T

VI

o1

= =
. L ]

o

E:FEEEEE?E

i === = ==

FEER

81

\

C

.

. TT

==

ST






Input Shaping for Three-Dimensional Slew
Maneuvers of a Precision Pointing Flexible Spacecraft

Clark R. Dohrmann’

Sandia National Laboratories

Albuquerque, NM 87185-0439

crdohrm@sandia.gov

Abstract

A method is presented for input torque shaping
for three-dimensional slew maneuvers of a pre-
cision pointing flexible spacecraft. The method
determines the torque profiles for fixed-time, rest-
to-rest maneuvers which minimize a specified per-
formance index. Spacecraft dynamics are for-
mulated in such a manner that the rigid body
and flexible motions are decoupled. Furthermore,
assembly of the equations of motion is simpli-
fied by making use of finite element analysis re-
sults. Input torque profiles are determined by
solving an associated optimization problem using
dynamic programming. Three example problems
are provided to demonstrate the application of
the method.

1. Introduction

The precision pointing of imaging satellites for
nonproliferation has become an area of current in-
terest. Imaging of ground targets for such appli-
cations leads to pointing accuracy requirements
on the order of microradians. There are many
contributors to pointing angle error, but vibra-
tional disturbances caused by flexible, solar array
support structures are potentially a major prob-
lem. In order to alleviate this problem, input
shaping has been proposed to help minimize the
residual vibration of the solar arrays after a three-
dimensional (3-D) slew maneuver.

It is only recently that input shaping for 3-D slew
maneuvers of flexible spacecraft has appeared in
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the technical literature [1]. The purpose of this
paper is to present a method that applies to a
wide range of spacecraft models. A key element
of the approach is to express flexible motions in
terms of the free-free mode shapes of the space-
craft. By doing so, the equations of motion can
be easily assembled using the results of a finite
element eigenanalysis.

Three example problems dealing with a simple
spacecraft mode] are provided. The model con-
sists of a rigid bus with two attached beams to
model the effects of flexible solar panels. The ef-
fect of misalignment of the principal mass axes
and the principal planes for bending is investi-
gated. The results display interesting symmetries
previously observed for planar maneuvers [2].

2. Equations of Motion

In this section, we develop equations of motion
for flexible spacecraft subject to applied forces
and moments. Flexible deformations are assumed
to be small relative to the overall length of the
spacecraft. The angular velocity magnitude for
overall rigid body motion is also assumed to be
small relative to the lowest structural natural fre-
quency. Under these assumptions, the governing
equations for rigid body and flexible motions can
be decoupled. Furthermore, the equations can
be assembled in a straightforward manner which
makes use of finite element analysis results.

The spacecraft is idealized as a system of in-
terconnected particles each of mass m' (i =
1,...,N) asshown in Figure 1. Alsoshown in the
figure are a floating reference frame, B, and an in-
ertial frame, A. Orthogonal, dextral sets of unit
vectors by, by, bz and a), ag, az are fixed in B and
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Figure 1: Sketch of system of particles and reference
frames.

A, respectively. The angular velocity vector of B
in A is denoted by w. The position vector from
the origin, O, of B to the the i’th particle when
the system is undeformed is denoted by rf. The
displacement vector of the i’th particle from its
undeformed position, u’, is assumed to be a func-
tion of generalized coordinates q;,...,q,. The
notational convention is adopted herein that for
any vector, v,one has vy = v-by fork=1,2,3.

The position of O and the orientation of B in
A depend on the particular choice of the floating
frame. For the purposes of this paper, it is conve-
nient to use the so-called Biickens frame [3]. This
frame is defined by the constraint equations

N
Zm‘(r‘+u‘) =0 (1)
=1

and
N
Y omi(r* x u) =0 (2)
i=1

The constraints given by Eqgs. (1) and (2) are eas-
ily accommodated by the finite element method.
. Moreover, the non rigid body, free-free modes of a
structure automatically satisfy these conditions.
This fact allows us to describe flexible motions
in terms of the free-free mode shapes calculated
from a finite element analysis.

The angular momentum, H, of the system about
its center of mass, O, is defined as

N
H= Zmi(r‘ +u') x v* (3)

i=1

where v' denotes the velocity of the i’th particle
in A. The system kinetic energy, T, is defined as

1 &
T*zizzlmv v (4)

Using a basic kinematical relationship, one ob-
tains ‘ ‘ _ .
vi=vl 4t 4w x (rf +u) (5)

where v is the velocity of O in A and ( ) denotes
the time derivative in B.

