equal to the order of the matrix, N.
C

C ORTR and ORTI contain information about the unitary trans-
C formations used in the reduction by CORTH, if performed.
C Only elements LOW through IGH are used. If the eigenvectors
C of the Hessenberg matrix are desired, set ORTR(J) and
C ORTI(J) to 0.0E0 for these elements. ORTR and ORTI are
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C one-dimensional REAL arrays, dimensioned ORTR(IGH) and
C ORTI(IGH).
C
C HR and HI contain the real and imaginary parts, respectively,
C of the complex upper Hessenberg matrix. Their lower
C triangles below the subdiagonal contain information about
C the unitary transformations used in the reduction by CORTH,
C if performed. If the eigenvectors of the Hessenberg matrix
C are desired, these elements may be arbitrary. HR and HI
C are two-dimensional REAL arrays, dimensioned HR(NM,N) and
C HI(NM,N).
C
C On OUTPUT
C

C ORTR, ORTI, and the upper Hessenberg portions of HR and HI
C have been destroyed.
C
C WR and Wl contain the real and imaginary parts, respectively,
C of the eigenvalues of the upper Hessenberg matrix. If an
C error exit is made, the eigenvalues should be correct for
C indices IERR+ 1, IERR+ 2, ..., N. WR and Wl are one-
C dimensional REAL arrays, dimensioned WR(N) and WI(N).
C
C ZR and ZI contain the real and imaginary parts, respectively,
C of the eigenvectors. The eigenvectors are unnormalized.
C If an error exit is made, none of the eigenvectors has been
C found. ZR and ZI are two-dimensional REAL arrays,
C dimensioned ZR(NM,N) and ZI(NM,N).
C

C IERR is an INTEGER flag set to
C Zero for normal return,
C J if the J=th eigenvalue has not been
C determined _ a total of 30*N iterations.

C The eigenvalues should be correct for indices
C IERR+ 1, IERR + 2, ..., N, but no eigenvectors are
C computed.
C

C Calls CSROOT for complex square root.
C Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
C Calls CDIV for complex division.
C
C Questionsandcommentsshould be directed to B. S. Garbow,
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C

i , , _'_'_ J J J I1' ii iI r
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C***REFERENCES B.T. SMITH, J.M. BOYLE, J.J. DONGARRA, B.S. GARBOW,
C Y. IKEBE, V. C. KLEMA, C. B. MOLER, *MATRIX EIGEN-
C SYSTEM ROUTINES - EISPACK GUIDE*, SPRINGER-VERLAG,
C 1976.

C***ROUTINES CALLED CDIV,CSROOT,PYTHAG !
C***END PROLOGUE COMQR2
C
C
C

C Change record:
C 89-05-31 Changed all specific intrinsics to generic. (WRB)
C
C
C
C

INTEGER I,J,K,L,M,N,EN,II,JJ,LL,NM,NN,IGH,IPI
INTEGER ITN,ITS,LOW,LP 1,ENM 1,IEND,IERR
REAl.,*8 HR(600,600),HI(600,6(10),WR(600),WI(600)
REAL*8 ZR(600,600), ZI(600,600),ORTR(600),ORTI(600)
REAL*8 SI,SR, TI, TR,XI,XR, YI, YR, ZZI, ZZR, NORM, S 1,$2
REAL*8 PYTHAG

C

C***FIRST EXECUTABLE STATEMENT COMQR2
IERR = 0

C .......... INITIALIZE EIGENVECTOR MATRIX ..........
DOI001 = I,N

C
DO 100J = 1, N

ZR(I,J) = O.OEO
ZI(I,J) = 0.0E0
IF (I .EQ. J) ZR(I,J) = 1.0E0

100 CONTINUE
C .......... FORM THE MATRIX OF ACCUMULATED TRANSFORMATIONS
C FROM THE INFORMATION LEFT BY CORTH ..........

IEND = IGH- LOW- 1
IF (lEND) 180, 150, 105

C .......... FOR I = IGH- 1 STEP -1 UNTIL LOW + 1 DO -- . .........

