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ABSTRACT

Quantum manifestation of classical chaos has been one of the extensively
studied subjects for more than a decade. Yet clear understanding of its nature
still remains to be an open question partly due to the lack of a canonical
definition of quantum chaos. The classical definition seems to be unsuitable
in quantum mechanics partly because of the Heisenberg quantum
uncertainty. In this regard, quantum chaos is somewhat misleading and
needs to be clarified at the very fundamental level of physics. Since it is well
known that quantum mechanics is more fundamental than classical
mechanics, the quantum description of classically chaotic nature should be
attainable in the limit of large quantum numbers. The focus of my research,
therefore, lies on the correspondence principle for classically chaotic systems.
The chaotic damped driven pendulum is mainly studied numerically using
the split operator method that solves the time-dependent Schrédinger
equation. Other chaotic systems such as the kicked rotator, the super-
conducting Josephson junction, the forced Duffing's oscillator and the
nonequilibrium three-body oscillator are also discussed in a quantum context.
For classically dissipative chaotic systems in which (multi)fractal strange
attractors often emerge, several quantum dissipative mechanisms are also
considered. For instance, Hoover's and Kubo-Fox-Keizer's approaches are
studied with some computational analyses. But the notion of complex energy
with non-Hermiticity is extensively applied. Moreover, the Wigner and
Husimi distribution functions are examined with an equivalent classical
distribution in phase-space, and dynamical properties of the wave packet in
configuration and momentum spaces are also explored. The results indicate
that quantum dynamics embraces classical dynamics although the classical-
quantum correspondence fails to be observed in the classically chaotic regime.
Even in the semi-classical limits, classically chaotic phenomena would
eventually be suppressed by the quantum uncertainty. The quantum
measurement problem appears to hold a part of key solution. It is also
suggested that time-varying uncertainty fluctuations can be used as a
quantitative measure of quantum chaos even in systems that have no
classical analogs.
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PREFACE

Ich sage euch:
man muss noch Chaos in sich haben,
um einen tanzenden Stern gebdren zu konnen,
Ich sage euch:
ihr habt noch Chaos in euch.

Yea verily, I say unto you:
A man must have Chaos yet within him,
To birth a dancing star.
I say unto you:
You have yet Chaos in you.

Friedrich Nietzsche's "Thus spake Zarathustra"

The universal concept underlying chaos in a quantum system has yet
to come. It is believed that quantum mechanics is one of the most
fundamental and important concepts in science today. Quantum theory
governs many laws of nature and innumerable phenomena in the world
around us. However, the so-called quantum chaos, unlike ubiquitous classical
chaos, not only fails to be observed, but lacks a canonical definition. My thesis
therefore treats mostly the damped driven pendulum as an example to search
and to examine quantum chaotic nature specifically in the context of the
correspondence principle. Our aim is focused on theoretical and numerical
investigation.

The basic picture of the thesis is mentioned in Chapters one and two.
These chapters deal with primary operational ideas. The numerical method
extensively used in this study is the split operator method that takes
advantage of easily used fast Fourier transforms. This method effectively
solves the time-dependent Schrodinger equation by treating the dependence
of the solution on kinetic and potential energies separately. Then the
expectation values of classically dynamical variables are computed and are
compared with classical values. Moreover the numerous distributions
representing different probabilities in phase-space are also considered since
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the quantum wave function physically represents a probability. One with
knowledge of non-relativistic quantum mechanics and advanced
mathematics should have little difficulty to follow the contents with the
exception of some numerical techniques. An able person who has no or little
facility in this field can learn these techniques in a moderate amount of time.

In Chapter three, numerical results from the pendulum with some
quantum distribution functional analyses of a simple harmonic oscillator are
presented. The Wigner and Husimi distributions as the quantum
counterparts of a classical probability distribution will be used to determine
the correspondence within the break time. The break time is identified in my
study as the time where the magnitude of the uncertainty is comparable to
the action taken by motions in phase-space. It will be interesting to see the
claim that the Husimi representation is better than the Wigner one solely for
the purpose of checking the correspondence. On the other hand, it will also be
of importance to observe whether or not the Husimi formulation is better to
describe quantum dynamics since it ignores some of dynamical information
through the Gaussian smoothing mechanism adapted. These discussions are
in Chapter three more specifically and also in Chapter four. A condensed
version of some of these materials in Chapter four has been published in
Phys. Rev. E. 47(6), 4552-5 (1993). o

At this juncture I must mention that a postulate is proposed in Chapter
four since there exists a seriously different nature between classical and
quantum mechanics. Quantum mechanics deals with a closed system,
whereas classical mechanics deals with an open system, especially when the
viscous damping is present. In the study, a possible consideration of this
classical dissipation into quantum mechanics, specifically into Schrodinger
equation, is suggested by using a term resembling the classical Rayleigh
energy. In this regard, the non-Hermitian nature is only mentioned, but not
thoroughly considered. Also, Kubo-Fox-Keizer approach to this problem is
reviewed, and Nosé-Hoover mechanics is briefly introduced as a more
general quantum mechanical description of the classical dissipation
mechanism.

In Chapter five, the comparisons with the kicked rotator and Josephson
junction are provided. Analyses of the well-known kicked rotator and the
Josephson junction problem as possible applications of the numerical method
are carried out in this chapter. A two-dimensional case is also considered in
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this chapter to see Heller's ‘scars’ left out by the quantum wave packet. A
possible non-equilibrium approach to many-body quantum system is also
considered using Gauss' principle of least constraint to modify linear
Schrédinger equation nonlinear.

The nature of the quantum uncertainty will be considered in Chapter
six to see if the correspondence can be better represented. In this regard, the
possible explanation to this matter will be established using a quantum
mechanical measurement problem like Schrodinger's cat paradox. Moreover,
the possibility that there might exist an unknown non-linear coupling term
in Schrodinger equation will be also considered for the case where quantum
chaos can naturally arise. This chapter concludes with possible future research
directions.

Again, this writing was intended initially to inform as many people as
possible in the field as well as in other fields of science. In writing this
dissertation, I have experienced pleasures of fostering a rough initial version.
On the other hand, I have also felt great difficulties, partly because of the
perpetual need to make a change, sometimes considerably, and partly because
of the inhibition of the many topics to be included. It is clear that the current
trend in search of quantum chaos includes a very wide range of topics and a
fair amount of new materials relating both to recent research and to earlier
results that have now become of greater significance. However, I found that
the reviews of all these materials were not possible, though some were
mentioned. Yet, the process of the writing was a challenging and fruitful
experience to me. I finally confess that any errata are strictly the results of my
own ineptitude and blind enthusiasm. Any misreadings of existing theories
or findings are the results of similar impulses, not malicious intent.

Some of the contents in this text have been either published or presented in
various means by the author. See University of California, Lawrence Livermore
Laboratory Reports: UCRL-JC-112292 (Dec. 1992); UCRL-JC-111922 (Sept. 1992); UCRL-
JC-111443 (Aug. 1992); UCRL-JC-111444-ABS (Nov. 1992); UCRL-JC-111446-ABS (Nov.
1992). See also Phys. Rev. E. 47(6), 4552-5 (1993); Bull. Am. Phys. Soc. 37(7), 1686 (1992);
Bull. Am. Phys. Soc. 37(3), 1108 (1992); Abstract for Physics Computing, 27 (June,
1991); Proceedings of the International Conference for Advancement of Science and
Technology (Korea Univ., Korea, Aug, 1993). For other materials by the author
related to this thesis topic, see UCRL-JC-112922 (Feb. 1993); Bull. Am. Phys. Soc. 38(1),
529, (1993).
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LIST OF SYMBOLS

The major symbols utilized throughout the paper are listed here to grasp the
contents better and to avoid confusion with other conventions.

e Angle of oscillation ¥, ¢ Wave functions

6  Angular velocity A, x Gauges

q Canonical position (angle) O  Operator

§  Canonical velocity U  Evolution operator

p Canonical momentum c Width of wave packet

m Mass of an oscillator P(ax) Power spectral density

7] Dimensionless (effective) mass V(t) Uncertainty product (A94p)
f External field strength U(t) Uncertainty product (4944)
Y Dimensionless field strength T Kinetic energy

b Damping coefficient % Potential energy

B Dimensionless damping coefficient A Lagrange multiplier

l Length of an oscillator I Characteristic action

[ External field frequency P.  Classical distribution

w, Natural frequency of oscillation P,  Wigner distribution

H, Unperturbed Hamiltonian P, Husimi distribution

Hpert Perturbing Hamiltonian C Correlation function

H. Classical Hamiltonian R Rayleigh energy

Hym Quantum Hamiltonian H Other Hamiltonians

Note that quantum mechanical operators and dimensionless variables are
designated by the superscript A and -, respectively.




CHAPTER 1

INTRODUCTION

In the beginning there was Apsu the Primeval,

and Tiamat, who is chaos.

Myths of the world

In this chapter, an introduction to the main focus of this thesis is described.
The dimensional issues of the model are also described with possible physical

configurations.



1-1. Introductory notes

In 1963, E. N. Lorenz published [1] his seminal numerical results from a
set of simple first-order differential equations for fluid convection with a
nonlinearity in the equations. The discovery he made in this completely
deterministic system of three equations was unstable irregular fluctuation
that never repeats itself in any predictable pattern. Lorenz had found
unpredictability which generates complexity: richly organized patterns, now
called chaos.

The word ‘chaos’ is defined as a state of utter confusion or disorder, a
total lack of organization or order in the Random House Dictionary [2]. Its
original meaning in Greek 'Khaos' is formless matter. Scientists adopted this
word to describe states of unpredictability and complexity containing a high
sensitivity to initial conditions.

At around the same time, the theory known as the KAM theorem (3]
emerged from Russia. It states that invariant surfaces formed by a trajectory of
integrable regions in phase-space continue to exist for most initial conditions
for systems perturbed away from the regions. These surfaces are isolated and
are called the KAM surfaces. As the perturbation strength increases, however,
a transition can occur in which the isolating KAM surfaces disappear and the
stochastic layers merge. With this theoretical support, nonlinear researchers
started looking on chaos problems such as Lorenz's hydrodynamical model
more and more.

As the 1960s went on, individual scientists made discoveries that
paralleled Lorenz's. Among them, M. Feigenbaum discovered the striking
universality lying under the several chaotic motions described by, for

example, the logistic map or Hénon map. More theoretical and experimental



realizations of the field have followed by seemingly much richer and broader
applications. Some have even called chaos as a revolutionary science heading
towards the twenty-first century. To make this more drastic, relativity and
quantum mechanics were put on to the equivalent level by a few of them. No
matter‘what one can say about the significance of this new field, there is no
doubt that it has provided and will provide a better understanding of nature.
However, as this classical means of chaos [4] develops further, many of
scientists, G. Casati and J. Ford, for instance, started speculating about the
possibility that quantum mechanics manifests classical chaos. In principle,
this quantum manifestation must be true since quantum mechanics is
known to be more fundamental. Therefore, a search for quantum chaos
becomes a new exciting challenge for quantum physicists. But permitting the
definition of classical chaos for that of quantum chaos, nobody is able to find
its existence. Since then, many investigators have contributed their own
definitions, and defended them with some supporters. Despite the fact that
there exists no canonical definition of quantum chaos, much of this research,
as once J. Ford puts it [5], is still recognized as an encouraging exploration and
innovation. However, the problems still have remained: the lack of a serious
research in the context of the correspondence principle, the roles of quantum
eigen-values, eigen-functions in quantum chaos in terms of classical
definitions. The right questions then we have to ask are the following: How
can we justify the ambiguity of classical means of chaos in the underlying
quantum mechanics? Does the randomness of eigen-values play a classical
chaotic role in quantum mechanics? It is these simple questions that brought
up this research project initially. The first question can be answered by rather
direct investigations using the quantum methods corresponding to classical

method for defining chaos and by studying their results. On the other hand, it



is difficult to establish the relationship between quantum eigen-values and
classical energy of a system. The only specific indication of certain chaotic
nature is in this case randomness. Since this randomness is necessary, but not
sufficient for chaos [6], this thesis will focus mainly on the first problem or
rather the first question.

Bearing this in mind, we will choose a model that is describable in both
classical and quantum mechanics. It is of better interest that a system contains
at least two control parameters for developing chaos. A good choice seems to
be a driven system that is simple and familiar enough to many people and
also has very small quantum energy level differences so that it may be
regarded as an almost classical system. It is quite possible there are many
systems that satisfy these conditions, but a proper choice seems to be the
driven pendulum. This model also contains the analog of a linearly driven
harmonic oscillator as a limiting case where the oscillation is small.

In the next section, the description of a dimensional issue is presented
with some possible physical configurations using the hydrogen atom. In
Chapter two, general features of the model and its numerical scheme are
discussed. Basic mathematical approaches to the problem are all contained in
this chapter. Quantum mechanical distributions are introduced in Chapter
three. Without dissipation, the correspondence is checked using numerical
results in this chapter. In Chapter four, a possible dissipation mechanism is
introduced and used. The results of calculations are also presented and
compared. As an application problem in Chapter five, we consider several
different models described in Chapter «wo. For example, a single parameter
system such as the kicked rotator and the Josephson junction will be
discussed in Chapter five. In addition, Nosé-Hoover approach to chaos is

introduced in this chapter. Finally, our conclusions are summarized in




Chapter six. Potential future directions are also indicated in the same chapter.

To see an overview of the study, the readers should consult Preface.

1-2. System of units with physical interpretation

As we will see in the next chapter, we are basically concerned with
classical equations of motion and Schrodinger equation for an externally
driven pendulum. The potential term contains an earth gravitational
constant g, and mass m, length I. The external field strength is f. Then

classically, the motion is described by (see Section 2-1 for complete details)

9= _P
0= - 12 ’ (1'13)
p=-mglsin @+ ml%fcos(wt)=mi%. (1-1b)
This reduces to
6= —% sin@ + fcos (wt) (1-1c)

If the damping torque, Fp = -b 0 , is present, this equation becomes

..__& ) ___.b_'
6 = ~-sinf + fcos (t) mlza' (1-1d)

Since b has the unit of [mass] [length]?/[time] in this case, Fp is the moment of

damping force (damping torque). Now, we divide both sides of equation (1-1a)




o TP o P
0'\/; m"—)o ml’

where the bar sign on the top of the variable means dimensionless. Here,
m’=ml«gl, so the term p/m’ becomes dimensionless. If we divide (1-1d)
or (1-1c) this time by (g/1), then we get

b.‘%:—sin e+f§cos(wt)-#'\/§(4/§é)_

This equation then finally reduces to the following closed form with
. T T T v
notations @ —4/8 e, 6 —Bg.

9 =- sin 5+ ycos (wt)—ﬁé , (1-2)

where 7=f L ,and B= b _,/L ; these are also dimensionless as well as the
g m 12

product ot since b contains m implicitly. This (1-2) is a classical dimensionless
equation of motion for a driven damped pendulum. Note that the mass term
drops out.

Quantum mechanically, if we ignore the dissipation due to damping,

the corresponding Schrodinger equation will be
E(" =§(P=[ﬁo+ﬁpert]¢r

I - 2
= o 12892+mg1(1 cos@)| @ - mlf Ocos(a)t)qo’ (1-3)



R

__.hz__.;a_z_+l mgl 8% | @ — ml’f 6cos(wt)p,
2m 12 392 2

- L‘i%a::)z%’"%‘“”z}w""’f('e)°°s("”)‘”' (1-4)

[ 42
= L_ibn_l_g;+% ma)},’xZ] ¢ — mif xcos(wt)e/

where x = 16, and @ = g/l with the assumption of a small angle oscillation.
Note that | has a unit of length, and so does 16; 6 is the angle measured in
radian.

Hence, if we ignore the perturbation term, - mif x cos(wt ), a unit of

energy becomes ha, (= h'\/;g— ) just like the case of a simple harmonic

oscillator. Hence it may be assumed that the quantized energy levels for small

angle oscillations, E,, would be ~n k4 /i& . If we carry this out further, we get

the dimensionless equation. We divide both sides of equation (1-3) or (1-4) by
hw,, and find

— " »
Ee= " om V3132 392

2 —
+ %1:4313/2 6° - I;'me (ﬁ) (1 6) cos (wt )]q) (15)

= . 0
where dimensionless E =i (§t_)' The wave function consequently needs to be

changed in the following form for completeness,

o6, t)= 2 Ay un(0) exp (HEnt/B)>9(0,¢) = 2 A, un(0) exp (—if,,t)'



where A, is an arbitrary complex number. Thus, by setting M = m (4 /-lg- ), we
finally get

92 _|_1(n)® M7 M2 5
i=r _[ Z{MlthJré{ . )0 5 igLBcos(wt ¢

= [__I__az_+lu 0 -,;-ﬂ— 0cos(cot)]

21 59* ) (1-6)

where the dimensionless u = [MI2/h] = [Hflz—] I 4/g 1. Hereafter we will change

the notation of ® = @, but @ means ¢. It is plausible from here to interpret

that the equation (1-3) becomes

do | 1 &2 ]
zat [ zua—e-f+u(l cos 6)— uyecos(wt)] (1-7)

where y=f1/g; it is also dimensionless as we have seen in the classical case,
since the dimension of [f] = [Time]2.

We will also come across another form of (1-3), namely a gauge
transformed versior, in the next chapter. After a gauge transformation, the

Hamiltonian becomes

= —-le—{'ﬁ +m-al;£sin (wt) )2 + mgl (1 - cos 9). (1-8)

This equation can then be reduced to a dimensionless equation by applying

the same techniques. Then, Eq. (1-8) yields the following dimensionless form:




H gm =-L{i-X;2+V,

[p+uﬂ-s‘““””]z +p(1-cosf),

—JL P+u7§5%§L4 +U(l-cosf), (1-9)
where the variables p = —i 5%, and parameters ® = a) = b\/— are also

dimensionless. Note that the product @ t = @t

. Then the dimensionless
gauges A — A, and ¥ > 7 are

~ sin (@ ¢
A=-py l ),
: )
~ sin (@t (1-10)
y=pyosnel)

A= K+ax =0
20
V'=’\7-—%_t£= p(1-cos@)-py@cos(t ), (1-11)

= p(1-cos@)-pybcos(wt)

yield the same dimensionless equation (1-7). The final form of Schrodinger
equation then becomes

aVl 1| _ sm(wt)
== = — 1-cos @ ]
T aa+u7 = W+u(l-cost)y. (1-12)




These equations (1-7) and (1-12) are equivalent dimensionless forms of
Schrodinger equation with parameters y, yand @ (denote o hereafter). Note
the relation ¢ = exp(i X)y.

In later chapters, the importance of the parameters y, ¥, @ will become
clear. Whenever we choose the combinatory parameter y = A, = any real
number, we are actually setting mly/gl / h = A such that the quantity (m i) is
being fixed since the values of g and h are constants. Here we call y the
effective mass since it is the parameter we will change numerically. So unless
it is specified, 4 always means the effective mass. However, it is easier to
think of u =m numerically by assuming g =1 =# =1 such that y=fand @, = 1.
This is so because final values of the combinations in u, ¥ are important
instead of the individual parameters contained in those such as m, | as far as
computers are concerned. In fact, this is numerically valid when we solve
Schrodinger equation in dimensionless form.

So whenever we set J to a certain number numerically, we are actually
setting the quantity (ml YI'). Let us briefly find out what the actual physical
situation might be when we set 4 = 1. Now first imagine a bob made of the
hydrogen atom. Then a unit effective mass may represent the hydrogen atom
swinging at the end of a rod of length 7.4 X107® meters [7]. That is to say, a
particle 100 times the mass of the H-atom swinging at the end of the same rod
would take a value of g = 100. On the other hand, this value (4 = 100) may
also be the H-atom moving at the end of 1.6 X106 meter rod. It is obvious
from these that more classical behavior is certainly expected for values u > 1.
This corresponds to usual physics of gravity such that the heavier a particle
(or longer the rod) is, the more valid classical mechanics is.

For an external perturbation strength, a similar analogy can be applied.

10




For instance, when u =1 for the H-atom, y=f1/g =1 means f=g/l.Sof=
1.3x105 (sec)2, which is in terms of energy mi?f~ 1.2 x10-3! Joules = 7.5
%1013 eV. Even when u = 100, ¥ = 1 represents the case where ~ 2.6 X100
Joules = 1.6 X10™11 eV. This is not a small energy, but it is an effective one in
the quantum mechanical treatment of gravity, which we will explain shortly.
As we increase the effective mass, the corresponding value of fwill increase
linearly.

In the case of the external field frequency, @ ~ 1150 Hz, which means
the period ~ 5.5 x10~* seconds when dimensionless @ =1 for u = 1 (H-atom).
For g = 100, @ ~ 247 Hz, which also means the period ~ 2.5 X102 seconds
when dimensionless ‘@ = 1. In both cases, The product o= AE as it shoula be
since @ = 1 corresponds to resonance.

Now let us interpret time scale. For @ =1 and g = 1 (H-atom), t =1sets
the real physical time to be 8.7 X 104 seconds. In other words, when we choose
the integration time step At = 0.01 in this case, a real physical time step
becomes 8.7 X 10~ seconds so that the number of time steps to reach the period
(5.5 % 104 seconds) would be about 628 (~ 100 X 27). But in a case of @ =1 and
u =100 (H-atom), t =1 sets the real physical time to be 4.0 X 10-3 seconds. By
the same token, we would need the same number of time steps to reach a
period (2.5 X102 seconds in this case) with 4 t =0.01 (At = 4.0 X105 seconds).
As a result, the size of a time step should be reduced to 2.2 X103 for u = 100 in
order to have the same physical time as for ¢ = 1. Therefore, we need a
smaller At for a larger y. It is clear that there are virtually many other
possible interpretations of this kind using different atoms. We will see more
physical examples of the pendulum consisting of the hydrogen atom in the

next chapter and Appendix therein.
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Nonetheless, the role of gravity in quantum mechanics appears as a
rather different situation: whenever h appears, m is also expected to appear.
In our case, 4 contains both implicitly. It is important from this point of view
that we must make an appropriate semi-classical approximation ( 4 — o, but
not just # — 0). We will come to this point again in the next chapter when
we study how to take a semi-classical limit.

It is interesting to see that the quantity [h \/:g_/i ] is really a small
number. It is about ~ 1.2%x103! Joules ~ 7.6 X10"13 eV when I = 7.4x10%
meters (This length was explained previously); @, = 1150 Hz. This is expected
because of a very small quantum effect on gravitation unless we deal with a
scale length of ~ 10735 m, the so-called the 'Planck length' Lp, where Ly =
(Gh/c3)1/2, where G is Newton's universal constant, and ¢ the speed of light. It
is at this scale of fundamental length in nature that we might expect to see
some quantum mechanical effects of gravity. The sizes of an atom and
nucleus which are in the order of 1071° m and 101> m, respectively should be
noted for comparison. To study this length scale, we need 1018 ~ 101° GeV, the
so-called the 'Planck mass' in unit of energy Mp, where Mp = (ic/G)1/2. This
value can be obtained from the uncertainty principle using Lp alone.
Nevertheless, it seems highly unlikely that this enormous amount of energy
will ever be achieved by us since the largest particle accelerator works in
present time at around 10° GeV.

In the case of a linearly driven harmonic oscillator, the dimensionless
Schrodinger equation is easily reduced to the following form by just

inspecting (1-12),

v a2, sm@)F ke
lat —2# Ia§+ﬂ7 5 V’+2€ v, (1_13)
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where the dimensionless variable & =x/a, ais a scaling length, and
dimensionless parameters y = h/malw, y=f/a02, ® =w/a,andt = tw, In
this case f has a unit of acceleration. With the use of atomic units, however,
the variations in g is not applicable. To take semi-classical limits, (1-13) makes
more sense than simply using atomic units in Schrodinger equation. Then
the similar physical interpretations can be conjectured.

In Chapter five, however, we shall consider a Josephson junction in
which the unit system is different since it involves electromagnetic units. But
the same basic principles and techniques apply, so we will not discuss these
units explicitly here. One can easily derive the appropriate scale factors from

the equation (2-12) in this case.
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CHAPTER 2

BASIC MATHEMATICAL AND NUMERICAL OPERATIONS

All stable processes
we shall predict,
all unstable processes

we shall control.

J. von Neumann ~1950

( F. Dyson's "Infinite in all directions")

The driven pendulum model is introduced in this chapter. The integration
methods for numerical simulations are discussed. Method of controlling
semi-classical limits is extensively investigated with two supplemental

appendices.
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2-1. Numerical models

In this section we discuss briefly the numerical models that will be
investigated throughout this study. Let us consider a quantum mechanical
system whose corresponding classical motion exhibits chaos. Time-
dependent, one-degree of freedom, non energy-conserving Hamiltonian
systems are perhaps simple to analyze numerically. The simplest but
physically real and general system is the forced quantum pendulum as shown

in the figure below.

F cos(wt)

V = mgl(1-cosq)

The canonical variable g is written here and hereafter instead of 6 used in the
previous chapter.

We are interested in a pendulum subjected to a continuous time-
dependent external perturbation, F cos(wt). The classical Hamiltonian of the
pendulum is not integrable; the pendulum's motion shows very rich classical
chaotic structures [1]. This classical pendulum is represented by the full

Hamiltonian without simplification in Section 1-2,
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p2

- + mgl (1 —cosq) — ml 2f g cos(at). (2-1)
m

This equation describes a pendulum in a gravitational acceleration g driven
by an external field of amplitude f with a frequency @. Here p is the angular
momentum, 4 is the angular position, m is the mass of the pendulum. The

length of the pendulum is I. The Hamilton's canonical equations of motion,

_4dH_ __P_
dp ml 2, (2-2a)
p=- ddl: = -mgl sing + mlzf cos(at ), (2-2b)

are then integrated to find a trajectory in phase-space for a given initial
condition by a fourth-order Runge-Kutta method that will be discussed in the
next section. If we combine these two equations, we get the usual classical

equation of motion for a pendulum.

q+§_sinq = j + @3 sin q = fcos(ak ). (2-2¢)

As we expected, the mass term drops out: so a feather and an iron ball would
swing in the same way classically in the absence of friction (air resistunce). In
the case of quantum mechanics they would move differently because of the
mass dependence in quantum mechanical dynamics of gravity [2]. Yet the
classical damping is not considered here.

For a quantum model, we shall be concerned with the classical
counterpart of our pendulum model. The corresponding quantum version

becomes a time-dependent Hamiltonian operator H qm= H gm( P, 9, t):
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Hom= (7 +m‘al;2'£8in (o) 2 + mgl (1 -cos §),

2m 12 R
- b ..A 2+A .
_J_zmﬂ{p F+v, (2-3)

where we recover an equivalent Hamiltonian to the classical one after a

gauge transformation with the following gauges.

)

IQJ

A-DA =A+22 =0, (2-4a)

Q)

q
=V - %;— =mgl (1 —cos §) —ml 2f § cos(ax), (24b)

4

Vov

where A = - ml2f sin(wt)/o and 2 = mi12f §sin(wt)/w. Here the single
component term, A, acting like a vector potential commutes with  and its
divergence vanishes; gauges in time-domain only. The reason to use the
gauge transformed Hamiltonian (2-3) instead of (2-1) in this case will become

clear in Section 2-3. As a check, we easily see that this transformation yields

+mgl (1 -cos) -mi2f Geos(at) =H q.  (2-5)
2mI?
So the classical Hamiltonian (2-1) is gauge invariant.

It is interesting to note that this transformation is also canonical since

phase-space volume is invariant, having a unit Jacobian. To see that, let P = p
2

-A=p+ —r%—-sin(a)t) and Q = g, then by definition,
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The nature of this gauge invariance is totally equivalent to the case
where a particle with a unit charge is moving under the influence of
electromagnetic vector potential A and scalar potential V. We will come back
and study extensively the Hamiltonian (2-3) which is our main focus in the
next section and in Chapter three.

We may also consider a quantum kicked rotator from this model. If
one assumes 2 discrete potential whose form takes a periodic delta function,
the Hamiltonian in (2-1) becomes that of the quantum kicked rotator [3]. In
this case there is no need for extra external field term (set f = 0). Then the
corresponding classical version produces the well-known standard mapping

equations [3].

