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Abstract

Collective Thomson scattering from ion-acoustic waves at 266nm is used to obtain
spatially resolved, two-dimensional electron density, sound speed, and radial drift profiles
of a collisional laser plasma (critical density, n, = 1x102! cm3). An ultraviolet
diagnostic wavelength minimizes the complicating effects of inverse bremsstrahlung and
refractive turning in the coronal region of interest, where the electron densities approach
n./10. Laser plasmas of this type are important because they model some of the aspects
of the plasmas found in high-gain laser-fusion pellets irradiated by long pulse widths (t
> 10nsec), where the laser light is absorbed mostly in the corona. The experimental
results and LASNEX [Comments Plasma Phys. Controlled Fusion 2, 51 (1975)]
simulations agree within a percent standard deviation of 40% for the electron density and
50% for the sound speed and radial drift velocity. Thus it is shown that the
hydrodynamics equations with classical coefficients and the numerical approximations in
LASNEX are valid models of laser-heated, highly collisional plasmas.

The versatility of Thomson scattering is expanded upon by extending existing
theory with a Fokker-Planck based model to include plasmas that are characterized by (0
< kj,A;; < o) and ZT/T;, where k;, is the ion-acoustic wave number, A;; is the ion-ion
mean free path, Z is the ionization state of the plasma, and T,, T; are the electron and
ion temperatures in electron volts (eV), respectively. The model is valid for plasmas in
which the electrons are approximately collisionless, (k;,A;K;,Aee = 1), and

quastneutrality holds, (o » 1), where o« = 1/kApg and Ay, is the electron Debye length.

-iv-




This newly developed model predicts the lineshape of the ion-acoustic Thomson spectra
and when fit to experimental data provides a direct measurement of the relative thermal
flow velocity between the electrons and ions. The model also correctly predicts the
appearance of a zero-frequency or entropy peak in the Thomson spectra in the ion-ion

collisional limit.
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Chapter I: Laser-produced plasma diagnostics

Only one plasma diagnostic is needed to completely diagnose the parameters of
a given plasma. This plasma diagnostic provides one with the distribution function for all
species of the particular plasma at every point in that plasma for the entire evolution of
the plasma. With this distribution function, #(x,v,t) = L f .. (x,V,t) , any macroscopic
quantity as a function of position and time can be determined by calculating a weighted
average .of the corresponding microscopic quantity over velocity space with the
distribution function. For example, the microscopic quantity 1/2mv2 is the kinetic energy
of a particle. The macroscopic counterpart, temperature 8(x,t), can be calculated by
performing the integral 3/,8(x,t) = [1/,mv2 #(x,v,t) d®v. Unfortunately, this perfect
plasma diagnostic does not exist, and it probably never will. Therefore, a plasma
physicist is left with choosing a diagnostic or multiple diagnostics each of which provide
a small piece of vital information about the plasma, and hopefully this information is
enough to investigate the problem of interest.

Plasma diagnostics fall under one of three categories: self-emissive,
refractive/absorptive, and scattering. The self-emissive diagnostics operate with a
detector, only, and the detector monitors some quantity which is supplied by the plasma.
Diagnostics which fall under the other two categories require both a detector and a probe.
The detector monitors a change in the probe due to an interaction with the plasma. There
are many diagnostics which fall under these categories; to cover all of them would be

nearly impossible and beyond the scope of this dissertation. Therefore, a small sampling
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of diagnostics will be presented that are useful in measuring characteristics of laser-
produced plasmas.

Laser-produced plasmas possess certain characteristics which limit the type of
diagnostics that can be used on them. These plasmas are small, typically less than one
millimeter in size. Therefore, a diagnostic must have submillimeter resolution to measure
the spatial scale lengths present in these plasmas. Pulsed lasers are normally used for
plasma production. The laser pulse durations can be as long as one hundred nanoseconds
(ns), but due to recent developments in laser technology, can be as short as one hundred
femtoseconds (fs)!»2. The plasmas formed by these lasers evolve very quickly, and if
temporal information is required, a diagnostic must be able to provide resolntion on these
time scales. Laser-produced plasmas have a wide variation of electron densities ranging
from 1017-102! cm3 for gas targets to 1019-10%3 cm™ for solid targets to 1026 cm™3 for
Inertial Confinement Fusion (ICF) pellet targets. The temperatures of these plasmas cover
a broad range as well from only a few electron volts (eV) to several thousand electron
volts (keV). Therefore, laser-plasma diagnostics must be able to operate over a large
range of densities and temperatures.

Laser-produced plasma diagnostics must take into account the internally generated
electric (E) and magnetic fields (B) of laser-produced plasmas. One process by which an
internal electric field can be generated is easily demonstrated by considering the
fundamental criteria for plasmas, quasineutrality. The necessary condition imposed by

quasineutrality on any electric current density (j) that may be present in the plasma is,




Vi =0 (1
In other words, there can be no net charge flow into or out of a plasma. The electric

current density can be related to the electric field in a plasma through the generalized

Ohm’s law3,

. 7o o ”
j=o-|E+ZxB+—Un

c en, cen,

kT ixB "
—JxB]+?-VT‘ (2)

where o is the conductivity, v is the mass velocity, 7 is the thermoelectric coefficient at
constant density, and n,, T,, and e are the electron density, electron temperature, and
electron charge respectively. A sufficient condition for Eq. (1) is (j=0), and when
substituted into Eq. (2), neglecting magnetic field effects, an equation for the electric
field in terms of gradients in temperature and density is obtained. Therefore when the
sufficient condition (j=0) for quasineutrality is satisfied, electric fields are generated via
gradients in temperature and density. Spontaneous magnetic fields can also exist in laser-
produced plasmas*>-6. The source for magnetic field generation is derived by taking
Eq. (2), solving for the electric field (E), and substituting this expression into Maxwell’s

equation dB/ot = -c Vx E. The resulting equation for the time dependent magnetic field

is (Ref. 4),
a_’ _ - 62 -s?) —+ b . Y ck—;
= =VxWxB)+ —VB-|cVx(t V1) + =Vn, x VT, 3)
ot 4no en,

where the (j x B) Hall term has been neglected. The final two terms bracketed in Eq. (3)
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are the source terms for the magnetic field. If the thermoelectric coefficient is a scalar
and independent of position, then the first term is zero, and a magnetic field is generated
only by non-parallel gradients in electron temperature and electron density. Electric field
effects are fairly easy to include in plasma diagnostic analysis, but considerable
complexity is added when magnetic fields are included. Therefore, the effect of magnetic
fields on laser-produced plasma diagnostics should be eliminated when possible. Magnetic
fields could be eliminated entirely by producing plasmas in which the source terms in Eq.
(3) are identically zero, but this method is not entirely practical. Another method involves
making the magnetic field effects small by properly choosing the conditions under which
a diagnostic is performed. The relative effect of magnetic fields on plasma diagnostics can
be quantified by the ratio of the cyclotron frequency (Q) to the characteristic frequency
of the process being measured (w prms)- The electron cyclotron f-equency (,=eB/m,c)
is used if the process involves electron motion, and the ion cyclotron frequency
(£;=ZeB/myc) is used if the process involves ion motion. To the extent that diagnostic
conditions can be chosen to make this ratio small, magnetic field effects can be ignored.

One example of reducing magnetic field effects in laser-plasma measurements can
be demonstrated through the diagnostic technique of interferometry, which will be
discussed in more detail later in the refractive/absorptive diagnostic section.
Interferometric diagnostics measure directly the spatially dependent refractive index of
a plasma which for a fully ionized, magnetic plasma is given by the Appleton-Hartree

formula to be’,



n*(w) =1 -

2 2 2 2 2

Q Q N
1 -2 L%egg o (|1 e gmg| of1 - L2
222 2 2

where 0 is the angle between the direction of electromagnetic propagation and the

magnetic field, and @, is the electron plasma frequency given by8'9,

m

w0, = [4“2"‘] = 5.64 x 10* n)P 3)
Therefore the refractive index is a direct function of the electron density ne(cm‘3) and
unfortunately the magnetic field, a quantity which is typically unknown. Since
interferometry measures the refractive index, the electron density can also be measured
with an accuracy that is partially dependent on eliminating the magnetic field dependence
in Eq. (4). This is accomplished by choosing a diagnostic frequency (w) large enough
such that the ratio (Q./w) is small. Eliminating the complicating effect of the magnetic
field does allow for a more accurate measurement of the electron density in this case, but
does by no means indicate the magnetic field is not influencing the plasma quantities
being measured. It is a well known fact that magnetic fields effect the transport
coefficients of a plasmal®!l, and can therefore impede heat flow!2:13. These
types of effects can make the characteristics of a magnetic plasma different from a plasma

with no magnetic field.
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The refractive index of a fully-ionized, non-magnetic plasma is obtained by setting

. = 0in Eq. 4),

n(w) = [1 -

\

&l

] ©)

and is always less than or equal to 1.0 for 0 < @, This optical characteristic is opposite
from all other forms of vmatter: gases, liquids, and solids, which exhibit an index of
refraction greater or equal to 1.0. Since the refractive index is a function of electron
plasma density and laser-produced plasmas typically have large density gradients, the
refractive index will also have large gradients and the plasma will appear as a short focal
length lens to electromagnetic waves. Therefore, electromagnetic waves will not travel
in a straight line through the plasma but their paths will bend by the process of refractive
turning. In the limiting case when the frequency () in question approaches the plasma
frequency (), the wave will become evanescent and reflection will occur. The density
at which the wave becomes evanescent is defined as the critical density (n_), and can be
calculated as a function of (w) by setting the index of refraction in Eq. (6) equal to zero

and using the definition in Eq. (5) for the plasma frequency.

" =( e ]wz =315 x 100 o2 cm-3 )

c
4me?

Given a radiation frequency, the critical density defines an absolute limit to how far

radiation can propagate into or out of a plasma, and refractive turning can limit the
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accessible region even further!*. The combination of refractive turning and electron
densities above critical impose limitations on all three categories of laser-plasma
diagnostics.

Electromagnetic absorption and radiation are two other optical properties of
plasmas that play a role in laser-plasma diagnostics. The absorption and radiation
characteristics of laser-produced plasmas are governed predominately by the atomic
processes of bound-bound, free-bound, and free-free transitions!5+16 and to a lesser
extent by cyclotron and Cerenkov radiation (Ref. 7). Bound-bound transitions occur when
an electron in a bound state of an atom or an ion makes a transition to another bound
state. Line emission and resonant line absorption are the radiation and absorption
mechanisms respectively of bound-bound transitions. Radiative free-bound transitions
occur when an electron in a continuum state is captured by an ion by recombination. The
inverse absorptive transition is photoionization. Bound-bouid and free-bound transitions
do not always need to involve the absorption or emission of a photon. For example,
collisional excitation and de-excitation can cause bound-bound transitions to occur without
involving a photon, and three-body recombination, collisional ionization, dielectronic
recombination, and autoionization are non-photon associated free-bound transitions.
Finally, free-free transitions occur when an electron in a continuum state collides with
an ion and makes a transition to another continuum state. When the electron looses
energy, bremsstrahlung radiation is emitted, and when the electror gains energy, inverse
bremsstrahlung absorption occurs. Bound-bound transitions exhibit sharp features in their

absorption and radiaticn spectra, on the other hand free-bound and free-free absorption
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and radiation are characterized by broad spectral (continuum) structure. Cyclotron
radiation is due the acceleration of an electron in a magnetic field. If the electron-ion
collision frequency (v,;) is much less than the electron cyclotron frequency and the
magnetic field is spatially uniform, the radiation spectrum will appear as a series of
harmonic peaks broadened by Doppler and relativistic effects. In laser-produced plasmas
the opposite conditions typically occur. The electron-ion collision frequency is
comparable to or greater than the electron cyclotron frequency and the magnetic fields
will have large spatial variations due the small size of laser-plasmas. These two conditions
independently will randomize the motion of the electron, thereby destroying the cyclotron
resonance and eliminating the harmonic peaks from the emission spectrum of the plasma.
Cerenkov emission can be generated by either the relativistic motion of electrons in a
magnetized plasma (Ref. 7) or through the process of inverse Landau damping where no
magnetic field is necessary (Ref. 16).

These radiative and absorptive processes can be a mixed blessing for laser-plasma
diagnostics. For example, in a plasma with a Maxwellian distribution of velocities, the
bremsstrahlung emissivity €,(w) is unpolarized, spatially isotropic, and is given by (Ref.

15),

Em)
2 .
€, (w) = 8.67 x 104 < ¢ (kT¢ G (8)

where the emissivity is in units of watts per cubic centimeter of plasma per steradian per
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unit frequency interval, ne(cm'3) and T,(°K) are the electron density and temperature, Z
is the ionization state, and Gy, is the Gaunt factor; it is a dimensionless quantity ranging
from 1 to 10. The log of the bremsstrahlung emissivity has a slope of 1/kT, as a function
of w, and this relationship can be used by spectroscopic diagnostics to accurately measure
the electron temperature of a plasma. Just as the bremsstrahlung emission helps in the
diagnosis of the plasma, inverse bremsstrahlung absorption can hinder spectroscopic
diagnostics by making the plasma opaque over some ranges of electromagnetic
frequencies. The inverse bremsstrahlung absorption length for electromagnetic frequencies

(w) much greater than the electron-ion collision frequency (v;) is given by (Ref. 14),

-1
;v [ wf»}? ©)
o, = 1 - —

This absorption mechanism can also be a hinderance to laser diagnostics. A diagnostic
laser beam can not only lose energy passing through the plasma, but if the energy loss
is large enough, local plasma heating can occur thus making the diagnostic undesirably
intrusive.

The first group of laser-produced plasma diagnostics that will be discussed fall
under the category of self-emissive diagnostics. As mentioned earlier, these diagnostics
require a only a detector which monitors some quantity supplied by the plasma. Most
diagnostics in this category are electromagnetic related, but there is a small group of
diagnostics that detect particle emission from laser-produced plasmas.

The energy and angular distribution of electrons emitted from a laser-produced
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plasma can be measured with magnetic spectrometers!’. The energy distribution of
electrons yields information about the high-energy tails that exist in the electron
distribution function of plasmas generated by high-intensity laser pulses. The suprathermal
electrons in the high-energy tail have very long mean-free paths and *decouple’ (Ref. 16)
from the rest of the plasma. This effect robs energy from the laser generating the plasma
that could otherwise be used for ablation and compression!8. The hot electrons can also
cause preheat in the fuel of ICF targets!?2%21 The amount of laser radiation
expended in generating the fast electrons can be obtained by integrating over the energy
and angular measurements (Ref. 17). Ion emission from laser-produced plasmas can also
be measured with charge or Faraday cups®? or by Thomson ion spectrometers23. A
strong correlation has been shown to exist between the mean fast ion energy and the hot
electron temperatures of several laser-matter interaction experiments?*: Therefore, ion
diagnostics might be used indirectly for hot electron diagnostics. Neutron diagnostics are
another form of particle diagnostics which prove useful for ICF plasmas, where the
neutron yields can be measured by Ag activation detectors and scintillators?® or current-
mode time-of-flight detectors2®. Measurements of the neutron energy spectrum can
provide a value for the thermal ion fuel temperatures (Refs. 7, 25, 26).

All of the remaining self-emissive diagnostics can be placed under the subtitle,
plasma spectroscopy. Plasma spectroscopy has been used for a long time as an effective
diagnostic for laser-produced plasmas (Ref. 15). Spectroscopic techniques can be used to
measure many of the quantities characterizing laser-produced plasmas: electron densities,

electron and ion temperatures, magnetic and electric fields, particle velocities, velocity
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distributions, energy transport, mass ablation rate, and plasma evolution. The electron
density is obtained typically by measuring the Stark broadening of optical lines emitted

from bound-bound transitions. Lines in the x-ray region of the spectrum?’-28

are
normally used, but Stark broadened lines from the visible/ultraviolet region work as
well?®®. The electron density can also be calculated from absolute line intensities or
ratios of optical lines which depend on electron density and not electron temperature3?,
The ion temperature might be diagnosed through the Doppler broadening of optical lines
(Ref. 7). Doppler broadening is caused by the thermal motion of the ions, therefore the
magnitude of the effect is a direct measure of the ion temperature. Although both Stark
and Doppler broadening effects can be present in comparable amounts simultaneously,
thus making line width analysis difficult, the effects are easily decoupled by judicious
choice of diagnostic location in the plasma. Doppler broadening will dominate in regions
of the plasma which i)ossess large ion temperatures and low electron densities, and Stark
broadening will be largest in regions of high electron density and moderate ion
temperature. The electron temperature of a laser-produced plasma can be measured in one
of three ways: the slope of the frequency spectrum of bremsstrahlung emission3! as
outlined by Eq. (8), relative line to continuum measurements (Ref. 15), and optical line
intensity ratios (Refs. 28, 29, 30, 32, 33). Magnetic fields can cause line emission
profiles to be polarized through the Zeeman effect. The magnetic field strengths are
measured from the polarization dependence of these line profiles>®. The spontaneous

magnetic fields a laser-produced plasma have also been diagnosed with a magnetic field

probe in proximity of the plasma (Ref. 31), but due to the small size of laser-produced
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plasmas this diagnostic technique has limited application. Electric fields can also cause
polarization effects in line emission. An electric field, unlike magnetic fields, causes the
line intensity to be polarization dependent, and can be measured through this effect3>.
The measurement of electron densities, electron and ion temperatures, magnetic and
electric fields through the spectroscopic diagnostics outlined here require detailed
theoretical models. These models are dependent on the underlying conditions of the
plasma. Whether the plasma is in local thermal equilibrium (LTE), coronal equilibrium,
coliision-radiative equilibrium (Ref. 16), or some other characteristic state definitely
effects the theoretical modeling necessary for analyzing data and the accuracy of the
results.

There exists a group of spectroscopic diagnostics which require much less
theoretical modeling for quantitative measurements of laser-produced plasmas. Doppler
effects from bulk ion motion will shift emission lines from their normal spectral
positions. The magnitude of this shift can yield information about the ion particle
velocities in the laser-plasma (Refs. 7, 32). Suprathermal electrons present in the electron
velocity distribution of a laser-produced plasma are detected through bremsstrahlung
emission. The interaction of suprathermal electrons with background plasma ions
produces a distinctive suprathermal component in the bremsstrahlung radiation spectrum
which can be detected expedmentally36'37’33’39. By layering targets with various
materials of different x-ray spectral emission characteristics, the energy transport and
mass ablation rate in a laser-produced plasma can be diagnosed by monitoring the spatial

and time dependent evolution of these layers through their characteristic x-ray spectra
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(Ref. 21). Plasma evolution characteristics may be monitored by two-dimensional imaging
of selective regions of the x-ray emission spectrum of a laser-produced plasma. An x-ray
region is chosen by placing the appropriate x-ray spectral filter in the diagnostic line of
sight, and then using an imaging apparatus to record the spatially dependent, filtered, x-
ray emission. A common imaging technique involves the use of pinhole camera. Pinhole
cameras are attractive because they are cheap, simple, and provide fairly good spatial
resolutions. The resolution is on the order of the pinhole size, ignoring diffractive effects,
and can be as fine as 5-10 microns. Pinhole cameras have been used to look at the size
of x-ray emitting regions in laser-produced plasmas*®. When pinhole cameras are used
in conjunction with microchannel plates (MCP) in a stripline configuration, gated, time
sequenced, snap shots of imploding (ICF) targets can be taken?!:42:43:44  Tpjs
represents a very powerful technique for monitoring the two-dimensional evolution of a
laser-produced plasma. X-ray microscopes* and x-ray shadowgraphy (Ref. 40) are
variations on the pinhole camera that have been used to provide better spatial resolution
under certain circumstances. The use of an annular (ring) aperture instead of a pinhole
is another variation that has been shown to improve the signal-to-noise in images as much
as a factor of ten. Three dimensional measurements can actually be made by utilizing the
data from several pinhole cameras along different lines of sight with computed
tomography. This diagnostic has produced three-dimensional images of electron density
and temperature in a laser-produced plasma*.

The second group of laser-produced plasma diagnostics are filed under the

category of refractive/absorptive diagnostics. Refractive/absorptive diagnostics unlike the
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self-emissive diagnostics require both a detector and a probe to operate. Refractive
diagnostics probe the refractive index variations in a laser-produced plasma, and there are
several geometries employed for performing these measurements: interferometry,
holographic interferometry, schlieren imaging, and shadowgraph imaging. Interferometry
and holographic interferometry require two optical beams, a reference beam and a probe
beam, which are both derived from the same source (Ref. 7). The probe beam develops
spatially dependent, wave front phase shifts when it passes through a plasma, and when
recombined with the reference beam produces an interferometric image of the plasma.
This image contains a series of fringes (isophase contours), and by measuring fringe shifts
in the image, the spatially dependent phase of the probe is obtained. Since the phase shifts
in the probe are due to refractive index variations in the plasma, the electron density can

47,48,49

be measured from these diagnostics Interferometry has successfully been

used to study filamentation in laser-produced plasmas®®, and holographic interferometry
has also been utilized to look at radiation-pressure effects in laser-produced plasmas>!.
Interferometry differs from holographic interferometry in that interferometry produces a
real image that can immediately be recorded on film. Holographic interferometry requires
a read out process after the fact to produce a real image. Holographic interferometry has
the advantage of allowing several different images to be recorded on the same piece of
film, from which each image can be read out individually at a later time>2. Schlieren
and shadowgraph imaging require only one diagnostic beam to operate, and are sensitive

to the first and second spatial derivatives of the refractive index respectively (Ref. 7).

Schlieren imaging is performed by passing a parallel probe beam through the plasma and
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collecting only those rays that are refractively turned through a given range of angles.
The image produced from these rays is in the form of contours of deflection angle in the
plasma. The deflection contours are usually shaped like the electron density contours in
the plasma and are used for monitoring plasma expansion characteristics (Ref. 32).
Shadowgraph imaging involves sending a beam with a uniformly intense cross-section
through a plasma and imaging the modified beam profile on the other side. The beam
profile is modified by refractive turning in the plasma, and these effects appear as
intensity variations across the once uniform beam. Shadowgraph imaging diagnostics have
been used for monitoring whole beam self-focusing and filamentation on laser beams
passing through laser-produced plasmas®3455:96  All of the refractive
diagnostics share a common drawback, the refractive effects on the diagnostic beam are
line integrated as the beam passes thréugh the plasma. Therefore, to deduce the
properties of the plasma at a given point along the diagnostic beam path requires some
theoretical modeling. However, when the plasma is cylindrically symmetric the problem
is simply reduced to performing an Abel inversion on the data (Ref. 7).

Absorptive diagnostics are used for measuring a variety of laser-produced plasma
quantities. Laser-produced plasmas can absorb light by many different processes. Two
of these absorption processes were outlined earlier: resonant line absorption due to bound-
bound transitions, and inverse bremsstrahlung (Eq. (9)). The resonant line absorption due
to bound-bound transitions has been used with x-ray backlighting diagnostics to measure
density, temperature and ionization profiles in laser-produced plasmas®’-38:59, X-

ray backlighting is a technique which involves generating a separate laser-produced
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plasma as a source of x-rays. This source is placed behind the plasma to be diagnosed and
the absorptive characteristics of the plasma on the source emission are measured
spectroscopically. The inverse bremsstrahlung absorption process has also been used with
x-ray backlighting to measure the Rayleigh-Taylor instability60:61:62:63,64 gpq
nonuniformity imprints on laser-irradiated iarget surfaces®>. The resonant line
absorption due to bound-bound transitions should not be confused with resonance
absorption which is a third important absorption mechanism in laser-produced plasmas.
Resonance absorption occurs when an optical wave passes through a plasma near its
critical density (Eq. (7)), and its electric field has a component pointing along the
electron density gradient (Ref. 14). Since the electron plasma frequency (wp) is equal to
the light frequency (w) at the critical surface, electron plasma waves can be resonantly
excited at this point thus robbing energy from the optical wave. This resonance absorption
process has been used as a diagnostic for measuring density scale lengths in laser-
produced plasmas®®.

Scattering diagnostics is the third category that laser-produced plasma diagnostics
can fall under. Light scattering of an optical beam in a plasma occurs when a charged
particle in the plasma is accelerated in the electromagnetic field of the beam. The
accelerating particle emits radiation in all directions and the emitted radiation is the
scattered wave (Ref. 7). The scattering is due primarily to electrons which are accelerated
more than ions in the field due to their small mass. The scattered radiation can be

coherent or incoherent depending on whether the electrons that are scattering the optical

beam exhibit correlated or uncorrelated motion. The scattering category is subdivided into
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two groups: self-scattering diagnostics and probe scattering diagnostics.

Self-scattering diagnostics use the same beam that forms the plasma as a probe
beam for the diagnostic. These diagnostics detect light scattering from high intensity laser
beams that generate parametric instabilities in the plasma they are forming. Common
laser-produced plasma instabilities include: stimulated Raman scattering (SRS), stimulated
Compton scattering (SCS), stimulated Brillouin scattering (SBS), self-focusing or
filamentation, ion acoustic parametric decay instability (IADI), and the two plasmon
decay instability. Describing each instability in detail would require a great deal of length
so the reader is directed to the literature on this subject matter7+68:69.70 [y prief,
self-scattering diagnostics are used to monitor instabilities generated in laser-produced
plasmas in attempt to understand the scaling laws that govern the instabilities and the
basic plasma physics issues that surround them. For example, the collisional and Landau
damping effects on SRS spectra has been studied’!:”2 as well as stimulated Raman
scattering in long-scale-length plasmas’3:74. Experiments on SCS have been
performed in laser-produced plasmas to measure the intensity dependence of the
instability’>. By observing the temporal behavior of SBS backscattering in long-scale-
length plasmas, information about which plasma conditions are most likely to drive SBS
is obtained’® and energy loss due to SBS in a laser-produced plasma has been
monitored by integrating SBS sidescattering’’. Experiments have been performed that
show filamentation due to the self-focusing of a laser beam in a plasma can be monitored
by second harmonic scattering’®. Second harmonic spectrum can also result from

IADI? and experiments have been conducted to determine the threshold and intensity
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dependence of the instability on the ionization state of the plasma8%. The TPD
instability can be detected through 3/2 harmonic scattering and the influence of laser
beam smoothing techniques on this instability have been analyzed®!. Self-scattering
diagnostics are not only used for instability analysis; they can also be used for measuring
the electron temperature and peak electron density of a laser-produced plasma. For
example, the Landau cutoff in SRS backscattering has been used for an electron
temperature diagnostic3? and spectrally narrow SRS emission has been used for peak
electron density measurements (Ref. 32).

The probe scattering diagnostics for laser-produced plasmas can be either Thomson
scattering or Compton scattering. Thomson scattering occurs when the incident photon
energy (hv) is much less than the rest energy of the electron (mecz). Compton scattering
results in the opposite limit where the incident photon energy is much greater than the
rest energy of the electron (hv » mecz). Probe wavelengths for plasma diagnostics are
typically in the visible-ultraviolet range of the spectrum in which photon energies are less
than six electron volts (6 eV). Since the rest energy of an electron is 511 keV, the
Compton effect will be negligible for 6 eV photons and only Thomson scattering
diagnostics need be considered at this point. The very first Thomson scattering
experiments on plasmas where conducted by radar scattering off of the
ionosphere®3:8¢.  Thomson scattering utilizing lasers as probes soon followed on
electron beams®> and theta-pinch plasmas36:87-88.89  More recently, Thomson
scattering, coupled with theory, has been used to measure the electron and ion

temperatures, electron and ion drift velocities, and the ionization state of a laser-produce
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plasma®®. The characteristics of a high density, cold, laser-induced, metal-vapor plasma
have also been studied using Thomson scattering®!. Thomson scattering has been used
successfully to diagnose some of the parametric instabilities mentioned in the last
paragraph that are associated with laser-plasma interactions: stimulated Raman
scattering92:93:94.95,96  stimulated Brillouin scattering®7:98:99:100,101 " apq the two-
plasmon decay instability102:103,104 " plasma wave mode coupling between SRS
and SBS generated waves has been investigated with Thomson scattering!®®, and the
diagnostic has also been utilized to monitor the beat wave excitation of electron plasma
waves!00:107  Although widely used as a laser-produced plasma diagnostic,
Thomson scattering does have some disadvantages. In particular, Thomson scattering
efficiencies are quite small especially when scattering occurs from thermal level motion
in a laser-produced plasma. Thermal level scattering efficiencies can be as small as 10°!!
of the incident probe energy and these scattered light levels make detection of the
Thomson scattered signals difficult.

This chapter has presented some of the basic properties of a laser-produced plasma
that must be considered when choosing a diagnostic. The laser-produced plasma
diagnostics available to a research scientist have been covered in some detail as well. All
laser-produced plasmas are not created equal and therefore there is no universal diagnostic
for investigating them. The two most important considerations involved in choosing a
diagnostic for a particular laser-produced plasma are 1) the limitations imposed by the
properties of the given plasma on the diagnostic and 2) what plasma parameters and/or

phenomena are trying to be measured. The plasma diagnostic should be ncnintrusive, i.e.
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not effect the quantities that are being measured, and if at all possible, a plasma
diagnostic should require a minimum amount of modeling for interpreting data and be
simple to operate.

Based on these considerations, collective Thomson scattering from thermal level
ion-acoustic waves is chosen as the diagnostic for the collisional laser-produced plasma
in this dissertation. The collisional laser-produced plasma being studied is generated from
a low-energy (E; < 1 joule) long-pulse (full width at half-maximum, FWHM = 9 ns)
laser (wavelength, A = 1.06 um or critical density, n, = 1 x 102! cm) focussed to a
spot size (FWHM = 100 + 10 pm) with peak intensity of 2 x 101! W/cm? onto a
rotating cylindrical target of aluminum. The high repetition rate (= 10 Hz) and high
stability (= 2%) of the laser provides both repetitive and reproducible plasma production,
and with the relatively low peak intensity used, there are no instabilities present in the
plasma that might hinder data analysis. Time integrated collective Thomson scattering
provides a way to thoroughly diagnose the corona of the plasma near the peak of the laser
pulse. The plasma is approximately stationary in the time during the diagnostic pulse
(FWHM = 5 ns) so that time resolution is not required. The axial and radial profiles of
the electron density, sound speed, and the radial profile of the fluid velocity are
measured. Ultraviolet diagnostic light at 266 nm is used to minimize the complicating
effects mentioned earlier of inverse bremsstrahlung and refractive turning i the region
of interest where electron densities = n./10. Noise reduction techniques are used to
generate high-quality Thomson scattering data with very good signal-to-noise ratios and

the spatial profile of the corona (scale length L, = 100 um) is well resolved by this
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diagnostic (axial resolution, Az = 30 um and radial resolution, Ar =~ 30 um). The data
obtained from these scattering experiments is used to test the computational accuracy of
two-dimensional LASNEX!08 simulations, and the agreement between the experiment
and LASNEX is good. The experimental results and LASNEX simulations agree within
a percent standard deviation of 40% for the electron density and 50% for the sound speed
and radial drift velocity. The data is also used to compare with a simple analytical model
for a laser-heated plasma.

Collective Thomson scattering from ion-acoustic waves can not only be used to
make accurate spatially resolved measurements of electron density, sound speed, and drift
velocity, the diagnostic can also be used to obtain information about spatially dependent
relative thermal flow velocities between ions and electrons. This measurement requires
some new theory to be developed for Thomson scattering which is presented in this
dissertation. The theory is based on the Fbkker-Planck equation and provides an analytic
model for predicting the lineshape of the ion-acoustic Thomson spectra from the plasma
being studied which is characterized by (0 < ki A;; < o) and ZT_/T;, where k;, is the
ion-acoustic wave number, A;; is the ion-ion mean free path, Z is the ionization state of
the plasma, and T,, T; are the electron and ion temperatures (eV), respectively. The
electrons are assumed to be approximately collisionless on the scale of a wavelength of
the ion-acoustic wave (k;,A.;,k;,A., = 1), and quasineutrality is assumed to hold (« » 1),
where a = 1/k;,Apg and A is the electron Debye length. The heat flux (q) can be
inferred with some degree of accuracy from the relative drift measurements and since the

electron temperature gradients (VT,) can be deduced from the spatially dependent sound
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speed data, the electron thermal conductivity (x,) may be measured from (q = -k,V T,).

The model also correctly predicts the appearance of a zero-frequency or entropy peak in
the Thomson spectra in the fluid limit (k;,A;; — 0).

To summarize, this dissertation presents an experiment in which collective
Thomson scattering is, for the first time, used at 266 nm to make detailed measurements
of a laser-generated, collisional plasma. These detailed measurements are used to test the
accuracy of the simulation code LASNEX and a simple analytical model. The versatility
of Thomson scattering is expanded upon by extending existing theory and developing and
analytic model to help analyze Thomson spectra from collisional laser-plasmas. This
model allows new information to be obtained about the relative thermal flow velocity
between the electrons and ions.