105 DO 140 II = 1, IEND
I = IGH- II

IF (ORTR(1) .EQ. 0.0E0 .AND. ORTI(I).EQ. 0.0E0) GO TO 140
IF (HR(I,I-1).EQ.0.0E0 .AND. HI(I,I-1).EQ.0.0E0) GO TO 140

C .......... NORM BELOW IS NEGATIVE OF H FORMED IN CORTH ..........

NORM = HR(I,I-1) * ORTR(1) + HI(I,I-1) * ORTI(1)
IPI=I+I
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C
DO 110 K = IP1, IGH

ORTR(K) = HR(K,I-1)
ORTI(K) = HI(K,_-I)

110 CONTINUE
C

DO 130 J = !, IGH
SR = 0.0E0
SI = 0.0E0

C
DO 115 K = I, IGH

SR = SR + ORTR(K) * ZR(K,J) + ORTI(K) * ZI(K,J)
SI = SI + ORTR(K) * ZI(K,J) - ORTI(K) * ZR(K,J)

115 CONTINUE
C ii

SR = SR/NORM
SI = SI/NORM

C
DO 120 K = I, IGH

ZR(K,J) = ZR(K,J) + SR * ORTR(K) - SI * ORTI(K)
ZI(K,J) = ZI(K,J) + SR * ORTI(K) + SI * ORTR(K)

120 CONTINUE
C

130 CONTINUE
C

140 CONTINUE
C .......... CREATE REAL SUBDIAGONAL ELEMENTS ..........

150L = LOW + 1
C

DO 170 1 = L, IGH
LL = MIN(I + 1,1GH)
IF (HI(I,I-I) .EQ. 0.0E0) GO TO 170
NORM = PYTHAG(HR(I,I- l),al(l,l- 1))
YR = HR(I,I-1) / NORM
YI = HI(I,I-1) / NORM
HR(I,I-1) = NORM
HI(I,I-1) = 0.0E0

C
DO 155J = I,N

SI = YR * HI(I,J) - YI * HR(I,J)
HR(I,J) = YR * HR(I,J) + YI * HI(I,J)
HI(I,J) = SI

155 CONTINUE
C
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DOI60J = I, LL
SI = YR * HI(J,I) + YI * HR(J,I)
HR(J,I) = YR * HR(J,I) - YI * HI(J,I)
HI(J,I) = SI

160 CONTINUE
C

DO 165 J = LOW, IGH
SI = YR * Zl(J,l) + YI * ZR(J,I)
ZR(J,I) = YR * ZR(J,I) - YI * ZI(J,I)
zi(J,I) = sl

165 CONTINUE
C

170 CONTINUE
C .......... STORE ROOTS ISOLATED BY CBAL ..........

180 DO 2001 = 1, N
IF (I .GE. LOW .AND. I.LE. IGH)GO TO 200
WR(1) = HR(I,I)
WI(1) = HI(I,I)

200 CONTINUE
C •

EN = IGH
TR = 0.0E0
TI = 0.0E0
ITN = 30*N

C .......... SEARCH FOR NEXT EIGENVALUE ..........
220 IF (EN .LT. LOW) GO TO 680

ITS = 0
ENM1 = EN- 1

C .......... LOOK FOR SINGLE SMALL SUB-DIAGONAL ELEMENT
C FOR L = EN STEP -1 UNTIL LOW DO -- . .........

240 DO 260 LL = LOW, EN
L = EN + LOW-LL

IF (L .EQ. LOW) GO TO 300
S1 = ABS(HR(L-1,L-I)) + ABS(HI(L-1,L-1))

