
lilllIIILi.---IIILI
m_,m_iliil_Ilill_

IIII1_,lUll__ _ iuu_

°

. UC-405

. SAND94-8225
Unlimited Release

Printed March 1994

OPT+T: AN OBJECT-ORIENTED CLASS LIBRARY FOR NONLINEAR
OPTIMIZATION

J. C. Meza

Scientific Computing Department
Sandia National Laboratories / California

P,O. Box 969, MS 9214
meza_ca.sandia.gov

° ABSTRACT

" Object-oriented programming is becoming a popular way of developing new software.
The promise of this new programming paradigm is that software developed through these
concepts will be more reliable and easier to re-use, thereby decreasing the time and cost of the
software development cycle. This report describes the development of a C++ class library
for nonlinear optimization. Using object-oriented techniques, this new library was designed
so that the interface is easy to use while being general enough so that new optimization
algorithms can be added easily to the existing framework.

i

3/4

Olf6TRtL3UTION"_'"-l:" " "' _ 'C,_-I -.-,_;,:;[._OC...N,Eb,IT IS UNLIMITED

. Contents

1 Introduction 7
o

2 Object-Oriented Programming 8
2.1 Abstraction 9
2.2 Classes 9
2.3 Inheritance 9

2.4 Polymorphism 9

3 Optimization Classes 10
3.1 Nonlinear Pioblem Classes 11

3.2 Optimization Method Classes 12

4 Example Code 14

5 Summary 16

5/6

, 1. Introduction

Object-oriented programming (OOP) is becoming a popular way of developing new soft-

" ware. Unlike procedural progranmaing, which emphasizes the development of algorithms

to accomplish a specific task, object-oriented programming relies on the implementation of

new data types called objects. The promise behind this programming paradigm is that

software developed through these concepts will be more reliable and easier to re-use in new

applications, thereby decreasing the time and cost of the software development cycle.

.The main concept behind object-oriented programming is called data. abstraction, which

is the separation of the data, and the procedures for manipulating that data from an applica-

lion progranl. In IFlainy ways this is no different than good pI'ogralnming practices that try to

keel) tim unnecessary details of a particular code from an end-user. The major difference in

object-oriented programming is the ability to create user-defined data types and add them to

an existing language thereby facilitating data abstraction. It is these new objects that give

object-oriented progranHning its name. Through these new objects a computer language call

be easily extended to handle 1Jew at)l)lications. A good example of this feature is the matrix

package developed by Davies ([4]). With this package, a user can de ti_e vectors and matrices
as part of the language as well as use the standard operations defined tot these objects, such

as matrix addition, matrix multiplication, and inversion.

Another important trend is the renewed interest in nonlinear optimization. Optimization

" has always occupied a major role in industries, such as the airline industry, where scheduling

problems are important. Recently, however, optimization has taken on an increasingly ira-

. portant role in areas such as advanced manufacturing where rapid design and prototyping of

new processes and devices is essential. This trend is partly due to increased computer power

available to users that allows for the repeated computer simulation of n2anufacturing pro-

cesses and devices. While in the past the design process involved a large amount of humatl

iiiteractioll, it is now becoming feasible to a.utonlate the design l)rocess llsing Ol)timization

tools. This trend in increased computer power has also had an effect within the optimization

community where there has been an increased interest in large-scale ilonlinear ol)timization

problems [1].

Because of the wide variety of applications and the need to take advantage of any special

structure in a problem, many software packages have been developed to address various types

of optimization problems. For an excellent overview of the available optirnization software

see for example [7]. Unfortunately, the large number of optimization codes available makes

choosing a good algorithm for a particular problem difficult. This is especially true for the

novice practitioner of optimization. In addition, even if the methods are inherently similar,

the interface to the codes can be quite different making it difficult to experiment with various

nlethods. To resolve some of these issues code designers usually resort to one of two tricks:

1) force the user to use a particular calling sequence or 2) the optinlizal, ioll codes are writl;en

. using reverse communication. Neither solution is very satisfying for the reasolls exl)lained
l)elow.