The dissertation is organized as follows: In Chapter 2 a discussion on existing
collisional and collisionless Thomson scattering theory will be presented. The existing
theory with some minor modifications will be appropriate for analyzing data from a
collisional laser-plasma to obtain electron density, sound speed, and drift velocity
measurements. Chapter 3 will describe in detail the experimental configuration used to
measure the three quantities mentioned above. The results of the experiments are analyzed
and discussed in Chapter 4. Chapter 5 presents a new theory for describing ion-ion
collision related effects in Thomson scatiering. This new theory provides an analytic
model for interpreting Thomson spectra from collisional laser-produced plasmas. Chapter
6 outlines a proposed experiment for testing and utilizing the theory in Chapter 5 to

measure the relative thermal flow velocity between the electrons and ions in a collisional
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laser-produced plasma using Thomson scattering. Finally, the conclusions for the

dissertation are presented in Chapter 7 along with some thoughts about the future.
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Chapter 1I: Thomson scattering theory - fluid and kinetic limits

This chapter will present an outline of the current theory of Thomson scattering
as it applies to thermal level, ion-acoustic waves. The discussion will start with a
derivation of general formulas that are applicable independent of collisions to any
homogeneous, isotropic, two component (electrons and one ion species) plasma in quasi-
equilibrium. The requirements that the plasma be homogenous, isotropic, two component
and in quasi-equilibrium is ultimately chosen to simplify the theory, but these
requirements are not as stringent as they might appear. The homogeneous treatment is
valid as long as the scattering volume from which Thomson scattering occurs is small
enough compared to the scale lengths of density and temperature in the plasma. The
plasma is isotropic if there are no magnetic fields present, and is approximately isotropic
if the magnetic field strengths are small. The two component requirement is fulfilled if
the plasma is fully ionized or if a large percentage of the distribution of ions have one
charge state. Quasi-equilibrium requires that the electrons and ions in the plasma are in
equilibrium with themselves, but not necessarily with each other. The unperturbed
distribution funcﬁons for the electrons and ions will be Maxwellian and each species will
have a respective temperature T,, T;, but the temperatures can be different (T, # T;).
From the general .formulas, two limits of the theory will be shown for plasmas which are
characterized in the fluid regime by collisional ions (k;,A;; = 0) and plasmas which are
characterized in the kinetic regime by collisionless ions (k;,A;; = o). In both cases, the

electrons are assumed collisionless (k;,A;.k;, e » 1). The collisionality represents the



25

degree to which collisional effects are important for an ion-acoustic wave of wave number

k;., and A, A, A;; are the electron-electron, electron-ion, and ion-ion mean free paths

as defined by Braginskii (Ref. 10), respectively,
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where the electron and ion temperatures T, T; are in (eV) and the electron density n, is
in (cm). Although the laser-produced plasma studied for this dissertation lies in the
intermediate collisional range for the ions (k;,A;; = 1), it will be shown that the fluid and
kinetic linﬁts of Thomson theory are adequate for measuring the three quantities: electron
density, sound speed, radial drift. However, the exact collisionality of the ion-acoustic
waves does influence measurements that are sensitive to the shape of the Thomson
spectrum, such as line width analysis. A theory will be presented that can quantitatively
describe these effects in Chapter 5.

When an optical probe of wave vector k,pr and frequency Wpy is 'incident upon a
plasma, Bragg scattering can occur off a plasma fluctuation (kg,w¢) and the resulting

scattered light satisfies the conditions,
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0 = (0 + 0+ Kyl 12)
where k. and o, are the wave vector and frequency of the scattered light, respectively,
and the effect of a nonstationary plasma U 4., on the frequency shift is added. The power
scattered, P (kg ,w ), in the direction kg, into solid angle d© and frequency interval w
- oy, + dog is given by'®,

Psc(Esc’ mm)dQ do, = P, Ao ’(%/) -S—(IZ"—:-ﬂ—) PESC x (Ieu x épr)fzdﬂdm“ (13)

where Por is the probe beam power with cross-sectional area A, oy is the classical
electron Thomson cross section (7.952x1026 cm?), k', and &, are unit vectors, &, is
along the probe beam polarization, V is ﬁe volume defined by the intersection of the
probe beam and the collection field of view, and S(kg;, wg) is the dynamical form factor.
The factor e is included to represent possible absorption of the probe and scattered
waves due to inverse bremsstrahlung in the plasma. The quantities in Eq. (13) are written
in terms of their spatial and temporal Fourier transforms (k,w). This form is most
convenient for working with the theory on Thomson scattering and will be used in the
rest of this chapter unless otherwise stated.

The dynamical form factor S(k, ) is the wave-vector/frequency-dependent part of
the Thomson cross section and represents the effects of scattering due to electron motion
as well as correlations between the electrons. The dynamical form factor is related to the

mean square fluctuations in the electron density of the plasma and is given by (Ref. 109),
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S(E,m) = T*E?/*MT%V<, 571‘_.(":,0))__[3) (14)

e

where T and V are the time and volume that the average is taken over. The dynamical
form factor can be derived for a general homogenous, isotropic, two component plasma
in quasi-equilibrium with the use of Coulomb’s law, the continuity equation, Ohm’s law,
and the fluctuation-dissipation theorem!!0:11L112,113,114 = The  derivation
for the dynamical form factor will involve solving for the response of the plasma to
external perturbative fields in the presence of the self consistent fields.

The fluctuation-dissipation theorem provides a powerful tool for connecting the
power spectrum of fluctuations of a system in thermodynamic equilibrium to the
imaginary part of the relevant linear response function of the system. For example, in the
Coulomb gauge with no charge density sources, the current density j and the vector
potential A are related to one another through a wave equation (Ref. 8),

Pi- LPA 4 (15)
c?or? ¢
The current density acts as a source for the vector potential in this equation and assuming
a linear response («), a relation may be written between the current density and the vector
potential. The fluctuation-dissipation theorem then relates the mean square fluctuation of
the vector potential to the linear response («). The linear response and the mean square

fluctuation of the vector potential can be written (Ref. 113),
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A(kaw) = a(E,w) .;(E’w)

A, ~ e—ﬁ;,“};“_—; i [afk,0) - oK) = % i [afw) - aEw) (16)

where the approximation holds for sufficiently high temperatures and the * refers to the
complex conjugate. The final step in deriving a general form for S(k,®) will involve Eq.
(16), but for now the derivation will start with Coulomb’s law which for a medium with

no free charge density is given by,

ik-Dik,w) = ik-Ek,w) - 4np, fkw) = 0 (17)
where D and E are the electric displacement and electric field vectors, respectively, and
Pind 18 the induced charge density due to external perturbations. In the case of a plasma,
neglecting the free charge density is warranted because a plasma by definition is charge
neutral as long as kL « 1, where L is the minimum of the plasma scalelengths. Along

with Eq. (17) comes the foilowing definitions,

. J; o (18)
p'-’m(k,m) = _ik.P( 7(‘))
Judkro) = ioPko)
where P is the polarization vector, ¢ is defined as the dielectric response function of the
medium, y ; is the susceptibility of the jth species in the plasma, and Jinq 18 the induced

current density. The induced charge and current densities can be related through the

continuity equation,
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-iwp, fw) + ik -, fLw) =0 (19)
and Ohm’s law for a non-magnetic, homogenous plasma is given by Eq. (2) as,
N ElE. o —iw(e - 1) e 20
Judbs0) = oBle) = == —=HE0) (20)
T
where the last equality is found from Eq.’s (17), (18), and (19). External perturbing
fields Emi and E_,° which couple independently to the ions and electrons can be
introduced into the plasma. These fields induce charge and current densities which in turn
generate a self consistent electric field Egy¢. This process can be written in terms of the

induced current density for the electrons and ions through Eq. (20),

- -0y, _,
P " (Esey + E;) o
Foa = =B,y + EL)

The self consistent field can in turn be written in terms of the total induced charge density

by combining Coulomb’s law (Eq. (17)) and the continuity equation (Eq. (19)),

= 47 (- =i 4T 20t
Eselj - Tu—)' wa ]1,.4) = ’i'zo"ji,d (22)

The self consistent field can be eliminated between equations (21) and (22), and the

solution for the induced current densities and external fields is given by,
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e " »
Joa = ;}t";(-x,(l + X + X XEr)
d |

Tna = et 4 1) ¢ 1)

e - -4 ’..’:"el.d _ ﬂjﬂor (23)
ey,  iw ind
=i
Bl - “AnJind _ AT o
e oy, e ™

Since the external fields are assumed to act independently on the electrons and ions, the
fluctuations of each field are only determined by the temperature of the appropriate
subsystem. Therefore, the fluctuation-dissipation theorem Eq. (16) can be used with the
results of Eq. (23) to separately find the mean square fluctuations of each external field

due to the response of the induced current densities,

(E'Ef) =

(E/ Ey)

81:T [ X (24)

(E, Ek> =

where the last relation holds because the fields are assumed independent. The mean
square fluctuation of the induced electron current density is now found by combining Eq.

(23) and Eq. (24),

LEe L pmiy) (25)

The induced current density is related to the induced charge density through the continuity

equation Eq. (19). The induced charge density is then related to the induced electron
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density by (p;,q = -edng). These relationships can be used with Eq. (14) and Eq. (25)

to find the general form for the dynamical form factor in terms of the electron and ion

susceptibilities of the plasma,

sty - 2 [IL2 4 iy + 2 'x;r Im.) 26)

wa?| € | wa’T,

where & = 1/kApg, and Apg = (kgT,/4mn,e2)!/2 is the electron Debye length. Equation
(26) has been derived without using any assumptions about the collisional nature of the
plasma. The dependence of S(k,w) or the scattered frequency spectrum on the plasma
conditions is included through the response functions x,, x; of the electrons and ion
species in the plasma and the parameter ««. Resonances appear in the scattered spectrum
when the real part of the dielectric function approaches zero (Re(e) - 0) in Eq. (26). The
parameter o can be used as a qualitative gauge for whether the sharp resonances will
appear or whether the scattered spectrum will contain only broad uncorrelated features.
When o < 1, the scattered spectrum is typically due to noncollective effects in the
plasma. Scattering occurs from electrons which exhibit uncorrelated, random, thermal
motion and the width of the broad spectral feature in this case can be related to the
electron temperature in the plasma. When o > 1, the scattering process is referred to as
collective Thomson scattering. In this case, scattering occurs from electrons which are
undergoing collective motion either in response to a low frequency ion-acoustic wave or
from a high frequency electron plasma wave. As mentioned in Chapter I, this dissertation
involves using collective Thomson scattering from electron motion induced by ion-

acoustic fluctuations. Therefore, particular attention is paid to the low frequency, o >
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1 results of the following sections.

The first step towards investigating the spectral features predicted by the
dynamical form factor in Eq. (26), involves computing the electron and ion
susceptibilities of the plasma. In general, the susceptibilities are found by the use of
Ohm’s law (Eq. (20)), the continuity equation (Eq. (19)), and the definitions for the
electric field in terms of the scalar potential (E = -ik¢) and the induced charge density

in terms of the perturbed density (p;4* = Zedn,),

) -4nZ.e bna(’_c:w) (27)
,@

x(Ew) = e o)
where Z, = -1 for an electron. Unlike the argument leading to Eq. (21) which involved
including a self consistent field, Eq. (27) results from only considering the direct coupling
between an external potential and the induced change in density. The response of the
electrons or ions under this siiuation is defined as the susceptibility of that given species
in the plasma. The high frequency limit (w - o0) of the susceptibility for the electrons
and ions is in general zero (x,(k,w) = 0) due to the fact the electrons and ions are
massive and cannot respond at infinite frequencies. In the opposite, low frequency, D.C.
limit (0 — 0), the response of the electrons and ions is governed by Debye shielding.
When a static point charge is inserted into the plasma, the electrons and ions will respond
to eliminate the long range charge effects through Debye shielding. Since the electrons
and ions are assumed individually to be in thermal equilibrium, their distribution
functions are Maxwellian. When an external potential is introduced into the plasma that

couples with either the electron or ion species, the energy of the species is increased by
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(Z,£0 5y and the distribution function is given by,

n® LA Z,eb,,| | kT,
Sovibe) = —7;—372 e ( ) (28)
(Zn m“]

The perturbed density due to this external field can be found by integrating the difference
between the distribution function with and without the applied potential over all velocity

space,

“Zenob,.  (29)
kT

o~
=~

~Zeed )

dng = [fobey) - fov0) d = ng(e e

where the approximation holds for sufficiently high temperatures. The D.C.

susceptibilities for the electrons and ions can now be found from Eq.’s (27) and (29),

%k0) = a?

- ZT (30)
x;(k,o) = Tea2

!

The low and high frequency limits of the susceptibility for the electrons and ions

can be used to calculate the total cross section St(k) which is defined by,

S48 = [dostE.o) a1)

Direct substitution of Eq. (26) into the integral is not possible because the expression in
not analytic due to the |e|2 factor in the denominator. This problem can be eliminated

when the electron and ion temperatures are approximately equal (T, = T;). In this case,
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Eq. (26) can be rewritten as,

Sik0) = zzlm[ e ] (32)
wo

Since this function is analytic for Im(w) = 0, the integration can now be performed along

a closed contour in the upper half plane, indented on the real axis below the pole at zero.

The result is given by (Ref. 109),

2n(l + xfEO)lx (E0)  2x(1 + «*ZT)T))

S,(Ia = ~ — > > for T‘zT‘_ (33)
of1 + x(k0) + x{E0) 1+ a® + «¥ZT)T)
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Figure 1: Total cross section Sp(k) for a general plasma as a function of ZT,/T; & «.
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where the D.C. results of Eq. (30) are used to obtain the last equality. The dependence

of the total cross section on o for different values of Z and (T, = T,) is shown in
Figure 1. The cross section is equal to 1 for = 0 and approaches the limit Z/(14Z)
for o = oo. The total cross section in Eq. (33) applies to any homogeneous, isotropic,
two component plasma in quasi-equilibrium independent of collisions, but unfortunately
this is as far as the general approach can be taken. The fraction of the total cross section
which is responsible for scattering in the low frequency or ion-acoustic feature as well
as the exact form of the ion-acoustic spectrum can only be calculated from the specific
equations that govern the evolution of the particular plasma of interest.

The exact form of the dynamical form factor was first derived independently by
Fejer(1960)!1°,  Renau(1960)116, Dougherty and Farley(1960)!17, and
Salpeter(1960)!18 for a plasma in which the electrons and ions can be considered
collisionless (ki A;;,Ki A KiaAee » 1). This subject has also been treated iﬁ review articles
since that time.!!%-120 The evolution of the electron and ion distribution functions

in a plasma which is collisionless is given by the Vlasov equation,

- Ze._._
_qﬁ + #Yf, + a EV f =0 (34)
ot m

[]

This equation can be linearized by expressing the electric field in terms of the potential
(E = -V@), the distribution function as f = f; + f; exp(i(kz - wt)), and the potential as
¢ = ¢g + ¢, exp(i(kz - wt)). The linearized Vlasov equations for the electrons and ions

then become,
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e ke afoe
kv, - +i—¢p,— =0
i( Wiy +i ¢¢1 a,
. i .Zke ch; 35
kv - —-— —, — = ( )
i(kv, - )f; l”',- ¢, .
1 -~v212v2
where f, =
(va:)m

where the background fy¢ distribution is Maxwellian. The perturbed density which arises
from the oscillating potential can now be solved for by rearranging the formulas in Eq.

(35) for the perturbed distribution function f;* and integrating over velocity space,

(36)

E4 a

- _ 2.9, kv fo _ -Zaengd),[ w o
= fffd3v = - f d’ = 7 l1 + kvaz{kva]

kv, - w
my,

where the integral has been evaluated using the Landau prescription!2! to incorporate
the pole that occurs at @ = kv,, and Z(w/kv ) is the plasma dispersion function.122

Equation (27) can now be used to find the susceptibilities for the electrons and ions from

Eq. (36),

Complex Real

L+ 27)] = W)
T zT,
) = “7'1_‘“ Wix)

2 (37)
where Z(x) = z\J—%e 2 Il + Erf (—5‘_—]}

2t oxp? o=
W(x)=1—2xe2f2dp+z, xe 2
0

where x, = w/kv, and x; = w/kv; are normalized frequencies. For complex frequencies,
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the susceptibilities are written in terms of a complex error function and for real
frequencies, the susceptibilities posses a much simpler form in terms of the W(x)
function. When a frequency is written as a complex quantity, the real part corresponds
to the mode frequency of the wave while the imaginary part is equal to the damping on
that wave. F-or real frequency w, the dynamical form factor for a collisionless plasma is

now written from Eq. (26) as,

ZT L
1+ Ti‘aZW(x‘.) _;‘_

1+ azW(x) + Eﬂazwf(x.) e
T ‘ (38)

YA —aZW(xe) e ?
kv

ZT,
1+ o®Wx,) + —EfaZW(x‘.) :

The specific characteristics predicted by Eq.’s (37) and (38) can now be
investigated as they apply to the ion-acoustic feature in Thomson scattering from a
collisionless plasma. First, the damping mechanisms for ion-acoustic waves in a
collisionless plasma are electron and ion Landau damping. The source of these damping
mechan ms lies in the denominators of the terms in Eq. (38), that is really the dielectric
function e of the plasma. When the real part of € goes to zero (Re € > 0), a resonant peak
will appear in the scattered spectrum. At the point where (Re e - 0), the damping of the
resonant wave is governed by the magnitude of the imaginary part of ¢ (Im ¢), which is
comprised of the imaginary parts of W(x,) and W(x;). Since x_ is the frequency

normalized to the electron thermal velocity, Im W(x,) represents the electron Landau
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damping and likewise Im W(x;) represents ion Landau damping. For ion-acoustic waves
x; ~ 1 while x, « 1. Electron Landau damping can be turned off by setting x, = 0 and
then the effects of ion Landau damping can be studied. It can be shown that the electron
Landau damping y, can be added afterwards to obtain the total damping on an ion-

acoustic wave through the factor,

nZm
- e 39
Y, = I 3, Real(coia) (39)

where w;, is the complex frequency of the ion-acoustic wave. Neglecting electron Landau

damping (x, = 0), the complex frequency for ion-acoustic waves can be solved for in the
o —> oo limit by utilizing the complex argument forms of the electron and ion
susceptibilities in Eq. (37) and solving for the low frequency, complex root of (e = 1 +
Xe + x; = 0). Figure 2 shows the result of these calculations as a function of ZT,/T;.
As can been seen from the figure, the mode frequency (Re ) of the ion-acoustic wave
increases with the ratio ZT,/T; and the ion Landau damping (Im ) decreases quite
rapidly from ZT./T; = 1 where it a considerable fraction of the mode frequency to
ZT/T; = 64 where it is twelve orders of magnitude smaller than the mode frequency.
For general o, it can be shown that the mode frequency of the ion-acoustic wave as a

function of ZT,/T; and « is given by,

Real(m,.a) _ is- _ ZTe{ az N 37" (40)
T, Laz +1 2T,

where c is defined as the sound speed in the plasma and the factor of 3 is the adiabatic
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Figure 2: Real and imaginary parts of the complex ion-acoustic frequency as a

function of ZT_/T; for a collisionless plasma with « - oo neglecting electron Landau
damping.

index or ratio of specific heats Cp/Cy, for a collisionless plasma. This is an approximate
equation which is most accurate for large ZT,/T; ratios.

The spectral characteristics of Thomson scattering from collisionless ion-acoustic
waves can be analyzed through Eq. (38). This equation contains the complex W(x)
function which is plotted in Figure 3. From the figure, it can be seen that the real part
of W(x) attains a minimum value of -0.29 at x = 2.1, and this functional property of
W(x) can be used to qualitatively determine when ion-acoustic resonances will appear in
a Thomson scattered spectrum. Ion-acoustic wave resonances occur in the spectrum given

by S(k,w) in Eq. (38), when the real part of the denominator of the expression goes to
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Figure 3: Real and imaginary parts of the function W(x).
zero. Ignoring electron Landau damping effects for the moment, i.e. x, = 0 and W(x,)
= o, the real part of the denominator is given by [1 + o2 + (ZT,/T,)a? Re W(x;)].
Since Re W(x;) > -0.29, the following condition is qualitatively necessary for resonant

peaks to occur in the ion-acoustic spectrum,

< 0.29 (41)

This condition shows that when « « 1, there will be no resonant peaks in the low

frequency part of the Thomson spectrum for any value of ZT,/T,, and for increasing
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Figure 4: Theoretical ion-acoustic Thomson spectra for a collisionless aluminum
plasma with ZT./T;=4 and varying values of c.

values of ZT/T;, successively lower values of « are required to produce resonant peaks.
In fact, for ZT,/T; > 8 the requirement that > 1 for collective Thomson scattering
can be relaxed because resonant peaks will begin to appear in the spectrum for o < 1.
The ramifications of this resonance condition can be seen by plotting the dynamical form
factor in Eq. (38) for different values of ZT./T; and «. Figure 4 shows ion-acoustic
spectra for an aluminum plasma (m; =27my,.,) With ZT/T;=4 and varying values for
«, and as predicted by Eq. (41), the ion-acoustic feature comes into resonance as o
increases. Figure 5 demonstrates the same principle but for increasing ZT,/T; and fixed

«. As seen in the figures, when in resonance, the ion-acoustic feature for a collisionless
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kve S(k,w)/2m

Figure 5: Theoretical ion-acoustic Thomson spectra for a collisionless aluminum
plasma with « = 1 and varying values of ZT,/T;,.

plasma is comprised of two peaks. The two peaks result from scattering off of oppositely
traveling ion-acoustic waves which have the same wave vector magnitude k;,, but cause
equal and opposite frequency shifts w;, due to their opposing directions. The separation
between the peaks is given by 2w,;, = 2k, c. which is the ion-acoustic dispersion relation
and the sound speed ¢ is given approximately by Eq. (40). Thus, the peak separation in
a collective Thomson spectrum can be used to measure the sound speed in the plasma.

An additional feature is predicted by the dynamical form factor in Eq. (38). The
peak heights become asymmetric when the thermal electrons drift relative to the thermal

ions. An asymmetry results because the ion-acoustic wave that is traveling opposite to the
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Figure 6: Peak height asymmetries due to a relative drift between electrons and ions
in an aluminum plasma with ZT,/T;=8, =3, and different values of y=(k;,*U4)/kv,.

electron drift encounters enhanced electron Landau damping while the ion-acoustic wave
traveling with the drift experiences a reduction in electron Landau damping. A driving
mechanism for this phenomena is the return current due to heat transport in the plasma.
A detailed discussion of this topic will be presented in Chapters 5 and 6, therefore, only
a qualitative picture will be drawn in this section. A relative drift between the thermal
electrons and ions can be examined by replacing the normalized frequency x, in Eq. (38)
with x, + (ka*Uy)/kv,, where Uy is the directional drift relative to the wave vector k;,
of the ion-acoustic waves. The results from this analysis are shown in Figure 6 for an

aluminum plasma with ZT /T,=8, o = 3, and various values of y=(ka*U)/kv,.
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The effect of collisions in a fully ionized plasma on the dynamical form factor has
been considered by several authors. Typical approaches include: the use of a Fokker-
Planck type collision term with the Vlasov equation (Eq. (34)) to derive a collisional
dependent form factor!23:124.125 3 quantum-mechanical treatment of the
problem!25, and the use of the fluid equations to derive the ccllisional dependent form
factor.!2’ Besides providing a theoretical model, reference 127 also provides
experimental results of collective Thomson scattering for the ion-acoustic feature in a
collisional plasma. The dynamical form factor derived from the fluid equations fits the
data very well. Therefore, a similar but simplified approach will be used in this section
to investigate the effects of collisions on the ion-acoustic feature obtained from Thomson
scattering in a plasma where the ions are collisional (k;,A;; « 1) and the electrons are
assumed collisionless (K Aq;KiaAqe » 1).
| Since the ions are considered collisional (k;,A;; « 1), the fluid equations can be
used to describe the evolution of the ion species in the plasma. The fluid equations for

the ions are given by (Ref. 10),

on, o
Yy +V-(ny) =0
v, L " o3 L
mp, — + mn, VW, = -Np, - V- m; - ZenVo, + R,
ot (42)
o, 3 . e Ao

DY) * EniviVTi +pV Y, = Vg - T 1V - Q,

where p, = nT,
closure G, = —K,VT, 1?, = ”%M;W

where p;, «;, q; are the ion pressure, stress tensor, and heat flux, respectively. The linear
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closure relations have also been included which relate the heat flux and stress tensor to
gradients in the temperature and velocity through the thermal conductivity x; and the
viscosity u;, respectively. The momentum and heat exchange coefficients R;;, Q,;
between the electrons and ions will be neglected since the electrons are assumed
collisionless. The fluid equations can be linearized in the same manner as the Vlasov
equation in the previous section and are given by,

-iwn, + iknyy, = 0
-iomnyv, = -ikTon, - ikn,T, - ikn, - iZekn,b,
—-%i(.mOT1 + ikn,Tov, = -ikq, @

) nOvi .
closure ¢q, = -« —k-lle

4 _mn,v,.
_..._IJ"’__...__Q_'[

AL LA
where the subscript i for the ions has been assumed except for v; = (T;/m;)1/2, which is
the ion thermal velocity, the subscripts O and 1 refer to the background and perturbed
values of the quantities, respectively, and the normalized transport coefficients are defined
by, x® = 3.9 kA;; and u°® = 0.96 ki;;. The system of formulas in Eq. (43) can be solved
for the ratio (n,/¢;) which in turn can be used in Eq. (27) to find the ion susceptibility

for a plasma with fluid ions,

where x; = w/kv; is the normalized frequency. Since the electrons are assumed
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Figure 7: Theoretical ion-acoustic Thomson spectra in the ion fluid (k;,A;; = 0.1) and
ion collisionless limits for a plasma with ZT,/T; = 1 and o = 300.

collisionless, the electron susceptibility from Eq. (37) can be used with the fluid ion
susceptibility of Eq. (44) to obtain the dynamical form factor for this ion collisional limit.
Figure 7 shows the effects of ion-ion collisions on the low frequency ion-acoustic
spectrum where the dynamical form factor in the fluid (k;,A;; = 0.1) and collisionless
limits is plotted for identical plasma conditions, ZT,/T; = 1 and o = 300. As can be
seen by Figure 7, resonant peaks can appear in the collisional limit when they are barely
visible in the collisionless limit under the same conditions. The resonant peaks emerge
due to a reduction in the ion Landau damping of the ion-acoustic waves by ion-ion

collisions which disturb the wave particle Landau resonance. The peak separation as in
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the collisional limit is given by 2w;, = 2k;,c., but the sound speed (c,) is modified due

to the ion-ion collisions. It can be shown that the sound speed in the collisional limit

(k;gAi; > 0) is given exactly by,

Reallw,) ¢ _ J T o> , 3T, (45)

kv, v, T, ka2 +1 32T,

where the adiabatic index is now 5/3 instead of 3 as in the collisionless case, Eq. (40).
The presence of a zero frequency or entropy wave is also predicted in the fluid limit as
shown in Figure 7. This wave is due to thermal level ion temperature fluctuations in the
plasma which are balanced by ion density fluctuations to produce no pressure gradients.
Since there are no pressure gradients, the wave does not propagate and has zero mode
frequency. The entropy wave is present in the ion-acoustic spectrum only in the ﬁuid
limit, and will be discussed in more detail in Chapter 5 and Chapter 6.

Based on the preceding results it can be shown that the fluid and kinetic limits of
the Thomson scattering theory are adequate for measuring the three quantities: electron
density, sound speed, and radial drift. The electron density can be measured from the ion-
acoustic Thomson spectrum by first integrating Eq. (13) over the low frequency part of

the spectrum which includes the ion feature,

(46)
Q

[edfio.ioda - pfEdaa = pesanlX) ol e o

where STi(k) is the total ion feature cross section. For T, = T;, the ion cross section in
Eq. (46) will always be less than or equal to the total cross section predicted by Eq. (33)

independent of the collisionality of the plasma. For the collisionless and fluid limits, the
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Sti(k)/2n

Figure 8: Total ion cross section STi(k) in the collisionless (line) and fluid (circle) ion
limits as a function of « for ZT,/T; ratios (1 - 8) in an aluminum plasma.

total ion cross section can be theoretically computed by integrating the appropriate
dynamical form factors over low frequencies. Figure 8 shows the ion cross section in
both the collisionless and fluid limits as a function of « for various ZT,/T; ratios in an
aluminum plasma. The solid lines are the collisionless results and the circles are the fluid
results. As shown by the figure, the ion cross section approaches zero for o = 0 and a
constant for o = o and is the same in both limits for a given o and ZT,/T; ratio.
Therefore, even though the spectral distribution of the ion-acoustic feature can be
markedly different in the two limits as seen in Figure 7, the total ion cross sections are

the same! Since the ion cross section is identical in the fluid and collisionless limits, it
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will be assumed a constant for all values of ion collisiona¥ity (k;;A;;). With a constant ion
cross section, the electron density can be measured with some degree of accuracy by
using Eq. (46) and Figure 8 with a relative intensity calibrated experimental collection
system. The collection system and the exact method from which the electron density is
calculated will be described in detail in Chapter 3.

The sound speed varies from the fluid limit to the collisionless limit as shown by
Eq.’s (40) and (45). This variation is due to the collisionally dependent adiabatic index
which changes from 5/3 in the fluid ions to 3 for collisionless ions. Knowing the exact
value for the adiabatic index is crucial for calculating an accurate sound speed for low
ZT,/T; ratios, but as this ratio increases the value of the adiabatic index becomes less
important. In Chapter 4, it will be shown that the experimental conditions for this
dissertation fall in the range, 3 < o < 15and 5 < ZT/T; < 8. The difference in the
sound speed between the fluid and collisionless limits under these conditions is no more
than 10%. Values of k;,A;; for the experiments are always less than one (k;,A;; < 1). The
ion-acoustic waves measured are fairly collisional and choosing the adiabatic index = 5/3
will introduce an error in the sound speed measurements much less than 10%.

Finally, the term k;,*U 4., in Eq. (12) is added to take into account the effect of
a nonstationary plasma on the frequency shifts in a Thomson spectrum. For the ion-
acoustic feature, a nonstationary plasina will shift the entire spectrum by a frequency
amount determined by k;,*U, . This Doppler shift will be used to measure the radial
drift velocity of the plasma under investigation in this dissertation. Since Eq. (12)

represents the conservation of energy in the scattering process and therefore has no
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dependence on the collisionality (k;,A;;), the radial drift measurements are not effected
by the collisionality of the plasma either.

In conclusion, this chapter has presented an outline of the current theory of
Thomson scattering as it applies to thermal level, ion-acoustic waves. General formulas
for the phase matching conditions of the Thomson scattering process and the Thomson
scattered power are given. The general forraula for the dynamical form factor which
provides the spectral distribution of scattered light has been derived from first principles
and is applicable to all homogeneous, isotropic, two component plasmas in quasi-
equilibrium independent of collisions. The dynamical form factor can be written in the
collisionless (k;,A; —> ) and fluid (k;,A; = 0) limits for the ions using the Vlasov and
fluid equations, respectively. It has been shown that the predictions made by the two
limiting forms of the dynamical form factor are adequate for use in measuring the
electron density, sound speed, and radial drift in a plasma for which the ions lie in
between the two limits of collisionality (k;,A;; = 1). However, the exact form of the
dynamical form factor for plasmas with intermediate collisional ions is needed for
measurements relying on line shape analysis of the ion-acoustic spectrum. A theory for

this intermediate collisional regime will be presented in Chapter 5.
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Chapter 1II: Experimental configuration

This chapter will explain in det.l the collective Thomson scattering experimental
configuration used for obtaining two-dimensional electron density, sound speed, and
radial drift profiles from a collisional laser plasma. The production of the diagnostic and
plasma generating beams will be discussed along with the collection system used for .
monitoring collective Thomson scattering from the plasma. The Thomson-scattered signal
is small and noise reduction techniques are used to reduce stray light from the diagnostic
beam in order to increase the detectability of the Thomson-scattered signal. Since
measurements of the laser plasma are made on a single point basis and two-dimensional
information is required, the laser plasma generated for these experiments must be
reproducible in the quantities that are being measured. Therefore, the laser pulse that
generates the plasma in the experiment will have excellent energy stability, and smooth
temporal and uniform spatial characteristics. The target used for plasma generation will
need to have a smooth surface and be rotated to provide fresh target material for each
laser shot. This combination of laser and target characteristics are sufficient to provide
a plasma with reproducible electron density, sound speed, and radial drift profiles. The
signal-to-noise in the collected data is improved by averaging multiple data shots at a
given point in the plasma. The rate of data collection is enhanced by the high, 10 Hz,
repetition rate of the system. Collecting data at this rate requires carefully integrated
timing of all of the components in the system, which will also be outlined in this chapter.