1 + ABS(HR(L,L)) +ABS(HI(L,L))
$2 = S 1 + ABS(HR(L,L- I))
IF ($2 .EQ. S1)GO TO 300

260 CONTINUE
C .......... FORM SHIFT ..........

300 IF (L .EQ. EN) GO TO 660
IF (ITN .EQ. 0) GO TO 1000
IF (ITS .EQ. 10 .OR. ITS .EQ. 20) GO TO 320
SR = HR(EN,EN)
SI = HI(EN,EN)
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XR = HR(ENM1,EN) * HR(EN,ENMI)
XI = HI(ENM I,EN) * HR(EN,ENM 1)
IF (XR .EQ. 0.0E0 .AND. XI .EQ. 0.0E0) GO TO 340
YR = (HR(ENMI,ENMI) - SR) / 2.0E0
YI = (HI(ENMI,ENMI) - SI) / 2.0E0
CALL CSROOT(YR**2-Yi**2 + XR,2.0E0*YR*YI + XI,ZZR,ZZI)
IF (YR * ZZR + YI * ZZI .GE. 0.gE0) GO TO 310
ZZR = -ZZR
ZZI = -ZZI

310 CALL CDIV(XR,XI,YR + ZZR,YI + ZZI,XR,XI)
SR = SR- XR
SI = SI - XI
GO TO 340

C .......... FORM EXCEPTIONAL SHIFT ..........
320 SR = ABS(HR(EN,ENM1)) + ABS(HR(ENMI,EN-2))

SI = 0.0E0
C

340 DO 360 1 = LOW, EN
HR(I,I) = HR(I,I) - SR
HI(I,I) = HI(I,I) - SI

360 CONTINUE
C

TR = TR + SR
TI = TI + SI
ITS = ITS + 1
ITN = ITN- 1

C .......... REDUCE TO TRIANGLE (ROWS) ..........
LP1 =L+ 1

C

DO 500 1 = LPl, EN
SR = HR(I,I-1)
HR(I,I- 1) = 0.0E0
NORM = PYTHAG(PYTHAG(HR(I- 1,I- I),HI(I- 1,I- 1)),SR)
XR = HR(I- 1,I- 1) / NORM
WR(I-I)= XR
Xl = HI(I- 1,I- 1) / NORM
Wl(l-1) = Xl
HR(I- 1,I- 1) = NORM
HI(I- 1,I- 1) = 0.0E0
HI(I,I-1) = SR / NORM

C

DO 490 J = I, N
YR = HR(I-1,J)
YI = HI(I-1,J)



193

ZZR = HR(I,J)
ZZI = HI(I,J)
HR(I-I,J) = XR * YR + XI * YI + HI(I,I-I)* ZZR
HI(I-I,J) = XR * YI- XI * YR + HI(I,I-I) * ZZI
HR(I,J) = XR * ZZR - XI * ZZI- HI(I,I-I) * YR
HI(I,J) = XR * ZZI + XI * ZZR- HI(i,I-I) * YI

490 CONTINUE
C

500 CONTINUE
C

SI = HI(EN,EN)
IF (SI .EQ. 0.0E0) GO TO 540
NORM = PYTHAG(HR(EN,EN),SI)
SR = HR(EN,EN) / NORM
Sl = SI/NORM

HR(EN,EN) = NORM
HI(EN,EN) = 0.0E0
IF (EN .EQ. N) GO TO 540 !
IP1 = EN + 1

C
DO 520 J = IPI, N

YR = HR(EN,J)
YI = HI(EN,J)
HR(EN,J) = SR * YR + SI * YI
HI(EN,J) = SR * YI- SI * YR

520 CONTINUE
C .......... INVERSE OPERATION (COLUMNS) ..........

540 DO 600 J -- LP1, EN
XR = WR(J-I)
XI = WI(J-l)

C

DO 580 I = l,J
YR = HR(I,J- l)
YI = 0.0E0

ZZR = HR(I,J)

ZZl = HI(I,J)
IF (I .EQ. J) GO TO 560
YI = HI(I,J-1)
HI(I,J-I) = XR * YI + XI * YR + HI(J,J-1) * ZZI

560 HR(I,J-1) = XR * YR- XI * YI + HI(J,J-I) * ZZR
HR(I,J) = XR * ZZR + XI * ZZI - HI(J,J-I) * YR
HI(I,J) = XR * ZZI- XI * ZZR- HI(J,J-1) * YI

