
lllllIllllII Illll





Input Shaping for Three-Dimensional Slew

Maneuvers of a Precision Pointing Flexible Spacecraft

Clark R. Dohrmann 1 Rush D. Robinett
Sandia National Laboratories Sandia National Laboratories

Albuquerque, NM 87185-0439 Albuquerque, NM 87185-0314
crdohrm©sandia, gov rdrob±n@sandia, gov

Abstract the technical literature [1]. The purpose of this
paper is to present a method that applies to a

A method is presented for input torque shaping wide range of spacecraft models. A key element
of the approach is to express flexible motions infor three-dimensional slew maneuvers of a pre-

cision pointing flexible spacecraft. The method terms of the free-free mode shapes of the space-
determines the torque profiles for fixed-time, rest- craft. By doing so, the equations of motion can
to-rest maneuvers which minimize a specified per- be easily assembled using the results of a finite
formance index. Spacecraft dynamics are for- element eigenanalysis.
mulated in such a manner that the rigid body
and flexible motions are decoupled. Furthermore, Three example problems dealing with a simple
assembly of the equations of motion is simpli- spacecraft model are provided. The model con-

fled by making use of finite element analysis re- sists of a rigid bus with two attached beams to
suits. Input torque profiles are determined by model the effects of flexible solar panels. The ef-
solving an associated optimization problem using fect of misalignment of the principal mass axes
dynamic programming. Three example problems and the principal planes for bending is investi-
are provided to demonstrate the application of gated. The results display interesting symmetries
the method, previously observed for planar maneuvers [2].

1. Introduction 2. Equations of Motion

In this section, we develop equations of motion
The precision pointing of imaging satellites for for flexible spacecraft subject to applied forces
nonproliferation has become an area of current in- and moments. Flexible deformations are assumed

terest. Imaging of ground targets for such appli- to be small relative to the overall length of the

cations leads to pointing accuracy requirements spacecraft. The angular velocity magnitude for
on the order of microradians. There are many overall rigid body motion is also assumed to be
contributors to pointing angle error, but vibra- small relative to the lowest structural natural fie-
tional disturbances caused by flexible, solar array quency. Under these assumptions, the governing
support structures are potentially a major prob- equations for rigid body and flexible motions can
lem. In order to alleviate this problem, input be decoupled. Furthermore, the equations can
shaping has been proposed to help minimize the be assembled in a straightforward manner which
residual vibration of the solar arrays after a three- makes use of finite element analysis results.
dimensional (3-D) slew maneuver.

The spacecraft is idealized as a system of in-
It is only recently that input shaping for 3-D slew terconnected particles each of mass mi (i =
maneuvers of flexible spacecraft has appeared in 1,..., N) as shown in Figure 1. Also shown in the

1This workperformed at Sandia National Laboratories figure are a floating reference frame, B, and an in-
supported by the U. S. Department of Energy under con- ertial frame, A. Orthogonal, dextral sets of unit
tract DE-ACO4-94AL85000. vectors bl, b2, b3 and al, as, as are fixed in B and
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The angular momentum, H, of the system about
its center of mass, O, is defined as

N

H= mi(r'+ u') ×v' (3)
/-1

where v i denotes the velocity of the i'th particle
in A. The system kinetic energy, T, is defined as

1 N

T = _ Emivi" v' (4)
i=l

13 Using a basic kinematical relationship, one ob-

a 2 tains
v i=v °+/l i+t_x (r i4-u i) (5)

where v ° is the velocity of O in A and ( ) denotes
////// the time derivative in B.

Figure 1: Sketch of system of particles and reference The angular momentum principle states the the
frames, time derivative of H in A is equal to the net mo-

ment, M, acting on the system about O. Thus,

H+_×H-M (6)
A, respectively. The angular velocity vector of B
in A is denoted by w. The position vector from Substitution of Eqs. (3) and (5) into Eq. (6), ac-
the origin, O, of B to the the i'th particle when counting for the constraints given by Eqs. (1) and
the system is undeformed is denoted by r i. The (2), and linearizing the result yields

displacementvectorofthei'thparticlefromits Ill I12 I131 (_J1) ( M1 )

undeformed position, u i, is assumed to be a func- 112 122 I23 _b2 = M2 (7)
tion of generalized coordinates ql,...,qn. The I13 123 133 (oa M3
notational convention is adopted herein that for
any vector, v, one has vk - v. bk for k -- 1, 2, 3. where

