

LA-UR 93-463

CONF 930601-8

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

LA-UR-93-463

DE93 008712

TITLE: MULTIPROCESSING MCNP ON AN IBM RS/6000 CLUSTER

AUTHOR(S): Gregg W. McKinney
James T. West

SUBMITTED TO: 1993 Annual Meeting of the American Nuclear Society,
San Diego, CA, June 20-24, 1993

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

By acceptance of this article, the publisher recognizes that the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

RECEIVED
MAR 04 1993
OSTI

Los Alamos

MASTER
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

MULTIPROCESSING MCNP ON AN IBM RS/6000 CLUSTER

Gregg W. McKinney
Los Alamos National Laboratory
Los Alamos, NM 87545

James T. West
IBM Corporation
Houston, TX 77058

I. INTRODUCTION

The advent of high-performance computer systems has brought to maturity programming concepts like vectorization, multiprocessing, and multitasking. While there are many schools of thought as to the most significant factor in obtaining order-of-magnitude increases in performance, such speedup can only be achieved by integrating the computer system and application code.

Vectorization leads to faster manipulation of arrays by overlapping instruction CPU cycles. Discrete ordinates codes, which require the solving of large matrices, have proved to be major benefactors of vectorization. Monte Carlo transport, on the other hand, typically contains numerous logic statements and requires extensive redevelopment to benefit from vectorization.

Multiprocessing and multitasking provide additional CPU cycles via multiple processors. Such systems are generally designed with either common memory access (multitasking) or distributed memory access. In both cases, theoretical speedup, as a function of the number of processors (P) and the fraction of task time that multiprocesses (f), can be formulated using Amdahl's Law

$$S(f, P) = 1/(1 - f + f/P)$$

However, for most applications this theoretical limit cannot be achieved, due to additional terms (e.g., multitasking overhead, memory overlap, etc.) not included in Amdahl's Law. Monte Carlo transport is a natural candidate for multiprocessing.

since the particle tracks are generally independent and the precision of the result increases as the square root of the number of particles tracked.

II. MCNP MULTIPROCESSING WITH PVM

The Monte Carlo neutron, photon, and electron transport code MCNP,¹ developed by LANL (Los Alamos National Laboratory, X-6 Group), has an extensive list of attractive features, including continuous energy cross sections, generalized 3-D geometry, time dependent transport, and comprehensive source and tally capabilities. It is widely used for nuclear criticality analysis, nuclear reactor shielding, oil well logging, and medical dosimetry calculations (to mention a few).

Since the inception of multitasking software, MCNP developers have made it a high priority to support multitasking on a variety of common memory systems. With the widespread use of high-performance workstations, interest in multiprocessing MCNP on distributed memory systems has increased. Such systems, connected by high-speed communication networks, make it possible for codes like MCNP to achieve order-of-magnitude higher performance over current common memory systems. The software communication package currently supported within MCNP is Parallel Virtual Machine, PVM² (version 2.4.1), developed by ORNL (Oak Ridge National Laboratory). This package supports a variety of communication networks (e.g., Ethernet, Internet, FDDI, SLA) and computer systems (e.g., Cray; HP, Sun, and IBM workstations).

III. MCNP SPEEDUP ON AN IBM RS/6000 CLUSTER

The PVM version of MCNP was evaluated on a 16 processor IBM RISC (Reduced Instruction Set Computer) System/6000 Model 560 workstation cluster at LANL. Determining true speedup in a multi-user environment can be difficult due to a lack of appropriate timing routines. On a dedicated system, simple wall-clock time can be used to calculate speedup. The IBM RS/6000 operating system (AIX) provides user, system, and wall-clock timing routines; however, the user and system routines do not include "sleep" time. Thus, CPU time "wasted" during communication lag (e.g., the PVM master task waiting for replies from spawned subtasks) is not included in these timing routines.