580 CONTINUE
C
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DO 590 1 = LOW, IGH
YR = ZR(I,J-I)
YI = ZI(I,J-I)
ZZR = ZR(I,J)
ZZI = ZI(I,J)
ZR(I,J-I) = XR * YR- Xl * YI + HI(J,J-1) * ZZR
ZI(I,J-I) = XR* YI + XI*YR + HI(J,J-I)*ZZI
ZR(I,J) = XR * ZZR + Xl * ZZI - HI(J,J-I) * YR
ZI(I,J) = XR * ZZI- XI * ZZR- HI(J,J-I) * YI

590 CONTINUE
C

600 CONTINUE
C

IF (SI .EQ. 0.0E0) GO TO 240
C

DO 6301 = I, EN
YR = HR(I,EN)
YI = HI(I,EN)
HR(I,EN) = SR * YR- SI * YI
HI(I,EN) = SR* YI + SI * YR

630 CONTINUE
C

DO 640 1 = LOW, IGH
YR = ZR(I,EN)
YI = ZI(I,EN)
ZR(I,EN) = SR * YR- SI * YI
ZI(I,EN) = SR * YI + SI * YR

640 CONTINUE
C

GO TO 240
C .......... A ROOT FOUND ..........

660 HR(EN,EN)= HR(EN,EN) + TR
WR(EN) = HR(EN,EN)
HI(EN,EN) = HI(EN,EN) + TI
WI(EN) = HI(EN,EN)
EN = ENM1
GO TO 220

C .......... ALL ROOTS FOUND. BACKSUBSTITUTE TO FIND
C VECTORS OF UPPER TRIANGULAR FORM ..........

680 NORM = 0.0E0
C

DO 7201 = 1, N
C

DO 720J = I,N
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NORM = NORM + ABS(HR(I,J)) + ABS(HI(I,J))
720 CONTINUE

C
IF (N .EQ. 1 .OR. NORM .EQ. 0.0E0) GO TO 1001

C .......... FOR EN=N STEP -1 UNTIL 2 DO -- . .........
DO 800NN = 2, N

EN = N + 2- NN
XR = WR(EN)
XI = WI(EN)
ENM1 = EN- 1

C .......... FOR I = EN-I STEP - 1 UNTIL 1 DO -- . .........
DO 780 II = 1, ENMI

1 = EN - II

ZZR = HR(I,EN)
ZZI = HI(I,EN)
IF (I .EQ. ENMI) GO TO 760
IP1 =I+ 1

C

DO 740 J = IP1, ENMI
ZZR = ZZR + HR(I,J) * HR(J,EN) - HI(I,J) * HI(J,EN)
ZZI = ZZI + HR(I,J) * HI(J,EN) + HI(I,J) * HR(J,EN)

740 CONTINUE
C

760 YR = XR- WR(1)
YI = XI- WI(1)
IF (YR .NE. 0.0E0 .OR. YI .NE. 0.0E0) GO TO 775
YR = NORM

770 YR = 0.5E0*YR

IF (NORM + YR .GT. NORM) GO TO 770
YR = 2.0E0*YR

775 CALL CDIV(ZZR,ZZI,YR,YI,HR(I,EN), HI(I,EN))
780 CONTINUE

C
800CONTINUE

C .......... END BACKSUBSTITUTION ..........
ENM1 = N- 1

C .......... VECTORS OF ISOLATED ROOTS ..........
DO 840 I = 1, ENMI

IF (I .GE. LOW .AND. I .LE. IGH) GO TO 840
IP1 =I+ 1

C

DO 820J = IPl,N

ZR(I,J)= HR(I,J)
ZI(I,J) = HI(I,J)
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820 CONTINUE
C

840 CONTINUE
C .......... MULTIPLY BY TRANSFORMATION MATRIX TO GIVE
C VECTORS OF ORIGINAL FULL MATRIX.
C FORJ=N STEP-I UNTIL LOW+I DO--. .........

