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Quantitative Monitoring for Enhanced Geothermal Systems
Using Double-Difference Waveform Inversion with
Spatially-Variant Total-Variation Regularization

Youzuo Lin, Lianjie Huang, and Zhigang Zhang
Los Alamos National Laboratory, Geophysics Group, MS D443, Los Alamos, NM 87545

Abstract

Double-difference waveform inversion is a promising tool for quantitative monitoring for
enhanced geothermal systems (EGS). The method uses time-lapse seismic data to jointly in-
verts for reservoir changes. Due to the ill-posedness of waveform inversion, it is a great
challenge to obtain reservoir changes accurately and efficiently, particularly when using time-
lapse seismic reflection data. To improve reconstruction, we develop a spatially-variant total-
variation regularization scheme into double-difference waveform inversion to improve the in-
version accuracy and robustness. The new regularization scheme employs different regular-
ization parameters in different regions of the model to obtain an optimal regularization in
each area. We compare the results obtained using a spatially-variant parameter with those ob-
tained using a constant regularization parameter. Utilizing a spatially-variant regularization
scheme, the target monitoring regions are well reconstructed and the image noise is signifi-
cantly reduced outside the monitoring regions. Our numerical examples demonstrate that the
spatially-variant total-variation regularization scheme provides the flexibility to regularize lo-
cal regions based on the a priori spatial information without increasing computational costs
and the computer memory requirement.

1 Introduction

Quantitative monitoring for enhanced geothermal systems can help optimize the geothermal pro-
duction and the placement of new wells. Conventionally, reservoir changes are obtained from
differences of independent inversions of time-lapse data. Full-waveform inversion is a quantita-
tive method for estimating subsurface geophysical properties. It can be implemented in both the
time domain (Tarantola 1984; Mora 1987) and the frequency domain (Pratt et al. 1998; Sirgue and
Pratt 2004). In recent years, many new full-waveform inversion schemes were developed based
on regularization (Hu et al. 2009; Burstedde and Ghattas 2009; Ramirez and Lewis 2010), a pri-
ori information (Ma et al. 2010), preconditioning (Guitton and Ayeni 2010; Tang and Lee 2010),
and dimensionality reduction (Moghaddam and Herrmann 2010). Images of the conventional ap-
proach for time-lapse seismic data usually contain significant noise and artifacts, and the values
of changes in geophysical properties are not accurate. Watanabe et al. (2004) proposed a differ-
ential waveform tomography method in the frequency domain for time-lapse crosswell seismic
data, and clearly showed its improvement compared to the conventional method. Denli and Huang
(2009) introduced a double-difference elastic-waveform tomography method in the time domain
for time-lapse surface seismic reflection data. These methods jointly invert time-lapse seismic data
for reservoir changes.



To further improve the accuracy and robustness of double-difference waveform inversion, we
develop a spatially-variant total-variation regularization scheme in combination with a priori spa-
tial information. Regularization technique is often used in inverse problems (Vogel 2002; Tarantola
2005). The most often used regularization methods are L, norm based regularization (Tikhonov)
and L, norm based regularization (total variation or compressive sensing). The spatially-variant
regularization can improve inversion results for medical imaging, image restoration and other
applications (Strong 1997; Guo and Huang 2009). We explore the use of the spatially-variant
total-variation regularization scheme in double-difference full-waveform inversion. We solve the
minimization of the misfit function using the block coordinate descent (BCD) scheme (Bertsekas
1999) in combination with the nonlinear conjugate gradient (NCG) approach (Nocedal and Wright
2000). The gradient of the misfit function is obtained using an adjoint method (Tarantola 1984;
Tromp et al. 2005). We use a synthetic time-lapse seismic data for a Brady’s EGS model to verify
the advantages of the spatially-variant regularization scheme for double-difference waveform in-
version. Our results demonstrate that the new method produces more accurate results of reservoir
changes compared to those obtained using a constant regularization parameter.

