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1 INTRODUCTION

The flow of fluids through a variety of porous media is common in many petroleum engineering

applications. A partial list includes filtration, ground water flow, production of oil and gas from

underground reservoirs, ion exchange and adsorption [12, 42]. Most of these involve either single- or

multi-phase flow of fluids in order to achieve desired objectives. In some of these applications, non-

Newtonian fluids are extensively involved. Particular examples include heavy oils and Enhanced Oil

Recovery (EOR). The rheology of many heavy oils has been shown to be non-Newtonian, Bingham

plastics being one manifestation of heavy oil flow. In EOR applications, non-Newtonian fluids

such as low concentration polymer solutions, emulsions, gels etc. are simultaneously injected to

increase the viscosity of driving agents that displace oil. Such rheologically complex fluids are used

to improve sweep efficiencies, divert displacing fluids and block swept zones.

While the flow of Newtonian fluids through porous media has been well understood through a

variety of experimental and theoretical techniques, the state of the art in the flow of non-Newtonian

fluids, either single- or multiphase, in porous media is far from complete. Reasons for this include

the complex rheological behavior in combination with the complicated flow geometry of porous

media. The macroscopic description for the flow of non-Newtonian fluid through porous media is

therefore a difficult task [37, 44]. With few exceptions, laws equivalent to Darcy's law for the flow

of non-Newtonian fluids through porous media have not been developed.

The present study has been undertaken to understand the flow of non-Newtonian fluids through

porous media. The work considered involves the numerical (pore network) modeling of both single-

and multiphase flow of power-law and Bingham plastic fluids in network-like porous media. We

consider aspects of both single- and multi-phase flow and displacement. Section 2 describes elemen-

tary aspects of non-Newtonian flow and some simple models for porous media. Viscoelastic effects

in the flow of non-Newtonian fluids are also discussed. The section includes a brief literature review

on non-Newtonian flow in porous media. Section 3 describes single-phase flow. It is shown that

the critical path approach of Ketz and Thompson [21] as extended by Yortsos [53] is well suited for

power-law fluids except for very small values of the power-law index n. The numerical simulation

of the single-phase flow of both shear thinning and shear thickening fluids is also presented. The

single-phase flow of a Bingham plastic type fluid is simulated in Section 4. Section 5 deals with the

immiscible displacement of a Newtonian fluid by a non-Newtonian fluid both for constant pressure
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and constant rate boundary conditions. Finally, Section 6 considers drainage of a power-law fluid

by another power-law fluid of the same power-law index but of different consistency index. An

appropriate phase diagram is constructed for this case.

2 RHEOLOGICAL AND POROUS MEDIA ASPECTS

We begin with a brief review of relevant rheological and porous media aspects useful to the subse-

quent analysis.

2.1 SIMPLE MODELS FOR NON-NEWTONIAN FLUIDS

In non-Newtonian fluids, the viscosity is shear rate dependent. Various empirical, rheological

models have been used to characterize such behavior. For simple shear flow, the relation between

shear stress (v) and shear rate (_) is expressed as [3]

I" = -_77 (1)

where 1/is a function of the shear rate. Figure 1 sketches schematically this behavior. When the

viscosity decreases with increasing shear rate under steady shear flow, the fluid is shear thinning

or pseudoplastic (curve D), in the opposite case the fluid is shear thickening or dilatant (curve C).

Some fluids may behave as a solid (shown by curves B and E) and will not flow until a critical yield

stress is exceeded (viscoplastic). Many heavy oils are reported to exhibit such behavior. Various

empirical equations have been proposed to describe steady state flow of non-Newtonian fluids. Four

representative models widely used for inelastic fluids are discussed below.

Power-law (Ostwald-de- Waele) fluids are two-parameter models represented by

T= (2)

hence

_/= K'_ n-1 (3)

where K is a consistency index and the difference between n and unity indicates the degree of

departure from Newtonian behavior. The fluid is shear thinning for n < 1 and shear thickening for
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Figure 1: Classification of Non-Newtonian Fluids Based on Shear Stress-Shear Rate Behavior.

n > 1. For n=l, the model reduces to Newtonian, where K =/_. This model gives an adequate

description of fluid behavior over an intermediate range of shear rates although it fails to describe

the limiting viscosities at zero or at infinite shear rates. Power-law models were extensively used

in non-Newtonian studies by Christopher and Middleman [10], Marshall and Metzner [27], Teeuw

and Hesslink [47], Savins [38], Willhite and Vhl [50] and Cannella and Huh [7].

Ellis models are represented by the expression

! = ±[_ + ( I_1)_-,] (4)
rl rio "rl/2

hence

= _[1 + (I,__LI).-,] (5)rl/2

where r/o, rl/2 and c_ are fluid parameters. 77ois the zero shear rate viscosity, while 7"1/2is the

value of the shear stress for which the corresponding viscosity is equal to one-half its value at

zero shear rate. This three-parameter model is extremely flexible and includes Newtonian and

power-law behaviors as special cases. Sadowski and Bird [34] used the Ellis models to describe the



shear-sensitive viscosities of various fluids. Based on their theoretical analysis, Duda et al. [14]

recommended Ellis models for the study of inelastic non-Newtonian flow.