DO 880 JJ = LOW, ENMI
J = N + LOW-JJ
M = MIN(J-I,IGH)

C

DO 880 1 = LOW, IGH
ZZR = ZR(I,J)
ZZI = ZI(I,J)

C
DO 860 K = LOW, M

ZZR = ZZR + ZR(I,K) * HR(K,J) - ZI(I,K) * HI(K,J)
ZZI = ZZI + ZR(I,K) * HI(K,J) + ZI(I,K) * HR(K,J)

860 CONTINUE
C

ZR(I,J) = ZZR
Zl(l,J) = ZZI

880 CONTINUE
C

GC TO 1001
C .......... SET ERROR -- NO CONVERGENCE TO AN
C EIGENVALUE AFTER 30*N ITERATIONS ..........
1000 IERR = EN
1001 RETURN

END

SUBROUTINE CORTH(NM, N,LOW, IGH,AR, AI, ORTR, ORTI)
C***BEGIN PROLOGUE CORTH
C***DATE WRITTEN 760101 (YYMMDD)
C***REVISION DATE 881108 (YYMMDD)
C***CATEGORY NO. D4C1B2

C***KEYWORDS LIBRARY =SLATEC(EISPACK),TYPE =COMPLEX(ORTHES-S
CORTH-C),
C EIGENVALUES,EIGENVECTORS
C***AUTHOR SMITH, B. T., ET AL.
C***PURPOSE Reduce a complex general matrix to complex upper
C Hessenberg form using unitary similarity
C transformations.
C***DESCRIPTION
C
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C This subroutine is a translation of a complex analogue of
C the ALGOL procedure ORTHES, NUM. MATH. 12, 349-.368(1968)
C by Martin and Wilkinson.
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).
C !
C Given a COMPLEX GENERAL matrix, this subroutine
C reduces a submatrix situated m rows and columns

C LOW through IGH to upper Hessenberg form by
C unitary similarity transformations.
C
C On INPUT
C
C NM must be set to the row dimension of the two-dimensional

C array parameters, AR and AI, as declared in the calling
C program dimension statement. NM is an INTEGER variable.
C
C N is the order of the matrix A =(AR,AD. N is an INTEGER
C variable. N must be less than or equal to NM.
C

C LOW and IGH are two INTEGER variables determined by the
C balancing subroutine CBAL. If CBAL has not been used,
C set LOW = 1 and IGH equal to the order of the matrix, N.
C

C AR and AI contain the real and imaginary parts, respectively,
C of the complex input matrix. AR and AI are two-dimensional
C REAL arrays, dimensioned AR(NM,N) and AI(NM,N).
C
C On OUTPUT
C

C AR and AI contain the real and imaginary parts, repectively,
C of the Hessenberg matrix. Information about the unitary
C transformations used in the reduction is stored in the

C remaining triangles under the Hessenberg matrix.
C

C ORTR and ORTI contain further information about the unitary
C transformations. Only elements LOW through IGH are used.
C ORTR and ORTI are one-dimensional REAL arrays, dimensioned
C ORTR(IGH) and ORTI(IGH).
C

C Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
C
C Questions and comments should be directed to B. S. Garbow,
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C
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C***REFERENCES B.T. SMITH, J.M. BOYLE, J.J. DONGARRA, B.S. GARBOW,
C Y. IKEBE, V. C. KLEMA, C. B. MOLER, *MATRIX EIGEN-
C SYSTEM ROUTINES - EISPACK GUIDE*, SPRINGER-VERLAG,
C 1976.
C***ROUTINES CALLED PYTHAG
C***END PROLOGUE CORTH
C

INTEGER I,J,M,N,II,JJ,LA,MP,NM,IGH,KP1,LOW
REAL*8 AR(600,600), AI(600,60(}), ORTR(600), ORTI(600)
REAL*8 F,G,H,FI,FR,SCALE
REAL*8 PYTHAG

C
C***FIRST EXECUTABLE STATEMENT CORTH

LA = IGH- 1
KP1 =LOW + 1

IF (LA .LT. KP1) GO TO 200
C

DO 180 M = KP1, LA
H = 0.0E0

ORTR(M) = O.OEO
ORTI(M) = 0.0E0
SCALE = 0.0E0

C .......... SCALE COLUMN (ALGOL TOL THEN NOT NEEDED) ..........
DO 90I = M, IGH

90 SCALE = SCALE + ABS(AR(I,M-I))+ ABS(AI(I,M-1))
C

IF (SCALE .EQ. 0.0E0) GO TO 180
MP = M + IGH

C .......... FOR I=IGH STEP-1 UNTIL M DO- . .........
DO 100 II = M, IGH

1 = MP- II

ORTR(1) = AR(I,M-!) / SCALE
ORTI(1) = AI(I,M-I) / SCALE
H = H + ORTR(1) * ORTR(I) + ORTI(I) * ORTI(I)