It"the opl, iInizatioil algorilllln reqllires a particular calling sequence the user is force(l i1_lo

writing a subroutine that will interface between the optimizer and the function evaluator. ,

\'Vhile this is usually a straightforward task it may prove to be unwieldy and costly in certain

situations. In particular, we would like to focus on cases where the function evaluator is

described by the outl)ut of a simulation such as a finite-element analysis. In this case, the

prescribed interface may not be general enough to encompass all of the parameters required

to do a simulation or it may require the user to package any extra information in a pre-defined

packed forn_ e_t.

The second option that is frequently used is called reverse communication. In this case,

the optimization algorithm returns to the calling routine whenever it needs information to

proceed. This information may be a function value, a derivative, or any other data that is

required by the optimization algorithm. From the point ot view of tlm user this is a better

solution in that it requires less coding. From the point of view of the software developer

however, the job is more difficult. Outside of the fact that this type of coding violates several

good progra_nming practices (for example, single entry-single exit codes), the code is also

more difl3cult to debug. Another disadvantage is ttlat software using reverse communicalion

will be slightly more inefficient due to the frequent calling of and retllrning from subroulines
thai could involve several layers of sul)rotltines.

The goal of tllis work is to use the ideas of object-orienl,ed programming to overcome

these obstacles. In particular we hope to address the following issues:

• better program interfaces for the user of optimization (:odes

• rapid evaluation of several optimization codes for a given problem

• rapid development of new optimization algorithms

• more re-usability of optimization codes

The rest of tlfis paper is organized as follows. In Section 2 we introduce some concepts

from object-oriented programming that will be useful for our discussion of the optimization

'e _' •classes. The reader who is fanfiliar with obj .ct-ollented programming techniques can safely

skip this section. Section 3 describes a C++ implementation of an object-oriented class

library for unconstrained optimization. In Section 4 we giw_ an example of using a particular

class for solving a simple test problenl \Ve conclude in S..ctlon 5 with a (liscussion of future
work.

2. Object-Oriented Programming

There are four main ideas that we will use from object-oriented programming:

• abstraction

• classes and objects
• inheritance

• l)olymorphism

This report does not seek to give a full description of object-oriented programming, but

xlmrely to provide enough background material to discuss the new optimizatiorl classes. For

a fuller description of object-oriented programming see [2, .3, ,5, 10].

8

" 2.1. Abstraction

s " '" "' old one. In its most gelleral t'or1_l,Tim idea of abstraction in ,oftxx,-it(design is an

" abstraction Inea.ns tile ability to isolate infornlation pertaining to a l)articular software (losign.

In l)lO"((dural, progra.Inlning for example,, tile idea of abstra(:tion has led to l,l_o (:on(el)t, of
., .) .' , (_lnodular progralnming. In obj((.t-c_l(nt .d l)rogramrnil2g 1.12isidea is taken fllrl,l_er l,tlrough

t,lle illt, roduction of abstract data lypes. For l,lle l)llrposes ot' tl_is pal)er we will define an

ab._ll'a(,t data type as a user-(lefilled ('xt(,l_sion 1o a.n existi1_g language tyt)e. It will Usllally

consist Of a sot of data struclur('s a_(l a collectiotl of Ol)eratioils tlJat ('all 111a.llipulat(, tllose

(lata slrtl('tur('s. _I"hrollgll the rise of abstraction, code will llopeflllly 1)e more robust Sill(:("

(lolails of tiara Sll'll(,llll'(_'s alld {lie a]goril, l_1_ls l.]lat n)allil)llla, l,(_ l,]leln are isolat(,(l t•roill l,lle
IIS('I',

2.2. Classes

I l_(liext collcet)t l.hat is llseful is that of a class A class is a user-defilied data. tyl)e

tl_at allows for data hiding. A class typi('ally (:ollsists of 1)oth a data structure and a groul)

