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ABSTRACT

Quantum manifestation of classical chaos has been one of the extensively

studied subjects for more than a decade. Yet clear understanding of its nature

still remains to be an open question partly due to the lack of a canonical

definition of quantum chaos. The classical definition seems to be unsuitable

in quantum mechanics partly because of the Heisenberg quantum

uncertainty. In this regard, quantum chaos is somewhat misleading and

needs to be clarified at the very fundamental level of physics. Since it is well

known that quantum mechanics is more fundamental than classical

mechanics, the quantum description of classically chaotic nature should be

attainable in the limit of large quantum numbers. The focus of my research,

therefore, lies on the correspondence principle for classically chaotic systems.

The chaotic damped driven pendulum is mainly studied numerically using

the split operator method that solves the time-dependent Schr6dinger

equation. Other chaotic systems such as the kicked rotator, the super-

conducting Josephson junction, the forced Duffing's oscillator and the

nonequilibriurn three-body oscillator are also discussed in a quantum context.

For classically dissipative chaotic systems in which (multi)fractal strange

attractors often emerge, several quantum dissipative mechanisms are also

considered. For instance, Hoover's and Kubo-Fox-Keizer's approaches are

studied with some computational analyses. But the notion of complex energy

with non-Hermiticity is extensively applied. Moreover, the Wigner and

Husimi distribution functions are examined with an equivalent classical

distribution in phase-space, and dynamical properties of the wave packet in

configuration and momentum spaces are also explored. The results indicate

that quantum dynamics embraces classical dynamics although the classical-

quantum correspondence fails to be observed in the classically chaotic regime.

Even in the semi-classical limits, classically chaotic phenomena would

eventually be suppressed by the quantum uncertainty. The quantum

measurement problem appears to hold a part of key solution. It is also

suggested that time-varying uncertainty fluctuations can be used as a

quantitative measure of quantum chaos even in systems that have no

classical analogs.
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PREFACE

Ich sage euch:

man muss noch Chaos in sich haben,

um einen tanzenden Stern geb_ren zu kOnnen.

lch sage euch:
ihr habt noch Chaos in euch.

Yea verily, I say unto you:

A man must have Chaos yet within him,

To birth a dancing star.

I say unto you:

You have yet Chaos in you.

Friedrich Nietzsche's "Thus spake Zarathustra"

The universal concept underlying chaos in a quantum system has yet

to come. It is believed that quantum mechanics is one of the most

fundamental and important concepts in science today. Quantum theory

governs many laws of nature and innumerable phenomena in the world

around us. However, the so-called quantum chaos, unlike ubiauitous classical

chaos, not only fails to be observed, but lacks a canonical definition. My thesis

therefore treats mostly the damped driven pendulum as an example to search

and to examine quantum chaotic nature specifically in the context of the

correspondence principle. Our aim is focused on theoretical and numerical

investigation.

The basic picture of the thesis is mentioned in Chapters one and two.

These chapters deal with primary operational ideas. The numerical method

extensively used in this study is the split operator method that takes

advantage of easily used fast Fourier transforms. This method effectively

solves the time-dependent Schr_dinger equation by treating the dependence

of the solution on kinetic and potential energies separately. Then the

expectation values of classically dynamical variables are computed and are

compared with classical values. Moreover the numerous distributions

representing different probabilities in phase-space are also considered since
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the quantum wave function physically represents a probability. One with

knowledge of non-relativistic quantum mechanics and advanced

mathematics should have little difficulty to follow the contents with the

exception of some numerical techniques. An able person who has no or little

facility in this field can learn these techniques in a moderate amount of time.

In Chapter three, numerical results from the pendulum with some

quantum distribution functional analyses of a simple harmonic oscillator are

presented. The Wigner and Husimi distributions as the quantum

counterparts of a classical probability distribution will be used to determine

the correspondence within the break time. The break time is identified in my

study as the time where the magnitude of the uncertainty is comparable to

the action taken by motions in phase-space. It will be interesting to see the

claim that the Husimi representation is better than the Wigner one solely for

the purpose of checking the correspondence. On the other hand, it will also be

of importance to observe whether or not the Husimi formulation is better to

describe quantum dynamics since it ignores some of dynamical information

through the Gaussian smoothing mechanism adapted. These discussions are

in Chapter three more specifically and also in Chapter four. A condensed

version of some of these materials in Chapter four has been published in

Phys. Rev. E. 47(6), 4552-5 (1993).

At this juncture I must mention that a postulate is proposed in Chapter

four since there exists a seriously different nature between classical and

quantum mechanics. Quantum mechanics deals with a closed system,

whereas classical mechanics deals with an open system, especially when the

viscous damping is present. In the study, a possible consideration of this

classical dissipation into quantum mechanics, specifically into SchriSdinger

equation, is suggested by using a term resembling the classical Rayleigh

energy. In this regard, the non-Hermitian nature is only mentioned, but not

thoroughly considered. Also, Kubo-Fox-Keizer approach to this problem is

reviewed, and Nos6-Hoover mechanics is briefly introduced as a more

general quantum mechanical description of the classical dissipation
mechanism.

In Chapter five, the comparisons with the kicked rotator and Josephson

junction are provided. Analyses of the well-known kicked rotator and the

Josephson junction problem as possible applications of the numerical method

are carried out in this chapter. A two-dimensional case is also considered in
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this chapter to see Heller's 'scars' left out by the quantum wave packet. A

possible non-equilibrium approach to many-body quantum system is also

considered using Gauss' principle of least constraint to modify linear

Schr6dinger equation nonlinear.

The nature of the quantum uncertainty will be considered in Chapter

six to see if the correspondence can be better represented. In this regard, the

possible explanation to this matter will be established using a quantum

mechanical measurement problem like SchriSdinger's cat paradox. Moreover,

the possibility that there might exist an unknown non-linear coupling term

in SchriSdinger equati,on will be also considered for the case where quantum

chaos can naturally arise. This chapter concludes with possible future research
directions.

Again, this writing was intended initially to inform as many people as

possible in the field as well as in other fields of science. In writing this

dissertation, I have experienced pleasures of fostering a rough initial version.

On the other hand, I have also felt great difficulties, partly because of the

perpetual need to make a change, sometimes considerably, and partly because

of the inhibition of the many topics to be included. It is clear that the current

trend in search of quantum chaos includes a very wide range of topics and a

fair amount of new materials relating both to recent research and to earlier

results that have now become of greater significance. However, I found that

the reviews of all these materials were not possible, though some were

mentioned. Yet, the process of the writing was a challenging and fruitful

experience to me. I finally confess that any errata are strictly the results of my

own ineptitude and blind enthusiasm. Any misreadings of existing theories

or findings are the results of similar impulses, not malicious intent.

Some of the contents in this text have been either published or presented in

various means by the author. See University of California, Lawrence Livermore

Laboratory Reports: UCRL.-JC-112292(Dec. 1992); UCRL-]C-111922 (Sept. 1992); UCRL-

]C-111443 (Aug. 1992); UCRL-]C-111444-ABS (Nov. 1992); UCRL-]C-111446-ABS (Nov.

1992). See also Phys. Rev. E. 47(6), 4552-5 (1993); Bull. Am. Phys. Soc. 37(7), 1686 (1992);

Bull. Am. Phys. Soc. 37(3), 1108 (1992); Abstract for Physics Computing, 27 (June,

1991); Proceedings of the International Conference for Advancement of Science and

Technology (Korea Univ., Korea, Aug, 1993). For other materials by the author

related to this thesis topic, see UCRL-]C-112922 (Feb. 1993); Bull. Am. Phys. Soc. 38(1),

529, (1993).
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LIST OF SYMBOLS

The major symbols utilized throughout the paper are listed here to grasp the
contents better and to avoid confusion with other conventions.

0 Angle of oscillation _, ¢p Wave functions

Angular velocity A, _ Gauges

q Canonical position (angle) 0 Operator

Canonical velocity /_/ Evolution operator

p Canonical momentum g Width of wave packet

m Mass of an oscillator P(cok) Power spectral density

Dimensionless (effective) mass V(t) Uncertainty product (ziqAp)

f External field strength U(t) Uncertainty product (,_tqdq)

7 Dimensionless field strength T Kinetic energy

b Damping coefficient V Potential energy

fl Dimensionless damping coefficient _. Lagrange multiplier

l Length of an oscillator I Characteristic action

co External field frequency Pc Classical distribution

coo Natural frequency of oscillation Pw Wigner distribution

Ho Unperturbed Hamiltonian Ph Husimi distribution

Hpert Perturbing Hamiltonian C Correlation function

Hcz Classical Hamiltonian R Rayleigh energy

Hqm Quantum Hamiltonian H Other Hamiltonians

Note that quantum mechanical operators and dimensionless variables are

designated by the superscript ^ and -, respectively.



INTRODUCTION

In the beginning there was Apsu the Primeval,

and T_mat, who is chaos.

Mythsof the world

In this chapter,an introduction to the main focus of this thesis is described.

The dimensional issues of the model are also described with possible physical

configurations.



1-1. Introductory notes

In 1963, E. N. Lorenz published [1] his seminal numerical results from a

set of simple first-order differential equations for fluid convection with a

nonlinearity in the equations. The discovery he made in this completely

deterministic system of three equations was unstable irregular fluctuation

that never repeats itself in any predictable pattern. Lorenz had found

unpredictability which generates complexity: richly organized patterns, now

called chaos.

The word 'chaos' is defined as a state of utter confusion or disorder, a

total lack of organization or order in the Random House Dictionary [2]. Its

original meaning in Greek 'Khaos' is formless matter. Scientists adopted this

word to describe states of unpredictability and complexity containing a high

sensitivity to initial conditions.

At around the same time, the theory known as the KAM theorem [3]

emerged from Russia. It states that invariant surfaces formed by a trajectory of

integrable regions in phase-space continue to exist for most initial conditions

for systems perturbed away from the regions. These surfaces are isolated and

are called the KAM surfaces. As the perturbation strength increases, however,

a transition can occur in which the isolating KAM surfaces disappear and the

stochastic layers merge. With this theoretical support, nonlinear researchers

started looking on chaos problems such as Lorenz's hydrodynamical model

more and more.

As the 1960s went on, individual scientists made discoveries that

paralleled Lorenz's. Among them, M. Feigenbaum discovered the striking

universality lying under the several chaotic motions described by, for

example, the logistic map or H_non map. More theoretical and experimental



realizations of the field have followed by seemingly much richer and broader

applications. Some have even called chaos as a revolutionary science heading

towards the twenty-first century. To make this more drastic, relativity and

quantum mechanics were put on to the equivalent level by a few of them. No

matter what one can say about the significance of this new field, there is no

doubt that it has provided and will provide a better understanding of nature.

However, as this classical means of chaos [4] develops further, many of

scientists, G. Casati and J. Ford, for instance, started speculating about the

possibility that quantum mechanics manifests classical chaos. In principle,

this quantum manifestation must be true since quantum mechanics is

known to be more fundamental. Therefore, a search for quantum chaos

becomes a new exciting challenge for quantum physicists. But permitting the

definition of classical chaos for that of quantum chaos, nobody is able to find

its existence. Since then, many investigators have contributed their own

definitions, and defended them with some supporters. Despite the fact that

there exists no canonical definition of quantum chaos, much of this research,

as once J. Ford puts it [5], is still recognized as an encouraging exploration and

innovation. However, the problems still have remained: the lack of a serious

research in the context of the correspondence principle, the roles of quantum

eigen-values, eigen-functions in quantum chaos in terms of classical

definitions. The right questions then we have to ask are the following: How

can we justify the ambiguity of classical means of chaos in the underlying

quantum mechanics? Does the randomness of eigen-values play a classical

chaotic role in quantum mechanics? It is these simple questions that brought

up this research project initially. The first question can be answered by rather

direct investigations using the quantum methods corresponding to classical

method for defining chaos and by studying their results. On the other hand, it



is difficult to establish the relationship between quantum eigen-values and

classical energy of a system. The only specific indication of certain chaotic

nature is in this case randomness. Since this randomness is necessary, but not

sufficient for chaos [6], this thesis will focus mainly on the first problem or

rather the first question.

Bearing this in mind, we will choose a model that is describable in both

classical and quantum mechanics. It is of better interest that a system contains

at least two control parameters for developing chaos. A good choice seems to

be a driven system that is simple and familiar enough to many people and

also has very small quantum energy level differences so that it may be

regarded as an almost classical system. It is quite possible there are many

systems that satisfy these conditions, but a proper choice seems to be the

driven pendulum. This model also contains the analog of a linearly driven

harmonic oscillator as a limiting case where the oscillation is small.

In the next section, the description of a dimensional issue is presented

with some possible physical configurations using the hydrogen atom. In

Chapter two, general features of the model and its numerical scheme are

discussed. Basic mathematical approaches to the problem are all contained in

this chapter. Quantum mechanical distributions are introduced in Chapter

three. Without dissipation, the correspondence is checked using numerical

results in this chapter. In Chapter four, a possible dissipation mechanism is

introduced and used. The results of calculations are also presented and

compared. As an application problem in Chapter five, we consider several

different models described in Chapter _¢¢o. For example, a single parameter

system such as the kicked rotator and the Josephson junction will be

discussed in Chapter five. In addition, Nos_-Hoover approach to chaos is

introduced in this chapter. Finally, our conclusions are summarized in



Chapter six. Potential future directions are also indicated in the same chapter.

To see an overview of the study, the readers should consult Preface.

1-2. System of units with physical interpretation

As we will see in the next chapter, we are basically concerned with

classical equations of motion and SchriJdinger equation for an externally

driven pendulum.. The potential term contains an earth gravitational

constant g, and mass m, length I. The external field strength is f. Then

classically, the motion is described by (see Section 2-1 for complete details)

0= p (1-1a)
m 12'

p = - m g I sin 0 + m 12fcos (co t ) = m 120. (1-1b)

This reduces to

0 = sin0 + f cos (cot ). (1-1c)

If the damping torque, FD =-b 0, is present, this equation becomes

O"= -g/-sinO +fcos (cot)_ bm 12 " (1-1d)

Since b has the unit of [mass] [length]2/[time] in this case, FD is the moment of

damping force (damping torque). Now, we divide both sides of equation (1-1a)

by _/_, then we find



p_L__) e=P_L_m' m' '

where the bar sign on the top of the variable means dimensionless. Here,

m '= m 1_, so the term p/m' becomes dimensionless. If we divide (1-1d)

or (1-1c) this time by (g/l), then we get

"O"Lg=-sinO+ f LgCOS(cat>-_^/-_i^/T "8)m 12 vg_vg .

This equation then finally reduces to the following closed form with

w _gL v:-. ../.notations 8 = 8, 0 = O g

"7"7. m "7"

O = - sin 0 + ycos (cat ) -/3 O , (1-2)

where 7=fg L , and 13= _ ^/'r; these are also dimensionless as well as
the

ml2Vg

product cat since b contains m implicitly. This (1-2) is a classical dimensionless

equation of motion for a driven damped pendulum. Note that the mass term

drops out.

Quantum mechanically, if we ignore the dissipation due to damping,

the corresponding SchrSdinger equation will be

^ ^ [^ a,.r,]E_ =H_= Ho+ _,

- _'12 _ + mgl ( 1 -cose )] rp - ml2f 8cos(cat )_0 (1-3)= 2m 12_}02i



_ mslo"] - Oco (ot= 2m 12002

--I --]/t22m_(102 +1m gI-(I0)2] ¢ - mlf (lO)c°s(c°t )¢O)22 , (1-4)

= I-'__-_--+lmca°Zx2]¢2m _)x2 2 -mlfxcos(rat)¢,

where x = 10, and ca_o= g//with the assumption of a small angle oscillation.

Note that l has a unit of length, and so does lO; 0 is the angle measured in

radian.

Hence, if we ignore the perturbation term, - mlf x cos(cat ), a unit of

energy becomes hcoo (= h_//g- ) just like the case of a simple
harmonic

oscillator. Hence it may be assumed that the quantized energy levels for small

angle oscillations, E,, would be ~n h_//g- . If we carry this out further, we get

the dimensionless equation. We divide both sides of equation (1-3) or (1-4) by

hCOo,and find

---E_ = I- 2m 4_I3/2h _.___+1202 2 hm-_13/202-1K'47II3/2_)(lO)cOs(ot))_,(1-5)__"

where dimensionless E"= i (3-_). The wave function consequently needs to be

changed in the following form for completeness,

¢(0, t)= _ An u,(O ) exp (-iE.t/h)_(O,t ) = _ An u,(O ) exp (-ig.t}
n n



/'F"
where

An isan arbitrarycomplexnumber. Thus,by settingM = m (V_-)'we

finally get

_I__ + 02 )l_,j (1-6)

where the dimensionless I_= [Ml2/h] = [_--] 1 _. Hereafter we will change
m

the notation of _ _ _0,but q_means _. It is plausible from here to interpret

that the equation (1-3) becomes

Ji = -2ff_O 2 +/a(1-cosO)-1_yOcos(cot) ¢p, (1-7)

where 7=fl/g; it is also dimensionless as we have seen in the classical case,

since the dimension of If] = [Time]"2.

We will also come across another form of (1-3), namely a gauge

transformed version, in the next chapter. After a gauge transformation, the

Hamiltonian becomes

= 2m-_/2{P + _ca sin(cot)}2+ mgl (!-cos O ). (1-8)

This equation can then be reduced to a dimensionless equation by applying

the same techniques. Then, Eq. (1-8) yields the following dimensionless form:



_"_,,,=.,I_{p_X }2+_2p

=1 g+pJ.l sin t) +p(1-cosO)
21J g

[_ sin(_T)]2=_1_p+Pr - +p(1-cosO), (1-9)
2p

where thevariables_"=-i--,and parameters_ = ca ,t = t arealso
O0

dimensionless. Note that the product ca t = cat. Then the dimensionless

gauges A --, A, and X_ _ are

sin(c0t )
A=-p7 1

' ca •

sm(_-) 0-Io)A

_=pyO
1

such that gauges after the transformation,

Â'= A +m=0,
oe

V'= V 0X_ = p( 1 -cos0)-/J 70cos(o)t ), (1-11)
_t

- _ ( 1- cosO ) - p 7 o Cos(cat ),

yield the same dimensionless equation (1-7). The final form of _chr_dinger

equation then becomes

i01Y_Ot = 2-_[ -iO+lJuO0 7s_ (_-)-(o.... ] _/+p(1-cose) _.2 (1-12)



These equations (1-7) and (1-12) are equivalent dimensionless forms of

Schr_dinger equation with parameters fl, 7and _" (denote to hereafter). Note

the relation _ = exp(i %)_.

In later chapters, the importance of the parameters/_, _ ca will become

clear. Whenever we choose the combinatory parameter /_ = 2, 2 = any real

number, we are actually setting ml_ / h = A such that the quantity (m i,_/7)is

being fixed since the values of g and h are constants. Here we call/_ the

effective mass since it is the parameter we will change numerically. So unless

it is specified,/_ always means the effective mass. However, it is easier to

think of _u= m numerically by assuming g = I = h = 1 such that y =f and too = 1.

This is so because final values of the combinations in/_, y are important

instead of the individual parameters contained in those such as m, I as far as

computers are concerned. In fact, this is numerically valid when we solve

Schr_dinger equation in dimensionless form.

So whenever we set/1 to a certain number numerically, we are actually

setting the quantity (ml _ ). Let us briefly find out what the actual physical

situation might be when we set/_ = 1. Now first imagine a bob made of the

hydrogen atom. Then a unit effective mass may represent the hydrogen atom

swinging at the end of a rod of length 7.4 x l0 "6 meters [7]. That is to say, a

particle 100 times the mass of the H-atom swinging at the end of the same rod

would take a value of/1 = 100. On the other hand, this value (/1 = 100) may

also be the H-atom moving at the end of 1.6 x l0 "6 meter rod. It is obvious

from these that more classical behavior is certainly expected for values /1 > 1.

This corresponds to usual physics of gravity such that the heavier a particle

(or longer the rod) is, the more valid classical mechanics is.

For an external perturbation strength, a similar analogy can be applied.

10



For instance, when/_ = 1 for the H-atom, y=fl/g =1 meansf=g/l .S of=

1.3 x l06 (sec) -2, which is in terms of energy ml2f ~ 1.2 x l0 -31 Joules = 7.5

Xl0 -13 eV. Even when/_ = 100, }, = 1 represents the case where ~ 2.6 x l0 -3°

Joules = 1.6 x 10-11 eV. This is not a small energy, but it is an effective one in

the quantum mechanical treatment of gravity, which we will explain shortly.

As we increase the effective mass, the corresponding value of f wiU increase

linearly.

In the case of the external field frequency, ca ~ 1150 Hz, which means

the period ~ 5.5 x 10-4 seconds when dimensionless -m = I for/_ = 1 (H-atom).

For/_ = 100, co ~ 247 Hz, which also means the period ~ 2.5 x 10-2 seconds

when dimensionless ca = 1. In both cases, The product hca= AE as it shoulcl be

since -_ = 1 corresponds to resonance.

Now let us interpret time scale. For ca = 1 and/l = 1 (H-dtom), t = 1 sets

the real physical time to be 8.7 x 10-4 seconds. In other words, when we choose

the integration time step A t = 0.01 in this case, a real physical time step

becomes 8.7 x 10-6 seconds so that the number of time steps to reach the period

(5.5 x 10-4 seconds) would be about 628 (~ 100 x 2_). But in a case of "ca = 1 and

/_ = 100 (H-atom), t = 1 sets the real physical time to be 4.0 x 10-3 seconds. By

the same token, we would need the same number of time steps to reach a

period (2.5 x 10-2 seconds in this case) with A t" = 0.01 (At = 4.0 x 10-5 seconds).

As a result, the size of a time step should be reduced to 2.2 x 10-3 for/1 = 100 in

order to have the same physical time as for /1 = 1. Therefore, we need a

smaller A t for a larger /1. It is clear that there are virtually many other

possible interpretations of this kind using different atoms. We will see more

physical examples of the pendulum consisting of the hydrogen atom in the

next chapter and Appendix therein.
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Nonetheless, the role of gravity in quantum mechanics appears as a

rather different situation: whenever h appears, m is also expected to appear.

In our case,/_ contains both implicitly. It is important from this point of view

that we must make an appropriate semi-classical approximation (/1 --->oo,but

not just _ --)0). We will come to this point again in the next chapter when

we study how to take a semi-classical limit.

It is interesting to see that the quantity [h g_'_] is really a small

number. It is about- 1.2x10 "31Joules ~ 7.6x10"13eV when l = 7.4x10 "6

meters (This length was explained previously); COo= 1150 Hz. This is expected

because of a very small quantum effect on gravitation unless we deal with a

scale length of ~ 10-35 m, the so-called the 'Planck length' Lp, where Lp =

(Gh/ca) 1/2, where G is Newton's universal constant, and c the speed of light. It

is at this scale of fundamental length in nature that we might expect to see

some quantum mechanical effects of gravity. The sizes of an atom and

nucleus which are in the order of 10"1°m and 10"is m, respectively should be

noted for comparison. To study this length scale, we need 1018 ~ 1019GeV, the

so-called the 'Planck mass' in unit of energy Mp, where Mp ._ (hc/G) 1/2. This

value can be obtained from the uncertainty principle using Lp alone.

Nevertheless, it seems highly unlikely that this enormous amount of energy

will ever be achieved by us since the largest particle accelerator works in

present time at around 103GeV.

In the case of a linearly driven harmonic oscillator, the dimensionless

Schr6dinger equation is easily reduced to the following form by just

inspecting (1-12),

12



where the dimensionless variable _ = x/a, a is a scaling length, and

dimensionless parameters/_ = h/ma2cao, _,=f/afno2, _ = (a/¢ao and t- = tfno. In

this case f has a unit of acceleration. With the use of atomic mxits, however,

the variations in/_ is not applicable. To take semi-classical limits, (1-13) makes

more sense than simply using atomic units in ScJxriJdinger equation. Then

the similar physical interpretations can be conjectured.

In Chapter five, however, we shall consider a Josephson junction in

which the unit system is different since it involves electromagnetic units. But

the same basic principles and techniques apply, so we will not discuss these

units explicitly here. One can easily derive the appropriate scale factors from

the equation (2-12) in this case.
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C PTEX 2

BASIC MATHEMA_CAL AND NUMERICAL OPERATIONS

All stable processes

we shall predict,

all unstable processes

we shall control.

J. von Neumann -1950

( F. Dyson's "Infinite in all directions")

The driven pendulum model is introduced in this chapter. The integration

methods for numerical simulations are discussed. Method of controlling

semi-classical limits is extensively investigated with two supplemental

appendices.
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2-1. Numerical models

In this section we discuss briefly the numerical models that will be

investigated throughout this study. Let us consider a quantum mechanical

system whose corresponding classical motion exhibits chaos. Time-

dependent, one-degree of freedom, non energy-conserving Hamiltonian

systems are perhaps simple to analyze numerically. The simplest but

physically real and general system is the forced quantum pendulum as shown

in the figure below.

l F cos(wt)

, "I' " V = mgl(1-cosq)
! sa a
| _"

_ m.a_.lJ.,8 _• -- V=O. ' "_"

The canonical variable q is written here and hereafter instead of 0 used in the

previous chapter.

We are interested in a pendulum subjected to a continuous time-

dependent external perturbation, F cos(cot). The classical Hamiltonian of the

pendulum is not integrable; the pendulum's motion shows very rich classical

chaotic structures [1]. This classical pendulum is represented by the full

Hamiltonian without simplification in Section 1-2,

Hot = Ho + Hrert = T + V + H_,_t
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p2

- 2m12 + mgl (1 -cosq)-ml2fqcos(oJt). (2-1)

f

This equation describes a pendulum in a gravitational acceleration g driven

by an external field of amplitude f with a frequency (o. Here p is the angular

momentum, q is the angular position, m is the mass of the pendulum. The

length of the pendulum is I. The Hamilton's canonical equations of motion,

• aH
q = "_ = ml 2 , (2-2a)

= _ dI-I = -mgl sinq + ml2f cos((at ), (2-2b)
dq

are then integrated to find a trajectory in phase-space for a given initial

condition by a fourth-order Runge-Kutta method that will be discussed in the

next section. If we combine these two equations, we get the usual classical

equation of motion for a pendulum.

+ g sin q = _ + a_ sin q = f cos((at). (2-2c)
I

1

As we expected, the mass term drops out: so a feather and an iron ball would

swing in the same way classically in the absence of friction (air resistance). In

the case of quantum mechanics they would move differently because of the

mass dependence in quantum mechanical dynamics of gravity [2]. Yet the

classical damping is not considered here.

For a quantum model, we shall be concerned with the classical

counterpart of our pendulum model. The corresponding quantum version

becomes a time-dependent Hamiltonian operator H qm= H q,,,( p, q, t):
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n'r''= 2m- t2 +m-sin()}2+mgl(l-c°so #)'

2m 12 - + V, (2-3)

where we recover an equivalent Hamiltonian to the classical one after a

gauge transformation with the following gauges.

