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THE COUPLED DIPOLE MODES OF THE NLC ACCELERATOR STRUCTURE*

K.L.F. Bane, R. Gluckstern® and N. Holtkamp!
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 USA

INTRODUCTION

The proposed accelerator cavity of the Next Linear
Collider (NLC) [1] is a disk-loaded structure composed of
200 cells, operating at 11.42 GHz. The proposed mode of
operation is to accelerate bunches in trains of 10, with a
bunch spacing of 42 cm. One problem is that one bunch in
a train can excite transverse wakefields in the accelerator
cavity which, in turn, can deflect following bunches and
result in emittance growth. A method of curing this prob-
lem is to detune the transverse modes of the cavity [2].

Beam dynamics simulations for the NLC have shown
that by keeping the transverse wakefield at the posmons of
the nine trailing bunches at or below 1 MV/nC/m? we can
avoid emittance growth [3]). Earlier, approximate calcula-
tions of the wakefields, which did not include the cell-to-
cell coupling of the modes, have shown that by the proper
Gaussian detuning the above level of cancellation can be
achieved [2,4]. A specific goal of this report is to see if this
conclusion still holds when coupling is included in the cal-
culation. Note that in this paper we focus on the modes
belonging to the first dipole passband, which are the most
important. A special feature of these modes in the de-
tuned NLC cavity is that the cell-to-cell coupling changes
sign somewhere in the middle of the structure.

We model the detuned cavity by a chain of coupled
resonant circuits, with each loop of the chain represent-
ing one cavity cell. The constants in the equation we ob-
tain by fitting to results obtained by TRANSVRS, a com-
puter program that solves Maxwell’s equations in a peri-
odic disk-loaded structure [5]. By solving a matrix eigen-
value problem we obtain the frequencies and kick factors
of the normal modes of the cavity which, in turn, give us
the wakefield. We then repeat the process using a double
band of circuits to model the cavity, which duplicates the
dispersion curves of the lowest two bands more accurately.

Early examples describing the use of equivalent cir-
cuits for finding the normal modes of a multi-cell cavity are
given in Refs. [6-8]. As in Ref. [8] our single circuit chain
couples through mutual inductors. Recently M. Drevlak
[9] applied equivalent circuits that couple through induc-
tors or capacitors to an S-band cavity to find the modes
and the wakefields. His circuit models are applicable to
structures for which the coupling does not change sign
within the cavity. K. Bane and N. Holtkamp [10] using
a more complicated circuit, solve a non-linear eigenvalue
problem, to find modes of the NLC detuned cavity. A
preliminary version of the present work was presented by
R. Miller at Protvino in September 1991 [11]. Finally Ya-
mamoto ef al. [12] apply direct time domain integration of
the circuits to find the wakefield of the JLC detuned cavity
(a similar cavity), confirming the results presented here.

More details of our results can be found in Ref. {13].
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The Uncoupled Calculation of the Wakefield

The dipole wakefield of a cavity is given by a sum over
the modes (see, for example, Ref. [14])

, _ . . 2mups
W(s) = 2zp:kpsm -

with K, the kick factor and v, the frequency of the pth
dipole mode of the structure. Here we assume that the @’s
of the modes are sufficiently high so that (for our purposes)
the damping of the modes can be ignored. Note that for
a detuned structure the sum in Eq. (1), for small s, can
be replaced by an integral. If the frequency distribution is
Gaussian, with rms width o, and average & then

Wi(s) ~ 2‘."\" sin 2Wwe

The method that to date has been used to obtain the
wakefield of a detuned version of the NLC accelerator cav-
ity we call the uncoupled solution. According to this cal-
culation the wakefield of an N-cell detuned structure is
approximated by [4]

s> 0, (1)

-2(xo,8/c)? ) (2)

(m)

W (s ZA (mygip 28 (3)

with N the number of cells. In Eq. (3) K{™ and v{™
represent the kick factor and frequency of the synchronous
component of the first dipole mode for a periodic structure
with the dimensions of cell . We expect this approxima-
tion to be valid for a short distances s, before the cell-to-
cell coupling becomes important.

In this paper we limit ourselves to cell geometries with
four parameters: the iris radius a, the cavity radius b, the
iris thickness {(=1.46 mm), and the period L(=8.75 mm).
We detune the structure by varying a and b in such a way
as to keep the fundamental frequency at 11.42 GHz. To
find any local property of a detuned cavity we first find that
property for 7 representative, periodic structures that span
our possible range in cell dimensions using the computer
program TRANSVRS. These seven, with labels A-G, vary
in iris radius from 6.50 mm to 2.75 mm in even steps. We
then find that local property for any intermediate dimen-
sion by interpolation.

For all our simulations we take the distribution in v,
to be Gaussian, with rms spread o,,/0, = 2.5 % and av-
erage ¥, = 15.25 GHz, and N to be 200. For these param-
eters the uncoupled calculation gives the wake envelope
W (s) shown in Fig. 1. The dashed curve (in all our wake-
field plots) displays the Gaussian envelope of Eq. (2) for
comparison. We note that the wake satisfies our criterion
<1 MV/nC/m? at the positions of bunches 2-10.