()t' sl_l)routi_(,s tltat (:a_ _anil)ulat,(" t]_es(" (lata sti'llCtlll'(*s. Tilt' data i_si(le 1,he stl'll('tlll'(, is

]_i(l(len from lhe user i_ t])at tile o_ly way to a(,cess it is tlarough tt_e subroutin(,s de,fined

as part of the class. In this _al_l_(,r, the user (lees _()t lleed to kl_ow a l)o_t tile t)arti('ular

in_t)leme_talio_ of t]_e class 1)ut ('atl ('otlcel_trate ()_ tl_e use of it. e\t_ objccl is thell just a

l)arti('_lar instance of a (:lass. _l'l_(, a.l_alogy i_l a l)ro(,edural lal_guag(, is t l_al of a varial)le

I)eil_g a particular instal_ce of a l)r('-(lefil_e(l lyl)(, suc]_ as al_ i_t.eger.

A_ ov('rworked but simple exax_l)le is that of a COml)lex data tyl)e. Ill this exa_nl)le, we

(:o_ld defi_w a class called complex that co_sists of a pair of existing lm_guage t,yl)es; for
cxa_nple, two floats• A bett(.q" examl)le is that of a class called Vector that could be defined

as an array of floats together wit l_ an int that defines the size of tl_e v,'(,cto_.' The diff(_r(_nce

1)(,lween the class Vector and al_ array wl_ich already exists in _nosl languages is that we,

can xlow define ol)ei'ations that can be used with these objects. Thus we coul(l (lefi_e vector

addition using the standard "+" operator b..t_ecl_ two Vectors of the same size

2.3. Inheritance

Ilxheritance allows for easy extensio_ ot' cal)abilities and is l)erlial)s the n_ost important

new concept, after that of the class. The idea behind inheritanc(-, is that a new class can

1)e defined using a previously defined class as a template. I_ the terminology of OOP tl_e

template is called the base class and the new class is derived from the base (:lass by adding
_(-,w features to it.

O_e of the advantages of il_heritance is tl_at all of ll_e algorithn_s deflated as l)art of the
o1(1 (,lass are slill valid for the l_(:'xx'class. This results in _nore reusable co(le since it is _()t

necessary to rewrite t.his l)ortion of the algorithm for the derived classes.

2.4. Polymorphism

Tt_e last concel)t we will discuss is called polymorphism. Ii_ (:++, it is fossil)It: to I_ave a
• e,. _l)oil_ter 1o a function that will l)crfor_n cliff _ent actions depending on what (:lass it belongs

9

to. In this way, it is possible to defer an algorithnlic design decision until it is required. In
the OOP terminology, these functions are called virtual functions. If a class contains virtual
functions then it is called an abstract class. The reason for this distinction is that an abstract

class can never be used l,o create an object, it can only be used as a base class for other"
derived classes.

3. Optimization Classes

There have been several attempts at designing optimization classes. In [9] Schoenberg
developed a set of classes for the unconstrained optimization of arbitrary functions. Schoen-
berg describes 3 classes that together choose a. particular algorithm, set the tolerances, and
perform the actual optimization. Nichols et al. [8] have also developed optimization classes
tk)r liilea.r opera.tors ill the physical sciences and specifically for linear operators arisirlg from
geopllysical inversioll problems.

We will tal<e a slightly different approach by making a distinction between nonlinear
prol)lems and the methods used to solve these problems. The rationale for this decision is
that users seldom are aware of the intricacies of the various methods nor should they need to
become experts in numerical analysis. On tile other exl,reme, the developer of ol)timization
algorithms usually does not care about the details of how a probleln is defined other tllan to
know certain mathematical lm)perties and some general problem characteristics. By making
a distinction between problems and methods we can develop codes tlla,l, will hopefully be *
used by both groups without having to rewrite the class libraries every time a new problem
is presented or a new algoritlun is dew'.loped.

We will write the general nonlinear optimization problem as follows:

rain /(z) (1)
xEt'P_

subject to h_(:r)=O, i= 1,...,p,

9i(a:) k O, i= 1,...,m.