A

-- ^ ^ 0X i

A _ A" = A + _-_,= 0, (2-4a)
a"

v _ v" = v - -_ = mgl (1 -cos _) - ml 2f "_cos(m), (2-4b)

A

where A=-ml2fsin(cat)/ca and X= ml2f _sin(cat)/ca. Here the single

component term, A, acting like a vector potential commutes with p and its

divergence vanishes; gauges in time-domain only. The reason to use the

gauge transformed Hamiltonian (2-3) instead of (2-1) in this case will become

clear in Section 2-3. As a check, we easily see that this transformation yields

2m 12 + _" '

= ____2+ mgl (1 -cos_) - ml2f "qcos(m) = H el. (2-5)
2m 12

So the classical Hamiltonian (2-1) is gauge invariant.

It is interesting to note that this transformation is also canonical since

phase-space volume is invariant, having a unit Jacobian. To see that, let P = p

- A = p + ml2f sin(cat) and Q = q, then by definition,
ca

_ Q, P ) i)Q i}P i)P i)Q _ l.
o_q,p ) - aq i}p i}q _)p

18



The nature of this gauge invariance is totally equivalent to the case

where a particle with a unit charge is moving under the influence of

electromagnetic vector potential A and scalar potential V. We will come back

and study extensively the Hamiltonian (2-3) which is our main focus in the

next section and in Chapter three.

We may also consider a quantum kicked rotator from this model. If

one assumes a discrete potential whose form takes a periodic delta function,

the Hamiltonian in (2-1) becomes that of the quantum kicked rotator [3]. In

this case there is no need for extra external field term (set f = 0). Then the

corresponding classical version produces the well-known standard mapping

equations [3].

// p2 oo- + mgl (1 - cosq) _,, 8 (t - nT ), (2-6)
2m 12

/1----..,oo

where T is the kick period and the term, mgl, is the potential strength. We set

(mgl) = ri, and I = ml2, then

p2 oo

- 2/ + 7/ (1- cosq) ___ 8 (t - nT ). (2-7)
n " .,-oD

Classically, using equations (2-2), one can derive the mapping

equations by expressing the time derivatives on the left-hand sides of

equations (2-2) as first-order differences, that is,

Ct= q(t + At) - q(t ) and P = p(t + At) - p(t ). (2-8)
At At
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Discretizing q and p, we get a set of equations:

q=q, q=qn (2-9)

qn+l =q, +PnAt,

where dimensionless Pn+1= p(t+At) and qn+1 = q(t+At). This transformation is

very close to an area-preserving transformation since the Jacobian of eq. (2-8),

1 -At-_
/}(q.+I,_+I)_ = 1+(At)2_2v = 1, (2-10)

P") - a t 1

for small ,4 t. Then the mapping equation (2-9) becomes the standard mapping

equations with the integration taken over one period T, from t = nT to t =

(n+l)T.

Pn+1= Pn - K sinqn,

qn+l =qn +Pn+l. (2-11)

For K = 1/T >> 1 (see Ch. 5), delicately interwoven chaotic motions appear in

phase-space which will be explained in the next section. It is also worth

mentioning that the equation (2-11) is different in the sign of K than the

usual standard mapping equations, also exhibiting chaos for K >> 1.

The Hamiltonian in (2-1) is also equivalent to the Hamiltonian for a

superconducting Josephson junction if a damping term is ignored in the

classical equation for superconducting phase tp. Consider a current-driven
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shunted-Josephson-junction oscillator with microwave field and applied

external dc current [4]. Then the superconducting phase _ is determined by

the junction capacitance C, the resistance R, and the potential difference V

across the junction.

C dolt + _R + Ic sincp= It/cos(coat ) + ldc, (2-12)

d_._¢= 2t_ V, (2-13)dt

where lc is the critical current and Irf is the microwave field amplitude at the

driving frequency cod.Combining (2-12) and (2-13), and expressing the result

in terms of dimensionless variables, we get

+ _ + _ sing) = Fl cos(RCjOr.odt) + Fo. (2-14)
dt 2

Inthisequation,tJ= .f"to/RCa_o,¢ao= (2elc/_C)I/2,Fo = (2efl2/hCa_o)Idcand Fl=

(2efl2o/hCc_o)Irf.This equation is exactlythe same as a forced-damped

pendulum; forfJ=0, theHamiltonian(2-13)isapproximatelythesame. Ina

laterchapter,we shallinvestigatethe casewhere ]__ 0.Classically,itis

interestingthatcurrentand voltagecharacteristicsof thisjunctionshow the

strangephenomenon known as the'devirsstaircase'[5].

ItisalsoobviousthattheHamiltonian(2-1)canbe extendedtoa case

where we representan ionicmoleculeasa Morse oscillatordrivenby strong

laserfieldsimplyby replacingthepotentialterm,mgl (I-cos_),with the

Morse potential,D [1 -exp (--ax)]2,where D isthedissociationenergy.For

example,a possibleHamiltonianis
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p2
X = _ + D [ 1 - exp ( --ax ) ]2. d(x)f(t) cos(tot), (2-15)

where x = r- ro, ro is the equilibrium separation of nuclei, d(x) is the

molecular dipole moment function, fit) is the time-dependent pulse

envelop_. We will consider a couple of these models mentioned here in

more details in Ch. 5.

2-2. Classical method of integration

A classical system with n-degrees of freedom can be described by a

Hamiltonian H whose canonically conjugate variables are qk and Pk, k = 1, 2,

•., n. Its motion obeys the principle of least action [6] which is reduced to a set

of first-order differential equations in the form:

dqk OH

dt _}Pk,

dpk OH (2-16)

dt i}qk,

where H = H(ql, q2, " • ", qn, Pl, P2, " " ",Pn; t), where H, in this case, is called

non-autonomous (time-dependent).

If these canonical Hamilton's equations of motion contain nonlinear

terms that either couple their variables together or have higher order than

quadratic in powers, chaotic motions often appear for some coupling strength.

These chaotic motions are represented in a mathematical space, so-called

phase-space, representing the conjugate variables as orthogonal coordinates.

For example, a time-dependent system such as a particle moving in one
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_ I

dimension forms a trajectory in a three-dimensional phase-space specified by

its position q, momentum p, and time t. In most cases, the time coordinate is

deleted to reduce a dimension of phase-space. Hence, phase-space becomes a

two-dimensional plane in this case. In general, a set of solutions, {qk,Pk },k =

1,.., n, defines a trajectory in the 2n-dimensional phase-space.

However, integrating a nonlinear differential equation analytically is

usually not easy except for some special cases. It is practically impossible to

solve it analytically for many cases. Therefore, in those situations, we must

use a numerical integration method to determine system's behaviors in

phase-space. The method that is used in this study to integrate classical

equations of motion is a fourth-order Runge-Kutta algorithm [7].

The equations (2-a) and (2-b) (actually (1-2)) are integrated for q and

dq/dt to find phase-space trajectories in the following way: let :_=f(t,x),

where x can be either q or p, then

x (t +h ) =x (t) + 61(F1+ 2F2+2Fs+ F4), (2-17)

where

F1= h f(t, x)
1 1

F2= h f(t +-_h,x +-_F1)

1 1 (2-18)
F3= h f(t +-_h,x +-_F2)

F4= hf(t+h,x+F 3)

Here, h is the integration step size. This contains the error terms in the Taylor

series up to and including the one involving h4. A reduction of the order in a

differential equation can be easily achieved before the application of this
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method. In our case of the pendulum, we simply set _:= _, for example. The

numerical stability will be discussed in the following sections in more details.

2-3. Quantum mechanical method of integration

In the quantum case, the motion of the pendulum is governed by the

time-dependent Schr_dinger equation in dimensionless form: see Section 1-2.

From (2-3), we have with the effective mass/J

i d_ _ H__,-t_ I_ - Y,!2+_ ]_ (2-_9)dt

A A

where A = -/_ysin(a,'t )/ca, and V =/_ (1 - cos q). We have used and will use

the notation oJ, t instead of m, ]" unless specified. Now the gauge invariant

transformation, describing the corresponding classical system, yields

i dv'-L'=n'_ ._'' " [2-_-_{P_y,,}2+_-]_,,,dt

1
- 'F' +/2 (! -cosq)_,' -_u 7'qcos(m)_'. (2-20)

2/_ 0q2

These equations are more difficult to analyze numerically than both the

classical differential equations of motion (2-2) and the Hamiltonian (2-19).

Here the usual dimensionless canonical momentum operator p =- i a_/aqis
A A _

used with prescriptions p = p, q = q with A" = 0, V" =/_ (1 -cosq) -/_ 7'q

cos(m), and Z =/z?'q sin(m )/ca. It is worth remembering that here IJ = [Ml2/h],

is the effective mass that we are controlling throughout the study.

Now we use (2-19) to solve 1//first, then we find the required solution

_/'. The SchriSdinger equation (2-19) is formally solved to give
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_0 _ A

_(q, t) = exp(- i H _n(t') dt' ) _(q,0). (2-21)

A A A

Thenthe splitoperatoralgorithm[8,9]splitsH _n into T (p), V (q), and results

in a discrete form with a time-ordering operator 0 as

^ I t+At ....
W(q,t+At) = 0 exp [ - i H(t ') dt" ] _q,t),

=_ _, q,t; tOv,(q,t)+ ,_{(atP}, (2-22)

A A

where U = exp{ - (_/2) tit' exp{ - i (V ) dt"exp{ - i (T /2) dt'

= exp{-i + P--_s_ina_t')2]dt'}exp{-i p(l-cosq)dt'}(0

x expl - + _-_Yinto t ') 21dtq, (2-23)CO

= exp{- ] dt'} exp{ - i V (q) dt'} exp{ - i ] dt'},

= "F(p,t) Y(q)T(p,t)- _'eff 'Yell Tell.

The effect of applying the kinetic operator 1"is evaluated in terms of discrete

Fourier transforms and the FFT algorithm [9], and the mechanical
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(kinematical)momentum, p+/t_,sin(cat)/ ca [10],where p is canonical

momentum. After allthe integralsare evaluatedanalyticallyfor more

accuratenumericalresults,the terms containingq and p inexponentsare

applied to the wave function in coordinate and momentum space

respectivelyby forward and inverseFFT's.The normalizationof thewave

functionischeckedinAppendix 2.1.

The reasontouseH qm insteadofH qm'(=H a )isthefollowing:ifthe

usualHamiltonian(2-i),H a, isusedinsteadinFFT's,Gibb'sphenomena [11]

at theboundariesofa gridwillhave a significanteffecton a resultunlesswe

takeverylargecoordinates(tobe exact,infinitelylarge).Therefore,itwas wise

touse the gauge transformationtopreserveperiodicnatureofthepotential

whose Fouriertransformationonly requiresone fullperiodof the periodic

potential.This in turnallowsone to shortencomputer time considerably.

Theirfinalform afteranalyticintegrationsare

p2

= exp[- i_-_zlt]

x exp -i sin(a t ) sin(a t) _ cos(at )( .)a}

)cos(2_t)-I ,sin(2_lt)
L 2 _ 4_ ' 4o_ ,

(2-24)

'Y = exp[- i _(1--cosq)_ ]. (2-25)

We immediatelynoticethatthe operator"rhas a partthatdoes not depend

on eitherp orq.Therefore,inactualcomputations,we use operatorsi'effand

_'elftosavecomputationtimesince"roperationsmust be done twice.
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p2
_f (p)--exp[- iT_at ]

x exp -i sin(_ot ) sin(_t) cos(_ot )( _ .) , (2-26)

elf(9)= _.xp[- ipO--cosq)_]

P_ - sin(2cot)c°s(2_t)-I cos(2_ot . (2-27)
x exp -i _ 4to 40 IJ

^ /.It is also simple to see that the operator U = exp(- i qmdt') is unitary:

f.* =[exp(-i _. at0 ]*

_Hqm'tdt _H "= exp( i ")= exp( i qmat')= u-1, (2-28)

A A A

since Hqm is Hermitian. The notation U f means the transpose of U *.

However, because of the gauge transformation, the required solution

_' (q, t), describing the same classical physics [12] and corresponding to Hqm',

should be the following:

A

_'(q, t)= exp[ i _C(q, t)]_(q, t), (2-29a)

-exp[ i_ (q, t)] exp( - i fHqm tit')_(q, 0),

= exp[ ilJ_'qsin(to0/to ] exp( - i [Hq,,dt')_(q, 0). (2-29b)

Then the expectation values of an observable 0 can be calculated.
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< 0 > = < w'(q, t) l 0 19¢'(q, t) >

= < Ip'o"I(U +)n0 (U )nI_o">, (2-30)

A

where _o = _'(q,O) = exp[ i X (q, 0)] _q, 0) = _q, 0), t = n_ and n is the number

of integration steps. We are interested in canonical variables < q(t) >, < p(t) >

for expectation-value phase-space. For < q(t) >, we have

< q(t) > = < 9¢'(q, t) l q 19¢'(q, t)>, (2-31a)

A A

= < 9¢(q, t) l exp[ -i X (q, t)] q exp[ i Z (q, t)] 19¢(q, t)>,

= < _'(q, t) l q I_'(q, t)>, (2-31b)

since [ _, exp[ -i Z (q, t)} ] = 0; they commute. For < p(t) >, we have

< p(t) > = < 9¢'(q, t) l p 19¢'(q, t)>, (2-32a)

^ _ ^= < 9¢(q,t) l exp[ -i X (q,t)] (- i ) exp[ i X(q,t)] I_r(q,t)>,

= < 9r(q, t) l exp[ -i X (q, t)] exp[ i X (q, t)] (- i ) I 9¢(q, t)>

+< V_(q,t)lexp[-i_ (q,t)]exp[iZ (q,t)]-_ lv/(q,t)>,
o_f

^

0x

= < _(q, t) l p 19¢(q, t)> + < _'(q, t) l _qq 19¢(q, t)>,
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= < v(q, t) l p Iv(q, t)> + ,ur sin(oa)/a_. (2-32b)

From these expressions we readily notice that only the canonicalmomentum

is manifestly gauge dependent in the sense that its expectation value depends

on the particular gauge chosen while the kinematical momentum and the

probability flux are gauge invariant.

,_ Therefore, the required expectation values can be computed for a given

initial wave function Ip(q, 0). The following minimum uncertainty Gaussian

wave packet is used as an initial wave function.

1/2 (q_ qo)2
_(q,O)=flr_._ exp[- 2o.2 +ipoq], (2-33)

where < q (0)> = qo, < p(0)> = Po and oris the Gaussian width. The final form of

a solution is just (2-29a). It is of interest to note that the solutions

corresponding to the classical simple harmonic motion can be analytically

obtained using this initial function.

Computation of the power spectrum is also carried out using the FFT

algorithm. A discrete time series < q(t) > from (2-31) (or, < p(t) > from (2-32))

is windowed by a Hanning window function [8]. Then the power spectral

density P(Ok) with frequency ok becomes

P(ok) = Iq(a_)12,
!

= II _ exp(icakt ) <q(t)> W(t) dt [, (2-34)
/

where a Hanning window function W(t) is
_
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w (t)=]1- c°s os t_<
tO, t>¢ • (2-35)

The totalpropagationtime(evolutiontime)is_.Thiswindow isdesignedto

adjustthed_scontinuityofa seriesat_.One may designanotherform ofthe

window toexhibitratherdistinctpeaks.Here thesame resultsareexpectedif

thecorrelation< C(t)> isFourieranalyzed,where

<¢(t)>= <q(0)tq(t)>. (2-36)

Finally, we are also interested in computing the uncertainty product

V(t)= {<(p- < p > )2><(q. < q >)2>}I/2todeterminehow expectation-values

in phase-spaceare shadowed by uncertainty.Similarto (2-31),(2-32),we

would getthefollowing expressions:

(,_q)2=<(q-<q>)2>=<q2>_<q>2,

= < _'(q,t)lq 2 1_'(q,t)> - < _'(q,t)lq 19r'(q,t)> 2,

= < 9¢(q, t) l q 2 I_(q, t) > - < 9r(q, t) l q I_(q, t) > 2 . (2-37)

Because of the same reason we have Eq. (2-31), and using Eq. (2-32),

(_)2=<(p.<p> )2>=<p2 >_<p>2,

= < 9¢'(q, t) l p 2 I _'(q, t) > - < 9¢'(q, t) l p I_'(q, t) >2,
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,., a2 ^

= < w(q, t) l exp[-i x (q,t)] (--_) e_[ iX (q,t)] IW(q,t) >
v, 7

- [< _(q, t)l exp[ -i X (q, t)] (- i-_ )exp[ iX(q,t)] I_(q, t)>] 2,

A

^ ^ _x a

-- - < w(q, t) l exp[ -i Z (q, t)] [ exp[ i X (q, t)] (i _qq).(_qq) I _(q, t) >

+ exp[ iX(q,t)] (_-_'q2)Iv(q, t) > + exp[ iX(q,t)] (i_'q IW(q,t) >

.e_[iX(q,O|(i _i_2_ )Iw(q,O>.exp[iZ(q, Ol(i_X)(_-qq)_ Ig(q,O>}i_q2

- [< _'(q, OI p Ig(q, 0 > . P_'sin(_)/co ]2,

= 2(p_, sin(c.at)/ca)< _ (q, t) l p I IV(q, t) > + < _ (q, t) l p 2 I_ (q, t) >

+ [p_, sin(_)/¢o ]2_ [< _(q, t) l p Iw(q, t) 7]2

- 2(pr sin(_t)/oJ )< w(q,t)Ip IV (q, t) > - [PY sin(eot)/ca ]2,

= < w(q, t) l p 2 I_(q, t) > - [< _(q, t) l p Iw(q, t) >]2 (2-38)

Thus, we finally get

V(t) = {<(p - < p > )27 <(q - < q7)27}1/2,

=/L< w(q, t) t q 2 I w(q, t) > - < w(q, t) l q I w(q, t) > 2 }1/2,

x {< w(q,t)l p2 I W(q,t)>- [< _'(q, t)l p Iw(q,t)>]2} 1/2'.

(2-39a)

Note that the uncertainties (2-37) and (2-38) are gauge invariant as required.

In general, because the wave function is not known at any arbitrary time, V(t)

cannot be determined analytically. For a simple harmonic oscillator with the
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initial wave function of the form (2-33), however• we would get a steady

solution with a minimum value of 0.5 if/, = 0. But numerically• we calculate

U(t)where

U(t) = { <( _ - < _ > )2><( q. < q >)2>}1/2. (2-39b)

This uncertainty volume is more useful since we will plot trajectories in

phase-space which has the angular velocity axis rather than the momentum

axis. We can directly compare this uncertainty with the trajectory. One can

always go back to calculate the original uncertainty product V(t) using the

relation V(t) = l_U(t) and/I =[P- A(t)] //_.

It is also of our interest to determine eigen-values and eigen-states.

Eigen-values are easily calculated by forming a correlation between the initial
o0 ¢10

wave function-_ A, un(q ) and the final wave function ~_, An Un(q)exp (-iEnt).
n ll

The correlation is

C_t)=< _q,O) I _(q,t)>

oo

- (-iE.t)
. . (2-40)

This correlation function is then Fourier transformed to formulate a delta

function. Its final form takes

S 0o

C_(;_)= C_(t )exp ( i ;_t )at = _ IA._ _(2 En). (2-41)
I1
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As a result, we get spectral peaks located at E. with an amplitude of [A,_.

To project out a single eigen-state with an eigen-value ;tk,we take the

following integral.

l " 1q, t ) exp ( i _ t )dt = _ A. u.(q ) exp ( i[_k - En]t ) (2-42)n

Consequently, we get the desired eigen-state because of the delta function

property. In actual computation, however, we use the method of fitting a line

shape function similar to the Harming window function. The method is

described well in the references [13].

Before we use the basic numerical tools we have developed hare, let us

first focus on the problem of taking semi-classical limit. It is very important to

note that the canonical momentum, p-A, in this quantum scheme should be

divided by/_ to get dq/dt, which is offered by the classical integration scheme.

Otherwise, quantum and classical trajectories will have a scale difference in p

-axis (or dq/dt -axis) in phase-space.

2-4. Method of controlling semi-classical limit

It can be shown that in the limit h _ 0, quantum mechanics resembles

classical mechanics. To see it in one way, first write the wave function in

standard polar form

w(q, t) = R(q,t) exp[ i S(q, t)/h], (2-43)

where R and S are real. Substitute this into Schr_dinger equation. Then one

finds
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__..1_ _2R +_1.. _(_.)2+ V 0S2m R _q2 2m at, (2-44a)

2__._mI _2S _R_S] aR- R _q2 + 2 aq _-qJ = a"_-. (2-44b)

In the limit h _ O, These equations become

_LP_tS aS
2m _/)q_ + V =-/}--_ (2-45a)

a-T+ .[pv]=o. (2-45b)

The (2-45.a) is a classical Hamilton-Jacobi equation whose solution is S. Then
a_as

the form of a continuity equation (2-45.b) where the velocity v = m 0q , and p

= R2 describes conservation of probability. Therefore the limit h _ 0 can be

taken alone as a semi-classical approximation in many cases of which there is

no gravity involved. It really means, however, that the ratio of h to some

classical characteristic action of the system with the same dimension

approaches zero [14]. This limit is also discussed in both quantum and

classical perturbation theories [15]. The term,

_ h2 1 02R

2m R 0q2, (2-46)

is D. Bohm's quantum mechanical potential [16].

In our case, however, we must consider the effective mass, ml_"_ / h as

a semi-classical approximation. This is so because of the reason we discussed
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in Section 1-2. It is obvious that the gravitational field strength g and Planck's

constant h are fixed numbers, so what we really have to consider is the

quantity (ml _T') where m is not the effective mass, but the mass of the

pendulum. To see this more clearly, we first consider the classical equation of

motion in general in the absence of air resistance:

m_'= - m Vq_grav , (2-47)

so that we get ii - VqOsrav = 0 because the mass term cancels as we mentioned

briefly in Section 2-1. We, of course, assume that the gravitational and the

inertial mass are equal (principle of equivalence). We can see this point also

using the Hamilton's classical approach, based on

l )8 dt ft2- m VqOsrav = 0, (2-48)
1

where m clearly drops out again.

In the quantum mechanical formulation, however, the equation

analogous to (2-44) is

+m v,-ih2m _}t. (2-49)

The mass term does not drop out: it appears in the form of a ratio (h/m).

Analogous to the classical Hamilton's approach, we try the Feymann path-

integral formulation of this case.
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<._¢(q,t+,at)l W(q, t) >

=42_i,_th'm ..e_ i dr' m_t_(02- Vq_s"_ , 4 t _ O. (2-50)

In this case, the combination (h/m) also appears. This is a clear distinction

from the classical approach [17]. In our case, this combination appears in the

effective mass implicitly.

To support our idea of semi-classical approximation more, we may

carry out the argument physically in the following way. Consider a double-slit

experiment which shows a pure quantum effect with the separation of two

slits d, de Broglie wave length X. Then the equation for successive

interference pattern becomes n2 = d sin0, where X = 27rh/mv and On is the

angle between the n th and (n-l) th maxima. Therefore 2;¢h/m = (vd/n)sinO,,

where m is the mass of the particles (we shall not consider a photon case

here) passing through the slits with the velocity v.

Now, in classical limit the successive interference pattern of quantum

phenomenon disappears such that On= On.1_ ....._ 01 = O. In other words the

ratio h/m is required to be small in semi-classical limit [18]. In practical

computation, there is no difference as to whether letting h decrease or m

increase. What it matters is the combination, h/m, implicitly contained in/_.

In physical sense it is more appropriate to adjust m than h.

The same argument can also be applied by EBK quantization rule [19].

The rule gives rise to the approximate integer number n of bound states.

l p dq = ( n + l2 )fi, p = _12m [Emx - V (q)l, (2-51)losed
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where Emx is the maximum available bound state energy (see Appendix 2.II).

Therefore as the mass is increased, the number of bound states will be

increased accordingly. This corresponds to higher energy states contributing

to a total system, which makes the system more classical. So in either case,/_ is

an appropriate factor to be adjusted in corresponding limits. Thus, EBK

quantization also requires h/m to be a small constant in the semi-classical

limit for larger n. In fact, quantum mechanical commutator in gravity [ A, B ]

becomes classical Poisson bracket {A, B} in the limit h/m _ 0 ff A _q and

Bfdq/dt.

In practical computations, it is easier to think of/_ = m numerically by

assuming g = 1 = h = 1 such that 7 = f and ¢Oo=1 without considering the

physics of units [20] since the computer (machine) will not recognize the

difference. This method is always numerically valid whenever we solve

dimensionless equations. To get a feeling for a possible physical situation, one

can always go back to the kind of calculations we have done in Section 1-2. As

a consequence, the parameter to control semi-classical approximation is just

reduced to effective mass only.

2-5. Computational stability consideration

In this case, the numerical error comes frcrn the commutator since the

splitting of a Hamiltonian is based on the commutation of operators. To see

more clearly, we expand the following two unitary operators in Taylor series;

U. (t ; t ') = exp -i H (t ') dt = exp [-i H At ],
-At
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' tilt'T (t ') dt × exp -i _ (t ') dt
Ub (t ; t ")==exp _ -_t -_

xe_ 2 _, T (t ")dt ,

- exp [-i _ At ] exp [--iV At ] exp [-i _ At ]. (2-52)

Then we get

_, (t;t') --1- i (at)(r +v)- mz_(r2 +v2+rv +_)2

+ i _ ( T3 + V3+T2V + V2T+ TV2 + VT2+ TVT + VTV ) +...,
O

Ub (t ; t ")- 1 - i (at)(T + V)- _(T2 + V2+TV + VT)2

6

Therefore, the difference between the two is the error term O, where

0 = A6_{ [1"2,V], IV2,T] }. (2-53)

The computational stability due to this error is described in the

reference [21] for several different numerical models. This reference shows

that the split operator method is very stable, and reliable for small enough

integration steps, which can be optimized.
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Appendix 2.1 Normalization

Normalization property can be checked using a Taylor series expansion

of the wave function in terms of the Hamiltonian of a system.

< _(t +`4t)l _'(t +`4t)>

t

h "--_- dt h +""

[ }]× I w(t)> -_HIw(t)> (`4t)2 i I W(t)>+-l-H21_(t)> +...
h 2_ h ,

A

<_(t)l W(t)>-_<_(t)lH iw(t)> i(At).___2<W(t)i dd_t iw(t) >h

(`4t)-----_2<W(t)lH2Ilg(t)>+/At <W(t) IH Iw(t)>2,9 h
(,402 ^dH
--_<W(t)IH 2 Ivc(t)>+,(At)3<W(t)lH_ lye(t)>

+

2_
i(a03 i(a02 "

+ 2h_<_(t)l_31_/(t)>+ 2h <V(t)l d_l'tIv(t)>

(a02 --2 (a03 _ --
2h---T-<W(t) In Iv(t)>+----_<_(t)l u_ n lye(t)>
i (zi0 3

<_(t)lH 31_¢(t)>+.,.,
2/13

= <_(t)l_(t)>+ 2h2 <V_(t) IH + HI _(t)>+...,
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= <w(t)iw(t)>+OL---_. H, , (A2I-_)

I

where {A, B} = AB + BA. For simplicity, we show only the time variable

,_puc_uy.now_o,, _=.-_d.p_d_.,tH.mi,oman._U_dt- alia_T.[--n._']=0;
so the wave functions are normalized at all times. But for the time-dependent

Hamiltonlan of our pendulum, we have

A A

dn_ am_
at =--_at=p r cos(oa)+f(t)

¢

A

where f (t) is a function of time only and commutes with Hq,,. Therefore, the

commutator bracket would be left with { cosq, p }. So for a small /it,

normalization can be satisfied. In this analysis, we have ignored the error due

to Eq. (2-53).
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Appendix 2.H Quantization of a pendulum

To find the number of bound states in a pendulum-like potential, we

use the Wilson-Bohr-Sommerfeld semiclassical quantization rule [22].