N N

The position of O and the orientation of B in 111- E mi[(r_)2+ (r_)2] 112 -E -i-i-i= 7rtrlr2

A depend on the particular choice of the floating i=a i=x
i'rame. For the purposes of this paper, it is conve- g N

nient to use the so-called Biickens frame [3]. This 122 E mi[(ri3)2 + (r_)2] 123 - E __i_i_i: "- rt$ r2r 3

frame is defined by the constraint equations i=1 i=1
N N

N
= :- m rat 1 (8)

E mi(ri + ui) = 0 (1) /33 E mi[(r_)2 "_"(ri2)2] 113 E i i ii=1 i=1
i=l

Notice that Eq. (7) is equivalent to the linear form
and of Euler's equations and is decoupled from trans-

N lational and flexible motions.

m'(e ×u') = 0 (2)
i=1 An assumed displacement expansion of the form

The constraints given by Eqs. (1) and (2) are eas- n

ily accommodated by the finite element method, uik -- E qj¢{i (9)

Moreover, the non rigid body, free-free modes of a j=l
structure automatically satisfy these conditions. is used to account for spacecraft flexibility. Defin-
This fact allows us to describe flexible motions ing the vector ¢J as
in terms of the free-free mode shapes calculated

from a finite element analysis. ¢j _ [¢jlcJl2 ¢3Jl "''WlA_jNAjN'4jN]Tw2_'a J , (10)
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the strain energy, U, of the spacecraft is expressed element analysis of the spacecraft. We also note
as the quadratic form that these equations continue to hold when con-

centrated moments and rotational inertias are in-1

U -" _qTf( r (11) cluded in the development.

where The orientation of B in A is governed by the kine-

q = [ql,..., an]T (12) matical differential equations

film = ctT Kcm (13) 1
_I "-- _(COl_ 4 -- CO2_3 "q-t_3_2) (21)

and K is the stiffness matrix associated with a z-

I

finite element model of the spacecraft, t_ = -_(wle3 + w2e4 - wzel) (22)
1

The equations governing flexible motion are ob- t3 = _(-wlc2 + W2el +w3e4) (23)tained from the Lagrangian equations

d(OT_ ogT cgD OU t4 = 1
+w2e2 + ¢o3_3) (24)

= (j = 1,...,.)
(14) where el, ...,e4 are Euler parameters [4].

where D is the Rayleigh dissipation function, as-
sumed to be of the classical form

1 .T 3. Examples
D = _q C'q (15)

The generalized force Qj in Eq. (14) is given by A sketch of the spacecraft model used in the ex-
ample problems is shown in Figure 2. The space-

Qj __¢jTf (16) craft bus is modeled as a rigid body of mass mb
with principal mass momen*os of inertia I1, I2,

where and/3. Unit vectors el, e_, and c3 are fixed in
f 1 1-[f_ f_f_ ... f_f2NfN] T (17) the bus and are aligned with the principal axes.

and,f]: denotes the force acting on the i'th particle Two massless beam elements of length L with
in the direction bk. tip masses of mp are used to model flexible so-

lar panels. The axes of the undeformed beams

Substitution of Eqs. (4), (5), (9) and (11) into are assumed to be aligned with the cl direction
Eq. (14), accounting for the constraints given by and pass through the bus mass center. The first
Eqs. (1) and (2), and linearizing the result yields principal plane of bending for the beams is de-

fined by a vector normal n. The normal to the

/tT/q' + ¢_q +/_q = [Q1... Qn] T (18) second principal plane of bending is then defined

where as the cross product cl x n. Flexural rigidities for
N 3 bending in the two principal planes are denoted

l_'m "-- Z E __, lli .trair,, qJ__ (19) by (EI)I and (EI)2. Moments M1, M2, and M3
i-1 k--1 are applied to the spacecraft bus in the cl, c2, and

When non rigid body, free-free modes of the c3 directions, respectively. Each moment is sub-

spacecraft are used for the ¢'s in Eq. (9), the ject to the inequality constraints -C < Mk < C
matrices/Q and/-f are diagonal. Under the addi- for k = 1, 2, 3.

tional assumption of modal damping, the matrix The example problems deal with rest-to-rest ma-
C' is also diagonal. In this case, Eq. (18) assumes

neuvers whereby the spacecraft is slewed from an
the simple form initial orientation defined by _1 : e2 = e3 = 0,

mjjqj "-b cjj(lj "-]-kjjqj : Qj (j : 1,..., n) (20) c4 = 1 to a final orientation defined by ek = o,f
for k = 1,..., 4. The goal is to reorient the space-