In this problem, the objective ftu_ction .f(.r.) and the constraint functions hi(a:) and 9i(a:)
are assumed to be general nonlinear functions. In this report, we will limit our scope to
consider only the unconstrained optimization problem. The question of whether classes
for unconstrained optimization problems stlouhl be subclasses of the general optinlization
problem is rather tricky and we will delay the discussion of this issue until the last section.

The end-users of optimization algorithms are usually quite knowledgeable about the
problems they are trying to solve. However, this information usually pert;fins I,o the physical
problem or to the algorithmic details of the computer model. For instance, the user will
know the dimension of the problem, w]mther analytic first or second derivatives are available,
and a general idea about the cost of a function evaluation. The developer of optimization
algorithms on the other hand, would usually like to know more about tim mal,hematical
properties of the problem as well as any specia.1 structure that might be exploited. For
example, a developer might ask any or all of the following questions:

• How smooth is the t'unctioll? Is the t'unction C °, C 1, C 2, etc.?

10

• • Does the objective function have any special properties, for example, is it a linear

function, a quadratic function, etc.?

• Is this a large dimensional problem?
a

• Is there any other special structure to tile problem? For example, is this a partially

separable problem?

• How many digits of accuracy floes tim objective function have? How many digits of

accuracy does the derivative function have?

• Is the Hessian matrix sparse or dense?

• Is the objective function expensive to compute?

To consider the first property only, available optimization algorithms could be c.lassified

according to the amount of smoothness assumed in the objective function. For example, if

the function is C 2 (twice continuously differentiable), then one could use a Newton method.

However, if the function is only continuous, then one would probably use a direct-search

method. For most users it may be difficult to prove how much continuity the objective

function llas and therefore they may not be able to pick the most api)ropriate method.

What is more likely is that a user will use the first available optimization software or the

easiest olin to use among several, usually with mixed results.

It seelns appropriate then to define nonlinear problems from the point of view of the user.

On the other hand, optimization method classes should be defined from the point of view of

ttle developer, as there is a great deal of similarity between va.rious algorithms. In tlle rest

of this section, we propose such a division and discuss a set of C++ classes for eacll one of
these two cases.

3.1. Nonlinear Probleln Classes

One of the first questions that arises is the degree of continuity in the objective function.

This information may not be readily available, but what is clear is the availability of ana-

lytic derivatives. As such we've chosen to classify nonlinear programming problems by the

availability of functions for computing the derivatives:

NLP0 - No derivative information available

NLP1 - Analytic first derivatives available

NLP2- Analytic first, and second derivatives available

In Figure 1, we present one iml)lementation of a nonlinear problem class. The first class
we define is called NLP0 for NonLinear Problem C °. This class contains information common

to all problems including: 1) the problem dimension, 2) a current point, 3) a function value,

and 4) a function to evaluate the objective function.

The class NLP1 is derived from the base class NLP0 by adding a member for the gradient

• and a function to evaluate the gradient. Likewise, the class NLP2 is derived from NLP1 by

adding the necessary information to compute and store the Hessian. By using inheritance

we have been able to take advantage of the code that is already written at the lower levels.

11

V

4

NLP2

SymmetricMatrix Hessian
EvalH0

NLPI

ColumnVector Grad
EvalG0

i ii llll

NLP0

int dim
ColumnVector xc
void *Data
double fvalue
double EvalFO
-virtual void EvalO

i i i i a

i
i

Figure 1: Nonlinea, r problenl classes
m

It is not, intended that, tllese base cla,sses (,ov_l near• e" every nonli prol)leln, but sta,rting
with these classes tim user can build new ¢la.,st:s l,tlal, con' "s'" ta,irl the specific details of tl)e real

l)mblem. Since the Ol)timiza,tio_l lnethod cla.sses described below will use the base cla.sses,

the optimization a,lgorittlms will still work with the llew user classes without ha.ving to be
rewritten.