I

-r'_- - - 7 .... ,_-'I" 2_I

i !i I I

IE _ _ mgl (1- cos q)

I I

I I
I I
I I
I I

I I
,

-_ 0 q_'

This diagram assumes a periodic potential well with V = Vo ( 1 -cos q), and E

= Vo ( 1 - cos q_). The point qt_,represents the turning point where a particle

with energy E bounces at the potential wall in a classical sense. Then the rule

requires that a closed Lategral,I, of momentum equals to 2anh, n is integer.

fo '_'
I =4 J2mla(E-V)dq,

= 4 2m 12E(1-_) dq,
,I0
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Jo_' 5/ Vo(1- cou/)= 4_2ml2E [1 "t/'o(1-cos%,) ] dq,

-4V2m 2EI] v__ay _y2 dy. (A2II-1)

Here we let y---a (1- cosq), where a = (1- cos%, )-1, then dy = a sinq dq =

.42ay - y2 dq, where 0 < q < _, since

(asinq)2=a2(1- cos2q) + 2a2cosq- 2a2cosq

= [a( 1 -cosq )]2+ 2a2cosq( 1- cosq)

= a (1 - cosq)[ a (1 - cosq) + 2a cosq ]

= a (1 -cos/)[ -4 (1 -cosq) + 2a ]

= 2ay - y2.

Then,

I = 4v21m12E (2a - y)(y- o) dy,
(A2II-2)

=2 _ G(v, _)_ 2(2a- 1)1=(v, _),

where the functions F and G are elliptic integrals of the first and second

kinds, respectively [23]. Since v = Arcsin(1) = _, 0 K q < =, and ic= %/A_, they

form complete elliptic integrals whose series representations are given by

"- 2"..! 2.-I -'"/'
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Now, for angles less than z12,1 < 2a < oo since a = (1 - cosqtl, )-1

so for _c,0 < (1/2a) 1/2 < 1. Then the functions G and F can be approximated.

Thus, we finally get

- sa f-_ (A2n-3)

Now 4a >> 1, for 0 < q_, << z/2, and a = Vo/E, so we get

Vo

Solve first for E. One finds the quantized energy levels for small angles with

Vo = mgl,

E (n) =E. =n _. (A2n-4)

Now by substituting the classical-like energy E = mgl (1 - cos qq, ),

n = (_-)l _( 1-cos qtp ). But since we have assumed qtp < z/2, the actual

total number of energy levels becomes

43



The inequality is due to the fact that the energy level spacing becomes

narrower as the energy of a particle becomes closer to the top of a potential

well.

It is interesting to see that the energy level spacing AE agrees with that

of Section 1-2 from the unit analysis in Schri_dinger equation. Moreover, the

quantity [_-]1_, we called the effective mass, is directly related to the

number of energy levels as we have also seen from both Sections 1-2 and 2-4.

For real physical situations, one can estimate numbers for the

parameters. Substituting the values of fundamental constants, we find the

effective mass /_ ~ 3 x 10a4 ml3/2. So for I kg objects swinging at the end of 1

meter string for small angles, the number of energy levels approximately

becomes ~ 1034. For a proton at a distance of I ]_, there hardly exists any

quantized energy level. For a particle a hundred times heavier than a proton

at the same distance, there are probably more than 100 quantized levels. Here

are some examples of number of energy levels in the H-atom case;

i) for/a = 1,1 = 7.4 x 10-6 meters, then AE = 1.2 x 10-31 J. But the

potential energy ~ mgl = 1.661 x 10-27kg x 9.8 (m/sec 2) x 7.4 x 10-6

meter = 1.2 x 1031 J. So the depth of the well 2/_ provides ~ only a few

quantized energy levels in crude approximation.

ii) for p = 10,1 = 3.5 x 10-5 meters, then AE = 5.6 x 10-32J. But the

potential energy - mgl = 5.7 x 10-31j. So in this case there are about

in the order of ten energy levels.
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iii) for _ = 100, / = 1.6× 10.4 meters, then AE = 2.6 x 10-32J. But the

potential energy - mgl _,2.6 × 10-30J. 50 in this case there are more

than a hundred energy levels.

It is obvious from here that the approximate number of energy levels linearly

increases with the value of/_, and that this value corresponds to those one

might get directly from (A2II-5). This is what exactly we should expect since

the gravitational effect becomes negligibly smaller in a more microscopic

system. It is also interesting to note again that the effective mass is the only

parameter to control semi-classical limit.
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CHAI'rEx3

NON-DISSIPATIVE SYSTEMS

A violent order is disorder; and

A great disorder is order. These two things are one.

W. Stevense's "Connoisseur of chaos" (1942)

i

Phase-space behaviors are extensively studied in this chapter using both a

single system and a distribution of systems. A possible general description of a

break time is introduced. The results indicate the correspondence does not

hold in classically chaotic regime.
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3.-1.Classical and quantum Lyapunov exponents

3-1-1. Classical Lyapunov exponent

Classical Lyapunov exponents specify the exponential growth of the

two initially nearby trajectories in phase-space. Any system containing at least

one positive Lyapunov exponent is defined to be chaotic [1]. To find the exact

quantity of the growth (negative growth in the case of dissipation), we first

linearize the given nonlinear equations of motion giving rise to a stochastic

motion. First, we may write a set of nonlinear differential equations in a

form:

i =J_(xl, x2, • •, xn), i = 1, 2,.., n.. (3-1a)

Then we can write

where x/° represents the fixed points of the motion, for which the phase flow

is stationary (i.e., those points for which x i = 0, that is, f(_) = 0. This

linearized equation then can be expressed as a matrix M.

dt . (3-2)

The general solution is obtained by detl M - 2 1 I = 0, where / is a unit

matrix. So we get
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8_"=Y__.akDkexp(_.kt),
k (3-3)

where Dk's are the eigen-vectors associated with eigen-values 2i, which

determine the actual directions of the local phase flows. Here the eigen-value
I

;ti is the characteristic exponent called Lyapunov exponent. The diagram

below shows a possible phase flow of the pendulum in three dimensional

phase-space.

to

J
To find the linearized equations of motion in our pendulum case, we

first write (1-2) or (2-2) as

_1=-/_xl- sin(x2)+rcos(x3)
x2 =xl , (3-4)
:_3 =ca

where ca is the frequency of driving force. Then the linearized equations of

motion for our pendulum model can be easily obtained by applying the

method [2] described earlier.

X1 = -fiX1 - X2 COS(X2) - _'X3 sin(x3 )

:_2 -- Xl , (3-5)

23 0
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where :_I=//', _2 = 4, and _3 = m. The time evolutions of each variable are

then orthonormalized by Gram-Schmidt method [3]. The diagram below

depicts this process.

dp.

alp,

dq2

@2

Thick solid lines represent the orthogonal unit vectors. Thin dashed lines are

vectors after the unit vectors evolved. Therefore, we can compute the

exponent, say, for q using the following formal expression:

_ ~ limIln(_ In_tq_)l.-*" t. xi:1 , (3-6)

where _ = dqi ,or,,, ,,or,,,-dqi_ 1 , and dqi_1 is a normalized unit vector depicted as a

solid line in the above diagram.

Figure 3.1 shows the time variations of exponents for cases where y =

0.2, 5.0 with co = 2. It clearly exhibits a positive exponent for 7' = 5.0, whose

phase-space trajectory is not predictable. We will see the trajectories of these

cases in Section 3-2.
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3-1-2. Quantum Lyapunov exponent

Classical chaos is usually characterized by the existence of a positive

Lyapunov exponent as we have discussed_previously. In this oense, the

quantum version of it becomes subtle and ambiguous because the concept of a

small variation in initial conditions resulting a large change in outcomes

cannot be applied to quantum mechanics. To show this, we consider a small

perturbation e on the position vector of wave function _1. Then the displaced

wave function _2 can be written by Taylor expansion as follows.

v,2(t+.,) - --aq)
n,,O n !

= exp(e. _"_)_(q,t+clt) = exp(i p.e) _(q,t+dt). (3-7)

By definition of Lyapunov exponent, we are interested in the difference

between the two trajectories at every step formed by tlieir expected values in

phase space. The expectation values of an operator Oi = Oi(p, q), i=1,2, can be

calculated according to the following operations:

<0 >1= < v&(q,t+dt) l 0 II//1(q, t+dt) >, (3-8a)

< 0 >2= < _2(q, t+dt) l 0 I_2 (q, t+dt) >,

= < _l(q, t+dt) l exp(-i p.e) 0 exp(i p.e) I _l(q, t+dt) >,

A

=< wl(q, t+dt) l LI'p.(E)0 Ut,(e) Ivh(q, t+dt) >. (3-8b)
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Apparently, expectation values of any function of the momentum

operator are unchanged when the states are displaced. On the other hand, if 0

is the flmction of the coordinate operator q, it can be shown easily using (3-7)

that[4]

< q>2" < q I + e >, (3-9)

A A

since Up(e) I_l(q,t+dt) > = 1_2(q,t+dt) >, where Up(e) = exp(i p.¢). Therefore,

for this kind of perturbational method which is common in classical

dynamics, the Lyapunov exponent becomes zero. We arrive at this result by

applying the conceptual definition Of Lyapunov exponent to quantum

mechanics.

Symmetrically we would get the same result for a small perturbation

on the momentum vector of the initial wave function if we treat this case in

momentum space. In general, however, the situation becomes more

complicated for the initi_l perturbation on both the momentum and the

position vectors. It is not difficult to conjecture though that there exist no

positive exponents even in this case. It is easy to determine that the classical

method in the previous section cannot be exactly applied here. The process of

linearization is not appropriate in quantum mechanics.

Nonetheless, we looked at the similar quantum mechanical process

analogous to classical method in the previous section. To do that, we used a

Gaussian wave function (2-33) initially with qowith < q(0) > and Po with <

p(0) >. We next calculated changes in the norm of each expectation value at

every time step. The wave function was then brought back to the form of (2-

33) by replacing < q(t-ztt) > with < q(t) > and < p(t-ztt) > with < p(t) >. The

results showed that a positive exponent is possible, but it is quite different
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from the classical value. It also showed that trajectories in phase-space were

not even close to the corresponding classical ones. This excludes this set of

method. A study [5] reveals that at very high values of spin in a driven

quantum spin system, one could find a positive exponent without any

resemblance to the classical exponent. A spin value of - 108 in this study,

however, is not realistic.

In the following section, even though there are no positive exponents,

we will look at actual trajectories in phase-space, and see if we can understand

quantum chaotic phenomena better using the techniques developed so far.

3-2. Phase-space behaviors

The phenomena of classical chaos have fascinated physicists since the

development of computational techniques in nonlinear dynamics. Much

attention has also been directed toward determining possible quantum

analogs of chaos (QC). It is well established that, in principle, quantum

mechanics provides a more fundamental description than classical mechanics

[6]. Ehrenfest's theorem [7] as well as the correspondence principle, then

supports our expectation of the existence of QC. Unexpectedly the

fundamental theory of QC is still somewhat speculative. For example,

extreme sensitivity of quantum dynamics to initial conditions is lacking

because of the smoothing nature of wave mechanics and of the quantum

suppression of classical chaos (CC) [8-10]. Even the existence of Lyapunov

exponents is not well understood (as seen in Section 3-1). In general, classical

chaos is characterized by the existence of a positive Lyapunov exponent _, i.e.,

d(t) ~ d(O) exp (Zt), where d is the phase space distance between two initially

nearby trajectories as we discussed in details in the previous section. This
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classical concept of exponential growth of two initia]Llynearby trajectories in

2N-dimensional phase space cannot be applied if the initial trajectories are

within Planck cells (P-cells) of volume h N for a system with N degrees of

freedom [11]. In fact, phase space trajectories have no meanings in quantum

mechanics because of this uncertainty unless we introduce the concept of

quantum trajectories as the evolution of expectation values of classical

observables surrounded by P-cells.

The stringent classical definitions of chaos however may not be

appropriate for quantum dynamics since classical and quantum mechanics

are different descriptions of nature. Some studies have used the classification

of energy level spectra and their statistics [12-17] or stationary states [18-21] as

the quantum definitions of chaos. These approaches to QC have no analogues

in classical mechanics. Our approach is formulated in the context of classical-

quantum correspondence. To do that, we focus explicitly on phase-space

behavior.

In this chapter, we will investigate mainly the correspondence

principle by comparing classical trajectories with quantum mechanical

expectation-value trajectories without dissipation. The classical Hamiltonian

of the pendulum is not integrable; the pendulum's motion shows very rich

classical chaotic structures [22,23]. The similar quantum model of a kicked

rotor has been extensively studied [24-27]. It is similar in the sense that the

gravitational potential in our model is applied as a periodic delta function

kick as mentioned earlier in Chapter two. Our model can be regarded as a

generalized version of this since the external field is added.

The correspondence principle is also studied by varying the effective

mass /1 in the Schr_dinger equation. The degree of correspondence is

quantified in terms of the Fourier power spectra of expectation values of
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classical observables. In other words, we examine the temporal behavior of

thequantum expectationvaluesand theirpower spectratocompare withthe

classicalvalues.The power spectragenerallyexhibitthe effectofuncertainty

throughtheirnoiselevel.Thereforewe expectclosecorrespondencebetween

classicaland quantum spectraaslongastheP-cellsaresmallcompared tothe

expectationvalues,or the uncertaintydoes not grow constantlyin time.

Especiallyin the classicalregime of regularor mild chaos,thishas been

assumed tobe valid.Ithas been shown analyticallythatthestrongclassical-

quantum correspondenceexistsfor a bound potentialin one degree of

freedomsystem[28].

In addition,the transitionto chaoticbehaviorwillbe signaledby

changes inthespectralPeak distribution.For instancethepower spectrumof

a Morse oscillatordrivenby an intenselaserpulse brieflymentioned in

Section2-5 undergoes a transitionfrom clearspectralpeaks to a chaotic

spectrum as one goestohigh intensitypulses[29].A similarobservationis

expectedinour model ifthereexistsany transition.

We alsoexamine time variationsof the P-cellvolume in both the

classically regular and chaotic regimes. This uncertainty volume, if large, may

prevent the assignment of a corresponding unique time trajectory in the

expectation-value phase space. In this case, the expectation values represent

averages over many trajectories within that volume, analogous to Feynman's

sum over paths formulation. Therefore it has been assumed [see last

reference in Ref. 26] that the expectation-value trajectory resembles very

closely a unique one if the energy-time uncertainty volume is relatively small

compared to the action of the system. On the other hand, a non-stationary

variation or a large increase of the volume would eliminate the

correspondence. We test this novel assumption using phase space trajectories.
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The numerical examples of phase-space behaviors are depicted in figures at

the end of this chapter along with the results from Sections 3-3, and 3-4.

However, one of the fascinating contents of classical mechanics is

energy dissipation (damping) due to friction or heat loss to the surrounding

environment. Although strange attractors characterize a classical dissipative

system, little is known about the respective quantum system [24,33]. To the

author's knowledge, no theory illustrating the comparability of classical

damping into quantum calculation has been regarded universal. We will

carry further this model with dissipation in the next chapter. Nonetheless, it

seems to be more appropriate to first check the correspondence in non-

dissipative cases using a classical probability distribution, given by the

quantum mechanical probability, _*_, of initial conditions.

3-3. Classical distribution function

We assume that an initial classical distribution is the same as the

probability amplitude of an initial wave function. The initial distribution in

configuration space is then taken to be IV/o_. Then the momentum space

distribution is

Iof (p,0 f--If

Therefore, the initial classical distribution Pc in phase-space for a minimum

uncertainty wave packet becomes
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To make the distribution closely resembling the quantum wave function, we

should pick as many points as possible in phase-space so that the density of

those points follows the quantum probability amplitude. Then each point in

the distribution represents either a single classical system or a single initial

condition. In either case, the resulting distribution would be the same since

each point is governed by the same classical equations of motion. If one uses

I_o'1 instead, the only difference would be that the center of the resulting

distribution changes from (q, p) to (q, p+_ysin(co t)/¢o). We will see clearly this

effect in the following section.

Now, we use the Monte-Carlo random number generator to pick an

initial distribution of points in phase-space such that a random point at (qrm,

Prm ) satisfies the inequality Pc(qrm, Prm, O)_ Pc(P, q, 0). Then each of these

initial points is governed by the given classical equations of motion, for

example, Eq. (3-4) and collected after the required propagation time z to give a

final distribution of points.

To compare, we also examine properties of quantum distribution

functions since the wave function itself cannot be compared with the classical

distribution given by the method above. In the next section we introduce the

Wigner and Husimi quantum distribution functions in phase-space, and

study their advantages and disadvantages in the context of our model.
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3-4. Quantum distribution functions

In the last few years, interest in the Wigner distribution function has

been revived to study quantum dynamics in the classical-like phase-space.

This function, first formulated by Wigner [34,35], represents the Weyl

transform of a density matrix. The Wigner function provides the quantum

analogue to a classical phase-space density, known as the Poincar_ surface of

section [36,37]. However, starting from the Schri_dinger wave function, it is

difficult to carry out the calculation of the Wigner distribution function, the

so-called phase-space distribution function or PSD function because

SchriSdinger equation is in general not easily solvable especially for potentials

which give rise to classically chaotic behaviors [38]. Instead, the Wigner

equation [36,39,40] governing the time evolution of an initially localized

Wigner PSD function has been studied in various problems. This equation is

the PSD analogue in the Heisenberg picture [41] since it is considered as the

quantum version of the classical Liouville equal.ion when h is considered

negligible [34,35,42].

For example, some studies have used the Wigner equation to simulate

quantum effects in semiconductor devices [43] numerically. Other

applications of the equation such as the photodissociation cross section

calculation [44], stellar dynamics [45] and collision problems [46] have been

considered. Takahashi and Saito [47] examined the Wigner equation to

discuss quantum manifestations of chaos. Interestingly, they also added a

computational analysis of the Husimi equation describing the time

development of the Husimi PSD function [48] in the Heisenberg equations of

motion.
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In addition, using a coherent state wave function, the Wigner function

is useful in wave optics to measure the uncertainty distribution [49]. Possible

transitions into a squeezed state are of interest also. Nonetheless, in the

course of recent developments in semi-classical mechanics to search for

quantum chaos, the Wigner function has been directly investigated as the

PSD analogue in the Schr_dinger picture [50] using several different systems

in the context of classical-quantum correspondence [51]. On the basis of these

studies, it is plausible to characterize quantum chaos as the appearance of a

stochastic Wigner phase-space density. On the other hand, it still does not

seem sufficient to generalize and relate the stochastic Wigner density to a

classical one. Therefore, one of our purposes is to investigate further and to

derive a clearer picture of the classical-quantum correspondence.

We also study the Husimi representation of chaos in the Schr_dinger

picture. Takahashi and Saito have claimed that the Husimi representation

was better for describing the correspondence principle than the Wigner

representation. This study also supports Heisenberg's correspondence that

relates quantum mechanical matrix elements to Fourier components of a

classical motion. However, their results also seem to indicate that

correspondence becomes obscured at long times. We have tested their claim

by checking the correspondence at long times.

One obvious advantage of the Husimi function is that this function is

non-negative, whereas the Wigner PSD function may be negative so that its

meaning as a probability density becomes unclear. In spite of its compact form

that can be readily identified as a probability function, the Husimi function

has not attracted much attention until recently. We use the Husimi PSD

function to study its connection to the corresponding classical (LiouviUe) and

quantum (Wigner) PSD functions.
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Moreover, our earlier results [52] indicate that the correspondence fails

after the break time. We characterized the break time when the uncertainty

product (AqZlp) in phase-space becomes significant compared to the

characteristic action of the system formed by the expectation-value trajectory.

We therefore concluded that the correspondence cannot be checked by

comparing merely a single classical trajectory with a quantum (expectation-

value) trajectory in phase-space. This result will be shown again in the next

section with discussions. Thus, we have suggested that a classical distribution

is the more appropriate choice to check the correspondence. A classical

distribution describes initial conditions of the system corresponding to the

quantum probability amplitude as in Sec. 3-3.

In this section, we present numerical evidence of the correspondence

between quantum mechanical and semi-classical phase space densities. These

densities are formed by the Wigner and the Husimi functions corresponding

to classical motions of the classical distribution. Extension of the earlier study

by Takahashi and Saito to the forced pendulum is applied to verify their

conclusions. We are especially interested in the classically chaotic regime of

the pendulum [22,52].

In doing so, we first discuss the correspondence among the three

schemes of a simple harmonic oscillator analytically. Then, we briefly describe

numerical methods of the calculations, and show the numerical examples for

both a simple harmonic oscillator and a forced pendulum. Finally, the results

are compared and discussed in several different semi-classical approximations

followed by the summary in Sec. 3-6.

First in the case of a simple harmonic motion, the minimum

uncertainty Gaussian wave packet initially displaced by an amount a spatially

can exhibit all the eigen-states [53]. The simple harmonic oscillations are well
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predictable with the given oscillator strength k - pmo 2 , where p is the

dimensionless mass of the oscillator and mo is the dimensionless natural

frequency of the oscillation. The initial Gaussian shape of a probability density

is always spatially preserved if there is no external perturbation. Therefore,

the probability density is invariably the same Gaussian shape oscillating with

amplitude a and frequency too. The corresponding classical motion is

described by the quantum expectation-values located at the point of peaks of

the Gaussian in both configuration and momentum spaces [54].

Classically, however, we are to use the Liouville distribution that is

initially displaced by the same amount as the quantum initial wave packet.

This distribution then expresses the probability distribution, _*_, of the initial

conditions of an oscillator. Then this Gaussian distribution keeps the same

distribution centered at some position in phase-space at a later time. This is

i_:pparent because the initial distribution with an additional oscillation term is

the solution of the Liouville equation for the simple harmonic oscillator.

Then it is not difficult to show the close correspondence among three

different PSD functions analytically.

First, consider the Wigner PSD function. This function, Pzo, represents

a system in a mixed state represented by a density matrix p [35].

f_ y y (i p.y)
1 dy (q- ,tlq+ t)e (3-11)Pw(P,q, t) = (2_h) n ' h ,

where n specifies dimensions of a system. In our case of a pure state, _, in one

dimension
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Pw(P'q't)= _ f_ dYV* (q+ Y't)gr(q-Y't)exp(_-),2_h (3-12a)

f_ ipy
= I._ dyC(q,y;t)exp(---_--). (3-12b)2xh

Note that Pw is just the Fourier transform of C(q,y; t).

The Husimi PSD function can be obtained by a Gaussian smoothing

method [55] and is given by the foUowing expression:

Ph(p,q,t) = 1._ I(f(p,q;x)l W(x,t))l 22nh

= _.L_ f*(p, q;x) _x, t) dx2nh • (3-13)

where f(p, q ; x) -fx (P, q) is the coherent Gaussian-type test function with the

minimum uncertainty. It is given by

I-----L--I 1/4 exp( - (x - q)2 ipxfx(P,q) = _2mr2! 4"--'_+"_ )" (3-14)

Here, the usual Gaussian width is represented by orspecifying the uncertainty

of the classical variables p and q.

Therefore, once the wave function is known from SchriSdinger

equation, the formulation of the Wigner or the Husimi function is

considerably less difficult than solving the Wigner or the Husimi equation.
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This is because we use a well-known Fourier transformation method in the

Wigner case. In the Husimi case, a simple projection scheme into the test

function f makes so.

Finally, the classical Liouville distribution at a certain time t becomes

Ptp, - tf. c3- s)

where ¢(p,t)= f _(q,t )exp(-ipq/h) dq. We used the probability density of

the wave function _r(q, t). Obviously, this is not a general description, but a

special one that works only for a simple harmonic oscillator. In general, a

classical distribution does not have to always resemble the wave function at

time t.

To show the correspondence analytically, substitute the following

Gaussian function into the equations (3-12), (3-13) and (3-15):

_(q, t) = _2tts2![-'L-I1/4exp(- (q4s2'q°)2+ --hip°q) exp( - i0t/h), (3-16)

whose width is s and peak is located at (qo, Po) in phase-space. The width s is

generally not a ground state Gaussian width [53]. The time dependence is

involved implicitly in qo, Po and in the time-dependent phase 0 [4], i.e., qo

= a cos(oJot), Po = - al_o_osin(caot).The variable q in Eq. (3-16) should become x

when _f (q) is substitute into Eq. (3-13). It is also worth noting that the gauge

transformation of our kind effects the solution (3-16) such that Po changes to

Po +/#,sin(tat)/or, _(q, t) --_ _' (q, t). But the actual results from Eqs. (3-12), (3-

13) and (3-15) are gauge invariant.

The analytic results from the equation (3-12) is
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Pw(P, q, t) = _ exp( - (q "q°)2) exp( - 2s2(P "P°'2)._ (3-17)zv2=vI

We get a circular contour in phase-space from this equation for s2 = 0.5. From

the equation (3-13), we get

Ph(P, q, t) = ..1__ os exp(- (q "qo_ _ 2o2s2 (P _o) 202+.,2 2(02+s2)) (o2+s2)..... ). (3-1s)

In the case where or= s, this equation becomes

Ph(P, q, t) = ---1-- exp ( - (q "q°)2 s2(p "P°)2). (3-19)
27rh 4s_- ) exp( -

The classical result from the equation (3-15) is

Pc(P, q, t) = __L exp( (q "q°)2) exp( 2s2(p" p°)2
h Zv2 - h2 .). (3-20)

These equations, (3-17)~(3-20), satisfy the normalization condition
f

_t

J P (w,h,l)(P, q) dpdq = 1. Now, compare the equations (3-17), (3-18) (or (3-19))

and (3-20). The classical distribution in this case is exactly the same as the

Wigner distribution. Also notice that the phase-space contours of three

results become circles for s2 = 0.5, but for other values of s (or o'), an elliptical

shape of contours would be yielded. Although the Husimi PSD function does

not exactly match with the other two, its overall shape is quite close to those

distribution functions. If the solution, _' after the gauge transform is used, the
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centers of three distributions (3-17), (3-18) and (3-20) will lie at ( qo, Po + I_,

sin(cot)/a_ ). We will use _ from now on.

Therefore we showed the correspondence for a simple harmonic

oscillator using three different probability density functions in phase-space in

this section. It is interesting to note that the width a of the test Gaussian

function can be adjusted to give different uncertainties of Ap and _/. In other

words, externally 'squeezed' states can be generated. The results of numerical

calculations of Sections 3-3, 3-4 for the cases of the pendulum will be shown

in the next section.