The experimental configuration is shown in Figure 9, Figure 10, and Figure 11.
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Figure 9: Experimental configuration; top view.
As seen in Figure 9, a Q-switched Nd:YAG laser (Spectra Physics Model DCR-3)
operating at 10 Hz produces the optical pulses for both plasma generation and the
Thomson diagnostic beam. The Nd:YAG laser possesses three features that improve the
reproducibility of plasma generation. First, the pulse-to-pulse energy stability of the laser
is +1% at 1.06pm which will provide reproducible energy deposition on target for
producing the plasma. Second, without intervention, a Q-switched laser cavity will lase
in several axial modes each separated by the characteristic frequency of the cavity, Av
= c¢/2L, where L is the cavity length and c is the speed of light. These axial modes will
beat with each other ir time and produce structure in the temporal profile of the laser

pulse as seen in Figure 12. The mode beating structure is not reproducible from shot to
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Figure 10: Experimental configuration; side view.
shot and therefore will hamper reproducible plasma generation. The mode beating can be
eliminated by injecting a narrow linewidth, less than Av, beam into the laser cavity. The
energy of the injected beam is far above the photon noise of the cavity when the Q-switch
is fired, thus lasing occurs only in the axial mode whose frequency coincides with that
of the injected beam. The temporal profile of the single axial mode pulse is shown in
Figure 13 (solid line). The narrow linewidth pulse (0.003 cm™!) is near transform limited
in time (Full width at half maximum (FWHM) = 9ns). A Gaussian profile of the same
FWHM width (dashed line) is shown in the figure for comparison. As can be seen by the
comparison, the temporal profile of the laser pulse is not quite Gaussian, but it is smooth

and reproducible. The data for both Figure 12 and Figure 13 are taken with an ANTEL
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Figure 11: Experimental configuration; side view of target.
Model AR-S2 photodiode (35ps rise time) connected to a 500MHz transient digitizer with
the injection seec'er of the laser blocked and unblocked, respectively. Finally, as with the
axial modes, lasing will occur in several transverse modes of the standard hard edged
resonator design for an unstable Q-switched cavity.1?8 A cross-section of the near-field
spatial profile of another (Spectra Physics Model DCR-3) in the laboratory with a hard
edged resonator cavity is shown in Figure 14. The profile consists of an annular ring,
denoted by the outside peaks in the figure, with a central "spot of Arago", see Ref. 128.
The target will not be uniformally irradiated by this beam. The near-field spatial profile
of the laser can be improved by replacing the hard edged output coupler of the resonator

with a variable reflectivity mirror (VRM).12%:130.131 The [aser used for the
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Figure 12: Temporal profile of the Nd:YAG laser pulse during unseeded operation.

experiments described in this dissertation is equipped with a VRM. As seen by Figure 15,
the near-field beam cross-section (solid line) is much more Gaussian in nature than with
the hard edged resonator of Figure 14. The FWHM of the best fit Gaussian to the VRM
profile (dashed line) is 8.2mm. Unfortunately, the spatial profile in Figure 15 is not
entirely smooth due to diffraction effects resulting from over filling of the oscillator and
amplifier rods in the laser. The next section will show how the diffraction affects the size
of the focal spot obtained on target. The data in Figure 14 and Figure 15 is taken with
an EG&G 1024 element reticon array (25pm pixel spacing) and a digital sampling
oscilloscope.

As seen in Figure 9, the 1.06um output from the laser is frequency doubled in
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Figure 13: Temporal profile of the Nd: YAG laser pulse during seeded operation (solid
line) with a Gaussian pulse shape of the same (FWHM = 9nsec) width for comparison
(dashed line).

KDP providing 375 mJ of 532nm light for diagnostics and 200 mJ of residual 1.06xm
radiation for plasma generation. The plasma is preformed by focusing the 1.06um light
with a 500mm focal length, anti-reflection coated lens through the top of the target
chamber onto a disk target of aluminum, Figure 10. The aluminum target is one inch
long, 3/4 inch in diameter and machined on a lathe to provide a smooth surface finish.
After machining, the target is promptly placed under vacuum in the target chamber to
reduce oxidation of the aluminum surface. As shown by Figure 10, the target is rotated
to a new surface for each laser shot by a rotary stage (AEROTECH Model 50SMB2-HM)

which is connected to the target through a linear/rotary vacuum feedthru. When a
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Figure 14: Near-field spatial profile of the 1.06um pulse produced by a Q-switched,
Nd:YAG laser equipped with a hard edged output coupler.

complete revolution of the target has occurred, approximately 720 laser shots, the
feedthru provides linear motion to a new target circumference position. By moving the
target in this manner, several thousand new surface shots can be obtained from a single
aluminum disk target. A linear/rotary bearing supports one end of the shaft and reduces
wobble during target rotation. The focused spot size on target of the 1.06um beam is
monitored with the same reticon/digital sampling scope system that was used for the near-
field measurements of the previous section. As seen in Figure 10, the reticon array is
placed behind the final mirror that directs the 1.06pm light into the chamber and monitors

the leakage through that mirror. By placing the reticon at the equivalent target distance
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Figure 15: Near-field spatial profile of the 1.06um pulse produced by a Q-switched,
Nd:YAG laser equipped with a variable reflectivity mirror (solid line). The best fit
Gaussian (dashed line) is included (FWHM width 8.2mm).

from the mirror, the spot size on target is measufed. The spot size measurement is shown
in Figure 16, where the circles are the data from the individual pixels of the reticon
(25pm spacing) and the dashed line is the best fit Gaussian through those points. The best
fit Gaussian has a FWHM width of 92 + 10um and can be compared to the spot size
predicted by focusing the beam profile of Figure 15 (Gaussian FWHM = 8.2mm)
through a 500mm focal length lens. It can be shown that the relationship between the
FWHM spot size at focus (dg,,.,,c) and the FWHM beam diameter (D) of a near Gaussian

beam profile at the input of a lens is given by,
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Figure 16: Focused 1.06um beam at the target surface (circles) with a best fit
Gaussian profile (dashed line). The best fit Gaussian to the data has a width (FWHM
= 92 + 10um).

= . . . 0-4441- 47
dpes = (diff. hmzt)( 5 /) (47)

where A is the wavelength of the light, f is the focal length of the lens, and (diff. limit)
= 1 for a diffraction limited beam. Assuming the beam profile of Figure 15 is diffraction
limited, the spot size on target should be dgy, = 28.7um (from Eq. (47) with D =
8.2mm, A = 1.06pm, f = 500mm). Since the measured spot size on target is actually
dfoeys = 92 + 10um, the input beam is 3.2 + 0.3 times diffraction limited. This number
agrees with the 3.1 times diffraction limit specification for the laser. A diffraction limited

beam is not obtained from the laser due to the diffraction effects present in the beam
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profile as mentioned earlier. The peak intensity on target due to focusing the 200 mJ, 9ns
pulse to a spot size of 92um is 2 x 10'! W/cm?. This intensity is deliberately kept low
to avoid the production of filamentation, stimulated Brillouin scattering (SBS), and
stimulated Raman scattering (SRS) instabilities mentioned in Chapter 1 which could
complicate the measurements of the electron density, sound speed, and radial drift in the
plasma.

The coordinates assigned to the plasma are shown in Figure 11 which is a close
up view of the plasma interaction area. The axial dimension (z) will refer to the direction
parallel to the 1.06pm plasma generating beam and z = 0 at the target surface. The radial
dimension (r) is measured in a plane perpendicular to the z-axis and assuming a
cylindrically symmetric plasma, the z-axis lies along the axis of the cylinder where r =
0. As seen in Figure 11, the diagnostic 266nm beam lies in the radial plane.

The ultraviolet diagnostic beam is obtained by frequency doubling the 532nm light
with an additional KDP ~rvstal, see Figure 9. This produces a maximum energy of 30
mJ in a pulse width (FWHM) of 5ns at 266nm with a pulse-to-pulse energy stability of
+4%. A Pellin-Broca prism is used to separate the 266nm from the 532nm light and the
polarization of the diagnostic 266nm beam (épr) is adjusted perpendicular to the radial
plane containing k. and k... This geometry will optimize the polarization factor |k“Sc
X (k‘Sc X épr) !2 in Eq. (13) to maximize the Thomson scattering signal. An anti-reflection
coated, 300mm focal length lens focuses the diagnostic beam into the plasma to a
calculated spot diameter (FWHM = 20um); The spot size given is calculated by

assuming the diagnostic beam has approximately the same diffraction properties as the
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1.06pxm beam from which it is derived. After interacting with the plasma, the diagnostic
beam passes out of the other side of the chamber where its energy is monitored with a
photodiode connected to a pulse height analyzer. This Giagnostic serves two purposes: it
allows for energy normalization of the data, and it provides a measurement of the plasma
absorption on the diagnostic beam. Both of these measurements will be discussed in more
detail in Chapter 4.

Figure 17 is a ray trace through the collection optics which couple the Thomson
scattered light from the plasma into the spectrometer. The Thomson signal is collected
at 6,,, = 45° with an /12, 250mm focal length, anti-reflection coated lens. The

scattering angle 6, combined with Eq. (11) defines the average wave vector of the

30x30pm
f/12. stop Plasma 150mm glgrg%’;,ﬁg

S/ .
‘ x3 magnification /Lmage J/ A \
\

e /ﬁ\ N 1| x1 Relay
J !
v

Omn Horizontal slit
Target 25“ Target surface 100pm Spectrometer
Chamber - image ertical slit
100pm

Figure 17: Optical schematic of the collection system which couples the Thomson
scattered signal from the plasma into the spectrometer.
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fluctuations that the diagnostic beam scatters from,

0
ky = 4n<i.u{ °b") = 180787cm ! (48)
A 2

or

where A, = 266nm. Scattering from ion-acoustic fluctuations causes only a small
frequency shift in the scattered light, therefore to derive Eq. (48), the scattered (A, and
probe (lpr) wavelengths are assumed equal in Eq. (11). The f-number of the collection
lens defines the range of ion-acoustic wave vectors from which the scattered light is
collected. In this case, the /12 optic collects light scattered from ion-acoustic fluctuations
with a maximum wave vector of kg = 189850 cm! and a minimum wave vector of kg
= 171646 cm™!. This range of wave vectors represents only a +5% fluctuation around
the average and will not seriously effect the measurements of electron density, sound
speed, and radial drift. The sound speed and radial driﬂ measurements could.be affected
if the wave vector distribution t ‘ge enough to obscure the exact bosition of the
peaks in a collective Thomson scatteicd signal. Although the range of wave vectors does
not affect the measurements of the three plasma quantities considered, the collection of
a distribution of wave vectors must be taken intQ account when performing any type of
line width analysis on Thomson spectra. From the 250mm focal length lens, the scattered
light is imaged with magnification three onto a horizontal slit (100um wide). The light
is further relay imaged, with unity magnification, onto the vertical entrance slit (100um
wide) of a spectrometer. The cross-slit arrangement' selects a 30x30um portion of the
plasma from which scattered light is collected with a depth of observation equal to /2

times the diagnostic beam diameter. The spectrometer is a 0.85 meter double



63
monochrometer (SPEX Model 1404) with 1200g/mm gratings blazed at 750nm and the

detection of the 266nm scattered light is done in third order. Time-integrated spectral data
are acquired through a 1024-element single-intensified reticon array (EG&G Model
1420UV) mounted at the exit slit of the monochrometer. The spectral resolution achieved
by the reticon is 0.032 A/pixel.

Stray light at the diagnostic wavelength A, can limit the detectability of the
Thomson scattered signal especially near the target surface where surface scatter can be
enormous. This noise source is reduced in two ways, as seen in Figure 9. First, small
apertures are placed just before and after the target. These allow only the diagnostic beam
to enter the plasma area and reject most of the scattered light generated by the beam
passing through the input and output windows of the vacuum chamber. Second, the
1.06pm beam generating the plasma is chopped at SHz so that odd-numbered spectra
contain only background noise at Aoy This background is subtracted from the even-
numbered spectra leaving only the Thomson signal. Even with these methods, the
accessible region for data acquisition is limited to axial distances = 60um, below which
the scatter from the target surface completely saturates the collection system. The
background subtraction technique outlined here will be discussed in more detail in
Chapter 4.

The intricate timing system needed to coordinate all of the components in this
experimental configuration is shown in Figure 18. The timing pulse that synchronizes the
system components originates from the Stanford Research Systems, Inc. Model SR540

Chopper which is used to chop the 1.06um plasma generating beam at SHz. The chopper
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Figure 18: Timing schematic for the Thomson scattering experimental configuration.
controller provides a 60Hz synchronization signal which is exactly twelve times the
chopper frequency. This signal is reduced to a 10Hz repetition rate by a divide by 6
circuit and then is used to trigger a Stanford Research Systems, Inc. Model DG535
Pulse/Delay generator. The pulse/delay generator provides pulses at the 10Hz repetition
rate to the lamp sync and Q-switch sync inputs of the DCR-3 laser used for the
experiment. For optimum pulse energy from the laser, the lamp sync pulses must arrive
approximately 220us before the Q-switch sync pulse. Prior to arriving at the laser, the
Q-switch sync pulse is sent through a fan out box. The pulses from the fan out box
outputs provide exact synchronization between the laser pulse and the EG&G reticon and

AEORTECH rotary stage controller circuits. When an experiment is not being conducted,
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the laser is shuttered by an enable/inhibit pulse from the rotary stage controller which
unblocks/blocks the Q-switch pulse from reaching the laser. Without a Q-switch sync, the
lamps will continue to fire at 10Hz but the oscillator cavity is kept from lasing. With the
whole system synchronized at 10Hz, the steps necessary to collecting data can now be
discussed. As mentioned previously, stray light is reduced by alternating Thomson and
background shots and then subtracting the background data from the Thomson data which
also contains the background. A data point then consists of two laser firings, one in-
which the choppei is not blocking the plasma generating beam (Thomson shot) and one
in which the chopper is blocking the plasma generating beam (background shot). A series
of data points can then be added together to provide better signal-to-noise in the collected
Thomson signal. The collection of a series of data points begins with initialization of the
rotary stage controller by the IBM AT computer. Next, the pulse height analyzer which
resides in the IBM AT is started in a free running mode. The analyzer monitors the
energy in the diagnostic pulses via a photodiode and will only register data when a pulse
is incident on the photodiode. The reticon controller is then started in its data acquisition
loop. The loop consists of 20 alternating data acquisitions, the odd data sets are
accumulated in one memory location and represent the Thomson signal and the even data
sets are accumulated in another memory location and represent the background signal. At
the beginning of the data acquisition loop, the controller sends a start signal, indicated
by Go! in Figure 18, to the rotary stage controller. The rotary stage controller in turn
enables the Q-switch to fire in the laser and simultaneously begins turning the target to

a new surface for each laser shot. At the end of the data acquisition sequence, the reticon
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controller sends a stop signal to the rotary stage controller. The rotary controller then
proceeds to disable the Q-switch in the laser and stops the target from rotating. At this
point, the spectral data from the Thomson and background shots resides in the reticon
controller memory and the pulse energies from the diagnostic beam are recorded in the
pulse height analyzer. The data reduction techniques used to analyze this raw data will
be discussed in detail in Chapter 4.

Two key elements not mentioned to this point have an impact on the experimental
operation, rough alignment of the diagnostic beam and target debris. First, a rough
alignment of the diagnostic 266nm beam with the 1.06pm plasma generating beam is
facilitated by the use of the CCD camera (COHU Model 4815-2000) shown in Figure 10.
This camera monitors the plasma interaction region of the target surface through a x6
zoom lens coupled with a x3 telescope which provides an overall magnification of 18.
After generating a blasma from a fresh surface on the target, the diagnostic beam is
steered by transverse movement of the 300mm f.l. focusing lens, Figure 9, until it
scatters from the crater in the target surface produced from the 1.06pm beam. The
scattered light from the crater is monitored by the CCD camera and this rough alignment
places the diagnostic beam radially at a distance no further away from the z-axis of the
plasma than the FWHM spot size of the 1.06pm heater beam = 100um. The second
important element not mentioned to this point that affects the operation of the experiment
is target debris. Since the experiment runs at a 10Hz repetition rate and a fair amount of
energy is present in the plasma generating pulse, = 200 mJ, a large amount of aluminum

is stripped from the target surface over a short period of time. The ablated aluminum
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from the target acts not unlike a sputtering source in an optical coater and begins
depositing on the windows of the chamber. The windows, if left undisturbed, will
eventually become opaque thus blocking the diagnostic and plasma generating beams from
entering the chamber as well as inhibiting the scattered light from exiting the chamber.
Since the chamber is continuously being evacuated by a turbo pump, a steady flow of
helium can be added to the chamber in front of all the windows. The helium is allowed
to raise the base pressure of the chamber from its lowest range of =~ 1077 torr to =~ 1073
torr. At room temperature, the helium background has a number density of ny, = 3 x
1014 cm3 and represents an insignificant fraction of the number densities of aluminum
generated in the laser plasma which are greater than 10'8 cm™. Since the concentration
of helium is small, it will not affect the plasma generation. On the other hand, the helium
background does affect the mean free path of aluminum once it disperses from the plasma
generating area. Thé mean free path, 1,,, of an aluminum atom in a binary mixture of

helium and aluminum is given by,132

4

2 2
dnoyn, + {0y + Op)ng,

L, = (49)

where o is the diameter of the particle and n is the number density. Assuming the helium
has much higher number density than the aluminum far from the plasma source and the
diameter of aluminum and helium atoms is the same, =~ 3 Angstroms, n,, can be set
equal to zero in Eq. (49) and ¢,; = oy, = 3 Angstroms. The mean free path for
aluminum with the background density of helium at nyy, = 3 x 104 cm™ from Eq. (49)

is then 1,; = 1.2cm. Since the distance from the plasma to the windows of the chamber
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is 30cm, the aluminum atoms will suffer approximately 25 collisions before reaching the
windows. In spite of helium presence, the windows of the chamber did have to be
replaced a couple of times over the duration of the experiment.

This chapter has described in detail the collective Thomson scattering experimental
configuration used for obtaining two-dimensional electron density, sound speed, and
radial drift profiles from a collisional laser plasma. Some effort has been made to
assemble a system which will repetitively generate a plasma which is reproducible in the
three quantities measured. The reproducibility allows a two-dimensional image of the
plasma to be generated from a collection of single point measurements from different
plasma shots. The high repetition rate at which the plasma is formed allows noise
reduction techniques to be used on the data. Other considerations such as stray light
reduction, system timing, rough diagnostic beam alignment, and target debris have also
been discussed. The actual-degree of reproducibility of the three quantities, electron

density, sound speed, and radial drift in the plasma will be analyzed in the next chapter.



69

Chapter IV: Data acquisition and analysis

In this chapter, collective Thomson scattering from ion-acoustic waves will be
used as a diagnostic to obtain two-dimensional electron density, sound speed, and radial
drift profiles of a collisional laser plasma. The data presented in this chapter represents
the first time detailed measurements of a collisional, laser-generated plasma have been
made using 266nm collective Thomson scattering. The Thomson scattering measurements
will be conducted on a point to point basis, and data from different plasma shots will be
collected together to form the overall two-dimensional image of the three plasma
quantities listed above. The plasma generated for these experiments must be reproducible
in order for the data to be meaningful. The techniques used to generate a reproducible
plasma have been outlined in Chapter 3, and this chapter will demonstrate that the plasma
is in fact reproduciﬁle in electron density, sound speed, and radial drift. Along with
plasma reproducibility, the diagnostic beam and the field of view of the collection optics
must be aligned absolutely so that the exact position is known in the plasma for each data
point. The techniques for positioning the diagnostic system absolutely at a given point are
different for the axial aﬁd radial directions in the plasma and will be discussed. After the
exact position in the plasina has been established, the process of data collection and
analysis can begin. The collection of Thomson spectra and the subsequent analysis needed
to measure the sound speed and radial drift is simple and straight forward, but in order
to make the electron density measurements, relative energy calibration of the Thomson

scattering collection system and a much more involved analysis are required. The process

| L
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for energy calibrating the system using Rayleigh scattering will be discussed along with
the additional data analysis necessary for accurate electron density measurements from
collective Thomson scattering. The problems of background light from the plasma,
inverse bremsstrahlung and refractive turning of the diagnostic beam mentioned in
Chapter 1 will be considered as they affect the acquisition of the Thomson scattered
signal. The two-dimensional data obtained from the collisional plasma in these
experiments will be compared to the same quantities predicted by a LASNEX simulation
for the plasma. Detailed comparisons between experiments and computer simulations of
this type are important for benchmarking the simulations for future calculations. In
addition to LASNEX, several simple but physically based models will be presented to
demonstrate the self-consistency of the electron density, sound speed, cnd radial drift
measurements. The data from these experiments will also show inconsistent peak height
asymmetries which to first ordér cannot be accounted for by traditional heat transport
alone. New developments in Thomson scattering theory are needed to investigate the peak
height asymmetries and their relation to heat transport. These new developments will be
presented in the next chapter.

As outlined in Chapter 3, collective Thomson spectra are accumulated by
averaging two sets of ten shots for each point in the plasma. One set of ten shots is the
Thomson signal plus the background noise and the other set is just the background noise.
The accumulation of data increases the signal-to-noise ratio over that of single-shot
acquisition by approximately the square root of the number of shots accumulated. While

at high densities, signal-to-noise is not an issue, averaging allows for measurements at
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Figure 19: Raw data of collective Thomson scattering from a single point in the
plasma which entails signal +background and background data sets.

much lower densities than single-shot operation. Figure 19 shows actual Thomson
scattered data collected from one point in the aluminum plasma. The background signal
is due to scattered light from the target surface that enters the collection optics and lies
at the laser frequency which is at O on the x-axis of the graph. As seen in Figure 19, the
Thomson plus background signal not only contains background scatter from the diagnostic
beam but also a baseline level that is due to bremsstrahlung emission from the plasma.
The bremsstrahlung background is not entirely flat and the noise associated with the
background affects the lowest Thomson signal level that is detectable. Although in

ger-ral, background noise from plasma emission also contains resonant lines from bound-
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Figure 20: Collective Thomson scattered signal obtained after background subtraction.

bound transitions which can interfere with the signal, the aluminum plasma has no such
lines in the portion of the spectrum around 266nm. The reason for collecting the
background target surface scatter separately from the Thomson plus background signal
is evident by Figure 19. The collective Thomson signal should have two peaks one of
which is obscured by the target surface scatter in the raw data. The target surface scatter
can be eliminated by subtracting a fraction of the background signal from the Thomson
plus background signal. The resulting spectra is shown in Figure 20. The two peaks in
the collective Thomson signal are now both visible with the bremsstrahlung baseline still
present. Since the amount of scatter from the target surface is influenced by the presence

of the plasma, the target surface scattering level in the Thomson plus background signal
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is different than the level collected in just the background signal with no plasma present.
This is the reason why only a fraction of the background signal need be subtracted to
eliminate the target scatter from the collective Thomson spectrum. This fraction typically
varies from 40-100% depending on the plasma shot and the exact amount subtracted
directly affects the valley depth between the peaks in the Thomson spectra. Since the
electron density is related to the total number of counts under the Thomson peaks, the
subjective background subtraction introduces some human error into the electron density
measurements. Fortunately the valley depth has a reasonable range of locations: low
enough to eliminate the target scattered peak from the Thomson spectrum but no lower
than the baseline of the Thomson spectrum. Since the valley represents a narrow section
of the Thomson spectrum in these experiments, the reasonable range of valley depths does
not significantly effect the number of counts under the Thomson peaks or the electron
density measurements. Unfortunately even with background subtraction, the scatter from
the target surface becomes too large at axial distances < 60um to back out a discernable
Thomson scattered signal. It should also be noted that at axial distances > 100um,
background subtraction is not typically needed since the target surface scatter at these
axial distances is much smaller than the Thomson signal.

Of the three quantities, electron density, sound speed, and radial drift, the
measurement of electron density from collective Thomson scattering is the most involved
part of the data acquisition. The electron density is measured by utilizing Eq. (13) which
relates the electron density to the Thomson scattered power. The time integral of the

scattered power, the scattered energy, is monitored by the reticon detector on the back
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end of the collection system used in these experiments, see Chapter 3. The reticon
detector records the time integrated ion-acoustic Thomson spectrum and the sum of the
counts under the ion-acoustic spectrum can be related to the total scattered energy when
the collection system is properly calibrated. The total scattered energy collected (ESCT)
that comprises the ion-acoustic part of the Thomson spectrum can be found by integrating

Eq. (13) over low frequencies and over all time,

(50)

- P _ v\ Sk,
bsf(kx)dﬂ = f J !; kax,w“)dt]dm“ dQ = E,e Aa,n’(z) 12<:)ﬂ dQ

smallw
where E is the energy in the diagnostic pulse, the polarization factor ]k‘Sc X (k‘Sc X
&,)| has been set equal to 1 because &, L K 4 k;, is the ion-acoustic or fluctuation
wave vector from Eq. (48), and the provision for a time-dependent electron density
[ne*(t)] and total ion cross section [STi*(k,-a,t)] is included through Badj' The quantities
n, and Si(k;,) represent the ma);imum values that [n,"(t)] and [Syi"(k;,,t)] obtain,

respectively, and 8,4: < 1 contains the temporal integration, i.e.,

adj =

fp On, (OSy (k, 1)t (51)

By =

prneST(kia)
If n, (t) and ST (k‘a,t) are stationary over the width of the diagnostic pulse, Badj
The B,4; parameter is necessary for analysis of the data for these experiments because of
the length of the diagnostic pulse compared to the length of the plasma generating pulse.
The 266nm diagnostic pulse length is Sns (FWHM) and the pulse length of the 1.06um

beam generating the plasma is 9ns (FWHM). Therefore with the peak of the diagnostic
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Figure 21: Time dependent electron density at r=0 and z=65um as computed by
LASNEX. The 5ns (FWHM) Gaussian diagnostic pulse is included for reference.

and plasma generating pulses overlapped in time, a fraction of the time development of
the plasma is probed around the peak of the plasma generating pulse, and the plasma
quantities being measured can by no means be considered constant over the Sns diagnostic
pulse length. The only way to approximate the value of B,4; for the laser plasma being
studied is to assume the temporal development of the plasma quantities: electron density
(n,"(t)), electron temperature (T,"(t)), and average ionization state (Z*(t)) predicted by
LASNEX are generally correct. Figure 21, Figure 22, and Figure 23 show the temporal
development of the electron density, electron temperature, and average ionization state

predicted by LASNEX as a function of time at axial distance z = 65um and radial
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Figure 22: Time dependent electron temperature at r=0 and z=65um as computed by
LASNEX. The Sns (FWHM) Gaussian diagnostic pulse is included for reference.

distance r = Oum. Since the LASNEX calculation is only carried out for times less than
Ons, the temporal development of the quantities for times greater than 0 in the figures
have been approximated to be syinmetric with the values at times less than 0. The peak
of the diagnostic and plasma generating pulses lie at time = Ons, and the 5ns (FWHM)
Gaussian diagnostic pulse, Ppr(t) = exp(—(t/3)2)/3\/ w, is shown in the figures for
reference. As shown by Figure 21, Figure 22, and Figure 23, the plasma quantities are
not quite constant over the duration of the diagnostic pulse. The time dependent electron
Debye length (Apg = (kpT,/47m,€e2)!/2) can be calculated from the electron density and

temperature data which in turn can be used to calculate the time dependent o (t) with
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Figure 23: Time dependent average ionization state at r=0 and z=65um as computed
by LASNEX. The 5ns (FWHM) Gaussian diagnostic pulse is included for reference.

o"(t) = 1/k,Apg(t). The time dependent total ion cross section Sti"(k;,,t) is then found
from Figure 8 using the "(t) and Z*(t) data under the assumption that the electron and
ion temperatures in this collisional aluminum plasma are about the same, ZT /T, =~ Z.
Since the plasma is collisional and the electron-ion energy equilibration time is less than
the plasma generating beam pulse length, a result that will be calculated from the
experimental data, the approximation that the electron and ion temperatures are about the
same is justified. With n,"(t), Sp'"(k;,,t), and Pp(t), B,4; can be calculated from Eg.
(51). Figure 24 displays the results for Badj at radial position r=0 and axial positions

between 65um and 235um as determined by LASNEX. The average Badj over the range
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Figure 24: The parameter 8,4; at r=0 as a function of the axial distance z.

of axial positions is =.9 and these calculations show that the Thomson scattering
efficiency into the ion-acoustic feature will be reduced by 10% from. the efficiency that
would be obtained if the quantities n,"(t) and Sti*(k;,,t) where constant in time. The
effects of non-stationary plasma conditions on the Thomson scattering efficiency could
be eliminated entirely if a shorter (= 1ns) diagnostic pulse where used, but unfortunately
this pulse duration cannot be achieved with the current experimental configuration.
The values of Badj, STi(k.ia), and e™® are needed in Eq. (50) to determine the
electron density from the Thomson scattered power. As in the previous section, STi(kia)
can be determined from Figure 8 with knowledge of « and the average ionization state

Z again with the assumption that the electron and ion temperatures are about equal. As
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will be shown later, the sound speed data from the experiment indicates that the range
of values for « and Z in the region of interest in the plasmais3 < o« < 15and 5 < Z
< 8, yielding STi(kia) = 0.80 + 0.06 from Figure 8. The factor &2 is a measure of how
much of the diagnostic beam is absorbed by the plasma through inverse bremsstrahlung.
The absorption is monitored by the photodiode/pulse height analyzer combination
described in Chapter 3. In performing the experiments, there is no detectable absorption
due to the plasma in the accessible region (axial distances > 60um) in excess of the
inherent +4% amplitude noise on the 266nm diagnostic beam. Therefore, the absorption
factor is given by e = 0.96 + 0.04.

As mentioned earlier, the number of counts monitored by the reticon array can be
related to the Thomson scattered energy EscT with a properly calibrated collection system.
This calibration is obtained through Rayleigh scattering. Once the system has been aligned
to maximize the Thomson signal, the plasma is turned off by blocking the 1.06xm
generating beam. The chamber is then filled with a gas and Rayleigh scattering is
performed. The gas passes through a S5um filter before entering the chamber. This
removes the dust particles that can scatter large amounts of light, especially in the
forward direction, thereby producing spurious results!33. In the experimental geometry
used for these experiments, the Rayleigh scattered energy (ESCR) is given by a formula

similar to Eq. (50) for the Thomson scattered energy (ESCT),

S

where vy, is the molecular polarizability of the gas, A is the wavelength of the

161r4yiw,
}‘4

EfdQ = Ep,[
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Figure 25: Pulse height analyzer output of 266nm diagnostic beam energy from the
Rayleigh calibration. The RMS pulse-to-pulse amplitude fluctuation of the diagnostic
beam energy is +4%.

diagnostic beam, kg is the Boltzmann constant, and P and T are the pressure and
temperature of the gas, respectively. Taking the ratio of Eq. (50) to Eq. (52) and

rearranging, the electron density becomes,

4,2 T,a
n = 167 Y mot ( P ) ESce (53)
Mo Sk ) NeT | ESB,

The Thomson and Rayleigh scattered signals can be normalized (i.e. E¢/E,. - <Ey >)
by monitoring the diagnostic power E, with the photodiode/pulse height analyzer

combination. This normalization provides a relative calibration between the counts
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Figure 26: Calibration curve for the normalized counts <E_R> from Rayleigh
scattering in oxygen. The best fit (line) to the data (circles) has a slope of m = 3.96
x 10 Torrl.

recorded by the reticon array and the scattered energy. The absolute calibration of the
collection system involves performing Rayleigh scattering at several different gas
pressures. Extensive signal averaging is used to reduce the effects of noise sources such
as dust particles. At each point, the scatter from 2500 laser shots is integrated by the
reticon array and normalized to the recorded diagnostic energy on the photodiode/pulse
height analyzer. The output from the pulse height analyzer from one of the data points
is shown in Figure 25. The noise on the diagnostic beam is found from the RMS
fluctuation of the signal and as stated before is +4%. The normalized signal collected by

the reticon array is plotted versus gas pressure and the linearity from Eq. (52) is
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confirmed and shown in Figure 26 for scattering from oxygen (O,) gas at room
temperature T = 293 K. Deviations in the linearity at higher gas pressures are indicative
of gas breakdown and the pressure must be kept below this breakdown threshold in order
to produce an accurate calibration. An appropriate choice of gas must be made on the
basis of the diagnostic wavelength. The intensities at which the Rayleigh scattering is
performed are typically > 10!0 W/cm2, therefore, one- and two-photon resonant
transitions in the gas at the probe wavelength should be avoided. Such resonances can
unpredictably change the polarizability of the gas. For example, the Lyman-Birge-
Hopfield lines!3* of N, are two-photon allowed in the vicinity of 266nm. On this
basis, O, is chosen for calibration and its molecular polarizability is y,,,; = 1.76 x 1024
cm? at the diagnostic wavelength A = 266nm!3%. From the Rayleigh scattering results
in Figure 26, the normalized Rayleigh scattered energy is related to the pressure of the
gas P by a slope m = 3.96 x 10 Torr! (<ESCR> = mP). This relation with the

normalized Thomson scattered energy < ESCT> can be substituted into Eq. (53) to yield,

16m%y> | (<Esf>eA
n = ,
A0, Sylke,) \ KTy

where the final equality is found by substitution of the values for the quantities given

] = 1.46+0.29 x 10¥<E> cm ™ (54)

earlier and the error associated with the electron density measurements is +20%.