In our implementation of tlle optimiza.tion classes, we have defined the functions tha.t

evaluat.e the objective fullction, gradient, and Hessian as virtllal fullctions. As we mentioned

ill the previous section, this means that the NI,PX classes (wllere X can stand for 0, 1, or

2) are abstract classes and can only be used as base classes for other clas,_e,s."• s :' This a,llows us

, e' "" a,ctua, lly computed soto defer the definition of how the function gradient, and II _sslan are

tha.t users can crea,te their own definitions. In cs,"semce-_,the base classes conta.in placeholders

t'or l,lle codes that, will be ca.lied to compute the objective function.

As part of our implementation we also provide .3 classes derived fi'om NI, PX ca,lied NLFX
r 1 2,

tllat ha.re a. particular ca,lling sequence to the required functions. I hes(. cla.sses can be used to

solve some simple optimization problems or ca.n be used a,s templa.tes for more sophisticated

objective functions. In Section 4, we will give some examl)les using the NLI X classes to
demonsi, rat,e some of the feat, ures of our class libraries.

a.2. Optimization Method Classes

lhere a,re many classifica.tions possible for optimizi_tion a.lgorithms but lnost well-krlown

nlethods can be grouped into one of tllree cla,sses:

12

Direct CG-Like Newton-Like

Quasi- Newton FD
PDS CG LBFGS Newton Newton

Figure 2: Optimization method hierarclly

• Direct Search methods

• Conjugate gradient like methods
• Newton like methods

For example, methods suc]l as the Nelder-Mead simplex method, tile box method, and tile
con.lugatparallel direct search method fall into the direct search class. The nonlinear " ' ¢"

gradient method and limited memory BFGS methods fall into the Conjugate Gradient class.
Finally the Newton class, could include Inetlmds such as finite-difference Newton, quasi-
Nmvton methods, and inexact N¢,wton methods. A simple taxonomy for sonle popular
algorithms is given in Figure 2 as an example.

Based on this classification, we have implemented C++ classes for 4 different methods:
1) a Newton method, 2) a finite-difference Newton method, 3) a Quasi-Newton method, and
4) a nonlinear conjugate gradient method. In Figure 3, we present the class lderarchy for
two of tile implemented methods. The base class, called Optimize consists of information
that is required by all optimization classes. We note that once again we have used the
concept of polymorphism through the use of the virtual function optimize(). This function

- is intended to be a placeholder for tile actual function that will do tile optimization. Since
each method class will have its own algorithm for computing the minimum of a function, it
is not necessary to define it in the base class. However, it is important to define the inte.rface
at this point since it is common to all of the derived classes.

The next next two classes OptQNewtonLike and OptCGLike are derived fronl the
Optimize class. The major difference between these two classes is that the Newtoll-like

13

Optimize

int dim
TOLS *tol
double fprev, step length
int ret_code, iter_taken, fcn_evals
virtual void optimize() = 0
virtual void CheckConvgO = 0

l OptNewtonLike 1 OptCGLike

ColumnVector gprev ColumnVector gprev
SymmetricMatrix Hessian int grad evals
int grad_evals virtual void optimize()
virtual void optimize() virtual void CheckConvg0
virtu,_l void CheckConvg 0

k

OptQNewton OptCG

NLP1 *nip NLP1 *nip
void optimize() void optimize()
int CheckConvg 0 int CheckConvg0

iHII

lqgure 3" Optinlizatioll))let,llod classes •

classes require extra storage for the ttessiall matrix]:inallv, (,he la.s(, two cla,ss¢:, OptQNew-
ton and OptCG collsl, ilul, e tim a,cl.llal Ol)timizat, ion mcl, llods. I(, is l.tl¢':s'¢'.(,wo classes 1,hal,

define the optimization algorithms specific to eacll method. In the case ot' tlw OptQNew-

ton class, the algorithm consists of a Quasi-Newton method witll a BEGS update t'ovmula

' " e - nonlinear conjugal,:, gradient nwt, hod.for the ltessian. The OptCG class implore .nts a. - e

As a.11examl)le of the 1"e:-usability of object-ollent"" e.d codes, all of the litlcar a.lg(,l)ra is

]la.ll(l](,(l (..hrough (,lie use of (.he nlal, rix l:)ackage develol)ed by l)avies [,I], wi(,ll solnc llliIIOr

en]lanc('nwllts for (.h(: matrices (,hal, arise in the opl, imization a.lgorith_ns. In addil, io11, all of

the optimization m ,l,hods use samee ' t,lle line searcll, which is based on tile a.lgori(.llm 1)3;More

and] hu¢.nt,e [6].