2 ©0
4 7 + mgl (1 - cosq) Z 6(t-nT), (2-6)
m

n=—o0

where T is the kick period and the term, mgl, is the potential strength. We set
(mgl) = n, and I = mi2, then

2 [
Het s n-cosp) 3 (¢t-nT), (2-7)

n = -oco

Classically, using equations (2-2), one can derive the mapping
equations by expressing the time derivatives on the left-hand sides of

equations (2-2) as first-order differences, that is,

G AEYAD-q@) o A -pe)

2-8
At At 28)
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Discretizing q and p, we get a set of equations:

oq 9q

gn+1 =qn +PnAlt,

Prn+1=Pn _[_3_1_’!_] At =Pn —[ﬂ] At,
4=n 4=4 (2-9)

where dimensionless Pn+1 = p(t+At) and gn +1 = g(t+At). This transformation is

very close to an area-preserving transformation since the Jacobian of eq. (2-8),

1 —At%
a(Qn-&lrE!Ll)_ _ ﬂ 3 )
Wn,t) ~| 1 1+(atp R

for small A t. Then the mapping equation (2-9) becomes the standard mapping
equations with the integration taken over one period T, fromt=nTtot =
(n+1)T.

Pn+1=Pn — Ksingn ,

Gn+l =qn + Pn+1, (2-11)

For K =1 T >> 1 (sec Ch. 5), delicately interwoven chaotic motions appear in
phase-space which will be explained in the next section. It is also worth
mentioning that the equation (2-11) is different in the sign of K than the
usual standard mapping equations, also exhibiting chaos for K >> 1.

The Hamiltonian in (2-1) is also equivalent to the Hamiltonian for a
superconducting Josephson junction if a damping term is ignored in the

classical equation for superconducting phase ¢. Consider a current-driven
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shunted-Josephson-junction oscillator with microwave field and applied
~external dc current [4]. Then the superconducting phase ¢ is determined by
the junction capacitance C, the resistance R, and the potential difference V

across the junction.

C %ltl + ¥+ Icsing = Iyycos(aut ) + L, (2-12)
d
Fa2y, (2-13)

where I; is the critical current and Iyy is the microwave field amplitude at the
driving frequency @4. Combining (2-12) and (2-13), and expressing the result

in terms of dimensionless variables, we get
d2
;;%) + B%—? + -QZ sing = I' cos(RCPay t) + I'y,. (2-14)

In this equation, f = 2o/RCa,, @, = (2elo AC)12 , Iy = (2 eQ2/HC )4 and Iy =
(2 eQﬁ/hC w?,)lrf. This equation is exactly the same as a forced-damped
pendulum; for B =0, the Hamiltonian (2-13) is approximately the same. In a
later chapter, we shall investigate the case where B # 0. Classically, it is
interesting that current and voltage characteristics of this junction show the
strange phenomenon known as the 'devil's staircase' [5].

It is also obvious that the Hamiltonian (2-1) can be extended to a case
where we represent an ionic molecule as a Morse oscillator driven by strong
laser field simply by replacing the potential term, mgl (1 —cosj), with the
Morse potential, D [ 1 - exp ( -4x ) ]2, where D is the dissociation energy. For

example, a possible Hamiltonian is
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2
H=-217;-n-+D[1—exp(-ax)]2~d(xlf(t) cos(at), (2-15)
where x =71 -7y, 7, is the equilibrium separation of nuclei, d(x) is the
molecular dipole moment function, f(t) is the time-dependent pulse

envelope. We will consider a couple of these models mentioned here in

more details in Ch. 5.

2-2, Classical method of integration

A classical system with n-degrees of freedom can be described by a
Hamiltonian H whose canonically conjugate variables are g and py, k=1, 2,
-+, n. Its motion obeys the principle of least action [6] which is reduced to a set

of first-order differential equations in the form:

g _aH

dt _apk’

dpx oH (2-16)
dt T g

where H = H(q1, 92, * - * , 94, P1, P2, * * * + Pn; t), where H, in this case, is called
non-autonomous (time-dependent).

If these canonical Hamilton's equations of motion contain nonlinear
terms that either couple their variables together or have higher order than
quadratic in powers, chaotic motions often appear for some coupling strength.
These chaotic motions are represented in a mathematical space, so-called
phase-space, representing the conjugate variables as orthogonal coordinates.

For example, a time-dependent system such as a particle moving in one
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dimension forms a trajectory in a three-dimensional phase-space specified by
its position g, momentum p, and time £. In most cases, the time coordinate is
deleted to reduce a dimension of phase-space. Hence, phase-space becomes a
two-dimensional plane in this case. In general, a set of solutions, { gy, px }, k =
1, -, n, defines a trajectory in the 2n-dimensional phase-space.

However, integrating a nonlinear differential equation analytically is
usually not easy except for some special cases. It is practically impossible to
solve it analytically for many cases. Therefore, in those situations, we must
use a numerical integration method to determine system's behaviors in
phase-space. The method that is used in this study to integrate classical
equations of motion is a fourth-order Runge-Kutta algorithm [7].

The equations (2-a) and (2-b) (actually (1-2)) are integrated for q and
dg/dt to find phase-space trajectories in the following way: let X =f(t, x),

where x can be either g or p, then

x(bm)=xu)+%wl+ua+ma+pg

(2-17)
where
(F. = hf(t, x)
1 1
‘ F,= h f(t +3h, x +3F1)
= 1 1 -
F,= hf(t+3h x+3F) (2-18)
F,=hf(t+h,x+F)

Here, h is the integration step size. This contains the error terms in the Taylor
series up to and including the one involving k% A reduction of the order in a

differential equation can be easily achieved before the application of this




method. In our case of the pendulum, we simply set x =, for example. The

numerical stability will be discussed in the following sections in more details.

2-3. Quantum mechanical method of integration

In the quantum case, the motion of the pendulum is governed by the
time-dependent Schrodinger equation in dimensionless form: see Section 1-2.

From (2-3), we have with the effective mass u

i Y= Ay =lgy (P -R 4Ty, (219)

where A=- uy sin(ot )/ o, and V= y (1 - cos q). We have used and will use
the notation w, ¢ instead of @, ¢ unless specified. Now the gauge invariant

transformation, describing the corresponding classical system, yields

N7 VI PSSP

P =H 'my =13, (P A E+ VY,

1@, (1 -cosg)y’ - 74 cos(a)y’ (2-20)
2 ogz ¥ I UL mCOSIY -H T v

These equations are more difficult to analyze numerically than both the
classical differential equations of motion (2-2) and the Hamiltonian (2-19).
Here the usual dimensionless canonical momentum operator p = - i d/&] is
used with prescriptions p=7, g = 7 with A" =0,V' = u(l —cosq)-puvyq
cos(wt), and 2 = uyq sin(et )/ @, It is worth remembering that here u = [MI2/h),
is the effective mass that we are controlling throughout the study.

Now we use (2-19) to solve vy first, then we find the required solution

v'. The Schrodinger equation (2-19) is formally solved to give
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t

WG 1) = exp( - i f H m(®) dt') w14, 0). (2:21)

0

Then the split operator algorithm [8,9] splits H gm into f(p), V (), and results
in a discrete form with a time-ordering operator © as

t+At
v (qt+At) =eexp[—iI H(t") dt” 1 ygh),
4

=U (@, g, 1) wg.b) + 8 (AP, (2-22)

t +At ! +At { +4t
where U = exp| -J‘ (T/2) dt’ exp| - i .{; (V) dt’ exp{-i I: (TP) dat’

t +4t t +A4t
= exp| - ijt [‘—115@ + 'gsinmt V2] dt'} exp{ - i ]' p(1—cosq) dt’)

1 +41
. BYinot ) 2 -
x exp| J‘ [alﬂ-(p*' pSinet’) “ar, (2-23)

t +41 ! +4t

V(q) dt’} exp{ - ifr [{E]dt’}'

1 +A4t
=exp[—i£ [-El:—]dt’}exp[—ijl

=T, ) Y@ T@ 1) = Tetr Yerr Tett.

The effect of applying the kinetic operator T is evaluated in terms of discrete

Fourier transforms and the FFT algorithm [9], and the mechanical
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(kinematical) momentum, p+puysin(at)/® [10], where p is canonical
momentum. After all the integrals are evaluated analytically for more
accurate numerical results, the terms containing 4 and p in exponents are
applied to the wave function in coordinate and momentum space
respectively by forward and inverse FFT's. The normalization of the wave
function is checked in Appendix 2.1

The reason to use H g instead of H gm'(= H o1 ) is the following: if the
usual Hamiltonian (2-1), H o » is used instead in FFT's, Gibb's phenomena [11]
at the boundaries of a grid will have a significant effect on a result unless we
take very large coordinates (to be exact, infinitely large). Therefore, it was wise
to use the gauge transformation to preserve periodic nature of the potential
whose Fourier transformation only requires one full period of the periodic
potential. This in turn allows one to shorten computer time considerably.
Their final form after analytic integrations are

R . p?

T =exp[ -1 4—‘;&]

X exp [—i%%{sh\(m t) ________sin(aa:At) - cos(wt )(c______os(mAt)-l ) ]

Xew[—i%-z‘-‘—aé{gi-sin(z t)-—-—-——-°s(2“"“) L cosw t)____—s’“(z“"“) }]
(2-24)
Y =exp| ~i u(1-cosq)4t ]. (2-25)

We immediately notice that the operator T has a part that does not depend
on either p or 4. Therefore, in actual computations, we use operators Teff and

?eff to save computation time since T operations must be done twice.
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&) = exol - i P2

X exp [—i %—%{sin(w t) E—m-%’ﬁ)- - cos(wt )(EOE‘»U__%})_—_I_)” ,  (2-26)

Y eff (9) = expl - i p(1-cosq)At ]

X exp [-—i ZEaf); {%t- -sin(2ot }_____cos(ch)ft)-l - cos(2wt )————Sin(f::m) ] . (2-27)

It is also simple to see that the operator U = exp( - i Iﬁqm dt’) is unitary:
ut =[exp(-ij§4mdt7]+

= exp(i [Hymtdt) = exp(i [Hymdt) = U, (2-28)

since H qm is Hermitian. The notation Ut means the transpose of u-.

However, because of the gauge transformation, the required solution

v’ (g, ), describing the same classical physics [12] and corresponding to H qm’s
should be the following:

V'@ H=expli X (4 D]Wg, 1), (2-29a)
=expliX (4, O] exp( - i [Hymdt')¥(q, 0),

= exp| iuyq sin(@)/o 1exp( - i [Hymdt') ¥4, 0). (2-29b)

Then the expectation values of an observable O can be calculated.
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<O0>=<y(g 1 0ly@gb>
=<%'|(ﬁ+)"0(ﬁ)“|%'>, (2-30)
where ¥, = ¥(4,0) = exp[ i'i (9. 0)] v(g, 0) = y(g, 0), t = nAt and n is the number
of integration steps. We are interested in canonical variables < gq(t) >, < p(t) >
for expectation-value phase-space. For < g(t) >, we have
<qt)>=<y’@q ! q1y’@ 1)>, (2-31a)

=< y(q t)! exp[ i i(q, t)] q exp[ i 'X\(q, ] ly@ b)>,

=<y@t)lqly@t)>, (2-31b)
since [ 9, exp{ —i Z (3, )} ] = 0; they commute. For < p(t) >, we have

<pt)>=<y’@@t)ply’@gt)>, (2-32a)

=<y ) expl~iT (g ] (- i% yexpliZ 4 0] 1w H>,

= <y )1 expl~i% @ D] expliT @4, H] (- i-a% ) ly(g >

2 2 o7
+<y(g t) exp[-iX (g t)]exp[iX (g, ¢)] % Ly (g, t)>,

”~

oy
=<y@iply@t+<ygbl 'a-q— Ly (g, t)>,

28




=<y(g )l ply(g t)>+ py sin(at)/o. (2-32b)

From these expressions we readily notice that only the canonical momentum
is manifestly gauge dependent in the sense that its expectation value depends
on the particular gauge chosen while the kinematical momentum and the
probability flux are gauge invariant.

Therefore, the required expectation values can be computed for a given
initial wave function y(g, 0). The following minimum uncertainty Gaussian

wave packet is used as an initial wave function.

_ 1 172 (q - ‘70)2 .
wa.0) = (7:7] expl -5+ il ) (2:33)

where < g (0)> = g,, < p(0)> = p, and ois the Gaussian width. The final form of
a solution is just (2-29a). It is of interest to note that the solutions
corresponding to the classical simple harmonic motion can be analytically
obtained using this initial function.

Computation of the power spectrum is also carried out using the FFT
algorithm. A discrete time series < g(t) > from (2-31) (or, < p(t) > from (2-32))
is windowed by a Hanning window function [8]. Then the power spectral

density P(ay) with frequency @ becomes

P(a) =lg(a) 17,

exp(iaxt ) <q(t)> W(t) dt|, (2-34)

-0

where a Hanning window function W(t) is
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l-cos(z—f-), 0stst
W(t)=

0, t>1 : (2-35)
The total propagation time (evolution time) is 1. This window is designed to

adjust the discontinuity of a series at T. One may design another form of the
window to exhibit rather distinct peaks. Here the same results are expected if

the correlation < C(t) > is Fourier analyzed, where
<Ct)>= <q0) I q()>- (2-36)

Finally, we are also interested in computing the uncertainty product
Vit) = {<(p-<p>)%> <(q-<4q>)2>}1/2 to determine how expectation-values
in phase-space are shadowed by uncertainty. Similar to (2-31), (2-32), we
would get the following expressions: ‘
A =<(g-<g>?>=<q2>-<4>2,

=<y’@ D g2y @ t)y>-<vy(@q b)) qlygt)>2,

=<y@nl g2 ly@>-<y@nlqly@n>?. (237
Because of the same reason we have Eq. (2-31), and using Eq. (2-32),

@p)i=<(p-<p>P>=<p? >-<p>?,

=<y@ ) p2ly@t>-<y@tlply@gn>?,



”~ 2 ”~
=< y(q t) exp[-iX (g 1)] (-;7 YexpliX (9, 0] lw(g.t)>

~ l<w(@ B expl-i% 4 0] (- i;% yexpliZ 4, 0] 1w H>P,

Cal

.~ A 9. 0
=—<w(q,t)lexP[—lx(q,t)]{exPDx(q,t)](ta_q)(‘é;)lv(q.t)>
+ expliX( tn(ﬂz—n @ > +expliX( m(.gi_)z' @1
PLixX @013 1vE >+ expliX @0165 ) 1ve.D>

~

2~
+exp[iX (g, )] (i %fz ) ly(g, 8)>+exp[iX (9, 1)] (i%)(é%) lv (@, 1) >}

~[<v@ ) p 1y D> +py sin(@)ol?,

=2(uy sin(at)/w)< y@. O p ly@ H>+<y@ Dl p lyv@t)>
+ [uy s'm(wt)/w]z— <v@dtlplv@t) >]2
~ 2(uy sin(@)/@)< ¥ @ D1 p 1y (@ ) >~ [y sin(@)/o ),

=<v@ ) p2lv@ H>- [<y@ Dl p ly@d>F (2-38)
Thus, we finally get
V() ={<(p-<p>)><(q-<q>)> /%

={<y@nl 42 ly@H>-<w@nlqly@gn>2 /2
x{<y@nlp? lv@d>- [<v@nlp v H>T )
(2-39a)
Note that the uncertainties (2-37) and (2-38) are gauge invariant as required.
In general, because the wave function is not known at any arbitrary time, V()

cannot be determined analytically. For a simple harmonic oscillator with the
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initial wave function of the form (2-33), however, we would get a steady
solution with a minimum value of 0.5 if 7 = 0. But numerically, we calculate

U(t) where
U =(<(qd -<q >P> <(q-<q>)2> 172 (2-39b)

This uncertainty volume is more useful since we will plot trajectories in
phase-space which has the angular velocity axis rather than the momentum
axis. We can directly compare this uncertainty with the trajectory. One can
always go back to calculate the original uncertainty product V(t) using the
relation V(t) = uU(t) and §=[p-A(t))/ u.

It is also of our interest to determine eigen-values and eigen-states.

Eigen-values are easily calculated by forming a correlation between the initial
wave function~2 A, uy(q ) and the final wave function ~Z Ap un(g ) exp (-iEqt).
n n

The correlation is

CUt) =< w9, 0) | ¥ig1)>,

= n ‘.En
;lAFeXP(l t)_ (240)

This correlation function is then Fourier transformed to formulate a delta

function. Its final form takes

E,,().):Ic,(t)exp(iAt)dt:ZlA,,F 5(2-E,). (2-41)
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As a result, we get spectral peaks located at E, with an amplitude of AP,
To project out a single eigen-state with an eigen-value A, we take the

following integral.

fw(q,t)exp(iw)dt =§.An un(q)jexxa(i[lk-ﬁn]f)_ (242)

Consequently, we get the desired eigen-state because of the delta function
property. In actual computation, however, we use the method of fitting a line
shape function similar to the Hanning window function. The method is
described well in the references [13).

Before we use the basic numerical tools we have developed here, let us
first focus on the problem of taking semi-classical limit. It is very important to
note that the canonical momentum, p -A, in this quantum scheme should be
divided by u to get dq/dt, which is offered by the classical integration scheme.
Otherwise, quantum and classical trajectories will have a scale difference in p

-axis (or dq/dt -axis) in phase-space.

2-4. Method of controlling semi-classical limit

It can be shown that in the limit # — 0, quantum mechanics resembles
classical mechanics. To see it in one way, first write the wave function in

standard polar form

v (q.t) = R(q, t) exp[ i S(q, t)/A], (243)

where R and S are real. Substitute this into Schrodinger equation. Then one

finds
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2
- B2 —LaR+ 1 [0S +V-_-_.a.s._

2m R 3q2 2m \dq ot (2-44a)
~%m [Rga%s?”%l;"%%] =%§, (2-44b)
In the limit # — 0, These equations become
E?ln—g—?;)z‘”v ='g?”, (2-45a)
%%+3§E'[pv]=o' (2-45b)

The (2-45.a) is a classical Hamilton-Jacobi equation whose solution is S . Then

dsS
the form of a continuity equation (2-45.b) where the velocity v = %‘5‘5‘ ,and p

= R? describes conservation of probability. Therefore the limit # — 0 can be
taken alone as a semi-classical approximation in many cases of which there is
no gravity involved. It really means, however, that the ratio of A to some
classical characteristic action of the system with the same dimension
approaches zero [14]. This limit is also discussed in both quantum and

classical perturbation theories [15]. The term,

_m 1 R
2m R 99?2 (2-46)

is D. Bohm's quantum mechanical potential [16].

In our case, however, we must consider the effective mass, mI@ / h as

a semi-classical approximation. This is so because of the reason we discussed

34



in Section 1-2. It is obvious that the gravitational field strength g and Planck's
constant A are fixed numbers, so what we really have to consider is the
quantity (ml Y1 ) where m is not the effective mass, but the mass of the
pendulum. To see this more clearly, we first consider the classical equation of

motion in general in the absence of air resistance:
mg =-m qu’grav ’ (247)

so that we get §j — V ®grgp = 0 because the mass term cancels as we mentioned
briefly in Section 2-1. We, of course, assume that the gravitational and the
inertial mass are equal (principle of equivalence). We can see this point also

using the Hamilton's classical approach, based on

t2
SI dt ‘Zg-qz -m qu)grav) =0, (2-48)
¢

1

where m clearly drops out again.
In the quantum mechanical formulation, however, the equation

analogous to (2-44) is

_ B @ _ip¥
om 4T G VIS (2-49)

The mass term does not drop out: it appears in the form of a ratio (h/m).

Analogous to the classical Hamilton's approach, we try the Feymann path-

integral formulation of this case.
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<y@t+at)l y@gt)>

t +At
= exp|i dt ' (42 -V, @0 )|, At = 0. N

In this case, the combination (h/m) also appears. This is a clear distinction
from the classical approach [17]. In our case, this combination appears in the
effective mass implicitly.

To support our idea of semi-classical approximation more, we may
carry out the argument physically in the following way. Consider a double-slit
experiment which shows a pure quantum effect with the separation of two
slits d, de Broglie wave length A. Then the equation for successive
interference pattern becomes nA = d sin@, where A = 2z h/mv and 6, is the
angle between the n th and (n-1) th maxima. Therefore 2z h/m = (vd/n)sin6,,
where m is the mass of the particles (we shall not consider a photon case
here) passing through the slits with the velocity v.

Now, in classical limit the successive interference pattern of quantum
phenomenon disappears such that 6, = 0,1 = = 67 =0. In other words the
ratio A/m is required to be small in semi-classical limit {18]. In practical
computation, there is no difference as to whether letting A decrease or m
increase. What it matters is the combination, #/m, implicitly contained in p.
In physical sense it is more appropriate to adjust m than A.

The same argument can also be applied by EBK quantization rule [19].

The rule gives rise to the approximate integer number n of bound states.

I pdg=(n+3)h p =2 Enax- V@), (2-51)
closed
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where E,.x is the maximum available bound state energy (see Appendix 2.II).

Therefore as the mass is increased, the number of bound states will be
increased accordingly. This corresponds to higher energy states contributing
to a total system, which makes the system more classical. So in either case, u is
an appropriate factor to be adjusted in corresponding limits. Thus, EBK
quantization also requires #/m to be a small constant in the semi-classical
limit for larger n. In fact, quantum mechanical commutator in gravity [ A Bl
becomes classical Poisson bracket {A, B} in the limit A/m — 0if A=g and
B=dg/dt.

In practical computations, it is easier to think of u = m numerically by
assuming g =1 =h = 1 such that y=fand w, =1 without considering the
physics of units [20] since the computer (machine) will not recognize the
difference. This method is always numerically valid whenever we solve
dimensionless equations. To get a feeling for a possible physical situation, one
can always go back to the kind of calculations we have done in Section 1-2. As
a consequence, the parameter to control semi-classical approximation is just

reduced to effective mass only.

2-5. Computational stability consideration

In this case, the numerical error comes frcm the commutator since the
splitting of a Hamiltonian is based on the commutation of operators. To see

more clearly, we expand the following two unitary operators in Taylor series;

t
Ua(t;t") =exp -if H(t")dt'|=exp[-iHAt],
t-At
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4 t
ﬁb(t;t')zexp[-jz-] f(t')dt’}xexp[-i] v(t')dt'}

t-a t-At
t

xexp[—%f f(t')dt’},
t-a

= i L i ~iL
exp[zZAt]exp[zVAt]exp[zZAt]. (2:52)

Then we get

U, (t;t)=1-1i (At)(T+V)-@§‘z(Tz+vz+TV+vr)

+i (ééE(Ts+V3+T2V+V2T+TV2+VT2+TVT+VTV)+~-,

Up(t;t)=1-i (At)('r+V)-(‘-‘§‘z('rz+v2+TV+VT)

+i M('IG+V3+3-T2V+3-V2T+3-TVT+-~)+---.
6 4 4 2
Therefore, the difference between the two is the error term ¥, where
¥= %tf{ [T2, V], [V T]} (2-53)

The computational stability due to this error is described in the
reference [21] for several different numerical models. This reference shows
that the split operator method is very stable, and reliable for small enough

integration steps, which can be optimized.
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Appendix 21 Normalization

Normalization property can be checked using a Taylor series expansion
of the wave function in terms of the Hamiltonian of a system.

<y(t+ADIy(t+AL)>

- it 7.@n di_1 g ]
[<w(t)l+ 5 <y(t)|H+ Ty i<y()!l T h<w(t)lH +

X

_idt § _@_L)_’.{@Ei 152
| w(t)> 5 Hl yt)> h 1‘“ Iw(t)>+hH ly(t)>

+]

i(At)?

<V(¢)'V(¢)>—‘%‘<W(t)|ﬁ ly(t)>- <V(f)|df?|w(f)>

2 ~ , ~
CL) <w(t)lH2|w(t)>+uh‘-t-<w(t)lH ly(t)>
At} =2 @’ =16
+ :w(t)lH lw(t)>+——-—2h2 <V(t)lHdt ly(t)>
. R n '
+‘1'('4§t)"<‘l‘(f)|H3|V’(t)>+-1%9—<w(t)ld£llv(t)>
_(ap? =2 @t di &
2 :w(t)lH lw(t)>+—5—h2e~<w(t)l T H ly(t)>
-‘;23‘) <yt) 1 B ly@t)>+---,

A’
2h2

=<y(t) ly(t)>+ <w(t)lﬁd£i+%§ﬁlv(t)>+m

’
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3 —~ ~
= <y(t) lv(t)>+6[5-4-'1—{ﬂ,4‘§ﬂ.

2K (A2I-)

where (4, B} = AB + BA. For simplicity, we show only the time variable

explicitly. Now for a time-independent Hamiltonian, 1t =%Iti+ HH ] =0;

so the wave functions are normalized at all times. But for the time-dependent
Hamiltonian of our pendulum, we have
d ﬁ qm _ aﬁ qm

Tt -——a-t——=p7cos(ax)+f(t)’

where f (t) is a function of time only and commutes with ﬁqm. Therefore, the
commutator bracket would be left with { cosq, p ]. So for a small At,
normalization can be satisfied. In this analysis, we have ignored the error due
to Eq. (2-53).
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Appendix 2.I Quantization of a pendulum

To find the number of bound states in a pendulum-like potential, we

use the Wilson-Bohr-Sommerfeld semiclassical quantization rule [22].

—_———mm - > 2mgl

X!

f mgl (1-cosq)

!
!
|
!
!
!

y____ 2 Loy
n

—n 0 q'P

This diagram assumes a periodic potential well with V = V(1 -cos g), and E
= Vo (1-cos qy,). The point g,, represents the turning point where a particle
with energy E bounces at the potential wall in a classical sense. Then the rule

requires that a closed integral, I, of momentum equals to 2anh, n is integer.

ftp
I-= 4] 2 HE-V)dq,
0

4ty
= r1-X
4]0 ,\/ZmlE(l £)dq,
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atp
=412mtisj ,\/[1— Vo(l-cosq) ) 40,
0

Vo (1 -cosqy)

1
=4V2mI’E 1y 4. .
m L’\/zay-gﬂ y (A21I-1)

Here we lety =a (1 -cosq), where a = (1-cosq )-1, then dy = a sing dq =
~2ay - y? dq, where 0 < g < =, since

(a sing)2 = a2(1 —cos?q ) + 2a2cosq - 2a2cosq
= [a (1 - cosq )P + 2a2cosq (1 - cosq )
=a(1-cosq)[a(1-cosq) +2acosq]
=a(1-cosq)[-a(1l-cosq)+2a]

=2ay..y2'
Then,
1
1=
1=4V2mi’E y dy,
fo 2 -y)y-0
(A211-2)
=2r276(v,x)—2(2{a_2;_1)13(v,x),

where the functions F and G are elliptic integrals of the first and second
kinds, respectively [23]. Since v = Arcsin(1) = 12‘- ,0sg<s 7, and k=4 /—2% , they

form complete elliptic integrals whose series representations are given by

Eyezli L 13 a_ [@-DUP g
G(Z’K) 2 1 22x2 2242KA [ 2"n! 2n-1

\
i
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12.32
Z cy=2l141 R I ¢ 1)"]’ .
l-‘( K)= {1+22x2+2242x4+ [ T x2n 4

Now, for angles less than /2,1 < 2a < = since a = (1 - cosqyp )—l;
so for k, 0 < (1/2a)1/2 < 1. Then the functions G and F can be approximated.

G (lzl-,x)ﬂz'-{l—-;z-rz }vand F (g-,x)sg-{1+-212—x4 }

Thus, we finally get

1= a2 [V« f1- L) - 2L af1 4,

= 4%[ J—"'—‘M—n].

8aV¥2a (A211-3)

Now 4a >> 1, for0 < gy, <<#/2,and a = V,/E, so we get

Iz =_4_ZI_2‘.I/ZZ_I_2E?. =[2n'n h]Z-
[

Solve first for E. One finds the quantized energy levels for small angles with
Vo = mgl,

“F = g
E(n)=En ""\/1—. (A211-4)

Now by substituting the classical-like energy E =mgl (1 -cos gy, ),
n = (12-)1 ~/g1(1-cosgs). But since we have assumed gy, < /2, the actual

total number of energy levels becomes

n>2x (HL)I 1q2,>> q,r, (AZIL5)
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The inequality is due to the fact that the energy level spacing becomes
narrower as the energy of a particle becomes closer to the top of a potential
well.