The sound speed and radial drift measurements of the plasma are easier to obtain
than the electron density measurements because they are evaluated from the peak positions
in the collective Thomson spectra. The sound speed c, is related to the peak separation

A ® peqi in the collective Thomson scattered signal through the dispersion relation for ion-
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acoustic waves,

= 2(‘)“ = 2kldcs (55)

where A = 266nm is the diagnostic wavelength, c is the speed of light, and k;, = 180787
cm1 is the ion-acoustic wave vector. Since the resolution at the reticon detector is 0.032
angstroms/pixel, Eq. (55) can be rewritten for the sound speed in terms of the separation
of the peaks in pixels on the reticon array,

¢, = 2.36 x 10°AR ., %’ﬁ (56)

The sound speed is given by Eq. (45) for this collisional plasma, the average ionization
state/electron temperature product ((Z+5/3)T,), which is basically the sound speed
squared, can also be written in terms of the peak separation in pixels. Since 3 < o <
15 for this experiment, the o/(a+ 1) ratio in Eq. (45) can been set equal to 1. With the
mass of the aluminum ion given as m; = 4.51 x 1023 g and the electron and ion
temperatures assumed equal, Eq. (56) and Eq. (45) are combined to yield the (Z+5/3)T,

product,

(z ; %)T - 158 A%, eV (57)

pixels

The sound speed measurements from the experiment will be displayed in terms of the
(Z+5/3)T, product from this equation instead of just ¢, from Eq. (56). The error
associated with the measurements is given by a plus or minus pixel error reading of the

peak separation on the reticon array, AA + 1. The radial drift velocity is measured

pixel —
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by the Doppler shift in the collective Thomson spectrum. The shift is measured by |
finding the position exactly halfway between the peaks in the spectrum and comparing
that position to the position of the diagnostic wavelength Apr on the reticon array. The
shift AA ;¢ from A, can be related to the radial drift velocity U_,4. Since the Thomson
scattering process takes place solely in the radial plane, see Chapter 3, the ion-acoustic
wave vector k;, lies in the radial plane, see Eq. (11), and the frequency shift term

(kg*Ugeiee) in the Thomson scattered frequency given by Eq. (12) can be written as,

Aoy, = —— = k0, = kU, cos® (38)

where @ is the angle between the ion-acoustic wave vector k;, and the radial drift velocity
U4 Eq. (58) can be rearranged for the radial drift velocity in terms of the Thomson

spectral shift in pixels on the reticon array,

472 x 10°AL, (pixels)  cm (59)

rad cos® s

The error in the radial drift velocity measurements results from a + 1 pixel uncertainty
in the spectral shift when read from the reticon array. The radial drift velocities will be
normalized to the sound speed (U, 4/c,) for presentation of the data. This allows for easy
location of the radial sonic point in the plasma where U, 4/c, = 1. The unresolved factor
in Eq. (59) is the cosine of the angle ® between the ion-acoustic wave vector and the
radial drift which can be determined by absolute alignment of the diagnostic beam in the
plasma.

Absolute distances in the plasma are measured differently for the axial and radial
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Figure 27: Radial x-y plane at an arbitrary z position in the plasma. Assuming a

cylindrically symmetric plasma, an on-axis diagnostic beam will produce a symmetric

Doppler shift in the Thomson signal about x=0.
directions. In the axial direction, the target surface is used as a reference point. With only
the diagnostic beam grazing the target surface, the horizontal slit in the collection system,
see Figure 17, is moved to maximize the scattered signal at JLpr. A spatially sharp
maximum occurs when the slit is aligned with the image of the target surface and the
accuracy of the position is given by one-half the effective slit width (i.e. +15pm). The
slit is then moved to the desired axial position and the diagnostic beam is aligned axially
with the slit by maximizing the detected Thomson signal. Measurements in the radial

direction are performed by translating the image of the plasma across the vertical slit of

the spectrometer, see Figure 17, which selects a different portion of the diagnostic beam
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to scatter from. The position of the diagnostic beam in the radial plane can be found
through the use of the radial drift velocity measurements. Figure 27 depicts the radial x-y
plane (r = (x2 + y2)12) at an arbitrary z position in the plasma. Values of x>0 refer
to the front of the plasma where the diagnostic beam enters and values of x <O refer to
the back of the plasma. As seen in the figure, the pair of ion-acoustic wave vectors
integrated by the 45 degree scattering geometry are oriented at 67.5 degrees with respect
to the x-axis. This orientation is determined by the phasematching condition for Thomson
scattering in Eq. (11). The ion-acoustic wave with wave vector k;, produces the blue
shifted peak in the Thomson spectrum and the ion-acoustic wave with wave vector -k;,
produces a red shift. Assuming the plasma is cylindrically symmetric, the radial drift
velocity is zero at the center of the plasma (r=0) and increases uniformly in all directions
away from the center of the plasma. If the diagnostic beam lies on the x-axis, then the
magnitude of cos® m Eq. (59) is cos(67.5) for any position along the diagnosti;: beam
and changes sign from plus to minus when crossing from x>0 to x <0. In this case, the
Doppler shift in the Thomson spectrum will be symmetric when scattering is monitored
from a portion of the diagnostic beam to either side of x=0. In other words, a red shift
will occur towards the back of the plasma for x=-x, an equivalent blue shift for x=x,
and no shift will occur for x=0 as depicted by the Thomson spectra shown in Figure 27.
If the probe is off axis, the magnitude of cos® is not constant along the probe path and
its sign will be predominantly plus or minus depending on which side of the x-axis the
probe is on. For example, the off-axis probe in Figure 27 will produce a red Doppler

shift for most of the probe path. The symmetric Doppler shift is used to position the
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Figure 28: Plasma reproducibility. The dots (ee+) represent eight independent
Thomson spectra collected at the same point in the plasma. The solid line (—) is the
average of the independent spectra.

diagnostic beam along the x-axis. When the diagnostic beam is coincident with the X-axis,
the factor cos® is a constant in Eq. (59) and the radial drift velocity can be meésured
directly from the Doppler shift in the spectrum. The z-axis reference is found, with an
accuracy of +15um, when no Doppler shift due to the drift velocity occurs. The
existence of a symmetry in the shift proves the plasma is cylindrically symmetric in its
radial expansion velocity.

The laser produced plasma generated in this experiment must be reproducible in
the context of the three quantities being measured: electron density, sound speed, and

radial drift. The reproducibility guarantees that pointwise measurements from different
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plasma shots are correlated. Figure 28 shows the collective Thomson spectrum from an
arbitrary point in plasma for eight independent data sets from different plasma shots. The
data is given by the dots and the solid line is the average of the eight sets. The absolute
fluctuation of the integral of the normalized counts under the spectra (electron density)
around the eight set average is +7%. Therefore, the electron density is reproducible from
plasma shot to plasma shot. The sound speed which is proportional to the separation of
the peaks is ccnstant from shot-to-shot within the +1 pixel reading error of the peak
separation. The radial drift which is proportional to the Doppler shift of the spectrum
from the diagnostic wavelength Ape is also constant from shot-to-shot within the +1 pixel
reading error. In this case, the Doppler shift is approximately zero because the diagnostic
is aligned with the z-axis of the plasma. These results experimentally verify that the
plasma is reproducible on average in the three measured quantities.

The diagnostic beam must also be nonintrusive in order for the data to be
meaningful. In other words, inverse bremsstrahlung absorption of the diagnostic beam
must be small to avoid local heating in the plasma which would affect the sound speed
measurements. The photodiode/pulse height analyzer detection system already indicates
that the absorption of the diagnostic beam due to the plasma is small, less than =4 %, in
the region of interest. The small absorption is corroborated by the results of the
measurement conducted in Figure 29. The measurement involved lowering the diagnostic
(probé) intensity by a factor of three while monitoring the peak separation (sound speed)
from the Thomson spectra at the same point in the plasma. Since the sound speed does

not vary over the full range of probe intensities, the diagnostic is assured to be
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Figure 29: Thomson spectra taken at the same point in the plasma for different
fliagnc?sﬁc intensities. The sound speed, peak separation, is independent of diagnostic
intensity.

nonintrusive within the measurement errors of the experiment.

The results from the collective Thomson scattering measurements of the laser
produced plasma are shown in Figure 30, Figure 31, and Figure 32. The quantities:
normalized electron density (n,/n;) where n, = 1 x 102! cm3 is the critical density of
the 1.06um plasma generating beam, sound speed squared cs2 = (Z+5/3)T, (eV), and
normalized radial drift velocity (U ,4/c,) are measured in the x-z plane in the plasma. The
graphs are a result of taking a linear interpolation between data points on a 6x9 grid, 6

axial points and 9 radial points. Since error bars on the data cannot be displayed in this

fashion, the graphs are meant to provide only a global view of the plasma quantities.



90

250 T T A Y T T T T T T T T T T T T T T T
TT—— 0.02 ]
R 200 \%\v//ﬂiﬁ
5 i 0.04 ]
- D
o S .
~ 05
o100 T ]
b — 0.06 ]
L'\\ 0.07 1

‘ i 0.08

50 " " i " J N L n i n 1 1 1 1 1 M n L

-100 -50 0 50 100

Radial distance um

- Figure 30: Contour plot of the experimentally measured normalized electron density
(n./n) from collective Thomson scattering.

Radial distances > 100um are not included to limit the number of grid points, and
therefore the amount of data to a reasonable level. A scan at z = 165um and r < 350um
is taken for comparison with LASNEX for r > 100xm and will be presented shortly.
Before a comparison is made between the data and LASNEX, some insight can
be gained by applying simple physical modeling to the two-dimensional data. First, the
electron density contours of Figure 30 are constant in the radial dimension. This
dependence is expected because the measurements are made only from the central portion
of the plasma to just outside of the FWHM = 100um plasma generating beam diameter

and the spherical nature of the plasma expansion will only become apparent at larger
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Figure 31: Contour plot of the experimentally measured (Z +5/3)T,, (eV) product from
collective Thomson scattering. ~

radial distances.

Figure 31 is the contour plot of the product of the two-dimensional average
ionization state (Z) and electron temperature (T,). The average ionization is a function
of the electron temperature and by applying the appropriate equilibrium model, the two
quantities Z and T, can be independently approximated from the data. Assuming the
plasma has reached a steady ionization state by the peak of the plasma generating pulse,
one of three equilibrium models may be applied: LTE equilibrium model, Coronal
equilibrium model, or lonization balance model. The time 7, necessary to reach steady

state for an average ionization Z can be approximated by!36,
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Figure 32: Contour plot of the experimentally measured normalized radial drift
velocity (U,,4/cy) from collective Thomson scattering. The circles are the sonic surface
position predicted by modeling.

z

1

n (60)
Te n, ,z; C:oniu( -1 T)

where Cio0ize(Z, T ) is the electron temperature dependent ionization coefficient for a ion

of charge Z in its ground state. The ionization coefficient is given approximately by (Ref.

136),
-6 i Xz
9x10 Ez (Te / XZ) T 3. -1 (61)

C “””(Z,Te) = exp ¢ cms
n
z (488 + (T, /] X2))

where the electron temperature and ionization energy of an ion of charge Z are in (eV)
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Figure 33: Approximate time 7, necessary to reach a given ionization state Z in a
plasma with T, = 40 eV and a range of electron densities (101%-102° cm3).

and £ is the number of electrons in the outer most shell corresponding to a charge state
Z. For the aluminum plasma studied in this experiment, Eq. (60) and Eq. (61) are used
to find the ionization time required to reach a given charge state for an approximate
plasma electron temperature of 40 eV. Figure 33 shows the results for the range of
electron densities (10!%-1029 cm™) measured from the contours in Figure 30 for this
experiment. Because of the density dependence in Eq. (60), a given charge state at the
highest electron density 10%° cm™ will arrive at steady state faster than the lowest
electron density 1017 cm™3 as seen in the figure. The charge states (Z < 6) are reached

in less time than the time scale of the plasma generating pulse (9ns) are most likely to be
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Figure 34: Electron densities required as a function of electron temperature for an
aluminum species to be in LTE. An aluminum species is in LTE when the density lies
above the line for that species.

in steady state at the peak of the pulse, while the highest charge states (Z=7,8) generated
in this plasma may not be in steady state. However, the plasma charge states are
approximately in steady state. The three equilibrium models used to relate the average
ionization state to the electron temperature are applicable under different plasma
conditions. LTE or local thermodynamic equilibrium!37 applies to high density
plasmas in which the collisional excitation rates of energy levels in a given ion are much
faster than the deexcitation rates due to spontaneous emission of a photon. Under these
conditions the excited state levels of an ion are populated according to a Boltzmann

distribution. The order of magnitude criteria for the plasma electron density in which an
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Figure 35: The temperature dependent average ionization state for an aluminum
plasma with n, = 10!° cm™ as predicted by the three models 1) LTE, 2) NLTE
(ionization balance), and 3) coronal.

ion can be in LTE is given by (Ref. 137),

n, = 134x104T,"(AE, ) cm™ (62)
where the electron temperature T, and energy gap AE,  are in (eV). The energy gap
AE_, for an ion is given by the energy difference between the ground state (shell=n) and
lowest excited state for which an electron lies in (shell=n+1). Using the energy levels
for aluminum ions!38, the criteria for an ion of charge state Z to be in LTE can be
calculated from Eq. (62). Figure 34 shows the results of the calculation for species Al

I - Al IX along with the approximate plasma conditions for this experiment. As seen by
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the figure, neutral through doubly ionized aluminum ions (Al I - Al III) are definitely in
LTE for the laser plasma, but species Al IV and higher are only approximately in LTE.
The coronal mode!!3° holds in the opposite limit of LTE in low density plasmas where
radiative deexcitation rates are much larger than collisional excitation rates. The ions the
coronal model are all in their grounci state and the average ionization state is

approximated by, 140

T 2
e
Zyye = 2 T (63)
1 + (———) T‘
A

where the electron temperature in is (keV) and Z, is the atomic number. Since the
plasma for this experiment is almost in LTE, the coronal equilibrium model will not
apply. When a plasma lies between the LTE and coronal electron density limits, an
intermediate model must be applied and the ionization balance model!4! can be used
for this purpose. The ionization balance model includes all of the appropriate
excitation/ionization and deexcitation/recombination processes for the ions without making
approximations about their relative magnitudes as is done with the LTE and coronal
models. The average ionization state predicted by all three models for the aluminum
plasma in this experiment as a function of electron temperature are shown in Figure 35
for a electron density of n, = 1 x 10!® cm™. The LTE and ionization balance model,
NLTE in the figure, calculations where graciously done by Y.T. Lee, author of Ref. 141,
and the coronal model results are given by Eq. (63). As noted by the figure, the

ionization balance (NLTE) and LTE results are identical for electron temperatures in
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which the average ionization less than 3. This result is expected from the calculations in
Figure 34 which show the low lying charge states to be in LTE for the aluminum plasma.
For higher electron temperatures the LTE model over estimates the average ionization
state from the ionization balance model because ions of higher charge states will not be
completely in LTE. The coronal model on the other hand under estimates the ionization
state in the aluminum plasma for almost the entire range of electron temperatures. From
the arguments above, the ionization balance model seems adequate to relate the average
ionization state of the aluminum plasma in this experiment to the electron temperature.
Also, the ionization balance model calculations for an electron density of 1 x 1020 cm™
do not differ appreciably from those values predicted by the model at n, = 1 x 10! cm
in Figure 35. Therefore utilizing the ionization balance model results of Figure 35, the
two-dimensional (Z+5/3)T, data from Figure 31 yields a maximum electron temperature
of 45 eV with average ionization of 8.2 for a product (Z+5/3)T, = 440, and a minimum
electron temperature of 25 eV with average ionization of 6.2 for a product (Z+5/3)T,
= 200 in the region covered by the two-dimensional contour plots. So as promised much
earlier in this chapter, this analysis has shown the average ionization state Z does lie in
the range S < Z < 8, and with the two-dimensional electron density data from
Figure 30, the approximate range for ¢ is 3 < « < 15.

Another physical model can be used to approximate the radial sonic point in the
plasma, (U_4/c, = 1). These results can then be compared to the actual position of the
sonic point measured by the experiment. The electron and ion steady state equations of

motion in the radial direction along the x-axis are given by (Ref. 10),
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o _ a3 T,
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where the e and i subscripts refer to the electron and ion quantities, respectively, E is the
electric field, P is the pressure, v is the velocity, m is the mass, and the last term in each
equation is the thermal force in which the coefficient A is a slowly varying function of
Z with A = 1 (Ref. 10). By eliminating the electric field between the two equations, the

derivative of the ion velocity can be written in terms of the electron and ion pressures,

m.avf_ 19P, zoP, 1P +P)
2 ox n.ox n, ox n oOx

] e i

(65)

where the last equality is obtained by assuming quasineutrality (n, = Zn;). The pressure
is related to the density and temperature through the perfect gas law (P=nT), therefore
(P./P;) = (n,T,/n;T;) = Z when the electron and ion temperatures are approximately
equal. With this approximation and the assumption that the electron density is a constant
in the radial direction, a fact corroborated by the contour plot of Figure 30, Eq. (65) can

be rewritten to yield,

mwv AT+ YZ) (66)
2 ox ox

This equation can be integrated from the center of the plasma (x=0) where v; = 0 to

(x=x,) where the ion radial drift velocity equals the sound speed (v; = c,). The integral
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of the term on the right side of the equation cannot be done in general and must be
approximated by letting the ionization term equal its average of the interval 0 < x < x,
i.e. Z = <Z>,

x, avz
D[ i = el
2) & 2 67)

YT + 1/2)
= - f 23 = )dx = <Z[Tx )1 + VYZx)) - (TO + YZO)]

x=0

With the sound speed given by cs2 =~ (Z+5/3)T/m; for equal electron and ion

temperatures Eq. (67) can be rearranged and written in its final form,

T,(x) +<Z>(1 + Y2Z(x))| = <Z>(1 + YZO)T,©0) 68

[Z(xo) * 5/3)
2

This equation relates the electron temperature and ionization state at the radial sonic point
to the same two quantities at the center of the plasma. By solving Eq. (68) with the
(Z+5/3)T, data of Figure 31 and the ionization balance model, the radial position of the
sonic point can be predicted and compared to the sonic point (U, 4/c; = 1) measured in
the actual radial drift velocity data of Figure 32. The circles in Figure 32 represent the
sonic point positions as calculated by Eq. (68). For positive radial positions, the model
and the experiment actually agree within the error bars for the data which cannot be
displayed on the contour plot. For negative radial positions, the sonic surface lies mostly
outside of the experimental region. The predicted points that do fall within r > -100um
still agree fairly well with the data. As a final note, for large and constant values of Z

in Eq. (68), the electron temperature at the sonic surface is simply related to the electron
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Figure 36: Measured electron density (*) on axis as a functicn of axial distance.
Results from a LASNEX simulation (—) and the analytical spherical model (- - -) are
included for comparison.

temperature at the center of the plasma by, T(x,)=(2/3)T.(0) [J.S. De Groot].

Now that the two-dimensional data has been shown to be consistent with some
physical models, it can be compared with LASNEX. LASNEX is a two-dimensional,
Lagrangian, hydrodynamic simulation performed in a cylindrical r-z geometry. The time
step is on the order of 1 psec. The spatial extent of the plasma is divided into 2000
Lagrangian zones that represent cylindrical macroparticles that move, expand, compress,
and change shape according to pressure gradients. The laser that produces the plasma is
modeled by several hundred rays that are traced from the (f/50) source through the

plasma including refraction, absorption, and possible exit from the problem. For each



101

600 i T M T T T T
500 ]
© 400 .
=
~ 300 4
™
E - 1
L ]
I 200
~N I
~ 100t §
0 " 1 " i s ! s
50 100 150 200 250

Axial distance um

Figure 37: Measured sound speed (*) on axis as a function of axial distance. Results -
from a LASNEX simulation (—) and the analytical spherical model (- - -) are included
for comparison.

time step, laser-light energy absorbed by electrons is transported and equilibrated to ions,
radiation, expansion, and compression. Ionization levels are determined by nonlocal-
thermodynamic-equilibrium models that advance rate equations.!4? These various
models feed back to each other self consistently to form the temperatures, densities,
positions, velocities, and opacities for the next time step. LASNEX should model the
plasma in this experiment quite well because the electron heat transport is in the Spitzer
(Ref. 3) regime, where the electron-ion mean-free path is much less than the temperature
scale length so that hydrodynamic fluid equations with classical coefficients should apply.

The plasma studied in this experiment can be shown to be in the Spitzer regime by the
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Figure 38: Measured electron density (*) at z=165xm as a function of radial distance.
Results from a LASNEX simulation at z=150um (—) and z=180um (- - -) are

included for comparison.

appropriate calculation. The electron-ion mean free path (4,;) is defined as,

72
A, =138x o8———
n Z InA

ei

cm

(69)

where n, is the electron density in ( cm‘3), Z is the ionization state, InA,; is the Coulomb

logarithm for electror-ion interactions, and T, is the electron temperature in (eV). The

temperature scale length (Ly) is defined as,
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Figure 39: Measured sound speed (*) at z=165pm as a function of radial distance.
Results from a LASNEX simulation at z=150pm (—) and z=180pm (- - -) are
included for comparison.
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and has a computed minimum of about Ly = 60pm at radial positions 75-100pm from
the experimental data. The maximum electron-ion mean free path at those positions where
L is a minimum is Ay = 0.3pm. Therefore, the criteria for the Spitzer regime Ay <
L/100) is satisfied for this plasma. Figure 36 through Figure 40 compare the
experimental results with the LASNEX simulation (run# 211020g) of the plasma. The
axial dependence of the electron density and sound speed are shown in Figure 36 and

Figure 37 for axial positions 65pm < z < 235pm and radial position r=0. The radial
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Figure 40: Measured radial drift velocity (*) at z=165um as a function of radial
distance. Results from a LASNEX simulation (—) are included for comparison.

dependence of the electron density, sound speed, and radial drift velocity is shown in
Figure 38, Figure 39, and Figure 40 at an arbitrary axial position of z = 165pm and
radial positions 0 < r < 350pum. In Figure 38 and Figure 39 the results from the
LASNEX calculation at z=150um and z=180um are displayed to represent the +15um
uncertainty in the axial position of the experimental data. The radial drift velocity
predicted by LASNEX does not vary appreciably from z=150pm to z=180um.
Therefore, only the z=165um calculations from LASNEX are included in the graph of
the radial dependence of the radial drift velocity, Figure 40. The axial and radial electron

densities from the LASNEX simulation agree with the experimental data within a percent
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standard deviation of 40%. The axial and radial sound speeds and the normalized radial
drift from the LASNEX simulation agree with the experimental data within a percent
standard deviation of 50%. The agreement between LASNEX and the experimental data
is very good. Therefore, LASNEX has been shown to perform quite well as a simulation
code at least in the parameter regime of the plasma in this experiment.

A simple analytical model has been developed that can also be used to understand
a laser-heated plasma. This model is an extension of a previous planar model
developed!#3:144 for a spherical geometry. This model is one-dimensional and will
only apply to measurements made on the z-axis in the axial direction. The plasma is
divided into two regions: the conduction region that extends from the ablation surface
(essentially the target surface) to the sonic surface, and the corona. The axial fluid
velocity is subsonic and the electron temperature increases sharply in the conduction
region. The laser light is mainly deposited in the conduction region and the absorbed laser
energy is transported by electron conduction to the ablation surface. The axial fluid
velocity is supersonic and the electron temperature is almost constant in the corona.

The conduction region for a steady-state, planar plasma extends from the target

surface to a distance (Ref. 144),

o

2
A, - o.s[Kof‘ ] 1)

where 1 is the incident laser energy flux (W/cm?), K, is the heat conduction coefficient
(K, = 1.8 x 10 / ZInA,; cmsec'keV-52, from Ref. 143), and T, is the electron

temperature at the axial sonic surface (keV). Using the axial sonic surface temperature
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from the LASNEX simulation, the conduction region extends to a distance A, = 50um
from the target surface. The planar approximation is approximately valid since the width
of the conduction region is less than the full width at half maximum of the laser focal
spot (FWHM = 100um). Because the accessible region of this experiment is limited to
axial distances greater than 65um, the measurements in this experiment are limited to the
corona.

The time history of the corona is divided into periods: an early planar expansion
followed by an approach to spherical steady state. Early in the laser pulse, the plasma
expansion is well approximated by a planar, isothermal expansion into vacuum (Ref.

143). The scale length for the plasma density is,

L =ct (72)

mp . Cs'L
At the peak of the laser pulse, Lyp = 190um, where the measured value for the sound
speed on axis, ¢, = 4 X 10° cm/s, is taken from the experimental data in Figure 31, and
t; = 0.53*FWHM of the plasma generating pulse is used. The radial dimension of the
plasma is of the order of the full width at half-maximum of the laser focal spot =
100pm. Thus, since Lyp > 100um, the planar phase of the plasma expansion is over
before the peak of the plasma generating pulse.

In a steady-state spherical corona, the electron density is approximately given by

(Ref. 144),

n, = ns(ssls)3 (73)

where ng is the electron density at the sonic surface, s is the spherical coordinate and s



107

is the radius of the sonic surface. The usual model for a finite dimensional laser spot
assumes a spherical geometry in which the radius of the ablation surface is the full width
at half-maximum of the laser focal spot s, = 100um, so the density scale length at the

sonic surface (s, = s, + Ay = 150um) is,

L, = 50pm (74)

The electron density and temperature at the sonic surface are given by (Ref. 144),

| AV
n, = 22x10———r—  cm” (75)
(s,InA ) PZ P2
T, = L1x10°[[ A [AsInA PP keV (76)

where IO[W/cmz] is the intensity of the plasma generating beam, A{um] is the plasma
generating wavelength, A is the atomic weight of the target material, Z is the ionic
charge state of the plasma, and s, is the radius of the sonic point s, = 0.015 cm. Using
the parameters for this experiment, I, = 2x10!! W/cm? and Z=8 on axis, the sonic
surface electron density is ng = 2x10%0 cm™ and the sonic surface electron temperature
is T, = 135 eV. Equation (76) includes the average energy (E,;) used per electron for
ionization and E; = 130 eV for aluminum with Z=8. Therefore the electron temperature
is [T, - (2/3)E;] = 48 eV at the sonic surface.

Equations (73) through (75) are in good agreement with the axial density data and
the LASNEX simulations as shown in Figure 36. The steady-state spherical model
predicts that the corona should be isothermal with a temperature equal to the sonic

temperature, Eq. (76). With Z=8, the predicted (Z + 5/3)T product agrees with the
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experimental data and the LASNEX simulations as shown in Figure 37. Thus the steady-

state, spherical plasma model appears to be a valid approximation for this experiment.
Since the model assumes a steady-state plasma, the good agreement with the experimental
data infers that the plasma is approximately stationary during the Thomson scattering
experiments. This conclusion is corroborated by the well-defined peaks in the collective
Thomson data and a predicted 8,4; = 0.9.

Two questions can now be addressed with the presentation of the experimental
data and its comparison with LASNEX: 1) Are the electron and ion temperatures of the
plasma approximately equal as assumed throughout the analysis?, 2) Could a 532nm
diagnostic beam have been used instead of a 266nm diagnostic beam in this experiment?.
The rate (vi/€) at which the ion temperature will equilibrate with the electron temperature

is given byl4’,

: n Z%nA
vie = 32x10°° ——737‘-'- sec”! an
A

[

where A is the atomic weight of the plasma material, for aluminum A =27, the electron
density is in cm™, and the electron temperature is in eV. With the most pessimistic values

for Z, InA .

ei» N, and T, of the plasma that are measured from the experiment (i.e. Z=35,

InA,;=5, n,=1x10!° cm?3, and T,=45 eV), the maximum time that it takes the ions to
thermally equilibrate with the electrons is (1/vi’® = 2ns). Since this time is less than the
FWHM =9ns width of the plasma generating pulse, the answer to the first question is yes
and the ion temperature will approximately be equal to the electron temperature. In fact,

LASNEX predicts the electron and ion temperatures to be equal as well. Two factors
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determine whether a diagnostic wavelength will be suitable for Thomson scattering from
a plasma: inverse bremsstrahlung absorption and refractive turning. Inverse
bremsstrahlung absorption of the diagnostic beam can cause local heating in the plasma
and artificially change the sound speed that is being measured. The inverse
bremsstrahlung absorption length o, for a beam of frequency w is given by Eq. (9) as o
~ ,v;/w”c. The plasma frequency and the electron-ion collision frequency are defined
by (w, = 5.64 x 10* n,'/2) and (v¢; = 3 x 10°® (n,ZInA,;)/ T,*?), respectively, with the
electron density in cm™ and the electron temperature in eV. For a diagnostic beam
passing through the central portion of the measurement region of the plasma (z=130um),
the parameters are n, =~ 5 x 10!° cm™, T, = 45 eV, Z = 8, and InA,; =~ 5. The
interaction length (1) is approximately 250um, therefore the predicted inverse
bremsstrahlung absorption {1 - exp(-o,1)} on the 532nm and 266nm diagnostic beams is
5% and 20%, respectively. The calculated 5% absorption on the 266nm diagnostic beam
is in line with the less than 4% absorption measured in the experiment. The 20%
absorption exhibited by a 532nm diagnostic beam is large and might begin to affect the
sound speed in the plasma. The refractive turning of the two diagnostic wavelengths in
the plasma have been calculated by post processing the data from the LASNEX simulation
[thanks to M.K. Prasad]. Since the LASNEX simulation has been shown to fit the
experimental data, the refractive turning calculations should be fairly accurate. Figure 41
displays the results of the calculation as a function of axial distance of the diagnostic

beams from the target surface. The refractive turning angle should be kept smaller than

the acceptance angle of the (f/12) Thomson collection lens used in this experiment and
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Figure 41: Refractive turning calculations for a 532nm and 266nm diagnostic beam
as a function of axial distance in the laser plasma. The calculations are based on the

LASNEX simulation results for the plasma.

the acceptance angle of 2.38 degrees is shown in Figure 41 for comparison. As seen by
the figure, the refraction of the 532nm diagnostic beam is greater than or equal to the
acceptance angle for a fair amount of the region measured in the plasma (65pum < z <
130pxm), and the refraction of the 266nm diagnostic beam is always less than the
acceptance angle over the entire measurement region (65pm < z < 235um). Therefore,
based on the inverse bremsstrahlung and refractive turning calculations, the answer to the
second question is no and a 532nm diagnostic wavelength would not be suitable for

conducting collective Thomson scattering experiments on the laser-produced plasma

studied in this dissertation.
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Despite the self-consistency of the measurements of electron density, sound speed,
and radial drift velocity in the laser produced plasma and the excellent agreement of the
experimental data with the LASNEX simulation and simple analytical model,
discrepancies exist. As mentioned in Chapter 2, a peak height asymmetry in the collective
Thomson spectrum is a result of a relative thermal drift between the electrons and ions
in the plasma. The most probable source for the drift is the return current driven by heat
transport in the plasma, although other mechanisms such as beam nonuniformities could
be important. In the Spitzer regime, the relative drift vector (Uy) is related to the heat

flux vector q by the following relationship!46,

e - - On YT q’ 78
Ua 640 [“675) nT, (78)

where the factor containing the Spitzer transport coefficients'4’, yr, yg, 6y, and ¢,
is a slowly varying function of the ionization state Z and only changes from a value of
5 for Z=1 to a value of 2.5 for Z —» o, The heat flux vector, in turn, is related to the

temperature gradient in the plasma by,

g = -x VT, (79)
where x® is the electron thermal conductivity. Combining Eq. (78) and Eq. (79), the
relative drift vector is found to be proportional to the temperature gradient in the plasma.
In the radial plane of the plasma in this experiment, the temperature gradient is directed
towards the center of the plasma (r=0) from the outside and has a maximum around
r=100um. The relative drift will be pointed in the same direction as the temperature

gradient, towards (r=0). Based on this argument, the product of the ion-acoustic wave
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Figure 42: Raw collective Thomson scattering data showing inconsistent peak height
asymmetries for different radial positions at an axial distance of z=200um.

vector with the drift vector (k;,*U,)/kv, will change sign while passing from negative
radial positions (r <0) to positive radial positions (r>0) in this experiment. The product
should be zero at r=0 because the gradient of the temperature in the radial direction is
zero at r=0, and the product should be a maximum around r=100um where the
temperature gradient is a maximum. Since the magnitude and direction of the peak height
asymmetries in the collective Thomson spectrum are proportional to the product
(k;zeUg/kv,, see Chapter 2, the Thomson spectra from this experiment should show
equal peak heights at r=0 with a gradual increase in the asymmetry to a maximum at

r=100um. One of the Thomson peaks should be consistently higher for negative radial
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values while the opposite should hold for positive radial values. As shown in Figure 42,
the analysis presented does not hold in general for the data taken in this experiment.
Figure 42 is a graph of the raw data taken for the radial positions at an axial distance
z2=200um. The left peak in the Thomson spectrum should be lower than the right for
r<O0 and higher than the right for r>0. Also at r=0, the peak heights should be
identical. Obviously this is not the case for the data presented in Figure 42, and for all
the data taken in the experiment, the peak height asymmetries appeared to have little
correlation with the measured temperature gradient in the plasma. This apparent
inconsistency deserves further investigation.