4. Example Code

To illustrate some of the concepts, we now l)rescn(, a.n examl)le thal, solves a s)nall non-
r _ _linear optimization 1)roblem using the ol)timiza.tion classes. Ih. test prol>len:l COllsist,s of

llosenbrock's function,

,ni, loo(,T- + (1-;r,)
11"

_1,Iwith an inii, ial guess of (-1.2, 1.0). In this example, we will a.ssume (,liar first, derivatives" "e •
availa, ble but that second deriva(.ives are not ava.ilable. We will use a quasi-Newl, oIl lllet, hod

tllat employs a BF'GS update forlnula, for the Hessia,n.

14

] #include"opt.h"
2 void rosen(int mode, int n, ColumnVector x, double& fx, CohtmnVecl, or_ g);
3

4 ma.in ()

6 int n = 2;
7 ColumnVec.tor x(n), g(n);
8

9 USI_IUi'CN1 tstf = &rosen; // Define the tesl funclion
10

11 NLF1 nlp(n,tstf); // Define the Nonlinear probh'.m
12

13 x(1) =-1.2;
14 x(2)=l.0;
15 nlp.Sel, X(x);
16 nlp.gval(); // Evaluate the function at a'
17

18 TOLS l,ol; /i/ Create a "Tblcra,',,ces" objccl and
19 tol.Setl)efaultTol(); i// set the tole ranc(::s
20 tol.SetFl, ol(1.e-9);
21 tol.SetMa.xlter(100);
22

23 OptQNewton objfcn(,_nll),&tol); /i/ Build a Quasi-Ncwlo'u object and opli'mizc
24

25 objfcn.optimize();
26

27 lflp.Prinl, State("Solution from quasi-newton");
2s }

Figure 4: Example code for solving t{osenbrock's function

15

Figure ,,1 displays the source listing fox" the sample problem. There are three major

seclio_ls in the example code: 1) the I)roblena definition, 2) the tolerance definition, and 3)

the nielhod definition. Since only first derivatives are available, we first, crea.te an object of

iype NLF1 on liim 11. The two conlponents needed to specify this object are the dimension

of lille problem and a. pointer to a function. The next step is to set the initial guess for this

l)roblem. Here we are using two of the member functions for NLF1 to a,ccess the data in
the class and to evaluate the function at the current point.

The next step is to create a, TOLS object on lines 18-21 that conta,ins the tolerances

l llal will be used in the optimization method. In fa.ct, the optimization method object can

1)e crealed without a _pecific reference to a. TOLS object but if the user wishes to change

ally of the default tolerances it, is necessa,ry to create the TOLS object.

Tile last slep consists of creating an optimization hie(hod object from the OptQNewton

('lass usiIlg the NLF1 and TOLS objects. We tliell call the member function optimize on

lill(' 25 tO do the actual optimization. Finally the solution is printed using the PrintS(ate
nieml)er t'ullction.

\'ge 1lore l]la l, if the user would now like to fry a dift'erenl Ol)tilniZal, ioll method, tlle

l)rocedure would consist of replacing line 2:1 wil,tl the (real toll Of a, difl'erelll type of object,

for(:xanlple an OptCG ob,iect Io try ill(' nollliilear conjugale gradienl metllod.