2 Theory

2.1 Full-Waveform Inversion

The acoustic-wave equation in the time-domain is given by

{ﬁg_; V. (% v)} p(r,1) = s()5(r — o), (1)

where p(r) is the density, K (r) is the bulk modulus, s(¢) is the source term, ry is the source
location, and p(r, t) is the pressure field. The forward modeling using equation (1) can be written
as

p=f(K, p,s), )

where the function of f is a given nonlinear operator. Numerical techniques such as finite dif-
ference and spectral element methods can be used to solve (2). Let m be the model parameters,
equation (2) becomes

p = f(m). (3)

The inverse problem of equation (3) is usually posed as a minimization problem such that

E(m) = min {||d — f(m)[[3}, )

where F'(m) is the misfit function, || -||» stands the Ly norm, and d represents recorded waveforms.
The minimization of (4) is to find a model m that yields the minimum difference between observed
and synthetic waveforms.

2.2 Double-Difference Waveform Inversion

Conventionally, two independent inversions in (4) are carried out to obtain the time-lapse changes
in reservoir, that is

6mconv - f_l(dtime 2) - f_l(dtime 1)7 (5)
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where f~! means the general inverse of waveform data, and dyjye 1 and dye 2 are data collected
at two different times.
For double-difference waveform inversion, the data misfit in the cost function is replaced by

6d = (dtime 2 dtime 1) - (dsim,time 2 dsim,time l)a (6)

where the first term is the time-lapse difference in data, and the second term is the difference in
synthetic time-lapse data. The method uses time-lapse seismic data to jointly invert for changes in
reservoir geophysical properties.

3 A Priori Information and Spatially-Variant Regularization

3.1 The Roles of A Priori Information

A priori information plays an important role in the inverse problems. The usage of a priori infor-
mation is usually to avoid the instability during the inversion of data (Tarantola 1984). It can be
some reasonable initial guess of the solution, the smoothness of the desired reconstruction or the
spatial information on the solution. In general, the a priori information is functioning as a guide
to the true solution. More details on the effects of a priori information to inverse problem can be
referred to (Hansen 1998; Vogel 2002; Tarantola 2005). In our work, we utilize both the spatial
information and smoothness of the desired model as our a prior information.

There are different methods to incorporate the a prior information into inversion algorithms
(Ma et al. 2010). We use regularization techniques in combination with the a prior information.

3.2 Total-Variation Regularization

Total-variation (TV) regularization is one regularization technique broadly used in image process-
ing. The advantage of using TV is its edge-preserving capability. The misfit function for the TV
scheme is

E(m) :mniln{||d—f(m)||§+)\||Vm||1} with A > 0, (7

where A is the regularization parameter.

3.3 Spatially-Variant TV Regularization

Another equivalent form of the TV regularization in equation (7) is given as a constrained mini-
mization problem, that is,

min {[d — f(m)3}

subject to ||Vm|; < e,

®)

where the parameter € plays the same role as A in (7) to control the degree of regularization of the
desired solution.
To incorporate the spatial information into (8), we modify (8) as

min {d — f(m)3}

subject to | Vm,|[; < ¢, m; € (2,

)
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where (2; is a spatial region, and ¢; is a spatially-variant parameter.
To incorporate the initial model, equation (9) is modified as

min {d — f(m)[3}

subject to || V[m; — (mo)]||1 < €, m; € (2,

(10)

where my is the initial model. The a priori information about the spatial characteristics of the
model is used to determine spatial regions f2;.

3.4 Spatial A Priori Information

For the inverse problem based on equation (10), we need to know both the initial model mg and
spatial regions (2;. The starting model mg may be obtained from ray tomography. Waveform inver-
sion is the combination of migration and tomography (Mora 1989). Migration yields the shapes (or
edges) of the anomalies and can be obtained in the first a few iterations during inversion. There-
fore, these migration-like results can provide the information about the spatial regions (2;. For
double-difference waveform inversion, the target monitoring regions are the a priori information
to be used.

4 Numerical Algorithm and Implementation

4.1 Total-Variation Solver

Many numerical TV solvers have been proposed for solving (7) (Li and Santasa 1996; Vogel and
Oman 1996, 1998; Wohlberg and Rodriguez 2007). We choose the one proposed in (Vogel and
Oman 1998) because of its efficiency and simplicity. A small constant /3 is usually added to the
TV term to enable the differentiability of the L, norm at the origin, i.e.