3-5. Numerical results

First, w_ will compare directly classical trajectories with quantum

mechanical expectation-value trajectories in phase-space. The initial

conditions for Figures 3.1 - 3.6 of Section 3-2 are qo = 0.05, po = - 0.02 and/_ = 1,

50, 200, for cases Co),(c) and (d) with o.2= 0.6, 0.02 and 0.005 respectively. For a

case (a), a simple harmonic motion is plotted with/_ = 10, o.2 = 0.1. More

spatial grid points are required as the mass increases since o.2 ~ 1//_; the width
u

and depth of the potential well is directly dependent upon the value of/_. All

runs were made with 32768 integration steps with co = 2.0. In the regular

regime, 7' = 0.2 is used whereas in the chaotic regime, y = 5.0 is used. The

number of abscissa points of power spectra is taken to be 512 steps out of the

total integration steps for a spectral peak blow-up. All the initial data used in

this chapter are summarized in Table 3.I. Most runs were carried out with/it

= 0.005. This value permits an accuracy in determining the phase space

trajectories comparable with that obtainable with the very accurate classical

calculations [22,23] using a fourth-order Runge-Kutta method.

66



The time variations of Lyapunov exponents calculated using Eq. (3-6)

for the regular (7'= 0.2) and the chaotic (y = 5.0) cases are shown in Figure 3.1.

For the regular motion, the exponent is zero, whereas the exponent

approaches ~ :1:0.248for the chaotic case.

Figure 3.2, which shows cases (a)-(d), exhibits motions in the classically

regular regime who_e Lyapunov exponents are zero as seen in Fig. i. The

rectangles inside (c) and (d) represent the uncertainty products

U(t) = {<( _ - < _ > )2><( q. < q >)2>1112,

whose area shadows each point on the trajectories (called "the shadow

effect"). In this regime, it is assumed that the each point on the trajectory is at

the center of the rectangle. We notice that the area decreases as we increase p.

However, the fluctuation dLI/LI is very small so that one may assume a

steady LI(t) for/_ = 50 as shown in Fig. 6 (We will come back to Fig. 3). In fact,

the minimum uncertainty is being kept with the negligible fluctuation in this

case. For p = 200, the steady L/(t) is so small that the scale of Fig. 6 is not

appropriate to plot the case. In the case where p = 1, however, the size of the

area L/(0, which is 0.5, is larger than that of the phase-space shown in Fig. l(b).

In other words, /tq ,-0.7 and A q ~ 0.7 in this case where _ =(p-A)/p.

Although the volume L/(t) is considered stoady in this case, the shadow effect

is big enough to dissociate the correspondence. The bottom two in this figure

exhibit the power spectra of the cases (a) and (d), respectively. We hardly

notice the difference between (a) and (d) because of a negligible noise level

due to the volume L/(t).

Figure 3.3 exhibits the power spectra of the cases (a) - (d), respectively.

The power spectra are calculated by using Eq. (2-34). We hardly notice the
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difference between (a) and (d) because of a negligible noise level due to the

volume U(t). We should note here that more trials of similar cases in

classically regular regimes indicate the same results. The larger the values of

/_ are, the better the correspondence is. We do not observe that the

correspondence fails in classically regular regimes. It is appropriate to ignore

those figures here.

Figure 3.4, however, shows big differences for the cases (a) - (d). The

external force is twenty-five times stronger than the previous one shown in

Fig. 3.2. Obviously, the classical system is in chaotic motion, i.e., there exist a

positive Lyapunov exponent (see Fig. 3.1). There is an external force range

where intermittence appears. But we are interested in the fully developed

chaotic regime. The figure displays that all the quantum trajectories appear to

be quite chaotic with no resemblance to the classical one and to each other.

Here the volume U(t) spreads almost the entire phase space. Because the sizes

and shapes of the volume U(t)always change, the rectangles like shown in

Fig. 3.2 cannot be drawn in this case. Fig. 3.6 clearly exhibits this effect even in

the case where/_ = 200. We noticed from another calculation in the chaotic

regime using/_ = 100 that the volumes with smaller values of/_ are always

larger than the one with greater values of/_. Moreover its initial expansion

limits the correspondence to be satisfied within a very short time, and its

fluctuation permits many other possible trajectories.

In addition, the fact that the expectation values of q trace out into a

smaller region for the larger/_ tells us that the wave packet expands more so

that the average values (expectation values) of q become smaller. Figure 3.5

supports the idea because of the noise rise due to the large U(t). Therefore the

real trajectory can never be determined in this case after the short

characteristic time, so-called the break time, [15,26] which gives the time of
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close correspondence between the classical and quantum trajectories.In our

case, the break time can be characterizedas the time when the uncertainty

volume becomes significant compare to the action of the system. The same

findings are also deduced from many other trials in the classicaUychaotic

regimes. We will not show them here.

Despite the appearanceof abrupt changes in the quantumtrajectories

in Fig. 4, the initialvalues arebroughtbackby the reverse-timecalculationsof

the 5chri_dingerequationas an accuracytest [30,31].The fact that no apparent

changes are observedwith the use of differentnumber of time steps and grid

points also supports the accuracy of the algoritl-u_.The power spectrum

calculationsutilize the window function [32]. Now let us move our focus to

the distributionfunctions.

Figs. 7-10 are plotted for cases where initial values are # = 20.0,At =

0.00383349,_o= 4/3, qo=0.5,Po= 0. The values of 7 i_ these cases are0.5, 0.8,

and 1.25.The uncertaintyproducts of these threedifferentcases are shown in

Figure3.7.The uncertainty productgrows in time with higher values of _,asit

should be expected.Fig 3.8 depicts the exponentsfor same cases.Their values

areeasily noticeabledirectly from the figure.

Before we discuss about later figures, a word is in order concerning

contour plots of the Wigner distribution function. The contour plots are

taken from the norm of Eq. (3-12), IPwl, to avoid possible negative values.

This treatmentis applied throughout the following chapters for the Wigner

function.

The next two figures exhibit (a) the initial classicaldistribution, Co)the

later classical distribution, (c) Husimi distributionfunction, and {d) Wigner

distribution function. For Figure 3.9, we initially start with 1000 different

initial conditions with ?,= 0.5. This Gaussian initial distribution is shown in
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(a).Then thelaterclassicaldistributionafterthetimet= 20T/3= 7T,T = 2_/aJ,

isshown in (b).The spiralstructuresareeasilynoticeable.Both (c)and (d)

show similarspiralstructures.From thesecontoursof thedistributions,we

may say thattheHusimi case(d)manifestsmore thantheWigner case(c)in

overallstructurein phase-space.On the contrary,the case(d)isbetterin

detailsofthedistributioninphase-spacesinceitdoes nothave a smoothing

mechanism ofHusimi kind.

Figure3.10with T = 1.25alsosupportsthisidea.In thiscase,2000

differentinitialconditionsareused,and theevolutiontimeisabout3T.The

picturein (b) clearlyexhibitsclassicallychaoticmotion. The obvious

differencebetween(c)and (d)exists,but thesimilaritybetween(b)and (d)can

be easilyspotted.Sincethe correspondencebreaksdown earlierathigher

values7,thelessevolutiontimeisusedinthiscaseeven fora largervalue//

= 40.0.ItisinterestingthatWigner distributionshown in(c)spreadsalmost

allthephase-space.We believethattheinitialwave functionquicklyspreads

outinthiscasesothatequation(3-12)containsa complexstructure.However,

itisa surprisingfactthatHusimi distributioncan stillprojectout theresult

somewhat closerto the classicalone (b).The width of the Husimi's test

function(3-14)is0.25forbothcasesofFigures3.9,3.10.One canindeedcontrol

theprojectionofHusimi distributionintophase-spaceby adjustingthevidth.

Figure3.11shows theuncertaintyproductL/fortwo differentcasesof

othertrials.The firstone inFig.3.12isatresonancewiththevaluesro= 1.0,y

= 0.35,and thesecondone o)= 1.5,_,= 0.5.Itiseasytoacknowledgethatthe

Husimi one (c)ismuch closerto(b)thantheWigner one (d)inthefirstcase

aftert= ST. In Figure3.13,the similarphenomenon isobserved for the

secondcase.But thecase(d)isnotverydifferentfrom (b)althoughthekindof
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a spiral in (b) is difficult to detect. Typical three dimensional distributions of

this case are shown in Figure 3.14.

Figure 3.15 exhibits another classical chaotic case where co= 1.05, _'= 0.5

whose Lyapunov exponent is i'0.065. It is certain that the Husimi represen-

tation resembles the classical one more closely than the Wigner

representation in the classical chaotic regime. Additional example in classical

chaotic motions are shown in the final figure. In Fig. 3.16, the different values

of wave packet widths from the previous figure were used. The results

somewhat support our idea and the previous findings of Takahashi et al., that

the Husimi is better to represent the correspondence, but it is actually difficult

to judge. It is safe to say that genetic behavior of the Husimi is more reliable

in the context of the correspondence. On the other hand, the Wigner will be

better in the classically regular regime since it will not lose detailed

information of the distribution through the Gaussian smoothing as we see in

the figure. Now we summarize our results.

3-6. Summary

It has been shown clearly that the correspondence principle holds more

closely for trajectories and their power spectra near the semi-classical limit,

especially in the regular regime. It is not surprising that the correspondence

fails even in the regular regime for V = 1 since the effects of spreading and

distortion of the wave packets cause relatively large deviations from the

classical counterparts. Conversely, the level of correspondence increases as/_

gets bigger with considerably smaller time steps at a cost of much more

computer time. A recent study [56] mainly focused on classical regular regime

using the Floquet states [57] reveals the close association of eigenstates with
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classical invariant tori [58]. However it is impossible to check the quantum

chaotic behavior in a classically chaotic regime because the uncertainty

dominates the phase space taken by the characteristic action within a short

time. This fact is well supported by the power spectrum in the chaotic regime.

The noise rise due to the large variations in U(t) is large enough to veil the

real spectrum. It is worth mentioning that several distinct peaks are due to

the initial transient effect that will disappear at a large time.

Also, the assumption that the correspondence does not hold after the

break time in the chaotic regime was tested numerically to be valid. On the

other hand, the correspondence holds with relatively long break time in the

regular regime, of the highly semi-classical limit. A study by G. P. Berman et

al. [27] also indicates the evolution of atoms in a resonant cavity essentially

quantal after a certain time has elapsed (break time). They find that quasi-

classical approximation breaks down after the break time. Therefore, it does

not seem to be an accurate guide for us to use the expectation-value phase-

space trajectory in classically chaotic regime for predicting whether a given

wave packet will exhibit classical means of chaotic behavior in a certain

constraint. In other words, the correspondence between the quantum

mechanical and the classical system cannot be complete L,_the classically

chaotic regime at this stage.
p

We also find from the results of the three distributions that the Husimi

representation is better than the Wigner's within the break time. This is in

agreement with Takahasi and Saito's results. Our results also suggest that

there is no contradiction qualitatively within their correspondence time (our

break time). It is very interesting to see that especially in the chaotic regime,

the higher degree of correspondence in the Husimi case call be easily

noticeable. On the other hand, we find that the Wigner representation is good
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enough to represent the correspondence itself in the non-dissipative cases,

and is in fact better in the interests of detailed structure of phase-space. The

details of the Wigner resembles the classical one more than the Husimi.

Classically more dense areas are simulated as more intense distinct peaks of

the Wigner distribution unlike the Husimi where the smoothing takes place.

Additionally, we checked the time domain beyond the correspondence

limit up to few orders of the break time, and found the support to the

previous conclusion of correspondence breaking. It really appears at this

juncture the manifestations of classical chaos in quantum mechanics in this

model without dissipation cannot be established. However, our results do not

indicate that quantum mechanics in general describes a different mechanics

than classical mechanics. All the classical trajectories examined lie well

within the regions covered by the quantum uncertainty.

We learned that others have found similar results. For example, in a

quantum version of the map associated with the classically chaotic Amord

cat, a failure of the correspondence principle in an appropriate limit is

claimed [59]. Also, J. Kimball, et. al. indicates that an agreement between the

quantum equations of an electron in a periodic potential with an additional

periodic pulsed kick and the corresponding classical motion disappears very

quickly [60]. This effect is due to our claim of the uncertainty growth. Another

study [61] uses this growth as an possible indicator of semi-classical chaos. Our

results agrees with these.

As a final note, Husimi representation is not useful when we deal with

quantum dynamics. The information about the dynamics is being lost due to

Gaussian smoothing that is somewhat coarse-grained version of Wigner

representation. This loss is a significant fact for quantum dynamics. We will

see of more evidence in the next chapter.
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Appendix 3.1 A characterization of break time

The break time, 't"b can be generally identified as a finite time interval

during which the uncertainty product U(t) is comparable to the classical

characteristic action, Ia .

U(t) = U(0) exp( 2 'rb)= Ia , (A3I-1)

where _ is a positive constant (or zero) specifying the average growth rate,

and the classical action for a dimensionless Lagrangian L is

l;lct= L[q(t),O(t),t] dt . (A3I-2)

It is assumed in (A3I-1) that in principle, the growth can be unbounded. In

practice, U(t) would eventually saturate phase-space that is bounded by

limited size of numerical grids for a positive growth rate. This quantity (A3I-

2) is in general not integrable, especially for our model, but it can be

approximated using a numerical integration. It should also be noted that the

growth rate 2 is only applicable before the saturation of phase-space by U(t)

occurs. Then this indicates the break time to be

= In[ /c/ ] (A3I-3)
_b 2_ u(o) '

=1 In [2/1Ict], (A3I-4)
2
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provided that lcj > 1/2_ since U(0) is 1/2/u for a minimum uncertainty wave

packet. Consequently the correspondence holds for that time interval only.

The expression (A3I-3) is quite general since it contains general features

although lca is not easy to obtain. Moreover the dependence on/_ in our case

should be of importance. Now if the value of 2 has a certain universal

behavior, the limit of correspondence can be determined. It would also be

very interesting to see that the substitution of the positive Lyapunov

exponents in place of 2 in (A3I-3) yields approximately the same _'bprovided

that let is known. In other words, _'_becomes shorter for classically more

chaotic motions. Nonetheless it seems that the reasonable correspondence

holds for longer time intervals than our limits of integration time - nat in

the classically regular regime. This kind of the logarithmic law has been

proposed originally by G. M. Zaslavsky [62]. But much of it requires a further

study.
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TABLE3.1 Data showing initial values for all the cases in this chapter. The initial Gaussian width is ¢_, and the
Husimi trial function width is c_n.

Case qo Po o) Y # At

(a) N/A NIA
1.0 0.6

3.2-3 (b) 0.05 --0.02 2.0 0.2 0.005 N/A
(c) m.o 0.o2

(d) 2o0.0 0.o0s

oo (a) N/A N/A
1.0 0.6

3.4-5 03) 0.05 --0.02 2.0 5.0 0.005 N/A50.0 0.02
(c) .-.

(d) 200.0 0.005

3.9 0.5 2O.0 0._ 0.0S 0.25
3.7-10 0.5 0.0 413 1.253.10

1.0 0.0 1.0 0.35 40.0 0.003830 0.025 0.1

1.0 0.0 1.5 0.5 20.0 0.0051132 0.05 0.1



CH.3FIGURES

1
!

Figure 3.1 Time variations of Lyapunov exponents for the classically regular

and the chaotic cases. Eventually, the exponents become stabilized to certain

, values
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2

Figure 3.2 Phase-space trajectories in the classically regular regime.

(a) classical trajectory Co)-(d) quantum expectation-value trajectories. Notice

the better correspondence for larger values of _ Two rectangles represent the

typical uncertainty areas shadowing points on quantum trajectories. -
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Figure 3.3 The power spectra corresponding to the previous figure. Notice the

near-perfect correspondence between (a) and (d).
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Figure 3.4 Phase-space trajectories in the classically chaotic regime.

(a) classical trajectory (b)-(d) quantum expectation-value trajectories. Notice

the failed correspondence even for larger values of/l. The more relaxation is

clearly observed as/J increases.
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6

Figure 3.6 Time variations of the unceffainty products (areas). In classically

regular regime (CRR), the steady variation is clear, whereas the exponential

growth before the saturation can be assumed in classfcally chaotic regime

(CCR). This large fluctuations are believed to be responsible for breaking the

correspondence.

87



7

3.0",',,,i ' '''I""I ....l""i_"'l"'_"'l ''''_

2.5

2.0

°.

v

1.5-

m

_o- o.a._ a :

: fl A

u

time
i

Figure 3.7 The uncertainty products showing cases that will be followed by

figures 8-10. The numbers in the figure represent 7:For higher values of y, the

uncertainty grows as it should be.
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Figure 3.8 Lyapunov exponents showing a similar plot as Fig. 1. A larger

positive exponent is found for higher
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Figure 3.10 The same kind of plot as the previous figure. A larger value of 7'is

used this time. Clearly, the Husimi representation (d) is better than the

Wigner one (c) in this case. The classical distribution (b) is chaotic since it has

a large positive Lyapunov exponent as shown in Fig. 3.8.
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Figure 3.14 Typical distributions in three dimensional view. Plots shows

Husimi and Wigner distributions of the previous cases.
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CHAI'rER4

DISSIPATIVE SYSTEMS

But what could dictate that those laws of physics be 'the' laws of physics?

J. S. Bell's "Speakable and unspeakable in quantum mechanics"

The classical damping mechanism is added to Schr_dinger equation

regardless of its subtle point on Hermitian nature. The similar phase-space

behaviors to the previous chapter are described. The results indicate the

quantum damping mechanism resembles very closely classical one in

classically regular regime, but fails in classically chaotic regime. This supports

the conclusion in Chapter three.
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4-1. Introduction

The correspondence principle has been known since the Bohr era. It

provides that the dynamics of a system described by classical mechanics

should agree with its quantum counterpart in the limit of large quantum

numbers. This statement is well supported by Ehrenfest theorem [1] as well.

In other words, the quantum mechanical expectation value gives a close

representation of the classical variable if the potential energy changes by a

negligible amount over the dimensions of a quantum wave packet [2].

However, in many cases classical dynamics contains a phenome-

nological viscous damping due to friction. It is known to depend on the

velocity of a system. This kind of mechanism is not present in quantum

mechanics since a micro-system does not experience classical-like friction. In

addition, Schr_Sdinger equation describes a thermally isolated system whereas

classical equation with dissipation is generally for an open system interacting

with its environment [3]. A closed system cannot exchange energy with the

outside. Then a question may arise; is there any way to complete the

correspondence for systems with the classical damping mechanism? If the

statement that quantum mechanics is more fundamental is true, the answer

must be positive and we should be able to describe an open system using

Schr_dinger equation. If so, what kinds of physical interpretations are

possible?

In this chapter we are mainly concerned about the first question and

trying to answer it. Over the last few decades, many attempts have been made

with remarkable contributions to this subject. However, has no theory

relating classical viscous dissipation to quantum so far been accepted as

urdversal [4] in the context of correspondence. Recently, for example, the
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dissipative tlmneling problems have been studied in the Heisenberg picture

(Heisenberg equation of motion) [5,6]. But these studies have no classical

analogues. Our primary interest is in the direct application of classical

damping mechanism to Schr6dinger mechanics. To show the

correspondence, we use the expectation-value trajectories in phase space by

using the description of complex kinetic energy. Direct comparison with

classical trajectories would indicate whether the introduction of our scheme

to SchriJdinger equation is valid or not.

We also review the Kubo-Fox approach that introduces thermally

random stochastic potentials into the Hamiltonian description. In particular,

we study the Kubo-Fox-Keizer mechanism which gives rise to dissipation by a

purely random, Gaussian fluctuation in the Hamiltonian, and compare the

advantages and disadvantages of the two approaches.

The Nos&Hoover approach to quantum dissipation using the concept

of nonequilibrium thermodynamics will be discussed and compared with the

other two in the next chapter with some numerical examples. But the

classical description of this method is reviewed in Sec. 4-2-2. Yet, we

extensively use the complex kinetic energy method of quantum dissipation

because of the reasons we offer in Sec. 4-3. Briefly, however, the complex

kinetic energy approach can be outlined in a few sentences.

In wave optics, it is possible to consider an optical gain or loss by using

the complex refractive index (complex potential) in wave equations with an

idea of complex energy [7,8]. Then the probability amplitude (intensity)

increases or decreases depending on the mechanism of gain or loss,

respectively. The quantum mechanical analysis of this using the second

quantization theory is also possible [9,10]. Then a similar idea to the complex

potential can be adapted for the classical damping mechanism by assuming a
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complex kinetic energy term which depends on velocity. We study more on

this in Sec. 4-3, but first proceed by looking at the classical dissipation

mechanisms.

4-2. Classical dissipation scheme

4-2-1. Lagrange-Rayleigh mechanics

The earlier chapter reveals signatures of quantum chaotic behavior in

the semi-classical limit 02 _ _) within the break time. The correspondence to

the classical system in the Fourier power spectrum was also checked and

verified in the non-dissipative driven pendulum.

In the case of dissipation, the classical motion with dissipation can be

represented phenomenologically by a Rayleigh term [11]. Classical equations

of motion with n degrees of freedom for a damped particle are described by

the following Lagrange equations of motion for the Lagrangian L = L(q i, dh, t)

and the Rayleigh term - we call it Rayleighian R = R( qi ).

d_t_.) -0_/+ _ =0 , (4-1)

where the Rayleigh dissipation term R(qi) = --_ [qi]2. A positive constant a i

represents the classical damFing coefficient with an appropriate scaling.

The same equations of motion can be recovered by Hamilton's

equations of motion where the Hamiltonian is expressed as

It

H(qi, Pi, t) = T(pi, t) + V(qi, t) = _ Pi iti- L(qi, iti, t). (4-2)
i=l
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Then the Hamilton's equations of motion become

OH OH OR

"-_i=tli and Oqi OOi-Pi, (4-3)

where in this case R (Pi)= -_ I_(fli)2 where/3 is the damping coefficient seen2 '

from Sec. 1-2. Therefore, the resisting force due to friction FD = - V6 R such

that/_i =-Fi + (Fo)i. We adopt the same concept of dissipation of kinetic

energy to quantum mechanics. Note that/_//= b, where/l = m I,_- in this

classical case.

4-2-2. Nos6-Hoover mechanics

A more general dissipation mechanism than the Lagrange-Rayleigh

phenomenological dissipation mechanism described in the previous section

can be derived by using Nos_ mechanics [12]. This description, discovered by

Shtiichi Nos_, is an extension of Hamiltonian mechanics.

In Nos_ mechanics, the equations of motion in a reversible

deterministic form of Hamiltonian mechanics make possible an exact analysis

of thermodynamically-irreversible processes. Nose's dynamical link between

microscopic reversibility and macroscopic irreversibility is an important

concept in non-equilibrium statistical mechanics. A recent modification of

Nose's 1984 results was applied by Hoover to a variety of non-equilibrium

problems [13]. Hoover also applied extensions of Nose's classical idea to

dissipative quantum dynamics and quantum statistical mechanics. We wiU

tackle a very simple quantum system in the next chapter using this approach

[13,14].
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Because the friction coefficient, _, in this approach corresponds to

momentum, the equations of motion are time-reversible. They are given by

q ---f-..,
m

= _ dV(q) _ _ P, (4-4)
dq

_,__y__,[ p2 1]/_mkT -

where the friction coefficient ¢ is itself determined by temperature-dependent

time-reversible equation rather than being a constant number, v is an

arbitrary relaxation time. Here q and p are coordinate and momentum. The

friction coefficient increases in those parts of phase space with above average

temperature and decrease in those parts where the temperature is below

average. This set of equations, can be shown to give the canonical distribution

in an ergodic system [13]. In Nosd-Hoover mechanics, the coefficient _ can be

either positive or negative depending upon the time history of the kinetic

energy. By contrast, a negative friction coefficient cannot occur in Lagrange-

Rayleigh mechanics. Many problems have been solved using this approach

One of the amazing features in fl'_is Nos_-Hoover approach is to

characterize strange-attractor fractal nature for nonequilibrium systems.

Phase-space fractals are difficult to display in many-body case of

nonequilibrium mechanics, but this dynamical approach shows that

nonequilibrium phase-space distributions are typically (multi)fractal. This

strange geometric objects are often appears in chaotic phenomena.

Moreover, with Nos(_-Hoover dynamics, the phase-space deformation

of nonlinear dynamics, the heat reservoirs of nonequilibrium molecular
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dynamics, and the inexorable entropy increase of irreversible

thermodynamics could all be linked together. For instance, the use of a

particularly convenient form of heat reservoir, based on the Nos_-Hoover

equations of motion (4-4), allows one to visualize the fact that phase-volume

growth is impossible in the nonequilibrium steady state, which is equivalent

to the macroscopic Second Law of Thermodynamics: the entropy of the

Universe can only increase. Therefore, this Nos_-Hoover dynamical approach

often produces multi-fractal objects obeying the Second Law of

Thermodynamics and converting work into heat in multi-dimensional

phase-space.

Nonequilibrium systems fundamentally differ from equilibrium

systems in energy-transfer mechanisms of heat transfer and performing work.

For instance, nonequilibrium systems maintained in stationary states require

heat exchange with their surroundings, dissipating and depleting external

energy sources. Since most of the state variables for nollequilibrium systems

are the same as those used at equilibrium, it is natural to analyze

nonequilibrium motions in a generalized phase space, extending or

contracting the phase space, if need be, to include any strain rates, fields, or

friction coefficients which vary with time and to satisfy any new constraints.

But we expect that system variables for nonequilibrium states necessarily

include external coordinates, capable of doing work, and external heat

reservoirs, capable of exchange heat with selected system de_;rees of freedom.

For more extensive discussions on the subject in this section, readers should

consult the two books mentioned in Ref. 13 and references therein.

In the case of our model, with a positive constant friction coefficient,

the equations of motion in Eq. (4-4) become those in Eq. (4-3). Therefore, our

hydrodynamic drag force can be thought of as a special case resembling Nos_-
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Hoover mechanics. Since we are only interested in energy-loss due to the drag

force, we will use the Rayleighian in the quantum formulation of energy

dissipation.

4-3. Quantum dissipation schemes

4-3-1. Kubo-Fox-Keizer method

Stochastic Liouville Equations first introduced by R. Kubo [16] deal

essentially with a perturbation which is considered as a stochastic process.

This stochastic process can be either additive or multiplicative. The prototype

for the application of additive stochastic processes to physical phenomena is

found in the theory of Brownian motion [17-19]. An additive stochastic

external force is usually a purely random, stationary, Gaussian driving force.

It corresponds with the true molecular force on the heavy particle which is

produced by a great quantity of collisions in rapid succession, between the

heavy particle and the molecules constituting the fluid. In Langevin

equation, for instance, Brown/an motion of a heavy particle with mass M and

the velocity v(t) in a fluid is described by

M dv(t._..))= -_v(t) + F-(t), (4-5)dt

where /J is the dissipative, friction coefficient, and F(t) is a purely random,

stationary, Gaussian driving force.