It is interesting to see that the energy level spacing AE agrees with that
of Section 1-2 from the unit analysis in Schrodinger equation. Moreover, the
quantity [”;'—] 14g 1, we called the effective mass, is directly related to the
number of energy levels as we have also seen from both Sections 1-2 and 24.

For real physical situations, one can estimate numbers for the
parameters. Substituting the values of fundamental constants, we find the
effective mass u ~3 % 1034 mI32, So for 1 kg objects swinging at the end of 1
meter string for small angles, the number of energy levels approximately
becomes ~ 1034. For a proton at a distance of 1 A, there hardly exists any
quantized energy level. For a particle a hundred times heavier than a proton
at the same distance, there are probably more than 100 quantized levels. Here

are some examples of number of energy levels in the H-atom case;

i) for p=1,1=7.4x 1075 meters, then AE = 1.2x 103! J. But the
potential energy ~ mgl = 1.661 X 10727 kg x 9.8 (m/sec?) x 7.4 X 107
meter = 1.2 X 1031 J. So the depth of the well 2u provides ~ only a few

quantized energy levels in crude approximation.

ii) for u=10,1=3.5x% 10-5 meters, then AE = 5.6 X 10-32J. But the
potential energy ~ mgl = 5.7 x 10-31J. So in this case there are about

in the order of ten energy levels.



iii) for 4t = 100, I = 1.6 X 10~ meters, then AE = 2.6 X 10-32 J. But the
potential energy ~ mgl = 2.6 X 10~¥ J. So in this case there are more
than a hundred energy levels.

It is obvious from here that the approximate number of energy levels linearly
increases with the value of g, and that this value corresponds to those one |
might get directly from (A2II-5). This is what exactly we should expect since
the gravitational effect becomes negligibly smaller in a more microscopic
system. It is also interesting to note again that the effective mass is the only

parameter to control semi-classical limit.
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CHAPTER 3

NON-DISSIPATIVE SYSTEMS

A wviolent order is disorder; and

A great disorder is order. These two things are one.

W. Stevense's "Connoisseur of chaos" (1942)

Phase-space behaviors are extensively studied in this chapter using both a
single system and a distribution of systems. A possible general description of a
break time is introduced. The results indicate the correspondence does not

hold in classically chaotic regime.
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3-1. Classical and quantum Lyapunov exponents

3-1-1. Classical Lyapunov exponent

Classical Lyapunov exponents specify the exponential growth of the
two initially nearby trajectories in phase-space. Any system containing at least
one positive Lyapunov exponent is defined to be chaotic [1]. To find the exact
quantity of the growth (negative growth in the case of dissipation), we first
linearize the given nonlinear equations of motion giving rise to a stochastic
motion. First, we may write a set of nonlinear differential equations in a

form:

X =.ﬁ (xlr X2, xn)r i= L2--, n. (3-13)

Then we can write

&= fi(xf,xf, -, D+ B[, Sdx;],
k ke j (3-1b)

where ¥/ represents the fixed points of the motion, for which the phase flow

is stationary (i.e., those points for which X; = 0, that is, f(xJ) = 0. This

linearized equation then can be expressed as a matrix M.

d(sy.)= .
dt(ax') M 5x; (3-2)

The general solution is obtained by det! M -A] | =0, where [ is a unit

matrix. So we get
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68X =) ax 5kexp (Axt),
; (3-3)

where Dy's are the eigen-vectors associated with eigen-values A; which
determine the actual directions of the local phase flows. Here the eigen-value
Ai is the characteristic exponent called Lyapunov exponent. The diagram
below shows a possible phase flow of the pendulum in three dimensional

phase-space.

S A

To find the linearized equations of motion in our pendulum case, we

first write (1-2) or (2-2) as

Xy = —Px;y —sin(xy) + ycos(x3)
.fz =X P (3-4)
x'3 =0

where o is the frequency of driving force. Then the linearized equations of
motion for our pendulum model can be easily obtained by applying the

method [2] described earlier.

X1 = =Px; = x5 cos(xy) = yx3 sin(x3)
5c2 =X ’ (3'5)
1"3 = 0




where ¥1=§, ¥2=4,and ¥3 = ». The time evolutions of each variable are
then orthonormalized by Gram-Schmidt method [3). The diagram below
depicts this process.

Lo

Thick solid lines represent the orthogonal unit vectors. Thin dashed lines are

‘441

vectors after the unit vectors evolved. Therefore, we can compute the

exponent, say, for 4 using the following formal expression:

ot ]

i=] (3-6)
where Aq=dg; -dg;”T", and dgiT" is a normalized unit vector depicted as a
solid line in the above diagram.

Figure 3.1 shows the time variations of exponents for cases where y =
0.2, 5.0 with @ = 2. It clearly exhibits a positive exponent for ¥ = 5.0, whose
phase-space trajectory is not predictable. We will see the trajectories of these

cases in Section 3-2.

51




3-1-2. Quantum Lyapunov exponent

Classical chaos is usually characterized by the existence of a positive
Lyapunov exponent as we have discussed” previously. In this sense, the
quantum version of it becomes subtle and ambiguous because the concept of a
small variation in initial conditions resulting a large change in outcomes
cannot be applied to quantum mechanics. To show this, we consider a small
perturbation € on the position vector of wave function y;. Then the displaced

wave function y; can be written by Taylor expansion as follows.

d \n

valq t+dt) = yy(qte, t+dt)=z __:El_ va(qt+dt)

n=0 n !
d .
= exp(e: '55) vy(q.t+dt) = exp(i p-e) yi(q.t+dt).  (3-7)

(e

By definition of Lyapunov exponent, we are interested in the difference
between the two trajectories at every step formed by their expected values in
phase space. The expectation values of an operator O; = Oj(p, q), i=1,2, can be
calculated according to the following operations:

<O0> =< y(q t+dt)| O lyy(q, t+dt) >, (3-8a)
<O>=<y,(q t+dt)| O 1y, (q, t+dt) >,

= < yy(q, t+dt) | exp(-i p-e) O exp(i p-e) | yy(q t+dt) >,

=< (g t+dt)| I'(e) O Uy(e) | alq t+dt)>. (3-8b)
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Apparently, expectation values of any function of the momentum
operator are unchanged when the states are displaced. On the other hand, if 0
is the function of the coordinate operator q, it can be shown easily using (3-7)
that [4)

<q>m<q,*€>, 3-9)

since {T() | Vi(q,t+dt) > = | ¥o(qt+dt) > where I (¢) = exp(i p-¢) . Therefore,
for this kind of perturbational method which is common in classical
dynamics, the Lyapunov exponent becomes zero. We arrive at this result by
applying the conceptual definition of Lyapunov exponent to quantum
mechanics.

Symmetricall).' we would get the same result for a small perturbation
on the momentum vector of the initial wave function if we treat this case in
momentum space. In general, however, the situation becomes more
complicated for the initial perturbation on both the momentum and the
position vectors. It is not difficult to conjecture though that there exist no
positive exponents even in this case. It is easy to determine that the classical
method in the previous section cannot be exactly applied here. The process of
linearization is not appropriate in quantum mechanics.

Nonetheless, we looked at the similar quantum mechanical process
analogous to classical method in the previous section. To do that, we used a
Gaussian wave function (2-33) initially with g, with < ¢(0) > and p, with <
p(0) >. We next calculated changes in the norm of each expectation value at
every time step. The wave function was then brought back to the form of (2-
33) by replacing < g(t-At) > with < q(t) > and < p(t-At) > with < p(t) >. The

results showed that a positive exponent is possible, but it is quite different
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from the classical value. It also showed that trajectories in phase-space were
not even close to the corresponding classical ones. This excludes this set of
method. A study [5] reveals that at very high values of spin in a driven
quantum spin system, one could find a positive exponent without any
resemblance to the classical exponent. A spin value of ~ 108 in this study,
however, is not realistic.

In the following section, even though there are no positive exponents,
we will look at actual trajectories in phase-space, and see if we can understand

quantum chaotic phenomena better using the techniques developed so far.

3-2. Phase-space behaviors

The phenomena of classical chaos have fascinated physicists since the
development of computational techniques in nonlinear dynamics. Much
attention has also been directed toward determining possible quantum
analogs of chaos (QC). It is well established that, in principle, quantum
mechanics provides a more fundamental description than classical mechanics
[6). Ehrenfest's theorem [7] as well as the correspondence principle, then
supports our expectation of the existence of QC. Unexpectedly the
fundamental theory of QC is still somewhat speculative. For example,
extreme sensitivity of quantum dynamics to initial conditions is lacking
because of the smoothing nature of wave mechanics and of the quantum
suppression of classical chaos (CC) [8-10]. Even the existence of Lyapunov
exponents is not well understood (as seen in Section 3-1). In general, classical
chaos is characterized by the existence of a positive Lyapunov exponent 4, i.e.,
d(t) ~ d(0) exp (At), where d is the phase space distance between two initially

nearby trajectories as we discussed in details in the previous section. This
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classical concept of exponential growth of two initially nearby trajectories in
2N-dimensional phase space cannot be applied if the initial trajectories are
within Planck cells (P-cells) of volume h N for a system with N degrees of
freedom [11]. In fact, phase space trajectories have no meanings in quantum
mechanics because of this uncertainty unless we introduce the concept of
quantum trajectories as the evolution of expectation values of classical
observables surrounded by P-cells.

The stringent classical definitions of chaos however may not be
appropriate for quantum dynamics since classical and quantum mechanics
are different descriptions of nature. Some studies have used the classification
of energy level spectra and their statistics [12-17] or stationary states [18-21] as
the quantum definitions of chaos. These approaches to QC have no analogues
in classical mechanics. Our approach is formulated in the context of classical-
quantum correspondence. To do that, we focus explicitly on phase-space
behavior.

In this chapter, we will investigate mainly the correspondence
principle by comparing classical trajectories with quantum mechanical
expectation-value trajectories without dissipation. The classical Hamiltonian
of the pendulum is not integrable; the pendulum'é motion shows very rich
classical chaotic structures [22,23]. The similar quantum model of a kicked
rotor has been extensively studied [24-27]. It is similar in the sense that the
gravitational potential in our model is applied as a periodic delta function
kick as mentioned earlier in Chapter two. Our model can be regarded as a
generalized version of this since the external field is added.

The correspondence principle is also studied by varying the effective
mass g in the Schrodinger equation. The degree of correspondence is

quantified in terms of the Fourier power spectra of expectation values of
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classical observables. In other words, we examine the temporal behavior of
the quantum expectation values and their power spectra to compare with the
classical values. The power spectra generally exhibit the effect of uncertainty
through their noise level. Therefore we expect close correspondence between
classical and quantum spectra as long as the P-cells are small compared to the
expectation values, or the uncertainty does not grow constantly in time.
Especially in the classical regime of regular or mild chaos, this has been
assumed to be valid. It has been shown analytically that the strong classical-
quantum correspondence exists for a bound potential in one degree of
freedom system [28].

In addition, the transition to chaotic behavior will be signaled by
changes in the spectral peak distribution. For instance the power spectrum of
a Morse oscillator driven by an intense laser pulse briefly mentioned in
Section 2-5 undergoes a transition from clear spectral peaks to a chaotic
spectrum as one goes to high intensity pulses [29]. A similar observation is
expected in our model if there exists any transition.

We also examine time variations of the P-cell volume in both the
classically regular and chaotic regimes. This uncertainty volume, if large, may
prevent the assignment of a corresponding unique time trajectory in the
expectation-value phase space. In this case, the expectation values represent
averages over many trajectories within that volume, analogous to Feynman'’s
sum over paths formulation. Therefore it has been assumed [see last
reference in Ref. 26] that the expectation-value trajectory resembles very
closely a unique one if the energy-time uncertainty volume is relatively small
compared to the action of the system. On the other hand, a non-stationary
variation or a large increase of the volume would eliminate the

correspondence. We test this novel assumption using phase space trajectories.
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The numerical examples of phase-space behaviors are depicted in figures at
the end of this chapter along with the results from Sections 3-3, and 34.
However, one of the fascinating contents of classical mechanics is
energy dissipation (damping) due to friction or heat loss to the surrounding
environment. Although strange attractors characterize a classical dissipative
system, little is known about the respective quantum system [24,33]. To the
author's knowledge, no theory illustrating the comparability of classical
damping into quantum calculation has been regarded universal. We will
carry further this model with dissipation in the next chapter. Nonetheless, it
seems to be more appropriate to first check the correspondence in non-
dissipative cases using a classical probability distribution, given by the

quantum mechanical probability, y*y, of initial conditions.

3-3. Classical distribution function

We assume that an initial classical distribution is the same as the
probability amplitude of an initial wave function. The initial distribution in
configuration space is then taken to be [%oF. Then the momentum space

distribution is
0o =lo .0 =] dg w(q.0) expt-ipaf|

Therefore, the initial classical distribution P, in phase-space for a minimum

uncertainty wave packet becomes

Pep.4,0) = 5o lv(a, OFle . OF,

57



& Lep [— : '0‘2"’)2] ep[- a?(p - of]. (3-10)
To make the distribution closely resembling the quantum wave function, we
should pick as many points as possible in phase-space so that the density of
those points follows the quantum probability amplitude. Then each point in
the‘distribution represents either a single classical system or a single initial
condition. In either case, the resulting distribution would be the same since
each point is governed by the same classical equations of motion. If one uses
ly,’| instead, the only difference would be that the center of the resulting
distribution changes from (g, p) to (g, p+uysin(® t)/ ®). We will see clearly this
effect in the following section.

Now, we use the Monte-Carlo random number generator to pick an
initial distribution of points in phase-space such that a random point at (§,m,
Prm ) satisfies the inequality Pc(qrm, Prm, 0) S Pc(p, g, 0). Then each of these
initial points is governed by the given classical equations of motion, for
example, Eq. (34) and collected after the required propagation time 7 to give a
final distribution of points.

To compare, we also examine properties of quantum distribution
functions since the wave function itself cannot be compared with the classical
distribution given by the method above. In the next section we introduce the
Wigner and Husimi quantum distribution functions in phase-space, and

study their advantages and disadvantages in the context of our model.
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3-4. Quantum distribution functions

In the last few years, interest in the Wigner distribution function has
been revived to study quantum dynamics in the classical-like phase-space.
This function, first formulated by Wigner [34,35], represents the Weyl
transform of a density matrix. The Wigner function provides the quantum
analogue to a classical phase-space density, known as the Poincaré surface of
section [36,37]). However, starting from the Schrodinger wave function, it is
difficult to carry out the calculation of the Wigner distribution function, the
so-called phase-space distribution function or PSD function because
Schrodinger equation is in general not easily solvable especially for potentials
which give rise to classically chaotic behaviors [38]. Instead, the Wigner
equation [36,39,40] governing the time evolution of an initially localized
Wigner PSD function has been studied in various problems. This equation is
the PSD analogue in the Heisenberg picture [41] since it is considered as the
quantum version of the classical Liouville equation when h is considered
negligible [34,35,42].

For example, some studies have used the Wigner equation to simulate
quantum effects in semiconductor devices [43] numerically. Other
applications of the equation such as the photodissociation cross section
calculation [44], stellar dynamics [45] and collision problems [46] have been
considered. Takahashi and Saito [47] examined the Wigner equation to
discuss quantum manifestations of chaos. Interestingly, they also added a
computational analysis of the Husimi equation describing the time
development of the Husimi PSD function [48] in the Heisenberg equations of

motion.
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In addition, using a coherent state wave function, the Wigner function
is useful in wave optics to measure the uncertainty distribution [49]. Possible
transitions into a squeezed state are of interest also. Nonetheless, in the
course of recent developments in semi-classical mechanics to search for
quantum chaos, the Wigner function has been directly investigated as the
PSD analogue in the Schrodinger picture [50] using several different systems
in the context of classical-quantum correspondence [51]. On the basis of these
studies, it is plausible to characterize quantum chaos as the appearance of a
stochastic Wigner phase-space density. On the other hand, it still does not
seem sufficient to generalize and relate the stochastic Wigner density to a
classical one. Therefore, one of our purposes is to investigate further and to
derive a clearer picture of the classical-quantum correspondence.

We also study the Husimi representation of chaos in the Schrodinger
picture. Takahashi and Saito have claimed that the Husimi representation
was better for describing the correspondence principle than the Wigner
representation. This study also supports Heisenberg's correspondence that
relates quantum mechanical matrix elements to Fourier components of a
classical motion. However, their results also seem to indicate that
correspondence becomes obscured at long times. We have tested their claim
by checking the correspondence at long times.

One obvious advantage of the Husimi function is that this function is
non-negative, whereas the Wigner PSD function may be negative so that its
meaning as a probability density becomes unclear. In spite of its compact form
that can be readily identified as a probability function, the Husimi function
has not attracted much attention until recently. We use the Husimi PSD
function to study its connection to the corresponding classical (Liouville) and

quantum (Wigner) PSD functions.



Moreover, our earlier results [52] indicate that the correspondence fails
after the break time. We characterized the break time when the uncertainty
product (444p) in phase-space becomes significant compared to the
characteristic action of the system formed by the expectation-value trajectory.
We therefore concluded that the correspondence cannot be checked by
comparing merely a single classical trajectory with a quantum (expectation-
value) trajectory in phase-space. This result will be shown again in the next
section with discussions. Thus, we have suggested that a classical distribution
is the more appropriate choice to check the correspondence. A classical
distribution describes initial conditions of the system corresponding to the
quantum probability amplitude as in Sec. 3-3.

In this section, we present numerical evidence of the correspondence
between quantum mechanical and semi-classical phase space densities. These
densities are formed by the Wigner and the Husimi functions corresponding
to classical motions of the classical distribution. Extension of the earlier study
by Takahashi and Saito to the forced pendulum is applied to verify their
conclusions. We are especially interested in the classically chaotic regime of
the pendulum [22,52]. .

In doing so, we first discuss the correspondence among the three
schemes of a simple harmonic oscillator analytically. Then, we briefly describe
numerical methods of the calculations, and show the numerical examples for
both a simple harmonic oscillator and a forced pendulum. Finally, the results
are compared and discussed in several different semi-classical approximations
followed by the summary in Sec. 3-6.

First in the case of a simple harmonic motion, the minimum
uncertainty Gaussian wave packet initially displaced by an amount a spatially

can exhibit all the eigen-states [53]. The simple harmonic oscillations are well
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predictable with the given oscillator strength k ~ Hw,2 , where u is the
dimensionless mass of the oscillator and @, is the dimensionless natural
frequency of the oscillation. The initial Gaussian shape of a probability density
is always spatially preserved if there is no external perturbation. Therefore,
the probability density is invariably the same Gaussian shape oscillating with
amplitude a and frequency @,. The corresponding classical motion is
described by the quantum expectation-values located at the point of peaks of
the Gaussian in both configuration and momentum spaces [54].

Classically, however, we are to use the Liouville distribution that is
initially displaced by the same amount as the quantum initial wave packet.
This distribution then expresses the probability distribution, y*y, of the initial
conditions of an oscillator. Then this Gaussian distribution keeps the same
distribution centered at some position in phase-space at a later time. This is
apparent because the initial distribution with an additional oscillation term is
the solution of the Liouville equation for the simple harmonic oscillator.
Then it is not difficult to show the close correspondence among three
different PSD functions analytically.

First, consider the Wigner PSD function. This function, Py, represents

a system in a mixed state represented by a density matrix p [35].

C

=1 Yy y iPY, 5
Pu(p. q, t) by dy (q 2,t|51q+2,t)exp( - ), (3-11)

where 1 specifies dimensions of a system. In our case of a pure state, y, in one

dimension
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,  (3-12a)

=1 vg4+d ¥ iy

Py(p. 4, 1) 'znf dyvy (q+2,t)w(q 2,t)exx)(h)
=1 : iry N

T dyC(q.y; t) exp( ol (3-12b)

-00

Note that Py, is just the Fourier transform of C(q, y; t).
The Husimi PSD function can be obtained by a Gaussian smoothing

method [55] and is given by the following expression:

PP, 4, = 1= |(f(p,q: )1 wix, )]

= L fog0 v b - (3-13)

=o0

where fi(p, 4 ; x) = fy (p, q) is the coherent Gaussian-type test function with the

minimum uncertainty. It is given by

JAC Iy

Here, the usual Gaussian width is represented by o specifying the uncertainty
of the classical variables p and 4.

Therefore, once the wave function is known from Schrodinger
equation, the formulation of the Wigner or the Husimi function is

considerably less difficult than solving the Wigner or the Husimi equation.
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This is because we use a well-known Fourier transformation method in the
Wigner case. In the Husimi case, a simple projection scheme into the test
function f makes so.

Finally, the classical Liouville distribution at a certain time ¢t becomes

Pipg.t)= Sy, 07l . oF. (3-15)

where ¢ (p, 1) =I v(q.t) exp(-ipq /h) dg. We used the probability density of

the wave function y(g, t). Obviously, this is not a general description, but a
special ohe that works only for a simple harmonic oscillator. In general, a
classical distribution does not have to always resemble the wave function at
time ¢.

To show the correspondence analytically, substitute the following

Gaussian function into the equations (3-12), (3-13) and (3-15):

(1WA (a-90  ipeg . ]
V@ ‘2,,52 exp(-~g2 +—, ) exp(-it /h), (3-16)

whose width is s and peak is located at (4o, po) in phase-space. The width s is
generally not a ground state Gaussian width [53]. The time dependence is
involved implicitly in gy, p, and in the time-dependent phase 6 [4],i.e., g,
= a cos(wpt), po = - apawpsin{a,t). The variable 4 in Eq. (3-16) should become x
when v (g) is substitute into Eq. (3-13). It is also worth noting that the gauge
transformation of our kind effects the solution (3-16) such that p, changes to
po+ uysin(wt)/ w; w(g,t) — y' (g, t). But the actual results from Egs. (3-12), (3-
13) and (3-15) are gauge invariant.
The analytic results from the equation (3-12) is
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2 2 2
= 1 exp(-{1-%) _2%p-po),
Py(p, q,t) —y exp( 22 ) exp( 2 ) (3-17)

We get a circular contour in phase-space from this equation for s2 = 0.5. From
the equation (3-13), we get

_ 1 _gs _@-gf 2522 (-Po)
Ph(p; q, t) zh 02 +52 exp( 102 + 82)) exp( (02 + sz) hz ). (3'18)

In the case where o = s, this equation becomes

-a.)2 2 2
_ 1 _(g-90) _s¥p-po) ]
Pulp, g, 8) = == exp (= =—5=) exp( 2 ). (3-19)
The classical result from the equation (3-15) is
Pdp, g, 1) = —Lexp( -M‘L)i) exp( _2%p-po)” ”°)2). (3-20)
nh 252 K

These equations, (3-17)~(3-20), satisfy the normalization condition

j P wni) (v, ) dpdq = 1. Now, compare the equations (3-17), (3-18) (or (3-19))

and (3-20). The classical distribution in this case is exactly the same as the
Wigner distribution. Also notice that the phase-space contours of three
results become circles for s2 = 0.5, but for other values of s (or o), an elliptical
shape of contours would be yielded. Although the Husimi PSD function does
not exactly match with the other two, its overall shape is quite close to those
distribution functions. If the solution, y’ after the gauge transform is used, the
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centers of three distributions (3-17), (3-18) and (3-20) will lie at ( go, po + HY
sin(wt)/ w ). We will use ' from now on.

Therefore we showed the correspondence for a simple harmonic
oscillator using three different probability density functions in phase-space in
this section. It is interesting to note that the width o of the test Gaussian
function can be adjusted to give different uncertainties of Ap and Aq. In other
words, externally 'squeezed' states can be generated. The results of numerical
calculations of Sections 3-3, 3-4 for the cases of the pendulum will be shown

in the next section.

3-5. Numerical results

First, w2 will compare directly classical trajectories with quantum
mechanical expectation-value trajectories in phase-space. The initial
conditions for Figures 3.1 - 3.6 of Section 3-2 are go = 0.05, po =~ 0.02and u =1,
50, 200, for cases (b), (c) and (d) with 02= 0.6, 0.02 and 0.005 respectively. For a
case (a), a simple harmonic motion is plotted with y =10, 02= 0.1. More
spatial grid points are required as the mass increases since 62 ~ 1/y; the width
and depth of the potential well is directly dependent upon the value of u. All
runs were made with 32768 integration steps with @ = 2.0. In the regular
regime, ¥ = 0.2 is used whereas in the chaotic regime, y = 5.0 is used. The
number of abscissa points of power spectra is taken to be 512 steps out of the
total integration steps for a spectral peak blow-up. All the initial data used in
this chapter are summarized in Table 3.I. Most runs were carried out with At
= 0.005. This value permits an accuracy in determining the phase space
trajectories comparable with that obtainable with the very accurate classical

calculations [22,23] using a fourth-order Runge-Kutta method.
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The time variations of Lyapunov exponents calculated using Eq. (3-6)
for the regular (y = 0.2) and the chaotic (y = 5.0) cases are shown in Figure 3.1.
For the regular motion, the exponent is zero, whereas the exponent
approaches ~ £0.248 for the chaotic case.

Figure 3.2, which shows cases (a)-(d), exhibits motions in the classically
regular regime who:e Lyapunov exponents are zero as seen in Fig. 1. The

rectangles inside (c) and (d) represent the uncertainty products
Ut)={<(q -<4 >P><(g-<q>)>)172,

whose area shadows each point on the trajectories (called "the shadow
effect"). In this regime, it is assumed that the each point on the trajectory is at
the center of the rectangle. We notice that the area decreases as we increase p.
However, the fluctuation dU/U is very small so that one may assume a
steady U(t) for 4 = 50 as shown in Fig. 6 (We will come back to Fig. 3). In fact,
the minimum uncertainty is being kept with the negligible fluctuation in this
case. For u = 200, the steady LI(t) is so small that the scale of Fig. 6 is not
appropriate to plot the case. In the case where u = 1, however, the size of the
area U(t), which is 0.5, is larger than that of the phase-space shown in Fig. 1(b).
In other words, A9 ~ 0.7 and A § ~ 0.7 in this case where ¢ =(p-A)/u.
Although the volume U(t) is considered steady in this case, the shadow effect
is big enough to dissociate the correspondence. The bottom two in this figure
exhibit the power spectra of the cases (a) and (d), respectively. We hardly
notice the difference between (a) and (d) because of a negligible noise level
due to the volume U( t).l

Figure 3.3 exhibits the power spectra of the cases (a) - (d), respectively.
The power spectra are calculated by using Eq. (2-34). We hardly notice the
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difference between (a) and (d) because of a negligible noise level due to the
volume U(t). We should note here that more trials of similar cases in
classically regular regimes indicate the same results. The larger the values of
y are, the better the correspondence is. We do not observe that the
correspondence fails in classically regular regimes. It is appropriate to ignore
those figures here.

Figure 3.4, however, shows big differences for the cases (a) - (d). The
external force is twenty-five times stronger than the previous one shown in
Fig. 3.2. Obviously, the classical system is in chaotic motion, i.e., there exist a
positive Lyapunov exponent (see Fig. 3.1). There is an external force range
where intermittence appears. But we are interested in the fully developed
chaotic regime. The figure displays that all the quantum trajectories appear to
be quite chaotic with no resemblance to the classical one and to each other.
Here the volume U(t) spreads almost the entire phase space. Because the sizes
and shapes of the volume U(t) always change, the rectangles like shown in
Fig. 3.2 cannot be drawn in this case. Fig. 3.6 clearly exhibits this effect even in
the case where u = 200. We noticed from another calculation in the chaotic
regime using g = 100 that the volumes with smaller values of u are always
larger than the one with greater values of y. Moreover its initial expansion
limits the correspondence to be satisfied within a very short time, and its
fluctuation permits many other possible trajectories.

In addition, the fact that the expectation values of 4 trace out into a
smaller region for the larger u tells us that the wave packet expands more so
that the average values (expectation values) of 4 become smaller. Figure 3.5
supports the idea because of the noise rise due to the large U(t). Therefore the
real trajectory can never be determined in this case after the short

characteristic time, so-called the break time, [15,26] which gives the time of
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close correspondence between the classical and quantum trajectories. In our
case, the break time can be characterized as the time when the uncertainty
volume becomes significant compare to the action of the system. The same
findings are also deduced from many other trials in the classically chaotic
regimes. We will not show them here.