In previous versions of MCNP, results were summed every 1000 particles to update certain tally tables. However, in the current version of MCNP this parameter

can be altered by the user and determines the amount of inter-task communication. Thus, this parameter has a significant impact on speedup. The sleep time of the master task, associated with this communication, is a result of the random nature of Monte Carlo tracking (i.e., processors tracking the same number of particles will not finish at the same time). Wall-clock timing on a virtually dedicated system indicates that this sleep time can be substantial, especially if communication is required every 1000 particles.

Speedup estimates were made using the following equation

$$S(P) = T_s/T_m(P)$$

where T_s is the CPU time for a single processor to complete execution and $T_m(P)$ is the CPU time for the PVM master task to complete execution with P subtasks. In MCNP, the master task initializes the problem, spawns the subtasks, collects the results, and writes the output files. Communication sleep time was accounted for in $T_m(P)$ by using the wall-clock time (AIX TIME utility) on a virtually dedicated system. Multiple off-hour runs and system-load monitoring were used to ensure that the system was dedicated. While this approach provided estimates of speedup to within about $\pm 2\%$, it most likely underestimates the speedup since system applications also compete for CPU cycles.

Table 1 presents MCNP speedup for the 16 processor IBM RS/6000 cluster. Ten test problems, representing a wide range in geometry and complexity, were chosen from the MCNP 25 problem test set for inclusion in this analysis. Execution times were made sufficient (~ 120 minutes) to eliminate any effect of the sequential problem initialization time (1-20 seconds). Figure 1 is a plot of the average speedup (of all ten problems) for saturated and standard communication (saturated being every 1000 particles and standard being the current MCNP default of 10 rendezvous during execution). The curve for saturated communication does indeed show that above 8 processors communication saturates the performance. On the other hand, the average speedup for standard communication increases linearly with the number of processors. Longer execution times result in a curve that approaches that of the theoretical limit.

IV. CONCLUSIONS

The PVM version of MCNP on a 16 processor IBM RS/6000 cluster produced speedups that approach the number of processors. Such speedup, in units of a

single processor Cray Y-MP (see figure 1, right ordinate), leaves little doubt that MCNP performance on a workstation cluster can greatly surpass that of most supercomputers. Reliability and speed of the communication network are critical factors in exploiting such distributed memory systems. Of the links available on the LANL IBM cluster, the Ethernet and FDDI links proved most reliable (>95%).

REFERENCES

1. "MCNP - A General Monte Carlo Code for Neutron and Photon Transport. Version 3A," LA-7396-M, Rev. 2, 1986.
2. "A Users' Guide to Parallel Virtual Machine," Adam Beguelin et al., Oak Ridge National Laboratory, ORNL/TM- 11826, July 1991.

TABLE 1
MCNP SPEEDUP ON THE LANL
16 PROCESSOR IBM RS/6000 CLUSTER

Number of Processors	MCNP Test Problem										Average
	3	5	10	11	12	14	15	16	20	23	
SATURATED COMMUNICATION											
2	2.0	1.9	1.9	1.9	1.8	1.9	1.9	1.9	2.0	1.9	1.9
4	3.7	3.5	3.5	3.3	2.9	3.6	3.7	3.5	3.7	3.6	3.5
8	6.5	6.1	5.7	5.3	4.0	6.6	6.8	6.3	6.6	6.1	6.0
12	9.0	7.8	7.3	6.7	4.3	8.7	9.0	8.2	9.1	7.8	7.8
16	10.2	9.5	7.7	7.0	3.6	7.6	9.3	8.4	9.9	7.5	8.1
STANDARD COMMUNICATION											
2	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
4	3.9	3.9	3.8	3.8	3.7	3.9	3.9	3.9	3.9	3.9	3.9
8	7.7	7.5	7.2	7.2	6.5	7.7	7.7	7.6	7.5	7.4	7.4
12	11.2	10.6	10.1	10.1	8.9	11.2	11.3	11.0	10.9	10.7	10.6
16	14.3	13.4	12.6	12.4	10.8	14.3	14.5	13.8	13.6	13.5	13.3