Another quite useful model was proposed by Carreau [8] and it is expressed as

r = ri_ + (rio - ri_)(1 + A_2)"_ (6)

hence

n--1

= + + (7)

where rio is as defined above, while ri_ describes the limiting viscosity at infinite shear rate. The

time constant )_ is a measure of the transition between the lower Newtonian and shear thinning

region and n is the power-law index. Recently, Sorbie et al. [44] have used this model for the

numerical simulation of shear thinning fluids in porous media.

Finally, Bingham plastic type fluids follow a two-parameter model such that

if I 1<o, = (s)

and

if Irl<ro, _ = 0 (9)

vo is the yield stress that must be exceeded for flow to begin, while tto is the Bingham plastic

coefficient. Such fluids remain rigid when the value of shear stress is smaller than ro, but flow like

Newtonian fluids when the shear stress exceeds ro.

2.2 VISCOELASTIC EFFECTS

Many shear thinning fluids used in EOR applications exhibit elastic characteristics. Such fluids

do exhibit shear thinning but in addition they also display extensional viscosity effects. In our

subsequent analysis, we have neglected such issues. Complications, however, are certain to arise

when the pressure drop in porous media is large enough for extensional viscosity effects to be

important [19]. Jones and Walters [19, 20] have reported that above a critical set of conditions a

significant increase in the flow resistance in a porous media is observed. This has been attributed
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Figure 2: Typical Flow Behavior of Viscoelastic Fluids in Porous Media (from [19]).

to the high extensional viscosities found in dilute polymer solutions at moderate to high strain

rates. It is obvious that extensional viscosity would be important near the wellbore, where strain

rates are the highest. Moreover, extensional viscosity becomes important whenever the flow of

non-Newtonian fluids occurs through geometries such that the cross sectional area is not uniform.

This section summarizes the pertinent literatu,_ on the subject.

The converging-diverging geometries of porous media may contribute to the overall pressure

drop due to the generation of extensional flow. Jones and Waiters [19] studied both extensional as

well as shear flows for the determination of the rheological properties of very dilute aqueous solutions

of Xanthan Gum and Polyacrylamide, both of which are of potential use in EOR. For polyacrylamide

solution, a critical strain rate region was identified, beyond which extensional viscosity effects are

likely to be important in practical polymer flooding. Figure 2 shows the general flow behavior

of viscoelastic fluids in geometries which can induce extensional viscosity effects. Critical flow

rates between 0.02 to 0.4 cc/sec were reported based on the type of geometries shown in Figure 3.

The corresponding Reynolds numbers are quite low and range between 0.04 to 0.06. In contrast,

Xanthan Gum solution, which is both shear thinning and tension thinning, has an extensional

viscosity behavior different from that of the high molecular weight polyacrylamide.
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Figure 3: Typical Model Geometries (from [19])

In examining the flow of non-Newtonian elastic fluids, Boger [6] pointed out that vortex en-

hancement is linked with an increased pressure loss through the contraction region. Binding and

Waiters [2] carried out a study to measure pressure drops in contraction flow geometries for the de-

termination of the extensional behavior of polymer solutions. The flow rates used during their study

were in the range of 10-7 - 10-4m3/s. They reported that Boger fluids (which are highly-elastic,

constant-viscosity, non-Newtonian fluids) displayed vortex enhancement in axisymmetrical, but not

in planner contractions, while aqueous solutions of polyacrylamide exhibited vortex enhancement

in both geometries. On the other hand, Evans and Walter [16] carried out experiments with a wide

variety of geometries to examine the Row of aqueous polyacrylamide solutions and reported that

the flow characteristics in contraction flows are difficult to generalize from one type of contraction

to another. Durst [15] studied porous media flows of dilute polymer solutions and showed that the

small addition of high molecular weight polymers to a Newtonian solvent triggers pressure drops if

the flow rate exceeds an onset flow rate corresponding to a critical Deborah number for the porous

media-polymer solution matrix. The critical Deborah number was identified as 0.5.

Another important viscoelastic effect identified is the Trouton ratio, given by [19, 20]



TR- (10)
where _E is the extensional viscosity based on the strain rate _ and r/ is the shear viscosity at the

shear rate ;),. For Newtonian fluids, the Trouton ratio is constant (TR = 3), whereas highly elastic

fluids have high TR. Jones et al. [20] reported that the Trouton ratio increases with an increase in

the strain rate, both for a Boger fluid and for an aqueous solutions of polyacrylamide at constant

shear viscosity.

2.3 MODELS FOR POROUS MEDIA FLOW

Important properties of naturM porous media are heterogeneity, correlation structures, geometry

and topology of the pore space and pore size distribution [13]. Early approaches to model flow in

porous media relied on simple geometric models, where the geometry of the porous media is greatly

simplified to allow for the governing differential equations to be solved [48]. A most commonly

used model in the early literature is the bundle of capillary tubes where porous media is modelled

as a set of parallel capillaries with distributed sizes. A skewed capillary model, which is a minor

variation of the well-known straight capillary model, has also been reported [48].