Despite the appearance of abrupt changes in the quantum trajectories
in Fig. 4, the initial values are brought back by the reverse-time calculations of
the Schrodinger equation as an accuracy test [30,31]. The fact that no apparent
changes are observed with the use of different number of time steps and grid
points also supports the accuracy of the algorithin. The power spectrum
calculations utilize the window function [32]. Now let us move our focus to
the distribution functions.

Figs. 7-10 are plotted for cases where initial values are u = 20.0, 4t =
0.00383349, w = 4/3, 4, = 0.5, po = 0. The values of yin these cases are 0.5, 0.8,
and 1.25. The uncertainty products of these three different cases are shown in
Figure 3.7. The uncertainty product grows in time with higher values of yas it
should be expected. Fig 3.8 depicts the exponents for same cases. Their values
are easily noticeable directly from the figure.

Before we discuss about later figures, a word is in order concerning
contour plots of the Wigner distribution function. The contour plots are
taken from the norm of Eq. (3-12), |Pyl, to avoid possible negative values.
This treatment is applied throughout the following chapters for the Wigner
function.

The next two figures exhibit (a) the initial classical distribution, (b) the
later classical distribution, (c) Husimi distribution function, and (d) Wigner
distribution function. For Figure 3.9, we initially start with 1000 different

- initial conditions with y = 0.5. This Gaussian initial distribution is shown in
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(a). Then the later classical distribution after the time ¢ = 20T/3=7T, T = 21/ o,
is shown in (b). The spiral structures are easily noticeable. Both (c) and (d)
show similar spiral structures. From these contours of the distributions, we
may say that the Husimi case (d) manifests more than the Wigner case (c) in
overall structure in phase-space. On the contrary, the case (d) is better in
details of the distribution in phase-space since it does not have a smoothing
mechanism of Husimi kind.

Figure 3.10 with ¥ = 1.25 also supports this idea. In this case, 2000
different initial conditions are used, and the evolution time is about 3T. The
picture in (b) clearly exhibits classically chaotic motion. The obvious
difference between (c) and (d) exists, but the similarity between (b) and (d) can
be easily spotted. Since the correspondence breaks down earlier at higher
values 7, the less evolution time is used in this case even for a larger value u
= 40.0. It is interesting that Wigner distribution shown in (c) spreads almost
all the phase-space. We believe that the initial wave function quickly spreads
out in this case so that equation (3-12) contains a complex structure. However,
it is a surprising fact that Husimi distribution can still project out the result
somewhat closer to the classical one (b). The width of the Husimi's test
function (3-14) is 0.25 for both cases of Figures 3.9, 3.10. One can indeed control
the projection of Husimi distribution into phase-space by adjusting the v-idth.

Figure 3.11 shows the uncertainty product U for two different cases of
other trials. The first one in Fig. 3.12 is at resonance with the values = 1.0, ¥
= 0.35, and the second one @ = 1.5, ¥ = 0.5. It is easy to acknowledge that the
Husimi one (c) is much closer to (b) than the Wigner one (d) in the first case
after t = 5T. In Figure 3.13, the similar phenomenon is observed for the

second case. But the case (d) is not very different from (b) although the kind of
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a spiral in (b) is difficult to detect. Typical three dimensional distributions of
this case are shown in Figure 3.14.

Figure 3.15 exhibits another classical chaotic case where @ = 1.05, y= 0.5
whose Lyapunov exponent is $0.065. It is certain that the Husimi represen-
tation resembles the classical one more closely than the Wigner
representation in the classical chaotic regime. Additional example in classical
chaotic motions are shown in the final figure. In Fig. 3.16, the different values
of wave packet widths from the previous figure were used. The results
somewhat support our idea and the previous findings of Takahashi et al., that
the Husimi is better to represent the correspondence, but it is actually difficult
to judge. It is safe to say that generic behavior of the Husimi is more reliable
in the context of the correspondence. On the other hand, the Wigner will be
better in the classically regular regime since it will not lose detailed
information of the distribution through the Gaussian smoothing as we see in

the figure. Now we summarize our results.

3-6. Summary

It has been shown clearly that the correspondence principle holds more
closely for trajectories and their power spectra near the semi-classical limit,
especially in the regular regime. It is not surprising that the correspondence
fails even in the regular regime for u = 1 since the effects of spreading and
distortion of the wave packets cause relatively large deviations from the
classical counterparts. Conversely, the level of correspondence increases as y
gets bigger with considerably smaller time steps at a cost of much more
computer time. A recent study [56] mainly focused on classical regular regime

using the Floquet states [57] reveals the close association of eigenstates with
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classical invariant tori [58]. However it is impossible to check the quantum
chaotic behavior in a classically chaotic regime because the uncertainty
dominates the phase space taken by the characteristic action within a short
time. This fact is well supported by the power spectrum in the chaotic regime.
The noise rise due to the large variations in U(t) is large enough to veil the
real spectrum. It is worth mentioning that several distinct peaks are due to
the initial transient effect that will disappear at a large time.

Also, the assumption that the correspondence does not hold after the
break time in the chaotic regime was tested numerically to be valid. On the
other hand, the correspondence holds with relatively long break time in the
regular regime, of the highly semi-classical limit. A study by G. P. Berman et
al. [27] also indicates the evolution of atoms in a resonant cavity essentially
quantal after a certain time has elapsed (break time). They find that quasi-
classical approximation breaks down after the break time. Therefore, it does
not seem to be an accurate guide for us to use the expectation-value phase-
space trajectory in classically chaotic regime for predicting whether a given
wave packet will exhibit classical means of chaotic behavior in a certain
constraint. In other words, the correspondence between the quantum
mechanical and the classical system cannot be complete in the classically
chaotic regime at this stage. |

We also find from the results of the three distributions that the Husimi
representation is better than the Wigner's within the break time. This is in
agreément with Takahasi and Saito's results. Our results also suggest that
there is no contradiction qualitatively within their correspondence time (our
break time). It is very interesting to see that especially in the chaotic regime,
the higher degree of correspondence in the Husimi case can be easily

noticeable. On the other hand, we find that the Wigner representation is good
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enough to represent the correspondence itself in the non-dissipative cases,
and is in fact better in the interests of detailed structure of phase-space. The
details of the Wigner resembles the classical one more than the Husimi.
Classically more dense areas are simulated as more intense distinct peaks of
the Wigner distribution unlike the Husimi where the smoothing takes place.

Additionally, we checked the time domain beyond the correspondence
limit up to few orders of the break time, and found the support to the
previous conclusion of correspondence breaking. It really appears at this
juncture the manifestations of classical chaos in quantum mechanics in this
model without dissipation cannot be established. However, our results do not
indicate that quantum mechanics in general describes a different mechanics
than classical mechanics. All the classical trajectories examined lie well
within the regions covered by the quantum uncertainty.

We learned that others have found similar results. For example, in a
quantum version of the map associated with the classically chaotic Arnol'd
cat, a failure of the correspondence principle in an appropriate limit is
claimed [59]. Also, J. Kimball, et. al. indicates that an agreement between the
quantum equations of an electron in a periodic potential with an additional
periodic pulsed kick and the corresponding classical motion disappears very
quickly [60]. This effect is due to our claim of the uncertainty growth. Another
study [61] uses this growth as an possible indicator of semi-classical chaos. Qur
results agrees with these.

As a final note, Husimi representation is not useful when we deal with
quantum dynamics. The information about the dynamics is being lost due to
Gaussian smoothing that is somewhat coarse-grained version of Wigner
representation. This loss is a significant fact for quantum dynamics. We will

see of more evidence in the next chapter.
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Appendix 3.1 A characterization of break time

The break time, 7, can be generally identified as a finite time interval

during which the uncertainty product U(t) is comparable to the classical

characteristic action, I; .
Uut)=Uu@) exp(At,)=1,, (A3I-1)

where A is a positive con.tant (or zero) specifying the average growth rate,

and the classical action for a dimensionless Lagrangian L is

I= ] LIq(e), 4(6), #] dt . (A31-2)

fh

It is assumed in (A3I-1) that in principle, the growth can be unbounded. In
practice, U(t) would eventually saturate phase-space that is bounded by
limited size of numerical grids for a positive growth rate. This quantity (A3I-
2) is in generél not integrable, especially for our model, but it can be
approximated using a numerical integration. It should also be noted that the
growth rate A is only applicable before the saturation of phase-space by U(t)

occurs. Then this indicates the break time to be

L in|dae -
Tb—l ln[U(O) , (A3I-3)
= i- In[2ul), (A31-4)
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provided that I; 2 1/2u since U(0) is 1/2u for a minimum uncertainty wave
packet. Consequently the correspondence holds for that time interval only.
The expression (A3I-3) is quite general since it contains general features
although I is not easy to obtain. Moreover the dependence on u in our case
should be of importance. Now if the value of 4 has a certain universal
behavior, the limit of correspondence can be determined. It would also be
very interesting to see that the substitution of the positive Lyapunov
exponents in place of A in (A3I-3) yields approximately the same 7, provided
that I; is known. In other words, 7, becomes shorter for classically more
chaotic motions. Nonetheless it seems that the reasonable correspondence
holds for longer time intervals than our limits of integration time ~ n4t in
the classically regular regime. This kind of the logarithmic law has been
proposed originally by G. M. Zaslavsky [62]. But much of it requires a further
study. |

75



References

[
2

&)
[4]

(el

(8]
©

(10]
[11]

[12)
[13]

(14]

[15]
[16]

R. Shaw, Z. Naturforsch, 36A, 80 (1981).

A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, Physica 16D, 285
(1985).

See for example, J. Stoer, R. Bulirsch, Introduction to Numerical
Amnalysis (Springer-Verlag, N. Y. 1980).

L. L Schiff, Quantum Mechanics (3rd edition), Section 26 (McGraw-Hill,
N. Y. 1968).

J. J. Mikeska, J. Frahm, Chaos, Noise and Fractals edited by E. R. Pike, L.
A. Lugiato (Adam Hilger, Bristol, England, 1987).

See, for example, L. D. Landau, E. M. Lifshitz, Quantum Mechanics
(Nonrelativistic Theory, 3rd Edition, Pergamon Press, 1977); see also A.
J. Lichtenberg, M. A. Lieberman, Regular and stochastic Motion
(Springer-Verlag, New York, 1985), p 462.

P. Ehrenfest, Z. Physik, 45, 455 (1927); see also ref. 4, and A. Yariv,
Quantum Electronics, 3rd Edition, Ch. 1 (Jol_. Wiley & Sons, N. Y.
1989); J. L. Powell, B. Crasemann, Quantum Mechanics (Addison-
Wesley, Reading, MA, 1961).

B. V. Chirikov, F. M. Izrailev, D. L. Shepelyansky, Soviet Sci. Rev. C. 2,
209 (1981); F. M. Izrailev, Phys. Rep. 196, 299 (1990).

S. Fishman, D. R. Grempel, R. E. Prange, Phys. Rev. Lett. 49, 509 (1982).
D. R. Grempel, Phys. Rev. A. 29, 1639-47 (1984).

W. Firth J. N. Elgin, J. S. Satchell, Quantum Measurement and Chaos,
edited by E.R. Pike, S. Sarkar (Nato ASI Series, Plenum Press,1986), p
251.

I. C. Percival, J. Phys. B. 6, L229 (1973).

T. H. Seligman (Ed.) et al., Quantum Chaos and Statistical Nuclear
Physics (Springer-Verlag, 1986).

M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics
(Springer-Verlag, 1990); see also Quantum Chaos edited by H. A.
Cerdeira, R. Ramasmeny, M. C. Gutzwiller, G. Casati (World Scientific,
Singapore, 1991).

F. M. Izrailev, Phys. Rep. 196, 299 (1990)

G. Casati (Ed), Chaotic Behavior in Quantum Systems (NATO ASI
Series, Plenum Press, New York, 1983).

76



[17]
(18]

[19]
[20]
(21]

[22)

(23]

[24)
(25]

[26]

[27]
(28]
(29]

[30]
[31]

[32)

[33]

M. Feingold, S. Fishman, Physica D, 25, 181 (1987).

K. S.]. Nordholm, S. A. Rice, J. Chem. Phys. 61, 203 (1974); 61, 768
(1974); 62, 157 (1975).

M. V. Berry, Phil. Trans. Roy. Soc. A287, 237-71 (1977); J. Phys. A. 10,
2083-91 (1977); with M. Robnik, J. Phys. A. 19, 1365 (1986).

S. W. Mcdonald, A. N. Kaufman, Phys. Rev. Lett. 42, 1189 (1979);

E.]. Heller, Phys. Rev. Lett. 16, 1515 (1984).

To see more recent development, refer to the whole volume of J. Stat.
Phys, 68 July issue (1992).

E. G. Gwinn, R. M. Westervelt, Phys. Rev. Lett. 54, 1613 (1985);

E. G. Gwinn, R. M. Westervelt, Phys. Rev. A. 33, 4143 (1986);

D. D'Humieres, M. R. Beasley, B. A. Hubermann, A. Libchaber, Phys.
Rev. A. 26, 3483 (1982); J. B. McLaughlin, J. Stat. Phys. 24, 375 (1981).
G. L. Baker, J.'P. Gollub, Chaotic dynamics, (Cambridge Univ. Press. N.
Y., 1990); A. R. Bishop, Nature, 344, 290 (1990).

T. Hogg, B. A. Huberman, Phys. Rev. A. 28, 22 (1983).

H. G. Schuster, Deterministic Chaos, see Sec. 7 (Physik-Verlag, Berlin,
1984).

G. Casati, J. Ford, I. Guarneri, F. Vivaldi, Phys. Rev. A. 34, 1413 (1986);
for excellent discussions of the break time, see also G. M. Zaslavsky,
Phys. Rep. 80, 157 (1981); Chaos in Dynamic Systems (Harwood, N. Y.
1985) by the same author; for numerical results, see for example, R. F.
Fox, Phys. Rev. A. 41, 2969 (1990).

G. P. Berman, A. R. Kolovskii, F. M. Izrailev, A. M. Iomin, Chaos, 1(2),
220 (1991).

E.J. Heller, Physica 7D, 356 (1983).

S. Chelkowski, A. D. Bandrauk, Phys. Rev. A. 44, 788 (1991).

M. D. Feit, J. A. Fleck, Jr, J. Chem. Phys. 80, 2578 (1984).

M. D. Feit, J. A. Fleck, Jr., A. Steiger, J. Comput. Phys. 47, 412 (1982);

J. N. Bardsley, A. Szoke, and J. M. Comella, J. Phys. B. 21, 3899 (1988);
C. Leforestier,R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner,

A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer,
N. Lipkin, O. Roncero, R. Kosloff, J. Comp. Phys. 94, 59 (1991).

F.J. Harris, Proceedings of IEEE, 66, 51 (1978): M. D. Feit, ]. A. Fleck.
Jr., J. Chem. Phys. 78(1), 301 (1983).

B. A. Huberman, Dynamical Systems and Chaos, edited by L. Garrido

77



(34]

[35]

[36]
(37]

(38]

(39

[40]
[41]

[42)

[43]

(Springer-Verlag, New York, 1982).

E. P. Wigner, Phys. Rev. 40, 749 (1932). For a detailed exposition of the
original theory, see J. E. Moyal, Proc. Cambridge Philos. Soc. 45, 99
(1949); L. Cohen, J. Math. Phys. 7, 781 (1966).

For more recent versions, see M. Hillery, R. F. O'connell, M. O. Scully,
E. P. Wigner, Phys. Rep. 106, 121 (1984); S. K. Ghosh, A. K. Dhara, Phys.
Rev. A. 44, 65 (1991).

Y. Weissman, J. Jortner, J. Chem. Phys. 77, 1486 (1982)

For the definitions of the Poincaré sections, see for example, J. M. T.
Thompson, H. B. Stewart, Nonlinear Dynamics and Chaos (John Wiley
& Sons, N. Y. 1986). To see many examples of Poincaré plots in a
classically damped driven pendulum, refer to G. L. Baker, J. P. Gullub,
Chaotic Dynamics: An Introduction (Cambridge, N. Y. 1990); M. Tabor,
Chaos and Integrability in Nonlinear Dynamics (John Wiley & Sons,
N. Y. 1989).

Here we convert the quantum Hamiltonian H to the classical one that
gives rise to the nonlinear classical equations of motion. This
Hamiltonian then generates classical chaos whose definition usually
means the existence of a positive Lyapunov exponent A, where A ~

. n t
! zm[%—(z In E%%‘)] ,d(t) is the distance between the two initially

n->= i=1
nearby trajectories in phase-space at time t. See Section 3-1.
Y. S. Kim, E. P. Wigner, Am. J. Phys. 58(5), 439 (1990); H. J. Korsch, M. V.
Berry, Physica 3D, 627 (1981); F. Nier, Ph.D. Thesis (Ecole Polytechnique,
Palaiseau Cedex, France, 1991).
V. L Tatarskii, Sov. Phys. Usp. 26, 311 (1983).
Here we treat the Wigner PSD function as a dynamical variable in the

von Neumann equation [Gott. Nachr. 273 (1927)], th%%“ =[H,Py],
which plays the same role in quantum mechanics as the classical
Liouville equation.

E. Prugovecki, Ann. Phys. 110, 102 (1978);

B. L. Lan, R. F. Fox, Phys. Rev. A. 43, 646 (1991).

N. C. Kliiksdahl, A. M. Kriman, D. K. Ferry, C. Ringhofer, Phys. Rev. B.
39, 7720 (1989); W. R. Frensley, Phys. Rev. B. 36, 1570 (1987); U. Ravaioli,
M. A. Osman, W. Potz, N. C. Kliiksdahl, D. K. Ferry, Physica, 134B, 36

78




[44]
[45]
[46]

[47]

[48]

[49]

(50]

(51]

[52]

(53]

(1985); K. Hirakawa, H. Sakaki, Phys. Rev. B. 33, 8291 (1986); P. Degond,
F. Guyot-Delaurens, J. Comput. Phys. 90, (1990).

R. C. Brown, E. J. Heller, J. Chem. Phys. 75(1),186 (1981).

J. Batt, W. Faltenbacher, E. Horst, Arch. Rat. Mech. Anal. 93, 159 (1986)
P. Carruthers, F. Zachariasen, Rev. Mod. Phys. 55, 245 (1983).

H. W. Lee, M. O. Scully, J. Chem. Phys. 73, 2238 (1980).

K. Takahasi, N. Saito, Phys. Rev. Lett. 55, 645 (1985); K. Takahasi, J.
Phys. Soc. Jpn. 55, 762 (1986).

K. Husimi, Pro. Phys. Math. Soc. Jpn. 22, 264 (1940). See reference 42 by
Prugovecki for a comprehensive review. See also R. F. O'Connel, L.
Wang, H. A. Willians, Phys. Rev. A. 30, 2187 (1984); G. Radons, R. E.
Prange, Phys. Rev. Lett. 61, 1691 (1988); for more recent discussions on
both Wigner and Husimi functions, see D. Lalovic, D. M. Dacidovic, N.
Bijedic, Phys. Rev. A. 46, 1206 (1992).

For a review and excellent references therein, see M. C. Teich, B. E. A.
Saleh, Physics Today, 43, 26 (June 1990).

The calculation of the Wigner function is carried out in this case using
the wave function that varies in accordance with the time-dependent
Schrodinger equation. The results from the both pictures are same, but
it is only a matter that the degree of difficulty to solve makes the
difference. In his book Quantum mechanics (3rd edition, McGraw-Hill,
N. Y. 1968), Schiff describes both pictures well. See for more detailed
discussions, C. J. Joachain, Quantum Collision Theory, 3rd edition, in
Ch.13 (part ITT) (North-Holland, N. Y. 1983).

M. V. Berry, N. L. Balazs, M. Tabor, A. Voros, Annals Phys. 122, 26
(1979); H.J. Korsch, M. V. Berry, Physica 3D, 627 (1981); J. S. Hutchinson,
R. E. Wyatt, Phys. Rev. A. 23, 1567 (1981); Chem. Phys. Lett. 72, 378
(1980); G. P. Berman, A. R. Kolovskii, F. M. Izrailev, A. M. Iomin,
Chaos, 1(2), 220 (1991).

Results presented in Physics Computing '91 at San Jose. Refer to the
supplemental Abstracts of the meeting.

An initial Gaussian wave packet here will not be the ground state, but a
linear combinations (completer.2ss) of the eigen-functions if the initial
state does not represent the ground state. See ref. 4.

79



(>4]

(55]

[56]

(57]
[58]

159]
[60]
[61]

[62]

The corresponding classical motion is described by a single classical
trajectory in this case, and by the Ehrenfest theorem the exact
correspondence is established.

N. D. Cartwright, Physica (Utrecht), 83A, 210 (1976);

A. K. Rajagopal, Phys. Rev. A. 27, 558 (1983).

J. J. Henkel, M. Holthaus, Phys. Rev. A. 45, 1978 (1992).

]. H. Shirley, Phys. Rev. 138B, 979 (1965).

see for a comprehensive review, M. Tabor, Chaos and Integrability in
Nonlinear Dynamics (John Wiley & Sons, N. Y. 1989), or

A. J]. Lichtenberg, M. A. Lieberman, Regular and Stochastic Motion
(Springer-Verlag, New York, 1985), p 462.

J. Ford, G. Manteca, G. H. Ristow, Physica D, 50, 493 (1991).

J. C. Kimball, V. A. Singh, M. D'souza, Phys. Rev. A. 45, 7065 (1992).
L. Bonci, R. Roncaglia, B. J. West, P. Grigolini, Phys. Rev. A. 45, 8490
(1992).

See for more recent version of it, G. P. Berman, E. N. Bulgakov, G. M.
Zaslavsky, Chaos, 2, 257 (1992).

80



TABLE31 Datashowing initial values for all the cases in this chapter. The initial Gaussian width is 0%, and the
Husimi trial function width is of; .

2- 1.0 0.6
3.3 ®) 0.05 -0.02 20 0.2 , 0.005 N/A
© 50.0 0.02
(d) 200.0 0.005
o0 (@) N/A N/A
Pt
®) 1.0 0.6
34-5 0.05 -0.02 20 5.0 0.005 N/A
() - 50.0 0.02
(d) 200.0 0.005
39 0.5
3.7-10 05 0.0 4/3 20.0 0.0038335 0.05 0.25
3.10 1.25
312 1.0 0.0 1.0 0.35 40.0 0.0038349  0.025 0.1

3.13 1.0 0.0 1.5 0.5 200 0.0051132 0.05 0.1




CH. 3 FIGURES
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Figure 3.1 Time variations of Lyapunov exponents for the classically regular
and the chaotic cases. Eventually, the exponents become stabilized to certain

' values
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Figure 3.2 Phase-space trajectories in the classically regular regime.

" (a) classical trajectory (b)-(d) quantum expectation-value trajectories. Notice
the better correspondence for larger values of i Two rectangles represent the

typical uncerfainty areas shadowing points on quahtum trajectories.
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Figure 3.3 The power spectra corresponding to the previous figure. Notice the

near-perfect correspondence between (a) and (d).
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Figure 3.4 Phase-space trajectories in the classically chaotic regime.
(a) classical trajectory (b)-(d) quantum expectation-value trajectories. Notice
the failed correspondence even for larger values of 1. The more relaxation is

clearly observed as y increases.
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Figure 3.5 The corresponding power spectra to the previous figure. In this

case no resemblance to each other can be found.
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(CCR). This large fluctuations are believed to be responsible for breaking the
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Figure 3.7 The uncertainty products showing cases that will be followed by
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Figure 3.8 Lyapunov exponents showing a similar plot as Fig. 1. A larger

positive exponent is found for higher 'y.“
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Figure 3.9 Plots of various distributions (a) the initial classical distribution (b)

the later classical distribution (c) Wigner distributi

Notice that (d) is somewhat closer to (b) than (c).

on (d) Husimi distribution.
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(c) more th

However, the elapsed time was within the break time.

is plotted i

3.12 The classical distribution later (b) resembles Husimi distribution

an Wigner one (d). This strongly supports the previous findings.

n (¢) and the Wigner in (d).
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Figure 3.14 Typical distributions in three dimensional view. Plots shows

Husimi and Wigner distributions of the previous cases.
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CHAPTER 4

DISSIPATIVE SYSTEMS

But what could dictate that those laws of physics be ‘the’ laws of physics?

J. S. Bell's "Speakable and unspeakable in quantum mechanics"

The classical damping mechanism is added to Schrodinger equation
regardless of its subtle point on Hermitian nature. The similar phase-space
behaviors to the previous chapter are described. The results indicate the
quantum damping mechanism resembles very closely classical one in
classically regular regime, but fails in classically chaotic regime. This supports

the conclusion in Chapter three.
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4-1. Introduction

The correspondence principle has been known since the Bohr era. It
provides that the dynamics of a system described by classical mechanics
should agree with its quantum counterpart in the limit of large quantum
numbers. This statement is well supported by Ehrenfest theorem [1] as well.
In other words, the quantum mechanical expectation value gives a close
representation of the classical variable if the potential energy changes by a
negligible amount over the dimensions of a quantum wave packet [2].

However, in many cases classical dynamics contains a phenome-
nological viscous damping due to friction. It is known to depend on the
velocity of a system. This kind of mechanism is not present in quantum
mechanics since a micro-system does not experience classical-like friction. In
addition, Schrodinger equation describes a thermally iéolated system whereas
classical equation with dissipation is generally for an open system interacting
with its environment [3]. A closed system cannot exchange energy with the
outside. Then a question may arise; is there any way to complete the
correspondence for systems with the classical damping mechanism? If the
statement that quantum mechanics is more fundamental is true, the answer
must be positive and we should be able to describe an open system using
Schrodinger equation. If so, what kinds of physical interpretations are
possible?

In this chapter we are mainly concerned about the first question and
trying to answer it. Over the last few decades, many attempts have been made
with remarkable contributions to this subject. However, has no theory
relating classical viscous dissipation to quantum so far been accepted as

universal [4] in the context of correspondence. Recently, for example, the
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dissipative tunneling problems have been studied in the Heisenberg picture
(Heisenberg equation of motion) [5,6]. But these studies have no classical
analogues. Our primary interest is in the direct application of classical
damping mechanism to Schrédinger mechanics. To show the
correspondence, we use the expectation-value trajectories in phase space by
using the description of complex kinetic energy. Direct comparison with
classical trajectories would indicate whether the introduction of our scheme
to Schrodinger equation is valid or not.

We also review the Kubo-Fox approach that introduces thermally
random stochastic potentials into the Hamiltonian description. In particular,
we study the Kubo-Fox-Keizer mechanism which gives rise to dissipation by a
purely random, Gaussian fluctuation in the Hamiltonian, and compare the
advantages and disadvantages of the two approaches.

The Nosé-Hoover approach to quantum dissipation using the concept
of nonequilibrium thermodynamics will be discussed and compared with the
other two in the next chapter with some numerical examples. But the
classical description of this method is reviewed in Sec. 4-2-2. Yet, we
extensively use the complex kinetic energy method of quantum dissipation
because of the reasons we offer in Sec. 4-3. Briefly, however, the complex
kinetic energy approach can be ouﬂined in a few sentences.

In wave optics, it is possible to consider an optical gain or loss by using
the complex refractive index (complex potential) in wave equations with an
idea of complex energy {7,8]. Then the probability amplitude (intensity)
increases or decreases depending on the mechanism of gain or loss,
respectively. The quantum mechanical analysis of this using the second
quantization theory is also possible [9,10]. Then a similar idea to the complex

potential can be adapted for the classical damping mechanism by assuming a
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complex kinetic energy term which depends on velocity. We study more on
this in Sec. 4-3, but first proceed by looking at the classical dissipation

mechanisms.

4-2, Classical dissipation scheme

4-2-1. Lagrange-Rayleigh mechanics

The earlier chapter reveals signatures of quantum chaotic behavior in
the semi-classical limit (u = ) within the break time. The correspondence to
the classical system in the Fourier power spectrum was also checked and
verified in the non-dissipative driven pendulum.