Since measurement of the peak height asymmetry involves line shape analysis of
the Thomson spectrum, and the line shape is sensitive to the collisionality (k;,A;;), a new
theory is needed for Thomson spectrum analysis with general values of k;,A;;. This new
theory is important because the existing theories presented in Chapter 2 are only
applicable in the small k;,A;; — 0 and large k;,A;; = oo limits of collisionality of the ion-
acoustic wave and the values for k;,A;; based on the experimental measurements in this
chapter are k;,A;; = 0.1. This new theory is presented in Chapter 5 and will allow a
direct measurement of the relative drift U, from the peak height asymmetries. Along the
theory, the experimental configuration must be changed to perform meaningful
measurements relating to the peak height asymmetry. Due to the stochastic nature of the
peak asymmetries, the relative drift may not be a reproducible quantity in the plasma.
Therefore, the experiment should be performed on a single shot basis. Single shot

detection of a Thomson signal will require a more sensitive detector than the reticon array
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used for the data acquisition on this chapter. Also, because of the questionable
reproducibility of the relative drift, multiple radial positions should be measured at the
same time to provide a single shot measurement of the radial temperature gradient for
comparison. These issues will be addressed in Chapter 6 along with a presentation of the
experimental configuration needed to begin a peak height asymmetry analysis.

This chapter has presented in some detail the data acquisition and analysis of the
two-dimensional electron density, sound speed, and radial drift data from 266nm
collective Thomson scattering in a collisional laser-produced plasma. Accurate
measurement of the three plasma quantities is possible with a well-resolved, Rayleigh-
calibrated, collection system and a high-repetition rate, highly reproducible plasma. The
use of a 266nm diagnostic beam is necessary to reduce the intrusive effects of inverse
bremsstrahlung absorption and the complicating effect of refractive turning which éan
reduce the collection efficiency of the scattered signal. With some simple but physically
based models, the experimentally obtained plasma quantities are shown to be self-
consistent and the electron density, sound speed, and radial drift are used to benchmark
the simulation code LASNEX in the parameter regime of the plasma in this experiment.
LASNEX is shown to perform fairly well with percent standard deviations from the
measured data less than 50%. A simple spherical model is also shown to be a valid
approximation for the experimental data and predicts that the plasma is approximately
stationary over the width of the diagnostic pulse. This conclusion is experimentally
corroborated by the well-defined peaks in the collective Thomson data and a predicted

Badj =~ 0.9. Despite the self-consistency of the experimental data and good agreement
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between the measurements and simulations, the peak height asymmetries in the collective
Thomson spectrum are inconsistent and do not correlate with the measured radial
temperature gradients in the plasma. This indicates that although the electron density,
sound speed, and radial drift velocity are reproducible and well behaved from shot to
shot, the relative thermal drift (U,) between the electrons and ions may not be
reproducible. The investigation of the peak height asymmetry issue and how it relates to

the relative thermal drift (Uy) will be conducted in Chapter 5 and Chapter 6.
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Chapter V: Thomson scattering theory - intermediate ion-ion collisional regime

In Chapter 11, the existing theory for analyzing Thomson scattered spectra from
a plasma was presented. The present theory, as it stands, only applies to scattering from
waves that can be considered either in the collisionless limit (kgA;; — o) or in the
collisional limit (kA; — 0). Although the Thomson scattering experiments in Chapter
4 were conducted from ion-acoustic waves in the intermediate collisional range (k;,4;; =
1), it was shown in Chapter 2 that the collisionless and collisional theories were adequate
for obtaining the electron density, sound speed, and radial drift velocity from the ion-
acoustic Thomson spectra. Unlike the electron density, sound speed, and radial drift
measurements, the measurement of the relative drift velocity (Uy) between the thermal
electrons and ions relies on knowledge of the spectral distribution in the ion-acoustic
feature, i.e. the peak height asymmetry. As shown in Chapter 2, the spectral distribution
of the ion-acoustic feature changes dramatically from the collisionless to collisional limits,
see Figure 7, and the exact relationship between the peak height asymmetry and the
relative drift velocity will change as well between the two limits. Therefore, the existing
theories cannot be used to obtain the relative drift velocity from the peak height
asymmetries in the Thomson spectrum for intermediate collisional ion-acoustic waves
(k;aA;; = 1). This chapter will present a model based on the Fokker-Planck equation
coupled with modified fluid equations that will accurately predict the peak height
asymmetry in an ion-acoustic Thomson spectrum given the values for the relative drift

(Uy), ionization/temperature ratio (ZT,/T;) and collisionality of the ion-acoustic wave
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(k;aA;;). The approach to developing the model first involves defining general closure
relations for the linearized ion fluid equations which can be applied for any value of
collisionality (k;;A;;). The ion fluid equations are then used to find the ion susceptibility
as was done in Chapter 2. The dynamical form factor S(k, ) which describes the spectral
distribution of the Thomson spectra is then known because it is a function of the ion
susceptibility. Application of the model requires knowledge of the collisionally dependent
transport coefficients that appear in the closure relations. Since the transport coefficients
can be calculated with the use of the perturbed ion distribution function (f;), the -
linearized ion Fokker-Planck equation will be used to solve for f; assuming collisionless
electrons. In obtaining the perturbed ion distribution function, the linearized ion Fokker-
Planck equation will be treated as an eigenvalue problem which represents a new and
better approach to solving the equation reported in previous publications. In addition to
allowing for accurate measurements of the relative drift from the peak height asymmetry
in the Thomson spectrum, the model developed in this chapter has the potential of
describing the entropy wave feature in the Thomson spectrum which was introduced in
Chapter 2.

An obvious, but possibly overlooked fact, is that any one or combination of the
fluid equations given in Eq. (42) is equivalent to the basic plasma kinetic equation
(Fokker-Planck equation). The reason for this relationship is that the fluid equations are
simply moments of the Fokker-Planck equation. Since the Fokker-Planck equation in the
collisionless limit (kgA;; — ©0) becomes the Vlasov equation (Eq. (34)) and predicts

Landau damping, so can the fluid equations if properly applied. In fact, the fluid
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equations can be made valid over the entire range of collisionality (kg A;;) by using the
proper set of general closure relations. Chang & Callen!4® use a Chapman-
Enskog!4? like approach to derive a general set of closure relations for the perturbed
stress tensor («;) and heat flux (q;) in terms of the perturbed flow velocity (u;) and
temperature (T;) for the ions. These relations are given by,
g, = ~xmpgyiu, - ingyT, (80)
my = CipgmnovEy - il

where the real quantities x;, x,, 1, py are pseudo transport coefficients normalized to
kqA;;, and the perturbed quantities are a result of expressing the total stress tensor (7),
heat flux (q), flow velocity (u), and temperature (T) in the form h = hy + h; exp(i(kz-
wt)), where perturbed quantity (h,) is much less than the background quantity (hg), hy/hg
« 1. It will be shown in the ion-collisional limit (kg4;; — 0) that. k; and p, go to zero,
while x, and g, #pproach the familiar Braginskii ion thermal conductivity (x, —
3.9kqA;;) and ion viscosity (u; — (4/3)0.96kg ;). In the ion-collisionless limit (kgA;; >
o), the viscosity coefficients p; and p, go to zero while the conductivity coefficients x;
and x, remain finite. Chang & Callen derive expressions for the transport coefficients
which are complicated functions of the plasma dispersion Z function and the
Chandrasekhav function, see Ref. 148, and therefore are not easily applied. Chang &
Callen also show that the transport coefficients can be greatly simplified by approximating
them as a single function of the Z function or its derivative of modified argument.
Although more tractable, this simplification does not guarantee any degree of accuracy

for computing the transport coefficients. The proper solution to the problem of calculating
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the transport coefficients accurately is to first express the perturbed quantities u;, Ty, q;,

and w; from Eq. (80) in terms of the perturbed ion distribution function (f;). The
standard definitions for the flow velocity, heat flux, and stress tensor is in terms of a

moment of the total distribution function (f) are given by,

Z = L [d v v 81)

n
g = %fdgV’V’v’zﬂv’) (82)
7= [mfav' v/ 5 fvh] - nT (83)

where v’ = v - u, and n = [ d3v f(v’). The temperature is also defined in terms of the

of a moment of the total distribution function (f),

d*v’ v/ ? v (84)

T - m,
-

This equation is not the standard definition for temperature because the usual factor of
Ya is replaced with (I' - 1)/2, where I is the ratio of the specific heats I' = (Cp/CV)

defined by,

N P fd3v (V7 - 1) ) @5)
f d* (v? - 3) f,)

The definitions in Eq.’s (84) and (85) are necessary for applying the model developed in
this chapter to arbitrary collisionality (kgA;;). Equations (81) through (84) can be

linearized by writing the distribution function as f = f + f; exp(i(kz-wt)) with f,/fq «
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1. Upon substitution, the expressions for the perturbed quantities u;, T{, q;, 7 are then

found to be,

1
u, = - f d*v v, [, (86)
2
T, - E—Z?’ff‘- [ 6% - 3) o) @7)
(0]

my; 3, (2 (88)

q, = de v (¥? - 5) v, (V)
n, = [m,.v,-2 f dv v} fl(v)] - n,T, (89)

With the perturbed ion distribution function f;, equations (85) through (89) can be
combined with the complex closure relqtions of Eq. (80) to find the transport coefficients
Ky, Ky, B, and p,.

Invoking the closure relations of Eq. (80), the ion susceptibility (x;) is modified
from the form appearing in Eq. (44) of Chapter 2. As in Chapter 2 the ion fluid
equations can be linearized to yield,

~ion, + ikngu, = 0

—iwmpgu, = ~ikTon, - ikn,T) - ikn, ~ iZeknyd, (90)
1

T-Dn

where the factor of (3/2) from the linearized fluid equations in Chapter 2, Eq. (43), has

ionyT, + iknTou, = -iky,

been replaced with (1/(I'-1)) to allow for general application of the equations for any

collisionality (kgA;). The factor (1/(I'-1)) reduces to (3/2) in the collisional limit (kp A,
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- () where I' = 5/3 and is equal to (1/2) in the collisionless limit (kpA;; - o0) where
I' = 3. The linearized fluid equations, Eq. (90), coupled with the closure relations, Eq.
(80), can be solved for the ratio (n;/¢;) which in turn can be used to find the ion

susceptibility (x;) as in Chapter 2,

_4nZe™ _ ZTeaz X+ v

i
SR R TR (TR L) A (TR R A 03 TN
91)

where x; = w/kv; is the normalized frequency and y = I'-1. The model which is being
developed in this chapter and which is based on the modified form of the ion
susceptibility will be referred to as the modified fluid model. For simplicity, the electrons
will be assumed collisionless (kgA g, KA » 1), and the electron susceptibility under this

collisionless condition is given by Eq. (37),

X, = az[l + er(xe)] 92)
where x, = w/kv, is the normalized frequency and Z is the plasma dispersion function
introduced in Eq. (37) of Chapter 2. A relative drift (U,) between the thermal electrons
and ions can be easily added to the analysis by replacing the normalized frequency x,
with x, + (kgeUy)/kqv, in Eq. (92). Also, the complex frequency for the normal modes
of the plasma can be found by solving for the roots of the dielectric function e=0, where
e=1+4 yx, + %

The dynamical form factor S(k,w) which predicts the spectral distribution in the

Thomson spectrum is defined in terms of the electron and ion susceptibilities,
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27,

2
wo T,

}—‘r Imfx) (93)

€

SEw) = (L x.~)|[‘ In(x,) +

Using Eq.’s (91), (92) and (93), the ion-acoustic Thomson spectra can be predicted
accurately under the condition of collisionless electrons for any value of kgd,;, ZT,/T;,
and Uy. This claim can first be verified in the ion-collisionless limit where the exact form
of S(k,w) is already known.

The transport coefficients in the collisionless Landau limit are calculated from the
perturbed ion distribution function (f;) for ion-acoustic waves which is obtained from the

linearized Vlasov equation (Eq. (35)),

oF,

Zed, oy
m, ( “’m)
kiavl.

Here Fy = [nO/(ZwviZ)” 2 exp(-v2/2vi2) is the Maxwellian background ion distribution

94

fiy) =

and w,;, is the complex ion-acoustic frequency. Because there are no collisions, the
perturbed distribution function is one-dimensional in Eq. (94). With the collisionless
perturbed ion distribution function and the definitions from Eq.’s (86) - (89), the

perturbed plasma quantities n;, u;, Ty, q;, and = in the Landau limit are given by,

n, (1 + x Z(x,)) (95)
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oF,
Ze¢1 v, _év_— Ze(bl
D e— — e ettt T e— 6
u, m v o av - v X (1 + X Zx) (96)
i y - —% !
( kl.av‘.]
oF,
Ze : E3
T, = __.__d)‘ e\l w2 -1) Y - Zecl),vi2 (1 + (xf—l)(l + x,Z(xJ)?n
m; Mo - i
=
oF
Zep, my; oy Zedny; 2
9, = m, —— J¥ -3 (A w - 2 (1 ¥ (x" —3)(1 ¥ xiz(x‘)))
v kv;
(98)
n, =0 99)

where x; = w;,/k;,V; is again the normalized frequency and the perturbed stress tensor
is identically zero because the problem is one-dimensional. The complex ion-acoustic
frequency x; = w,,/k;,v; in the equations is calculated by solving for the complex roots

of the dielectric function ¢ = 1 + x, + x; which is given exactly by, see Eq. (37),

e=1+x,+x=1+afl +xZx)+ ZTT‘aZ[l + xZx)] =0 (100)

in the Landau limit. When calculating the ion transport coefficients, the electron Landau
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damping is neglected by setting x, = 0 and the roots of the dielectric function are found

in the quasineutral o« - oo limit by,

zT,
1+ —F[l + xZ{x)] = 0 (101)

There are two complex roots to this equation for a given ZT,/T; ratio, x; = (tw;, -
iv;,)/k;v;, where w;, # 0 is the ion-acoustic frequency and y;, is the ion Landau
damping. The transport coefficients can now be calculated in the quasineutral, ion-
collisionless limit with the ion-acoustic root from Eq. (101), Eq.’s (96) - (99) and the
modified closure relations in Eq. (80). The results for k, and «, are given in Table I for
different ZT,/T, ratios, and the coefficients u; and u, are equal to zero in the
collisionless limit since the perturbed stress tensor is identically zero. The real and
imaginary parts of the ion-acoustic frequency in the quasineutral, Landau limit as
predicted by Eq. (101) are also in Table I. To test the accuracy of the modified fluid
model in the collisionless limit, the ion susceptibility from the model, Eq. (91), is
substituted in Eq. (100) for the exact expression in Landau limit and the roots of the
dielectric function are recalculated with x, = 0, @ > o0, pu; = p, = 0, I'=3, and the
values of x; and x, from Table 1. The results for the real and imaginary parts of the ion-
acoustic frequency predicted by the modified fluid model ion susceptibility are listed in
Table I and agree exactly with the correct values in the Landau limit. Therefore, the
modified fluid model based on the fluid equations correctly predicts ion Landau damping.

The accuracy of the modified flui¢; model for predicting the ion-acoustic spectrum

in the collisionless limit can be investigated by using the dynamical form factor, Eq. (93),




Table I: Conductivity coefficients (x;,k,) in the quasineutral Landau limit.
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Also, the ion-acoustic frequency from Landau theory and the modified fluid model.

ZT /T, K B K, w /ky; o /kv; w;/kv; w;/kv;
3 Landau 3-Pole Landau 3-Pole

4 -0.8577 T 0.7998 2.83 2.83 0.307 0.307
6 -0.6938 0.5757 3.17 3.17 0.177 0.177
8 -0.5747 0.4078 3.47 3.47 0.103 0.103
10 -0.4796 0.2790 3.73 3.73 0.0583 0.0583
12 -0.4008 0.1822 3.97 3.97 0.0321 0.0321
14 -0.3354 0.1128 4.20 4.20 0.0170 0.0170
16 -0.2822 | 0.06609 4.42 4.42 0.00866 | 0.00866
20 -0.2061 | 0.01947 4.84 4.84 0.00201 | 0.00201
24 -0.1594 | 0.004881 5.23 5.23 4.14e-4 | 4.14e-4
28 -0.1299 | 0.001094 5.59 5.59 7.91e-5 | 7.91e-5
32 -0.1099 | 2.271e-4 5.93 5.93 1.43e-5 1.43e-5

with the collisionless electron susceptibility and interchanging the ion susceptibility

between the exact form x; = (ZTe/Ti)o:ZH + x;Z(x;)] and the expression given by the

modified fluid model in Eq. (91). The spectral distribution predicted by the dynamical

form factor S(k,w) using the two different forms of the ion susceptibility is shown in

Figure 43 for an aluminum plasma with ionization/temperature ratio (ZT,/T; = 8), in the

quasineutral limit (o« » 1), and with a relative drift (k;,*Uy)/k;,v, = 0.02. The dashed

line in Figure 43 is the ion-acoustic spectrum predicted using the exact ion susceptibility

and the solid line is the spectrum predicted when using the ion susceptibility from the

modified fluid model with g, = u, = 0, I'=3, and x; = -0.5747, Ky = 0.4078 from
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Figure 43: The ion-acoustic spectrum calculated from collisionless theory (- -) and
from the modified fluid model (—) with ZT,/Ti = 8 and (k;,*Uy/k;,v, = .02.

Table 1. The spectrum predicted from the modified fluid model perfectly reproduces the
peak height asymmetry and shape of the resonant features of the exact collisionless theory
near w/kv; = +3.47. The only discrepancies between the modified fluid model and the
exact result occur away from the ion-acoustic resonances at w/kv; = +3.47. The feature
at w/kv; = 0 predicted by the modified fluid model is not the entropy wave, which cannot
supported by a collisionless plasma. Instead, the feature results from holding the transport
coefficients constant as a function of frequency. The transport coefficients are frequency
dependent and by using the values for the coefficients at the ion-acoustic frequency, only

the predicted spectrum near and at the ion-acoustic resonance is quantitatively correct.
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Since the primary motivation of the model in this chapter is to predict the peak height

asymmetry as a function of relative drift, reduced accuracy in the spectral features
predicted away from the peaks is not a concern. In the ion-collisionless limit (kgA;; —
o), the modified fluid model accurately reproduces the peak height asymmetry for a
given relative drift (Uy). The model can now be extended into the intermediate ion-
collisional regime (kgA; = 1) by solving the Fokker-Planck equation for the perturbed
ion distribution function (f;), and then using the distribution function to calculate the
transport coefficients x;, x,, pt;, p, and the ratio of the specific heats I' as a function of
kpA;; and ZT/T;. Once these quantitics are known, the ion-acoustic spectrum, again
assuming collisionless electrons, can be calculated with Eq.’s (91), (92), and (93) as was
done in the ion-collisionless case presented in this section.

The linearized Fokker-Planck equation has been used by Ono and Kulsrud!3°,
and Randall'®! to study the ion-ion collisional effects on ion-acoustic waves in the
intermediate regime (0.1 < k;,A; < 10). Their calculations involved solving the
linearized Fokker-Planck equation as an initial value problem for the perturbed ion
distribution function of an ion-acoustic wave using an Alternating-Direction-Implicit
(ADI) technique. Although this technique did provide the correct solution, absolute
convergence was not optimum. Since the method involves an initial value problem, a
fairly accurate guess is needed in advance for the unknown perturbed ion distribution
function to start the calculation. Even with an accurate guess, averaging techniques where
necessary to eliminate the backward wave and transients that developed over time in the

distribution function. In addition to these drawbacks, this method of solution will only
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work for propagating waves, and therefore could not be used to obtain information about
the stationary entropy wave. The technique used in this chapter will treat the linearized
Fokker-Planck equation as an eigenvalue problem. The three normal modes of the
plasma, the entropy wave and the forward and backward traveling ion-acoustic waves,
appear as the three least damped eigenvalues in the solution. The perturbed ion
distribution functions do not need to be approximated in advance and are simply the
corresponding eigenvectors of the nmormal mode eigenvalues. The perturbed ion
distribution functions can then be used to calculate the transport coefficients x;, x5, py,
1o and the ratio of specific heats I'.

The Boltzmann equation with a Fokker-Planck collision term describes the
evolution of the distribution function (F 4(r,v,t)) for a given species « in a plasma. In a

non-magnetic plasma this equation is given by, 152

Ze

oF, . . o . (p% 15 7 9
5 +VV F_- m. EV, F, = zﬂ: TopVy (Favv H,g- EVV'F«V\' v Gau()l()Z)

=)Y.C(,, Fy)
p
and is commonly referred to as the Fokker-Planck equation. Z, is the charge state of
species o (Z, = -1 for electrons), m, is the mass, and E is the electric field vector. The
summation is carried out over all species B that collide with species «. H g, G ,yare the
Rosenbluth po!;entials153 and T4 is the collision strength parameter of species « and

B given by (Ref. 152),
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Hoy@ = 20 fay Fyh |9 - 7' (103)
My
Gy = fdv’ Fy@h | % - | (104)
PH,, - - an(m, + my)Fy (105)
mp
szap ) 2mH g (106)
(my -+ my)
Z 7 e
T, = 4n|—=F—|lnA | (107)
m(!

where In A 4 is the Coulomb logarithm for collisions between « and 8 in Eq. (107).
Equation (102) can be linearized by making the following substitutions for

electrostatic waves,

F B0 = fo) + fi@) et ™2 (108)
E= -V where § = ¢, + ¢, e/® -0
where fo% = n, exp(-v3/2v az)/(27rv 23/ is assumed to be Maxwellian, the perturbations
are assumed small (f,/fy « 1, ¢;/¢ « 1), and the thermal velocity (v,) of species « is
given by, v, = (kgT /m a)” 2 The perturbations are written with wave vectors in the z-
direction so f;“(v) will possess azimuthal symmetry. The azimuthal symmetry of f,;%(v)
coupled with the spherical symmetry of f;%v) will simplify the expressions for the
collision terms in the following section. The linearized Fokker-Planck equations for the

ions and electrons are now written with the aid of Eq. (108) as,
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iy, - @) fi + i fo=Clfa, f) + Clfi . 10) (109)

Zed kv,
T

- o)t - i£ zfo -0 (110)

where all terms are first order in the perturbation. Equations (109) and (110) have been
written under the assumption that the electrons are collisionless (kgA;, kAo, » 1). The
perturbed potential ¢; is found by solving Eq. (110) for the perturbed electron density
n,° using the standard Landau prescription (Ref. 121),

= [fav 7":"("" {om) eno [ (1::) Z(Iv&]

(111)

z

where Z is the plasma dispersion function defined in Eq. (37). The solution for ¢; in the
limit (w/kv, - 0) is,

o - Tn, . Tn, (112)

en,  eng

where quasineutrality (o = o) has been assumed for the approximation in terms of the
ion density n,’ and perturbed ion density n,' = ff,} d3v. By taking the limit (w/kv, -
0), electron Landau damping is ignored. Since the electrons and ions are decoupled (kA
» 1), the electron Landau damping can be included afterwards by adding
(7Zm,/8m;)!2Re(w,,/k;,v;) where w,, is the complex ion-acoustic wave frequency. Note,
that the effects of electron-ion collisions, kA, = 1, on the electron damping of ion-

154

acoustic waves has been recently calculated by Epperlein'>* et al.
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The collision terms in Eq. (109) can be simplified by working in spherical

coordinates: v = |v|/v;, p = v,/v, and ¢, and by utilizing the spherical symmctry of

foi(v) and the azimuthal symmetry of fli(v),

Hy, v2 &Gy,
C (fo s fi) = Ty |4nfofy - 2v3fo + 2y’ a2 °
i i
- |
Ch,fo)= Zu 2y '—aH_'lo‘e -vzﬂj‘(evzﬂfl) , Ty G 24 - Hz)%)
v} (2 v oy 23! v \ou o

(113)
The ion superscripts are inferred in Eq. (113) where (Hg,,Gg,) and (H,4,G; o) refer to

the Rosenbluth potentials of the perturbed f; and background Maxwellian fy ion
distribution functions, respectively. The collision strength parameter I, and the

Maxwellian Rosenbluth potentials H,q and G, are given by (Ref. 152),

44 3/mv?

r, - 4nZlety 4 Vv,
m? Ao

? \P‘ v - Eif (L (1)
oH,, ) n V2
ov v?

Gio _ (). 1 o
ov J2) 2 ov

where Erf(x) is the error function.
The perturbed ion distribution function f; can now be written as an expansion in

Legendre polynomials Py,
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f[mw) = Y a,MP,(W) (115)
L=0

By making the normalizations, fy = (ng/Q27v;%)%?) £y and f; > (ng/27v;%)3?) f|,
equations (109), (112), (113), and (114) can be combined into a series of coupled

equations of the coefficient a; (v) in the following form,

4nvf, f a (vV)vidv
A

Lva, _, (L+1)va,,, ZT,
+ +
2(L-1) + 1  2(L+1) + 1 T, @2n)*P

REC (B, » &6
kx,.,- Pk (2 2 o2

(116)

+

2k}» 2 v

1 9Gy,
"o a: L(L+1)aL]] = wa,

where §; ; is the Kronecker delta and the Legendre term Rosenbluth potentials H; and

3Gy /6v? are given by (Ref. 153),

8=
@L+1)v
FG)  -4n f A 12eL (L(L-l) i (L+1)(L+2)(L—1/2)v’2) ,(117)
= ) v dv
v (4L*-1)y yiet (L+3[2)vE
4n j‘aL( v [L(L Bvi? - (L+1)(L+2)(L—1/2)vL] W
(4L%-1), (L+32)v' 2

H,(v) = 1 faL( v v/ 2 gyl + v’"”fa wh v/t dv’]

v

Equations (116) and (117) can be expressed in the form of an eigenvalue problem by
finite differencing the derivative terms and discretizing the integrals on a velocity grid v ;
= {vmax/jmax, 2*vmax/jmax, ..., vinax}, where vmax is the

= {v17 V2, sesy VJmax}

maximum velocity used and jmax is the number of grid points. A grid point at v=0 is
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not used to avoid divergence of Eq. (116) as v - 0. The general eigenvalue problem now

takes the form,
( an(vy) ap(vy) )
ag(v,) a,(v,)
Al,l so Al , Jmax +(Imax+1)
: ao(vim) = aO(vM) (118)
Ajmaxt(lmaxu; L1 Admax , dmax al(vl) al(vl)
) iz Vjma))

where Imax is the maximum number of Legendre polynomials considered in the problem.
The dimension of the matrix (dmax = jmax*(lmax+1)) is determined by the product of
the number of velocity grid points and Legendre polynomials used.

The source code for the program entitled ’'FOKKER.FOR’ that solves Eq. (118)
is listed in the APPENDIX. The solution of Eq. (118) yields dmax eigenvalues of which
three are least damped, i.e. smallest imaginary part: two have real frequencies at plus and
minus the phase velocity of the ion-acoustic wave and correspond to the forward and
backward traveling waves, respectively, and one has zero real frequency which
corresponds to the stationary entropy or zero frequency wave. Once the eigenvalues for
these three modes have been determined, the eigenvectors, perturbed distribution
functions f;, can be found and then used to calculate the transport coefficients k;, K,
K1, Mo and the ratio of specific heats I' for the plasma conditions of interest. The
accuracy of the eigenvalue method depends on the number of grid points (jmax), the

maximum velocity (vmax), and the total number of Legendre modes (Imax+1). The
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values of the quantities jmax, vmax, and Imax needed for convergence to a desired level
of accuracy depend on the plasma parameters ZT,./T; and kA;; and this dependence will
be discussed in the following sections.

Table II: The damping coefficients ¥, and y,,° for the ion-acoustic and entropy
waves in the collisional limit.

ZT/T; Yia Yent

1 0.9650 0.5000

2 0.8763 0.5453
4 0.7929 0.5882

8 0.7297 0.6207
16 0.6891 0.6418
32 0.6657 0.6531
48 0.6575 0.6576
64 ' 0.6532 0.6599

To guarantee that the results from the Fokker-Planck calculations approach the
proper collisional and collisionless limits, a brief overview of the complex frequency of
the entropy and ion-acoustic waves in the two limits will be discussed for comparison
with the calculations. The complex frequencies for the normal modes of the plasma are
found from the roots of the dielectric function (¢ = 0). This has already been done for
the quasineutral, collisionless limit ignoring electron Landau damping in Eq. (101), where
only ion-acoustic waves are supported by the plasma. The complex frequency of the ion-

acoustic wave for certain ZT,/T; values is listed in Table I. The dielectric function (¢ =
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1 + x, + x;) can be expressed in the quasineutral (o« -+ o), collisional limit by again
ignoring the effects of the electrons (x, = o2) and using the fluid limit expression for the
ion susceptibility, Eq. (44) from Chapter 2. The equation ¢=0 for the quasineutral, ion-
collisional limit is given by,

7T X, + —ix’
] - Ze 3 =0 (119

T, 3 2. 2 1 8 2.
x; + —i2p% + ¥%%x; - =5 + —p%’x, - =ix°

There are three complex roots to this equation for a given ZT,/T; ratio. Two roots are
X = (£w;, - iv;)/kY;, Where w,/kv; = (ZT/T)+(5/3))!2 is the ijon-acoustic
frequency and y;, is the collisional damping of the wave, and the third root represents
the entropy wave, where X; = (@Wgp - 1¥ep)/KentVi» @ene = 0 and v, is the damping of
the wave. Using Eq. (119), it can be shown that the collisional damping of the ion-
acoustic waves is proportional to k; A;; and is given by, v;, = v,,°k;,A;;. The damping

of the entropy wave is proportional to k.,

Ay withy = v,,°° = 3.9 yentok Aj;. The

ent
damping coefficients v;,° and y,,° are a function of the ratio ZT,/T; and the values of
the damping coefficients determined from Eq. (119) are listed in Table II for a few
representative ZT/T; ratios.

Although the primary motivation of this chapter is to develop a model for the peak
height asymmetry in the ion-acoustic Thomson spectrum in the intermediate collisional
regime, the new entropy wave results from the Fokker-Planck calculation are also

significant and deserve some discussion. The presence of an entropy wave in a plasma

has been studied to a limited extent by recent Thomson scattering experiments in



Table 11I: Damping and ion thermal conductivity for the entropy wave as 136
a function of k,,A;; for ZT,/T; ratios of 2, 4, and 8.

kenthii | Yent/KVi | Yent/KVi | Yen/kVi | ®ofkAy | 0o/kAy | xolkAy
ITST, | ZTT, |ZTJT; | ZTJT, | ZT T, | ZT T,
=2 —4 =8 =2 =4 =8
0.034 | 0.0702 0.0758 0.0800 3.87 3.87 3.88
0.067 | 0.133 0.146 0.151 3.71 3.71 3.72
0.133 | 0.232 0.253 0.263 3.32 3.34 3.34
0.266 | 0.370 0.395 0.411 2.75 2.78 2.80
0.398 | 0.459 0.487 0.504 2.39 2.44 2.47
0.532 | 0.526 0.552 0.569 2.14 2.20 2.24
0.798 | 0.620 0.645 0.660 1.83 1.91 1.96
1.064 | 0.688 0.708 0.721 1.64 1.74 1.81
1.33 0.740 0.760 0.772 1.51 1.61 1.69

moderate-density (n, = 1 x 10!7 cm3), low ionization/temperature ratio (ZT./T; = 1),
highly collisional plasmas (Ref. 127). The entropy wave forms from thermal level ion
temperature fluctuations in the plasma which are balanced by ion density fluctuations to
produce zero pressure. Since there are no pressure gradients, the wave is stationary and
has zero mode frequency. Because the entropy wave is driven by ion temperature
fluctuations, the damping of the wave is primarily due to the ion thermal conductivity of
the plasma. The entropy wave has a comparable damping rate to a corresponding ion-
acoustic wave of the same wave number in the collisional (kgA;; —> 0) limit, but in the
collisionless (Landau) limit (kgA;; = o0), propagating ion-acoustic waves are present with

finite damping, while the entropy wave cannot be supported. The theory developed prior
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Figure 44: Reduction in the damping of the entropy wave from collisional ’Braginskii’
theory when k. ,A;; = 1 for a ratio of ZT,/T;=4.

to the work presented in this thesis is based on the Braginskii transport equations and is
strictly valid only in the collisional or fluid limit (Ref. 127). The fluid theory breaks
down in the region of kgd; = 1, because the Braginskii transport coefficients are
modified due to finite collisional effects. Specifically, the damping of the entropy wave
will be modified from the fluid result in the region of kpA;; = 1 due to a reduction in
the ion thermal conductivity. The Fokker-Planck equation must be used to study this
phenomenon. Utilizing the eigenvalue approach to solving the Fokker-Planck equation,
the damping of the entropy wave is found as a function of k. ,A;; for ZT,/T; ratios of 2,

4, and 8 where k, is the wave number of the entropy wave. The numerical results are
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Figure 45: Reduction in the ion thermal conductivity x, for the entropy wave from
the collisional ’Braginskii’ limit when k., A;; = 1 for a ratio of ZT/T;=4.

listed in Table 111 and displayed graphically in Figure 44 for ZT /T, = 4. The damping
rate predicted by collisional theory, Eq. (119), is included in Figure 44 for comparison.
As shown by the figure, the computed damping of the entropy wave is equivalent to the

collisional theory of Eq. (119) for small k

enthii and approaches an infinite value as kA,

-> oo, but at a reduced rate from the collisional prediction. Since the electrons are
assumed collisionless, the damping of the entropy wave is due solely to the ion thermal
conductivity, and a reduction from the collisional damping rate implies the ion thermal
conductivity constant must decrease from the Braginskii value of 3.9 as k., A;; increases.