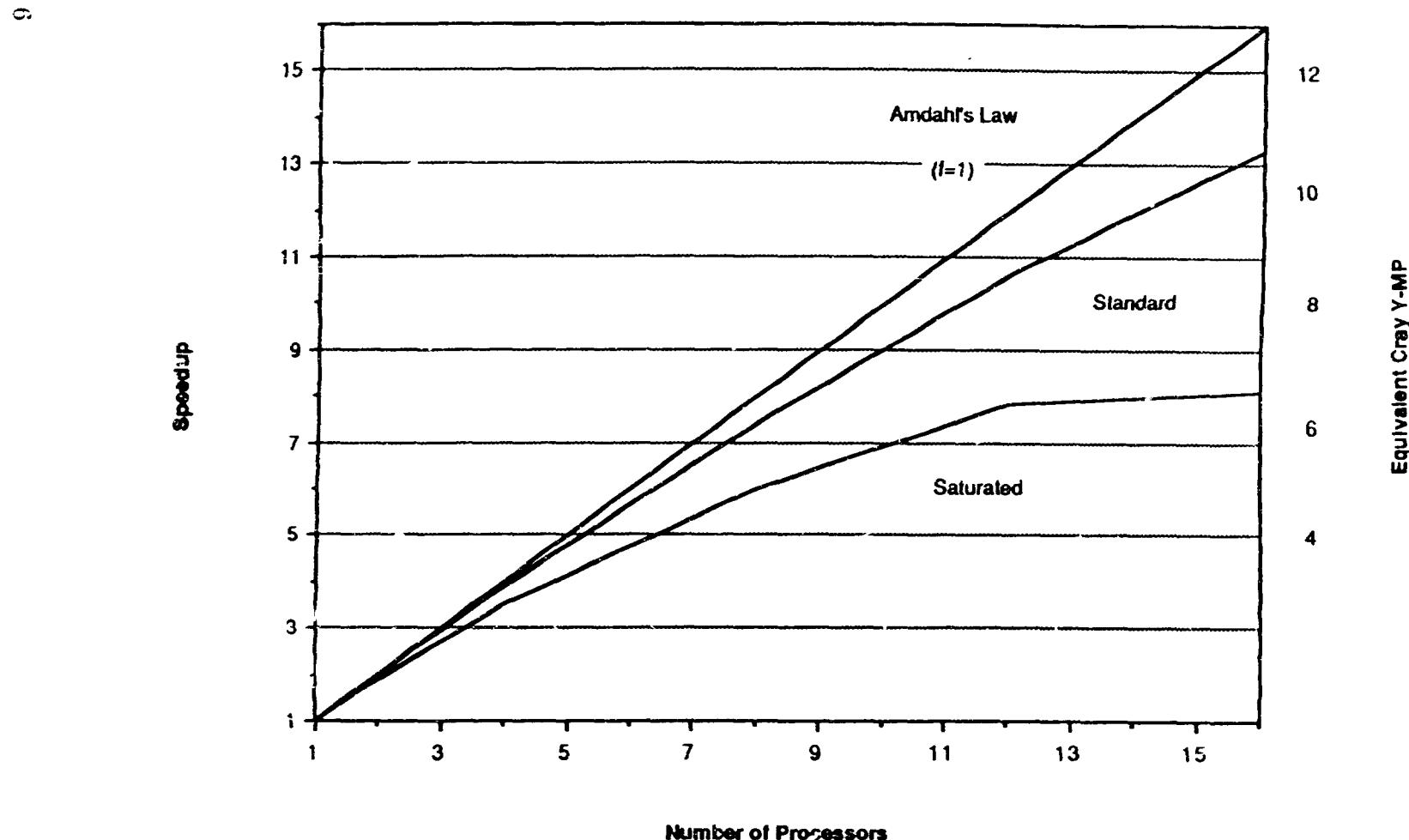


Fig. 1. MCNP Speedup on the LANL 16 Processor IBM RS/6000 Cluster.