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ABSTRACT

Object-oriented programming is becoming a popular way of developing new software.
The promise of this new programming paradigm is that software developed through these
concepts will be more reliable and easier to re-use, thereby decreasing the time and cost of the
software development cycle. This report describes the development of a C++ class library
for nonlinear optimization. Using object-oriented techniques, this new library was designed
so that the interface is easy to use while being general enough so that new optimization
algorithms can be added easily to the existing framework.
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1. Introduction

Object-oriented programming (OOP) is becoming a popular way of developing new soft-
ware. Unlike procedural programming, which emphasizes the development of algorithms
to accomplish a specific task, object-oriented programming relies on the implementation of
new data types called objects. The promise behind this programming paradigm is that
software developed through these concepts will be more reliable and easier to re-use in new
applications, thereby decreasing the time and cost of the software development cycle.

The main concept behind object-oriented programming is called data abstraction, which
is the separation of the data and the procedures for manipulating that data from an applica-
tion program. In many ways this is no different than good programming practices that try to
keep the unnecessary details of a particular code from an end-user. The major difference in
object-oriented programming is the ability to create user-defined data types and add them to
an existing language thereby facilitating data abstraction. It is these new objects that give
object-oriented programming its name. Through these new objects a computer language can
be easily extended to handle new applications. A good example of this feature is the matrix
package developed by Davies ([4]). With this package, a user can define vectors and matrices
as part of the language as well as use the standard operations defined for these objects, such
as matrix addition, matrix multiplication, and inversion.

Another important trend is the renewed interest in nonlinear optimization. Optimization
has always occupied a major role in industries, such as the airline industry, where scheduling
problems are important. Recently, however, optimization has taken on an increasingly im-
portant role in areas such as advanced manufacturing where rapid design and prototyping of
new processes and devices is essential. This trend is partly due to increased computer power
available to users that allows for the repeated computer simulation of manufacturing pro-
cesses and devices. While in the past the design process involved a large amount of human
interaction, it is now becoming feasible to automate the design process using optimization
tools. This trend in increased computer power has also had an effect within the optimization
community where there has been an increased interest in large-scale nonlinear optimization
problems [1].

Because of the wide variety of applications and the need to take advantage of any special
structure in a problem, many software packages have been developed to address various types
of optimization problems. For an excellent overview of the available optimization software
see for example [7]. Unfortunately, the large number of optimization codes available makes
choosing a good algorithm for a particular problem difficult. This is especially true for the
novice practitioner of optimization. In addition, even if the methods are inherently similar,
the interface to the codes can be quite different making it difficult to experiment with various
methods. To resolve some of these issues code designers usually resort to one of two tricks:
1) force the user to use a particular calling sequence or 2) the optimization codes are written
using reverse communication. Neither solution is very satisfying for the reasons explained
below.

If the optimization algorithm requires a particular calling sequence the user is forced into
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writing a subroutine that will interface between the optimizer and the function evaluator.
While this is usually a straightforward task it may prove to be unwieldy and costly in certain
situations. In particular, we would like to focus on cases where the function evaluator is
described by the output of a simulation such as a finite-element analysis. In this case, the
prescribed interface may not be general enough to encompass all of the parameters required
to do a simulation or it may require the user to package any extra information in a pre-defined
packed form:t.

The second option that is {requently used is called reverse communication. In this case,
the optimization algorithm returns to the calling routine whenever it needs information to
proceed. This information may be a function value, a derivative, or any other data that is
required by the optimization algorithm. From the point of view of the user this is a better
solution in that it requires less coding. From the point of view of the software developer
however, the job is more difficult. Outside of the fact that this type of coding violates several
good programming practices (for example, single entry-single exit codes), the code is also
more difficult to debug. Another disadvantage is thal software using reverse communication
will be slightly more inefiicient due to the frequent calling of and returning from subroutines
that could involve several layers of subroutines.