The transport coefficients k,, x,, u;, p, can be calculated from the perturbed distribution
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functions for the entropy wave using the modified closure relations (Eq. (80)) and Eq.’s
(85) - (89). It is found that only the transport coefficient x, is non-zero independent of
the value of ZT/T; and k., A;;. In addition, the viscosity coefficients u; and u, are
always zero for the entropy wave, since the wave does not propagate. Because x,
multiplies the V T term in the closure relation for the heat flux (q), it can be directly
associated with the ion thermal conductivity (x;). The computed ratio ky/k,A;; is given
in Table I1I for the ZT,/T; ratios 2, 4, and 8 and shown graphically in Figure 45 for
ZT,/T; = 4. As shown by the table and the figure, the ion thermal conductivity for the
entropy wave does indeed decrease from the Braginskii limit of 3.9 for small k. A;; as
KentAd;; increases.

The calculations for the entropy wave are currently limited to values of k. A;; <
1.33 because of the number of Legendre modes required for convergence of the computed

damping at larger values of k_ A.;. A three significant figure accuracy is obtained for the

damping of the entropy wave for k,,

A;; values of 0.034 and 0.067 with only 3 Legendre
modes while for k.,A;; = 1.33, 10 Legendre modes are needed for the desired accuracy.
As kgpeA;; = o, an infinite number of Legendre modes would be needed to compute the
correct answer. The requirement of a large number of Legendre modes in the collisionless
limit was similarly found by Epperlein e al. (Ref. 154) when considering electron-ion
collisional effects on ion-acoustic waves. Since a three significant figure accuracy requires

a velocity grid of = 100 points on the interval v/v; = {0,7}, the damping at k

ent)‘ii =
1.33 is derived from the eigenvalues of a 1000 x 1000 complex matrix. The damping of

the entropy wave at higher values of k., A;; would require the eigenvalues of even larger



140

matrices which is time prohibitive on the computers being used for these calculations.

Table 1V: Eigenvalue results for the complex ion-acoustic frequency with
ZT,/T,;=8. (ADI) results from Ref, 151 are included for comparison.
s

kighij ©;a/K;pV; Yia/KiaVi ©;g/KigVj Yia/KiaVi
(Eigenvaluc) (Eigenvalue) | (ADI) (ADI)
0.034 3.111 ) 0.0247 N/A N/A
0.067 3.116 0.0474 N/A N/A
0.133 3.133 0.0866 3.13 0.084
0.266 3.179 0.140 3.18 0.139
0.398 3.225 0.169 3.22 0.168
0.532 3.264 0.181 3.26 V). 181
0.798 3.319 0.185 3.31 0.185
1.064 3.353 0.179 3.35 0.179
1.33 3.375 0.172 3.37 0.172
1.597 3.391 0.166 3.39 0.166
2.128 3.410 0.155 3.41 0.155
2.66 3.422 0.147 3.42 0.146
3.192 3.430 0.141 3.43 0.141
3.724 3.436 0.137 3.43 0.136
5.32 3.445 0.128 3.44 0.127
10.64 3.456 0.116 3.46 0.115
21.28 3.461 0.109 3.47 0.103
42.56 3.464 0.106 N/A N/A
85.12 3.465 0.104 N/A N/A

The complex frequencies and perturbed distribution functions are calculated as a
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Figure 46: Damping of the ion-acoustic wave found from the solution of the Fokker-
Planck equation for ZT,/T;=8. Collisional *Braginskii’ theory and the collisionless
’Landau’ limit are included.

function of kyA; for ratio ZT/T, = 8 for the ion-acoustic wave. The
ionization/temperature ratio of 8 is chosen because a portion of the laser plasma
diagnosed in Chapter 4 lies in this parameter regime. The complex frequencies for the
ion-acoustic wave are listed in Table IV and the damping values are shown graphically
in Figure 46. The damping rates predicted from collisional theory, Eq. (119), and
collisionless theory, Table I, are shown in the figure for comparison. As shown by the
figure, the computed damping of the ion-acoustic wave is equivalent to the collisional
theory for small k;;A;; and approaches the collisionless Landau limit for k; A;; > . Also

included in Table IV are the complex frequencies computed for the same ZT /T, = 8
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ratio from Reference 151 using the (ADI) technique. For the common values of k; ..,
the real and imaginary parts of the complex frequency from the eigenvalue solution of
the Fokker-Planck equation and the (ADI) results of Ref. 151 agree to the third
significant figure. A precision of three significant figures is reasonable for these

calculations because experimental verification of the theory cannot typically be done to

better than 1% accuracy.

Real (f1)

-5 -4 -3 -2 -1 0 1 2 3 4 5
Ct)/kiaVi

Figure 47: Phase-amplitude normalized real part of the perturbed distribution function

for the ion-acoustic wave with ZT/T,=8 and k;,A;;=0.133 (dashes), 0.532 (dots), and
2.66 (line).

To calculate the peak height asymmetry in the ion-acoustic Thomson spectra for

a ratio ZT,/T, = 8 given the collisionality (k;,A;;) and the relative drift (U,), the

collisionally dependent transport coefficients k;, x,, &, #, and the ratio of specific heats
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Figure 48: Phase-amplitude normalized imaginary part of the perturbed distribution
function for the jon-acoustic wave with ZT,/T;=8 and k;,4;;=0.133 (dashes), 0.532
(dots), 2.66 (line).

I must be found. These quantities are obtained from the perturbed ion distribution
function for the ion-acoustic wave [eigenvector with corresponding eigenvalue (w;,-
iy;5)/k;av;] computed by the Fokker-Planck code. The phase-amplitude norﬁalizw real
and imaginary parts of the perturbed ion distribution function are shown in Figure 47 and
Figure 48, respectively, for the ratio ZT,/T;=8 and various values of k;,A;;. The values
of Ky, ¥, 1, Ky, and I are found with the distribution functions, Eq.’s (85) through
(89), and the closure relations Eq. (80), and are listed in Table V.

When used in Eq. (119) to find the complex frequencies of the ion-acoustic wave,

the values for x;, Ky, py, K9, and T from Table V must reproduce the real and imaginary




Table V: Collisionally dependent transport coefficients and ratio of
specific heats for the ion-acoustic wave with ZT,/T;=8.

144

kighii r K] ) # )
0.034 1.687 -9.57¢-4 0.1302 0.04312 0.01182
0.067 1.741 -.003796 0.2387 0.08175 0.03932
0.133 1.906 -0.01654 0.3843 0.1435 0.09845
0.266 2.252 -0.07964 0.5121 0.2089 0.1459
0.398 2.488 -0.1572 0.5490 0.2249 0.1387
0.532 2.636 -0.2252 0.5532 0.2197 0.1197
0.798 2.788 -0.3192 0.5351 0.1926 0.08677
1.064 2.860 -0.3763 0.5145 0.1657 0.06575
1.33 2.900 -0.4132 0.4989 0.1438 0.05227
1.597 2.925 -0.4387 0.4861 0.1265 0.04309
2.128 2.954 -0.4710 0.4692 0.1014 0.03168
2.66 2.968 -0.4914 0.4577 0.08440 0.02488
3.192 2.978 -0.5040 0.4498 0.07229 0.02050
3.724 2.984 -0.5139 0.4443 0.06301 0.01735
5.32 2.992 -0.5320 0.4342 0.04529 0.01181
10.64 2.998 -0.5531 0.4212 0.02328 0.005670
21.28 3.000 -0.5643 0.4148 0.01170 0.002749
42.56 3.000 -0.5695 0.4113 0.005848 | 0.001349
85.12 3.000 -0.5720 0.4096 0.002854 | .0006523

parts of the ion-acoustic frequency predicted by the Fokker-Planck code in order to be

self-consistent. The comparison for the imaginary part (damping) is shown in Figure 49

where the solid line (—) is the damping predicted by the Fokker-Planck code and the

circles (O) are the damping results predicted by Eq. (119) with the values for x,, x,,
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Figure 49: The ion-acoustic damping calculated from the modified fluid model
(circles) compared to the exact damping from the eigenvalue solution of the Fokker-
Planck equation (line) for ZT./T;=8.

1> Ko, and I' from Table V. The damping values frorﬁ the Fokker-Planck code and Eq.
(119) agree to the third significant figure, and agreement to the fourth significant figure
is obtained for the real part of the ion-acoustic frequency, which is not shown.

Since the complex frequencies of the ion-acoustic wave are accurately reproduced
over the entire range of ion-collisionality (k;,A;;) with the modified fluid equation
approach, the peak height asymmetry may be predicted accurately. This is again
accomplished with the general equation for the dynamical form factor (Eq. (93)) which
gives the spectral distribution in the ion-acoustic Thomson spectrum. The electron

susceptibility in the dynamical form factor is expressed by Eq. (92) and the ion
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Figure 50: Peak ‘height asymmetry variation with the ion collisionality (k;,4;;) for

fixed ZT,/T; = 8 and relative drift (k;,*U4)/k;,v, = 0.02.
susceptibility is given by Eq. (91). For an ionization/temperature ratio of ZT /T,=8, the
values of k;, ¥, py, py, and I' in the ion susceptibility are given as a function of
collisionality (k;,A;;) in Table V. The dependence of the peak height asymmetry for a
fixed relative drift (U,) on the collisionality can been seen in Figure 50, where the ion-
acoustic spectra predicted by the model are shown for ZT./T; = 8, (k;,*Uy)/k;,v, =
0.02 and values of k;;A;; = 0.133, 0.266, and 0.532. For all three cases, the Landau
damping contribution from the electrons is fixed while the collisional damping from the
ions gradually increases from 0.0866 at k;,A;; = 0.133 to 0.181 at k; A;; = 0.532 (see

Table IV for ion damping). As seen by Figure 50, the peak height asymmetry for the
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given relative drift decreases dramatically as the ion damping contribution increases over
the small range of collisionality represented in the figure. This dependence is expected
since the peak height asymmetry is due to a reduced/enhanced electron Landau damping
of the ion-acoustic waves from the relative drift. The reduction/enhancement in the
electron Landau damping occurs for the ion-acoustic wave that is traveling with/against
the relative drift respectively, and the amount of electron Landau damping compared to
the total damping (electron Landau + ion collisional) determines the sensitivity of the
peak height asymmetry to the relative drift. In other words, for a given change in the
electron Landau damping due to a relative drift, the total damping of the ion-acoustic
wave will be affected more for the cases where the electron Landau damping is a large
part of the total damping.

The modified fluid model developed in this chapter can now be applied to the ion-
acoustic Thomson spectra taken in Chapter 4. Figure 51 shows the Thomson data (dashed
line) from a position in the plasma (z = 200pm, r = -25pum). The measured quantities
at this position from the Thomson spectrum are electron density [n, = 2.4 x 101° cm™]
and sound speed [(c¢/v;) = 20]. Using the ionization balance model presented in Chapter
4, the sound speed measurement indicates an electron temperature of T, = 42eV and an
average ionization state of Z = 7.9. With k;,, = 180787 cm! for the Thomson
measurements (see Eq. (48)), o = l/k;,Apg = 5.6 and the ion-ion and electron-ion
collisionality given by equation (10) are k;,A;; = 0.705 and k;,A.; = 4.7, respectively.
The value for k;,A; allows the plasma at this point to be approximated by collisionless

electrons and the value of « allows for the assumption of quasineutrality. Since the
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Figure 51: Modified fluid model fit (solid line) to Thomson spectra (dashed line) from
a point in the plasma with axial position = 200um, radial position = -25um.

conditions of quasineutrality and collisionless electrons approximately hold, the modified
fluid model can be used to find the relative drift from the peak height asymmetry. The
best: fit from the modified fluid model to the Thomson spectrum with ZT /T; = 8 and
k;,A;; = 0.705 is shown in Figure 51 (solid line). The discrepancy in the peak widths
between the modified fluid model and the experimental data in Figure 51 is due to
broadening of the experimental peaks from instrument response, finite Ak;, collection,
and nonstationarity of the plasma quantities during the duration of the 266nm diagnostic
pulse. Assuming the relative drift is directed radially, the scattering geometry for the

Thomson experiments yields (k;,*Ug)/k;,v, = (Ug/v,) cos(67.5°) and the best fit is
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accomplished with a normalized value for the relative drift of (Uy/v,) = 0.029 or (U4/c,)

= 2.1. The second normalization shows the relative drift is on the order of the sound
speed. This value for the relative drift can be contrasted with the relative drift predicted
from the return current due to the radial temperature gradient measured in the plasma.
Combining equations (78) and (79) in Chapter 4, the normalized relative drift {U4/v,] due

to the radial temperature gradient (VT,) is given by,

Us _ on( vr \XVL | 9n o, 83VT, (120)
v, 640\ v,8.¢ ny,T, 640 T

e

where the approximation is made by substituting the values for (y/y0r¢) = 3.1 and x®

= 8 n.V.A; When ZT,/T;=8 (Ref. 147). The normalized relative drift predicted by Eq.

e’rei

(120) with VT, = 1400 eV/cm from the experimental data is (Uy/v,) = 0.00095 which
is a factor of 30 smaller than the relative drift given by the best fit of the model to the
peak height asymmetry of the data. The discrepanéy between the two values for the
relative drift could be a result of the drift not being directed radially at that point in the
plasma and/or mechanisms other than heat transport driving a relative drift such as laser
beam nonuniformities in the plasma generating beam. For example if the drift where
directed along the ion-acoustic wave, then the co0s(67.5°) = 0.38 factor used in
calculating (U,/v,) from the peak height asymmetry would be a factor of 3 smaller. The
discrepancies in the Thomson data presented here and at the end of Chapter 4 deserve
further investigation. A potential experimental configuration for performing the
investigation systematically is discussed in the next chapter.

In this chapter, a modified fluid model has been developed that can be used to
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measure the relative drift velocity between the thermal electrons and ions from the peak
height asymmetry in a Thomson spectra when given the values for the
ionization/temperature ratio ZT,/T; and ion-collisionality k;,A;.. The transport coefficients
and the ratio of specific heats that appear in the model are found as a function of ZT,/T;
and k;,4;; using the perturbed ion distribution functions from the eigenvalue solution of
the linearized Fokker-Planck equation. Since the modified fluid model correctly
reproduces the complex frequencies of the ion-acoustic wave for the entire range of ion-
collisionality (k;,A;;) in the quasineutral limit (oo = o) with collisionless electrons, the
model is self-consistent. The limitations for the current model are the need for
collisionless electrons (k;,A; » 1), quasineutrality (o » 1), and weak ion coupling (InA;;
» 1). When the quantities k;,A; and/or « are approximately < 1, the effects of electron
collisions and/or non-quasineutrality must be included through the Fokker-Planck equation
for calculating the transport coefficients and the ratio of specific heats. Also, the Fokker-
Planck equation does not account for the large angle scattering effects when the ions
become strongly coupled. The strongly coupled condition occurs when the ion-ion
Coulomb logarithm is of order 1 (InA; = 1). These conditions add complexity to the
solution of the Fokker-Planck equation which is beyond the scope of this dissertation.
Finally, the modified fluid model does not at this point accurately predict the ion-acoustic
spectrum near zero frequency where the entropy wave feature resides. With the
information obtained from the Fokker-Planck results regarding the entropy wave, it
should be possible to develop a model to reliably calculate the spectrum of the entropy

wave in the future.
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Chapter VI: Experimental configuration Il (peak asymmetry investigation)

In this chapter, changes will be proposed in the experimental configuration
described in Chapter 3 which will allow for a systematic investigation of peak height
asymmetries in collective Thomson spectra. As mentioned at the end of Chapter 4, the
peak height asymmetries in the laser-produced plasma studied in this dissertation do not
correlate as one might expect with the radial temperature gradients measured in the
plasma. Although the peak asymmetry in the data collected for Chapter 4 was
reproducible in some instances, it was not reproducible in general. A reproducible
asymmetry would suggest the possibility of relative drifts driven by beam nonuniformities
in the plasma generating beam. Since the peak asymmetry is not always reproducible, the
signal averaging techniques used for measurement of the electron density, sound speed,
and radial drift in Chapter 4 will not allow for acquisition of meaningful peak height
asymmetry data. Therefore, the collective Thomson scattering data must be collected on
a single shot basis for a proper analysis. At the same time, since there is a question
concerning the relationship between peak height asymmetry and the radial temperature
gradients in the plasma, Thomson scattering data from multiple radial points should be
collected simultaneously. The Thomson scattering collection system shown in Figure 17
of Chapter 3 only allows for single point measurements in the plasma and is obviously
incompatible with the requirements imposed by single shot measurement of the entire
radial temperature gradient. The conditions of single shot, multiple point data acquisition

can be satisfied by modifying the Thomson scattering collection optics, astigmatic



152

compensation of the spectrometer in the collection system, and replacing the one-
dimensional reticon detector on the back of the spectrometer with a two-dimensional CCD
detector.

The detector used for acquiring the collective ion-acoustic Thomson spectrum for
electron density, sound speed, and radial drift velocity measurements is an 1024-element
single-intensified reticon array (EG&G Model 1420UV). As discussed in the experimental
configuration of Chapter 3, this detector is mounted at the exit plane of a 0.85 meter
double monochrometer (SPEX Model 1404) which spectrally disperses the Thomson
scattered light onto the detector. The reticon detector has an overall quantum efficiency
(Q.E.)) = 10% at the Thomson scattering wavelength of 266nm. This means that for
every 10 photons incident per pixel element on the detector, 1 count is registered. For
a typical Thomson scattering shot, 70 counts are registered per pixel at peak maximum.
This implies that for an average single Thomson scattering plasma shot, assuming a Q.E.
=~ 10%, 700 photons are incident on each 2.5mm high by 25um wide element of the
detector. The signal-to-noise (S/N) of the Thomson peaks for a single shot is only =~ 3:1.
The relatively low signal-to-noise is the reason for integrating 10 shots per point
measurement in the plasma. By averaging 10 shots, the signal-to-noise is improved by
approximately a factor of \/10. The single shot signal-to-noise obtained with the reticon
detector would introduce an error of 30% in the peak height asymmetry measurements.
For this reason, the Princeton Instruments Intensified CCD detector (Model ICCD) is
chosen to replace the reticon detector for the peak height asymmetry measurements. The

specifications for the efficiency of this two-dimensional detector are,
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1 photoelectron (pe-) = 80 counts (121)
Q.E. of (pe-) generation from photons = 15% (at 266nm)

Since the CCD detector is made up of a two-dimensional grid of 25um x 25um detector
elements, 100 CCD pixels is equivalent to one reticon element. Using the previously

estimated 700 photons incident on each reticon pixel per plasma shot, an equivalent

Thomson experiment using the CCD detector would generate a signal,

Signal = 7700 photons/100 pixels/shot (122)

Since the Q.E. for photoelectron generation from Eq. (121) is 15%,

Signal = 105 pe-/100 pixels/shot (123)

Also from Eq. (121), 80 counts are generated for every photoelectron, therefore,

Signal = 8400 counts/100 pixels/shot (124)

The total noise (N-) associated with the signal of Eq. (124) is given by,

2 2 2
Ny = (N + Nig + N + N, (125)

where Ny, is the read out noise, Ngp is the photocathode noise, Ny, is the dark noise of
the CCD, and Nph is the photon shot noise. For the CCD detector, the read out noise is
Ngr = 1 count and for the intensifier in the gated mode, Ngg; = 0. The dark noise of
the CCD is given by, Np = 1 count/pixel/(second of readout time), and the photon shot
noise is equal to the square root of the number of photoelectrons generated, Nph = (# pe-
)12 From Eq. (121), 105 photoelectrons are generated for each equivalent reticon

element of the CCD detector during a Thomson spectrum acquisition, therefore the
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photon shot noise associated with the signal is, N, = (105)!/2 = 10.2 pe-. Since 80
counts are registered for every photoelectron, Ny = 820 counts/shot. Using 100 CCD
pixels in one shot with an average read out time of 1 sec, the total noise associated with

the Thomson signal on the CCD detector is given by,

N, = 1> + 0% + 1007 + 820% = 826 counts RMS (126)
The signal-to-noise obtained in the Thomson spectrum by the CCD detector under
equivalent conditions to that of the reticon detector is now found through the ratio of Eq.

(124) to Eq. (126),

_ Signal _ 8400 counts 10 (127)
N, 826 counts RMS

SIN
Therefore, the CCD will collect a single shot Thomson spectrum with a signal-to-noise
comparable to that obtained with the reticon detector by averaging 10 plasma shots. A
signal-to-noise of 10 will introduce an acceptable 10% error in the peak height asymmetry
measurements.

In addition to providing reasonable signal-to-noise levels in a single shot Thomson
spectrum, the CCD detector also solves the second problem associated with the peak
height asymmetry analysis, multiple point data acquisition. Since the detector is two-
dimensional, one axis of the detector can be used to record the spectral content of the
Thomson scattered light from a given point in the plasma, while the other axis can be
used to monitor the spatial information from multiple radial positions in the plasma with

an appropriately modified collection and imaging system.

The collection system from Chapter 3 must be modified slightly to allow for the
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Figure 52: Optical schematic of the collection system which couples the Thomson

scattered signal from the plasma onto the CCD detector for the peak height asymmetry

analysis.
acquisition of Thomson scattered light simultaneously from several radial positions.
Figure 52 shows the proposed collection system for the peak height asymmetry analysis.
The Thomson scattered light is collected with an 300mm focal length (f/12) lens and
imaged with a magnification of 5 onto the entrance slit of the spectrometer. The image
is rotated in between the lens and entrance slit by making a right angle turn through a two
mirror periscope. The rotation is necessary to align the image of the horizontal diay, “nstic
beam, and therefore the scattered light, parallel with the vertical entrance slit of the

spectrometer. The scattered light is also sent through a 266nm zero-order, half-wave

(A/2) plate before reaching the entrance slit. The half-wave plate is used to rotate the
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polarization of the scattered light to a vertical orientation which minimizes polarization
losses in the spectrometer. With this arrangement, different points along the entrance slit
correspond to different radial positions in the plasma along the scattered diagnostic beam.
The spectrometer disperses the light passing through the entrance slit onto the CCD
detector. Each point from the slit, which corresponds to a radial scattering point from the
plasma, produces a Thomson spectrum along the wavelength axis on the CCD detector,
and the Thomson spectrum from different radial points are stacked along the position axis
on the CCD detector as shown in Figure 52.

A magnification of x5 in the collection system is chosen to optimize the spatial
resolution of the CCD detector along the radial direction in the plasma, while at the same
time not affecting the wavelength resolution of the system. The 20um diameter diagnostic
beam is imaged to a 100um diameter beam at the 100pm wide entrance slit. The beam
image diameter matches the entrance slit width so there is optimum coupling of the
scattered light into the spectrometer. With a magnification of 5, each 25um high element
in the CCD detector corresponds to Sum in the radial direction in the plasma. The CCD
detector has about a 4 pixel cross-talk which means that a point image will appear to be
4 pixels in diameter on the detector. This cross-talk limits the spectral resolution in the
wavelength direction from 0.032 A/pixel to about 0.12 angstroms and limits the radial
resolution from Spm/pixel to about 20um. Because 100pum along spectral axis
corresponds exactly with the 4 pixel cross-talk, the 100um entrance slit is optimum for
use with the CCD detector. A larger entrance slit width would only produce additional

spectral broadening in the Thomson scattered peaks, and lower the resolution. Because
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the entrance slit width is fixed, an increase in the magnification of the collection system
would improve the radial position resolution of the CCD detector, but at the expense of
light collection efficiency due to imperfect coupling of the diagnostic beam image with
the entrance slit width. Since there is cross-talk, the amount of light integrated for each
radial Thomson spectra can be improved by grouping three rows of elements on the CCD
array as one radial position. As seen in Figure 52, the groups of three rows are separated
by two rows of elements and in this fashion several radial Thomson spectra can be
recorded at the same time with a center separation of 25um in the plasma.

The extent to which the CCD detector can be used to make two-dimensional
measurements of scattered wavelength vs. radial position in the plasma relies sensitively
on the imaging properties of the spectrometer. Most spectrometers only provide low
aberration image compensation from the entrance slit to the exit plane along the
dispersion or wavelength axis because aberrations along the axis orthogonal to the
dispersive direction do not affect spectral measurements. The spectrometer used in the
previous experimental configuration of Chapter 3 exhibits a significant amount of
aberration along the orthogonal axis. The source of the aberration can be identified from
the optical schematic for the spectrometer shown in Figure 53. The spectrometer is a flat-
field imager but due to off-axis reflections from the interior curved mirrors, the system
is astigmatic. The astigmatism causes the dispersion and orthogonal axes to have different
image planes. For reference, the dispersion axis is in the plane of the diagram and the
orthogonal axis points out of the paper. The astigmatism can be compensated for by

introducing a long focal length (10 meter f.1.) cylindrical lens into the optical path
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Entrance slit

Figure 53: Optical schematic of the spectrometer used for the Thomson scattering

experiments. A cylindrical lens is added to provide astigmatic compensation for two-

dimensional imagir-
between the final tui cor and image plane. When properly orientated, the lens will
only affect the position of the image plane for the orthogonal axis. The image plane for
the orthogonal axis can then be made to coincide with the position of the image plane for
the dispersion axis. The method for aligning the compensating lens is as follows; First,
the entrance slit is illuminated by the 253nm line from a mercury (Hg) calibration lamp
and the CCD detector is aligned with the image plane of the spectrometer. The CCD
detector coincides with the image plane when the measured spectral width of the 253nm

line is 4 minimum. Next, the entrance slit is replaced with a wire mesh with 100pm

diameter wires on a 150um center-to-center spacing. The mesh is illuminated with the
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253nm Hg line and orientated so the wires are parallel to both the dispersion and
orthogonal axis. The 253nm Hg line is used for alignment of the CCD detector and
compensating lens because of its proximity to the wavelength of the Thomson scattered
light at 266nm. Since the focal length of the compensating lens is wavelength dependent,
illumination with the 253nm line will allow for proper placement of the lens for use with
the Thomson scattered light. A narrow line width source, like the 253nm Hg line, must
also be used to eliminate spectral blurring of the two-dimensional mesh image at the CCD
detector. The distance of the mesh from the spectrometer is now changed until the
vertical wires from the mesh are brought into focus on the CCD detector. At this point,
the mesh is in the original position of the entrance slit. Figure 54 shows the two-
dimensional image of the mesh recorded by the CCD detector at this point. The vertical
wires which are perpendicular to the dispersion axis are in focus while the horizontal
wires are badly out of focus due to the astigmatism of the spectrometer. The
compensating lens is now inserted and rotated to a position which causes the smallest
change in the focus of the vertical lines. The proper rotation position insures that the
curvature axis of the cylindrical lens is aligned with the orthogonal astigmatic axis and
therefore will only affect the position of the orthogonal axis image plane. The position
of the orthogonal axis image plane is made to coincide with position of the dispersion axis
image plane by translating the compensating lens along the optical path until the
horizontal wires from the mesh come into focus. Since the compensating lens does add
some optical path length, the CCD detector position needs to be adjusted slightly to

produce the best two-dimensional image of the mesh. Figure 55 shows the improved
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Figure 54: CCD/Spectroeter imaging of IOOumwire meé wx 150;1111 .ai.. The
horizontal wires are not visible due to the astigmatism of the spectrometer.

image of the wire mesh from the astigmatic compensated spectrometer. Since the 100pm
wires are well resolved, the same resolution can be expected for the Thomson scattering
experiments when the entrance slit is in place. With the magnification of 5 in the
collection system, the effective resolution of the CCD detector in the radial direction in
the plasma will be better than 20pm.

As a final note, the wire mesh is rotated 45 degrees in Figure 55 for a reason.
Since the mesh is a periodic structure, the compensating lens will produce many image
planes due to diffraction from the mesh which are separated along the optic axis by a
Talbot cycle155. Only one of these image planes corresponds with the true geometrical

image which contains all of the spatial Fourier components of the mesh pattern. The other




OOm wire mesh with

150pm spacing.

image planes result from reconstructions of only a subset of the Fourier components. The
true geometrical image is found when a rotation of the mesh, which produces a change
in the spatial Fourier components, does not change the focus quality of the mesh wires
on the CCD detector. One way to avoid the Talbot cycle in aligning the system would
be to use a non-periodic structure like a cross-hair.

Other than the collection system changes mentioned here, the experimental
configuration and data acquisition procedures which were used to collect the electron
density, sound speed, and radial drift data in Chapter 4 will remain the same for the peak
height asymmetry experiments. Continued monitoring of the electron density and sound

speed is required for an estimation of the ion-ion mean free path (4;;). The ion-ion mean
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free path is a function of the electron density, ion temperature, and ionization state of the
plasma, see Eq. (10). The electron temperature and ionization state can be obtained from
the sound speed data by using the ionization balance model discussed in Chapter 4, and
since the laser plasma is collisional, see Chapter 4, the ion temperature is approximately
equal to the electron temperature. With the ion-ion mean free path, the collisionality
(k;gA;;) of the ion-acoustic wave is known. The theory presented in Chapter 5 can then
be used to analyze the peak height asymmetries since the theory is a function of the
collisionality (k;,A;,).

This chapter has presented the changes necessary in the collection system from that
described in Chapter 3 for an investigation of the peak height asymmetries in collective
Thomson spectra for the laser-produced plasma studied in this dissertation. The new
collection system allows for single shot, multiple radial point data acquisition. The data
must be collected on a single shot basis because there is some questions as to the shot-to-
shot reproducibility of the relative thermal drift between the electrons and ions. Multiple
radial point data acquisition is necessary for single shot measurements of the radial
electron temperature gradient (VI,). With the theory in Chapter 5, the peak height
asymmetry can be related to the relative thermal drift (Uy) between the electrons and
ions. The most probable source for the relative drift is a return current driven by a heat
flux (q,). Verification of the direct relationship between relative drift (U,) and the heat
flux (q,) through a consistency check (q, = -x°VT,) is a very important measurement to
make in a laser plasma. If there is not a self-consistent relationship between the relative

drift and the heat flux, then other mechanisms may be driving the relative drift, such as
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beam nonuniformities in the plasma generating beam. Nonuniformities or ’hot spots’ in
the plasma generating beam could be triggering the onset of thermal filamentation in the
plasma. The filaments are stochastic and tend to flicker on a time scale much shorter than
the 266nm diagnostic pulse width of 5ns. Therefore, the steep temperature gradients
produced in the filaments would not be directly detectable under the current Thomson
scattering conditions. But, the steep gradients may impulsively drive the relative drifts
that are producing the inconsistent peak height asymmetries in the Thomson spectra. This
hypothesis could be experimentally investigated by placing a random phase plate (RPP)
in the 1.06pum plasma generating beam. The introduction of the RPP would remove beam
nonuniformities, and should affect the peak height asymmetries if the hypothesis is

correct.
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Chapter VII: Conclusions

Although there exists no universal laser-plasma diagnostic, collective Thomson
scattering from ion-acoustic waves has proved to be the most convenient and useful
diagnostic for investigating the characteristics of the collisional, laser-produced, aluminum
plasma studied in this dissertation. Using the existing Thomson scattering theory reviewed
in Chapter 2, it was possible to accurately measure the two-dimensional electron density,
sound speed, and radial drift velocity profiles of the laser plasma. The measurements
were facilitated by generating a reproducible plasma in the three quantities being
measured. The reproducibility of the electron density, sound speed, and radial drift
velocity was verified in Chapter 4, and owing to this reproducibility, single point
Thomson measurements from different plasma shots could be correlated. This correlation
permitted the single boint Thomson measurements to be assembled into a two-dimensional
picture of the plasma. The reproducibility also allowed for signal averaging to be used
which improved the signal-to-noise of the Thomson spectrum from the low density
portions of the plasma.