The angular momentum principle states the the
time derivative of H in A is equal to the net mo-
ment, M, acting on the system about O. Thus,

H+wxH=M (6)

Substitution of Eqgs. (3) and (5) into Eq. (6), ac-
counting for the constraints given by Egs. (1) and
{2), and linearizing the result yields

Ly Ly I w1 M,
Lo Iy I wy | =1 M, (7)
Lz Iz Iss w3 M3

where

N N
hi= Zm‘[(";)z +(ry)?] hp=- Zm""ﬂ’;
i=1

i=]

N N
Ip =Y mi{(r})* + (1) Ta=-) mirir
i=1

i=1

N . . . N . . .

Iy =y m'((r})’ + (r))!] Na=-—) mirir}
i=1 i=1

Notice that Eq. (7) is equivalent to the linear form
of Euler’s equations and is decoupled from trans-
lational and flexible motions.

An assumed displacement expansion of the form
. n 3
=y 0} (9)
j=1

is used to account for spacecraft flexibility. Defin-
ing the vector ¢/ as

¢ =g ¢3 el . a VeV eNIT,  (10)



the strain energy, U, of the spacecraft is expressed
as the quadratic form

U= —;-qTR" (11)

where
g=lg1,. -, qn)" (12)
Kim = T K¢™ (13)

and K is the stifiness matrix associated with a
finite element model of the spacecraft.

The equations governing flexible motion are ob-
tained from the Lagrangian equations

d (8T oTr 6D oU .

(14)
where D is the Rayleigh dissipation function, as-
sumed to be of the classical form

D= %q”cq (15)

The generalized force @Q; in Eq. (14) is given by
Qi=¢Tf (16)

where

f=fifafs AT (17)
and f; denotes the force acting on the i’th particle
in the direction by.

Substitution of Egs. (4), (5), (9) and (11) into
Eq. (14), accounting for the constraints given by
Egs. (1) and (2), and linearizing the result yields

M§+Ci+Kq=[(Q:...Qa)" (18)
where
— N 3 3 . .
Mim =YY migier (19)
i=1 k=1
When non rigid body, free-free modes of the
spacecraft are used for the ¢’s in Eq. (9), the
matrices M and K are diagonal. Under the addi-
tional assumption of modal damping, the matrix

C is also diagonal. In this case, Eq. (18) assumes
the simple form

mjig; +cji4i + ke =Q; (F=1,...,n) (20)

In summary, the equations of motion governing
the rigid body and flexible motions are given by
Egs. (7) and (20), respectively. All of the coef-
ficients appearing in these equations can be ob-
tained in a straightforward manner from a finite

element analysis of the spacecraft. We also note
that these equations continue to hold when con-
centrated moments and rotational inertias are in-
cluded in the development.

The orientation of B in A is governed by the kine-
matical differential equations

6 = —;—(wlq — wy€3 + w3€2) (21)
€2 = ';‘(WICS + waeq — w3€y) (22)
€3 = %(—wxfz + waer +waeq)  (23)
€ = "'%(wlfl + waez +waes)  (24)
where €1, ..., €4 are Euler parameters [4].
3. Examples

A sketch of the spacecraft model used in the ex-
ample problems is shown in Figure 2. The space-
craft bus is modeled as a rigid body of mass m,
with principal mass moments of inertia Iy, I,
and I3. Unit vectors ¢y, ¢z, and c3 are fixed in
the bus and are aligned with the principal axes.
Two massless beam elements of length L with
tip masses of m, are used to 1nodel flexible so-
lar panels. The axes of the undeformed beams
are assumed to be aligned with the ¢; direction
and pass through the bus mass center. The first
principal plane of bending for the beams is de-
fined by a vector normal n. The normal to the
second principal plane of bending is then defined
as the cross product ¢y xn. Flexural rigidities for
bending in the two principal planes are denoted
by (EI); and (EI);. Moments M;, M,, and M,
are applied to the spacecraft bus in the ¢y, ¢y, and
c3 directions, respectively. Each moment is sub-
ject to the inequality constraints —C < M < C
fork=1,2,3.

The example problems deal with rest-to-rest ma-
neuvers whereby the spacecraft is slewed from an
initial orientation defined by ¢; = ¢; = €3 = 0,
€4 = 1 to a final orientation defined by € = €y
fork=1,...,4. The goal is to reorient the space-
craft and bring it to a quiescent state in a spec-
ified time 7 while minimizing the performance
index

T
Ir= / (ME + M2+ M2)dt (25)
0
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Figure 2: Sketch of model used in examples.