The goal of this work is to use the ideas of object-oriented programming to overcome
these obstacles. In particular we hope to address the following issues:

better program interfaces for the user of optimization codes

rapid evaluation of several optimization codes for a given problem
rapid development of new optimization algorithms

more re-usability of optimization codes

The rest of this paper is organized as follows. In Section 2 we introduce some concepts
from object-oriented programming that will be useful for our discussion of the optimization
classes. The reader who is famiiliar with object-oriented programming techniques can safely
skip this section. Section 3 describes a C++4 implementation of an object-oriented class
library for unconstrained optimization. In Section 4 we give an example of using a particular
class for solving a simple test problem. We conclude in Section 5 with a discussion of future
work.

2. Object-Oriented Programming

There are four main ideas that we will use from object-oriented programming:

abstraction

classes and objects
inheritance
polymorphism

This report does not seek to give a full description of object-oriented programming, but
merely to provide enough background material to discuss the new optimization classes. For
a fuller description of object-oriented programming see [2, 3, 5, 10].
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2.1. Abstraction

The idea of abstraction in software design is an old one. In its most general form,
abstraction means the ability to isolate information pertaining to a particular software design.
In procedural programming for example, the idea of abstraction has led to the concept of
modular programming. In object-oriented programming this idea is taken further through
the introduction of abstract data types. For the purposes of this paper we will define an
abstract data typc as a user-defined extension to an existing language type. It will usually
consist of a set of data structures and a collection of operations that can manipulate those
data structures. Through the use of abstraction, code will hopefully be more robust since
details of data structures and the algorithins that manipulate them are isolated from the
tser,

2.2. Classes

The next concept that is useful is that of a class. A class is a user-deflined data type
that allows for data hiding. A class typically consists of both a data structure and a group
of subroutines that can manipulate these data structures. The data inside the structure is
hidden from the user in that the only way to access it is through the subroutines defined
as part of the class. In this manner, the user does not need to know about the particular
implementation of the class but can concentrate on the use of it. An object is then just a
particular instance of a class. The analogy in a procedural language is that of a variable
being a particular instance of a pre-defined type such as an integer.

An overworked but simple example is that of a complex data type. In this example, we
could define a class called complex that consists of a pair of existing language types, for
example, two floats. A better example is that of a class called Vector that could be defined
as an array of floats together with an int that defines the size of the vector. The difference
between the class Vector and an array which already exists in most languages is that we
can now define operations that can be used with these objects. Thus we could define vector

addition using the standard “+" operator between two Vectors of the same size.

2.3. Inheritance

Inheritance allows for casy extension of capabilities and is perhaps the most important
new concept after that of the class. The idea behind inheritance is that a new class can
be defined using a previously defined class as a template. In the terminology of OOP the
template is called the base class and the new class is derived from the base class by adding
new features to it.

One of the advantages of inheritance is that all of the algorithms defined as part of the
old class are still valid for the new class. This results in more reusable code since it is not
necessary to rewrite this portion of the algorithm for the derived classes.

2.4. Polymorphism
The last concept we will discuss is called polymorphism. In C4+4, it is possible to have a

pointer to a function that will perform different actions depending on what class it belongs
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to. In this way, it is possible to defer an algorithmic design decision until it is required. In
the OOP terminology, these functions are called virtual functions. If a class contains virtual
functions then it is called an abstract class. The reason for this distinction is that an abstract
class can never be used to create an object, it can only be used as a base class for other
derived classes.

3. Optimization Classes

There have been several attempts at designing optimization classes. In [9] Schoenberg
developed a set of classes for the unconstrained optimization of arbitrary functions. Schoen-
herg describes 3 classes that together choose a particular algorithm, set the tolerances, and
perform the actual optimization. Nichols et al. [8] have also developed optimization classes
for linear operators in the physical sciences and specifically for linear operators arising from
geophysical inversion problems.