Besides performing the most detailed measurements of a laser-produced plasma
to date, the Thomson scattering experiments of this dissertation!3%:157 are the first
done at a wavelength as short as 266nm. The ultraviolet diagnostic wavelength is
necessary to minimize the complicating effects of inverse bremsstrahlung and refractive
turning in the high density regions of the plasma that are being studied (n, =~ 1 x 1020

cm3). As was discussed in Chapter 4, a diagnostic wavelength of 532nm would have
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been unacceptable for performing Thomson scattering from the plasma studied in this
dissertation. A 532nm diagnostic beam would cause local heating of the plasma due to
inverse bremsstrahlung which would change the value for temperature dependent sound
speed being measured. Also, the refractive turning of a 532nm diagnostic beam would
limit accessibility in the plasma and reduce the amount of scattered light collected.
The two-dimensional data for the electron density, sound speed, and radial drift
velocity was used to benchmark the hydrodynamics code (LASNEX) in the parameter
regime represented by the plasma in this dissertation. The laser-plasma studied is
produced with a moderate intensity laser pulse = 2 x 10'! W/cm? so that instabilities
such as SBS and SRS that occur at higher irradiance levels do not develop. Instabilities
could complicate the data analysis and comparison with LASNEX and are therefore
undesirable for fundamental studies of this type. The laser-plasma is collisional and as
shown in Chapter 4, has an electron-ion mean free path (A,;) which is much shorter than
the temperature scale lengths (T,/VT,) measured from the Thomson scattering data. The
condition (A « T,/VT,) is necessary for the plasma to be in the Spitzer regime where
classical electron heat transport theory applies. Since LLASNEX is based on the
hydrodynamic fluid equations with classical transport coefficients, the computer model
should accurately predict the features of the plasma, and in fact it does. The values for
the electron density, sound speed, and radial drift velocity predicted by LASNEX and
measured through collective Thomson scattering all agree within a percent standard
deviation of 50%. This type of detailed comparison between a computer model and an

experiment are important for raising the confidence level in the accuracy of the computer
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model for predicting the characteristics for other similar plasmas.

A detailed investigation of a plasma allows one to gain a basic understanding of
the physical principles governing the plasma and its evolution. In Chapter 4, simple
models based on first principles where presented that demonstrate the self-consistency of
the experimentally measured electron density, ound speed, and radial drift velocity. For
example, the predicted radial sonic point in the plasma obtained from the steady state
equations of motion for the electrons and ions matches the experimentally measured radial
sonic point within the error bars of the experiment. The simple models presented not only
verify the accuracy of the experimental measurements self-consistently, but also show that
some aspects of a very complicated collisional laser-produced plasma can be predicted
without a intricate *black box’ code like LASNEX. When possible, a simplistic approach
to modeling a plasma is desirable beczuse it permits intuition to be used in understanding
the characteristics of the plasma.

Despite the self-consistency of the electron density, sound speed, and radial drift
measurements, the peak height asymmetries in the measured ion-acoustic Thomson
spectrum do not appear to correlate with the temperature gradients of the plasma. The
peak height asymmetry in an ion-acoustic Thomson spectrum is directly related to the
relative drift velocity (Uy) between the thermal electrons and ions. As discussed in
chapters 4, 5, and 6, the relative drift is usually thought to be a result of the return
current driven by heat transport due to a temperature gradient in the plasma. The first
step in a more thorough investigation of the relationship between the peak height

asymmetry and the measured temperature gradients involves extending the existing
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Thomson theory. As discussed in Chapters 2 and 5, the existing Thomson scattering
theory accurately predicts the peak height asymmetry in the ion-acoustic Thomson
spectrum in the collisionless (k;;A;; = o0) and collisional (k;,A;; = 0) plasma regimes for
a given relative drift (Uy) and ionization/temperature ratio (ZT,/T;). For plasmas of
intermediate collisionality (k;,A; = 1), like the one studied in this dissertation, a new
theory had to be developed to accurately predict the peak height asymmetry for a given
collisionality (k;,A;;), relative drift (U,), and ionization/temperature ratio (ZT,/T;). The
new theory is presented in Chapter 5 and is based on the fluid equations with modified
closure relations. The collisionally dependent transport coefficients (x;, x5, pt1, u,) and
ratio of the specific heats (I') that appear in the closure relations and the fluid equations
are found from the perturbed ion distribution function for the ion-acoustic wave. The
perturbed ion distribution function is in turn calculated from the eigenvalue solution of
the Fokker-Planck equation!>®. The new theory which is termed ’the modified fluid
model’, self-consistently reproduces the real and imaginary parts of the complex
frequency for the ion-acoustic wave for any value of k;,A;; and ZT_/T;, and will therefore
accurately predict the change in the damping of the ion-acoustic waves due to a relative
drift which produces the peak height asymmetry in the Thomson spectrum. The current
limitations of the modified fluid model are the electrons must be collisionless (k;,A; » 1),
quasineutrality must hold (c » 1), and the ions must be weakly coupled (InA;; » 1).
Armed with the modified fluid model, an experimental configuration is presented
in Chapter 6 that can be used to investigate the relationship between the relative drift

(Ug), measured from the peak height asymmetry, and the temperature gradient, obtained
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from the spatially dependent sound speed. The experiments will be performed on a single
shot basis with the Thomson scattered signal collected simultaneously from several
different radial positions in the plasma. The single shot detection is facilitated with an
intensified CCD camera and is necessary to eliminate any reproducibility issues related
to the plasma. The CCD camera is required for the simultaneous multiple point detection
of the Thomson signal which will be used to measure the spatially dependent sound
speed.

The results from the proposed peak height asymmetry experiments are expected
to address the issue of heat transport in a collisional, laser-produced plasma. If the
relative drift measurements do not correlate with the expected values from classical
transport theory, then some mechanism other than the return current driven by heat
transport may be causing the relative drift, for example nonuniformities in the plasma
generating beamn. One important reason for investigating the mechanisms which generate
a relative drift in the plasma is that the relative drift can drive ion-acoustic waves above
thermal levels by what is referred to as the relative drift instability. The ion-acoustic
waves could then act as a seeding mechanism for SBS. Regardless of the outcome, the
peak height asymmetry experiments will certainly result in the first detailed spatially
dependent relative drift measurements of a laser-produced plasma. This information can
be added to the electron density, sound speed, and radial drift measurements conducted
for this dissertation to yield even a greater understanding of the physics associated with

a laser-produced plasma.



169

Appendix: Code for eigenvalue solution of the Fokker-Planck equation

c***********************************************************************

c¢* Program: FOKKER.FOR

C*

c* This program computes the eigenvalues and corresponding

c* eigenvectors for the matrix solution of the ion Fokker-Planck

c* equation for a given collisionality (kA;;) and (ZT,/T,) ratio. The

c* matrix size is determined from the product of the number of

c* velocity grid points (jmax) used in the radial velocity direction

c* and the number of Legendre modes (Imax+1) used in the angular
c* velocity direction. The accuracy of the solution is dependent on

c* the size of jmax, lmax, and the maximum normalized radial velocity
c* (umax). Obviously, more accuracy requires a larger matrix and more
c* computation time. The actual values of jmax, Imax, and umax

c* required are a function of kA;;, ZT,/T;, and the user desired

c* accuracy.

C*

c* The input parameters for the program are listed in the user

c* supplied input data file (EIGEN.DAT). The definition of the

c* parameters are as follows:

C*

c* zteonti - ZT,/T; ratio

c* npoints -> number of kA;; points to be computed for the given
c* ZT,/T; ratio

c* akl(50) — array of kA,; points to be computed

c* jmax - number of velocity grid points between 0 and umax
c* Imax — number of Legendre modes to include in problem minus
c* one

c* duratio — allows for variable spacing of the velocity grid

c* points, but a constant spacing is highly recommended!
c* So set duratio = 1.0

c* fr -> limits the output to eigenvectors with an eigenvalue
c* of absolute real part greater than fr

c* fi - limits the output to eigenvectors with an eigenvalue
c* of absolute real part less than -fi

c*

c* The output is written to a series of files with filenames

¢* (B:\OUTPUT?.DAT), where the ? is replaced with A, B, C, and so on
c* for each successive output file. Each output file contains the

c* eigenvectors and associated eigenvalues for one kA;; point. The

c* eigenvectors are decomposed into the velocity dependent



c* coefficients of the Legendre modes from O to umax listed in order
c* from Legendre mode = O to mode = Imax. The eigenvector is only
c* written to the file if its eigenvalue is the lowest damped zero

c* frequency solution (entropy wave) or if the absolute value of the

c* real part of the eigenvalue falls between fr and -fi (ion-acoustic

c* wave).

C*

c* Other important variables for the code are:
C*

c* ar(600,600) - real part of the matrix to be solved

c* ai(600,600) -» imaginary part of the matrix to be solved

c* wr(600)  -» real part of the eigenvalues

c* wi(600) - imaginary part of the eigenvalues

c* zr(600,600) - column matrix of real part of eigenvectors

c* 2i(600,600) — column matrix of imaginary part of eigenvectors
c* ui(200) - radial velocity grid

c* The subroutines used from the SLATEC library:

c* CG(nm,n,ar,ai,wr,wi,matz,zr,zi,fvl,fv2,fv3,ierr)

c* CBABK2(nm,n,low,igh,scale,m,zr,zi)

c* CBAL(nm,n,ar,ai,low,igh,scale)

c* CDIV(ar,ai,br,bi,cr,ci)

c* COM2(nm,n,low,igh,ortr,orti,hr,hi,wr,wi,zr,zi,ierr)
c* CORTH(nm,n,low,igh,ar,ai,ortr,orti)

c* CSROOT(xr,xi,yr,yi)

c* PYTHAG(a,b)

c* The subroutines written for the error function calculation:

c* ERFUN(x)

c* GAMMP(a,x)

c* GAMMLN(xx)

c* GSER(gamser,a,x,glm)
c* GCF(gammcf,a,x,gln)

c* One additional note - All variables are in double precision!

C************************************#**********************************

REAL*8 ar(600,600),ai(600,600), wr(600),wi(600),fv1(600)
REAL*8 fv2(600),fv3(600),term,term1,akion,el,tl,ell,el2
REAL*8 zr(600,600),zi(600,600)

REAL*8 ui(200),fi0(200),r1(200),r2(200),fr,fi,du,erfun
REAL*8 usum,umax,zteonti,uarg,duratio, rtp, trp,tr2,fact
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REAL*8 akion1,ak,bk,damp,akl(50),dux
INTEGER r

eye=CMPLX(0.,1.)
rtp=SQRT(2./3.141 5926535)
trp=3.*SQRT(3. 1415926535)
tr2=3.*SQRT(2.)

c.. read input parameters

OPEN(10,file= *eigen.dat’)
READ(10,*) zteonti
READ(10,*) npoints
do 600 i=1,npoints
READ(10,*) akl(i)
600 continue
READ(10,*) jmax
READ(10,*) Imax
READ(10,*) umax
READ(10,*) duratio
READ(10,*) fr
READ(10,*) fi
CLOSE(10)

c.. set up velocity grid

du=1.
usum=.5
do 3 j=2,jmax
du=du*duratio
usum=usum+du
3 continue
du=umax/(usum+.5*du)
ui(1)=du
£i0(1) =exp(-.5*ui(1)**2)
do 5 j=2,jmax
du=du*duratio
ui(j) =ui(j-1)+du
uarg = .5*ui(j)*ui(j)
fi0(j)=exp(-uarg)
5 continue
dux=ui(2)-ui(1)

c.. set up maxwellian rosenbluth potentials
c.. rl=dH/dv ; r2=dG/dv
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do 71 j=1,jmax
rl() =2.*(rq:*ui(i)*ﬁ0(i)-erﬁm(ui(i)/ SQRT(2.)))/ui(j)**2
r2(j) =erfun(ui(j)/SQRT(2.)) + ri(j)/2.
71 continue

c.. begin main loop
DO 700 ii=1,npoints
akion =akl(ii)
c.. intialize matrix

do 91 j=1,jmax*(Imax + 1)
do 92 k=1,jmax*(Imax +1)
ar(j,k)=0.0
ai(j,k)=0.0
92 continue
91 continue

akion1=1.0
c.. set up matrix

do 20 1=0,lmax

el=float(l)

ell =el*(el-1.)

el2=(el+1.)*(el+2.)*(el-.5)/(el+1.5)

term=8.*3.1415926535/(2.*el+1.)

terml =4.*3.1415926535/(4.*el**2-1.)

do 30 k=1,jmax
r=1*max +k
t1=3.*fi0(k)/(2.**2.5%3.1415926535*akion)
ak =((1. +ui(k)**2)*ri(k)+2. *ui(k)*rtp*fi0(k))*fi0(k)/2.
bk = ui(k)*r1(k)*fi0(k)/2.

c.. diagonal term

ai(r,r)=ai(r,r) +tr2*fi0(k)/akion-trp*r2(k)*el*(el + 1.)/
&(2.*akion*ui(k)**3)

c.. side diagonal terms

IF (r-jmax.gt.0) ar(r,r-jmax) = ar(r,f-jmax) + (el*ui(k)/(
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&2 .*(el-1.)+1.))*akionl
IF (r+jmax.le.jmax*(Imax+ 1)) ar(r,r +jmax)=ar(r,r+jmax) +
&((el+1.)*ui(k)/(2.*(el+1.)+ 1.))*akionl

¢.. derivative term

IF (k.ne.1) THEN
IF(k.ne.2) THEN
[F(k.ne.jmax) THEN
[F(k.ne.jmax-1) THEN
ai(r,r-2)=ai(r,r-2) + trp*(ak/12. + bk/(12. *dux))/ (fi0(
&Kk-2)*akion*ui(k)**2*dux)
ai(r,r-1)=ai(r,r-1)-trp*(2. *ak/3. + 4. *bk/(3. *dux))/
&(fi0(k-1)*akion*ui(k)**2*dux)
ai(r,r) =ai(r,r) + trp*5. *bk/(2. *fi0(k)*akion*ui(k) **2*dux**2)
ai(r,r+ 1)=ai(r,r+ 1)-trp*(-2.*ak/3. +4.*bk/ (3. *dux))/
& (fi0(k + 1)*akion*ui(k)**2*dux)
ai(r,r +2)=ai(r,r+2)-trp*(ak/12.-bk/(12. *dux))/(f10(
&k +2)*akion*ui(k)**2*dux)
ELSE
ai(r,r+ 1)=ai(r,r+ 1)-trp*(-ak/4. + 11.*bk/(12.*dux))/(fi0(
&k + 1)*akion*ui(k)**2*dux)
ai(r,r)=ai(r,r) + trp*(5. *ak/6. +5.*bk/(3.*dux))/(fi0(k)*
&akion*ui(k)**2*dux)
ai(r,r-1)=ai(r,r-1)-trp*(3.*ak/2. + bk/(2. *dux))/(fiO(k-1)
& *akion*ui(k)**2*dux)
ai(r,r-2) =ai(r,r-2)-trp*(-ak/2. + bk/(3.*dux))/(fi0(k-2)*
&akion*ui(k)**2*dux)
ai(r,r-3) =ai(r,r-3)-trp*(ak/12.-bk/(12.*dux))/(fi0(k-3)*
&akion*ui(k)**2*dux)
ENDIF
ELSE
ai(r,r)=ai(r,r)-trp*(-11.*ak/6. +2.*bk/dux)/(fi0(k)*akion*
&ui(k)**2*dux)
ai(r,r-1)=ai(r,r-1)-trp*(3. *ak-5. *bk/dux)/(fio(k-1)*
&akion*ui(k)**2*dux)
ai(r,r-2) =ai(r,r-2)-trp*(-3. *ak/2. +4.*bk/dux)/(fi0(k-2)*
&akion*ui(k)**2*dux)
ai(r,r-3) =ai(r,r-3)-trp*(ak/3.-bk/dux)/(fi0(k-3) *akion*
&ui(k)**2*dux)
ENDIF
ELSE
ai(r,r-1)=ai(r,r-1)-trp*(ak/4. + 11.*bk/(12. *dux))/(fi0(
&Kk-1)*akion*ui(k)**2*dux)
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ai(r,r) =ai(r,r)-trp*(5.*ak/6.-5.*bk/(3. *dux))/ (fi0(k)*
&akion*ui(k)**2*dux)

ai(r,r+ 1) =ai(r,r+ 1)-trp*(-3. *ak/2. + bk/(2. *dux))/(fikk + 1)
&*akion*ui(k)**2*dux)

ai(r,r+2)=ai(r,r +2)-trp*(ak/2. + bk/(3.*dux))/(fil(k + 2)*
&akion*ui(k)**2*dux)

ai(r,r+3)=ai(r,r +3) + trp*(ak/12. +bk/(12.*dux))/(filk(k + 3)*
&akion*ui(k)**2*dux)

ENDIF

ELSE

ai(r,r) =ai(r,r)-trp*(11.*ak/6. + 2. *bk/dux)/(fi0(k)*akion*
&ui(k)**2*dux)

ai(r,r+ 1)=ai(r,r+ 1) + trp*(3.*ak + 5. *bk/dux)/(fi0(k + 1)*
&akion*ui(k)**2*dux)

ai(r,r+2)=ai(r,r+2)-trp*(3.*ak/2. +4.*bk/dux)/(fi0(k + 2)*
&akion*ui(k)**2*dux)

ai(r,r+3)=ai(r,r+3)+ trp*(ak/3. + bk/dux)/(fi0(k + 3)*akion*
&ui(k)**2*dux)

ENDIF

c.. f0onfl term (vprime < v)

je=0
do 40 j=1*jmax + 1,1*jmax+k

je=jc+1
fact=1.0
if(k.ge.4) then
if(jc.eq.1) fact=23./12.
if(jc.eq.2) fact=7./12.
if(jc.eq.k-1) fact=13./12.
if(jc.eq.k) fact=5./12.
else
if(k.ge.2) then
if(jc.eq.1) fact=3./2.
if(jc.eq.k) fact=1./2.
endif
endif

c.. h potential

ai(r,j) =ai(r,j)-t1 *term*ui(jc)*(ui(jc)/ui(k))**(1+ 1)
& *dux*fact ,

c.. g potential
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ai(r,j)=ai(r,j)-t1 *term1*ui(jc)**3*(ell *(ui(jc)/
&ui(k)**(1-1)-el2*(ui(jc)/ui(k))**(1 + 1)) *dux*fact

40 continue
¢.. f0onfl term (vprime > V)

je=k-1
if(k.eq.jmax) goto 900
do 42 j=1*jmax +k,(I+ 1)*jmax
je=jc+1
fact=1.0
if(k.le.jmax-3) then
if((jc.eq.k).or.(jc.eq.jmax)) fact=5./12.
if((jc.eq.k+1).or.(jc.eq.jmax-1)) fact=13./12.
else
if(k.le.jmax-1) then
if((jc.eq.k).or.(jc.eq.jmax)) fact=1./2.
endif
endif

c.. h potential

ai(r,j)=ai(r,j)-tl*term*ui(ic)*(ui(k)/ui(ic))**l
&*dux*fact

c.. g potential

ai(r.j) = ai(r,j)-t1 *term1*ui(jc)**3*(el1*(ui(k)/
&ui(jc))**1-el2*(ui(k)/ui(jc))**(1+2)) *dux*fact

42 continue
900 continue

c.. ion density term

IF(l.eq.1) THEN
do 44 j=1,jmax

fact=1.0
IF(j.eq.1) fact=23./12.
IF(j.eq.2) fact=7./12.
if(j.eq.jmax-1) fact=13./12.
if(j.eq.jmax) fact=>5./12.
ar(r,j)=ar(r,j) +2. *zteonti *ui(k) *fi0(k) *ui(j)



&**2*dux*fact*akionl/SQRT(2.*3.1415926535)
44 continue

ENDIF
30 continue
20 continue

WRITE(*,*) 'made it!’
¢.. find eigenvalues and eigenvectors

n=jmax*(lmax+1)
matz=0
call cg(n,n,ar,ai,wr,wi,matz,zr,zi,fv1,fv2 fv3,ierr)

c.. write solutions to output files
C.. write entropy wave eigenvector

OPEN(10,file="b:output’//char(64 +ii)//’ .dat’)
jsave=1
damp=-1el0
do 710 j=1,jmax*(lmax+1)
IF((ABS(wr(j)).1e.0001).and.(wi(j).gt.damp)) THEN
damp =wi(j)
jsave=j
ENDIF
710 continue
WRITE(10,*) ’ zteti = ’,zteonti
WRITE(10,*) ’ akion = ’,akion
WRITE(10,*) ’ Imodes = ’,lmax
WRITE(10,*) * umax = ’,umax
WRITE(10,*) ’ npoints = ’,jmax
WRITE(10,*) ’ eigenvalue = ’,wr(jsave),wi(jsave)
WRITE(10,*) ’ eigenvector - °
do 410 k=1,jmax*(Imax + 1)
kk =k-jmax*INT((k-1)/jmax)
WRITE(10,*) ui(kk),zr(k,jsave),zi(k,jsave)
410 continue

C.. write ion-acoustic eigenvectors

176
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DO 110 j=1,jmax*(Imax + 1)
IF((ABS(wt(j)).ge.fr).and.(ABS(wr(j)).le. ABS(f1))) THEN
WRITE(10,*) ’ zteti = ’,zteonti
WRITE(10,*) * akion = ’,akion
WRITE(10,*) ’ Imodes = ',lrnax
WRITE(10,*) * umax = ’,umax
WRITE(10,*) ’ npoints = ’,jmax
WRITE(10,*) ’ eigenvalue = ’,wr(j),wi(j)
WRITE(10,*) ’ eigenvector -’
DO 500 k=1,jmax*(Imax+1)
kk =k-jmax*INT((k-1)/jmax)
WRITE(10,*) ui(kk),zr(k,j),zi(k,j)
500 CONTINUE
ENDIF
110 continue
CLOSE(10)

700 continue

end

SUBROUTINE CG(NM,N,AR,Al, WR,WI,MATZ,ZR,ZI,FV1,FV2, FV3,IERR)
C***BEGIN PROLOGUE CG
C***DATE WRITTEN 760101 (YYMMDD)
C***REVISION DATE 881108 (YYMMDD)
C***CATEGORY NO. D4A4
C***KEYWORDS LIBRARY =SLATEC(EISPACK), TYPE=COMPLEX(RG-S CG-C),
C EIGENVALUES,EIGENVECTORS
C***AUTHOR SMITH, B. T., ET AL.
C***PURPOSE Compute the eigenvalues and, optionally, the
C eigenvectors of a complex general matrix.
C***DESCRIPTION

This subroutine calls the recommended sequence of

subroutines from the eigensystem subroutine package (EISPACK)
to find the eigenvalues and eigenvectors (if desired)

of a COMPLEX GENERAL matrix.

On INPUT
NM must be set to the row dimension of the two-dimensional

array parameters, AR, Al, ZR and ZI, as declared in the
calling program dimension statement. NM is an INTEGER

'sleNololokoleekoloRe




178

variable.

N is the order of the matrix A=(AR,Al). N is an INTEGER
variable. N must be less than or equal to NM.

AR and Al contain the real and imaginary parts, respectively,
of the complex general matrix. AR and Al are two-dimensional
REAL arrays, dimensioned AR(NM,N) and AI(NM,N).

MATZ is an INTEGER variable set equal to zero if only
eigenvalues are desired. Otherwise, it is set to any
non-zero integer for both eigenvalues and eigenvectors.

On OUTPUT

WR and WI contain the real and imaginary parts, respectively,
of the eigenvalues. WR and WI are one-dimensional REAL
arrays, dimensioned WR(N) and WI(N).

7R and ZI contain the real and imaginary parts, respectively,
of the eigenvectors if MATZ is not zero. ZR and ZI are
two-dimensional REAL arrays, dimensioned ZR(NM,N) and
ZI(NM,N).

IERR is an INTEGER flag set to

Zero for normal return,

10*N if N is greater than NM,

J if the J-th eigenvalue has not been
determined after a total of 30 iterations.
The eigenvalues should be correct for indices
IERR+1, IERR+2, ..., N, but no eigenvectors are
computed.

FV1, FV2, and FV3 are one-dimensional REAL arrays used for
temporary storage, dimensioned FV1(N), FV2(N), and FV3(N).

Questions and comments should be directed to B. S. Garbow,
APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY

OOOOOOOOOOO(‘)OOOOGOOOOOOOOOOOOOOOOOOOOOO

C***REFERENCES B.T. SMITH, ].M. BOYLE, J.J. DONGARRA, B.S. GARBOW,

C Y. IKEBE, V. C. KLEMA, C. B. MOLER, *MATRIX EIGEN-
C SYSTEM ROUTINES - EISPACK GUIDE*, SPRINGER-VERLAG,
C 1976.

C***ROUTINES CALLED CBABK2,CBAL,COMQR,COMQR2,CORTH
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C***END PROLOGUE CG

C
INTEGER N,NM,IS1,IS2,IERR,MATZ
REAL*8 AR(600,600), A1(600,600), WR(600), W1(600)
REAL*8 ZR(600,600),Z1(600,600),FV 1(600), FV2(600),FV3(600)
C

C***FIRST EXECUTABLE STATEMENT CG
IF (N .LE. NM) GO TO 10
[ERR = 10 * N
GO TO 50
C
10 CALL CBAL(NM,N,AR,ALIS1,IS2,FV1)
CALL CORTH(NM,N,IS1,IS2,AR, AL FV2,FV3)
IF (MATZ .NE. 0) GO TO 20
.......... FIND EIGENVALUES ONLY ..........
CALL COMQR(NM,N,IS1,IS2,AR,Al, WR,WI,IERR)
GO TO 50
.......... FIND BOTH EIGENVALUES AND EIGENVECTORS ..........
20 CALL COM2(NM,N,IS1,IS2,FV2,FV3 AR, AL, WR,WI,ZR,ZI,IERR)
IF (IERR .NE. 0) GO TO 50
CALL CBABK2(NM|,N,IS1,IS2,FV1,N,ZR,ZI)
50 RETURN
END

OO0 n

SUBROUTINE CBABK2(NM,N,LOW ,IGH,SCALE ,M,ZR,ZI)
C***BEGIN PROLOGUE CBABK2
C***DATE WRITTEN 760101 (YYMMDD)
C***REVISION DATE 881108 (YYMMDD)
C***CATEGORY NO. D4C4
C**KEYWORDS LIBRARY =SLATEC(EISPACK),TYPE=COMPLEX(BALBAK-S
CBABK2-C),
C EIGENVALUES,EIGENVECTORS
C***AUTHOR SMITH, B. T., ET AL.
C***PURPOSE Form the eigenvectors of a complex general matrix from
C the eigenvectors of matrix output from CBAL.
C***DESCRIPTION

This subroutine is a translation of the ALGOL procedure

CBABK2, which is a complex version of BALBAK,

NUM. MATH. 13, 293-304(1969) by Parlett and Reinsch.

HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 315-326(1971).

This subroutine forms the eigenvectors of a COMPLEX GENERAL
matrix by back transforming those of the corresponding

sNoNoNoNoNoNoNe!
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balanced matrix determined by CBAL.

On INPUT

NM must be set to the row dimension of the two-dimensional
array parameters, ZR and ZI, as declared in the calling
program dimension statement. NM is an INTEGER variable.

N is the order of the matrix Z=(ZR,ZI). N is an INTEGER
variable. N must be less than or equal to NM.

LOW and IGH are INTEGER variables determined by CBAL.

SCALE contains information determining the permutations and
scaling factors used by CBAL. SCALE is a one-dimensional
REAL array, dimensioned SCALE(N).

M is the number of eigenvectors to be back transformed.
M is an INTEGER variable.

ZR and ZI contain the real and imaginary parts, respectively,
of the eigenvectors to be back transformed in their first

M columns. ZR and ZI are two-dimensional REAL arrays,
dimensioned ZR(NM,M) and ZI(NM,M).

On OUTPUT
ZR and ZI contain the real and imaginary parts,
respectively, of the transformed eigenvectors

in their first M columns.

Questions and comments should be directed to B. S. Garbow,
APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY

***REFERENCES B.T. SMITH, J.M. BOYLE, J.J. DONGARRA, B.S. GARBOW,
Y. IKEBE, V. C. KLEMA, C. B. MOLER, *MATRIX EIGEN-
SYSTEM ROUTINES - EISPACK GUIDE*, SPRINGER-VERLAG,
1976.

C***ROUTINES CALLED (NONE)

C***END PROLOGUE CBABK2

C

'oXoXeloRokololokelolooloo oo ke ko ko ko RolololokoRko o ko Ro kol loNo R oo RO N

INTEGER LJ,K,M,N,II, NM,IGH,LOW
REAL*8 SCALE(600),ZR(600,600),Z1(600,600)
REAL*8 S



C

C***FIRST EXECUTABLE STATEMENT CBABK2
IF (M .EQ. 0) GO TO 200
IF (IGH .EQ. LOW) GO TO 120

C
DO 110 I = LOW, IGH
= SCALE(])
C LEFT HAND EIGENVECTORS ARE BACK TRANSFORMED
C IF THE FOREGOING STATEMENT IS REPLACED BY
C S=1.0E0/SCALE(). ..........

DO100J =1, M
ZR(L)) = ZR(1,)) * S
ZI(LY) = Z1(1,)) * S
100 CONTINUE

C
110 CONTINUE
C . FOR I=LOW-1 STEP -1 UNTIL 1,
C IGH+1 STEP 1 UNTILN DO -- ..........

1200014011 = I, N
=11
IF (I .GE. LOW .AND. I .LE. IGH) GO TO 140
I[F(I.LT. LOW) I = LOW - 1I
K = SCALE(I)
IF (K .EQ. I) GO TO 140

DO130J =1, M
S = ZR(LJ)
ZR(1J) = ZR(K,J)
ZR(K.J) = S
S = ZI(LJ)
ZI(L,)) = ZI(K,J)
ZIK,J) = S
130 CONTINUE
C
140 CONTINUE
C
200 RETURN
END

SUBROUTINE CBAL(NM,N,AR,AI,LOW,IGH,SCALE)
C***BEGIN PROLOGUE CBAL
C***DATE WRITTEN 760101 (YYMMDD)
C***REVISION DATE 881108 (YYMMDD)
C***CATEGORY NO. D4ClA

181
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C***KEYWORDS LIBRARY =SLATEC(EISPACK),TYPE=COMPLEX(BALANC-S
CBAL-C),

C

EIGENVALUES, EIGENVECTORS

C***AUTHOR SMITH, B. T., ET AL.
C***pURPOSE Balance a complex general matrix and isolate

C

eigenvalues whenever possible.

C***DESCRIPTION

sloNelokeRoloNoloReReReloReiokeleRoNoloRe ke loRe koo No koo koo olo ko NN Ke

This subroutine is a translation of the ALGOL procedure

CBALANCE, which is a complex version of BALANCE,

NUM. MATH. 13, 293-304(1969) by Parlett and Reinsch.

HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 315-326(1971).

This subroutine balances a COMPLEX matrix and isolates
eigenvalues whenever possible.

On INPUT

NM must be set to the row dimension of the two-dimensional
array parameters, AR and Al, as declared in the calling
program dimension statement. NM Is an INTEGER variable.

N is the order of the matrix A=(AR,Al). N is an INTEGER
variable. N must be less than or equal to NM.

AR and Al contain the real and imaginary parts,
respectively, of the complex matrix to be balanced.
AR and Al are two-dimensional REAL arrays, dimensioned
AR(NM,N) and AI(NM,N).

On OUTPUT

AR and Al contain the real and imaginary parts,
respectively, of the balanced matrix.

LOW and IGH are two INTEGER variables such that AR(1,J))
and AI(1,J) are equal to zero if
(1) I is greater than J and
2) J=1,...,LOW-1 or I=IGH+1,...,N.

SCALE contains information determining the permutations and
scaling factors used. SCALE is a one-dimensional REAL array,
dimensioned SCALE(N).
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Suppose that the principal submatrix in rows LOW through IGH
has been baianced, that P(J) denotes the index interchanged
with J during the permutation step, and that the elements

of the diagonal matrix used are denoted by D(1,J). Then

SCALE(J) = P(J), forJ = 1,...,.LOW-I
= D{,D J = LOW,...,IGH
= P(J) J = IGH+1,...,N.

The order in which the interchanges are made is N to IGH+1,
then 1 to LOW-1.

Note that 1 is returned for IGH if IGH is zero formally.

The ALGOL procedure EXC contained in CBALANCE appears in
CBAL in line. (Note that the ALGOL roles of identifiers

K,L have been reversed.)

Questions and comments should be directed to B. S. Garbow,
APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY

***REFERENCES B.T. SMITH, J.M. BOYLE, I.J. DONGARRA, B.S. GARBOW,
Y. IKEBE, V. C. KLEMA, C. B. MOLER, *MATRIX EIGEN-
SYSTEM ROUTINES - EISPACK GUIDE*, SPRINGER-VERLAG,
1976.

_“**ROUTINES CALLED (NONE)

***END PROLOGUE CBAL

aloNeloReloXoloNoRolokokoloRoRoloXoloNoRoNoKeKe!
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INTEGER 1,],K,L,M,N,JJ,NM,IGH,LOW,[EXC
REAL*8 AR(600,600),AI(600,600), SCALE(600)
REAL*8 C.F,G,R,S,B2,RADIX

LOGICAL NOCONV

THE FOLLOWING PORTABLE VALUE OF RADIX WORKS WELL ENOUGH
FOR ALL MACHINES WHOSE BASE IS A POWER OF TWO.

***FIRST EXECUTABLE STATEMENT CBAL
RADIX = 16

olENoNoNoNoN!