5. Summary

In this report, we llave presented a ('++ ('lass library for nonlinear UIiCOllStraiIled opti-

mizalion. We have l)rOl)osed thai a clear distill((ion be made between Imnlillear problelns .

and ol)timization methods. Based oll this distinction we tlave iml)lenlenied a ,(t of ol)jecl-

oriented (:lasses specifically suited to each case. In lilts way, we have been able t,o develop a

set of classes l hai address the iml)ortanl issues for both the users and the develot)ers of Ol)-

linlizal.ion algorithms. From the point of view of a user requiring an Ol)timizatioll algorilhln
S'Io solve a l)arl.icular prol)lem, these hblaIl(, have l)e('1_ wril.ten so lllat l,hey are easily u.((l.

]:tom the point of view of someone develol)ilig optimization algoriihnis, flies(, classes have

I_(,('n designed so tltal. _exx' algoritl_ms can be easily i_('orl)oraied, iI_lo ll_("existing fra_nework.
• "e "e\Ve (,_rl'e_l Ix"l_av(' four n_etl_ods in_l)l(,_e_te(l" 1) a Newlo_ n_elhod, 2) a fi_ite-(liff(_ _(

.X(,wlo_ _lel]_o(-], 3) a Q_asi-Newlo_ _el.h()(l, a_(l .1) a _o_llinear conjugal.e gradie_l, n_ethod.

lq_l_lr(" work will (,on('e_Iraie o_ in(,Orl)orating new algoritl_n_s. In parl.icular, we are c_)'-

r('nlly working on develol)i_g new algorithms based o_ l)attern search n_ell_ods for lhe (,as(,

of noisy ot)t i_izal ion. \Ve are also workii_g ()_ i_l)lem('_ling _ew classes for large-scale op-

l imizalio_l S_n(mosl oflhel)Ol)ular methods for large-scaleol)limization _s(' varialionsof

one of 1.11omell_ods already iml)lemented, lh(" extension to large-scale problems should be

st raight forward.
.,\noiher area we will address concerns i lie (a.("s"of conslrained ol)tin_izal, ion problen_s. 'l'l_e

(l_('sl io_ we wish 1o address is whether ll_e co_slrained optin_izalion case is a sub-class of lhe

u_(,ol_sl rained o1_Ii_izal io_ case or is a ('onslrained ol)t.imization problen_ ii_ unconst rai_ed

l)robl(,_ lhal hal)l)e_s lo hay(' (:onsl.raints. In tl_e OOP terminology, this is the "is-a" v(,rs_s

_ "]_as-a" (lueslion. w[_i('[_has i_nl)licatio_s in the i_nl)le_eniation of new classes.

16

, Finally, we note that the libraries presented in this article should not be considered as

a finished product. The true test will be the usefulness of these class libraries for solving

real-world applications. Towards this end, we are also developing a suite of test problems

" from various manufacturing design problems using the nonlinear problem classes developed
here.

REFERENCES

[1] Brett M. Averick and Jorge J. More. User guide for the MINPACK-2 test problem collection. Technical
Report ANL/MCS-TM-157, Argonne National Laboratory, 1991.

[2] Timothy Budd. An Introduction lo Object-Oriented Programming. Addison-Wesley, Reading, MA,
I991.

[3] David M. Butler. Fundamentals of object-oriented programming. Limit Point Systems, Fremont CA,
1992.

[4] R. B. Davies. NEWMAT07, an experimental matrix package in C++. robertd@kauri.vuw.ac.nz, 1993.
[5] Allen I. Holub. C+ C-I--t- Programming With Objects in C a77.d('+-t-. McGraw-Ilill, New York, NY,

1992.

[6] Jorge J. More and David J. Thuente. Line search algorittlms with guaranteed sufficient decrease.
Technical Report MCS-P330-1092, Argonne National Laboratory, 1992.

[7] Jorge J. More and Stephen J. Wright. OplimizalioT_ Software Guide. SIAM Press, Philadelphia, PA,
1993.

[8] Dave Nichols, Geoff Dunbar, and Jon Claerbout. The C++ language in physical science. In OON-
SKI '93, pages 339-353, April 1993. Proceedings of the First Annual Object-Oriented Numerics
Conference.