On the other hand, the multiplicative processes deal with a randomly

modulated frequency [19,20] exhibiting dissipative thermal fluctuations. For
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example, the length of a pendulum or the spring constant of a harmonic

oscillator will fluctuate due to thermal fluctuations in surrounding

environment. This gives rise to the fluctuations of the frequency of the

oscillator. With the assumption that this frequency fluctuation may be

characterized by the same type of a purely random, stationary, Gaussian

process whose mean value is zero as in the additive process, it has proved [19]

that the average values of the classical variables damp out in time. This

dissipative mechanism must be distinguished from a damped oscillation

which arises from the additive process in Brownian motion.

Suppose, for example, that the frequency fluctuation is described by the

random, stationary Gaussian process, so that a harmonic oscillator can be

expressed by the complex variable a(t). Then the equation of motion for the

multiplicative process becomes

da(t) - i [cao - _(t)]a(t), (4-6)

where _(t) represents the Gaussian process, and rao is the frequency of

oscillaticn. It has been shown rigorously that the average value becomes [19]

d
-- < a(t) >= [i¢Oo- 2,] < a(t) >. (4-7)dt

The constant 2, is given in the following expression for the mean square

correlation: <_(t)_(s)>=22, 8(t-s) with <_(t)>=0. The solution to this

equation is clearly a damped oscillation. A general N-component real process

then satisfies the equation where ¢z= 1, 2,..., N,
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where the properties of a matrix ,_ can be written as <Aaa,(t)>=O and

< Aa#(t)Auv(S) >= 2Qaauv 8(t- s), Qa#uv is a tensor with non-negative

elements. The matrix representation of SchrOdinger equation corresponds

with this equation (4-8) by replacing a(t) with the complex N-components

C=(t).

idca(t) = _=, Haa,Ca,(t)+ _=, Haa,(t)Ca,(t). (4-9)

Both Haa' and I:Iaa, are complex Hermitian matrices. The average value of

(4-9) which is the quantum generalization of (4-7) becomes

d
< Ca(t) >= -i _a' H_, < Ca.(t) > +_a' _pQ_pa' < Ca'(t) >. (4-10)

The sum _Q'a##a" is Hermitian with nonnegative eigenvalues, and could be

recognized as the classical-like friction coefficient. This (4-10) clearly indicates

the dissipation of the average value.

In order to review the Hermiticity of this approach, we outline the

work of Fox next. It is supposed that the individual states of a highly

degenerated energy level in a many body system which is described by a many

body Schr6dinger equation are coupled by a phenomenological, stochastic

coupling Hamiltonian. Therefore, the stochastic Schr6dinger equation is

ih_ _(t)= FI(t) _(t)+ E _(t), (4-11)
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where E isthe energyof thedegeneratelevel.The densitymatrixequation

correspondingwiththisequationis

ih_p(t) = [fi(t),p(t)], (4-12)

where is p(t) definedby p(t)=!_(t))(_(t)[, and the usual commutator relation

is assumed. Notice that the Hamiltonian,fI(t), is being taken tobe Hermitian

so that (4-12) has the formalwaysfound for ordinaryHamiltoniansof the

non-stochasticvariety.

Foran opensystemmodeledby the stochasticSc_dinger equationto

obtainthe canonicaldensitymatrixin equmbrium,it is necessaryto consider

a subsystemcoupled to a thermal reservoir.A strict phenomenological

approach of I<ubo-Fox'swork describesthe full system of reservoirand

subsystemas their directproductin the I-nlbertspace.It is not difficult to

justifythe densitymatrixequationin thiscasein the full Hilbertspacefrom

Eq. (4-12). The equationis

ih_p(t)=[Hs @lR,P(t)] + [ls @_IR,p(t)]+[_II(t),p(t)l, (4-13)

in which 1R and 1s are identity operators in the reservoir Hilbert space and

the subsystem Hilbert space respectively, fil(t) is the stochastic interaction

Hamiltonian and mixes the factor spaces of the full Hilbert space. The desired

quantity is <p(t)>. Fox showed [19] rigorously using a reservoir of phonons

for the thermal reservoir that the final result becomes
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where R is defined by

1 _ kk"

R.,,..,,,=_ Y.{(Qo.o.,n_+Q_o.,o(nk+i))_wk

+(Qo_ovnk+Q,,ovo(n_+
kk"

-2(Q_._,.(n_+l)+Q_,,,¢nk}. (4-15)

Note that the double averaging (_))is used. For complete details of the

derivations, readers should consult Ref. 4. It is clear the solution for (4-14)

contains explicitly the dissipative part. In the special case of magnetic

relaxation for a spin half magnetic moment, /_Ps(t))/ is a 2x2 dimensional

density operator. Fox has shown [21] for this case that Eq. (4-14) leads to a

generalization of the H-theorem using the Helmholtz free energy.

The total probability is conserved on the average by (4-14) because

_t Trace(((ps(t)))) = i-_Trace([I_Is,(_Os(t)))]) - Z R_v_'v'(_Os))..v

=-Z =0. .:

The second equality follows from the fact that the trace of the commutator of

bounded operators is zero. The third equality can be proved by using Eq. (4-

15). The equilibrium state corresponding with Eq. (4-14) is the canonical

density operator

1

(_s (t)))canonical= _exp[-X_Tis], (4-17)
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in which Z is defined by ZffiTraces(exp[-l_-ts]). Therefore, this method

provides a useful opportunity in describing quantum systems in which

interaction with a reservoir is significant since it preserves the Hermiticity

and thus the total probability on the average. We will see that the complex

energy approach described in the next section requires a constant artificial

renormalization because of a loss of probability in time. However, the

generalized density matrix defined by the biorthonormal Hilbert space [22]

yields the conservation of the total probability on the average even as the

system is dissipating.

To compare, we briefly present this theory: the generalization of the

Feynman-Vernon-Hellwarth geometric representation [23,24] to the non-

Hermitian Schr6dinger equation. Consider the time-dependent Schr6dinger

equation,

. d
zhl - fi(t (4-18)

where I_I(t)=/_/(t)-i/_(t), and /_/(t)=/4o + H'(t). /_o is unperturbed

Hamiltonian and H'(t) is the perturbation term. ID is the diagonal damping

operator with eigenvalue d'/_]a) =did) [25,26], where a is an eigenstate. So d

can represent, for example, the spontaneous decay rate of level ]o_). The

conventional way to construct the density matrix yields the Liouville

equation of the following form [27]:

where [A, B]_ = AB-BA and {A, B}+ = ,_B+BA. Note the similarity between

Eqs. (4-19) and (4-14). In other words, Eq. (4-19) also gives rise to dissipation.
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However, due tothe dissipativeterm,{I_,IO_(t)))}+,the densitymatrixdoes

nothave a conservednorm and itstrace.Trace(((p(t))))isdecreasingintime.

This causes difficulty in the description of the geometric phase as the density

matrix is required to return to its initial value after a cyclic evolution of the

system [28].

To avoid the difficulty, the following generalized density matrix has

been considered:

p(t)- Iv,(t))(x(t)l, (4-20)

defined by the biorthonormal Hilbert space. Here (x(t)lis the solution of the

Schr6dinger equation with the adjoint Hamiltonian, 131+(t),

ih_lX(t) ) = H+(t_X(t)). (4-21)

The density matrix in (4-20) leads to the LiouviUe equation:

((p(o))-- (t),(O,(t)))]_,

the form of which is identical to the ordinary Liouville equation without

dissipation. Further, in the biorthonormal Hilbert space, one has

Trace((p(t))) = _(x(t)lq/(t))= _(,_(0)lq/(0))= O. (4-23)

So the total probability is conserved on the average, and this result is the

same as (4-16). But this approach does not use the conventional density

matrix and the normal Hilbert space. To overcome this subtlety, the Kubo-Fox
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approach should be used. However, even though it does not satisfy the correct

mathematical requirement in the formulation, not only the numerically

equivalent, but much simpler treatment is also used in the next section in the

Schr6dinger's approach, in which the density matrix formulation is not

necessary in our model since the model system deals with an one-

dimensional pure state.

Therefore, Kubo-Fox method provides a completely valid description

of quantum dissipative mechanism, whereas the later method uses an

abnormal density matrix formulation more widely adapted in the field of

quantum optics. Strictly speaking, the Kubo-Fox method is appropriate, but

since our focus is not on the formulation of quantum dissipative mechanism,

the later approach seems to be fitted. Moreover, since we are only concerned

with the average values (expectation values) of classical observables to be

damped out in time, we may take an ad hoc, bias version of the later

approach. As mentioned, it is not even necessary for our model to be

formulated in the density matrix representation, so we simply perform an

artificial normalization. Still, we give extensive study of this empirical

approach in which the possible physical background is provided. In summary,

the choice is heavily weighed on the numerical preference rather than either

on the physical significance or on the appropriate interpretation of the

situation. It is safe to say that the two methods reviewed here would be more

difficult to carry out numerically. At the same time, the author should warn

the readers that there has not been enough theoretical background of the

method chosen in the next section to be justified yet. The complex energy

approach in the next section is somewhat closer to the generalized density

matrix formulation theoretically, though it uses the Schr6dinger momentum

representation.
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In contrast to the fact that the Schr6dinger mechanics should always be

time-reversible, Eqs. (4-14) and (4-22) are in general not time-reversible. In

this context, our choice in the next section seems to be more appropriate.

Nonetheless, _is could well be an extensive topic for another kind of

research.

It is edifying in my opinion to many readers to consider some of

fluctuation properties [29] that are usually introduced through various

parameters. These parameters are either dependent or independent of the

system and the system state. We are not interested in studying the type of

fluctuation term that is simply added to the deterministic equations in

mathematical modeling. We are interested in intrinsic fluctuation. Both

additive and multiplicative approaches provide the fluctuation-dissipation

relation [30] which has a considerable effect on macroscopic variables. This

macroscopic change of intrinsic fluctuations in a macrovariable systems has

also exhibited surprising generality that just about any type of no_inear

transport process in a macroscopic system falls within the scope of a

phenomenological theory of nonequilibrium thermodynamic fluctuations, as

•described by master equations [31]. This theory has widely been promulgated

by J. Keizer [32], and has been applied successfully to many systems as diverse

as chemical, hydrodynamic, electronic, and quantum. Additionally, the Kubo-

Fox approach to fluctuations in macrovariable systems was unified with this

Keizer's theory of fluctuations using the master equation [33].

Keizer's theory is phenomenological because it is based upon three

postulates which Keizer formulated after he had made a detailed study of

many transport processes such as chemical reactions, diffusion, electrode

kinetics, heat transport and thermionic emission, etc [34]. The structure of the

theory follows from three postulates which characterize the stochastic
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properties of the transport processes. The macrovariables Mt are thought of in

terms of a deterministic portion ui and a fluctuating deviation vi related to

each other by

Mi - ui + vi, (t-24)

where i=1, 2,..., N. The rate of change of ui is given by the macroscopic

transport law which is determined empirically. The theory describes that in

many different cases these transport laws may always be expressed in terms of

elementary processes. Associated with each elementary process is a forward

rate V + and a backward rate V-, where the system is characterized by a

largeness parameter V which is often the volume in concrete situations. The

rate of change in V is function of aU the v's. During a certain elementary

process, ui changes by a microscopic amount coi in the forward direction, and

by-coi in the backward direction. Keizer's ansatzes are

d in

O) (4-25)k--I

where there are m elementary processes, and

d N

(II) "_vi = _._ Hik(t)vk + _i(t); (4-26)k=l

m

where Ha(t)=-_k_d (v)- V'/(v)}, and stochastic Gaussianj;l

force with zero mean and correlation formula <_i(t)_j(s)>-_,q(t)8(t-s).

Also,
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(HI) yq(t)= Z w_{V_ (v)+ V_ (v)}mk/. (4-27)
k=]

These postulates provide a closed description because the deterministic

portions of macrovariable are determined by Eq. (4-25) alone, and both H and

_, are determined directly from the deterministic portions. The fluctuations

satisfy a nonstationary but linear Langevin description.

Since this Keizer's formulation, numerous investigators have

concluded that fluctuations in macroscopic variables - such as the mass,

momentum, and internal energy densities used in hydrodynamics - satisfy

Langevin-type equations obtained by linearization around the usual

phenomenological macrovariable equations. The so-caUed Langevin equation

approach is a useful method for dealing with a stochastic process, and it

corresponds to a Markovian Gaussian process with Gaussian white noise

which generally has to be nonstationary. Also, its noise power depends on the

state of the system [34]. It is now widely appreciated that a complete

macroscopic description of the stochastic dissipative process must include the

deterministic macroscopic variables as well as the microscopic fluctuations,

both of which reflect underlying microscopic dynamics [35-37]. However,

while Langevin-type equation approach successfully describe a variety of

physical and chemical phenomena for both stationary and nonstationary

states, another important numerical work by Keizer suggests that this

approach breaks down on chaotic attractors [38]. In the regard that the Kubo-

Fox-Keizer [39] description of macroscopically chaotic and dissipative process

is phenomenological and, in general, thermodynamically nonequilibrium,

this approach is irreversible. The master equation is also irreversible. We
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will come back to this soon. Nevertheless, we look at the relation between

chaotic dynamics and the growth of intrinsic fluctuations first.

The macrovariables refer to the microscopic composition of real

physical systems that are otherwise described by macrovariable equations. The

macrovariables refer to macroscopic amounts of matter and, therefore,

represent some sort of averaging over an underlying microscopic, or perhaps

mesoscopic description. Consequently, associated with each macrovariable is

an intrinsic fluctuation of microscopic origin. Frequently, these fluctuations

are ignored and only the macrovariables are studied. However, light

scfittering [40] from a hydrodynamic system can be accounted for

quantitatively only by working out the dynamics of the fluctuations as well as

the macrovariables. Especially for chaotic macrovariable dynamics, it has been

shown [39] that the intrinsic microfluctuations are amplified to macroscopic

size so that the macrovariable description might be markedly modified. This

large-scale intrinsic fluctuations amplified by chaotic trajectories in

macrovariable physical systems may be linked together with the quantum

uncertainty growth in the chaotic regime as we have seen in the previous

chapter.

To be specific, a quantitative characterization of chaos is provided by

the largest Lyapunov exponent, which when positive, implies chaos. The

computation of the largest Lyapunov exponent directly utilizes the

instantaneous values of the Jacobi matrix. Similarly, the growth of the

intrinsic fluctuations is made quantitative by following the time evolution of

the covariance matrix. In fact, it is well known [35,36] that the stochastic

differential equations produce a nonstationary, Gaussian conditional

probability distribution with vanishing mean and covariance N xN matrix C,

defined in general for a given N-component X by
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<SXISXI> < SXI SX 2> ." < SXI SXIv>
C = 8X2 8X1 > I (4-28)

• ° 1

_X N _X 1 > < 8XN 8Xn >J

which solves _he equation

ac lc +ci . +r (4-29)dt

and in which F is the matrix of correlation coefficients for the fluctuating

forces in the associated fluctuation equations for the given equations of a

system. The Jacobian matrix of coefficients is J, which couples the given

equations to the associated fluctuation equations. The solution of Eq. (4-29) is

easily generated numerically using the conditional average solution obtained

from the given equations. Then the largest Lyapunov exponent for this

dynamics 2 is given by

where n is the number of iterations. It should be noted that a recent study [38]

of molecular fluctuations on the description of chaos by macrovariable

equations using the Lorenz model shows that the exponential divergence of

the covariance matrix, C for dissipative macrovariable fluctuations on a

chaotic attractor is a general property of the usual fluctuation theories in the

thermodynamic limit [35,36,38]. Indeed, chaotic dynamics can cause

macroscopic growth of intrinsic fluctuations in a macrovariable system. If the
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initial intrinsic noise level is no and the largest Lyapunov exponent is _,

then the time, t, required for the noise level to reach n at t is of the order of

t = ;i --Lno3"

Generally, the significance of this amplification of intrinsic noise will be

determined by a numerical simulation of model equations. This study also

emphasize that this results refers only to macroscopic systems for which the

dynamical processes are dissipative. However, in regard to the connection to

the amplification of the quantum uncertainty, this could well be the solution.

For more details, see Ref. 39.

As we have mentioned earlier, the KFK (Kubo-Fox-Keizer) method

describes the irreversible behavior of a system. It is thus quite unlike the

detailed microscopic equations of motion, e.g., the Schr6dinger equation,

which provide a description which is invariant under time-reversal. The

methods we will tackle in the next section along with the Hoover's approach

to quantum mechanical nonequilibrium case in Ch. 5 are time-reversible and

based on the SchrOdinger mechanics. It seems that one clear advantage using

the KFK approach would be to make more physical sense in the context of

understanding of the dissipative effects which lead to decrease of energy in

many systems of interests because it is mathematically correct. Quantum

mechanically, this dissipation effect is caused by the fluctuation that is capable

of inducing transitions between the various unperturbed states. Another

advantage of using KFK method would be its wide applicability to maJ y

physical systems. Unfortunately, the numerical method of the split operator

scheme that is our prime tool in this thesis cannot be extended to this
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approach. Moreover, initially our intention was to preserve the time-

reversibility of Schr6dinger equation. So it is a methodological question than

the philosophical one as to which method we choose. It is also to try

numerically empirical version of complex energy approach since its concept is

widely used in wave optics and easier to apply whenever the type of

SchrSdinger equation is involved. This complex energy approach practically

provides the same degree of difficult in solving the usual equilibrium

SchrSdinger equation.

4-3-2. Complex kinetic energy method

In the quantum counterpart of classical damping due to friction, it is

not clear as to whether or not an equivalent Rayleigh dissipation term in the

classical Lagrangian formulation is valid without introducing the kind of

fluctuation discussed in the previous section. It could not be valid, but at the

same time, it could be appropriate to assume that the damping mechanism in

the context of correspondence may be in conjunction with the kinetic energy

as the classical Rayleigh term represents. In general, a classical damped

oscillator radiates heat so that the amplitude of its oscillation decreases in

time. Moreover, as we have seen in the previous sections it is frequently

assumed that this heat loss due to friction is a quadratic function of the

velocity of a system (or perhaps of some higher time derivatives of the

velocity). In this section, we presume that the quantum dissipation

mechanism could be in associatior, with the decrease of kinetic energy of the
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corresponding classical one. Studies using the many-body treatment with a

heat bath [3] will be considered in Ch. 5.

Contrary to the classical description, ScJ_r_dinger equation describes

only thermally-isolated systems. Generally speaking, the possible, non-

stochastic mechanism for dissipation of energy in this quantum mechanical

isolated system is wave function tunneling mechanism. In other words, an

isolated quantum system described by Schri_dinger equation loses energy by

decrease of the relative probability. The relative probability here means the

probability compared to the previous one whereas the absolute probability

means the real probability of finding the system. In fact, dissipative tunneling

problem has been studied using a phenomenological damping term

equivalent to the classical Rayleigh term in Heisenberg picture (Heisenberg

equation of motion) [5,6]. The approaches studied in the previous section are

not being considered here again. In Schri_dinger picture, on the contrary, the

damping term can be readily added to the solution of Schr_dinger equation

empirically. The generalized density matrix method in the previous section is

somewhat mathematical background of our choice in which we take ad hoc.

In our model, we include the quantum dissipation as a decay of the

kinetic energy equivalent to the classical Rayleigh term represents. Although

the decreasing probability scheme may only be an approximate representation

[41], the idea is to use the radiative loss of a wave function developed long ago

by Heitler [42] and others [43,44] for the radioactive nucleus with the

modification that includes the classical damping scheme to some extent. We

compare the three approaches of dissipation mechanism by Nos_-Hoover,

Kubo-Fox-Keizer, and using empirical version of complex energy' in the last

paragraph of this section.
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Classically,theparticle'santicipateddissipationneitherchangesits

identitynor loosesany partofitself.Therefore,thewave functionmust be

normalizedat alltimesartificially,whenever theabsoluteprobabilityis

concerned.The physicsof thedamping mechanism requiresthisprocess
l

whichagreeswiththeconceptofthewave functionmoving ina frictional

viscouspotentialina dynamicalpointofview.In mathematicalpointof

view,justificationofthisisstillsubtle.

On theotherhand,one possiblephysicalexplanationcouldbe that,

withina givenuncertainty,interactivevacuum fluctuationsarethecauseto

reducethesystem'skineticenergy.Thisideaissimilartotheadditive(or

multiplicative)stochasticprocessesintheLangevinequationaswe discussed

intheprevioussection.But more work must be done on thisproblemat

present.We willlookatthisproblema littlemore carefullyonceagaininthe

Appendix.

Ingeneral,quantum analogsoftheclassicalsystemcanbe foundby

changingclassicalvariablestoquantum operators.As a consequence,itis

appropriateto introducea dissipationoperator(callit Rayleighian)

comparableto theclassicalRayleighterm thatisproportionalto kinetic

energyp2 in theclassicalHamilton'sformulationintheprevioussection.

ThisR operatorwhichincludesa minussignisthenappliedtothetime-

dependentsolutionofSchriJdingerequation(2-22).

i = ( 1- + vv,
_}t 2# , (4-32)

where the constant _Jcorresponds to the classical damping coefficient divided

by the natural frequency of the classical oscillator. This is dimensionally-
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correctsincetheclassicaldamping coefficientusuallyhas an inversetime

unitintheclassicalequationsofmotion.So we havethesolutionas

^ ^ I ""
_,(q,t+At) =Oexp [-zIt+at #+at

'Jr H(t')at']exp{-_ T at'}W(q,t),

A A

= U (p, q, C tO D (p, t; tO_(q,t) + 0 {(At)3}, (4-33)

t+At _2_
whereD = exp{- ]clt'},and U isthesame as(2-23).Here,we

recallthemechanical(kinematical)momentum l'I= p+ _--_Yintot,wherep is

canonicalmomentum. Inthiscase,operatorswithdissipation_.dff,_,edffare

p2

xexp-i(l-ip sin(_ot)sin(a,At)_cos(_ot)( _ .)(d

(4-34)

_,dff(q)=exp[- i//(1-cosq)At]

)cos(2a_t)-I ,sin(2coAt)
× exp -i ( l -i _) _--_ , ,

(4-35)

where we split the operator D by half and combine together with "redff,_,dff.

The split operator method takes advantage of the ease of treating

operators (2-26) and (2-27) in their diagonal representations. However, the

operator D is not diagonal in momentum space. Its operation is neither
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unitary nor Hermitian in this case. Then the Rayleighian R can be thought of

giving complex eigen-values. An equivalent mathematical formulation to

this analogy is to use a complex mass (see Appendix 4.I). Then the concept of

complex energy becomes more apparent.

It is of importance that the wave function (4-33) should be normalized

after numerical operations to avoid computational overflow due to the

Rayleighian R resulting in ever decreasing magnitude of (4-33). This makes

more sense physically since the particle is not actually being absorbed, but

losing its kinetic energy. The methods described in the previous section do

not require this process, but they need considerably more computation time

and effort. Only wanting the average values to be damped, we take this

process. The normalization process at time t takes place by the following

normalization constant N.

. (4-36)

It is worth mentioning that we compare the results of the following two

calculations to check numerically the accuracy of normalization processes for

an undriven system. The first calculation is just the ratio between the

normalization at initial time and at an arbitrary time t, which analytically

should be

I]_q, t _2
dq

~ exp[ -2_ <T(t)> t ], (4-37)

f l (q,o
dq
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where <T> is the expectation-value of kinetic energy. This is just what we

called the relative probability. Then the second calculation we compare is the

numerical one which is just

Z IW(q,t
q

I(q,0 (4-38)
q

The agreement is very good, and one might guess that for a smaller time step,

the difference becomes even more negligible. Thus, the normalization

process has no, or very small (but results in no changes) effect on the

computation. It is worthwhile reminding the reader that the absolute

probability must be equal to one after the normalization. This empirical

version of (4-33) is relatively easy to find a solution since no complication

with the usual SchrOdinger equation exists.

Now, all the same kinds of numerical operations as in Chapter two can

be applied, and the results are described in the next section. The distribution

functions are also investigated using the formulas in Chapter three. In this

case all we need is the wave function at a certain time since we only treat

everything in Sc.hrSdinger picture. This empirical treatment for quantum

description of classical dissipation is mainly used throughout the study.
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4-4. Numerical results and discussions

All the initial values are summarized in Table 4.I. We first examine

the simple harmonic oscillator case whose analytic solutions are not difficult

to find classically. The quantum analysis of this case without an external force

using raising and lowering operators can be found in Appendix II. The

equation used in this case is Eq. (1-13). The upper two pictures in Figure 4.1

shows very close correspondence without an external field. The lower part

also shows a good agreement qualitatively, but not as good as the case of

upper part (notice a small discrepancy around the limit cycle). The real

numerical values for different parameters in simple harmonic motions are

specified in Table 4.II. From the figure and the table, therefore, it can be

deduced that the proposition of the damping scheme is correct at least well

within the break time. To support this, the driven damped pendulum in a

classically regular regime follows a trajectory shown in Figure 4.2, where the

corresponding classical one is depicted by the side. Limit cycles are evident in

both cases. The lower part of power spectrum indicates the degree of their

near perfect agreement. Figure 4.3 shows the overlap of two trajectories. The

upper one is in the regular regime, and the lower one in the chaotic regime

classically. The solid lines are quantum ones. Their actual numerical values

are summarized in Table 4.11I. It is very interesting to observe that this

scheme also fails after the break time in the chaotic regime since their values

are so different.

With the confidence that the correspondence will hold within the

break time limit from the previous chapter, the three distributions are

checked and compared. In Fig. 4.4, the time history of the classical distribution

is plotted with the same parameter values as in Fig. 4.2. It is clearly observable
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that the distribution contracts as time elapses until it reaches a steady state

with a fixed area rotating in pha_-space due to oscillation of the pendulum.

Subsequent figures for the Wigner and the Husimi distributions in Fig. 4.5

and Fig. 4.6 indicate steady states well. This result is what we expect in the

classically regular regime.

At this juncture, we increase ¥ with a rational value ca. Strange

phenomenon is observed, as in Figure 4.7, although the classical motions are

still in the regular regime. Even though both cases develop limit cycles

eventually, their behaviors are quite different. Arrows in the figure indicate

the correspondence limit where two trajectories do not match any longer in

phase-space. It is interesting to see that they break off even before the system

evolves one period of the external field. Power spectra at the bottom half are

not similar either although both give distinct peaks. It is of interest to notice a

rather sudden change in its expectation-value trajectory in quantum case.

As before, the time history of the classical distribution is depicted in

Fig. 4.8, and shows the contraction of the volume due to dissipation. The

corresponding Wigner and Husimi ones are plotted in Figs. 4.9, 4.10

respectively. Generally they appear to be similar to each other even though

there exists a slight difference in the propagation time we picked in each

scheme. Nonetheless, it is quite safe to judge that the Husimi is more

representative in terms of the correspondence. However, we notice

phenomena close to those in the previous chapter. That is, the structure of

the Wigner tells us more about the dynamics through its details especially

located around the middle of phaseospace. With this information, the chaotic

case should be examined.