Since closed form solutions to Egs. (21-24) do not
exist in general, it is necessary to make use of
numerical procedures to solve the optimal con-
trol problem. In this paper we utilize a dynamic
programming algorithm recently applied to tra-
jectory planning problems in robotics [5]. The
salient features of the algorithm are:

1. Quadratic convergence nearby the solution.

2. Inequality constraints for inputs accounted
for exactly.

3. Equality constraints for states imposed us-
ing a quadratic penalty function.

4. Optimality conditions determined from def-
initeness of p by p matrices.

5. Order Nnp storage required for each itera-
tion.

6. Order Nn3 operations required for each it-
eration.

In the above description, n is the number of
states, p the number of inputs, and N the number
of time steps used to discretize the problem.

Values for the dimensionless parameters used in
the examples are provided in Table 1. Two anti-
symmetric bending modes are retained in the as-
sumed displacement expansion (see Eq. (9)). For
this simple model, these are the only two modes
excited by the applied moments. The free-free
mode shapes for the examples are mass matrix
normalized and were calculated using the com-
mercial finite element code MSC/NASTRAN. Re-
sults presented in Figures 3-5 are plotted as func-
tions of the dimensionless time variable 7 = t/T.
The generalized coordinates q; and g¢; are associ-
ated with deformation nominally in the first and
second principal planes of bending, respectively.

The first example is concerned with a maneuver
where reorientation of the spacecraft can be ac-
complished simply by slewing about the 2-axis of

a/L 0.50

mp /My 0.06

L/L 0.50

I3/ 1 1.00

mp(a + L)2/1, 1.38
(ED)s/(ED); 3.00
(ENT?/(m, L3) 150
CT?/[Iy + 2mp(a + L)?] | 8.00

Table 1: Parameters used in examples.
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Figure 3: Results for first example.

the bus. In this example, the normal n is chosen
as c3 so that the principal planes of bending are
aligned with the principal axes of the spacecraft.
The final orientation of the satellite is defined by
the Euler parameters €;y=¢€3;=0, €35=sin(6/2),
and €4y =cos(#/2) where §=1.7 rad. This reorien-
tation corresponds to a rotation of 1.7 radians
about the 2-axis of the bus. Plots of the di-
mensionless moments ux = My /C (k = 1,2,3),
angular velocity measure numbers, Euler param-
eters, and generalized coordinates are shown in
Figure 3. As expected, only uz is nonzero and
out-of-plane vibrations are absent as indicated by
the constant zero value of g2. Notice also the an-
tisymmetry of up about r=1/2,

The second example is identical to the first with
the exception that the normal n=(c; + c;;)/\/i
This choice for n corresponds to a 45 degree mis-
alignment of the principal planes of bending with
the principal axes of the spacecraft. Plots of the
results are shown in Figure 4. Notice that both
out-of-plane moments and vibrations occur. We
note that it is still possible to achieve the rest-to-
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Figure 4: Results for second example.

rest maneuver simply with a moment about the
9-axis of the bus, but this is not an optimal ma-
neuver. It may also occur that as the angle of
rotation @ is increased the maneuver is only pos-
sible with nonzero values for M; and Ms. Oth-
erwise, the inequality constraints on M; may be
prohibitively stringent. Although it is difficult to
see the behavior of the other two inputs from the
figure, u; is symmetric and ug is antisymmetric
about r=1/2.

The third evample is identical to the sec-
ond with the exception that the final orienta-
tion is defined by the Euler parameters €; 1=0,
C2j=€3j=Sin(0/2)/\/§, and e4qy=cos(f/2) where
9=1.7 rad. This example examines a situation
in which the maneuver could be accomplished
by slewing about a principal axis of bending not
aligned with a principal axis of the spacecraft. If
the optimal maneuver was such, then w; would
be zero for all times. This, however, is clearly not
the case as is evident from the results presented
in Figure 5, Notice also the symmetries of the
inputs about 7=1/2.

4. Summary

A method is presented for input shaping for 3-
D slew maneuvers of flexible spacecraft. The
method is applicable to a wide range of spacecraft
and does not require the derivation of equations
of motion for special purpose models. Once a
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Figure 5: Results for third example.

finite element eigenanalysis is performed, the for-
mulation and solution for input shaping can be
accomplished in a straightforward manner. The
effect of misalignment of the principal mass axes
with the principal planes for bending in a simple
spacecraft model is investigated. Symmetries in
the inputs observed previously for planar maneu-
vers are also shown to be present in the general
3-D case.
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