TV(m) = ||[Vml|; ~ ) /(D;m)? + 52, (11)
=1

where D;m = m; — m; ;. The gradient of the TV term can be further expressed using the

divergence operator:
VTV(m) = -v. (™). (12)
v/m + (2

Therefore, a gradient-based line search algorithm can be performed once the gradient of the TV
term is computed.

4.2 Optimization Algorithm for Spatially-Variant TV Regularization

Equation (10) is the object function for our spatially-variant TV regularization scheme. It can
be solved by converting it into an equivalent non-constrained expression. Using the Lagrange
multiplier (Nocedal and Wright 2000), we have

E(m) = min {Hd — fm)|; + ZMIIV[HM - (mo)i]lll} :

with \; > 0, and m; € (2;.

(13)



The role of \;’s is the same as ¢;’s in (10) to regularize the reconstruction.

We employ a nonlinear conjugate gradient (NCG) line search approach (Nocedal and Wright
2000) to solve equation (13). The gradient of equation (13) varies for different spatial regions. We
use the block coordinate descent (BCD) approach that has been proved to be efficient for such a
situation (Bertsekas 1999; Wu and Lange 2008; Li and Osher 2009).

4.2.1 Block Coordinate Descent

Analogous to the Gauss-Seidel matrix solver algorithm in optimization, BCD partitions the coor-
dinates into N blocks, and improves the estimation of the solution in each block by minimizing
along one direction with all the other blocks fixed. The order in which the blocks are visited is
called “sweep pattern.” The order of the blocks visited does matter in BCD algorithm. In our
algorithm, we use a “cyclic pattern,” which means all the blocks are visited sequentially. It has
been illustrated that using different visiting orders may help in improving the convergence rate of
the algorithms (Wu and Lange 2008; Li and Osher 2009).

To ensure the convergence as in the line search algorithm, the search direction dj; along each
block needs to be a descent direction. In the other words, for the function F(m), d; needs to
satisfy

VEg7k
— < (), (14)
IVEE| vl

where 6 is the angle between the search direction and V E.. We use the conjugate-gradient direc-
tion as the search direction for each block.

After obtaining the search direction for a particular block, the line search with the Armijo
criteria is further utilized for the optimal step size. We then update the block with the search
direction and its step size without affecting other blocks:

cosf =

M —mf o+ afah (15)

ml

where the superscripts stands for the iteration number and the subscript stands for the block index.

4.2.2 Nonlinear Conjugate Gradient

The search directions in BCD are calculated from nonlinear conjugate gradients, as illustrated in
Nocedal and Wright (2000). The method to incorporate BCD with NCG is to replace the updating
step (step 3) in Algorithm 1 with (15).

5 Numerical Results

We use synthetic time-lapse surface seismic data for the models in Fig. 1 to demonstrate the im-
provement of the double-difference waveform inversion with a spatially-variant TV regularization
scheme. The models are constructed using geologic features found at the Brady’s EGS site. They
contain several steep fault zones. There is a region in Fig. 1b with a decreased velocity due to wa-
ter/fluid injection for stimulation, as shown in Fig. 1c. Twenty common-shot gathers of synthetic
time-lapse seismic data with 500 receivers at the top of the models are used to jointly invert for the
reservoir change. The shot interval is 125 m and the receiver interval is 5 m. A Ricker’s wavelet
with a center frequency 25 Hz is used as the source function.
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Algorithm 1 Canonical NCG to solve min £(m)

Input: m°, TOL
Output: m*
1: Initialize k = 0, E° = E(m°), VE' = VE(m°);
2: while |[VE¥|| > TOL do
3:  Compute o and update the solution m

4:  Evaluate VE*t1;

5. Bl = SYEML VB>,
’ ~ <VEk VEF> >

7
8

B = mF 4 okak

k+—k+1;
. end while
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Figure 1: The baseline velocity model (a) and the time-lapse velocity model (b) that contains a
region with a decreased velocity shown in (c) due to fluid injection for stimulation. The models
contain several steep fault zones. They are constructed using geologic features found at Brady’s
EGS site.