[9] Ronald Schoenberg. An object-oriented design of an optimization module. In OON-SKI '93, pages
132-139, April 1993. Proceedings of the First Annual Object-Oriented Numerics Conference.

[10] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, Massachusetts, 1987.

18

UNLIMITED RELEASE

INITIAL DISTRIBUTION:
,11

Dr. Paul Boggs
National Institute of Standards and Technology

• Building 101 A-238
Gaithersburg, MD 20899

Dr. Richard H. Byrd
University of Colorado
Department of Computer Science
Campus Box 430
Boulder, CO 80309

Dr. Maria Rosa Celis
Silicon Graphics Computers
M/S 9L/420
2011 N. Shoreline Dr.
Mountain View, CA 94039

Dr. Thomas F. Coleman
Cornell University
Department of Computer Science
Upson Hall

'_ Ithaca, NY 14853-7501

Dr. Edward J. Dean
" University of Houston

Department of Mathematics
4800 Calhoun Rd.
Houston, TX 77004-2610

Dr. John E. Dennis, Jr.
Department of Mathematical Sciences
Rice University
P.O. Box 1892
Houston, TX 77251-1892

Dr. Jorge More
Argonne National Laboratory
Mathematics and Computer
Science Division

, Argonne, IL 60439-4803

Dr. Stephen Nash
o Operations Research and Applied Statistics

George Mason University
Fairfax, VA 22030-4444

19

Dr. Jorge Nocedal
Department of Electrical Engineering and Computer Science
Northwestern University
Evanstown, IL 60208-0001

Dr. J. Ben Rosen ,
University of Minnesota
Department of Computer Science
200 Union Street SE
Minneapolis, MN 55455-0154

Dr. Robert Schnabel
Department of Computer Science
University of Colorado at Boulder
Campus Box 430
Boulder, Colorado 80309-0430

Dr. William Symes
Department of Mathematical Sciences
Rice University
P.O. Box 1892
Houston, TX 77251-1892

Dr. Richard Tapia
Department of Mathematical Sciences
Rice University
P.O. Box 1892
Houston, TX 77251-1892

Dr. Virginia Torczon
Department of Mathematical Sciences
Rice University
P.O. Box 1892
Houston, TX 77251-1892

Dr. Homer Walker
Department of Mathematics and Statistics
Utah State University
Logan, Utah 84322-3900

Dr. Margaret Wright
AT&T Laboratories
Room 2C-462
600 Mountain Avenue
Murray Hill, NJ 07974

J

2O

I In

Dr. Stephen J. Wright
Argonne National Laboratory
MCS Division
Argonne, IL 60439

v

LLL-316 Steve Ashby

t

MS 1111 S.S. Dosanjh, 1402
MS 1111 W.J. Camp, 1421
MS 1110 B.A. Hendrickson, 1422
MS 1110 R.A. Allen, 1422
MS 1110 D.E. Womble, 1422
MS 1111 J.N. Shadidl, 1421
MS 1110 E.F. Brickell, 1423
MS 1109 R.W. Leland, 1424
MS 0819 J.M. McGlaun, 1431
MS 0439 G.M. Reese, 1434
MS 9011 T.H. Jefferson, 1952

MS 9001 J.C. Crawford, 8000, Attn:
1900 D. L. Crawford
5200 E.E. Ives
5300 J. B. Wright
8200 R.J. Detry
8300 W.J. McLean

, 8400 L.A. Hiles
8500 P. N. Smith
8600 L. A. West

' 8700 R. C. Wayne

MS 9004 M.E. John, 8100
MS 9201 R.J. Gallagher, 8114
MS 9214 R.S. Judson, 8117
MS 9214 J.C. Meza (35), 8117
MS 9021 Publications for OSTI (2), 8535
MS 9021 Publications/Technical Library Processing, 8535 (7141)
MS 0899 Technical Library Processes (4), 7141
MS 9017 Central Technical Files (3), 8523-2

21

j I
I

4

•

I I