In the case of dissipation, the classical motion with dissipation can be
represented phenomenologically by a Rayleigh term [11]. Classical equations
of motion with n degrees of freedom for a damped particle are described by
the following Lagrange equations of motion for the Lagrangian L = L(g;, §;, ¢t)

and the Rayleigh term - we call it Rayleighian R = R( 4; ).

oL _aL dR _
g?(aq,) aq, dji 9, (4-1)

where the Rayleigh dissipation term R(§;) = - [4i]>. A positive constant a;
represents the classical damping coefficient with an appropriate scaling.
The same equations of motion can be recovered by Hamilton's

equations of motion where the Hamiltonian is expressed as

n
H(qi, pi, ) =Tpit) + V@i, ) = Y, pidi— L@, Gir b)- 4-2)
i=1
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Then the Hamilton's equations of motion become

on oa T (4-3)

where in this case R (p;) = —B”—(g—i)-z- , where B is the damping coefficient seen

from Sec. 1-2. Therefore, the resisting force due to friction Fp = - V4 R such
that i = -F; + (Fp);. We adopt the same concept of dissipation of kinetic
energy to quantum mechanics. Note that uff = b, where p =mIvgl in this

classical case.

4-2-2. Nosé-Hoover mechanics

A more general dissipation mechanism than the Lagrange-Rayleigh
phenomenological dissipation mechanism described in the previous section
can be derived by using Nosé mechanics [12]. This description, discovered by
Shuichi Nosé, is an extension of Hamiltonian mechanics.

In Nosé mechanics, the equations of motion in a reversible
deterministic form of Hamiltonian mechanics make possible an exact analysis
of thermodynamically-irreversible processes. Nosé's dynamical link between
microscopic reversibility and macroscopic irreversibility is an important
concept in non-equilibrium statistical mechanics. A recent modification of
Nose's 1984 results was applied by Hoover to a variety of non-equilibrium
problems [13]. Hoover also applied extensions of Nosé's classical idea to
dissipative quantum dynamics and quantum statistical mechanics. We will
tackle a very simple quantum system in the next chapter using this approach

[13,14].
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Because the friction coefficient, ¢, in this approach corresponds to

momentum, the equations of motion are time-reversible. They are given by

=P
q ool
)= V) _
2
=v | P__
¢ Z[ka 1]/r2,

where the friction coefficient ¢ is itself determined by temperature-dependent
time-reversible equation rather than being a constant number. 7 is an
arbitrary relaxation time. Here q and p are coordinate and momentum. The
friction coefficient increases in those parts of phase space with above average
temperature and decrease in those parts where the temperature is below
average. This set of equations, can be shown to give the canonical distribution
in an ergodic system [13]. In Nosé-Hoover mechanics, the coefficient ¢ can be
either positive or negative depending upon the time history of the kinetic
energy. By contrast, a negative friction coefficient cannot occur in Lagrange-
Rayleigh mechanics. Many problems have been solved using this approach
[13-15).

One of the amazing features in this Nosé-Hoover approach is to
characterize strange-attractor fractal nature for nonequilibrium systems.
Phase-space fractals are difficult to display in many-body case of
nonequilibrium mechanics, but this dynamical approach shows that
nonequilibrium phase-space distributions are typically (multi)fractal. This
strange geometric objects are often appears in chaotic phenomena.

Moreover, with Nosé-Hoover dynamics, the phase-space deformation

of nonlinear dynamics, the heat reservoirs of nonequilibrium molecular
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dynamics, and the inexorable entropy increase of irreversible
thermodynamics could all be linked together. For instance, the use of a
particularly convenient form of heat reservoir, based on the Nosé-Hoover
equations of motion (4-4), allows one to visualize the fact that phase-volume
growth is impossible in the nonequilibrium steady state, which is equivalent
to the macroscopic Second Law of Thermodynamics: the entropy of the
Universe can only increase. Therefore, this Nosé-Hoover dynamical approach
often produces multi-fractal objects obeying the Second Law of
Thermodynamics and converting work into heat in multi-dimensional
phase-space.

Nonequilibrium systems fundamentally differ from equilibrium
systems in energy-transfer mechanisms of heat transfer and performing work.
For instance, nonequilibrium systems maintained in stationary states require
heat exchange with their surroundings, dissipating and depleting external
energy sources. Since most of the state variables for nonequilibrium systems
are the same as those used at equilibrium, it is natural to analyze
nonequilibrium motions in a generalized phase space, extending or
contracting the phase space, if need be, to include any strain rates, fields, or
friction coefficients which vary with time and to satisfy any new constraints.
But we expect that system variables for nonequilibrium states necessarily
include external coordinates, capable of doing work, and external heat
reservoirs, capable of exchange heat with selected system degrees of freedom.
For more extensive discussions on the subject in this section, readers should
consult the two books mentioned in Ref. 13 and references therein.

In the case of our model, with a positive constant friction coefficient,
the equations of motion in Eq. (4-4) become those in Eq. (4-3). Therefore, our

hydrodynamic drag force can be thought of as a special case resembling Nosé-
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Hoover mechanics. Since we are only interested in energy-loss due to the drag
force, we will use the Rayleighian in the quantum formulation of energy

dissipation.

4-3. Quantum dissipation schemes

4-3-1. Kubo-Fox-Keizer method

Stochastic Liouville Equations first introduced by R. Kubo [16] deal
essentially with a perturbation which is considered as a stochastic process.
This stochastic process can be either additive or multiplicative. The prototype
for the application of additive stochastic processes to physical phenomena is
found in the theory of Brownian motion [17-19]. An additive stochastic
external force is usually a purely random, stationary, Gaussian driving force.
It corresponds with the true molecular force on the heavy particle which is
produced by a great quantity of collisions in rapid succession, between the
heavy particle and the molecules constituting the fluid. In Langevin
equation, for instance, Brownian motion of a heavy particle with mass M and
the velocity v(t) in a fluid is described by

do(t) _

M=—= ~Po(t) + F(#), (4-5)

where B is the dissipativ.e, friction coefficient, and F(t) is a purely random,
stationary, Gaussian driving force.

On the other hand, the multiplicative processes deal with a randomly
modulated frequency [19,20] exhibiting dissipative thermal fluctuations. For
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example, the length of a pendulum or the spring constant of a harmonic
oscillator will fluctuate due to thermal fluctuations in surrounding
environment. This gives rise to the fluctuations of the frequency of the
oscillator. With the assumption that this frequency fluctuation may be
characterized by the same type of a purely random, stationary, Gaussian
process whose mean value is zero as in the additive process, it has proved [19]
that the average values of the classical variables damp out in time. This
dissipative mechanism must be distinguished from a damped oscillation
which arises from the additive process in Brownian motion.

Suppose, for example, that the frequency fluctuation is described by the
random, stationary Gaussian process, so that a harmonic oscillator can be
expressed by the complex variable a(t). Then the equation of motion for the

multiplicative process becomes
d . -
o0 =i[o,-dn)]act), (4-6)

where @(t) represents the Gaussian process, and ®, is the frequency of

oscillaticn. It has been shown rigorously that the average value becomes [19]

%<a(t) >=[iw, - A]l<a(t)>. 4-7)

The constant A is given in the following expression for the mean square
correlation: < @(t)@(s) >=2A 6(t-s) with <@(t)>=0. The solution to this
equation is clearly a damped oscillation. A general N-component real process

then satisfies the equation where a =1, 2,..., N,
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d -
Z9a0=3 [Aa +Asw®)]axtt), (48)

where the properties of a matrix A can be written as <A, (t)>=0 and
<Aus()Au(5)>=2Qup,y 8(t-5), Qupuy is a tensor with non-negative
elements. The matrix representation of Schrodinger equation corresponds
with this equation (4-8) by replacing a(t) with the complex N-components
Calt).

i%Ca(t)= D H‘m,C,,.(t)+2a, H o ())Ca(t) . (4-9)

Both H,, and H,, are complex Hermitian matrices. The average value of
(4-9) which is the quantum generalization of (4-7) becomes

d .
75 <Cal®)>=~i Yo Haw <Ca®>+3, . 3 ,Quppe <Cor(t)>. (4-10)

The sum z ﬂQ;,ﬁpa: is Hermitian with nonnegative eigenvalues, and could be

recognized as the classical-like friction coefficient. This (4-10) clearly indicates
the dissipation of the average value.

In order to review the Hermiticity of this approach, we outline the
work of Fox next. It is supposed that the individual states of a highly
degenerated energy level in a many body system which is described by a many
body Schrodinger equation are coupled by a phenomenological, stochastic

coupling Hamiltonian. Therefore, the stochastic Schrédinger equation is

i y()=AOWO) +Ev(o), (4-11)
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where E is the energy of the degenerate level. The density matrix equation

corresponding with this equation is
., 0 -
ih—=-p(t)=[HE).p(t)], (4-12)

where is p(t) defined by p(t)=|y(t)){w(t), and the usual commutator relation
is assumed. Notice that the Hamiltonian, H(#), is being taken to be Hermitian
so that (4-12) has the form always found for ordinary Hamiltonians of the
non-stochastic variety.

For an open system modeled by the stochastic Schrodinger equation to
obtain the canonical density matrix in equilibrium, it is necessary to consider
a subsystem coupled to a thermal reservoir. A strict phenomenological
approach of Kubo-Fox's work describes the full system of reservoir and
subsystem as their direct product in the Hilbert space. It is not difficult to
justify the density matrix equation in this case in the full Hilbert space from
Eq. (4-12). The equation is

ih%ﬂ(t) =[Hg ®1g,p(t)]+[1s ® Hg,p(1)1+[H (1), p(1)], (4-13)

in which 1R and 1g are identity operators in the reservoir Hilbert space and
the subsystem Hilbert space respectively. H,(t) is the stochastic interaction
Hamiltonian and mixes the factor spaces of the full Hilbert space. The desired
quantity is <p(t)>. Fox showed [19] rigorously using a reservoir of phonons

for the thermal reservoir that the final result becomes
‘%«Ps(’)» = *%lflsr((ps(t)))] ~R{(ps(1))), (4-14)
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where R is defined by

1 0
Ruvp'v' = ;2‘% {(Qg‘top'nk + Q;%u'a(nk +1))d,,

+(Q85 v M + QGva (M + 1),

2 (M + D+ Qi) (4-15)

Note that the double averaging ({ )) is used. For complete details of the

derivations, readers should consult Ref. 4. It is clear the solution for (4-14)

contains explicitly the dissipative part. In the special case of magnetic
relaxation for a spin half magnetic moment, ((ps(t))) is a 2x2 dimensional

density operator. Fox has shown [21] for this case that Eq. (4-14) leads to a
generalization of the H-theorem using the Helmholtz free energy.
The total probability is conserved on the average by (4-14) because

%Trace(((ps(t)))) = —%Trace( [Hs, {(os(OM) - Ruvun{{ps »,, W
u

==X Ruyv{(ps »,, v =0 (4-16)
m

The second equality follows from the fact that the trace of the commutator of
bounded operators is zero. The third equality can be proved by using Eq. (4-
15). The equilibrium state corresponding with Eq. (4-14) is the canonical

density operator

«Ps (t)»canom'cal = %exp[_ﬁﬂS] ’ (4-17)
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in which Z is defined by Z = Traceg(exp[-fHgl). Therefore, this method
provides a useful opportunity in describing quantum systems in which
interaction with a reservoir is significant since it preserves the Hermiticity
and thus the total probability on the average. We will see that the complex
energy approach described in the next section requires a constant artificial
renormalization because of a loss of probability in time. However, the
generalized density matrix defined by the biorthonormal Hilbert space [22]
yields the conservation of the total probability on the average even as the
system is dissipating.

To compare, we briefly present this theory: the generalization of the
Feynman-Vernon-Hellwarth geometric representation [23,24] to the non-
Hermitian Schrodinger equation. Consider the time-dependent Schrddinger

equation,

in]w(e)) = A v, (4-18)
where H(t)=H(@t)-iD(t), and I:I(t)=ﬁo +H'(t). I:Io is unperturbed
Hamiltonian and H’(t) is the perturbation term. D is the diagonal damping
operator with eigenvalue d : D|a) = d|a) [25,26), where a is an eigenstate. So d
can represent, {for example, the spontaneous decay rate of level |@). The
conventional way to construct the density matrix yields the Liouville

equation of the following form [27]:
j%«p(t») = ~%{ﬁ<t),(<p(t)>)L - -:;{b,((p(t)))}+, (4-19)

where [A, B]_ = AB-BA and {A, B}, = nB+BA. Note the similarity between

Egs. (4-19) and (4—14). In other words, Eq. (4-19) also gives rise to dissipation.
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However, due to the dissipative term, {ﬁ,((p(t)))},,, the density matrix does

not have a conserved norm and its trace. Trace({(p(t)))) is decreasing in time.

This causes difficulty in the description of the geometric phase as the density
matrix is required to return to its initial value after a cyclic evolution of the
system [28].

To avoid the difficulty, the following generalized density matrix has

been considered:

) =|w®OXx®), (4-20)
defined by the biorthonormal Hilbert space. Here ((t)| is the solution of the
Schridinger equation with the adjoint Hamiltonian, H*(t),

ihg—t-l x(1) = A ) 2(8)). (4-21)

The density matrix in (4-20) leads to the Liouville equation:

2 (o)) =LA (PO «2)

the form of which is identical to the ordinary Liouville equation without

dissipation. Further, in the biorthonormal Hilbert space, one has
J d d
= Trace((p()) = 2 (xOIv(®) == (xO)lw(@) =0. (4-23)

So the total probability is conserved on the average, and this result is the
same as (4-16). But this approach does not use the conventional density

matrix and the normal Hilbert space. To overcome this subtlety, the Kubo-Fox
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approach should be uséd. However, even though it does not satisfy the correct
mathematical requirement in the formulation, not only the numerically
equivalent, but much simpler treatment is also used in the next section in the
Schrédinger's approach, in which the density matrix formulation is not
necessary in our model since the model system deals with an one-
dimensional pure state.

Therefore, Kubo-Fox method provides a completely valid description
of quantum dissipative mechanism, whereas the later method uses an
abnormal density matrix formulation more widely adapted in the field of
quantum optics. Strictly speaking, the Kubo-Fox method is appropriate, but
since our focus is not on the formulation of quantum dissipative mechanism,
the later approach seems to be fitted. Moreover, since we are only concerned
with the average values (expectation values) of classical observables to be
damped out in time, we may take an ad hoc, bias version of the later
approach. As mentioned, it is not even necessary for our model to be
formulated in the density matrix representation, so we simply perform an
artificial normalization. Still, we give extensive study of this empirical
approach in which the possible physical background is provided. In summary,
the choice is heavily weighed on the numerical preference rather than either
on the physical significance or on the appropriate interpretation of the
situation. It is safe to say that the two methods reviewed here would be more
difficult to carry out numerically. At the same time, the author should warn
the readers that there has not been enough theoretical background of the
method chosen in the next section to be justified yet. The complex energy
approach in the next section is somewhat closer to the generalized density
matrix formulation theoretically, though it uses the Schrodinger momentum

representation.
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In contrast to the fact that the Schrodinger mechanics should always be
time-reversible, Eqs. (4-14) and (4-22) are in generai not time-reversible. In
this context, our choice in the next section seems to be more appropriate.
Nonetheless, this could well be an extensive topic for another kind of
research.

It is edifying in my opinion to many readers to consider some of
fluctuation properties [29] that are usually introduced through various
parameters. These parameters are either dependent or independent of the
system and the system state. We are not interested in studying the type of
fluctuation term that is simply added to the deterministic equations in
mathematical modeling. We are interested in intrinsic fluctuation. Both
additive and multiplicative approaches provide the fluctuation-dissipation
relation [30] which has a considerable effect on macroscopic variables. This
macroscopic change of inirinsic fluctuations in a macrovariable systems has
also exhibited surprising generality that just about any type of nonlinear
transport process in a macroscopic system falls within the scope of a

phenomenological theory of nonequilibrium thermodynamic fluctuations, as

-described by master equations [31]. This theory has widely been promulgated

by J. Keizer [32], and has been applied successfully to many systems as diverse
as chemical, hydrodynamic, electronic, and quantum. Additionally, the Kubo-
Fox approach to fluctuations in macrovariable systems was unified with this
Keizer's theory of fluctuations using the master eqﬁation [33].

Keizer's theory is phenomenological because it is based upon three
postulates which Keizer formulated after he had made a detailed study of
many transport processes such as chemical reactions, diffusion, electrode
kinetics, heat transport an_d thermionic emission, etc [34]. The structure of the

theory follows from three postulates which characterize the stochastic
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properties of the transport processes. The macrovariables M; are thought of in
terms of a deterministic portion u; and a fluctuating deviation v; related to

each other by
M;=u;+v;, (4-24)

where i=1, 2,.., N. The rate of change of u; is given by the macroscopic
transport law which is determined empirically. The theory describes that in
many different cases these transport laws may always be expressed in terms of
elementary processes. Associated with each elementary process is a forward
rate V* and a backward rate V-, where the system is characterized by a
largeness parameter V which is often the volume in concrete situations. The
rate of change in V is function of all the v's. During a certain elementary
process, u; changes by a microscopic amount ®; in the forward direction, and
by ~; in the backward direction. Keizer's ansatzes are
d m

M Fu= oV -Vi); (4-25)
k=1

where there are m elementary processes, and

N
(1) Ed;vi = Z Hy (tyo, + 3:(t); (4-26)
k=1

m
where H,*(t)=§%k-2 w]-,-{V}”(v)—V]T(v)}, and g;(t) is a stochastic Gaussian
jo1

force with zero mean and correlation formula < <s},-(t)gj(s) >= y,-j(t)ci(t—s).

Also,
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@m  7t)=Y, ou{Vi®+Vi)oy. @27
k=1

These postulates provide a closed description because the deterministic
portions of macrovariable are determined by Eq. (4-25) alone, and both H and
y are determined directly from the deterministic portions. The fluctuations
satisfy a nonstationary but linear Langevin description.

Since this Keizer's formulation, numerous investigators have
concluded that fluctuations in macroscopic variables - such as the mass,
momentum, and internal energy densities used in hydrodynamics - satisfy
Langevin-type equations obtained by linearization around the usual
phenomenological macrovariable equations. The so-called Langevin equation
approach is a useful method for dealing with a stochastic process, and it
corresponds to a Markovian Gaussian process with Gaussian white noise
which generally has to be nonstationary. Also, its noise power depends on the
state of the system [34]. It is now widely appreciated that a complete
macroscopic description of the stochastic dissipative process must include the
deterministic macroscopic variables as well as the microscopic fluctuations,
both of which reflect underlying microscopic dynamics [35-37]. However,
while Langevin-type equation approach successfully describe a variety of
physical and chemical phenomena for both stationary and nonstationary
states, another important numerical work by Keizer suggests that this
approach breaks down on chaotic attractors [38]. In the regard that the Kubo-
Fox-Keizer [39] description of macroscopically chaotic and dissipative process
is phenomenological and, in general, thermodynamically nonequilibrium,

this approach is irreversible. The master equation is also irreversible. We
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will come back to this soon. Nevertheless, we look at the relation between
chaotic dynamics and the growth of intrinsic fluctuations first.

The macrovariables refer to the microscopic composition of real
physical systems that are otherwise described by macrovariable equations. The
macrovariables refer to macroscopic amounts of matter and, therefore,
represent some sort of averaging over an underlying microscopic, or perhaps
mesoscopic description. Consequently, associated with each macrovariable is
an intrinsic fluctuation of microscopic origin. Frequently, these fluctuations
are ignored and only the macrovariables are studied. However, light
scattering [40] from a hydrodynamic system can be accounted for
quantitatively only by working out the dynamics of the fluctuations as well as
the macrovariables. Especially for chaotic macrovariable dynamics, it has been
shown [39] that the intrinsic microfluctuations are amplified to macroscopic
size so that the macrovariable description might be markedly modified. This
large-scale intrinsic fluctuations amplified by chaotic trajectories in
macrovariable physical systems may be linked together with the quantum
uncertainty growth in the chaotic regime as we have seen in the previous
chapter.

To be specific, a quantitative characterization of chaos is provided by
the largest Lyapunov exponent, which when positive, implies chaos. The
computation of the largest Lyapunov exponent directly utilizes the
instantaneous values of the Jacobi matrix. Similarly, the growth of the
intrinsic fluctuations is made quantitative by following the time evolution of
the covariance matrix. In fact, it is well known [35,36] that the stochastic
differential equations produce a nonstationary, Gaussian conditional
probability distribution with vanishing mean and covariance NxN matrix C,

defined in general for a given N-component X by
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<6X;6X;> <6X;0X;> -+ <6X;6Xy>

X
C= <d 2:8X1> . ) (4-28)
<5x~ 6X1> <8X~ 5x~>
which solves the equation
i‘!d-tc-= Jc+CJt+r (4-29)

and in which T is the matrix of correlation coefficients for the fluctuating
forces in the associated fluctuation equations for the given equations of a
system. The Jacobian matrix of coefficients is J, which couples the given
equations to the associated fluctuation equations. The solution of Eq. (4-29) is
easily generated numerically using the conditional average solution obtained
from the given equations. Then the largest Lyapunov exponent for this
dynamics A is given by
1

A = lim = In{Te[J* ]}, (4-30)

where n is the number of iterations. It should be noted that a recent study [38]
of molecular fluctuations on the description of chaos by macrovariable
equations using the Lorenz model shows that the exponential divergence of
the covariance matrix, C for dissipative macrovariable fluctuations on a
chaotic attractor is a general property of the usual fluctuation theories in the
thermodynamic limit [35,36,38]. Indeed, chaotic dynamics can cause

macroscopic growth of intrinsic fluctuations in a macrovariable system. If the

117




initial intrinsic noise level is n, and the largest Lyapunov exponent is 4,

then the time, ¢, required for the noise level to reach n at ¢ is of the order of

1 n
t=-i -—-] (4-31)

n, |

Generally, the significance of this amplification of intrinsic noise will be
determined by a numerical simulation of model equations. This study also
emphasize that this results refers only to macroscopic systems for which the
dynamical processes are dissipative. However, in regard to the connection to
the amplification of the quantum uncertainty, this could well be the solution.
For more details, see Ref. 39.

As we have mentioned earlier, the KFK (Kubo-Fox-Keizer) method
describes the irreversible behavior of a system. It is thus quite unlike the
detailed microscopic equations of motion, e.g., the Schrédinger equation,
which provide a description which is invariant under time-reversal. The
methods we will tackle in the next section along with the Hoover's approach
to quantum mechanical nonequilibrium case in Ch. 5 are time-reversible and
based on the Schrédinger mechanics. It seems that one clear advantage using
the KFK approach would be to make more physical sense in the context of
understanding of the dissipative effects which lead to decrease of energy in
many systems of interests because it is mathematically correct. Quantum
mechanically, this dissipation effect is caused by the fluctuation that is capable
of inducing transitions between the various unperturbed states. Another
advantage of using KFK method would be its wide applicability to ma. y
physical systems. Unfortunately, the numerical method of the split operator

scheme that is our prime tool in this thesis cannot be extended to this
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approach. Moreover, initially our intention was to preserve the time-
reversibility of Schrédinger equation. So it is a methodological question than
the philosophical one as to which method we choose. It is also to try
numerically empirical version of complex energy approach since its concept is
widely used in wave optics and easier to apply whenever the type of
Schrddinger equation is involved. This complex energy approach practically
provides the same degree of difficult in solving the usual equilibrium

Schrédinger equation.

4-3-2. Complex kinetic energy method

In the quantum counterpart of classical damping due to friction, it is
not clear as to whether or not an equivalent Rayleigh dissipation term in the
classical Lagrangian formulation is valid without introducing the kind of
fluctuation discussed in the previous section. It could not be valid, but at the
same time, it could be appropriate to assume that the damping mechanism in
the context of correspondence may be in conjunction with the kinetic energy
as the classical Rayleigh term represents. In general, a classical damped
oscillator radiates heat so that the amplitude of its oscillation decreases in
time. Moreover, as we have seen in the previous sections it is frequently
assumed that this heat loss due to friction is a quadratic function of the
velocity of a system (or perhaps of some higher time derivatives of the
velocity). In this section, we presume that the quantum dissipation

mechanism could be in associatior with the decrease of kinetic energy of the
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corresponding classical one. Studies using the many-body treatment with a
heat bath [3] will be considered in Ch. 5.

Contrary to the classical description, Schrodinger equation describes
only thermally-isolated systems. Generally speaking, the possible, non-
stochastic mechanism for dissipation of energy in this quantum mechanical
isolated system is wave function tunneling mechanism. In other words, an
isolated quantum system described by Schrodinger equation loses energy by
decrease of the relative probability. The relative probability here means the
probability compared to the previous one whereas the absolute probability
means the real probability of finding the system. In fact, dissipative tunneling
problem has been studied using a phenomenological damping term
equivalent to the classical Rayleigh term in Heisenberg picture (Heisenberg
equation of motion) [5,6). The approaches studied in the previous section are
not being considered here again. In Schrodinger picture, on the contrary, the
damping term can be readily added to the solution of Schrodinger equation
empirically. The generalized density matrix method in the previous section is
somewhat mathematical background of our choice in which we take ad hoc.

In our model, we include the quantum dissipation as a decay of the
kinetic energy equivalent to the classical Rayleigh term represents. Although
the decreasing probability scheme may only be an approximate representation
[41], the idea is to use the radiative loss of a wave function developed long ago
by Heitler [42] and others [43,44] for the radioactive nucleus with the
modification that includes the classical damping scheme to some extent. We
compare the three approaches of dissipation mechanism by Nosé-Hoover,
Kubo-Fox-Keizer, and using empirical version of complex energy in the last

paragraph of this section.
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Classically, the particle's anticipated dissipation neither changes its
identity nor looses any part of itself. Therefore, the wave function must be
normalized at all times artificially, whenever the absolute probability is
concerned. The physics of the damping mechanism requires this process
which agrees with the concept of the wave function moving in a frictional
viscous potential in a dynamical point of view. In mathematical point of
view, justification of this is still subtle.

On the other hand, one possible physical explanation could be that,
within a given uncertainty, interactive vacuum fluctuations are the cause to
reduce the system's kinetic energy. This idea is similar to the additive (or
multiplicative) stochastic processes in the Langevin equation as we discussed
in the previous section. But more work must be done on this problem at
present. We will look at this problem a little more carefully once again in the
Appendix.

In general, quantum analogs of the classical system can be found by
changing classical variables to quantum operators. As a consequence, it is
appropriate to introduce a dissipation operator (call it Rayleighian)
comparable to the classical Rayleigh term that is proportional to kinetic
energy p? in the classical Hamilton's formulation in the previous section.
This R operator which includes a minus sign is then applied to the time-
dependent solution of Schrodinger equation (2-22).

oy _ g2 . a2
hat— 2;1(1 ip)v w+Vw’ (4-32)

where the constant f corresponds to the classical damping coefficient divided

by the natural frequency of the classical oscillator. This is dimensionally-
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correct since the classical damping coefficient usually has an inverse time

unit in the classical equations of motion. So we have the solution as

t+At t +At
v (q, t+At) =9exp[_ij H(t')dt']exp{—ﬁ]’ ?dt']w(‘bt),
t

=U (@, q,tt)D @, & )WgH + 8 (AP, (4-33)

~ d ~
Y T

t +At
where D = exp{ - ,BI' ['éﬁ] dt’}, and U is the same as (2-23). Here, we
recall the mechanical (kinematical) momentum [] = p+ # Y sinw ¢ , where p is

canonical momentum. In this case, operators with di351pat10n T, Y are

“ﬁcp>=exp[~i(1-iml’—

XGXP[*! (l—lﬂ)lpy{sm( t)s (wA) s(wt)(-—-—-—-—cos(Tt)'l)}]’

(4-34)
Ya(@) = expl - i p (1 - cosq)at ]
xexp[-i(l—ip)-g‘{z— 4t sin2oo 1) 2B _ cos(20 ts‘“(z“"“)}
(4-35)

where we split the operator D by half and combine together with T Y.
The split operator method takes advantage of the ease of treating
operators (2-26) and (2-27) in their diagonal representations. However, the

operator D is not diagonal in momentum space. Its operation is neither
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unitary nor Hermitian in this case. Then the Rayleighian R can be thought of
giving complex eigen-values. An equivalent mathematical formulation to
this analogy is to use a complex mass (see Appendix 4.I). Then the concept of
complex energy becomes more apparent.

It is of importance that the wave function (4-33) should be normalized
after numerical operations to avoid computational overflow due to the
Rayleighian R resulting in ever decreasing magnitude of (4-33). This makes
more sense physically since the particle is not actually being absorbed, but
losing its kinetic energy. The methods described in the previous section do
not require this process, but they need considerably more computation time
and effort. Only wanting the average values to be damped, we take this
process. The normalization process at time ¢ takes place by the following

normalization constant N.