SINGLE CHAIN OF COUPLED CIRCUITS

We consider the circuit chain shown in Fig. 2. For
loop m of the circuit we can writ(
1 1 n+
(7"—?> fm + = kfm+1 40 b =00, ()
vi v
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Fig. 1. The wakefield envelope for the uncoupled
solution.

with v the eigenfrequencies of the circuit chain; with vy,
the cell frequency and K,y 4 the cell-to-cell coupling for
cell m. The ecigenfunctions are given hy

fm = 2m/\/ Cm (5)

where, for loop m, i, is the Fourier transform of the cur-
rent and Cy, is the capacitance. We will allow &, 41 to be
a positive or negative quantity depending on whether lo-
cally the cell-to-cell coupling is positive or negative. I'or N
circuits Bq. (4) represents a linear, symmetric eigenvalue
(#=?) eigenfunction (fy,) problem of dimension N. Typi-
cally the cavity has N full cells (m = 1,..., N) with the
end cells connected to side tubes for which the modes are
below cut-off. We therefore take as boundary conditions

Jo=lry Inei=In, KL =R0, Rnpp = RN
(6)
™ VSN VN r e
Vm—y | Km-1/2 Vi Km+1i2 | vy
392 7115A4

Fig. 2. Our single chain circuit model.

Il we substitute constant vy, = v and K31 = & into
. (4) we then obtain the periodic solutions:

fon = feosmeg

We see that v~2 is lincar with cos¢. We find the depen-
dence on geometry of vy, and &, by fitting to TRANSVRS
results. The fit, for periodic cavities with dimensions A-G,
is shown in Fig. 3. Since we fit at the ends of the curves
the agreement is quite good in the important vicinity of
the synchronous point.

The kick factor for mode p is given by

' lZn (I' ,/1"571) (n) imp,,l‘.!
K, = o7 , (8)
NVP En f"

with ¢, = 2mvpL/c the phase shift per cell. Doing the nu-
merical calculations we obtain for the detuned NLC cav-
ity the wake envelope shown in Fig. 4. We see that for
0.40 m< s <3.80 m the cancellation is slightly better than
for the uncoupled result. Since the double chain model
gives similar results we will wait until the next section to
give more details.
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DOUBLE CHAIN OF COUPLED CIRCUI'TS

In an effort to putl the difference equations on a more
physical basis we expand the fields in each cell into a com-
bination of a T'M¢ and a T/ mode, and relate the
coefficients in adjacent cells to one anotlier by treating the
iris coupling using the static approximation of Bethe [15].
The details are proq(‘nt,od in Rel. [13]. We then obtain

m+,, m-—
(ll,‘,” - )\)fm - fm+l - fm—-] =
\/'cm+%ﬁm+% . "m—l"m—-%
- '_—'_T_‘_'“fmﬁ-l -+ ’—”“T“ fm—l
(9)
. i "m+ 3 K- o
(37m - ’\)fm fm+1 + fm—l =
\/ Hm-f—-,%“m-k% \/H’m—-'—“‘m--
+ 9 frlz+1 - 9 m-—1,
(10)

with A = 1/v?; with £, and fm representing respectively
the T'Myqo and the T'I71 1) part of the mode. The equivalent
circuit representation of Egs. (9), (10), includes two bands,
with cross-coupling only between adjacent cells. We ob-
tain the parameters x,,, @,, Kt § A'.,,,i%. by fitting to
TRANSVRS results. Eqgs. (9), (10), represent a symmet-
ric eigenvalue problem with 2N eigenvalues and 2N eigen-
functions. At the ends of the structure we take symmetric
boundary conditions for the f’s and anti-symmetric ones



for the f’s. For a periodic structure we obtain the disper-
sion relation

KR (.LR A)EL A) (11)
(z = Ak~ (2 -~k

When plotted as cos ¢ against A, Bq. (11) is a hyperbola
with one horizontal asymptote. Figure 5 shows the fit of
the model to the dispersion curves for geometries A-G.
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Fig. 6. The double circuit chain solutions with
G identical cells (the plotting symbols) and the
TRANSVRS dispersion curves. "T'he dots give the
speed of light line.

We have repeated the caleulation for the NLC detuned
cavity, using the two band model. In onr discussion we will
focus on the properties of the first band modes, since they
dominate, Most of the modes are localized in the cavity,
some in only a few cells (as was also found in Ref. [10]).
T'wo example mode patterns as function of cell number m
are shown in Fig. 6. Figure 7 summarizes all the results.
We plot the frequency distribution (a), the kick factors (),
the product of these two functions (¢), which, when shifted,
gives the Fourier transform of the short range wake. The
dashes [in (a)-(¢)] connect the solution of the uncoupled
calculation. Note that the beginnings of a sccond peak
seen in frame (a) are modes belonging to the second dipole
passhand. In frame (d) we plot the wake, We see again
that it is acceptable for our needs. We find this result to be
insensitive to the choice of boundary conditions. Finally,
in Fig. 8 we show the kick profile 1/, seen by bunch number
ny = 2 and ny = 10 as they traverse the 200 cells. The arca
under this curve gives the wakefield seen by the bunch.
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Fig. 7. Double chain results for the NLC cavity.
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Fig. 8. The kick nrofile for bunches 2 and 10,
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