We will take a slightly different approach by making a distinction between nonlinear
problems and the methods used to solve these problems. The rationale for this decision is
that users seldom are aware of the intricacies of the various methods nor should they need to
become experts in numerical analysis. On the other extreme, the developer of optimization
algorithms usually does not care about the details of how a problem is defined other than to
know certain mathematical properties and some general problem characteristics. By making
a distinction between problems and methods we can develop codes that will hopefully be
used by both groups without having to rewrite the class libraries every time a new problem
is presented or a new algorithm is developed.

We will write the general nonlinear optimization problem as follows:

min - f(x) (1)
subject to hi(2) =0, i=1,...,p,
gi(x) >0 1=1,...,m.

In this problem, the objective function f(x) and the constraint functions h;(x) and gi(z)
arc assumed to be general nonlinear functions. In this report, we will limit our scope to
consider only the unconstrained optimization problem. The question of whether classes
for unconstrained optimization problems should be subclasses of the general optimization
problem is rather tricky and we will delay the discussion of this issue until the last section.

The end-users of optimization algorithms are usually quite knowledgeable about the
problems they are trying to solve. However, this information usually pertains to the physical
problem or to the algorithmic details of the computer model. TFor instance, the user will
know the dimension of the problem, whether analytic first or second derivatives are available,
and a general idea about the cost of a function evaluation. The developer of optimization
algorithms on the other hand, would usually like to know more about the mathematical
properties of the problem as well as any special structure that might be exploited. Lor
example, a developer might ask any or all of the following questions:

o How smooth is the function? Is the function C°, C', C?, etc.?
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e Does the objective function have any special properties, for example, is it a linear
function, a quadratic function, etc.?

e Is this a large dimensional problem?

e Is there any other special structure to the problem? For example, is this a partially
separable problem?

e How many digits of accuracy oes the objective function have? How many digits of
accuracy does the derivative function have?

o Is the Hessian matrix sparse or dense?

o Is the objective function expensive to compute?

To consider the first property only, available optimization algorithms could be classified
according to the amount of smoothness assumed in the objective function. For example, if
the function is C'? (twice continuously differentiable), then one could use a Newton method.
However, if the function is only continuous, then one would probably use a direct-search
method. For most users it may be difficult to prove how much continuity the objective
function has and therefore they may not be able to pick the most appropriate method.
What is more likely is that a user will use the first available optimization software or the
casiest one to use among several, usually with mixed results.

It seems appropriate then to define nonlinear problems from the point of view of the user.
On the other hand, optimization method classes should be defined from the point of view of
the developer, as there is a great deal of similarity between various algorithms. In the rest
of this section, we propose such a division and discuss a set of C++ classes for each one of
these two cases.

3.1. Nonlinear Problem Classes

One of the first questions that arises is the degree of continuity in the objective function.
This information may not be readily available, but what is clear is the availability of ana-
Iytic derivatives. As such we’ve chosen to classify nonlinear programming problems by the
availability of functions for computing the derivatives:

NLPO - No derivative information available
NLP1 - Analytic first derivatives available
NLP2 - Analytic first and second derivatives available

In Figure 1, we present one implementation of a nonlinear problem class. The first class
we define is called NLPO for NonLinear Problem C°. This class contains information common
to all problems including: 1) the problem dimension, 2) a current point, 3) a function value,
and 4) a function to evaluate the objective function.

The class NLP1 is derived from the base class NLPO by adding a member for the gradient
and a function to evaluate the gradient. Likewise, the class NLP2 is derived from NLP1 by
adding the necessary information to compute and store the Hessian. By using inheritance
we have been able to take advantage of the code that is already written at the lower levels.
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NLP2

SymmetricMatrix Hessian
EvalH()

NLP1

ColumnVector Grad
EvalG()

NLPO

int dim
ColumnVector xc
void *Data
double fvalue
double EvalF()
virtual void Eval()

Iligure 1: Nonlinear problem classes

It is not intended that these base classes cover every nonlinear problem, but starting
with these classes the user can build new classes that contain the specific details of the real
preblem. Since the optimization method classes described below will use the base classes,
the optimization algorithms will still work with the new user classes without having to be
rewritten.