B2 = RADIX * RADIX
K=1
L=N
GO TO 100
C . IN-LINE PROCEDURE FOR ROW AND
C COLUMN EXCHANGE ..........
20 SCALE(M) = J



C

C

C

C

C

C

C

IF (J .EQ. M) GO TO 50

DO30I=1,L
F = AR(LJ)

AR(LJ) = AR(I,M)

AR(ILM) = F
F = Al(1,J)
AKLJ) = AI(I,M)
AI(LM) = F

30 CONTINUE

DO40I =K, N
F = AR{,I)

AR({J,I) = ARM,])

ARM,I) = F
F = AI(,D)
AI(LI) = AI(M,I)
AIM,I) = F

40 CONTINUE

50 GO TO (80,130), IEXC
.......... SEARCH FOR ROWS ISOLATING AN EIGENVALUE

AND PUSH THEM DOWN ..........

80 IF (L .EQ. 1) GO TO 280

L=L-1

.......... FOR J=L STEP -1 UNTIL 1 DO --

100 DO 120 = 1, L
J=L+1-J)
DO110I =1,L

IF (I .EQ. J) GO TO 110
IF (AR(J,I) .NE. 0.0E0 .OR. AI(J,I) .NE. 0.0EQ) GO TO 120

110 CONTINUE

M=L

IEXC =1

GO TO 20
120 CONTINUE

GO TO 140

.......... SEARCH FOR COLUMNS ISOLATING AN EIGENVALUE
AND PUSH THEM LEFT

130K =K + 1

..........

..........
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C

C

C

C

140

150

170

DO 170J = K, L

DO 150 =K, L

IF (I .EQ. J) GO TO 150

IF (AR(L,J) .NE. 0.0E0 .OR. AI(1,J) .NE. 0.0E0) GO TO 170
CONTINUE

M=K

[EXC = 2

GO TO 20
CONTINUE

e NOW BALANCE THE SUBMATRIX IN ROWS K TOL ..

DO 1801 =K, L

180

190

SCALE(l) = 1.0E0
.......... ITERATIVE LOOP FOR NORM REDUCTION ..........
NOCONV = FALSE.

DO2701 =K, L

eee

210

220
230

240

C = 0.0E0
R = 0.0E0

DO200J =K, L
IF (J .EQ. I) GO TO 200
C = C + ABS(AR(,)) + ABS(AI(J,I))
R = R + ABS(AR(,J)) + ABS(AI(L,)))
CONTINUE
....... GUARD AGAINST ZERO C OR R DUE TO UNDERFLOW
IF (C .EQ. 0.0E0 .OR. R .EQ. 0.0E0) GO TO 270
G = R/ RADIX
F = 1.0E0
S=C+R
IF (C .GE. G) GO TO 220
F = F * RADIX
C=C*B2
GO TO 210
G = R * RADIX
IF (C .LT. G) GO TO 240
F = F / RADIX
C=C/B2
GO TO 230
.......... NOW BALANCE ..........
IF (C + R) / F .GE. 0.95E0 * S) GO TO 270
G=10E0/F
SCALE(I) = SCALE(I) * F

185

........
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NOCONV = .TRUE.

DO 250J = K, N
AR(LJ) = AR(L)) * G
AI(LY) = AI(L)) * G
250 CONTINUE
C
DO260J =1,L
AR(,I) = AR(,) * F
AI(J,I) = AI(J,I) * F
260 CONTINUE

C
270 CONTINUE
C
IF (NOCONYV) GO TO 190
C
280 LOW =K
IGH =L
RETURN
END

SUBROUTINE CDIV(AR,AI,BR,BI,CR,CI)
C***BEGIN PROLOGUE CDIV
C***REFER TO EISDOC
C
C  Complex division, (CR,CI) = (AR,Al)/(BR,BI)
C***ROUTINES CALLED (NONE)
C***END PROLOGUE CDIV
REAL*8 AR,AI,BR,BI,CR,CI
C
REAL*8 S,ARS,AIS,BRS,BIS
C***FIRST EXECUTABLE STATEMENT CDIV
S = ABS(BR) + ABS(BI)
ARS = AR/S
AIS = Al/S
BRS = BR/S
BIS = BI/S
S = BRS**2 + BIS**2
CR = (ARS*BRS + AIS*BIS)/S
CI = (AIS*BRS - ARS*BIS)/S
RETURN
END

SUBROUTINE COM2(NM,N,LOW IGH,ORTR,ORTIL HR,HI,WR, W1, ZR,Z], IERR)
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C***BEGIN PROLOGUE COMQR2

C***DATE WRITTEN 760101 (YYMMDD)

C***REVISION DATE 890531 (YYMMDD)

C***CATEGORY NO. D4C2B

C***KEYWORDS  LIBRARY=SLATEC(EISPACK),TYPE=COMPLEX(HQR2-S
COMQR2-0),

C EIGENVALUES, EIGENVECTORS

C***AUTHOR SMITH, B. T., ET AL.

C***PURPOSE Compute the eigenvalues and eigenvectors of a complex
C upper Hessenberg matrix.

C***DESCRIPTION

This subroutine is a translation of a unitary analogue of the -
ALGOL procedure COMLR2, NUM. MATH. 16, 181-204(1970) by Peters
and Wilkinson.
HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 372-395(1971).
The unitary analogue substitutes the QR algorithm of Francis
(COMP. JOUR. 4, 332-345(1962)) for the LR algorithm.

This subroutine finds the eigenvalues and eigenvectors

of a COMPLEX UPPER Hessenberg matrix by the QR
method. The eigenvectors of a COMPLEX GENERAL matrix
can also be found if CORTH has been used to reduce

this general matrix to Hessenberg form.

On INPUT

NM must be set to the row dimension of the two-dimensional
array parameters, HR, HI, ZR, and ZI, as declared in the
calling program dimension statement. NM is an INTEGER
variable.

N is the order of the matrix H=(HR,HI). N is an INTEGER
variable. N must be less than or equal to NM.

LOW and IGH are two INTEGER variables determined by the
balancing subroutine CBAL. If CBAL has not been used,
set LOW=1 and IGH equal to the order of the matrix, N.

ORTR and ORTI contain information about the unitary trans-
formations used in the reduction by CORTH, if performed.
Only elements LOW through IGH are used. If the eigenvectors
of the Hessenberg matrix are desired, set ORTR(J) and
ORTI(J) to 0.0EQ for these elements. ORTR and ORTI are

Yo NoleToXeNoloNoRoRoloioRolotoReRoRoRoieReloioRoRoRedoRo RoRo Ro ke
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one-dimensional REAL arrays, dimensioned ORTR(IGH) and
ORTI(IGH).

HR and HI contain the real and imaginary parts, respectively,
of the complex upper Hessenberg matrix. Their lower

triangles below the subdiagonal contain information about

the unitary transformations used in the reduction by CORTH,
if performed. If the eigenvectors of the Hessenberg matrix

are desired, these elements may be arbitrary. HR and Hl

are two-dimensional REAL arrays, dimensioned HR(NM,N) and
HI(NM,N).

On OUTPUT

ORTR, ORTI, and the upper Hessenberg portions of HR and HI
have been destroyed.

WR and WI contain the real and imaginary parts, respectively,
of the eigenvalues of the upper Hessenberg matrix. If an
error exit is made, the eigenvalues should be correct for
indices IERR+1, IERR+2, ..., N. WR and WI are one-
dimensional REAL arrays, dimensioned WR(N) and WI(N).

ZR and ZI contain the real and imaginary parts, respectively,
of the eigenvectors. The eigenvectors are unnormalized.

If an error exit is made, none of the eigenvectors has been
found. ZR and ZI are two-dimensional REAL arrays,
dimensioned ZR(NM,N) and ZI(NM,N).

IERR is an INTEGER flag set to
Zero for normal return,
J if the J-th eigenvalue has not been
determined after a total of 30*N iterations.
The eigenvalues should be correct for indices
IERR+1, IERR+2, ..., N, but no eigenvectors are
computed.

Calls CSROOT for complex square root.
Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
Calls CDIV for complex division.

Questions and comments should be directed to B. S. Garbow,

APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
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C***REFERENCES B.T. SMITH, J.M. BOYLE, J.J. DONGARRA, B.S. GARBOW,

C Y. IKEBE, V. C. KLEMA, C. B. MOLER, *MATRIX EIGEN-
C SYSTEM ROUTINES - EISPACK GUIDE*, SPRINGER-VERLAG,
C 1976.

C***ROUTINES CALLED CDIV,CSROOT,PYTHAG
C***END PROLOGUE COMQR2

Change record:
89-05-31 Changed all specific intrinsics to generic. (WRB)

oloNoNoNoRoNo RO X!

INTEGER 1,J,K,L,M,N,EN,II,JJ,LL,NM,NN,IGH,IP1
INTEGER ITN,ITS,LOW,LP1,ENM1,IEND,IERR
REAL*8 HR(600,600), HI(600,600), WR(600), WI1(600)
REAL*8 ZR(600,600),Z1(600,600), ORTR(600),ORTI(600)
REAL*8 SI,SR,TI, TR, XI,XR,YI,YR,ZZI,ZZR,NORM,S1,S2
REAL*8 PYTHAG
C
C***FIRST EXECUTABLE STATEMENT COMQR2
IERR = 0
C o, INITIALIZE EIGENVECTOR MATRIX ..........
DO 1001 = I, N
C
DO 100J =1, N
ZR(1,J) = 0.0E0
ZI(1,J) = 0.0E0
IF (I .EQ. J) ZR(,J) = 1.0E0
100 CONTINUE
C e, FORM THE MATRIX OF ACCUMULATED TRANSFORMATIONS
C FROM THE INFORMATION LEFT BY CORTH ..........
IEND = IGH - LOW - 1
IF (IEND) 180, 150, 105

C . FOR I=IGH-1 STEP -1 UNTIL LOW+1 DO - ..........
105 DO 140 II = 1, IEND
I =1IGH - 11

IF (ORTR(I) .EQ. 0.0E0 .AND. ORTI(I)..EQ. 0.0E0) GO TO 140
IF (HR(1,I-1).EQ.0.0E0 .AND. HI(I,I-1).EQ.0.0E0) GO TO 140
C ......... NORM BELOW IS NEGATIVE OF H FORMED IN CORTH ..........
NORM = HR(L,I-1) * ORTR(l) + HI(,I-1) * ORTI(I)
IP1 =1+1




C

C

C

DO 110 K = IP1, IGH
ORTR(K) = HR(K,I-1)
ORTI(K) = HI(K,i-1)

110 CONTINUE

115

120

DO 130J = I, IGH
SR = 0.0E0
SI = 0.0E0

DO 115K =1, IGH
SR = SR + ORTR(K) * ZR(K,J) + ORTI(K) * ZI(K,J)
SI = SI + ORTR(K) * ZI(K,J) - ORTI(K) * ZR(K,J)
CONTINUE

SR = SR/ NORM
SI = SI/ NORM

DO 120K = I, IGH
ZR(K,)) = ZR(K,J) + SR * ORTR(K) - SI * ORTI(K)
ZI(K,J) = ZI(K,J) + SR * ORTI(K) + SI * ORTR(K)
CONTINUE

130 CONTINUE

140 CONTINUE

C

C

C

150

.......... CREATE REAL SUBDIAGONAL ELEMENTS ..........
L=LOW + 1

DO 1701 = L, IGH

155

LL = MIN(I+1,IGH)

IF (HI(LI-1) .EQ. 0.0E0) GO TO 170
NORM = PYTHAG(HR(,I-1),HI(L,I-1))
YR = HR(L,I-1) / NORM

YI = HI(L,I-1) / NORM

HR(1,I-1) = NORM

HI(I,I-1) = 0.0E0

DO155J=1N
SI = YR * HI(LJ) - YI * HR(L,J)
HR(L,J) = YR * HR(1,J) + YI * HI(L,J)
HI(1,J) = SI

CONTINUE
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DO160J =1, LL
SI = YR * HI(J,) + YI * HR(,I)
HR(J,I) = YR * HR(J,I) - YI * HI(J,I)
HIQ,I) = SI
160 CONTINUE
C
DO 165 J = LOW, IGH
SI = YR * ZI(J,I) + YI * ZR(.])
ZR(,1) = YR * ZR(J,]) - YI * ZI(J,1)
ZIJ,1) = SI
165 CONTINUE
C
170 CONTINUE
C v STORE RCOTS ISOLATED BY CBAL ..........
180 DO 2001 =1, N
IF (I .GE. LOW .AND. I .LE. IGH) GO TO 200
WR(I) = HR(L,])
WI(I) = HI(1,I)

200 CONTINUE
c -
EN = IGH
TR = 0.0E0
T1 = 0.0EO
ITN = 30*N
C .. SEARCH FOR NEXT EIGENVALUE ..........
220 IF (EN .LT. LOW) GO TO 680
ITS=0
ENMI1 = EN - 1
C . LOOK FOR SINGLE SMALL SUB-DIAGONAL ELEMENT
C FOR L=EN STEP -1 UNTIL LOW DO -- ..........

240 DO 260 LL = LOW, EN
L = EN + LOW - LL
IF (L .EQ. LOW) GO TO 300
S1 = ABS(HR(L-1,L-1)) + ABS(HI(L-1,L-1))
1 + ABS(HR(L,L)) +ABS(HI(L,L))
S2 = S1 + ABS(HR(L,L-1))
IF (S2 .EQ. S1) GO TO 300
260 CONTINUE
C o, FORM SHIFT ..........
300 IF (L .EQ. EN) GO TO 660
IF (ITN .EQ. 0) GO TO 1000
IF (ITS .EQ. 10 .OR. ITS .EQ. 20) GO TO 320
SR = HR(EN,EN)
SI = HI(EN,EN)




C

C

XR = HR(ENMI,EN) * HR(EN.ENM1)

XI = HI(ENMI,EN) * HR(EN,ENM1)

[F (XR .EQ. 0.0E0 .AND. XI .EQ. 0.0E0) GO TO 340

YR = (HR(ENMI,ENM1) - SR) / 2.0EQ

Y1 = (H(ENM1,ENM1) - SI) / 2.0E0

CALL CSROOT(YR**2-YI**2+XR,2.0E0*YR*Y1+XI,ZZR,ZZI)
IF (YR * ZZR + YI * ZZI .GE. 0.9E0) GO TO 310

ZZR = -ZZR

771 = -7Z1

310 CALL CDIV(XR,XI,YR+ZZR,YI+ZZI,XR,XI)

SR = SR - XR

SI = SI - XI

GO TO 340

.......... FORM EXCEPTIONAL SHIFT ..........

320 SR = ABS(HR(EN,ENM1)) + ABS(HR(ENM1,EN-2))

SI = 0.0EO

340 DO 3601 = LOW, EN

HR(I,I) = HR(LI) - SR
HI(L,I) = HI(LI) - SI

360 CONTINUE

TR = TR + SR

TI =TI + SI

ITS = ITS + 1

ITN = ITN - 1

.......... REDUCE TO TRIANGLE (ROWS) ..........
LP1 =L +1

DO 5001 = LP1, EN
SR = HR(LI-1)
HR(LI-1) = 0.0E0
NORM = PYTHAG(PYTHAG(HR(I-1,I-1),HI(I-1,I-1)),SR)
XR = HR(I-1,I-1) / NORM
WR(I-1) = XR
XI = HI(I-1,I-1) / NORM
WI(I-1) = XI
HR(I-1,I-1) = NORM
HI(I-1,I-1) = 0.0E0
HI(I,I-1) = SR / NORM

DO490J = I, N
YR = HR(-1,))
YI = HI(-1,])

192



ZZR = HR(l,J))

ZZ1 = HI(I,))

HR({-1,J)) = XR * YR + XI * YI + HI(LI-1) * ZZR
HI(I-1,J) = XR * YI - XI * YR + HI(L,I-1) * ZZI
HR(1,J) = XR * ZZR - XI * ZZI - HI(L,I-1) * YR
HI(1,J)) = XR * ZZI + XI * ZZR - HI(L,I-1) * YI

490 CONTINUE

C

500 CONTINUE

C

C

C

SI

= HI(EN,EN)

IF (SI .EQ. 0.0E0) GO TO 540
NORM = PYTHAG(HR(EN,EN),SI)
SR = HR(EN,EN) / NORM

SI = SI / NORM

HR(EN,EN) = NORM

HI(EN,EN) = 0.0E0

IF (EN .EQ. N) GO TO 540

IPl = EN + 1

DO 520) = IP1, N

YR = HR(EN,J)

I = HI(EN,J)

HR(EN,J) = SR * YR + SI * YI
HI(EN,J) = SR * YI - SI * YR

520 CONTINUE

........ INVERSE OPERATION (COLUMNS) ..........

540 DO 600 J = LP1, EN

560

XR = WR(J-1)
XI = WI(J-1)

DO580I =1,

YR = HR(l,J-1)

YI = 0.0EQ

ZZR = HR(LJ)

ZZ1 = HI(1,J)

IF (I .EQ. J) GO TO 560

YI = HI(1,J-1)

HI(1,J-1) = XR * YI + XI * YR + HI(J,J-1) * ZZI1
HR(1,J-1) = XR * YR - XI * YI + HI(J,J-1) * ZZR
HR(,J) = XR * ZZR + XI * ZZI - HI(J,J-1) * YR
HI(1,J)) = XR * ZZI - XI * ZZR - HI(J,J-1) * YI

580 CONTINUE
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DO 590 I = LOW, IGH

YR = ZR(1,J-1)

YI = ZI(LJ-1)

ZZR = ZR(L))

771 = ZI(L))

ZR(1J-1) = XR * YR - XI * YI + HI(J,J-1) * ZZR
ZI(1LJ-1) = XR * YI + XI * YR + HI(J,J-1) * ZZI

ZR(1,J) = XR * ZZR + XI * ZZI - HI(J,J-1) * YR
ZI(1,)) = XR * ZZI - XI * ZZR - HI(J J-1) * YI
590 CONTINUE
C
600 CONTINUE
C
IF (SI .EQ. 0.0E0) GO TO 240
C
DO 6301 = 1, EN
YR = HR(I,EN)
Yl = HI(ILLEN)
HR(I,LEN) = SR * YR - SI * YI
HI(LEN) = SR * YI + SI * YR
630 CONTINUE
C
DO 640 1 = LOW, IGH
YR = ZR(I,EN)
Yl = ZI(1,LEN)
ZR(ILEN) = SR * YR - S * YI
ZI(LEN) = SR * YI + SI * YR
640 CONTINUE
C
GO TO 240
C . A ROOT FOUND ..........
660 HR(EN,EN) = HR(EN,EN) + TR
WR(EN) = HR(EN,EN)
HI(EN,EN) = HI(EN,EN) + TI
WI(EN) = HI(EN,EN)
EN = ENMI
GO TO 220
C .. ALL ROOTS FOUND. BACKSUBSTITUTE TO FIND
C VECTORS OF UPPER TRIANGULAR FORM ..........
680 NORM = 0.0E0
C
DO 7201 =1,N
C
DO720) =1, N




NORM = NORM + ABS(HR(l,J)) + ABS(HI(I,}))
720 CONTINUE
C
[F (N .EQ. 1 .OR. NORM .EQ. 0.0E0) GO TO 1001
C e, FOR EN=N STEP -1 UNTIL2 DO - ..........
DO 800 NN = 2, N
EN = N + 2- NN

XR = WR(EN)
XI = WI(EN)
ENM1 = EN - |
C .. FOR I=EN-1 STEP -1 UNTIL 1 DO -- ..........

DO 780 II = 1, ENMI
[=EN-II
ZZR = HR(IL,EN)
ZZ1 = HI(L,EN)
IF (I .EQ. ENM1) GO TO 760
Pl =1+ 1

DO 740 ] = IP1, ENM1

ZZR = ZZR + HR(1,)) * HR({,EN) - HI(1,J) * HIJ,EN)
ZZ1 = ZZ1 + HR(1,J) * HI(J,EN) + HI({,J) * HR(J,EN)

740 CONTINUE

760 YR = XR - WR())
YI = XI - WI(I)

IF (YR .NE. 0.0E0 .OR. YI .NE. 0.0E0) GO TO 775

YR = NORM

770 YR = 0.5E0*YR
IF (NORM + YR .GT. NORM) GO TO 770
YR = 2.0E0*YR

775 CALL CDIV(ZZR,ZZ1,YR,YI,HR(I,EN),HI(I,EN))

780 CONTINUE
C
800 CONTINUE
C . END BACKSUBSTITUTION ..........
ENMI =N -1
C VECTORS OF ISOLATED ROOTS ..........
DO 8401 = 1, ENM1
IF (I .GE. LOW .AND. I .LE. IGH) GO TO 840
IPl =1+ 1

DO 820J = IP1, N
ZR(1,J) = HR(L,J))
Z1(1,J) = HI(,J)
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820 CONTINUE

C
840 CONTINUE
C MULTIPLY BY TRANSFORMATION MATRIX TO GIVE
C VECTORS OF ORIGINAL FULL MATRIX.
C FOR J=N STEP -1 UNTIL LOW+1 DO - ..........
DO 880 JJ = LOW, ENMI
J=N+LOW-JJ
M = MIN(-1,IGH)
C
DO 880 I = LOW, IGH
ZZR = ZR(1,))
7Z1 = ZI(LJ))
C

DO 860 K = LOW, M
ZZR = ZZR + ZR(1,K) * HR(K,J) - ZI(1,K) * HI(K.,J)
221 = 7271 + ZR(L,K) * HI(K,]) + ZI(I,K) * HR(K,J)
860 CONTINUE
C
ZR(1,)) = ZZR
ZI(1,)) = ZZ1
880 CONTINUE
C
GC TO 1001
C SET ERROR -- NO CONVERGENCE TO AN
C EIGENVALUE AFTER 30*N ITERATIONS ..........
1000 IERR = EN
1001 RETURN
END

SUBROUTINE CORTH(NM,N,LOW,IGH,AR,Al,ORTR,ORTI)
C***BEGIN PROLOGUE CORTH
C***DATE WRITTEN 760101 (YYMMDD)
C***REVISION DATE 881108 (YYMMDD)
C***CATEGORY NO. D4Ci1B2
C***KEYWORDS LIBRARY =SLATEC(EISPACK), TYPE=COMPLEX(ORTHES-S
CORTH-C),
C EIGENVALUES,EIGENVECTORS
C***AUTHOR SMITH, B. T., ET AL.
C***PURPOSE Reduce a complex general matrix to complex upper

C Hessenberg form using unitary similarity
C transformations.
C***DESCRIPTION

C
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This subroutine is a translation of a complex analogue of

the ALGOL procedure ORTHES, NUM. MATH. 12, 349-368(1968)

by Martin and Wilkinson.

HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).

Given a COMPLEX GENERAL matrix, this subroutine
reduces a submatrix situated in rows and columns
LOW through IGH to upper Hessenberg form by
unitary similarity transformations.

On INPUT

NM must be set to the row dimension of the two-dimensional
array parameters, AR and Al, as declared in the calling
program dimension statement. NM is an INTEGER variable.

N is the order of the matrix A=(AR,Al). N is an INTEGER
variable. N must be less than or equal to NM.

LOW and IGH are two INTEGER variables determined by the
balancing subroutine CBAL. If CBAL has not been used,
set LOW=1 and IGH equal to the order of the matrix, N.

AR and Al contair the real and imaginary parts, respectively,
of the complex input matrix. AR and Al are two-dimensional
REAL arrays, dimensioned AR(NM,N) and AI(NM,N).

On OUTPUT

AR and Al contain the real and imaginary parts, repectively,
of the Hessenberg matrix. Information about the unitary
transformations used in the reduction is stored in the
remaining triangles under the Hessenberg matrix.

ORTR and ORTI contain further information about the unitary
transformations. Only elements LOW through IGH are used.
ORTR and ORTI are one-dimensional REAL arrays, dimensioned
ORTR(IGH) and ORTI(IGH).

Calls PYTHAG(A,B) for sqri(A**2 + B**2).

Questions and comments should be directed to B. S. Garbow,
APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
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C***REFERENCES B.T. SMITH, J.M. BOYLE, J.J. DONGARRA, B.S. GARBOW,

C Y. IKEBE, V. C. KLEMA, C. B. MOLER, *MATRIX EIGEN-
C SYSTEM ROUTINES - EISPACK GUIDE*, SPRINGER-VERLAG,
C 1976.

C***ROUTINES CALLED PYTHAG
C***END PROLOGUE CORTH
C
INTEGER 1,J,M,N,I1,JJ,LA,MP,NM,IGH,KP1,LOW
REAL*8 AR(600,600),A1(600,60C),ORTR(600),ORTI(600)
REAL*8 F,G,H,FI,FR,SCALE
REAL*8 PYTHAG
C
C***FIRST EXECUTABLE STATEMENT CORTH
LA = IGH - 1
KP1 = LOW + 1
IF (LA .LT. KP1) GO TO 200

DO 180 M = KPI, LA
H = 0.0E0
ORTR(M) = 0.0EQ
ORTI(M) = 0.0EQ
SCALE = 0.0E0

C e, SCALE COLUMN (ALGOL TOL THEN NOT NEEDED) ..........
DO 9 I = M, IGH
90 SCALE = SCALE + ABS(AR(I,M-1)) + ABS(AI(I,M-1))

IF (SCALE .EQ. 0.0E0) GO TO 180
MP =M + IGH

C . FOR I=IGH STEP -1 UNTILM DO -- ..........
DO 100 IT = M, IGH
I=MP-1I

ORTR(I) = AR(I,M-1) / SCALE

ORTI(I) = AI(I,M-1) / SCALE

H = H + ORTR(l) * ORTR(I) + ORTI(I) * ORTI(I)
100 CONTINUE

G = SQRT(H)

= PYTHAG(ORTR(M),ORTI(M))
IF (F .EQ. 0.0E0) GO TO 103
H=H+F*G
G=GI/F
ORTR(M) = (1.0E0 + G) * ORTR(M)
ORTI(M) = (1.0E0 + G) * ORTI(M)
GO TO 105



C

C

C

C

C

C

103

105

110

120

ORTRM) = G
AR(M,M-1) = SCALE

........ FORM (I-(U*UT)/H) * A ..........
DO 130J =M, N

FR = 0.0E0
FI = 0.0E0

........ FOR I=IGH STEP -1 UNTILM DO -- ..........

DO 110 I = M, IGH
I=MP-II
FR = FR + ORTR(I) * AR(LJ) + ORTI(I) * Al(LJ)
FI = FI + ORTR(I) * AI(1,J) - ORTI(I) * AR(l,J)
CONTINUE

FR = FR/H
FI = FI/H

DO 1201 = M, IGH
AR(1,J) = AR(1,J) - FR * ORTR(I) + FI * ORTI(I)
Al(L,)) = AI(1)) - FR * ORTI(I) - FI * ORTR(])
CONTINUE

130 CONTINUE

140

150

........ FORM (I-(U*UT)/H)*A*(I-(U*UT)/H) ..........
DO 1601 = 1, IGH

FR = 0.0E0
FI = 0.0EQ

........ FOR J=IGH STEP -1 UNTILM DO -- ..........

DO 140 JJ = M, IGH
J=MP-JII
FR = FR + ORTR(J) * AR(l,J) - ORTI(J) * AL(L))
FI = FI + ORTR(J) * AI(I,J) + ORTI(J) * AR(,])
CONTINUE

FR = FR/H
FI =FI/H

DO 150 J = M, IGH
AR(L,J) = AR(1,J) - FR * ORTR(J) - FI * ORTI(J)
AI(L)) = AI(LL)) + FR * ORTI(J) - FI * ORTR(J)
CONTINUE

160 CONTINUE
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ORTR(M) = SCALE * ORTR(M)
ORTI(M) = SCALE * ORTI(M)
ARMM-1) = -G * AR(M,M-1)
AIM M-1) = -G * AIM,M-1)

180 CONTINUE

C
200 RETURN
END

SUBROUTINE CSROOT(XR,XI,YR,Y])
C***BEGIN PROLOGUE CSROOT
C***REFER TO EISDOC
C
C  (YR,YI) = complex sqrt(XR,XI)
C***ROUTINES CALLED PYTHAG
C***END PROLOGUE CSROOT
REAL*8 XR,XI,YR,YL,S,TR,TI,PYTHAG
C
C  BRANCH CHOSEN SO THAT YR .GE. 0.0 AND SIGN(YI) .EQ. SIGN(XI)
C***FIRST EXECUTABLE STATEMENT CSROOT
TR = XR
TI = X1
S = SQRT(0.5SEO*(PYTHAG(TR,TI) + ABS(TR)))
IF (TR .GE. 0.0EQ) YR = S
IF (TI .LT. 0.0EQ) S = -S
IF (TR .LE. 0.0EQ) YI = S
IF (TR .LT. 0.0EQ0) YR = 0.5E0*(TI/Y])
IF (TR .GT. 0.0EQ) YI = 0.5E0*(TI/YR)
RETURN
END

REAL*8 FUNCTION PYTHAG(A,B)
C***BEGIN PROLOGUE PYTHAG
C***REFER TO EISDOC
C
C Finds sqrt(A**2 +B**Z) without overflow or destructive underflow
C***ROUTINES CALLED (NONE)
C***END PROLOGUE PYTHAG
C
C
C
C Change record:
C  89-05-31 Changed all specific intrinsics to generic. (WRB)
C
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C- - e mmmmmemmmcmccmmcmemcmemeenan
C

REAL*8 A,B
C
REAL*8 P,Q,R,S,T
C***FIRST EXECUTABLE STATEMENT PYTHAG
P = MAX(ABS(A),ABS(B))
Q = MIN(ABS(A),ABS(B))
IF (Q .EQ. 0.0E0) GO TO 20

10 CONTINUE
R = (Q/P)**2
T = 4.0E0 + R
IF (T .EQ. 4.0E0) GO TO 20
S =R/T
P = P + 2.0E0*P*s
Q = Q*S
GO TO 10
20 PYTHAG = P
RETURN
END

c***********************************************************************

REAL*8 FUNCTION erfun(x)

c****************************************************#***#**************
c* Computes the error function of argument x

c*

c* The subroutines: GAMMP, GAMMLN, GSER, GCF are used in the

c* calculation of the error function.
C***********************************************************************

REAL*8 a,x,gammp

a=0.5

IF (x .LT. 0) THEN
erfun=-gammp(a,x**2)

ELSE
erfun=gammp(a,x**2)

ENDIF

return
end

REAL*8 FUNCTION gammp(a,x)



REAL*8 gamser,a,x,gln,gammct

IF ((x .LT. 0.0) .OR. (a .LE. 0.0)) PAUSE
IF (x .LT. (a+1.0)) THEN
call gser(gamser,a,x,gln)
gammp = gamser
ELSE
call gcf(gammcf,a,x,gln)
gammp = 1.0-gammcf
ENDIF

return
end

REAL*8 FUNCTION gammiln(xx)

REAL*8 cof(6),stp,half,one, fpf,x,tmp,ser,xx
DATA half,one,fpf/0.5,1.0,5.5/

cof(1)=76.18009173
cof(2)=-86.50532033
cof(3)=24.01409822
cof(4)=-1.231739516
cof(5)=.120858003e-2
cof(6)=-.536382¢-5
stp=2.50662827465
X =XX-0one
tmp=x+ fpf
tmp = (x + half)*log(tmp)-tmp
ser=one
DO 11 j=1,6
X=x+o0ne
ser=ser+cof(j)/x
11 CONTINUE
gammin =tmp + log(stp*ser)

return
end

SUBROUTINE gser(gamser,a,x,gin)

REAL*8 gamser,a,x,gin,gammin,ap,sum,del
PARAMETER (itmax=100,eps=13.0e-7)




gln=gammin(a)
IF (x .LE. 0.0) THEN
IF (x .LT. 0.0) PAUSE
gamser=0.0
return
ENDIF
ap=a
sum=1.0/a
del=sum
DO 11 n=1,itmax
ap=ap+1.0
del=del*x/ap
sum =sum + del
IF (ABS(del) .LT. (ABS(sum)*eps)) GOTO 1
11 CONTINUE
PAUSE ’A too large, ITMAX too small’
1 gamser =sum*exp(-x +a*log(x)-gln)

return
end

SUBROUTINE gcf(gammcf,a,x,gin)

REAL*8 gammcf,a,x,gln, gold,a0,al,bo,bl,fac,an,ana,anf,g
REAL*8 gammin
PARAMETER (itmax=100,eps=3.0e-7)

gln=gammin(a)
gold=0.0
ao=1.0
al=x
bo=0.0
bl=1.0
fac=1.0
DO 11 n=1,itmax
an=real(n)
ana=an-a
ao=(al +ao*ana)*fac
bo=(bl +bo*ana)*fac
anf=an*fac
al =x*ao+anf*al
bl =x*bo+anf*bl
IF (al .NE. 0.0) THEN
fac=1.0/al



g=bl*fac
IF(ABS((g-gold)/g) .LT. eps) GOTO |
gold=g
ENDIF
11 CONTINUE
PAUSE A too large, itmax too small’
| gammcf=exp(-x +a*alog(x)-gln)*g

return
end
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