N = [Z g ¢ )|2(Aq)]‘%
@ . (4-36)

It is worth mentioning that we compare the results of the following two
calculations to check numerically the accuracy of normalization processes for
an undriven system. The first calculation is just the ratio between the

normalization at initial time and at an arbitrary time ¢, which analytically

should be
! lwg. t Y dg
~exp[ 2B <T(t)>t],

f lw(9,0 ) dg

(4-37)
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where <T> is the expectation-value of kinetic energy. This is just what we
called the relative probability. Then the second calculation we compare is the

numerical one which is just

};.. lwaq, ¢ P
;.Iw(q.o)F- (4-38)

The agreement is very good, and one might guess that for a smaller time step,
the difference becomes even more negligible. Thus, the normalization
process has no, or very small (but results in no changes) effect on the
computation. It is worthwhile reminding the reader that the absolute
probability must be equal to one after the normalization. This empirical
version of (4-33) is relatively easy to find a solution since no complication
with the usual Schrodinger equation exists.

Now, all the same kinds of numerical operations as in Chapter two can
be applied, and the results are described in the next section. The distribution
functions are also investigated using the formulas in Chapter three. In this
case all we need is the wave function at a certain time since we only treat
everything in Schrédinger picture. This empirical treatment for quantum
description of classical dissipation is mainly used throughout the study.
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4-4. Numerical results and discussions

All the initial values are summarized in Table 4.I. We first examine
the simple harmonic oscillator case whose analytic solutions are not difficult
to find classically. The quantum analysis of this case without an external force
using raising and lowering operators can be found in Appendix II. The
equation used in this case is Eq. (1-13). The upper two pictures in Figure 4.1
shows very close correspondence without an external field. The lower part
also shows a good agreement qualitatively, but not as good as the case of
upper part (notice a small discrepancy around the limit cycle). The real
numerical values for different parameters in simple harmonic motions are
specified in Table 4.Il. From the figure and the table, therefore, it can be
deduced that the proposition of the damping scheme is correct at least well
within the break time. To support this, the driven damped pendulum in a
classically regular regime follows a trajectory shown in Figure 4.2, where the
corresponding classical one is depicted by the side. Limit cycles are evident in
both cases. The lower part of power spectrum indicates the degree of their
near perfect agreement. Figure 4.3 shows the overlap of two trajectories. The
upper one is in the regular regime, and the lower one in the chaotic regime
classically. The solid lines are quantum ones. Their actual numerical values
are summarized in Table 4.IIl. It is very interesting to observe that this
scheme also fails after the break time in the chaotic regime since their values
are so different.

With the confidence that the correspondence will hold within the
break time limit from the previous chapter, the three distributions are
checked and compared. In Fig. 4.4, the time history of the classical distribution

is plotted with the same parameter values as in Fig. 4.2, It is clearly observable
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that the distribution contracts as time elapses until it reaches a steady state
with a fixed area rotating in phase-space due to oscillation of the pendulum.
Subsequent figures for the Wigner and the Husimi distributions in Fig. 4.5
and Fig. 4.6 indicate steady states well. This result is what we expect in the
classically regular regime.

At this juncture, we increase y with a rational value @. Strange
phenomenon is observed, as in Figure 4.7, although the classical motions are
still in the regular regime. Even though both cases develop limit cycles
eventually, their behaviors are quite different. Arrows in the figure indicate
the correspondence limit where two trajectories do not match any longer in
phase-space. It is interesting to see that they break off even before the system
evolves one period of the external field. Power spectra at the bottom half are
not similar either although both give distinct peaks. It is of interest to notice a
rather sudden change in its expectation-value trajectory in quantum case.

As before, the time history of the classical distribution is depicted in
Fig. 4.8, and shows the contraction of the volume due to dissipation. The
corresponding Wigner and Husimi ones are plotted in Figs. 4.9, 4.10
respectively. Generally they appear to be similar to each other even though
there exists a slight difference in the propagation time we picked in each
scheme. Nonetheless, it is quite safe to judge that the Husimi is more
representative in terms of the correspondence. However, we notice
phenomena close to those in the previous chapter. That is, the structure of
the Wigner tells us more about the dynamics through its details especially
located around the middle of phase-space. With this information, the chaotic
case should be examined.

Fig. 4.11 exhibits the trajectories and their power spectra in classically

chaotic regime. The classical motion has a positive exponent and its phase-
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space behavior displays chaotic motion. As in Fig. 4.7, locations of the arrows
describe a rather short correspondence limit with a more drastic change in the
trajectory in quantum expectation-value phase-space. Especially the arrow in
quantum case indicates a sharp change. Their power spectra also show that
the motion appears to be a quasi-periodic (or it becomes almost-periodic by
ignoring transient) in quantum case. This quasi-periodic effect must be noted
and will be mentioned later for more analysis. Now the classical, Wigner and
Husimi distributions are plotted in Figs. 4.12 (4.13, too), 4.14 and 4.15
respectively. In this case, it becomes prominent that the Husimi resembles
more than the Wigner as time elapses. As we have seen in Chapter three, the
similar observation in the chaotic regime is recognized. The Husimi
representation seems to be better, especially in the chaotic regime.

Several other results in the classically chaotic regime reveal that all the
quantum mechanical motions with the dissipation mechanism become
almost-periodic. For lesser values of f, it seems that it would take longer to be
almost-periodic. It is worth pointing out that the uncertainty product
manifests phase-space behaviors as shown in Figure 4.16. To our knowledge,
there is no good explanation to this kind of phenomena at this time.
However, we could certainly speculate that the kinds of periodic motions
arising in quantum case are partly due to a large increase in U such that the
average (expectation) values stabilize. This relaxation was also noted in the
previous chapter.

Other classical strange attractors are compared with Wigner and
Husimi representations in Figures 4.17, 4.18 and 4.19. It is now apparent that
the Husimi exhibits a closer distribution to the classical one in its structure
although its minute information is somewhat lost. Therefore it is safe to say

from these figures that Husimi representation is a better representation than

127



the Wigner even in the presence of dissipation. The same conclusion was
drawn in Chapter three in the absence of dissipation. The final two figures of
Figs. 4.20, 4.21 depict the classical and the Husimi for further evidences.
Hence, similar conclusions to the previous one in Chapter three can be
summarized for this chapter. However, in the regular regime, the Husimi
representation is not necessarily better than the Wigner representation for the
quantum-classical correspondence. We were not interested in the regular
regime where other representations are conceivable with relatively easier

applications.

4-5. Summary

Several conclusions can be drawn from the results. It is evident that all
the cases with an external force develop almost-periodic motions after the
time when the damping ceases all the action if there is no external force. Our
damping scheme forms periodic motion at times inversely proportional to
the damping coefficient. In other words the fundamental frequency
eventually disappears and only the external frequency and its subsequent
harmonics remain as seen from the figures. A similar phenomenon is
observed in the uncertainty calculations. Therefore with the exponential
decay law (in the classical observables) adopted here, no quantum chaotic
motion is observed for reasonable amount of damping coefficients.

For a case of small damping, it would take long time for the system to
be in periodic motion. In this case, the exponential approximation scheme
may be no longer valid. We believe the decay term in the solution of

Schrodinger equation can in fact be treated separately. Therefore after the
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damping dominates the primary motion of the system, the external field
takes over the motion so that in this case, eventually, the periodic motion
develops due to the periodic external field. No matter what kinds of external
fields are applied, the resulting stationary state caused by decay of energy will
resemble its external environment.

The problem however still remains: the existence of the time
limitation that the approximation can be applied and its relation to the so-
called break time that specifies the valid time limit that the correspondence
principle can be applied. Within the short time of good correspondence, the
exponential decay scheme certainly shows classical chaotic behavior. On the
other hand, at large times the general exponential decay in quantum system is
really a different damping scheme than the classical one as seen from the
results. Much is in need of being investigated.

Chapters three and four have revealed that classical chaos does not
manifest itself in the corresponding quantum systems as long as quantum
mechanics expresses all the accessible classical states through its quantization.
Inversely speaking, quantum mechanics does not manifest classical
mechanics in the classically chaotic regime mainly because of the quantum
uncertainty. We will see more examples of different kinds of systems in the
next chapter to see if conclusions in Chapters three and four can be

generalized.
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Appendix 4.1 Derivation of dissipative Schrédinger equation

Mathematically we can form a 'dissipative' Schrodinger equation with
a non-Hermitian Hamiltonian without considering the loss of probability
since our version is empirical. In Eq. (4-6) we included the dissipation term in
the solution by substituting an imaginary kinetic energy with a specific
coefficient B given by the corresponding classical damping term. This solution
must then satisfy dissipative Schrodinger equation which will be derived
here. We first start with an assumption that the kinetic energy term in
Schrodinger equation is responsible for dissipation. The assumption is
equivalent to consider the mass of a system to be complex; that is to say, m =
Re{m} + ilm{m} = m, + im; . This is also equivalent to the complex energy of
a system (E = Re(E} + iIm(E}), which we will show.

Substitute this complex mass into Schrodinger equation, and carry out
the algebra, we finally find the following equation.

L0y B P _ :
zhat_ 211(1 ip)v w+Vw—(1-z,8)Tw+le (Adl-1)

2
m, me
where g = "ril-L’ andpu=m,+ _ﬁir ; here, 1 is not the effective mass. If one
r

writes Re{E) = Eg, Im{E} = E, then this equation can be broken up into a set of

coupled equations:

~  p2
= (—— V =E
Hy (2#+ )Jy=Ery,

~ 2 A41-2
Rw=—ﬁ%;w=£:v. ( )

It is obvious that if = 0 (m;=0), the usual Schrodinger equation is obtained.
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Now, the spatial probability density P (4, t) must be time-dependent
such that the probability dissipates at a rate given by the classically damped
kinetic energy. Then the quantum damping is assumed to be proportional to
the kinetic energy of a wave packet. Whence, we propose that the integral of P

(9, t) over any fixed volume V

I P(q,t)dt ~exp (“"C:;—‘£ , (A41-3)
v

where P (g, t) =|¢(g, t}f, and P (g, 0) = 1 with a positive constant {. The volume
element of the integration is dt which is just dg in one dimensional case. To
find the appropriate value of {, consider the time variations of the

normalization integral.

d dy oy*
ZlprP@ydr-= X yld
atjv @1 de “W at ot w} g (A41-4)

{ 2 2
=gﬁfv[wv v- (Vv vl de

+ﬁ—2-b-I[w‘V2w+(V2w')w]dt,
Hlv
b _
Zi”IVV{V"VW (Vy*) vl ds
+ﬁ§ﬁ-f V{y Y+ (Vv ylae
“
_ph .
/32#[ 2AVY)-(Vy) dr

v
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=—I V.S dt —f VR dt “zﬂij 'erdf ’
v \ % Jy

22
—-|vsar-|vrRar-2 w‘[—’—‘-—"—-]wdr
v v h 2 ’
v
=-I S dA —] Ry dA-Z 1> (A415)
A A h ’ '

where we identify -z:%V as the velocity operator 7°, and A describes a surface

integral. Also, S is known as a probability current density given by

-_h_ - - 4

S5@.t) 2w[vf’Vw (va’)vﬂ Re[w‘iuvui,
=_ A = A

R@g,t) ﬁZu[w‘Vw(Vw‘M ﬁlm[vfiuvv].

Note that the notations R # R . In the case of a wave packet, for which y
vanishes at great distances, the surface integrals are evidently zero when V is
the entire space (— to e in one dimension). For a wave function of a periodic
structure at the boundaries, it can be also shown that the surface integrals
vanish. So the normalization integral is negatively proportional to the
expectation-value of kinetic energy. Then we can identify that { in (A4I-3) is
equal to 2. Therefore, the solution of (A41-1) is expected to have the time
dependence ~ exp| (—iE-28 T)t ], where T is the kinetic energy of a system. We
can show the same result by calculating P directly from Eq. (4-5). However,
using Schrodinger equation (A4I-1), we have showed that Eq. (4-5) is indeed

the required solution.
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The equivalent differential form can be derived. It becomes

aP;q, ) +V{S (q, t) +R (q’ t)} = -ZﬁTP (q’ t)

(A41-6)

This has a very simjlar relation to the conservation form of complex
potential [7]. The similarity between the two is that the probability is not
conserved, but the difference is the presence of the extra term, V-R (4, t), in
the differential form (A4I-6). If there is a region in which
V-{S (4, t) +R (g, t)}=0, (A4I-6) obviously indicates the P decays exponentially
in time according to (A4I-3). This is to be expected since a particle is
experiencing a friction, and giving off its kinetic energy. One may include the
zero point energy such that the solution cannot give energies smaller than
the ground state energy.

The interpretation of a possible physical meaning in this quantum

dissipation mechanism is the following: since we have to write the solution

of the normalization integral as IP 9, t2)dq =I dq P (g, t)exp [-ZﬂT (tz-tl)] ,

where f2>1, the significant fact is only the ratio of P(g,t2)/P (g, t1), the
relative probability, so that the actual absolute probability can always be
normalized. In other words, unlike to the case of complex potential where
particles are being continuously absorbed, the probability to find a particle at
position g is being reduced by the exponential factor which is proportional to
the velocity of a particle in this case. So particles are staying somewhere in the
system with reduced velocities. On the other hand, due to energy loss, the
relative probability after At must be decreased compared to the previous one
before normalization. In fact, this kind of esoteric process of normalization is

not necessary if the generalized density matrix formulation in biorthonormal
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Hilbert space is used as we have discussed in Ch. 4. The complete physical
explanation of this quantum friction must be followed, and yet we do not
have a good answer to this intriguing physics. A possible physical justification
of mathematical process in the complex kinetic energy representation has
been presented in this appendix to claim the validity of our choice of the
method.
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Appendix 4.1
Quantum analysis of a dissipative simple harmonic motion

In this appendix, we will derive the quantum solution of the harmonic
oscillator with dissipation described earlier in this chapter. First, we set the

lowering and raising operator as usual:

L

1o,

By

2h (t? na,

(A41I-1)
it =

Note the following relationships:
(4,8*]=1,n=4a%.
Then normally the Hamiltonian is just
A, =ho(d1+3),

whereas the dissipative Hamiltonian becomes

I:I=-‘1i-hwo{(&+é*)2—(ﬁ—ﬁ*)z(l—iﬁ)}.

This can be reduced to the following form with a simple arithmetic:

H= hw,,{(d*ﬁ +=)+-+ i (a a* } (A4I1-2)
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Now to find the time-dependence on the operators, use the Heisenberg

equations of motion.

da_ i di* i A e
dt ”[H,ﬂl, dt li[ﬁ"3 k

The final results is then just a coupled differential equation.

ih-dﬁ = hm,,{d(l—izé)-i-ig-ﬁ*}

j; 8. _ip p (A4I1-3)
. - v B, i
ih m ha).,{ﬁ (1 2)+ 5 d}
With the assignment
. BB
V=(a+), and A =-iw, iﬁz 121.2 , (A4I1L4)
2 T

we find a simple vector equation: v = A¥. The general solution can be written
¥(t) = exp(At)¥(0). (A41I-5)

Eigenvalues of the matrix A are easily found to be A =+,1-if. Next we

diagonalize the matrix in the following manner:

exp(At) = Dexp(ZHD™, | (A41I-6)

where D= eigen-vector given by
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1 1

D=
1+--(1-\/1 ip) 1+—(l+\/1 )

and its inverse becomes

ﬁ-1=_72_
4i1-ip

1+--(1+JTT) -1
-1-—(1—4__) 1

Also, we have
‘ —iw,y1-1Pt 0

exp(TH) =

0 ¢1@0I-iPt

Carry out the calculation (A41I-6), and one easily find

i a |
( at )(t) = B( &t )(0) ’ (A411-7)

R= B Ry Rp
= 4i\y1-ip\Ryy Rpn ’

where R is given by

with
Ry = {1 + %(1 +y1-if )}e”""° 1-ibt_ {1 + %(1 - m)}ei%ﬁ—'ﬁt,

T=ipt  -ia,|1-iBt
’

R12 = e“'"‘ -
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= {1+ B 1+ B JTTB e
{1+——(1—ﬁ'i— )}{1+-(1+,/1“' )} g/0oN1-iPt
Rzz=‘<{1+—(l-\/—)} e~ i V1-iPt {1+_B_(1+W)}eim, 1-ip t.

Now we need to make an approximation to get a more simpler version.
Further simplifications using 1-if = l—l—g yield the results:

Ry = %(-‘g- +Dexpl-io exp(-5 ax),
Ry, = exp(iw,1-ipt) - exp(-im,\[1-ipt),

Ry =0,
Ry = %(-g- + i)exp(imot)exp(g ot).

B B

BB
1= 41+

ﬁz ( +i)= 4 -2-+1), then R finally

We can also approximate

becomes the following matrix.

( 2 By 2 - . Bot )
(1+%')e“°’v'e 2 (%‘i%')(e'%'ﬂ% +e %t 277

=
[

B ot
0 (1+ T)e"""‘e2

We get
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(B _B )
e 2 cos(w,t)i, —ie 2" sin(a )i,
) +2cos(@yt)cosh(B)i? + i2sin(@,fsinh(B)ar
ae) ) 2 2 (A4IL-8)
i* () ’
=t -Em,t
L e2 * cos(w,t)d} +ie2 ° sin(w,t)d; J

where d;=4(0), and d; =4*(0). Now replace Bw, with B, since we started
with the dimensional damping coefficient whose unit is inverse-time. We
need no dimension in quantum formulations, which means the replace-
ment. This exactly corresponds to our claim since usually the classical
damping coefficient has an inverse-unit. We have been accustomed without
the subscript ‘qm’.

From the above expression, one can find

(B 8, B, B, )
(G,e 2 +dte2 )cos(m,t)+i(dre2 —dge 2 )sin(a,t)
+ 2cos(woi)cosh(-§)ﬁ: +i2sin( wot)sinh(g-)ﬁ;
[ﬁ(t)ﬂi*(t))_
at)-a*(t) . (A4I1-9)
-2! —-p-t Et -.Et
(@fe2 -a,e 2 )cos(myt)+i(Aje? +d,e 2 )sin(w,t)

L ~2cos( wot)cosh(g)&; +i2sin(w,. )sinh(-g-)&; )

It is obvious that the stationary undamped solution is obtained at ¢=0 since we

have




It is not too clear analytically that the solution (A4II-9), yields the
classical solution in the limit, but it exhibits the correspondence numerically.
The analysis we have in this appendix is to determine analytic nature of the
problem, and to come up with some ideas for comparison with classical
solution. Unless we resolve the noh—Hermitian nature contained in the

solution, a further analysis does not seem necessary.
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44

constant Husimi trial function width is used.

TABLE4I Data showing initial values for all the cases in this chapter. The initial Gaussian width is 0%, and the

41 (@)
(b) 05 0.0 2.0 05 20 0.3 0.005 N/A
42 0.2 0.0 2.0 1.0 20 0.1 0.005 N/A
(a) 05 -0.3 15 05 20 0.3 0.005 N/A
43 () -03 05 2/3 145 20 0.25 00025 N/A
44-4.6 0.2 0.0 2.0 1.0 20 0.1 0.005 0.1
4.7-4.10 05" 0.0 4/3 15 20 0.25 0.0025 0.05
4.11-4.15 05 0.0 2/3 15 20 0.25 0.0025 0.05
(a) 0.5 0.0 2/3 15 20 0.25 0.0025 0.05
416 () 05 0.0 4/3 15 20 0.25 0.0025 0.05
4.17-4.19 05 0.0 4/3 1.25 10 0.05 0.0023 0.1
4.20 0.0 05 2/3 05 10 0.25 0.0023 0.1




TABLE 4.1I

Data showing classical values and quantum expectation-

values of positions as well as velocities at various times specified by the

number of integration steps n. Notice the good agreement in (a) and (b) since

these are simple harmonic motions.

Case n <&> Sclassical <&> & tessical

(a) 3072 -0.3285601  -0.3090754 0.2111773 0.1832900
w=10 5120 0.2591167 0.2260636 -0.0172164 -0.0107330
Y=0.0 10240 0.1020580 0.0870070  -0.0236840 0.0011398
B=03 20480 0.0142518 0.0128882 -0.0081721  -0.0009570

(b) 4096 -0.0835692 -0.0807721 -0.0356813 -0.0391514
0w=23 8192 -0.0973784 -0.0971143 -0.2715363  -0.2721665
y=0.7 16384 0.1390191 0.1330709  -0.2035585  —0.2030728
B=0.35 32768 -0.1467359  -0.1370854 0.1934854 0.1915681

145




TABLE 4.IIL

Pendulum data showing classical values and quantum

expectation-values of positions as well as velocities at various times specified

by the number of integration steps n. Notice the good agreement in (a), but

not in (b) where the classical motions are chaotic.

Case n <g4> 9classical <dg/dt > dq/ dtclassical
(a) 256 04970575 04970063 -0.2986349  —-0.2987335
=1.

o=13 2560 03667574  0.3216246 -0.1905403 -0.2066624
y=05
5o 03 4096 —00450927 -0.0395455  0.5584520  0.5441279
() 512 _0.2957375 -0.2959064  0.4185845  0.4187069
w=23 4096 -1.2660619 -0.9159159 —0.7072607  —2.9014839
y=145 8192 -1.7320650 -2.0949545 -0.4502623 —0.2786042
B= 025 16384 —14317289 13972950  0.6264775 -2.2621542
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Figure 4.1 Phase-space trajectories of simple harmonic motions in (a) pure

damping case (no external field) (b) damping with the driving force. The limit

cycle is evident in (b).
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Figure 4.2 Phase-space trajéctories of the forced pendulum. Power spectra at

the bottom half indicate remarkably close resemblance to each other.
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Figure 4.3 Overlaps of the trajectories in (a) regular regir-e, and (b) chaotic
regime. Solid lines are for classical whereas the dotted stars for quantum. See

Table 4.111 for numerical comparison.
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Figure 4.4  The evolution of the classical distribution for the case depicted




Figure 45 The evolution of the Wigner distribution for the same

parameter values of the previous case depicted in Figs 2 and 4.
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Figure 4.7  Phase-space trajectories of another forced case with moderate
strength of damping. Two distinct limit cycles as one can observe from the

power spectra at the bottom half are apparent.
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The time history of the classical distribution for the previous

case in Fig. 4.7. An initially displaced Gaussian distribution revolves

clockwise.
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Figure 4.11 Phase-space trajectories and their power spectra in the classically
chaotic regime with incommensurate rational driving frequency.
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Figure 4.15 The evolution of the Husimi distribution. It resembles Fig. 4.13

more than the Wigner one in Fig. 4.14, especially when t ~ 8.7T, that is after

the break time.
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Figure 4.17 Another case of the classical distributions at various times. In
this case, a rather small damping coefficient was used for the better

correspondence.
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Figure 4.18 The Wigner distributions showing the detailed structures of the

evolution of the quantum wave packet.
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Figure 4.19 The Husimi distributions showing a clos= representation of the

correspondence. It is remarkable that the quantum wave packet contains the

information about the classical dynamics.
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Figure 421 Another case with the quantum distributions that are similar to
each other. The classical ones are not very close, yet the overall behavior

resemnbles to the Husimi ones.
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CHAPTER 5

APPLICATIONS

I had no technical knowledge. - - - It turned out that "allgemeine
Libersicht"(general overview) over physical connections is often more

valuable than specialist knowledge and routine.

A. Einstein confessing about his early years

(H. Woolf's "Some strangeness in the proportion")

Applications to some other models exhibiting classical chaos are considered.
The kicked rotator and the Josephson junction. reveal the similar phenomena
as in the two previous chapters. In addition a two-dimensional problem is
also tackled for Heller's scars. No signs of quantum chaos in terms of classical

definitions are detected.
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5-1. Kicked rotator

5-1-1. Characteristics of kicked rotators

To study more about quantum manifestations of classical chaos, a
slightly different type of kicked rotator has been extensively adopted as an
application of our method. The most commonly known model generates
Standard mapping equation that exhibits classically chaotic behaviors at the
so-called Chirikov threshold value [1]. Since our pendulum can be used as a
kicked rotator as explained in Chapter two, exactly the same kinds of
operations in the previous chapters can be applied. The two kinds of rotators
will be discussed to compare the results from the previous studies [2-4].

First, the Hamiltonian (2-7) is

H=%2+n(1-cosq)z o(t-nT). (5-1)

1l = —00

The corresponding kinetic and potential energy operators are in this case

much simpler. They are just

n . p?
T@) =exp[-i ET ],

(5-2)
Y (9) = exp[ - i n (1—cosq)T ],

where T is the kick period in this case. It is important to point out that in this
case the commutation error disappears, so the operations become exact. The
solution of the type (2-22) is a full solution.

The conventional model giving standard equations has the Hamiltonian
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2 . ©0
H= ’Ez' +1 cosq 2, 8(t-nT), (5-3)

7= -0

“

The operators can be identified easily in this case. Then, we calculate expec-
tation-values of energy and its power spectrum with phase-space behavior.
The difference between Egs. (5-1) and (5-3) is mentioned when we discussed

Eq. (2-11) in Ch. 2.

5-1-2. Results and discussions

The first figure shows the map of classical Standard equations with

increasing values of 7 from 0.5 to 1.13. The equation used is (2-11).

Pn+1=Pn 4+ K sindn ,
(54)
An+1 =4qn + Pn+1,

With smaller values of K (or n) shown in Fig. 5.1 (a), two distinct islands are
well separated for 7 = 0.5, but as 7 increases seen from (b) to (c), they start in-
termingling each other. The lower left picture (d) exhibits the appearance of a
dark stochastic layer for n = 0.972 whose value characterizes the Chirikov
criterion. All the pictures displayed in the figure use 5000 points, and the
initial point is located at g = 0.02,p =0 with T = 1.

Figure 5.2 also shows a similar phenomenon to Fig. 5.1 with the same
initial conditions. This time we use the modified standard equations (2-11).

We rewrite the equation here.
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pﬂ +1 = Pn -— Ksinqn ’
(5-5)
dn+1 =qn + Pn+1,

Two islands in the upper left (a) become connected as 1 increases from 1.35 in
(a) to 2.0 in (d). Similar observation of dark stochastic layers and
disappearance of islands to the case of conventional Standard mapping can be
achieved for even higher vales of 7.

It becomes clear that for values n >> 1, both figures give chaotic classical
motions. One may calculate positive Lyapunov exponents for both cases. It is
to note that the scales of momentum axis in both figures are not relevant.

Having solved for the classical results, we find differences in the
quantum cases. Figures 5.3, 5.4 have the phase-space vlots in upper parts (a)
and the time variations in energy in lower parts (b) in the classically chaotic
regime. The left side of the figures represents the conventional Standard map
(5-5), and the right side the modified one (5-6). The bottom parts (c) of the
figures show the power spectra of energies. Having said that, we find the
same phenomena as Casati et al found in their energy variations [5,6]. Energy
does not grow indefinitely and is interpreted as quasi-periodic variations of
the states.

Figure 5.5 clearly exhibits that the uncertainty product neither grows
nor fluctuates by a large amount as shown at the upper right (b). However,
the correspondence still seems to be failing. The classical mapping equations
(5-5) or (5-6) are discrete maps (difference equation), whereas solving
Schrédinger equation using the split method is not a discrete map. Runge-
Kutta as well as the quantum algorithms are to solve differential equation as

we did in Chapters three and four. So starting with the differential equation
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of (5-1) or (5-3), one could recover the correspondence even for a short time
interval. Limpidly distinguishable peaks of power spectra at the lower half (c)
and (d), support quasi-periodicity lying under the dynamics of the system.
Therefore, in quantum cases, we find no evidence to quantum chaos, and the
correspondence fails. Another example will be discussed in the next section

where we focus on how the energy expectation-value varies in time.

5-2. Josephson junction and devil's staircase

The strange phenomenon known as the 'devil's staircase' in Josephson
junction has been observed experimentally. Many numerical simulations of
this phenomenon have showed the similar structures in their current vs.
average voltage characteristic curves. However, the quantum mechanical
treatment using solely Schrodinger equation has not been studied due to
difficulties rising from many-body calculations with a dependence on
temperature. In this section, we try to show a possible quantum treatment in
the context of the classical-quantum correspondence. We shall not consider
this topic rigorously here.