100 CONTINUE
C

G = SQRT(H)
F = PYTHAG(ORTR(M),ORTI(M))
IF (F .EQ. 0.0E0) GO TO 103
H=H+F*G
G =G/F

ORTR(M) = (1.0E0 + G) * ORTR(M)
ORTI(M) = (1.0E0 + G) * ORTI(M)
GOTO 105
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C
103 ORTR(M) = G

AR(M,M-1) = SCALE
C .......... FORM (I-(U*UT)/H) * A ..........

105 DO 130J = M, N
FR = 0.0E0
FI = 0.0E0

C .......... FOR I=IGH STEP-1 UNTIL M DO-- . .........
DO 11011 = M, IGH

I = MP- II

FR = FR + ORTR(1) * AR(I,J) + ORTI(1) * AI(I,J)
FI = FI + ORTR(I) * AI(I,J) - ORTI(1) * AR(I,J)

110 CONTINUE
C

FR = FR / H
FI = FI / H

C
DO 120 1 = M, IGH

AR(I,J) = AR(I,J) - FR * ORTR(1) + FI * ORTI(1)
AI(I,J) = AI(I,J) - FR * ORTI(1) - FI * ORTR(I)

120 CONTINUE
C

130 CONTINUE

C .......... FORM (I-(U*UT)/H)*A*(I-(U*UT)/H) ..........
DO 1601 = I,IGH

FR = 0.0E0
FI = 0.0E0

C .......... FOR J = IGH STEP -1 UNTIL M DO -- . .........
DO 140 JJ = M, IGH

J = MP-JJ

FR = FR + ORTR(J) * AR(I,J)- ORTI(J) * AI(I,J)
FI = FI + ORTR(J) * AI(I,J) + ORTI(J) * AR(I,J)

140 CONTINUE
C

FR =FR/H
FI = FI / H

C
DO 150 J = M, IGH

AR(I,J) = AR(I,J) - FR * ORTR(J) - FI * ORTI(J)
AI(I,J) = AI(I,J) + FR * ORTI(J) - FI * ORTR(J)

150 CONTINUE
C

160 CONTINUE
C



2OO

ORTR(M) = SCALE * ORTR(M)
ORTI(M) = SCALE * ORTI(M)
AR(M,M- 1) = -G * AR(M,M- 1)
AI(M,M- 1) = -G * AI(M,M- 1)

180 CONTINUE
C

200 RETURN
END

SUBROUTINE CSROOT(XR,XI,YR,YI)
C***BEGIN PROLOGUE CSROOT
C***REFER TO EISDOC
C

C (YR,YI) = complex sqrt(XR,Xl)
C***ROUTINES CALLED PYTHAG
C***END PROLOGUE CSROOT

REAL*8 XR,XI, YR,YI,S,TR,TI,PYTHAG
C

C BRANCH CHOSEN SO THAT YR .GE. 0.0 AND SIGN(YI) .EQ. SIGN(Xl)
C***FIRST EXECUTABLE STATEMENT CSROOT

TR = XR
TI = XI

S = SQRT(0.5E0*(PYTHAG(TR,TI) + ABS(TR)))
IF (TR .GE. 0.0E0) YR = S
IF (TI .LT. 0.0E0) S = -S
IF (TR .LE. 0.0E0) YI = S
IF (TR .LT. 0.0E0) YR = 0.5E0*(TI/YI)
IF (TR .GT. 0.0E0) YI = 0.5E0*(TI/YR)
RETURN
END

REAL*8 FUNCTION PYTHAG(A,B)
C***BEGIN PROLOGUE PYTHAG
C***REFER TO EISDOC
C

C Finds sqrt(A**2+B**2) without overflow or destructive underflow
C***ROUTINES CALLED (NONE)
C***END PROLOGUE PYTHAG
C
C
C