In summary, the equations of motion governing craft and bring it to a quiescent state in a spec-
the rigid body and flexible motions are given by ified time T while minimizing the performance
Eqs. (7) and (20), respectively. All of the coef- index
ficients appearing in these equations can be ob- fT

tained in a straightforward manner from a finite F = Jo (M2 + M_ + M_)dt (25)
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a/L 0.5'0

rob, I1,12, 13 mp/mb 0.06

12/Ii 0.50

mp mp Ia/ Ii 1.00
0 @ mp(a . L)2/I1 1.38

(SI)2/(SI)l 3.00

(EI)IT2/(mpL 3) 150

L., L ,.._ _ L _! CT2/[I2 + 2m_,(a + L) 2] 8.00I_ "-I I ]

Table 1: Parameters used in examples.
Figure 2: Sketch of model used in examples.
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Since closed form solutions to Eqs. (21-24) donot I u_._ % ] i_

numerical procedures to solve the optimal con-

trol problem. In this paper we utilize a dynamic ., ..
programming algorithm recently applied to tra- 0 0.5 , o 0.5 ,
jectory planning problems in robotics [5]. The ,o"

salient features of the algorithm are: osl .AAIoA.A

1. Quadratic convergence nearby thesolution.forexactly. °4---_ 12 _]CV_f_

2. Inequality constraints for inputs accounted 0_ V

°o!_.._ _, _s3. Equality constraints for states imposed us- u 0s " 0.s ,
ing a quadratic penalty function. _

4. Optimality conditions determined from def-
initeness of p by p matrices. Figure 3: Results for first example.

5. Order Nnp storage required for each itera-
tion.

6. Order Nn 3 operations required for each it- the bus. In this example, the normal n is chosen
eration, as c3 so that the principal planes of bending are

In the above description, n is the number of aligned with the principal axes of the spacecraft.
states, p the number of inputs, and N the number The final orientation of the satellite is defined by
of time steps used to discretize the problem, the Euler parameters eW=c3l=0, e2/:sin(9/2),

and e41=cos(O/2) where 0=1.7 tad. This reorien-
Values for the dimensionless parameters used in tation corresponds to a rotation of 1.7 radians
the examples are provided in Table 1. Two anti- about the 2-axis of the bus. Plots of the di-
symmetric bending modes are retained in the as- mensionless moments uk = M_/C (k = 1,2, 3),

sumed displacement expansion (see Eq. (9)). For angular velocity measure numbers, Euler param-
this simple model, these are the only two modes eters, and generalized coordinates are shown in
excited by the applied moments. The free-free Figure 3. As expected, only u2 is nonzero and
mode shapes for the examples are mass matrix out-of-plane vibrations are absent as indicated by
normalized and were calculated using the corn- the constant zero value of q2. Notice also the an-
mercial finite element code MSC/NASTRAN. Re- tisymmetry of u2 about r=l/2.
suits presented in Figures 3-5 are plotted as func-

tions of the dimensionless time variable r = t/T. The second example is identical to the first with
The generalized coordinates ql and q2 are associ- the exception that the normal n=(c2 + c3)/v/2.
ated with deformation nominally in the first and This choice for n corresponds to a 45 degree mis-
second principal planes of bending, respectively, alignment of the principal planes of bending with

the principal axes of the spacecraft. Plots of the
The first example is concerned with a maneuver results are shown in Figure 4. Notice that both
where reorientation of the spacecraft can be ac- out-of-plane moments and vibrations occur. We
complished simply by slewing about the 2-axis of note that it is still possible to achieve the rest-to-
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Figure 4: Results for second example. Figure 5: Results for third example.

rest maneuver simply with a moment about the finite element eigenanalysis is performed, the for-
2-axis of the bus, but this is not an optimal ma- mulation and solution for input shaping can be
neuver. It may also occur that as the angle of accomplished in a straightforward manner. The
rotation 0 is increased the maneuver is only pos- effect of misalignment of the principal mass axes
sible with nonzero values for Mi and M3. Oth- with the principal planes for bending in a simple
erwise, the inequality constraints on M2 may be spacecraft model is investigated. Symmetries in

prohibitively stringent. Although it is difficult to the inputs observed previously for planar maneu-
see the behavior of the other two inputs from the vers are also shown to be present in the general

figure, ul is symmetric and u3 is antisymmetric 3-D case.
about r= 1/2.
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