Fig. 4.11 exhibits the trajectories and their power spectra in classically

chaotic regime. The classical motion has a positive exponent and its phase-
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space behavior displays chaotic motion. As in Fig. 4.7, locations of the arrows

describe a rather short correspondence limit with a more drastic change in the

trajectory in quantum expectation-value phase-space. Especially the arrow in

quantum case indicates a sharp change. Their power spectra also show that

the motion appears to be a quasi-periodic (or it becomes almost-periodic by

ignoring transient) in quantum case. This quasi-periodic effect must be noted

and will be mentioned later for more analysis. Now the classical, Wigner and

Husimi distributions are plotted in Figs. 4.12 (4.13, too), 4.14 and 4.15

respectively. In this case, it becomes prominent that the Husimi resembles

more than the Wigner as time elapses. As we have seen in Chapter three, the

similar observation in the chaotic regime is recognized. The Husimi

representation seems to be better, especially in the chaotic regime.

Several other results in the classically chaotic regime reveal that all the

quantum mechanical motions with the dissipation mechanism become

almost-periodic. For lesser values of t, it seems that it would take longer to be

almost-periodic. It is worth pointing out that the uncertainty product

manifests phase-space behaviors as shown in Figure 4.16. To our knowledge,

there is no good explanation to this kind of phenomena at this time.

However, we could certainly speculate that the kinds of periodic motions

arising in quantum case are partly due to a large increase in U such that the

average (expectation) values stabilize. This relaxation was also noted in the

previous chapter.

Other classical strange attractors are compared with Wigner and

Husimi representations in Figures 4.17, 4.18 and 4.19. It is now apparent that

the Husimi exhibits a closer distribution to the classical one in its structure

although its minute information is somewhat lost. Therefore it is safe to say

from these figures that Husimi representation is a better representation than

127



I
the Wigner even in the presence of dissipation. The same conclusion was

drawn in Chapter three in the absence of dissipation. The final two figures of

Figs. 4.20, 4.21 depict the classical and the Husimi for further evidences.

Hence, similar conclusions to the previous one in Chapter three can be

summarized for this chapter. However, in the regular regime, the Husimi

representation is not necessarily better than the Wigner representation for the

quantum-classical correspondence. We were not interested in the regular

regime where other representations are conceivable with relatively easier

applications.

4-5. Summary

Several conclusions can be drawn from the results. It is evident that all

the cases with an external force develop almost-periodic motions after the

time when the damping ceases all the action if there is no external force. Our

damping scheme forms periodic motion at times inversely proportional to

the damping coefficient. In other words the fundamental frequency

eventually disappears and only the external frequency and its subsequent

harmonics remain as seen from the figures. A similar phenomenon is

observed in the uncertainty calculations. Therefore with the exponential

decay law (in the classical observables) adopted here, no quantum chaotic

motion is observed for reasonable amount of damping coefficients.

For a case of small damping, it would take long time for the system to

be in periodic motion. In this case, the exponential approximation scheme

may be no longer valid. We believe the decay term in the solution of

Schr_dinger equation can in fact be treated separately. Therefore after the
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damping dominates the primary motion of the system, the external field

takes over the motion so that in this case, eventually, the periodic motion

develops due to the periodic external field. No matter what kinds of external

fields are applied, the resulting stationary state caused by decay of energy will

resemble its external environment.

The problem however still remains: the existence of the time

limitation that the approximation can be applied and its relation to the so-

called break time that specifies the valid time limit that the correspondence

principle can be applied. Within the short time of good correspondence, the

exponential decay scheme certainly shows classical chaotic behavior. On the

other hand, at large times the general exponential decay in quantum system is

really a different damping scheme than the classical one as seen from the

results. Much is in need of being investigated.

Chapters three and four have revealed that classical chaos does not

manifest itself in the corresponding quantum systems as long as quantum

mechanics expresses all the accessible classical states through its quantization.

Inversely speaking, quantum mechanics does not manifest classical

mechanics in the classically chaotic regime mainly because of the quantum

uncertainty. We will see more examples of different kinds of systems in the

next chapter to see if conclusions in Chapters three and four can be

generalized.
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Appendix 4. I Derivation of dissipative Schr6dinger equation

Mathematically we can form a 'dissipative' SchriSdinger equation with

a non-Hermitian Hamiltonian without considering the loss of probability

since our version is empirical. In Eq. (4-6) we included the dissipation term in

the solution by substituting an imaginary kinetic energy with a specific

coefficient/J given by the corresponding classical damping term. This solution

must then satisfy dissipative SchriSdinger equation which will be derived

here. We first start with an assumption that the kinetic energy term in

SchriSdinger equation is responsible for dissipation. The assumption is

equivalent to consider the mass of a system to be complex; that is to say, m =

Re[m} + tim{m} = mr + imi. This is also equivalent to the complex energy of

a system (E = Re{El + tim(El), which we will show.

Substitute this complex mass into SchriSdinger equation, and carry out

the algebra, we finally find the following equation.

i t_/}--_= -/_- ( 1 - i]_)V2q/+ V_ = (1 - i_ Tq/+ VV¢
0t 2/j , (A4I-1)

m. m 2
= .._.L;z and/l m + here,/l is not the effective mass. If one

where jO= --_r , r mr

writes Re{El = ER, Im{E} = El, then this equation can be broken up into a set of

coupled equations:

^ p2
(U +v)v,- ER,,

IV

,, p2 (A4I-2)
R V= - _-_v= EI_.

It is obvious that if fl = 0 (mi=o), the usual SchriSdingerequation is obtained.
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Now, the spatial probability density P (q, t) must be time-dependent

such that the probability dissipates at a rate given by the classically damped

kinetic energy. Then the quantum damping is assumed to be proportional to

the kinetic energy of a wave packet. Whence, we propose that the integral of P

(q, t) over arty fixed volume V

Iv _tP (q, t) d_ ~ exp (---_), (A4I-3)

where P (q, t) = I_q, t)_, and P (q, 0) = 1 with a positive constant_.Thevolume

element of the integration is d_ which is just dq in one dimensional case. To

find the appropriate value of _', consider the time variations of the

normalization integral.

= _+_ d_"

at at , (A4I-4)

f

_/h [[¢ v2v,_(v2¢)_ d_2aJv"

+ _ 2-_flfV [ I/_ V2 _¢+ (V2 q/*) _V]df ,

= -"JL IvV2i/l _V_-(V_)_d'c

-tLfvV(v,"vv,+(vv,')_d_+f12/_

-, 2<vv,).<v
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faS, rlA faR, dA 2_
= .... < T > (A4I-5)

h

where we identify .-h-V as the velocity operator b" and A describes a surface
z/J

integral. Also, S is known as a probability current density given by

Note that the notations R _ R. In the case of a wave packet, for which

vanishes at great distances, the surface integrals are evidently zero when V is

the entire space (--_ to ooin one dimension). For a wave function of a periodic

structure at the boundaries, it can be also shown that the surface integrals

vanish. So the normalization integral is negatively proportional to the

expectation-value of kinetic energy. Then we can identify that _" in (A4I-3) is

equal to 213. Therefore, the solution of (A_-I) is expected to have the time

dependence ~ exp[ (-iE-2_8 T)t ], where T is the kinetic energy of a system. We

can show the same result by calculating P directly from Eq. (4-5). However,

using SchriSdinger equation (A4I-1), we have showed that Eq. (4-5) is indeed

the required solution.
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The equivalent differential form can be derived. It becomes

i}P (q,t_......_) + V.{$ (q, t) +R (q, t)} = - 2_T P (q' t)
i}t h ' (A4I-6)

This has a very similar relation to the conservation form of complex

potential [7]. The similarity between the two is that the probability is not

conserved, but the difference is the presence of the extra term, V.R (q, t), in

the differential form (A4I-6). If there is a region in which

V.{S (q, t) +R (q, t)}=0, (A4I-6) obviously indicates the P decays exponentially

in time according to (A4I-3). This is to be expected since a particle is

experiencing a friction, and giving off its kinetic energy. One may include the

zero point energy such that the solution cannot give energies smaller than

the ground state energy.

The interpretation of a possible physical meaning in this quantum

dissipation mechanism is the following: since we have to write the solution
t t

of the normalization integral as J P(q, t2)dq = I dqP(q, tl)exp
[-2ar(t2-'tl)],

where t2 > h, the significant fact is only the ratio of P(q, t2)/P (q,h), the

relative probability, so that the actual absolute probability can always be

normalized. In other words, unlike to the case of complex potential where

particles are being continuously absorbed, the probability to find a particle at

position q is being reduced by the exponential factor which is proportional to

the velocity of a particle in this case. So particles are staying somewhere in the

system with reduced velocities. On the other hand, due to energy loss, the

relative probability after At must be decreased compared to the previous one

before normalization. In fact, this kind of esoteric process of normalization is

not necessary if the generalized density matrix formulation in biorthonormal
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Hilbert space is used as we have discussed in Ch. 4. The complete physical

explanation of th/s quantum friction must be followed, and yet we do not

have a good answer to this intriguing physics. A possible physical justification

of mathematical process in the complex kinetic energy representation has

been presented in this appendix to claim the validity of our choice of the

method.
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Appendix 4.11
Quantum analysis of a dissipative simple harmonic motion

In this appendix, we will derive the quantum solution of the harmonic

oscillator with dissipation described earlier in this chapter. First, we set the

lowering and raising operator as usual:

a. =_2_h (___o) . (A4II-1)

Note the following relationships:

[a,a+]=1,n = a+a.

Then normally the Hamiltonian is just

1
=OJo(a.a

whereas the dissipative Hamiltonian becomes

Iha_o{(a+a+)2 _a+

This can be reduced to the following form with a simple arithmetic:

+1 '
/_ = h¢Oo{(_+_._)+._.(__ _+)2}. (A4II-2)
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Now to find the time-dependence on the operators, use the Heisenberg

equations of motion.

--. a], dt ' 1"dt ' -'-- = a+

The final results is then just a coupled differential equation.

With the assignment

_.r,-_ _/

we find a simple vector equation: v = _V. The general solution can be written

V(t)= exp(At)V(0). (A4II-5)

Eigenvalues of the matrix A are easily found to be 2 = +-__. Next we

diagonalize the matrix in the following manner:

exp(At)=l_exp(Tt)l_-I, (A4II-6)
smm

where D= eigen-vector given by
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f} ffi 2i 2i '

+_(_-_) 1+_.(_+

and its inverse becomes

1+-_-t +

f3-1ffi4i_l_ ifl
-i- (I- ) I

Also, we have

i ,oooo1exp(Tt) =

Carry out the calculation (A4II-6), and one easily find

where R is given by

fRII R12'_,

R-4i_/l_-ifi"_R21 R22)

with

Rn=ej®°_i_t_e-i®o_t
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Now we need to make an approximation to get a more simpler version.

simplifications using _ = 1-_ yieldFurther the results:

4 fl + i)exp(-iCOot)exp(-_cat),R.
R12= exp(iCOo__t) - exp(-iCao_- i_t),

R_I ffi0,

R22=_(_+4_1 i)exp(iCaot)exp(_wt)

/_ 2 (_+i)--P Pffi ........... -_(_+i), then R finally

We can also approximate 4i_j__i_ 4(1+_-)

becomes the following matrix.

(l+4)e-i®ote -T (T +
R=
m

2

0 (1 + _)e iw°te-_a_*t

We get
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e_"°'cos(o_ot)ao- _-_" _i_(_,ot)ao

a,(t)) = , (A4n-8)

f

where _o= a(O),and i+= a+(O).Now replace_Scoowith _8q,nsincewe started

with the dimensionaldamping coefficientwhose unitisinverse-time.We

need no dimension in quantum formulations,which means the replace-

ment. This exactlycorrespondsto our claim sinceusuallythe classical

damping coefficienthas an inverse-unit.We have been accustomedwithout

the subscript 'qm'.

From the above expression, one can find

(aoe-a-t2 . _-t . -at -_-t+a+oe2 )cos(coot)+i(a+e 2 -aoe 2 )sin(coot)

+2

a(t) +a+(t)) =

am dim

a(t)-a+(t)) . (A4II-9)

(ao*e{' B, . __, __,-_o e--_ )cos(co#)+ i(_+e 2 +aoe 2 )sin(coot)

Itisobviousthatthestationaryundamped solutionisobtainedatt=Osincewe

have

-i A a )"
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It is not too clear analytically that the solution (A4II-9), yields the

classical solution in the limit, but it exhibits the correspondence numerically.

The analysis we have in this appendix is to determine analytic nature of the

problem, and to come up with some ideas for comparison with classical

solution. Unless we resolve the non-Hermitian nature contained in the

solution, a further analysis does not seem necessary.
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TABLE 4.1 Data showing initial values for all the cases in this chapter. The initial Gaussian width is c_, and the

constant Husimi trial function width is used.

(a) 0.5 0.0 1.0 0.0 20 0.3 0.005 N/A
4.1 0.3 0.005 N/A

Co) 0.5 0.0 2.0 0.5 20 ___--.-----
0.2 0.0 2.0 1.0 20 0.1 0.005 N/A4.2

(a) 0.5 -0.3 1.5 0.5 20 0.3 0.005 N/A
4.3 2/3 1.45 20 0.25 0.0025 N/A

(b) -0.3 0.5
oa

4.4-4.6 0.2 0.0 2.0 1.0 20 0.1 0.005

4.7-4.10 0.5 "" 0.0 4/3 1.5 20 0.25.... 0.0025 0.05.__
-----------_ 0.05

4.114.15 0.5 0.0 2/3 1.5 20 0.25 0.0025

--'--'-'----'- (a) 0.5 0.0 2/3 1.5 20 0.25 0.0025 0.05

4.16 (b) 0.5 0.0 4/3 1.5 20 0.25 0.0025 0.05

4.17-4.19 0.5 0.0 4/3 1.25 10 0.05 0.0023 0.1

, 4.20 0.0 0.5 2/3 0.5 10 0.25 0.0023 0.1



TABLE 4. II. Data showing classical values and quantum expectation-

values of positions as well as velocities at various times specified by the

number of integration steps n. Notice the good agreement in (a) and {b) since

these are simple harmonic motions.

I Iflll I I III I I I I I I I

lag I I il II IIlIIII Ill IIII II II I

(a) 3072 -43.3285601 -0.3090754 0.2111773 0.1832900

ca= 1.0 5120 0.2591167 0.2260636 --0.0172164 -0.0107330

?'= 0.0 10240 0.1020580 0.0870070 -0.0236840 0.0011398

..... ]_= 0.3 ..20480 0.0142518 0.0128882 -0.0081721 -0.0009570

(b) 4096 -0.0835692 -0.0807721 -0.0356813 -0.0391514

ca= 2.3 8192 -0.0973784 -0.0971143 -0.2715363 -0.2721665

7= 0.7 16384 0.1390191 0.1330709 -0.2035585 -0.2030728

_= 0.35 32768 -0.1467359 -0.1370854 0.1934854 0.1915681
ill I t I
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!

TABLE 4. IlL Pendulum data showing classical values and quantum

expectation-values of positions as well as velocities at various times specified

by the number of integration steps n. Notice the good agreement in (a), but

not in (b) where the classical motions are chaotic.

III IIIII I I II IIIII IIIII

Case n < _ > qcla,.ical < d_/dt> dq/dtd,,sicalJJIIH ] ]|]J Hill ]]J]l ] I ] ] J

(a) 256 0.4970575 0.4970063 --0.2986349 -0.2987335

¢0--1.5
2560 0.3667574 0.3216246 -0.1905403 -0.2066624

y= 0.5
4096 -0.0450927 -0.0395455 0.5584520 0.5441279

_= 0.3
is , i, H , l HH, I,

(b) 512 -0.2957375 -0.2959064 0.4185845 0.4187069

¢0=2/3 4096 -1.2660619 -0.9159159 -0.7072607 -2.9014839

_,= 1.45 8192 -1.7320650 -2.0949545 -0.4502623 -0.2786042

,8- 0.25 16384 -1.4317289 1.3972950 0.6264775 -2.2621542
I I
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Figure 4.3 Overlaps of the trajectories in (a) regular regir'e, and (b) chaotic

regime. Solid lines are for classical whereas the dotted stars for quantum. See

Table 4.111 for numerical comparison.
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Figure 4.7 Phase-space trajectories of another forced case with moderate
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Figure 4.8 The time history of the classical distribution for the previous

case in Fig. 4.7. An initially displaced Gaussian distribution revolves

clockwise.
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Figure 4.17 Another case of the classical distributions at various times. In

this case, a rather small damping coefficient was used for the better

correspondence.

163





Figure 4.19 The Husimi distributions showing a clos? representation of the

correspondence. It is remarkable that the quantum wave packet contains the

information about the classical dynamics.
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Figure 4.21 Another case with the quantum distributions that are similar to

each other• The classical ones are not very close, yet the overall behavior

resembles to the Husimi ones.
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5

APPLICATIONS

I had no technical knowledge. • • • It turned out that "allgemeineJ

[Jbersicht"(general overview) over physical connections is often more

valuable than specialist knowledge and routine.

A. Einstein confessing about his early years

(H. Woolf's "Some strangeness in the proportion")

Applications to some other models exhibiting classical chaos are considered.

The kicked rotator and the Josephson junction, reveal the similar phenomena

as in the two previous chapters. In addition a two-dimensional problem is

also tackled for Heller's scars. No signs of quantum chaos in terms of classical

definitions are detected.

168



5-1. Kicked rotator

5-1-1. Characteristics of kicked rotators

To study more about quantum manifestations of classical chaos, a

slightly different type of kicked rotator has been extensively adopted as an

application of our method. The most commonly known model generates

Standard mapping equation that exhibits classically chaotic behaviors at the

so-called Chirikov threshold value [I]. Since our pendulum can be used as a

kicked rotator as explained in Chapter two, exactly the same kinds of

operations in the previous chapters can be applied. The two kinds of rotators

will be discussed to compare the results from the previous studies [2-4].

First, the Hamiltonian (2-7) is

p2 **
- 2/ + 77(1- cosq) __, 8 (t - nT ). (5-1)

n'--,co

The corresponding kinetic and potential energy operators are in this case

much simpler. They are just

p2
"r(p) = exp[ - i _-T ],

(5-2)

q (q)=exp[- i 71O-cosq)Tl,

where T is the kick period in this case. It is important to point out that in this

case the commutation error disappears, so the operations become exact. The

solution of the type (2-22) is a full solution.

The conventional model giving standard equations has the Hamiltonian
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p2 "
e = y + _ cosq,Y.,a(t- nT). (S-3)

_ _ -,,eO .,

The operatorscan be identifiedeasilyinthiscase.Then,we calculateexpec-

tation-valuesof energyand itspower spectrumwith phase-spacebehavior.

The differencebetween Eqs.(5-1)and (5-3)ismentionedwhen we discussed

Eq.(2-11)inCh.2.

• 5-1-2.Resultsand discussions

The first figure shows the map of classical Standard equations with

increasing values of _ from 0.5 to 1.13. The equation used is (2-11).

Pn+1= Pn + K sinqn,
(5-4)

qn+1 = qn + Pn+1.

With smaller values of K (or r/) shown in Fig. 5.1 (a), two distinct islands are

well separated for r/= 0.5, but as 7/increases seen from (b) to (c), they start in-

termingling each other. The lower left picture (d) exhibits the appearance of a

dark stochastic layer for 1/ = 0.972 whose value characterizes the Chirikov

criterion. All the pictures displayed in the figure use 5000 points, and the

initial point is located at q = 0.02, p = 0 with T = 1.

Figure 5.2 also shows a similar phenomenon to Fig. 5.1 with the same

initial conditions. This time we use the modified standard equations (2-11).

We rewrite the equation here.
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P. +1=Pn - K sinq.,
(5-5)

qn+1=qn + P. +1.

Two islands in the upper left (a) become connected as _/increases from 1.35 in

(a) to 2.0 in (d). Similar observation of dark stochastic layers and

disappearance of islands to the case of conventional Standard mapping can be

achieved for even higher vales of I/.

It becomes clear that for values 11>> 1, both figures give chaotic classical

motions. One may calculate positive Lyapunov exponents for both cases. It is

to note that the scales of momentum axis in both figures are not relevant.

Having solved for the classical results, we find differences in the

quantum cases. Figures 5.3, 5.4 have the phase-space plots in upper parts (a)

and the time variations m energy in lower parts (b) in the classically chaotic

regime. The left side of the figures represents the conventional Standard map

(5-5), and the right side the modified one (5-6). The bottom parts (c) of the

figures show the power spectra of energies. Having said that, we find the

same phenomena as Casati et al found in their energy variations [5,6]. Energy

does not grow indefinitely and is interpreted as quasi-periodic variations of

the states.

Figure 5.5 clearly exhibits that the uncertainty product neither grows

nor fluctuates by a large amount as shown at the upper right (b). However,

the correspondence still seems to be failing. The classical mapping equations

(5-5) or (5-6) are discrete maps (difference equation), whereas solving

Schr6dinger equation using the split method is not a discrete map. Runge-

Kutta as well as the quantum algorithms are to solve differential equation as

we did in Chapters three and four. So starting with the differential equation
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of (5-1) or (5-3), one could recover the correspondence even for a short time

interval. Limpidly distinguishable peaks of power spectra at the lower half (c)

and (d), support quasi-periodicity lying under the dynamics of the system.

Therefore, in quantum cases, we find no evidence to quantum chaos, and the

correspondence fails. Another example will be discussed in the next section

where we focus on how the energy expectation-value varies in time.

5-2. Josephson junction and devil's staircase

The strange phenomenon known as the 'devil's staircase' in Josephson

junction has been observed experimentally. Many numerical simulations of

this phenomenon have showed the similar structures in their current vs.

average voltage characteristic curves. However, the quantum mechanical

treatment using solely SchriSdinger equation has not been studied due to

difficulties rising from many-body calculations with a dependence on

temperature. In this section, we try to show a possible quantum treatment in

the context of the classical-quantum correspondence. We shall not consider

this topic rigorously here.

We first consider a Josephson junction wt,ose classical equation is just

(2-14). In a simplified form, it becomes

cl+ sinq = Yo + ylCOS(Cat)-_/q, (5-6)

where the phase difference between the two superconductors is denoted as q.

It is obvious that the phase difference occurs because of quantum tunneling

effect [5]. Yet the classical equation (5-6) describes the dynamics due to classical

measurement of current and voltage. With the dissipation term, -j3_,
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removed, the quantum version of the corresponding Hamiltonian takes the

following form;

_ I _ + (i - cosq)- _ qcos(_t)- _ q. (5-7)
2 _q2

Representations of the external DC and AC currents are denoted as _ and ?t

in dimensionless forms. The relation k),= F specifies the proportional

constant k whose magnitude or dimension is determined by the equations (2-

14). Note there exists no equivalent mass term since we only deal with cooper

pairs of electron [6]. The equivalent form of (5-7) is

s_us,= P+ _ + _t + ( 1- cosq ), (5-8)

whose gauges are simply in this case
i

--- sin (a_t)
A =- _,1 - yot

C0

sin (c0t) (s-9)
_=_q +_qt

such that the gauge transformation with

A

A'= A +_-_=0
I

(s-10)
_' = _ _ - ( 1 - cosq)- r_qcos(_ t )- _'oq

i_t '

yields the same Hamiltonian (5-7).
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It is not difficult to show that the operators in this case become

p2

,a(p)- e_p[- i (1- i/3;yat ]
cos(_O-1

x exp -i (1 - i_) sin(a_ t ) sin(cadt) _ cos(ca t )( _ )

x exp[-i (1-i_) PYo{2t At +(At )2}] (5-11)4"

elf(q) = exp[ - i (1--cosq)At ]

x exp -i ( 1 - i/_ ) - sin(2co t, 4t0 - cos(2co t, _to0 '

! _bYl(sin(co(t+At))-sin(cot))})]. (5-12)+t--_-"

This rather long expression is not difficult to program. Now we are interested

in current vs. voltage characteristic curve known as I-V curve. It is of

importance to distinguish our version from the classical circle map. The circle

map displays the rich forms of the devil's staircase with the concept of

rational winding number. The physics is similar in each case, but the exact

structure in Eq. (5-6) is quite different.

To find the devil's staircase in the I-V curve, we must first take the

time average of the voltage, r'igure 5.6 shows a typical classical I-V curve with
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ratherlargestaircase.The blow-upofthisfiatplateauwithfinerscaleswould

displaymore plateausformingCantor-setlikestructure[7].

However, thequantum casedoesnotshow any similardevil'sstaircase

structureasseeninFigure5.7.Thereseems toexistone ataround0.13,but the

numericalstudy with a more resolutionsuggeststhatitisdue to either

numericalfluctuationsor theuncertaintyvariationsinthatregion.By taking

thelongtimelimitintheorderofhundredsofthedrivenfieldperiod,which

ismore closetoa experimentalsituation,a smallsteadyincreasereplacesthe

fluctuatingpartrunningfrom 0 toabout0.18.

Thus,we alsofindno directevidencesofcorrespondencebetweenclas-

sicaland quantum mechanicaltreatmentofthejunction.So farnone ofour

examples are in contradictionwith our earlierconclusionsfrom the

pendulum. In fact,theexampleshereuphold thecoreideathatitisarduous

to trackdown quantum manifestationsof classicalmechanics in chaotic

regimealthoughwe scentsome inthedistributionfunctions.

5-3. Search for 'scars' in 2-dimensional Duffing's potentials

It is interesting to study more about quantum chaos using different, but

simple techniques. One of the available techniques is known as the Heller's

scar [8-10] for actual visualization of dynamical properties of the quantum

wave packet. It is regarded as the remnant of the dynamical wave functions in

the potential field (configuration space). Since we have been solving

Schr6dinger equation, the scar of bound states can be determined for

appropriate potentials. It is better for us to use a two-dimensional potential (it

is difficult to visualize the scar in one dimensional potential). Duffing's

potential which gives rise to a classical D,,dfing's oscillator [11] seems to be a
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good choice.Itshouldbe noted thatthestadiumproblem [12]requiresthe

cylindricalgeometry.Becauseof the difficultyemerging from the Fourier-

Besseltransformationin our scheme,thesame problem isnot beingchosen,

and a simplerversionof Duffing'spotentialis established.The model

HamiltonianforthisDuffing'soscillatoris

H(x,y, px,py)= P-2x+ P_2+ V(x,y), (5-13)2

where the potential is

lafx2 + lb(x4 +y4) (5-14)V(x,y)=-_ . +y2)

This potential is depicted in the three-dimensional diagram in the next page

(upper one). The potential we use numerically, Vtrue, has a scalar difference

from (5-14) since we are interested in the potential whose minimum is at
a 2

least 0 for numerical reasons (the minimum value of (5-14) is negative, --_).

So we have

t/2

1 2 +lb(x4+y4) @'Vt,_(x,y)=-_a(x +y2) + (5-15)

Itwould be interestingtostudya similar,butcylindriaUysymmetricpotentialofthe

followingformwhich isalsodepictedinthenextpage (lowerone):

--4 + +'_,_2 orVtrue(X,y)=__a(x2+l y2)+ b(x2 y2)2
(5-16)

I br4 a2
gtr_(r)=-lar 2 +_ +.-_.
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Diagram describing the two-dimensional potentials.
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The Hamiltonian (5-13) is then utilized by the method described in Ch. 2. We

are interested in the wave packet at different times in two-dimensional

potential configuration space. It is expected that the contours of the quantum

wave packet amplitudes would reveal the scar of bound states resembling

classical trajectory in the same space. Classically chaotic cases most likely

associated with unbound states, therefore, will not be considered here.