We first consider a Josephson junction wl.ose classical equation is just

(2-14). In a simplified form, it becomes
G +sing =7, + 1, cos(a*t) - B4, (5-6)

where the phase difference between the two superconductors is denoted as g.
It is obvious that the phase difference occurs because of quantum tunneling
effect [5]. Yet the classical equation (5-6) descrives the dynamics due to classical

measurement of current and voltage. With the dissipation term, -pj,
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removed, the quantum version of the corresponding Hamiltonian takes the

following form;

a2

dq2

H

_% + (1 —cosq) — ¥ 4 cos(at) — 14 . (57

Representations of the external DC and AC currents are denoted as %, and y
in dimensionless forms. The relation ky = I" specifies the proportional
constant k whose magnitude or dimension is determined by the equations (2-

14). Note there exists no equivalent mass term since we only deal with cooper

pairs of electron [6]. The equivalent form of (5-7) is
H =Lllp+ M+ t]2+(1—cos ) (5-8)
gauge ~ o P+h © Yo q)

whose gauges are simply in this case

A=- n Smgﬂt)_ Yot
~ sin (wt 5-9
X=h41q (a) )+% gt (5-9)

such that the gauge transformation with

K'=K+§L=O
dq ,
5 (5-10)
v'_v-élt‘—=(l-cosq)-nqcos(wt)—m, |

yields the same Hamiltonian (5-7).
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It is not difficult to show that the operators in this case become

Tes(p) = expl - (1-i8) Era )

4
wexp - (1 - 11y 2L sintor) ) _ o 20|
X exp [-i (1-iB) ”—Z"—{zt At +(At )2}] (5-11)

Y efe(9) = expl ~ i (1~cosq)At |
cexp|i(1-18) L (8- sinor B _ o SO0,
x exp[-i (1-i B )({%‘3{&2& +3tAt? + At3)}

- ‘L;zﬂ ((¢+At )cos (@ (t+At ) - £ cos (@ t))}

+

7;’)3” (sin (@ (t+At ) - sin (@ t))})] (5-12)

This rather long expression is not difficult to program. Now we are interested

in current vs. voltage characteristic curve known as I-V curve. It is of

importance to distinguish our version from the classical circle map. The circle

map displays the rich forms of the devil's staircase with the concept of

rational winding number. The physics is similar in each case, but the exact

structure in Eq. (5-6) is quite different.

To find the devil's staircase in the I-V curve, we must first take the

time average of the voltage. Figure 5.6 shows a typical classical I-V curve with
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rather large staircase. The blow-up of this flat plateau with finer scales would
display more plateaus forming Cantor-set like structure [7].

However, the quantum case does not show any similar devil's staircase
structure as seen in Figure 5.7. There seems to exist one at around 0.13, but the
numerical studv with a more resolution suggests that it is due to either
numerical fluctuations or the uncertainty variations in that region. By taking
the long time limit in the order of hundreds of the driven field period, which
is more close to a experimental situation, a small steady increase replaces the
fluctuating part running from 0 to about 0.18.

Thus, we also find no direct evidences of correspondence between clas-
sical and quantum mechanical treatment of the junction. So far none of our
examples are in contradiction with our earlier conclusions from the
pendulum. In fact, the examples here uphold the core idea that it is arduous
to track down quantum manifestations of classical mechanics in chaotic

regime although we scent some in the distribution functions.

5-3. Search for 'scars' in 2-dimensional Duffing's potentials

It is interesting to study more about quantum chaos using different, but
simple techniques. One of the available techniques is known as the Heller's
scar [8-10] for actual visualization of dynamical properties of the quantum
wave packet. It is regarded as the remnant of the dynamical wave functions in
the potential field (configuration space). Since we have been solving
Schrodinger equation, the scar of bound states can be determined for
appropriate potentials. It is better for us to use a two-dimensional potential (it
is difficult to visualize the scar in one dimensional potential). Duffing's

potential which gives rise to a classical Duifing's oscillator [11] seems to be a
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good choice. It should be noted that the stadium problem [12] requires the
cylindrical geometry. Because of the difficulty emerging from the Fourier-
Bessel transformation in our scheme, the same problem is not being chosen,
and a simpler version of Duffing's potential is established. The model

Hamiltonian for this Duffing's oscillator is

9 2
H(x,y,px.py) =22£+£21+V(x,y), (5-13)
where the potential is
V(x,y)-:—%a(xz +y2)+-i-b(x4 Y. (5-14)

This potential is depicted in the three-dimensional diagram in the next page
(upper one). The potential we use numerically, V,,,., has a scalar difference

from (5-14) since we are interested in the potential whose minimum is at
2
least 0 for numerical reasons (the minimum value of (5-14) is negative, —%5)'

So we have
1 2. 2.1, 4 4 @&
Vtme(x,y)=--2-a(x +y )+Zb(x +y )+ZB. (5-15)

It would be interesting to study a similar, but cylindrially symmetric potential of the

following form which is also depicted in the next page (lower one):

2
Virue(x,¥) = “Law +y2)+lb(x2 +122+%, or
2 4 4b (5-16)
a2

1 1
Vtrue(r)="5ar2 +Zbr4 + ab
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Diagram describing the two-dimensional potentials.




The Hamiltonian (5-13) is then utilized by the method described in Ch. 2. We
are interested in the wave packet at different times in two-dimensional
potential configuration space. It is expected that the contours of the quantum
wave packet amplitudes would reveal the scar of bound states resembling
classical trajectory in the same space. Classically chaotic cases most likely
associated with unbound states, therefore, will not be considered here.

The corresponding classical equations of motion becomes using (2-2)

. 3
- =0
X ax+b:c3 (5-17)
j-ay+by’ =0
We use an initial wave function of the form:
(x x ? (¥ - o)
Vo(x'y'prpy 7- exp| - exp| - 25
X{(X"'xo)z - (y'yo)z}"' (5_18)

where n specifies the power of the polynomial function. It is not difficult to
conjecture that the doughnut shape of vy, is close to that of the ground state
because of the bump in the middle of the potential as shown in the diagram.
The results of calculations display an interesting aspect: overlaps of
many classical trajectories. Fig. 5-8 is a typical classical trajectory for bound
motions in x-y space with four different, but arranged initial conditions (all
initial momenta are set to zero). Since all the motions are regular, symmetry
given by the potential must exist. The next figure in Fig. 5-9 lists the time
history of the wave packet in x-y plane with an initial condition of classically

bound motions. An initial wave function is displaced asymmetrically. The
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wave function quickly develops into the near four-fold symmetric forms, and
their orientations marked by dark area of condensed contours are similar to
the classical trajectories. Figs. 5-10 and 5-11 are exhibiting similar phenomena.
The wave forms started from the initial wave function that was located at the
center in Fig. 5-11 clearly indicate a four-fold symmetry - the finding of this
symmetry is not objective but subjective, so one may have a different
observation. One could notice, however, the similarity between Fig. 5-8 and
Figs. 5-9 ~ 5-11. Therefore, the scars can be checked using the method
described so far. The possible extension to the cylindrical coordinate or even
to the spherical one could provide 'many applications. Ours are limited to the

Cartesian coordinate. Note the parameter values 2 = -0.7, b= 1.0, and 1 = 6.

5-4. Three coupled nonequilibrium oscillators

In this section, we discuss the nonequilibrium quantum mechanical
analog of Nosé-Hoover mechanics, briefly discussed in Section 4-2-2. We
study a quantum mechanical nonequilibrium constrained system. By analogy
with Gauss' principle of least constraint [13], we constrain some kinetic
energies to be constants in time. The total mass is fixed.

Gauss' principle of least constraint states that any dynamical constraint
should be imposed by using the least possible constraint force. This statement
is

3k

—£ minimum, (5-19)
k=12M
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where the constrained system has N degrees of freedom. By adding small

variations to the constraint forces, (5-19) is equivalent to

=0. (5-20)

Gauss' principle, when used to impose isothermal conditions, by constraining
the kinetic energy, produces exactly the same equations of motion as Nosé-
Hoover's equations of motion in Eq. (4-4).

We shall apply Gauss' least-constraint idea to quantum mechanics by
restricting Schrédinger equation in order to explore quantum chaos. Heat and
work can be included in Schrodinger equation by imposing three constraints

[14):

Cmass = Z(WRWE + Wi yl)-1=0, (5-21a)
i
Cmomentum = Z(W;'RVW} + I[I,‘IVVI,R)—S](t) =0, (5-21b)
i
: 1
Crinetic energy = Z-E(V:'RVZ WiR + 'I’ilvzwil)— SE(t) =0. (5'21C)

S is the number of available sites, | is the current, and E is the energy per site.
Superscripts R and I represent the real and imaginary parts of y respectively.
Hoover's analog of Gauss' principle [14] for quantum mechanics (HMS

equation for Hoover's Modified Schrédinger equation) is

w2 e |
[&]Gms_[at ]Sc," ;[l,(w)VVC,]. (5-22)
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The subscript Schr stands for the usual Schrédinger equation. The Lagrange
multipliers are A; and vary with time. The sum includes the constraints (5-
21). Each gradient in Eq. (5-22) is computed with‘respect to the corresponding
wave-function amplitude appearing on the left-hand side. The usual
Schrodinger equation, yg,,, = —iH Voo Can be written as VR = Ayl
and ¥, =-Hy&,,. We consider the simple case of three-coupled oscillators
with constraints (5-21a) and (5-21c), but not (5-21b).

Before solving the problem, we describe the evaluation of the Lagrange
multipliers. Because the multipliers depend upon vy, Eq. (5-22) is nonlinear. In

the case of n constraints,

C, = > My —ci(H) =0 ]
ij

Cy =Y M} wiyj—cp(t)=0
i,j

= k =
Cr = %Mij vivi—a()=0| (5-23)

Co = 2 Mj vi¥j - c,(8)=0
L i

M,’} represents the symmetric matrix element of the kth constraint for spatial

indices i and j running for both the real and imaginary parts of y. For
simplicity, we consider the one-dimensional case. Each constraint is subject to
ck(t). For example, the matrix M would be diagonal if the constraint is to
conserve mass. Two non-zero blocks of tri-diagonal matrices would form the
symmetric matrix M (in a finite-difference scheme) if the constraint is to
conserve kinetic energy. In the case of the conservation of momentum, we

also have two blocks of bi-diagonal matrices with non-zero elements being

181



nearest neighbors to the right or left depending on the use of the forward or

backward scheme.

M, M, ' . 1.
M= M. M, M, and M, = tri- or bi-diagonal. M, =M, =0.

One can always break up this matrix into two smaller diagonal pieces, M

and M,,, to treat the real and imaginary parts of y separately. Matrix elements

for our model are written explicitly in (5-34).

The quantum ansatz equation (5-22) can be rewritten as
. . n k
Vi =[V’i15ch, - ZMZ Miy;. (5-24)
k=1

From the time derivatives of the constraints (5-23), we get

-ZMilj('I’iﬁ’j +y;¥)= &) |
j

PR HUAZERAAETAG)
]

X MG (i + v ) = 6(t)
. UARSRS | jri . (5-25)

DMy + ) = Eu(t)
7

Substitution of the equations, (5-24), into the required conditions, (5-25),

yields the linear system of equations:
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rAnl*l + Al212 + e+ Alnln =04
AZIAI + Azzlz + .- +A2"l" =0

1. 5-26
Aklll +-o4 Aldll""" +Akn2'n = oy ( )
\A,,I/'Ll +A"22,2 + - +A’m,1n =Q, )
where we have
& = 2, ME ([Widsar W + W) )sanr Vi) - Ei(8), (5-27)
ij
Ay = Y MEW; D Mpi W + ¥, 3, My 0). (5-28)
if m m

A further simplification is possible since M is symmetric.
The solution of a linear system such as Eq. (5-26) is well-known. We

write the determinant of the matrix A as |A]. Then the multiplier 4; becomes

A A 0 Ay o o Ay,
Ay Ay - A 0 o Apy

Ay (5-29)

- i
Al

Anl An2 An,k—l a, - Arm

These Gauss-Lagrange multipliers perform thermodynamic work and extract
héat. These procedures are repeated during every time integration step to get
VGauss in Eq. (5-22) (or Eq. (5-24)).

Here, we consider explicitly the special case in which three coupled
harmonic oscillators are constrained in their motion by external heat

reservoirs with one end hot and the other end cold. We employ the finite-
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difference form of the constraints (5-21) and the classic fourth-order Runge-
Kutta method for the time integration of Eq. (5-24). The schematic diagram

below describes the one-dimensional situation:

Harmonic springs

x= x=x Oscil’ on? x=x x=d

Numerically, we examine three distinguishable particles that interact with
each other through harmonic springs with fixed temperatures at both ends in

a discrete space. The Hamiltonian of this system (see Appendix 5.1) is

Phot P> , Poou 1 2 2 2 2
H =504 2+ 205 4 S 10h0)” + (o = 92) + (Gcous = 92)" +(Go1a)”1(5-30)

where the position coordinate 4 is measured from the position of equilibrium
and thus the momentum p = 4. For convenience, we set the masses, the
spring constants and the equilibrium spring lengths equal to unity.
Computations of the discrete momenta p (derivatives with respect to x) are
carried out according to the finite difference method through yw with the

Hamiltonian in the laboratory frame that is,

i vk rd.1
H=-2l+-23-+—§3—4--2-[(x1—1)2+(x2—x1—1)2+(x3—x2-1)2+(3—x3)2].(5-31)
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The classical-mechanical analysis of this Hamiltonian is listed in
Appendix 5. with its complete analytic description of motion and the normal
modes of vibration without constraints. In this appendix, analysis with
general constraint forces is also considered as an overview of application.
Here we are interested in the dynamics of this model under quantum
mechanical constraints.

The specific constraints in this case are

Crnass =C1 = Z(wiwF + ylyl)-1=0
1

1
{Creqron = C2 = 2~ (W VR + yiVhyD) - f(t)=0 (5-32)
1

1
Cke(coudy = C3 =Z_‘"2-(!I/.'RV%WF +y{Veyl)-g(t)=0.
L i

The computation uses 3 spatial grid points equally spaced with the distance
one so that 27 distinguishable particle sites are available. These constraints,

given by (5-32), can simply be written as

Tl =1
(V%-Iot)

2

2
VCold

L 2

= (TH> =f(t) (5'33)

> =(T¢) =8(t)

The time-dependent HMS equation is then solved for the 54 nonvanishing
values of the real and imaginary wave function. In other words, we solve the
set of the 54 coupled, nonlinear, first-order ordinary differential equations for

yR and ¥, with the number of grid points fixed at 3 for an equilibrium case (a)
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with no constraint, and the same case of which, with the constraints, (b) f(t) =
1, g(t) = 1. We consider the nonequilibrium cases of which (c) fit) =1, g(t) = 0.5,
and (d) fit) =1-0.5 sint, g(t) = 1.

Therefore, the matrix elements, M,S‘-, fori=1,2,.,54andj=1,2,.54in

these cases are

M} = -5125,.,-, and the 18x18 matrix,

m 0 -2 1 0
M?=| . | where the 3x3 matrix, m=|1 -2 1|
0 m 0 1 =2
- —251']"
M= g 0], where the 27x27 matrix, 1, =11, i=jt9
R 0, otherwise

(5-34)

For complete details of the program, see the supplemental program attached
at the end of the text.

It is also worthwhile to note that a fast, modern computing facility
currently available runs typically up to 1012 binary operations per second.
With this power, it is possible to increase the number of grid points so that
the "real" many-body problem could be tackled. In our case, during each time-
integration step, the operations of Egs. (5-27), (5-28) and (5-29) are carried out
for the set of the 54 coupled nonlinear ordinary differential equations. In
actual computations with three 54x54 matrices using Cray Y-MP, the
prelimiﬁary investigation of the equilibrium case with the routines that
calculate the multipliers indicates the approximate CPU-time consumed for
800 time-integration steps is about one minute with 14 decimal digit-accuracy.

However, one can reduce this computation time drastically using only non-
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zero elements of the three matrices. Eliminating zero components increases
the computation efficiency by almost 18 folds so that 14,000 time steps can be
integrated during one minute with the same accuracy. With 40 CRAY hours,
for instance, we would be able to integrate more than 1000 time steps for 21
grid points.

Before we describe the results of the nonequilibrium calculations, it is
readily noticeable that all the multipliers should be zero in the case of the
equilibrium. Since Hoover's ansatz must satisfy the usual Schrédinger
equation in that case, the nonlinearity has to disappear. All the cases (a), (b),
(c), and (d) are checked to be time-reversible.

Next, several different sizes of time step have been examined for 1,000
time steps to estimate the appropriate time-integration step. The time step At
= 0.01 seems to be the optimum value for the overall accuracy during the total

integration time within 0.5%. More specifically, in overall we have

3wl =1+0.002
(Ty) = f(t) £0.005.
(Tc) = g(t)£0.005

We arrive at this accuracy by first reducing At from 0.16 to 0.08 for 32 time-
steps and 64 time-steps, respectively, during which several oscillations are
possible (the total integration time is 5.12). The table in the next page lists the
actual numbers generated after this integration time interval for the cases (c)

and (d). The numbers shown are rounded off at the seventh decimal places.
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0.16 0.6596001 0.6699084 0.4975876 0.3853349 0.4726473 0.4932859

0.08 0.8783244 (0.8883579 0.8159243 0.5028487 0.7847145 0.4965302

0.04 0.9736894 0.9818584 0.9640282 0.5696386 0.5109516 0.5075137

0.02 0.9959078 0.9971853 0.9963953 0.5793542 0.5062504 0.5043565

0.01 0.9994252 0.9994024 1.0008584 0.5796416 0.5028223 0.5019154

0.005 | 0.9999200 0.9997906 1.0009196 0.5791773 0.5012421 0.5008270
_ . .75733 05 _

We observe ﬁo real significant changes in the accuracy with an even smaller
time step. In the equilibrium case (a) with no constraint, ZMZ = 0.9747478,
0.9991336, 0.9999724 for At = 0.1 (32 time steps), 0.05 (64 time steps), 0.0025 (128
time steps), respectively.

We are also interested in number densities, p for hot, cold and middle

atoms using the expectation value of number operator O. Its value at a
certain time is

(5-35)

2 2 2
where (0;) = z[lq),-jkl +|¢jk,-| +|¢k,-j| ], i,j, k=1, 2, 3 for the hot, middle, cold
ik
atom respectively. Also the following notation is used; ¢;; = Vi+3(j-1)+9(k-1))

For the hot atom, for example, we have
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(01)=(On)= j,k§=l[|¢1jk [ o + |¢k1f|2]

=3yl + 2wl + 2w + 2wl +|ws[* +lwsf
+ 2yt +|wsl + 2wl + 2Qwnof +|wiaf +|viaf
+|V’13|2 +|W16|2 + 2|V19|2 +|'lfzo|2 +|W21|2 +!V’25!2'

Thus, py +pum +pc =1 since we put the denominator 3 in (5-35) for three
atoms. The actual computer program is attached at the end of the text for

those who want to reproduce the results.

We also summarize the initial data used in the calculations for Figs.

5.12 to 5.15 in the following table:

(a) Fig. 5.12 1.0 0.0 N/A N/A 3000

(b) Fig. 5.13 1.0 0.0 1.0 1.0 4000
() Fig.514 1/42 1/2 1.0 0.5 2000

The time step is 0.01 for these calculations. For Figs. 5.16, and 5.17, we use At =
0.05 and 0.03 for the cases (c) and (d), respectively. For Fig. 5.18, we use two
different initial conditions other than the cases (a), (b), (c), and (d) above. The
plots in the left column shows the case with initial conditions: the real parts
of wave functions, ¥ =y, =y, =Y3 = 0.5 and <Ty> = 1 - 0.5 sin’t, <T> = 0.75.
The right column is for y; =y, =ys =Yy =W1p =14 =W15 =¥23 =¥p7 = 1/9 and
<Ty> = 8/9, <Tc> = 8/18. The time steps for these two cases are 0.02.

All the abscissas in Figs. 5.12 to 5.18 represent time in an arbitrary unit.

In Fig. 5.12, we first test the equilibrium case (a). As we expected, both the total
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energy of the system and the probability conserve even with the greater
accuracy of about 10-6. In this case, we choose arbitrarily that all three atoms
are initially at x; so that the average kinetic energy of the far right one is the
largest. This expected result is shown in the figure. In Fig. 5.13, we constrain
the atoms at both ends to be at the same temperature with the same initial
conditions as those in (a). We tried a few other choices of initial values of y
other than y; and y;; there are 54 possible initial values of y. Those results
indicate very similar behavior as shown in the figure. In Fig. 5.14 for the
nonequilibrium case (c), we did not observe any chaotic behavior for small
perturbations on the constraints. This is rather clear because the model
system with the same kind of constraints is classically not chaotic, either. For
another nonequilibrium case (d) depicted in Fig. 5.15, we see the expected
variations of <Ty> with the period of oscillation, #. Note the overall
similarity between the multipliers for the conservation of mass and for <Ty>.
In Fig. 5.16, the readers can readily notice the periodic motions of the average
kinetic energies of the middle atoms for the cases (c) and (d). In this figure, we
also plot the time average of both the difference in the multipliers for <T>,
and the expected values of total energies. The results indicate steady states as
we expected. Thus chaotic phenomena seem to be suppressed in the
expectation values of various variables. The right column in Fig. 5.16
indicates that the nonequilibrium cases (c) and (d) eventually reach the steady
state with constant heat flows. Since the multipliers act as thermostats, the
steady time average of their difference can be interpreted as a steady heat flow
from the hot to cold atom. In Fig. 5.17, we plot the time history of number
densities for cases (c) and (d). It is clearly shown here that the number
densities calculated from (5-35) become periodic. It is also clear from the Fig.

5.18 that the plots in the right side display the periodic variations of the
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number densities. We observe that even the number densities plotted in the
left become periodic in a longer time interval. These last two plots do not
support the existence of chaotic behavior in this system.

In addition, we observe no significant change in the time-history
patterns of various values listed in Figures 5.14, 5.15, and 5.18 after we make
the small changes in y;y by 5% of ;. This indicates no sensitivity to a small
initial perturbation. Apparently, the results from this three-body model
indicate no chaos in nonequilibrium cases (c) and (d) and cases in Fig. 5.18.
But this type of approach certainly be extendible to more than three body
systems that might exhibit chaotic nature. It is also important to note that the
time average of expected values of energies can be used to measure the degree
of chaotic dynamics by checking its fluctuations. The computations were
checked to be time-reversible.

All runs but (a) are computed with the constraints. The cases (b), and
(d) were carried out more than 10,000 time steps, and the results indicate the
same patterns as shown in Figures 5.13 and 5.15. We plot the first 4,000 time
steps in order to display more details in these cases.

We can apply this method with an additional momentum constraint.
It is expected that time averages of the current (in momentum) can be
expected to resemble its classical, elastic, and hydrodynamical counterpart [14].
Some interesting systems have been thoroughly investigated in this context
including the analysis of Lyapunov stability [15,16].

In this thesis, we only looked at the simplest possible problem to show
the nonequilibrium treatment of many-body molecular dynamics using HMS
mechanism. More complex problem like the Galton board system on a
hexagonal finite-difference grid has been studied. It is worthwhile noting that

the results from the quantum Galton Board also reveal the absence of the
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quantum analog of Lyapunov instability which underlies the Second Law of
Thermodynamics and the classical irreversibility although the distributions
of mass, momentum, and energy approach the fractal distributions found
classically. From the standpoint of the quantum-classical correspondence, this
agrees with our previous points from the pendulum model, which indicates |
the breaking of the correspondence for the classically chaotic system in the

chaotic regime.

5-5. Summary

From the examples in this chapter, a more clear picture of the quantum
chaos with classical counterparts has emerged: The uncertainty breaks their
correspondence near the break time to form quasi-periodicity. Evidently very
thin stochastic layers intermingled with tori, and the islands within islands in
Figs. 5-1 and 5-2 are wiped away in quantum mechanics. Therefore a detailed
structure in the coarse-grained quantum phase-space due to a small but finite
h can almost all be neglected [17]. Then quantum behavior appears regular
even if the corresponding classical system appears chaotic. This effect becomes
more apparent when the uncertainty rapidly grows. The observations made
by Casati et al. on the quantum kicked rotator [18] and by Marcus [19] for the
quantum Hénon-Heiles problem confirm this core idea. However, using
HMS dynamical description, chaotic behavior in quantum system might be
possible, but requires more than three bodies. In the next chapter, we will
look at the possible reasons and solutions of quantum regularity in the

normal Schrédinger mechanics.
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Appendix 5.1 Classical-mechanical analysis of the coupled oscillators

For the complete classical description of motion for this system, we
ignore any constraints. We will use the normal modes of the system to solve
this problem. To do that, we set x; as the position coordinate for ith atom,
where i = 1(Hot), 2(?), and 3(Cold). The distance between the two walls is
denoted by d (the position of the left wall is zero) and the equilibrium
distances of atoms b (equilibrium spring length). Then the potential energy of

the system with spring force constant k in the laboratory coordinates is

V= -’;-[(x1 —b +(xy -1 =B +(x3 - x, - b} +(d -x3-bY).  (A5L-1)

We now introduce coordinates relative to the equilibrium positions [20]:
gi = Xi — Xoi,
where

Xo1 =Xo2 —Xo1 =Xo3 —Xo2 =d~Xo3 =b.

In discrete space, the distance d can be replaced with an integer N specifying
the total number of spatial grid points with equal distance apart being one
(b=1). The potential energy in the equilibrium displacement coordinates ¢;

then reduces to
k
V=209 + @y -9 + (33 - 92)" +45°), (ASI-2)

since x,3 =d - b (or =N +1- b =N) and g3 = x3 - x,3 . The kinetic energy takes

the following simple form in this coordinates:
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:r=l;’-[q12 +G.2 +442). (A5I-3)
Egs. (A5I-2) and (AS5I-3) give the Hamiltonian (5-30). Similarly, since §; =x;,

one can establish another form of Hamiltonian (5-31) using (A5I-1) in the

laboratory frame with b = 1, d = 4. The Lagrangian, L(g;,§;), is T — V, which we

can write as
1& 8 ..
=‘2"2 2 (T 4:9; - Vi; 9:9;), (A5I-4)
i=] j=1
where
m 0 O -2k -k O
T=10 m O0landV=}| -k -2k -k |. (A5I-6)
0 O m 0 -k =2

It is useful to write T and V as matrices so that we could generalize to
different cases. This approach also makes an even simpler introduction of the
constraint forces to the system.

Using Lagrange's equation, we find the equations of motion:

Til' +Vq=0, (A51-7)

where we have defined the vector § = (4y,42,93)7- The normal modes are
collective motions where all three blocks move with the same frequency.
Since there are three degrees of freedom there will be three normal modes,

For each one, the solution is of the form
t_]_(_t) =a; (t)exp(i cojt). (A5I-8)
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We substitute this (A5I-8) into the equations of motion (A5I-7), we get a

matrix equation for the matrix a j(t),

(V-0{T)a,; =0. (A51-9)

In order for a nontrivial solution to exist, the following secular equation

must be vanished:

2k — w’m -k 0
|v -o®T|=| -k 2k-o'm -k |=0. (A5I-10)
0 -k 2k - w*m

2, with roots = 2k/m,

This leads to a cubic equation in @
w22 = (2+'s/—2_)k/ m, and a)32 =(2 —2))k/m. If we insert these frequencies into
Eq. (A5I-9), we are to solve for the three normal modes, for which we choose
the normalization prescription a’Ta=1. Subject to this condition, our

normal modes are

1 1
1 1 1
= 0| ay=— V2 ,and a3 =—| -+/2 |. AS5I-11
4 w_/Zm 1 % 2m 1 and a, 2m 1 ( )

The frequencies of vibration can be obtained from f; = @;/2xn. These normal

modes of vibration are depicted for the corresponding frequencies.

—> —; > — —>, > — —»

2 2 2
)] )] w3

From Eq. (A5I-8), we could also find the position of each atom at any later

time if the initial conditions are given.
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Now, suppose we apply a force F(t) to keep the average kinetic energies
of some atoms in the system constants of motion. However, because the
constraints in this case (Eq. 5-31) are quantum mechanical, not applicable to
classical case, the exact form of F(t) is not obtainable. The expectation-values
in quantum mechanics are interpreted as average values over many
measurements at a given time in classical language. So, this meaning of
average makes us unable to formulate a specific description of constraint
nonlinearly. Moreover, the fact that the constraints we deal with are
nonholonomic adds additional difficulty to the problem. But we can still
discuss the general overview of the problem by assuming the force F(t).