Fig. 2 demonstrates the improvement of waveform inversion using the TV regularization for the
baseline model. The figure shows the differences between the reconstructed models and the starting
model, and the true difference between the starting model and the baseline model. The result with
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Figure 2: (a) The difference between the starting model for waveform inversion and the true base-
line model. (b) The difference between the reconstructed model obtained without any regulariza-
tion and the starting model. (c) The difference between the reconstructed model obtained with TV
regularization and the starting model. The result in (c) is clearly better than that in (b), particularly
in the deep region of the model.

the TV regularization in Fig. 2c shows the better reconstruction in the entire model, particularly in
the deep region of the model that cannot be reconstructed without using any regularization.

For comparison, we first obtain the velocity change in the target monitoring region using
the conventional approach by subtracting the two independent inversions and using the double-
difference waveform inversion with a constant regularization parameter. The result of the conven-
tional approach in Fig. 3 contains significant image artifacts. The vertical profile in Fig. 3b shows
that the reconstructed velocity change in the target region is approximately -200 m/s, significant
different from the true value of -320 m/s. In addition, it contains significant image noise above and
below the target monitoring region.

Figure 4 shows the result of double-difference waveform inversion with a constant regular-
ization parameter A\ = 1.0 x 107!3. The reconstructed velocity change in the target region is
approximately -260 m/s, which is closer to the true value of -320 m/s compared to that obtained
using the conventional approach (Fig. 3b). Figure 4 contains fewer noise than Fig. 3.

In order to incorporate the a priori spatial information into the spatially-variant TV regular-
ization scheme for double-difference waveform inversion, we determine the target monitoring re-
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Figure 3: The difference (a) of two independent inversions of synthetic time-lapse seismic data for
the models in Fig. 1 together with a vertical profile (b) at the horizontal position of 1250 m of the
result in (a). The red line in (b) shows the true velocity change, and the blue line is the difference
of two independent inversions.
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(a) Reconstructed velocity difference (b) A vertical profile of the result in (a)

Figure 4: The result of double-difference waveform inversion with a constant regularization pa-
rameter A = 1.0 x 107! together with a vertical profile at the horizontal position of 1250 m. The
red line in (b) shows the true velocity change, and the blue line is the result of double-difference
waveform inversion with a constant regularization parameter.

gions using the result of the first a few iterations. There are two regions in equation (13) for our
time-lapse models in Fig.1, one within the target monitoring region, and the other outside the tar-
get monitoring region. The regularization parameter utilized for the target monitoring region is
Ain = 1.0 x 10713, and A\, = 1.0 x 107'° for the other region. Figure 5 shows the result of
double-difference waveform inversion with a spatially-variant regularization parameter. The re-
constructed velocity change in the target monitoring region is close to the true value of -320 m/s.
Figure 5 contains significant fewer image artifacts outside the target monitoring region compared
to Fig. 3 and Fig. 4.

The computational cost of the double-difference waveform inversion with a spatially-variant
TV regularization parameter is comparable to that with a constant regularization parameter.
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Figure 5: The result of double-difference waveform inversion with a spatially-variant regulariza-
tion parameter together with a vertical profile at the horizontal position of 1250 m. The red line in
(b) shows the true velocity change, and the blue line is the result of double-difference waveform
inversion with spatially-variant TV regularization.

6 Conclusions

We have developed a spatially-variant TV regularization scheme for double-difference waveform
inversion. The method employs different regularization parameters in different regions in space in
combination with the spatial a priori information, or the target monitoring regions. It uses the block
coordinate descent and nonlinear conjugate gradient schemes to solve the minimization problem.
Our results of synthetic time-lapse seismic data for the Brady’s EGS models demonstrate that our
new method can reconstruct accurate values of velocity changes due to water/fluid injection for
stimulation. The new method can produce images of reservoir changes with much fewer image ar-
tifacts than those obtained using double-difference waveform inversion with a constant regulariza-
tion parameter. The double-difference waveform inversion with the spatially-variant total-variation
regularization can quantify the spatial and temporal changes in reservoirs of enhanced geothermal
systems using time-lapse seismic data. It is a useful tool for optimizing the production of enhanced
geothermal systems.
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