In our implementation of the optimization classes, we have defined the functions that
evaluate the objective function, gradient, and Hessian as virtual functions. As we mentioned
in the previous section, this means that the NLPX classes (where X can stand for 0, 1, or
2) are abstract classes and can only be used as base classes for other classes. This allows us
to defer the definition of how the function, gradient, and Hessian are actually computed so
that users can create their own definitions. In essence, the base classes contain placcholders
for the codes that will be called to compute the objective function.

As part of our implementation we also provide 3 classes derived from NLLPX called NLI'X
that have a particular calling sequence to the required functions. These classes can be used to
solve some simple optimization problems or can be used as templates for more sophisticated
objective functions. In Section 4, we will give some examples using the NLFX classes to
demonstrate some of the features of our class libraries.

3.2. Optimization Method Classes

There are many classifications possible for optimization algorithms, but most well-known
methods can be grouped into one of three classes:
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OPTIMIZE

Direct CG-Like Newton-Like

i D
PDS cG LBFGS ﬁ:ﬁ;n Newton f,ewton

Figure 2: Optimization method hierarchy

e Direct Search methods
e Conjugate gradient like methods
e Newton like methods

FFor example, methods such as the Nelder-Mead simplex method, the box method, and the
parallel direct search method fall into the direct search class. The nonlinear conjugate
gradient method and limited memory BFGS methods fall into the Conjugate Gradient class.
Finally the Newton class, could include methods such as finite-diflerence Newton, quasi-
Newton methods, and inexact Newton methods. A simple taxonomy for some popular
algorithms is given in Figure 2 as an example.

Based on this classification, we have implemented C++ classes for 4 different methods:
1) a Newton method, 2) a finite-difference Newton method, 3) a Quasi-Newton method, and
1) a nonlinear conjugate gradient method. In Figure 3, we present the class hicrarchy for
two of the implemented methods. The base class, called Optimize consists of information
that is required by all optimization classes. We note that once again we have used the
concept of polymorphism through the use of the virtual function optimize(). This function
is intended to be a placeholder for the actual function that will do the optimization. Since
each method class will have its own algorithm for computing the minimum of a function, it
is not necessary to define it in the base class. However, it is important to define the interface
at this point since it is common to all of the derived classes.

The next next two classes OptQNewtonLike and OptCGLike are derived from the
Optimize class. The major difference between these two classes is that the Newton-like
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Optimize

int dim

TOLS *tol

double fprev, step_length

int ret_code, iter_taken, fcn_evals
virtuai void optimize() =0

virtual void CheckConvg() =0

OptNewtonLike OptCGLike

ColumnVector gprev
SymmetricMatrix Hessian int grad_evals

int grad_evals virtual void optimize()

virtual void optimize() . :
virtual void CheckConvg() virtual void CheckConvg()

ColumnVector gprev

OptQNewton OptCG
NLP1 *nlp NLP1 *nlp
void optimize() void optimize()
int CheckConvg() int CheckConvg()

Figure 3: Optimization method classes
g

classes require extra storage for the Hessian matrix. Finally, the last two classes OptQNew-
ton and OptCG constitute the actual optimization methods. It is these two classes that
define the optimization algorithms specific to each method. In the case of the OptQNew-
ton class, the algorithm consists of a Quasi-Newton method with a BFGS update formula
for the Hessian. The OptCG class implements a nonlinear conjugate gradient method.

As an example of the re-usability of object-oriented codes, all of the linear algebra is
handled through the use of the matrix package developed by Davies [4], with some minor
enhancements for the matrices that arise in the optimization algorithms. In addition, all of
the optimization methods use the same line search, which is based on the algorithm by More
and Thuente [6].