The corresponding classical equations of motion becomes using (2-2)

{_i- ax + trx3 -0 (5-17)9-ay+t 3-0.

We use an initial wave function of the form:

_r°(x'y'Px'PY)=,,,o,.,exp L- 28 28

×{(x- xo) (y-yo)2}", (s-is)

where n specifies the power of the polynomial function. It is not difficult to

conjecture that the doughnut shape of _o is close to that of the ground state

because of the bump in the middle of the potential as shown in the diagram.

The results of calculations display an interesting aspect: overlaps of

many classical trajectories. Fig. 5-8 is a typical classical trajectory for bound

motions in x-y space with four different, but arranged initial conditions (all

initial momenta are set to zero). Since all the motions are regular, symmetryg

given by the potential must exist. The next figure in Fig. 5-9 lists the time

history of the vrave packet in x-y plane with an initial condition of classically

bound motions. An initial wave function is displaced asymmetrically. The
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wave function quickly develops into the near four-fold symmetric forms, and

their orientations marked by dark area of condensed contours are similar to

the classical trajectories. Figs. 5-10 and 5-11 are exhibiting similar phenomena.

The wave forms started from the initial wave function that was located at the

center in Fig. 5-11 clearly indicate a four-fold symmetry - the finding of this

symmetry is not objective but subjective, so one may have a different

observation. One could notice, however, the similarity between Fig. 5-8 and

Figs. 5-9 ~ 5-11. Therefore, the scars can be checked using the method

described so far. The possible extension to the cylindrical coordinate or even
t

to the spherical one could provide many applications. Ours are limited to the
.,_

Cartesian coordinate. Note the parameter values a = -0.7, b = 1.0, and n = 6.

S-4. Three coupled nonequilibrimn oscillators

In this section, we discuss the nonequilibrium quantum mechanical

analog of Nos&Hoover mechanics, briefly discussed in Section 4-2-2. We

study a quantum mechanical nonequilibrium constrained system. By analogy

with Gauss' principle of least constraint [13], we constrain some kinetic

energies to be constants in time. The total mass is fixed.

Gauss' principle of least constraint states that any dynamical constraint

should be imposed by using the least possible constraint force. This statement

is

N 2

T F._ minimum, (5-19)
k='12m
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where the constrained system has N degrees of freedom. By adding small

variations to the constraint forces, (5-19) is equivalent to

F_._
=0. (5-20)

k=l m

Gauss' principle, when used to impose isothermal conditions, by constraining

the kinetic energy, produces exactly the same equations of motion as Nos_-

Hoover's equations of motion in Eq. (4-4).

We shall apply Gauss' least-constraint idea to quantum mechanics by

restricting Schr6dinger equation in order to explore quantum chaos. Heat and

work can be included in Schr6dinger equation by imposing three constraints

[14]:

I

Cmass= E(IgiR_ * g//_I)-1 =0, (5-21a)
i

Cmome,tum= E(_/RV_I + g/lV_giR)- Sl(t) = 0, (5-21b)
i

_z

S is the number of available sites, ] is the current, and E is the energy per site.

Superscripts R and I represent the real and imaginary parts of g respectively.

Hoover's analog of Gauss' principle [14] for quantum mechanics (HMS

equation for Hoover's Modified Schr6dinger equation) is

dg •J
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The subscript Schr stands for the usual Schr6dinger equation. The Lagrange

multipliers are ;tj and vary with time. The sum includes the constraints (5-

21). Each gradient in Eq. (5-22) is computed with respect to the corresponding

wave-function amplitude appearing on the left-hand side. The usual
.R

Schr6dinger equation,_schr=-iH_schr , can be written as_3chr=I-J_ISchr

and q/Schr=-I_I_raSchr"We consider the simple case of three-coupled oscillators

with constraints (5-21a) and (5-21c), but not (5-21b).

Before solving the problem, we describe the evaluation of the Lagrange

multipliers. Because the multipliers depend upon _r, Eq. (5-22) is nonlinear. In

the case of n constraints,

i,j

i,j

i,j . (5-23)

c. =
i,j

M/_ represents the symmetric matrix element of the kth constraint for spatial

indices i and j running for both the real and imaginary parts of ¢. For

simplicity, we consider the one-dimensional case. Each constraint is subject to

Ck(t). For example, the matrix M would be diagonal if the constraint is to

conserve mass. Two non-zero blocks of tri-diagonal matrices would form the

symmetric matrix M (in a finite-difference scheme) if the constraint is to

conserve kinetic energy. In the case of the conservation of momentum, we

also have two blocks of bi-diagonal matrices with non-zero elements being
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nearest neighbors to the right or left depending on the use of the forward or

backward scheme.

M ='_'fba , M_ and Mbb = tri- or bi-diagonal. Mab=Mba=O.

One can always break up this matrix into two smaller diagonal pieces, Mo_

and Mbb, to treat the real and imaginary parts of _ separately. Matrix elements

for our model are written explicitly in (5-34).

The quantum ansatz equation (5-22) can be rewritten as

n

_¢i "-[ _li ]Schr -- _.a _k _.a M_j lff j . (5-24)
k=l j

From the time derivatives of the constraints (5-23), we get

ii

ij

ij . (5-25)

il

Substitution of the equations, (5-24), into the required conditions, (5-25),

yields the linear system of equations:
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"Al1_ 1+ A12,_2 + ... + Aln_, n = a 1

A21)_ 1 + A22,_, 2 + ... + A2n_, n = a 2

(5-26)
Akl_,l +'"+ Akl_,l+"" + Ak, Xn = ak

Anl_, 1 + An2_ 2 + ... + Ann_, n = a n
P

where we have

ak = _,M_j ( [ (gi]Schr_j + [_j]Schr _gi) - C'k(t), (5-27)
ij

A further simplification is possible since M is symmetric.

The solution of a linear system such as Eq. (5-26) is well-known. We

write the determinant of the matrix A as IIAII.Then the multiplier Xk becomes

All A12 ... Al,k_ 1 0_1 ... Aln

A21 A22 ..- A2,k_1 0c2 ... A2n
• • • ,

;Lk =_ ..... (5-29)

An1 An2 ... An,k_ 1 OCn ... Ann

These Gauss-Lagrange multipliers perform thermodynamic work and extract

heat. These procedures are repeated during every time integration step to get

_causs in Eq. (5-22) (or Eq. (5-24)).

Here, we consider explicitly the special case in which three coupled

harmonic oscillators are constrained in their motion by external heat

reservoirs with one end hot and the other end cold. We employ the finite-
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difference form of the constraints (5-21) and the classic fourth-order Runge-

Kutta method for the time integration of Eq. (5-24). The schematic diagram

below describes the one-dimensional situation:

_.. Harmonic springs /

x=O x=x Oscil' -on ? x=x x=d

Numerically, we examine three distinguishable particles that interact with

each other through harmonic springs with fixed temperatures at both ends in

a discrete space. The Hamiltonian of this system (see Appendix 5.I) is

m 1 2
H= P2H°t+p2 + p2ta +_[(qHot ) +(qHot _q_)2 + (qco_ _q?)2 + (qco_)2],(5_30)2 2 2

where the position coordinate q is measured from the position of equilibrium

and thus the momentum p = q. For convenience, we set the masses, the

spring constants and the equilibrium spring lengths equal to unity.

Computations of the discrete momenta p (derivatives with respect to x) are

carried out according to the finite difference method through ¢ with the

Hamiltonian in the laboratory frame that is,

m2 --2 "-- a'2[(x1-1)22 +(x2 -x1-1)2 +(x3-x2 -1)2 +(3-x3)21"(5"31)
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The classical-mechanical analysis of this Hamiltonian is listed in

Appendix 5.I with its complete analytic description of motion and the normal

modes of vibration without constraints. In this appendix, analysis with

general constraint forces is also considered as an overview of application.

Here we are interested in the dynamics of this model under quantum

mechanical constraints.

The specific constraints in this case are

i

i

1 R 2
CK_(,o,)=C2 = YL-'_(_gi VHIgig + ¢]V2H_gJ)-f(t)=O (5-32)

i Z.

1 _V2cv,/)g(t) 0C_<co_--c_--z-_( v,,_v__,+ - --

The computation uses 3 spatial grid points equally spaced with the distance

one so that 27 distinguishable particle sites are available. These constraints,

given by (5-32), can simply be written as

£1_4==1

2 =(TH)=f(t) (5-33)

2 =(Tc)=g(t).

The time-dependent HMS equation is then solved for the 54 nonvanishing

values of the real and imaginary wave function. In other words, we solve the

set of the 54 coupled, nonlinear, first-order ordinary differential equations for

_d_ and _, with the number of grid points fixed at 3 for an equilibrium case (a)
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with no constraint, and the same case of which, with the constraints, (b) f(t) =

1, g(t) = 1. We consider the nonequilibrium cases of which (c) f(t) = 1, g(t) = 0.5,

and (d) f(t) = 1 - 0.5 sin2t, g(t) = 1.

k for i =1, 2,.., 54 and j =1, v, , 54 inTherefore, the matrix elements, Mij, ....

these cases are

M/_ = _ _ij, and the18 x18 matrix,

M 2 --- "'. , where the 3 x3 matrix, m = -2 .
1

-" n 0, otherwise

(5-34)

For complete details of the program, see the supplemental program attached

at the end of the text.

It is also worthwhile to note that a fast, modem computing facility

currently available runs typically up to 1012 binary operations per second.

With this power, it is possible to increase the number of grid points so that

the "real" many-body problem could be tackled. In our case, during each time-

integration step, the operations of Eqs. (5-27), (5-28) and (5-29) are carried out

for the set of the 54 coupled nonlinear ordinary differential equations. In

actual computations with three 54x54 matrices using Cray Y-MP, the

preliminary investigation of the equilibrium case with the routines that

calculate the multipliers indicates the approximate CPU-time consumed for

800 time-integration steps is about one minute with 14 decimal digit-accuracy.

However, one can reduce this computation time drastically using only non-
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zero elements of the three matrices. Eliminating zero components increases

the computation efficiency by almost 18 folds so that 14,000 time steps can be

integrated during one minute with the same accuracy. With 40 CRAY hours,

for instance, we would be able to integrate more than 1000 time steps for 21

i grid points.

Before we describe the results of the nonequilibrium calculations, it is

readily noticeable that all the multipliers should be zero in the case of the

equilibrium. Since Hoover's ansatz must satisfy the usual Schr6dinger

equation in that case, the nonlinearity has to disappear. All the cases (a), (b),

(c), and (d) are checked to be time-reversible.

Next, several different sizes of time step have been examined for 1,000

time steps to estimate the appropriate time-integration step. The time step At

= 0.01 seems to be the optimum value for the overall accuracy during the total

integration time within 0.5%. More specifically, in overall we have

_19_2 = 1 ± 0.002

(TH ) = f(t) + O.O05.

(Tc)= g(t) ±O.O05

We arrive at this accuracy by first reducing At from 0.16 to 0.08 for 32 time-

steps and 64 time-steps, respectively, during which several oscillations are

possible (the total integration time is 5.12). The table in the next page lists the

actual numbers generated after this integration time interval for the cases (c)

and (d). The numbers shown are rounded off at the seventh decimal places.
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i i

_.11_2 < TH > < TC>At

(C) (d) (c) (d) (c) (d)
I II ' 'P' I'I," "'

0.16 0.6596001 0.6699084 0.4975876 0.3853349 0.4726473 0.4932859

0.08 0.8783244 0.8883579 0.8159243 0.5028487 0.7847145 0.4965302

0.04 0.9736894 0.9818584 0.9640282 0.5696386 0.5109516 0.5075137

0.02 0.9959078 0.9971853 0.9963953 0.5793542 0.5062504 0.5043565

0.01 0.9994252 0.9994024 1.0008584 0.5796416 0.5028223 0.5019154

0.005 0.9999200 0.9997906 1.0009196 0.5791773 0.5012421 0.5008270

exact 1.0 1.0 1.0 0.5785733 0.5 0.5
l i ii i,i| il, i11 l ill i i i

We ob_erve no real significant changes in the accuracy with an even smaller

time step. In the equilibrium case (a) with no constraint, _1¥_ 2 = 0.9747478,

0.9991336, 0.9999724 for At = 0.1 (32 time steps), 0.05 (64 time steps), 0.0025 (128

time steps), respectively.

We are also interested in number densities, p for hot, cold and middle

atoms using the expectation value of number operator O. Its value at a

certain time is

Pi = (Oil / 3, (5-35)

iwhere (Oi) = _i]k +_jki _j , i, j, k - 1, 2, 3 for the hot, middle, cold
nK:L-

atom respectively. Also the following notation is used; _ijk = lg[i+a(j-1).9(k-1)]

For the hot atom, for example, we have
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12112182]j,k=It=

=31_,,I_+21_,,I_+21v,_l_+21_,_I_+Iv,_l_+t_,_l_
+21_7I'+I_,I'+21_,I'+21_,oI'+I_.I'+I_,,I'
+I_,_I_+I_I_+21_,_I_+I_ol_+I_,I_+I_I_.

Thus, PH + PM + Pc = 1 since we put the denominator 3 in (5-35) for three

atoms. The actual computer program is attached at the end of the text for

those who want to reproduce the results.

We also summarize the initial data used in the calculations for Figs.

5.12 to 5.15 in the following table:

Case _ _o [(o) _(o) .
(a) Fig. 5.12 1.0 0.0 N/A N/A 3000

(b) Fi_;.5.13 1.0 0.0 1.0 1.0 4000

(c) Fig. 5.14 1 / ,_ 1 / _ 1.0 0.5 2000

.....(d) Fi_;.5.15 ..........1 / _ 1 / _... 1.0 ....... 0.5,.. 4000

The time step is 0.01 for these calculations. For Figs. 5.16, and 5.17, we use At =

0.05 and 0.03 for the cases (c) and (d), respectively. For Fig. 5.18, we use two

different initial conditions other than the cases (a), (b), (c), and (d) above. The

plots in the left column shows the case with initial conditions: the real parts

of wave functions, gl =_4 =_14 =g23 = 0.5 and <Tn> = 1 - 0.5 sin2t, <Tc> = 0.75.

The right column is for _1 =_4 =_5 =_9 =_10 =_r14=_ls =1_23=1V27= 1/_ and

<TH> = 8/9, <Tc> = 8/18. The time steps for these two cases are 0.02.

All the abscissas in Figs. 5.12 to 5.18 represent time in an arbitrary unit.

In Fig. 5.12, we first test the equilibrium case (a). As we expected, both the total
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energy of the system and the probability conserve even with the greater

accuracy of about 10-6. In this case, we choose arbitrarily that all three atoms

are initially at x_ so that the average kinetic energy of the far right one is the

largest. This expected result is shown in the figure. In Fig. 5.13, we constrain

the atoms at both ends to be at the same temperature with the same initial

conditions as those in (a). We tried a few other choices of initial _alues of

other than _1 and _10; there are 54 possible initial values of _. Those results

indiCate very similar behavior as shown in the figure. In Fig. 5.14 for the

nonequilibrium case (c), we did not observe any chaotic behavior for small

perturbations on the constraints. This is rather clear because the model

system with the same kind of constraints is classically not chaotic, either. For

another nonequilibrium case (d) depicted in Fig. 5.15, we see the expected

variations of <T H> with the period of oscillation, _. Note the overall

similarity between the multipliers for the conservation of mass and for <TH>.

In Fig. 5.16, the readers can readily notice the periodic motions of the average

kinetic energies of the middle atoms for the cases (c) and (d). In this figure, we

also plot the time average of both the difference in the multipliers for <T>,

and the expected values of total energies. The results indicate steady states as

we expected. Thus chaotic phenomena seem to be suppressed in the

expectation values of various variables. The right column in Fig. 5.16

indicates that the nonequilibrium cases (c) and (d) eventually reach the steady

state with constant heat flows. Since the multipliers act as thermostats, the

steady time average of their difference can be interpreted as a steady heat flow

from the hot to cold atom. In Fig. 5.17, we plot the time history of number

densities for cases (c) and (d). It is clearly shown here that the number

densities calculated from (5-35) become periodic. It is also clear from the Fig.

5.18 that the plots in the right side display the periodic variations of the
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number densities. We observe that even the number densities plotted in the

left become periodic in a longer time interval. These last two plots do not

support the existence of chaotic behavior in this system.

In addition, we observe no significant change in the time-history

patterns of various values listed in Figures 5.14, 5.15, and 5.18 after we make

the small changes in _10 by 5% of _¢1.This indicates no sensitivity to a small

initial perturbation. Apparently, the results from this three-body model

indicate no chaos in nonequilibrium cases (c) and (d) and cases in Fig. 5.18.

But this type of approach certainly be extendible to more than three body

systems that might exhibit chaotic nature. It is also important to note that the

time average of expected values of energies can be used to measure the degree

of chaotic dynamics by checking its fluctuations. The computations were

checked to be time-reversible.

All runs but (a) are computed with the constraints. The cases (b), and

(d) were carried out more than 10,000 time steps, and the results indicate the

same patterns as shown in Figures 5.13 and 5.15. We plot the first 4,000 time

steps in order to display more details in these cases.

We can apply this method with an additional momentum constraint.

It is expected that time averages of the current (in momentum) can be

expected to resemble its classical, elastic, and hydrodynamical counterpart [14].

Some interesting systems have been thoroughly investigated in this context

including the analysis of Lyapunov stability [15,16].

In this thesis, we only looked at the simplest possible problem to show

the nonequilibrium treatment of many-body molecular dynamics using HMS

mechanism. More complex problem like the Galton board system on a

hexagonal finite-difference grid has been studied. It is worthwhile noting that

the results from the quantum Galton Board also reveal the absence of the
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quantum analog of Lyapunov instability which underlies the Second Law of

Thermodynamics and the classical irreversibility although the distributions

of mass, momentum, and energy approach the fractal distributions found

classically. From the standpoint of the quantum-classical correspondence, this

agrees with our previous points from the pendulum model, which indicates
i

the breaking of the correspondence for the classically chaotic system in the i

chaotic regime.

5-5. Summary

From the examples in this chapter, a more clear picture of the quantum

chaos with classical counterparts has emerged: The uncertainty breaks their

correspondence near the break time to form quasi-periodicity. Evidently very

thin stochastic layers intermingled with tori, and the islands within islands in

Figs. 5-1 and 5-2 are wiped away in quantum mechanics. Therefore a detailed

structure in the coarse-grained quantum phase-space due to a small but finite

h can almost all be neglected [17]. Then quantum behavior appears regular

even if the con'esponding classical system appears chaotic. This effect becomes

more apparent when the uncertainty rapidly grows. The observations made

by Casati et al. on the quantum kicked rotator [18] and by Marcus [19] for the

quantum H(_non-Heiles problem confirm this core idea. However, using

HMS dynamical description, chaotic behavior in quantum system might be

possible, but requires more than three bodies. In the next chapter, we will

look at the possible reasons and solutions of quantum regularity in the

normal Schr6dinger mechanics.
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Appendix 5. I Classical-mechanical analysis of the coupled oscillators

For the complete classical description of motion for this system, we

ignore any constraints. We will use the normal modes of the system to solve

this problem. Todo that, we set xi as the position coordinate for ith atom,

where i = 1(Hot), 2(?), and 3(Cold). The distance between the two wails is

denoted by d (the position of the left wall is zero) and the equilibrium

distances of atoms b (equilibrium spring length). Then the potential energy of

the system with spring force constant k in the laboratory coordinates is

k

V = _[(Xl- b) 2 +(x 2 -Xl-b) 2 +(x 3 -x2 - b) 2 +(d-x 3 - b)2]. (A5I-1)

We now introduce coordinates relative to the equilibrium positions [20]:

qi = Xi - Xoi ,

where

Xol = Xo2 - Xol = Xo3 - Xo2 = d - xo3 = b.

In discrete space, the distance d can be replaced with an integer N specifying

the total number of spatial grid points with equal distance apart being one

(b=l). The potential energy in the equilibrium displacement coordinates qi

then reduces to

k 2 )2
V =_[91 +(92-91) 2 +(93-92 +932], (A5I-2)

since Xo3 = d - b (or =N +1- b =N) and 93 = x3 - xo3. The kinetic energy takes

the following simple form in this coordinates:
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T _m
-_- [ql2 .q22+q32]. (A5I-3)

Eqs. (A5I-2) and (A5I-3) give the Hamiltonian (5-30). Similarly, since qi = xi,

one can establish another form of Hamiltonian (5-31) using (A5I-1) in the

laboratory frame with b = 1, d = 4. The Lagrangian, L(qi,qi), is T - V, which we

can write as

1 3 3

(T,j iliClj- V,j qiqj), (A5I-4)L=i._ j__
where

T

- mom - / -k k. <A5I-6

It is useful to write T and V as matrices so that we could generalize to

different cases. This approach also makes an even simpler introduction of the

constraint forces to the system.

Using Lagrange's equation, we find the equations of motion:

T_ + Vq_= 0, (A5I-7)

where we have defined the vector q = (ql, q2,q3) T. The normal modes are

collective motions where all three blocks move with the same frequency.

Since there are three degrees of freedom there will be three normal modes,

For each one, the solution is of the form

q(t) = a/(t)exp(i ca/t). (A5I-8)
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We substitute this (A5I-8) into the equations of motion (A5I-7), we get a

matrix equation for the matrix aj(t),

(V- toj2T)aj =0. (A5I-9)

In order for a nontrivial solution to exist, the following secular equation

must be vanished:

2k - to2m -k 0

IV - to2TI= -k 2k - to2m -k = 0. (A51-10)
0 -k 2k - a_2m

This leads to a cubic equation in to2, with roots ah2= 2k/m,

6022=(2+fl'2)k/m, and (032 =(2-._))k/m. If we insert these frequencies into

Eq. (A5I-9), we are to solve for the three normal modes, for which we choose

the normalization prescription aTTa=l. Subject to this condition, our

normal modes are

al = 2_ , a2 = fl2 ,and aa = - . (A51-11)

The frequencies of vibration can be obtained from fi = toi/2_r. These normal

modes of vibration are depicted for the corresponding frequencies.

012 (O22 O)32

From Eq. (A5I-8), we could also find the position of each atom at any later

time if the initial conditions are given.
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Now, suppose we apply a force F(t) to keep the average kinetic energies

of some atoms in the system constants of motion. However, because the

constraints in this case (Eq. 5-31) are quantum mechanical, not applicable to

classical case, the exact form of F(t) is not obtainable. The expectation-values

in quantum mechanics are interpreted as average values over many

measurements at a given time in classical language. So, this meaning of

average makes us unable to formulate a specific description of constraint

nonlinearly. Moreover, the fact that the constraints we deal with are

noraholonomic adds additional difficulty to the problem. But we can still

discuss the general overview of the problem by assuming the force F(t).

Since we now can use the vectors in (A51-11) as a basis set to write an

arbitrary displacement as

q(t.._)= _1al + _2a2 + _3a3, (A51-12)

where _i are called normal coordinates, our equations of motion are

T _iai + V _iai = F(t). (A51-13)
i_.1

We use the matrix equation for a normal mode vector, (A5I-9), to rewrite Vai
T

as ¢ai2Tai . If we now multiply on the left by aj and use the orthogonality

condition, aTTa j =S ij, the normal modes decouple and we obtain the

equations of motion for the normal coordinates:

_i + ¢oi2_i= fi(t), (A51-14)
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where we have defined fi(t)- aTF(t). At this juncture, if the particular force F

is given, one could compute fi(t). Then, with the certain initial conditions on

_i, the solution of (A51-14) allows us to find the motion of a specific atom in

terms of the equilibrium displacement coordinates qi. Although it is quantum

mechanical, our model could be investigated in the same context, especially

for q2.
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CH. 5 FIGURES
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Figure 5.1 Phase-space diagrams at various kick strengths for the standard

map. Regular motion is in (a). A dark chaotic layer is emerged in (c). Two

_.!ands intermingle in (d). Numbers inside the plots represent the kick

strength.
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Figure 5.2 Phase-space diagrams at various kick strengths for a modified

standard mapping (5-3). The similar observation can be made as the previous

figure even though the dark strip of chaotic layer is not evident in this case.

201



"(9"S)"b_!mo,l3 RtRI:)S_WOqSCUO

lq_}!_Se_;)q_ '(£<j) "b_lmo_3 elep s_oqs umnlo_ 13_-1"s_d l_U!ls!p Xelds!p

molloq ¢ql le suo.qeFeA _a_u_ jo ml_ds a_Od "_Ipp!m _ql 1_ _m.qaaAo

SUOI:IR.UeA,_u_ pue do1 _ql le pl_Ol a_re"_old _eds-_qd £'S _n_!_[

" "_1"1 _;'0
•: _ -; ._ ;, . . - : :

111
" "I ! ' ") "_

II
- I _! " "|

I

L- :*]l

'li
|-

:" ,, . : .- : '_..,

• 3 -"--_ .. 1.,.•,. .... "%._"._.".::.,. 1

"_':_'_ "_i'""'. _"% • "..: • • .
"" '__.__.'.:.,e-,__.: •.

_',__._',:_: : , _.,
• I ll_

" :ia;_:_'_':___ ..
1 I lid;_ • .,_--; : -_..._-.. ..

_j.I .... l. &.&. i...,I.... I..--1 .... I...t|...



Figure 5.4 The same kind of plots as Fig. 5.3 with larger values of kick

strength. Spectral peaks are well distinguishable in both cases.
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Figure 5.5 This shows the energy and the uncertainty variations in the

upper panels. Their corresponding power spectra are shown in the lower

panels with higher resolution than previous cases. No chaotic spectra are

observed.
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Figure 5.6 Typical classical devil's staircases. Large plateaus areclearly
shown.
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Figure 5.7 The result from the quantum calculation. No apparent plateaus

are observable.
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Figure 5.8 Classical trajectories of the Duffing's oscillator at various initial

points in space.
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Figure 5.9 A time history of a wave packet in space. There is neither

external force nor damping. Note the rectangular shape and the circular shape

formed by condensed contours similar to the classical trajectories.
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Figure 5.10 Another example of quantum calculations showing the spatial
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Figure 5.11 More example with a centrally located initial wave packet. Note

the symmetry in this case.
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Figure 5.14 Nonequilibrium case (c) with the constraints, < TH > = 1,

< Tc > = 0.5, and _1 V/I2 =1. All the abscissas represent time.
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Figure 5.15 Nonequilibrium case (d) with the constraints, < TH > = 1- 0.5

sin_t, < T¢ > = 0.5, and _l _l 2 =1. All the abscissas represent time.
.
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Figure 5.16 Periodic motions of the middle atom are apparent trom the above two

rows for the cases (d) and (c), respectively. The _e-averages of both the difference

• in the multipliers and the expected value energies reach steady states. The time steps

for these calculations are 0.03, and 0.05 respectively. _:is the total _ateg_Lion time.
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Figure 5.17 Time variations of the number densities. All the abscissas

represent time. The left column is for the case (c), and the right for the case

(d). It is apparent that the number densities are periodic in time.
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Figure 5.18 Time variations of the number densities. NonequiUbrium cases

with the constraints, < Tu • = 1- 0.5 sin2t, < Tc • = 0.75 for the plots in the

left column, and < TH • = 8/9, < TC > = 8/18 for the plots in the righL The

densities become periodic for the plots in the left in a longer time interval.