Since we now can use the vectors in (A5I-11) as a basis set to write an

arbitrary displacement as

q4(#) = &1a; + &g +&3a;, (A5I-12)

where &; are called normal coordinates, our equations of motion are

T(i Eiai) +V(23: ém] =F(t). (A5I-13)

i=1 i=1

We use the matrix equation for a normal mode vector, (A5I-9), to rewrite Va;

as ®;2Ta;. If we now multiply on the left by a}r and use the orthogonality

condition, a}rTa,-=8,-,-, the normal modes decouple and we obtain the

equations of motion for the normal coordinates:

Ei+ 08 = fi(t), (A5I-14)
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where we have defined f;(t) = aTE(t). At this juncture, if the particular force F
is given, one could compute f;(t). Then, with the certain initial conditions on
&, the solution of (A5I-14) allows us to find the motion of a specific atom in
terms of the equilibrium displacement coordinates g;. Although it is quantum
mechanical, our model could be investigated in the same context, especially

for g, .
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Figure 5.7  The result from the quantum calculation. No apparent plateaus

are observable.
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Figure 59 A time history of a wave packet in space. There is neither
external force nor damping. Note the rectangular shape and the circular shape

formed by condensed contours similar to the classical trajectories.
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Figure 5.10 Another example of quantum calculations showing the spatial

variations of the wave packet.




Figure 511 More example with a centrally located initial wave packet. Note

the symmetry in this case.
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Figure 516 Periodic motions of the middle atom are apparent from the above two
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Figure 517 Time variations of the number densities. All the abscissas
represent time. The left column is for the case (c), and the right for the case

(d). It is apparent that the number densities are periodic in time.
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Figure 518 Time variations of the number densities. Nonequilibrium cases
with the constraints, < Ty > =1-0.5 sin%t, < T¢ > = 0.75 for the plots in the
left column, and < Ty > = 8/9, < T¢c > = 8/18 for the plots in the right. The
densities become periodic for the plots in the left in a longer time interval.

Initial conditions for these cases are listed in the text.
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CHAPTER 6

CONCLUSIONS AND FUTURE

A quantum physicist and student of quantal paradoxes: Macroscopic objects ...
can't be in two mutually exclusive states at the same time; quantal objects can
be, and often are .... Quantum physics seems to contain classical physics as a

limiting case ....

Alice (a graduate student): Why do you say "seems to"? Surely physicists
know by now whether it does or doesn't?

Alice in quantum land

(D. Layzer's "Cosmogenesis")

We summarize our results in this chapter. The quantum measurement

problem is also considered in the context of quantum chaos qualitatively.
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6-1. Conclusions

Extensive, though not complete, search for quantum chaos has been
carried out throughout the previous chapters. Since the principal conclusions
are described in the summary sections of each chapter, we will list a few
important properties worth mentioning again here.

First, we found the claim that quantum mechanics generally embraces
classical physics is valid even though exactly the same measurement is not
possible. No trace of violation of the claim was found. The expectation-values
we calculated were the statistical averages of many possible measurements
ignoring actual perturbations due to the measurement (or observation)
processes of a quantal system. Because of this perturbation, its physical state
must change discontinuously. This will in fact changes the Hamiltonian of a
systern whenever there is a measurement. Also, the measurement would
reduce the uncertainty to the minimum value allowed by its process. With
this perturbing part excluded, the statistical averages relax to smaller values as
the time elapses. This relaxation effect was seen from the results in the
classically chaotic regime in Ch. 3. Those results indicate the change in the
uncertainty is not small. This however does not mean that the claim fails. In
other words, the large uncertainty variation prevents us from knowing the
exact state. Therefore, someone like Einstein asserted that the physical state of
a quantal system is unknowable. He thought that quantum physics is just
computational device for calculating the probability of observable events.
Nonetheless, this probability can represent classical mechanics in the regular
regime, but not in the chaotic regime. Instead, quantum distribution
functions permit us a good level of correspondence in the chaotic regime. It is

worthwhile printing again that the Husimi representation is not necessarily
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better for the quantum-classical correspondence than the Wigner one in the
classically regular regime. Therefore, bearing the uncertainty in mind, the
quantum violation of classical dynamics was not found, and the claim stands.

As we have noticed from the previous three chapters, quantum
mechanics does not manifest classical mechanics, especially in classically
chaotic regime mostly because observation is impossible in quantum
mechanics. This was described in the previous paragraph. On the contrary, a
close correspondence was observed in the regular regime. We also found a
higher degree of correspondence in more classical limits (A—> 0 or y— ). The
uncertainty growth or fluctuation is believed to be partly responsible for the
breaking of the correspondence. The uncertainty principle does not restrict
the shape of a micro-cell (P-cell) whose volume in phase-space is equal to or
greater than Planck's constant. Thus, the effect of relaxation effect discussed
before can be a rough measure of which variable is responsible for the
breaking of the correspondence. In other words, we may be able to distinguish
the specific variable that has the relatively high level of uncertainty at the
specific time.

The interaction with the environment, especially through frictional
dissipation, was approximately treated, and found to be a good representation.
Using this technique, quantum treatment of classical strange attractor was
studied to check signatures in phase-space. Quantum signatures of chaos were
discovered using the Wigner and the Husimi distribution functions even in
the chaotic regime. To represent the correspondence, the Husimi seemed to
be better, although the Wigner contained more detailed information on
classical dynamics through its contours. It is of importance to remind the
reader that no evidence of quantum chaos was found in phase-space

trajectories. Therefore, these distributions deserve more attention in the
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context of a quantum chaos search. At any rate, it is realized that some finite,
bounded, undriven quantum systems are not chaotic [1]. Also the study
considering a quantum version of the Arnol'd cat map claims a failure of the
correspondence even in an appropriate limit of the chaotic regime [2]. Chaotic
quantum phenomena, however, can be observed using numerical
simulations of a nonlinear Hartree equation [3] or of a mean-field
approximation [4] without a classical counterpart.

In addition, a quantum wave packet carries dynamical information of
classical trajectory as we have seen through some Heller’s scars, though we
did not study the chaotic regime. This was expected because the quantum
distribution functions containing wave packets resembled classical one
closely. But perhaps most importantly, it appears that classically chaotic
phenomena would eventually be suppressed by the quantum uncertainty
even in the semi-classical limits.

Finally, the split operator method was very effective in solving the time-
dependent Schrodinger equation. This could have many possible applications
in quantum dynamical problems even though our study was limited to the
Cartesian coordinates. One immediate application of the method is to study
the overlap of energy levels of the Floquet states [see Ref. 22 in Ch. 4] in which
the transition from regular to chaotic states might be characterized. The level
broadening of the Floquet states in the chaotic regime would result in the
complicated, mixed state. For instance, the multiphoton process in the
Rydberg state of atom undergoing the transition could be extensively
analyzed by using the split operator method with the spectral method
mentioned in Egs. (2-40) ~ (2-42).
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6-2. Future

As E. Wigner once called it, the ‘pre-quantum-mechanical’ laws of
physics told us how to predict the future state of a physical system. This
concept fails to be valid in the state of the pre-quantum-mechanical chaos
(classical chaos). This unpredictable feature oriéinating in classical chaos
contradicts the linear nature of the predictability in quantum mechanics.

We, human beings, experience the classical chaotic phenomena in the
world around us everyday. However, quantum phenomena are also
applicable over vastly different and larger scales than just atomic physics,
even though we seldom experience it directly. For example, experientially
neutrons show both particle and wave nature over the energy (mass) range
from 107 eV to over 108 eV. Today there is no experimental evidence that
points to the break down of the quantum theory. Then why have no
quantum manifestations of classical chaos been observed? Why can’t we
control the uncertainty? Where does the uncertainty come from? I think the
problem is this: quantum mechanics is fundamentally about 'observations'. It
necessarily divides the world into two parts, a part which is observed and a
part which does the observing.

In my opinion, the only thing that the existing quantum mechanical
equations allow us to postulate about chaotic behavior is a quantum state of
object plus a classical apparatus for the outcome of the measurement that has
a definite value. Observer’s worlds of quantum mechanics [5-7] have
produced a paradox such as the Schrodinger’s cat almost seven decades ago.
Such a long time interval has inevitably made many propositions on

quantum measurement theories [8-11]. It is now believed by some that




quantum theory of chaos has to come in conjunction with the measurement
theory.

This concept of a global Schrodinger equation for a quantum system
plus environment has obviously an implication of fundamental change in
our description of the basic rules of nature. In fact, there are some elaborated
postulates taking care of specific probiems. A classical approach to non-
equilibrium Schrédinger equation using the concept of Lagrange's multipliers
and Gauss' least constraint principle could generates chaos [12-14] as we have
discussed in Section 5-4. The so-called stochastic dynamical reduction
equation that includes an unusual operator in the normal Schrédinger
equation has also been suggested [15,16]. The importance of the Kubo-Fox
method [17] cannot also be emphasized enough. In many aspects, its approach
has a clear advantage as we discussed in Ch. 4. Moreover, addition of a
nonlinear term to Schrodinger equation has been studied [18,19]. However,
they do not seem to have universal validity. Each of these postulates has its
own advantage for different problems. Especially, Hoover's postulate has a
distinguishable advantage in treating non-equilibrium quantum many-body
situation. His approach provides the necessary mechanism in treating an
open system as we have discussed in both Sections. 4-2-2 and 5-4.

In my opinion, Schrédinger equation may need an additional
nonlinear term that couples the classical world with a coupling coefficient
specifying the strength of the coupling. Without a measurement, the
coefficient is zero and the normal quantum mechanics resumes. Yet no
specific postulate exists. At this juncture, further extensive investigations are
necessary.

I think that either a change in Schrodinger equation or the need to

interpret quantum mechanics differently using classical mechanics is not a
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lunatic idea. I also believe that the measurement approach to quantum chaos
[20] would provide considerable progress towards a better, though not
complete understanding. This problem is also related to the paradox of
classical locality and quantum nonlocality. Both problems can be regarded in
the same context. I must say as well that it is perhaps conceivable to search for
quantum chaos in a totally different context than the one we have been
considering in this study. Currently, on the other hand, many researchers are
turning into the possible future application of this still low-profile, enigmatic
subject as the semi-classical (or. one may prefer both classical and quantum)

regime in many areas of physics are becoming more important.

6-3. Epilogue

Almost three years have passed since the collection of the first
numerical data in its initial interpretation. The core structure of the computer
program using the celebrated split operator method had been set up even
before that time with a great help from Mike Feit. The skeleton of the
computer program for the material in Sec. 5-4 was provided by Bill Hoover.

Frankly, the investigation was started with an expectation that a
quantum system exhibits chaos for a sufficient time to be observed, although
the present evidence weighs heavily against this [21]. Regardless, if this thesis
suggests that ubiquitous chaotic nature in a macroscopic level is not
observable in underlying microscopic level, so be it. My hope is that this study
would be considered as a certain contribution to the field. At any rate, even
after the careful processes of many revisions, many parts of my work may still
contain some defects. In his words, Warren S. McCulloch seems to describe

my emotion at this moment:"Don’t bite my finger - look where it's pointing.”
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Supplement

The core structure of the split operator algorithm is listed conceptually in this
supplemental section. The computer program for Section 5-4 is also provided.

BEGIN

c Set up n number of initial grids and kinetic, potential
energy operators.

DO i=1, n
q(i), p(i)
T(i), V(i)

DONE

c Set up initial wave function yO0.

DO i=1, n
yo(i)
y(i)=sy0(1i)

DONE

¢ Propagate initial wave function for m time steps.
¢ Split the kinetic energy operator once.

DO 1 j=1, m
Fourier transform of y(i)

DO i=1, n
y(i)=y(i)+*T(i)
Expectation values of p

DONE

Inverse PFourier transform of y(i)

DO i=1, n
y(i)=y(i)*Vv(i)
Expectation values of g

DONE

¢ Calculate normalization and correlation function.

DO i=1, n
C(3)=C(j)+y0(i)*y(i)
DONE

c Call subroutine to compute eigen-energies and eigen-
functions
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¢ using spectral method
CALL SUBROUTINES
1 DONE

c Calculate the power spectra from here

¢ For the Wigner and Husimi distribution functions, set up
¢ momentum grids (index jj) for phase-space contour plots

FOR WIGNER
DO 1i=1, n
DO j=1, n
ii for shifted spatial coordinates
W(ii,jji)=w(ii,jj)
+complex conjugate(y(x-y/2))*(y(x+y/2))
DONE
Fourier transform in terms of the momentum index 3jj
DONE

FOR HUSIME
DO i=1l, n
DO j=1, n
DO k=1, n
H(ii,3j3)=H(ii,jj)+Gaussian test functionty(k)
DONE
DONE

—— - - — D T - W En M4 M e A SN e o S G S e e T W Em e e e e e R S e e e
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c Subroutines for Eigen-functions yk(j,k) and eigen-values
E (k)

Fourier transform of the correlation function C(i)

Apply Line-fitted method to get E(k)

- - ————— - = e - - . e i e e e W M M G P W M M e S S . M e e e e -

kth eigen-value
DO i=1, n

vyk(i,k)=yk(i,k)+y(i)*exp(complex(i)*E(k)*time]
DONE

The above listing describes very simply the core structure of the program. One
can add more possible operations for different purposes.
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program HMSeqn

c Calculation of the time—dependent Schroedinger equation for a chain
c of three harmonic osclillators bounded by the fixed walis at both ends.

real t.dt,tm,const,aa,cc,.gsum )

dimension yr(3,3.3).yi1(3.3.3),yy(54),.yyp(54).yyps(54)
dimension sum1(64),s5um2(654),.sum3(64) psi(3,10000)
common/deg/ c1(54,54),c3(54,54),.pr(64.54),.0m(3,3)

c initial conditions
write(6.+) .
* ‘Enter Initial values for yl,y2,.....y27°
read(§.*) yr(1.1.1),.yr(2.1,1),....yr(3.3,2),.

input parameters
ncases1: turn on all the constraints
lwnt=1: turn on the sinusoidal kinetic energy constraint
n is the total! number of integration steps
write(6.*) °‘Case,dt.n,iwnt’
read(5.*) ncase.dt.n,iwnt

00006

¢ integration
do 10 I1=1,3
do 10 j=1.,3
do 10 k=1.3
l jKre|+3*(j=T)+9*({k~-1)
i jkis| jkre27
yy(i jkr)=yr(i.j.k)
yy({l jki)syl (i, }.k)
prosum=prosum+yy (1l jkr)*=2+yy(l jki)*=2
10 continue

¢ Set up the matrix elements
do 14 (i=1,64
pr(l.i)=1.
c1{i,li)==2,
c3(l,i)==-2.
14 continue
do 16 i=1,18
jn=i-1
cl1(1+jn*3 .2+ jn*3)=1.
cl{2+}n*3,1+jn=3)=1.
c1(2«jn*3 ., 3+ jn*3)=1.
Cc1(3+jn*3 2+ jn*3 ) =1,
18 continue
do 16 K=10.485
c3(k.k-9)=1,
c3(k.k+9)=1.
16 continue
do 17 jj=1.,9
c3(jl.jj*8)=1. N
17 continue
do 18 kk=46,.54
c3(kk ,kk=9)=1.
18 continue
do 181 1=19,27
c3(i.i+9)=0.
181 continue
do 182 j=28,36

c3(j.j-9)=0.
182 continue

¢ Normalize the initial wave function
cnorm=1./sqrt(prosum)
do 19 i=1,27
yy(i)=cnorm=*yy (i)
yy(i+27 )=cnorm=yy (i+27)
19 continue .
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C AANAOTAROCARER MA'N PROGRAM t.tﬂoﬁ.--.an'aauaa----.-tt.

do 100 il=1.n
tstedt

" do 21 1=1.3

do 20 j=1.,3
do 20 k=1.3
ljkr-|03'(j-1)*9'(k'1)
1 jki=l jkre27
yr(i.).K)=yy(ljkr)
yi(i.).x)=yy(ijlki)
sum1{i jkr)=0.0
sumi (i )ki1)=0.0
sum2 (! Jkr)=0.0
sum2(i j)ki)=0.0
sum3 (1 Jkr)=0.0
sum3 (i Jki)=0.0

20 continue
psi(i,11)=0.0

21 continue

prosums0.0

enesum=0 .0 s

enesum2=0 .0

ene1=0.0

ene2s0.0

ene3s=0.0

do 22 i1=1.,3

do 22 )=1.,3

do 22 k=1,3

Ijkr=I¢3‘(j-1)¢9'(k-1)

1jki=l Jkre27
potSO.S'((l-1)"2*(]-!—1)"20(k-]-1)"Zﬁ(k-a)"z)
dsqri=-2.*yr(l.].k)
dsqr2==2.*yr{l.}J.K)
dsqr3s-2.*yr(l,}.K)
dsqlll-z.'yl(l.j.k)
dsql2s-2.*yi(l.]).K)
dsqlal-z.'yl(l.j.k)

I (l.gt.1) dsqr1-dsqr10yr(l—1.l.k)
(j.gt.1) dsqundsquOyr(l.j-1.k)
(k.gt.1) dsqr3=dsqr3¢yr(l.j.k-1)
(i.gt.1) dsql1ldsq|1¢yl(l-1.j.k)
) dsqlztdsqlztyl(l.j—1.k)
) dsql3-dsq03¢yl(l.].k-1)
) dsqr1-dsqr10yr(I¢1.1.k)
) dsqr2=dsqr2¢yr(l.j*1.k)
) dsqr3-dsqr3¢yr(l.j.k¢1)
) dsql1=dsq|1#yl(l¢1.j.k)
. ) dsqi2’d5ql2¢yl(l.]01.k) .
(k.1t.3) dsqi3=dsqi3+yi(i.].k*1)

PO Y Yool
At
WRWWWW=-
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c Calculate kinetic energies
enelzenel-0.5~(yr(i,}J.k)dsqri+yi(i,}.k)"dsql1)
enezsenez-o.s*(yr(l.j.k)'dsqu*yl(l.j.k)'dsqlz)
eneaﬂenes—O.S'(yr(l.j.k)'dsqrsoyl(l.j.k)'dsqiS)

c Calculate the total! probability and total energy
prosumtprosum*yr(l.j.k)'*Z*yl(l.J.k)*'z
enesumnenesum¢pot'(yr(i.j.k)"Z#yl(l.j.k)-*Z)—o.s-

1 yr(l.j.k)*(dsqr1+dsqrz+dsqr3)—O.5'yl(l.J.k)'
2 (dsqi 1+dsqi2+dsqi3)
22 continue

if (ncase.ne.1) go to 1000

do 211 mm=1,54
do 211 nn=1,54
i f ((c1(mm.nn).eq.0.).and.(ca(mm.nn).eq.o.)) go to 211
suml1{(nn)=0.0
sum2(nn)=0.0
sum3(nn)=0.0
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alp=a|p+pr(mm.nn)*(yyps(mm)*yy(nn)+yyps(nn)*yy(mm))
bth=bth+c1(mm.nn)*(yyps(mm)*yy(nn)+yyps(nn)*yy(mm))
gam=gam~c3(mm.nn)'(yyps(mm)'yy(nn)*yyps(nn)*yy(mm))
do 212 (i=1,54
suml(nn)=sumi(nn)+pr(nn, 1 1)=yy(lt)
sumz(nn)-sumZ(nn)*c1(nn.Il)'yy(lI)
sum3 (nn)=sum3(nn)+c3(nn, L1 )*yy(l1l)

212 continue
em(1.1)=em(1.1)+pr(mm,.nn)*(yy(mm)=*sumi(nn)+yy(nn)*>suml{mm))
em(1.2)-em(1.2)¢pr(mm.nn)'(yy(mm)'sumz(nn)*yy(nn)'sumZ(mm))
em(1.3)=em(1.3)+pr(mm,nn)*(yy(mm)=sum3 (nn)+yy(nn)=sum3(mm))
em(2.1)lem(2.1)¢c1(mm.nn)‘(yy(mm)*sum1(nn)+yy(nn)'sum1(mm))
em(2.2)-em(2.2)¢c1(mm.nn)'(yy(mm)‘sumz(nn)*yy(nn)'sumz(mm))
em(2.3)=em(2.3)0c1(mm.nn)'(yy(mm)'sums(nn)*yy(nn)'suma(mm))
om(3.1)-om(3.1)oca(mm.nn)'(yy(mm)'sum1(nn)*yy(nn)'sum1(mm))
em(3.2)lam(3.2)*cS(mm.nn)'(yy(mm)'sumZ(nn)*yy(nn)'sumZ(mm))
em(s.a)-em(a.3)ocz(mm.nn)'(yy(mm)'sums(nn)*yy(nn)'sums(mm))

211 continue
if (twnt.eq.1) then
bthabth-2.*sin(t)*cos(t)
endi f

c Calculate the multipliers
cal!l rlamda(alp.bth,gam,em,aa,bb,.cc)

alp=0.

bth=0.

gam=0.
1000 continue

c Calculate the number denslities
do 67 m=1.,3
do §6 j)=1.3
do 66 kk=1,3
psl(m.lI)-psl(m.lI)*(yr(m.jj.kk)"Z*yl(m.l].kk)"Z)o
- (yr(}).kKk.m)*=2eyi ()] . kKk,m)**2)+
- (yr(kk.m, jj)==2+yi(Kk.m, jj)}==2)
66 continue
psi(m,1i)=psi(m,11)73.0
57 centinue

write(6.799) t.,prosum,enesum,enel,ene2.eneld, aa,bb,.cc

c Perform the time integration
call runkut(dt.yy.yyp.yyps.aa.bb,cc)

100 continue
799 format(£6.3.1x.2(f8.4,1x).3(f6.3.1x),3(¥8.3,1x))

call exit
end
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32

subroutine runkut(dt.yy.yyp.yyps.aa.bb,cc)
parameter (neq=54)

dimension yy(nea).yyp(neq).yyps(neq)

dimension yak1(neq).yaKZ(neq),yak3(neq).yak4(neq).ynew(neq)

common/sam/ prbsum(54).c1s(54).c3s(54)
common/deg/ c1(54.54).c3(54.54).pr(54.54).em(3.3)

do 32 ijkr=1,27
| Jki=l jKre27
prbsum(i Jkr)=0.
prbsum(i jki)=0.
cis(l jkr)=0.
cis(ijki)=0.
c3s (1 jkr)=0.
c3s (1 jki)=0.

do 32 j})j=1.27

prbsum(ljkr)-prbsum(|jkr)*pr(ljkr.jj])'vv(]]j)
besum(llkl)'DrbSUM(Ilki)*pr(llkl.lll‘ 7)*yy())}*27)
c1s(ljkr)lc1s(ljkr)*c1(ljkr.lll)‘yv(llj)
cis(ijki)=cis(iJkl)ect1(ljki. j]je27) yy(]])+27)
cas(llkr)-cSS(llkr)*cS(lJkr.lll)'yy(ljl)
cas(ijki)=c3s(l}ki)ec3 (ki j]j*27) yy(}]i+27)

continue

call fcn(dt.yy-yyp-vyps.aa.bb.cc)
do 1 i=1,neq

yak1(1)=yyp(l)

do 2 i=1,neq
ynow(l)'yv(l)*(O.S'Gt)'yak1(l)

call fcn(dt.ynew.yyp.yyps.aa.bb.cc)

do 3 i=1,neq
yak2(1)=yyp(i)

do 4 (i=1,neq
ynew(l)-yy(!)O(O.S'dt)'yaKZ(l)
call fcn(dt.ynew,yyp.yyps.aa.bb,cc)

do § i=1.neq
yak3 (1)=yyp(i)

do 6 I=1.neq

ynew( | )=yy(i)+dtryak3 (i)

call fcn(dt.ynew.yyp.yypstaa.bb.cc)
do 7 i®1.neq

yak4 (1)=yyp(i)

do 8 I=1,neq

yy(l)lyy(l)¢dt'(yak1(l)*2.‘yak2(l)+2.'yak3(l)*yakd(l))lﬁ.o

return
end \
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subroutine fcn(dt.y.yp.yps.aa,bb,cc)
parameter(neq=54)

dimension y(neq).yp(neq).yr(s.a.a).yl(3.3.3),yps(neq)
common/sam/ prbsum(54).c15(54).c3s(54)

common/deg/ c1(54.54).c3(54.54).pr(54.54).em(3.3)

do 30 i1=1,3

do 30 )=1.,3

do 30 k=1,3
ljkr=l¢3'(j-1)+9‘(k-1)
1)kisl jkr+27
yr(l,}).k)=y(ljkr)
yi(i, J.kymy(ijki)
continue

do 356 (=1.,3

do 35 =1.3

do 35 k=1.,3
potlo.S'((l-1)"2v(j—l-1)"2*(k-]—1)"2#(k~3)"2)
dsqris=2.*yr(l,.J.K)

dsqr2s-2.*yr(l,}.k)

dsqr3==2.*yr(l,}.k)

dsql1==2.*yl (1, ].Kk)

dSQIZI-Z.'yI(I.j.k)

dSqlal-Z.*yl(l.j.k)

If (l.gt.1) dsqri=dsqri+yr(i=1.j.K)
i1f (J.gt.1) dsqrzndsqr2+yr(l.]—1.k)
if (k.gt.1) dsqra-dsqratyr(l.J.k-1)
1f (1.gt.1) dsqlisdsqlileyi(i-1,).k)
if (j.gt.1) dsqi2sdsqi2eyi (1. )-1.,K)
1f (k.gt.1) dsqlaldsqla*yl(l.j.k-1)'
if (1.1t.3) dsqrisdsqrieyr(i+1,j.k)
¥ ().1t.3) dsqr2sdsqr2+yr(i.j+1,k)
1f (K.11.3) dsqr3=dsqr3+yr{i,j.k+1)
1€ (1.1t.3) dsqitisdsqiieyl (1+1,).k)
if (j.1.3) dsathdsql2¢yl(l.j+1.K)
1 (k.1t.3) dsqlSIdsqISle(l.j.k+1)
i jkrale3=( j=1)+9*(k=1)

1jki=l jkre27
yps(lJkr)ﬂ—o.s'(dsql1#dsql2+dsql3)+pot'yl

(1.).K)
yp(l}kr)-yps(ljkr)-aa'prbsum(ljkr)-bb'c1s(ljkr)—cc'cas(!jkr)
yps(ljkl)so.5*(dsqr10dsqr2*dsqr3)—pot'yr(I.j.k)
yp(ljk‘)=yps(ljk!)—aa'prbsum(ljkl)-bb'c1s(ljkl)-cc'cas(ljkl)
continue
return
end

subroutine rIamda(alp.bth.gam.em.aa.bb.cc)
dimension em(3.3).d(3.3),r1(3)

\

denom=em(1.1)*em(2.2)'em(3.3)—em(1.1)'em(2.3)'em(3.2)*

- em(1.2)‘em(2.3)'em(3.1)-em(1.2)'em(2.1)'em(3.3)+
- em(1.3)'em(2.1)*em(3.2)-em(1.3)‘em(2.2)'em(3.1)
rnum1=alp'em(2.2)'em(3.3)-alp*em(2.3)-em(3,2)*
- em(1.2)*em(2.3)'gam-em(1.2)'bth'em(3.3)4

- em(1.3)'bth'em(3.2)—cm(1.3)'em(2.2)'gam
rnum2=em(1.1)'Dth*em(3.3)-em(1.1)'em(2.3)'gam¢

- alp'em(2.3)‘em(3.1)-alp'em(2.1)'em(3.3)+
- em(1.3)'em(2.1)'gam-em(1.3)*bth-em(3.1)
rnum3=em(1.1)'em(2.2)*gam-em(1.1)'bth*em(3.2)+
- em(1.2)'bth'em(3.1)—em(1.2)‘em(2.1)‘gam+

- alp'em(2.1)'em(3.2)-alp'em(Z.Z)*em(a,1)

do 3 i=1,3

do 3 j=1.3

em(i,j)=0.0

continue

aa=zrnuml/denom
bb=rnum2 /denom
cc=rnum3 /denom
return

end
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