C Change record:
C 89-05-31 Changed all specific intrinsics to generic. (W)
C
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C
C

REAL*8 A,B
C

REAL*8 P,Q,R,S,T
C***FIRST EXECUTABLE STATEMENT PYTHAG

P = MAX(ABS(A),ABS(B))
Q = MIN(ABS(A),ABS(B))
IF (Q .EQ. 0.0E0) GO TO 20

10 CONTINUE

R = (Q/P)**2
T = 4.0E0 + R

IF (T .EQ. 4.0E0) GO TO 20
S = R/T
P = P + 2.0E0*P*5

Q = Q*S
GOTO 10

20 PYTHAG = P
RETURN
END

REAL*8 FUNCTION erfurt(x)

c* Computes the error function of argument x
C*

c* The subroutines: GAMMP, GAMMLN, GSER, GCF are used in the
c* calculation of the error function.

REAL*8 a,x,gammp

a=0.5

IF (x .LT. 0) THEN
erfurt =-gammp(a,x**2)

ELSE

erfun =gammp(a,x**2)
ENDIF

return
end

REAL*8 FUNCTION gammp(a,x)
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REAL*8 gamscr,a,x,gln,gammcf

IF ((x .LT. 0.0) .OR. (a .LE. 0.0)) PAUSE
IF (x .LT. (a+ 1.0)) THEN

call gser(gamser,a,x,gln)
gammp = gamser

ELSE

call gcf(gammcf, a,x,gln)
gammp = 1.0-gammcf

ENDIF

return
end

REAL*8 FUNCTION gammln(xx)

REAL*8 cof(6), stp,half, one, fpf, x,tmp,ser, xx
DATA half, one,fpf/0.5,1.0,5.5/

cof(1) = 76.18009173
cof(2) =-86.50532033
cof(3) = 24.01,g19822
cof(4)=-1.231739516
col(5)=. 120858003e-2
cof(6) =-.536382e-5
sip =2.50662827465
x- xx-one

trap= x + fpf
trap= (x + half)*log(tmp)-tmp
ser = one

DO 11 j=l,6
x=x+one

ser = ser + cof(j)/x
l 1 CONTINUE

gammln = trap+ log(stp*ser)

return

end

SUBROUTINE gser(gamser,a,x,gln)

REAL*8 gamser,a,x,gln,gammln,ap,sum,del
PARAMETER (itmax= 100,eps=3.0e-7)
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gin = gammln(a)
IF (x .LE. 0.0) THEN

IF (x .LT. 0.0) PAUSE
gamser=0.0
return

ENDIF

ap=a
sum= 1.0/a
del =sum
DO 11 n= l,itmax

ap=ap+ 1.0
dei = del*rdap
sum = sum + del

IF (ABS(del).LT. (ABS(sum)*eps))GOTO 1
11 CONTINUE

PAUSE 'A too large, ITMAX too small'
1 gamser=sum*exp(-x + a*log(x)-gln)

return
end

SUBROUTINE gcf(gammcf, a,x,gln)

REAL*8 gammcf, a,x,gln,gold,ao,a l,bo,b 1,fac,an,ana,anf, g
REAL*8 gammh3
PARAMETER (itmax= 100,eps=3.0e-7)

gln=gammln(a)
gold =0.0
ao= 1.0
al=x
bo=0.0
bl=l.0
fac- 1.0

DO 11 n=l,itmax
an =real(n)
al_ = all-a

ao= (al + ao*ana)*fac
bo = (bI + bo*ana)*fac
anf=an*fac
al = x*ao+anf*al
b I = x*bo + anf*b 1

IF (al .NE. 0.0) THEN
fac= 1.0/al
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g=bl*fac
IF(ABS((g-gold)/g) .LT. eps)GOTO 1
gold=g

ENDIF
11 CONTINUE

PAUSE 'A too large, itmax too small'

I gammcf=exp(-x + a*alog(x)-gln)*g

return
end
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