Initial conditions for these cases aR listed in the text.
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CHAPTER 6

CONCLUSIONS AND FUTURE

A quantum physicist and student of quantal paradoxes: Macroscopic objects ...

can't be in two mutually exclusive states at the same time; quantal objects can

be, and often are .... Quantum physics seems to contain classical physics as a

limiting case ....

Alice (a graduate student): Why do you say "seems to"? Surely physicists

know by _ whether it does or doesn't?

Alice in quantum land

(D. Layzer's "Cosmogenesis")

We summarize our results in this chapter. The quantum measurement

problem is also considered in the context of quantum chaos qualitatively.
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6-1. Conclusions

Extensive, though not complete, search for quantum chaos has been

carried out throughout the previous chapters. Since the principal conclusions

are described in the summary sections of each chapter, we will list a few

important properties worth mentioning again here.

First, we found the claim that quantum mechanics generally embraces

classical physics is valid even though exactly the same measurement is not

possible. No trace of violation of the claim was found. The expectation-values

we calculated were the statistical averages of many possible measurements

ignoring actual perturbations due to the measurement (or observation)

processes of a quantal system. Because of this perturbation, its physical state

must change discontinuously. This will in fact changes the Hamiltonian of a

systen_ whenever there is a measurement. Also, the measurement would

reduce the uncertainty to the minimum value allowed by its process. With

this perturbing part excluded, the statistical averages relax to smaller values as

the time elapses. This relaxation effect was seen from the results in the

classically chaotic regime in Ch. 3. Those results indicate the change in the

uncertainty is not small. This however does not mean that the claim fails. In

other words, the large uncertainty variation prevents us from knowing the

exact state. Therefore, someone like Einstein asserted that the physical state of

a quantal system is unknowable. He thought that quantum physics is just

computational device for calculating the probability of observable events.

Nonetheless, this probability can represent classical mechanics in the regular

regime, but not in the chaotic regime. Instead, quantum distribution

functions permit us a good level of correspondence in the chaotic regime. It is

worthwhile printing again that the Husimi representation is not necessarily
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betterforthequantum-classicalcorrespondencethanthe Wigner one inthe

classicallyregularregime.Therefore,bearingthe uncertaintyin mind, the

quantttmviolationofclassicaldynamicswas notfound,and theclaimstands.

As we have noticed from the previous three chapters,quantum

mechanics does not manifestclassicalmechanics,especiallyin classically

chaoticregime mostly because observationis impossible in quantum

mechanics.Thiswas describedinthepreviousparagraph.On thecontrary,a

closecorrespondencewas observedinthe regularregime.We alsofound a

higherdegreeofcorrespondenceinmore classicallimits(h-_0 or/_ _).The

uncertaintygrowth or fluctuationisbelievedtobe partlyresponsibleforthe

breakingof the correspondence.The uncertaintyprincipledoes not restrict

theshape ofa micro-cell(P-ceil)whose volume inphase-spaceisequal toor

greaterthanPlanck'sconstant.Thus,theeffectofrelaxationeffectdiscussed l

beforecan be a rough measure of which variableisresponsiblefor the

breakingofthecorrespondence.Inotherwords,we may be abletodistinguish

the specificvariablethathas therelativelyhigh levelofuncertaintyatthe

specifictime.

The interactionwith the environment,especiallythrough frictional

dissipation,was approximatelytreated,and found tobe a good representation.

Using thistechnique,quantum treatmentofclassicalstrangeattractorwas

studiedtochecksignaturesinphase-space.Quantum signaturesofchaoswere

discoveredusing theWigner and theHusimi distributionfunctionseven in

thechaoticregime.To representthecorrespondence,theHusimi seemed to

be better,although the Wigner containedmore detailedinformationon

classicaldynamics through itscontours.Itisof importanceto remind the

reader that no evidence of quantum chaos was found in phase-space

trajectories.Therefore,thesedistributionsdeserve more attentionin the
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context of a quantum chaos search. At any rate, it is realized that some finite,

bounded, undriven quantum systems are not chaotic [1]. Also the study

considering a quantum version of the Amord cat map claims a failure of the

correspondence even in an appropriate limit of the chaotic regime [2]. Chaotic

quantum phenomena, however, can be observed using numerical

simulations of a nonlinear Hartree equation [3] or of a mean-field

approximation [4] without a classical counterpart.

In addition, a quantum wave packet carries dynamical information of

classical trajectory as we have seen through some Heller's scars, though we

did not study the chaotic regime. This was expected because the quantum

distribution functions containing wave packets resembled classical one

closely. But perhaps most importantly, it appears that classically chaotic

phenomena would eventually be suppressed by the quantum uncertainty

even in the semi-classical limits.

Finally, the split operator method was very effective in solving the time-

dependent Schr6dinger equation. This could have many possible applications

in quantum dynamical problems even though our study was limited to the

Cartesian coordinates. One immediate application of the method is to study

the overlap of energy levels of the Floquet states [see Ref. 22 in Ch. 4] in which

the transition from regular to chaotic states might be characterized. The level

broadening of the Floquet states in the chaotic regime would result in the

complicated, mixed state. For instance, the multiphoton process in the

Rydberg state of atom undergoing the transition could be extensively

analyzed by using the split operator method with the spectral method

mentioned in Eqs. (2-40) ~ (2-42).
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6-2. Future

As E. Wigner once called it, the 'pre-quantum-mechanical' laws of

physics told us how to predict the future state of a physical system. This

concept fails to be valid in the state of the pre-quantum-mechanical chaos

(classical chaos). This unpredictable feature originating in classical chaos

contradicts the linear nature of the predictability in quantum mechanics.

We, human beings, experience the classical chaotic phenomena in the

world around us everyday. However, quantum phenomena are also

applicable over vastly different and larger scales than just atomic physics,

even though we seldom experience it directly. For example, experientially

neutrons show both particle and wave nature over the energy (mass) range

from 10.7 eV to over 108 eV. Today there is no experimental evidence that

points to the break down of the quantum theory. Then why have no

quantum manifestations of classical chaos been observed? Why can't we

control the uncertainty? Where does the uncertainty come from? I think the

problem is this: quantum mechanics is fundamentally about 'observations'. It

necessarily divides the world into two parts, a part which is observed and a

part which does the observing.

In my opinion, the only thing that the existing quantum mechanical

equations allow us to postulate about chaotic behavior is a quantum state of

object plus a classical apparatus for the outcome of the measurement that has

a definite value. Observer's worlds of quantum mechanics [5-7] have

produced a paradox such as the Schr6dinger's cat almost seven decades ago.

Such a long time interval has inevitably made many propositions on

quantum measurement theories [8-11]. It is now believed by some that
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quantum theory of chaos has to come in conjunction with the measurement

theory.

This concept of a global Schr6dinger equation for a quantum system

plus environment has obviously an implication of fundamental change in

our description of the basic rules of nature. In fact, there are some elaborated

postulates taking care of specific problems. A classical approach to non-

equilibrium Schr6dinger equation using the concept of Lagrange's multipliers

and Gauss' least constraint principle could generates chaos [12-14] as we have

discussed in Section 5-4. The so-called stochastic dynamical reduction

equation that includes an unusual operator in the normal Schr6dinger

equation has also been suggested [15,16]. The importance of the Kubo-Fox

method [17] cannot also be emphasized enough. In many aspects, its approach

has a clear advantage as we discussed in Ch. 4. Moreover, addition of a

nonlinear term to SchrSdinger equation has been studied [18,19]. However,

they do not seem to have universal validity. Each of these postulates has its

own advantage for different problems. Especially, Hoover's postulate has a

distinguishable advantage in treating non-equilibrium quantum many-body

situation. His approach provides the necessary mechanism in treating an

open system as we have discussed in both Sections. 4-2-2 and 5-4.

In my opinion, Schr6dinger equation may need an additional

nonlinear term that couples the classical world with a coupling coefficient

specifying the strength of the coupling. Without a measurement, the

coefficient is zero and the normal quantum mechanics resumes. Yet no

specific postulate exists. At this juncture, further extensive investigations are

necessary.

I think that either a change in Schr6dinger equation or the need to

interpret quantum mechanics differently using classical mechanics is not a
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lunatic idea. I also believe that the measurement approach to quantum chaos

[20] would provide considerable progress towards a better, though not

complete understanding. This problem is also related to the paradox of

classical locality and quantum nordocality. Both problems can be regarded in

the same context. I must say as well that it is perhaps conceivable to search for

quantum chaos in a totally different context than the one we have been

considering in this study. Currently, on the other hand, many researchers are

turning into the possible future application of this still low-profile, enigmatic

subject as the semi-classical (or one may prefer both classical and quantum)

regime in many areas of physics are becoming more important.

6-3. Epilogue

Almost three years have passed since the collection of the first

numerical data in its initial interpretation. The core structure of the computer

program using the celebrated split operator method had been set up even
i

before that time with a great help from Mike Felt. The skeleton of the

computer program for the material in Sec. 5-4 was provided by Bill Hoover.

Frankly, the investigation was started with an expectation that a

quantum system exhibits chaos for a sufficient time to be observed, although

the present evidence weighs heavily against this [21]. Regardless, if this thesis

suggests that ubiquitous chaotic nature in a macroscopic level is not

observable in underlying microscopic level, so be it. My hope is that _is study

would be considered as a certain contribution to the field. At any rate, even

after the careful processes of many revisions, many parts of my work may still

contain some defects. In his words, Warren S. McCuUoch seems to describe

my emotion at this moment:"Don't bite my finger - look where it's pointing."
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Supplement

The core structure of the split operator algorithm is listed conceptually in this

supplemental section. The computer program for Section 5-4 is also provided.

BEGIN

c Set up n number of initial grids and kinetic, potential

energy operators.

DO i-l, n

q(i), p(i)
T(1), V(1)

DONE

c Set up initial wave function y0.

DO i-l, n

yO(i)
y(i).yo (i)

DONE

c Propagate initial wave function for m time steps.

c Split the kinetic energy operator once.

DO 1 J-l, m

Fourier transform of y(i)

DO i=l, n

Y(i}ay(i) *T(i)

Expectation values of p
DONE

Inverse Fourier transform of y(i)

DO i=l, n

y(i)ay(1) *V(i}

Expectation values of q
DONE

c Calculate normalization and correlation function.

DO i-l, n

c(J)-c(_) +y0 (i)*y(i)
DONE

c Call subroutine to compute eigen-energies and eigen-
functions
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c using spectral method

CALL SUBROUTINES

1 DONE

c Calculate the power spectra from here

c For the Wigner and Husimi distribution functions, set up
c momentum grids (index jj) for phase-space contour plots

FOR WIGNER

DO i-l, n

DO J-l, n

ii for shifted spatial coordinates

W(ii, JJ ).W(ii, JJ)
+complex conjugate (y(x-y/2)) * (y(x+y/2))

DONE

Fourier transform in terms of the momentum index J J
DONE

FOR HUSIME

DO i-l, n

DO J-l, n
DO k-l, n

H(ii, JJ )-H (ii, J J )+Gaussian test function*y (k)
DONE

DONE
DONE

c Subroutines for Eigen-functions yk(j,k) and eigen-values
E(k)

Fourier transform of the correlation function C(i)

Apply Line-fitted method to get E(k)
_----illii_li--il--l--------_O----JJili--J_--J_il_li--

kth eigen-value
DO i-1, n

yk(i,k).yk(i,k).y(i)*exp[complex(i)*E(k) *time]
DONE

The above listing describes very simply the core structure of the program. One
can add more possible operations for different purposes.
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prooram HMSeqn

c Calculation of the time-dependent Schroedlnger equation for a chain
c of three harmonic oscl I lators bounded by the fixed walls at both ends.

real t,dt,tm,Gonst,aa,cc.gsum
dimension yr(3,3,3),yl(3,3,3),yy(54),yyp(84),yyps(54)
d Imens I on sum1 (S4), sum2 (S4), sum3 (84), ps I (3,10000)
cormon/degl 01 (84,64) °c3 (64 ,S4 ) ,pr (S4,64) ,era(3.3 )

c Initial conditions
wrl te(6,*)

* '_nter initial values for yl,y2 ..... y27'
read(S,*) yr(1,1,1),yr(2,1,1) ..... yr(3,3,2),

o Input parameters
c noase=l: turn on all the constraints
c Iwnt=l= turn on the slnusoldal klnetlc energy constraint
c n Is the total number of Inteoratlon steps

write(6,*) "Case,dt,n, lwnt"
read(S,-) ncase,dt,n, lwnt

c Integrat Ion
do 10 I ml ,3
do 10 J=1,3
do 10 k=l ,3
I Jkr= 1.3-( J-1 )_9-(k-1 )
I Jki =1Jkr.27
yy(I Jkr)=yr(I, J,k)
yy(Ijki)=yl(I,J,k)
prosum=prosum.yy( I Jkr )°'2.yy( I Jk I )''2

10 cent I nue

c Set up the matrix elements
do 14 1=1,64

pr( i , i )=1.
01(1,1)=-2.
o3(I , I )=-2.

14 cent t nue
do 16 i=1.18

Jn= t -1
cl(l_Jn*3,2_Jn*3)tl.
cl (2.in'3,1.in'3)=1.
ol (2_ in*3,3+ in*3 ) =1.
cl (3.in-3,2+Jn'3)=1.

15 cent t nue
do 16 _:=10.45

03 (k.k-9) =1 .
03 (k, k4H_) =1.

16 cont I hue
do 17 JJ=1.9

c3(jJ, J j+9)=1. ","
17 con t I nue

do 18 kk=46.54
C3 ( kk. kl<-9 ) = 1 .

18 con t _nue
do 181 1=19.27

c3(i. i_9)=0.
181 cont i hue

do 182 J=28,36

c3(j. j-9)=O.
182 cont i nue

c Normalize the initial wave function
cnorm=l . Isqr t (prosum)
do 19 i=1.27

yy(i)=cnorm*yy(i)
yy( i +27 ) =cnorm-yy (i+27)

19 con t i nue
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C *********** MAIN PROGRAM ***************************
do 100 I I=l.n
tat.dr

do 21 i =1.3
do 20 J=l ,3
do 20 ks1.3
I jkrz 1.3"( J-1 )_9-(K-1 )
i Jk ! =i Jkr_27
yr(i.j.k)=yy(iJkr)
yl(I,J.k)'yy(i Jkl)
sum1 ( I jkr)=O.O
sum1 ( I Jk i )=0.0
sum2( I Jkr)=O.O
sum2(! Jkl)=O.O
sum3( I JKr)=O.O
sum3( I Jkl )=0.0

20 cent ! hue
psi ( i , I i )-0.0

21 cent i hue

proSumsO .0
enesumsO. 0
enesum2=O .0
ene I sO. 0
one2 =0.0
ene3 sO, 0
do 22 I sl .3
do 22 J=l .3
do 22 ks1,3
I Jkr=ie3*( J-1 )_*(k-1 )
i JKi =1 Jkr+27
pot=O .S* ( ( i-1 )**2e( J-i -1 )*-2. (k- J--1 )*-2. (k-3)**2 )
dsqrl =-2 • "yr ( i, J, k)
dsqr2=-2.'yr( i, J,k)
dsqr3=-2.'yr( I, j ,k)
dsql la-2.*yi (I , j ,k)
dsql2a-2.'yl ( i, J .k)
dsqi3s-2.*yi ( i, J .k)
if (I.gt.1) dsqrladsqrl.yr(i-l.J.k)
if (J.gt.1) dsqr2=dsqr2*y r(I.j-l"k)
If (k.gt.1) dsqr3tdsqr3.yr(i.J.k-1)
If (i.gt.1) deqilmdsqll.yi(i-l.J,k)
if (J.gt.1) dsql2=dsql2.yl(I,j-l,K)
if (k.gt.1) dsql3mdsql3*yl(i.J.k-1)
If (i.it.3) dsqrl=dsqrl.yr(l.l,J.k)
i f ( J. i t.3) deqr2sdsqr2_y r( i , J.l ,k)
If (k.lt.3) dsqr3mdsqr3.yr(i,J,k.l)
If (i.lt.3) dsqll=dsqil*yl(i+l,J.k)
if (J.lt.3) dsql2mdsql2.yl(I. J.l.k)
If (K.It.3) dsql3sdsql3.yi(I,j.k.l)

c Calculate kinetic energies
enelsenel-O.5*(yr( i , J ,k)*dsqrl.yi ( i , J ,k)*dsql 1 )
ene2sene2-O. 5" ( yr ( 1. j. k ) -dsqr2.y I ( I . j. k ) *clsq i 2 )
ene3=ene3-O.5"(yr(i, J.k)'dsqr3eyi (i . j.k)*dsqi3)

c Calculate the total probabii I ty and total energy
prosum=prosumeyr ( i. j .k)'*2.yi ( i . J .k)*'2
enesumsenesum.pot*(yr( I , j ,k)**2.yl ( I . j .k)*'2)-0.5"

1 yr( I . J .k)*(dsqrl.dsqr2.dsclr3)-O.5"yl ( I . j .k)"
2 (dsq i l.dsq i 2.dsq i 3 )

22 cent i nue

If (ncase.ne.1) go to 1000

do 211 mm=1.54
do 211 nnsl.54

If ((cl(mm.nn).eq.O.).and.(c3(mm,nn).eq-O-)) go to 211
sum1 (nn) sO .0
sum2 (nn) sO .0
sum3 (nn) =0.0
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alp=alp+pr(mm.nn)*(yyps(mm)*yy(nn).Yyps(nn)*yy(mm))
bth=bth.cl(mm.nn)*(yyps(mm)*yy(nn).YYPs(nn)*yy(mm))
oam=gam.c3(mm,nnl-(yyps(mml'Yylnn).yypslnn)'yy(mmll

do 212 11=1054
suml(nn)nsuml(nn).pr(nn, ll)'yy(ll)
sum2(nn)ssum2(nn).cl(nn, ll)*yy(ll)
sum3(nn)msum3(nn)+c3(nn, ll)*yy(ll)

212 continue
emll01luemll,1)+prlmm,nn)*lyylmm)'sumllnn).Yylnn)*sumllmm))
em(1.2)nomll,2I.pr(mm,nn)*(yy(mml°sum2lnnl_Yy(nnl°sum2(mmll
em(1,3)somll,3I+prlmm.nnl*lyylmm)'sum3lnnl.Yy(nn)*sum3lmml)
em(2,1Iaeml2,1l_cllmm,nnl-lyy(mm)'sumllnn).yy(nnl*sumllmml)
eml2.2lneml2.2).cllmm.nn)'lyylmm)'sum2lnn)+Yylnn)*sum2lmm))
em(2,3)nem(203).cl (mm0nn)* (yy(mm)-sum3(nn).yy(nn)*sum3(mm))
ore(3,1 )Bern(3,1 ).c3(mm,nn)*(yy(mm)*suml (nn).yy(nn)'suml (ram))
era(3,2 ) 8era(3 02 )+c3 (ram0 nn)" ( yy (ram) -sum2 (nn)_yy (nn) *sum2 (ram) )
eml3,3Isem(3,3).c3lmm,nnl'lyylmml'sum3lnnl*Yylnnl*sum3lmml)

211 continue
if (iwnt.eq.1) then
bth-bth-2.*sln(t)'cos(t)
endlf

c Calculate the multipliers
call rlamda(alp,bth,gam,em,aa,bb,cc)

81pmO.
bthsO.

gamaO.
1000 continue

c Calculate the number densities
do 67 m81,3
do 56 Jill,3
do 66 kkal,3
psilm, lilnpsllm, ill.lyr(m, JJ.kkl**2.yllm.jj.Kk)''2)+

, (yr(JJ,kk,m)**2_yi(JJ,kk,m)**2).
, (yr(kK,m, JJ)--2.yi(kk,m, jj)''2)

66 continue
pst(m, li)mpsi(m, li)13.0

57 continue

write(6,799) t,prosum,enesum,enel,ene2,ene3,aa,Db,cc

c Perform the time Integration
¢811 runkut(dt,yy,yyp,yyps,aa,bb,cc)

100 continue
799 format(f6.3,1x,2(f8.4.1x).3(f6.3.1x).3(fa.3.1x))

call exit
end
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subroutine runkut(dt.yY.YYP.Yyps,aa,bb.cc)
parameter (neq=54)

d I mens t on yy (neq). YYP ( neq ). yyps ( neq )
d I mens I on yak1 (neq), yak2 (neq), yak3 (neq). yak4 (neq), ynew (neq)
common/Sam/ prbsum(54).cls(54),c3s(54)
commonldegl cl(54.154),c3(54,54).pr(64.54)'em(3"3)

do 32 IJkr=l,27
i JKI:I JKr.27

prbsum( i Jkr):O.
prbsum(I Jkl)aO.
(:ls(I Jkr)=O.
cls(I jKi)=O.
c3s(I Jkr):O.
c3s(I JKI)=O.
do 32 JJJ •1.27

prbsum(I Ji<r)-prbsum(I JKr).pr(I jkr JJJ)'YY(JJJ)
prbsum( I Jki )=prbsum( I Jki )*pr( I Jkl _ j J J*27)*yy( J J J_27)
cls(I JKr)-¢l$(I Jkr).cl(i Jkr, JJJ)*YY(JJJ)
cls(| Jkl)=cls(I jkl).cl(I Jkl, JJJ_27)*YY(JJJ_27)
c3s(I JKr)=c3s(I JKr).c3(l jkr, JJJ)'yY(JJJ)
c3s(I Jki)=a3s(I Jki)_c3(I Jki, JJJ.27)=YY(JJJ.27)

32 cont I nue

cal I fcn(dt,yy,yyp,yyps,aa,bb,cc)
; do 1 i=l,neq

1 yak1 ( i )=yyp( I )
do 2 I•l,neq

2 ynew( I )=yy( I ).(O.5-dt)'yaKl( I )
cal I fcn(dt,ynew,YYP.Yyps,aa*bb,cc)

do 3 I=l,neq
3 yal<2 ( I ) =yyP ( i )

do 4 I=l,neq

4 ynew( I )=yy( i ).(O.6"dt)'yak2( I )
cal I fcn(dt,ynew,yyp,yyps,aa,l:)b.cc)

do 5 I=l,neq
5 yak3( i )=yyp( i )

do 6 I=l.neq
6 ynew( I )=yy( i ).dr-yak3 ( i )

cal ! fcn(dt,ynew,YYP,Yyps,aa,bb,cc)
do 7 i_l,neq

7 yak4 ( i )=yyp( i )

do 8 I=l.neq
8 yy( i )=yy( i ).dt* (yal<l ( i ).2. *yaK2( I ).2 .*yaK3 ( I ).yal<4 ( t ) )/6 "0

return ,,
end

24O



subroutine fcn(dt.y.yp.yps,aa.bb,cc)
parameter (neq=54)
dimension y(necl).yp(neq),yr(3.3.3),yi(3.3.3)'yps(necl)
common/sam/ prbsum(54),cls(54).c3s(54)
common I deg I c I ( 54,54 ). c3 ( 54.54 ). p r (54.54). em (3.3)

do 30 I =1,3
do 30 J=l ,3
do 30 k:l ,3
i Jkr=l.3*(J-1).9"(k-1)
I Jk I : i Jkr.27
yr(i, J,k)'y(I Jkr)
yl(i. J.k)=y(l Jkl)

30 cont i nue

do 35 i =1,3
do 35 J=l ,3
do 35 kal ,3
pot-O .5" (( I-1 )*'2. (J-i-1 )*-2. (k- J-1 )**2. (k-3)*'2 )
dsqrlt-2.*yr( I , J ,k)
dsqr2--2.*yr( I, J ,k)
dsqr3a-2.*yr( I , J ,k)
dsqll=-2.*yl(I, J,k)
dsqi2--2.*yl(i, J,k)
dsqi3--2.*yl(I, J,k)
If (I.gt.1) dsclrlsdsqrl.yr(i-l,J,k)
If (J.gt.1) dsqr2-dsqr2.yr(I, J-l,k)
If (k.gt.1) dsqr3adsqr3.yr(t, J,k-1)
If (i.gt.1) dsqll-dsqll.yi(I-l,J,k)
If (J.gt.1) dsql2sdsql2.yl(t,J-l,K)
If (k.gt.1) dsql3sdsql3_yl (I, J,k-1)"
if (I. It.3) dsqrlmdsqrl.yr(l.l,J,K)
If (J. It.3) dsqr2=dsqr2*yr(I, J_l,k)
if (k. It.3) dsqr3mdsqr3.yr(i, J,k.l)
If (I.It.3) dsqil=dsqil.yl(l*l,J,k)
if (J.lt.3) dsql2-dsql2.yi(i,J.l,k)
If (k. It.3) dsql3-dsql3.yl(i, J,k.l)

I Jkr= 1.3"( J-1 )_9" (k--1)
i Jkl = I Jkr.27

yps( I Jkr)m-O.5*(dsql l.dsql2.dsql3).pot*yl ( I , j ,k)
yp( I jkr)-yps( I Jkr)-aa*prt)sum( i Jkr)-bb*cls( i jkr)-co*¢3s( i Jkr)
yps( i Jkl )=O.§*(dsqrl.dsqr2.dsqr3)-pot*yr ( I, J .k)
yp(i jki)=yps(i Jkl)-ila'prbsum(i Jkl)--bb*cls(I Jkl)-cc'(=3s(I jkt)

35 cont i nue

return
end

subroutine rlamda(alp.bth.gam.em.aa.bb.cc)

dimension em(3.3),d(3.3).rl (3)

denom=em(1 .1)*em(2.2)*em(3.3)-em(1.1)*em(2'3)=em(3'2)+
* era(1 .2)'em(2,3)*em(3.1)-em(1.2)*em(2'l)*em(3'3).
* em(1.3)*em(2.1)*em(3.2)-em(1.3)'em(2'2)*em(3"l)

mural=alp'era(2,2)*era(3,3)-a I p*em(2,3)'em(3.2).
* era(1 .2 )*era(2.3)*gam-em(1 .2 )*bth*em(3 .3 )+
- era(1 .3 )*bth*em(3 .2 )-era(1,3 )'era(2 .2 )'gain

r num2 =em ( 1 . I ) * D t h* em( 3.3 ) -era ( 1 . 1 ) *em ( 2.3 ) "gain.
* a I p'em (2.3) *em (3.1) -a I p'era (2.1) -era (3.3) +
* era(1 .3 )*era(2. I )*gain-era(1 .3)*l:)th*em(3.1 )

rnum3=em(1 ,1)=em(2.2)*gam-em(1.1)=bth*em(3'2).
* era(1 .2) *lDth*em(3.1 )-era(1 .2)*era(2. I )*gain+
- a I p-em(2.1 ) -era(3.2 )-a I p'em(2.2) -era(3.1 )

do 3 i=1.3
do 3 j=1.3
em(i.j)=O.O

3 continue

aa=rnuml/denom
bb= mum2/denom
cc=rngm3/denom
return

end 241
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