4. Example Code

To illustrate some of the concepts, we now present an example that solves a small non-
linear optimization problem using the optimization classes. The test problem consists of
Rosenbrock’s function,

mrin 100(xg — 23 + (1 —ay)?,

with an initial guess of (—1.2,1.0). In this example, we will assume that first derivatives are
available but that second derivatives are not available. We will use a quasi-Newton method
that employs a BFGS update formula for the Hessian.
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| #include "opt.h”
2 void rosen(int mode, int 1, ColumnVector x, double& fx, ColumnVector& g);

3

4 main ()

5 {
6
7
8
9
10
11
12
13
14
15
16

int n = 2;
ColumnVector x(n), g(n);

USERFCNT1 tstf = &rosen; // Define the test function
NLF1 nlp(n,tstf); //  Define the Nonlinear problem
x(1) = -1.2;

x(2) = 1.0;
nlp.SetX(x);

nlp.Eval(); //  Evaluate the function al @
TOLS tol; // Create a "Tolerances” object and
tol.SetDefaultTol(); //  sel the lolerances

tol.SetI'tol(1.e-9);
tol.SetMaxIter(100);

OptQNewton objfen(&nlp,&tol); //  Build a Quasi-Newton object and optimize
objfen.optimize();

nlp.PrintState("Solution from quasi-newton");

Figure 4: Example code for solving Rosenbrock’s function
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Figure 4 displays the source listing for the sample problem. There are three major
sections in the example code: 1) the problem definition, 2) the tolerance definition, and 3)
the method definition. Since only first derivatives are available, we first create an object of
type NLF1 on line 11. The two components needed to specify this object are the dimension
of the problem and a pointer to a function. The next step is to set the initial guess for this
problem. Here we are using two of the member functions for NLF1 to access the data in
the class and to evaluate the function at the current point.

The next step is to create a TOLS object on lines 18-21 that contains the tclerances
that will be used in the optimization method. In fact, the optimization method object can
be created without a specific reference to a TOLS object but if the user wishes to change
any of the default tolerances it is necessary to create the TOLS object.

The last step consists of creating an optimization method object from the OptQNewton
class using the NLF1 and TOLS objects. We thien call the member function optimize on
line 25 to do the actual optimization. Finally the solution is printed using the PrintState
member function.

We note that if the user would now like to try a different optimization method. the
procedure would consist of replacing line 23 with the creation of a different type of object,
for example an OptCG object to try the nonlinecar conjugate gradient method.

5. Summary

In this report, we have presented a (‘++ class library for nonlinear unconstrained opti-
mization. We have proposed that a clear distinction be made between nonlinear problems
and optimization methods. Based on this distinction, we have implemented a set of object-
oriented classes specifically suited to each case. In this way, we have been able to develop a
set of classes that address the important issues for both the users and the developers of op-
timization algorithms. From the point of view of a user requiring an optimization algorithm
to solve a particular problem. these libraries have been written so that they are easily used.
From the point of view of someone developing optimization algorithms, these classes have
been designed so that new algorithms can be ecasily incorporated into the existing framework.

We currently have four methods implemented: 1) a Newton method. 2) a finite-difference
Newton method. 3) a Quasi-Newton method, and 1) a nonlinear conjugate gradient method.
Future work will concentrate on incorporating new algorithms. In particular, we are cur-
rently working on developing new algorithms based on pattern search methods for the case
of noisy optimization. We are also working on implementing new classes for large-scale op-
timization. Since most of the popular methods for large-scale optimization use variations of
one of the methods already implemented, the extension to large-scale problems should be
straightforward.

Another arca we will address concerns the case of constrained optimization problems. The
question we wish to address is whether the constrained optimization case is a sub-class of the
unconstrained optimization case or is a constrained optimization problem an unconstrained
problem that happens to have constraints. In the OOP terminology. this is the “is-a” versus
a “has-a” question. which has implications in the implementation of new classes.
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Finally, we note that the libraries presented in this article should not be considered as
a finished product. The true test will be the usefulness of these class libraries for solving
real-world applications. Towards this end, we are also developing a suite of test problems

{from various manufacturing design problems using the nonlinear problem classes developed
here.
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