Recent approaches to model porous media involve networks of capillaries [24, 45]. In this

approach, the porous media is a network of bonds (shown schematically in Figure 4). Individual

pores have defined geometrical properties (typically cylinders of constant diameter) with different

pores having different size characteristics. The bonds are connected to each other at sites or nodes

of different size. The average number of connections at a site is the coordination number z of the

network. Most commonly used network models are square lattices with coordination number 4 (in

2-D) and cubic lattice with coordination number 6 (in 3-D).

The majority of work on single-phase flow of non-Newtonian fluids through porous media (re-

stricted mainly to polymer solutions) is based on the capillary tube bundle model for porous media

and some suitable rheological models for the non-Newtonian fluid. Power-law, Ellis and Correau

models have been extensively used for such studies. A comprehensive review on this subject is pre-

sented by Savins [39]. An important aspect of the flow of non-Newtonian fluids in porous media is

the interaction between fluid and porous media in terms of plugging, adsorption, chemical reaction

etc. Salman [36] recently has presented an excellent review of this aspect.
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Birdetal.[3]werethefirsttosuggestthescaleup ofrheologicallycomplexfluidflowinporous

media basedon thecapillarymodel,withan assumedfunctionalrelationshipbetweenshearstress

and shearrate.Theirequationforpower-lawfluidsis

." = (k/ )lv Pl (11)

where

25 3n + 1)n(3)n+l/150][Dpll-n[¢12(n-1) (12)
H = K[2(_)n(

u denotes superficial velocity, Dp is the mean particle diameter of porous media, n is the power-law

index, K is the consistency index, ¢ is the porosity of porous media and k the absolute permeability.

Christopher and Middleman [10] modified the Blake-Kozeny equation for purely viscous fluids.

Their equation for a power law fluid may be summarized as follows

u '_ =(k/H)AP/L (13)

where



Teeuw and Hesselink[47]accountedforeffectsoftortuosityon both shearrateand shearstressby

considering

Sadowski[35,34]employedt'hesame capillarymodel torepresentporousmedia,but usedan Ell_s

model forthefluid.The flowequationmay be expressedas

u=(k/H)AP/L (16)

where

1-_._n

= _--_[1+ (4/((2n + 1)/n))( )] ,(1,7)

where tRH is

tRH = [¢Dp/6(1 - ¢)]APIL (18)

The single-phase flow of Xanthan biopolymers through porous media has been studied by Hirasaki

and Pope [18], Greaves and Patel [17], Whillhite and Uhl [50] and Chaveteau and coworkers [9, 54],

all with the use of power-law models. A detailed review on these works has been presented recently

by Sorbie [46].

Duda et al. [14] and Sheffield and Metzner [42] have reported the inadequacy of conventional

capillary model for the description of the flow of nonlinear but purely viscous fluids through porous

media. They mentioned that this adequacy may lead to order-of-magnitude error in pressure

drop-flow rate predictions. Duda et al. [14] concluded that models for porous media must also

include expansion and aontraction geometry, while theological models for the fluid must include

the cl_racteristic transi_n from Newtoaian behavior at low shear _.ate to shear thinning behavior

at high shear rate.

CanneUa and Huh [7] have recently investigated the flow beimvior of Xanthan biopolymer in

porous media both experimentally and theoretir.ally. They applied a power-law rheological model

9



for Xanthan solutions and derived a relation for the apparent viscosity in porous media based

on a qualitative argument by employing the effective medium approximation. This was the first

approach where porous media were modelled as a network of capillaries. Sorbie et al. [44] have

also recently used network models to relate the behavior of single-phase flow of a Carreau fluid in

a single capillary and at the macroscopic scale.

2.4 MULTIPHASE FLOW OF NON-NEWTONIAN FLUIDS THROUGH

POROUS MEDIA

The literature is comprehensive on the subject of multiphase flow of Newtonian fluids through

porous media. Lenormand et al. [25, 26] presented a study on drainage flow patterns where a

Newtonian fluid displaces another Newtonian fluid. In their numerical study, they have employed

network models and presented computer simulations of immiscible displacement. They have char-

acterized immiscible displacement in porous media by two dimensionless numbers, the capillary

number Ca, which is the ratio of viscous forces to capillary forces, and the ratio of the two vis-

cosities M. Depending on the values of Ca and M three types of displacement patterns have been

identified: viscous fingering, capillary fingering and stable displacement. Lenormand identified the

boundaries of each domain (Figure 5) and described the three regions by simple statistical mod-

els, such as percolation [49], DLA and anti-DLA [32], for capillary fingering, viscous fingering and

compact displacements, respectively. He also showed how these boundaries scale with the model

size, a significant result for scale up processes.

On the contrary, very little research is reported on multiphase flow, where one or more fluids are

non-Newtonian in nature. Immiscible displacement of a Newtonian fluid by a non-Newtonian fluid

occurs in many processes which involve non-Newtonian fluids, such as polymer or foam. However,

there is a severe lack of understanding of such displacements. Slattery [43] was the first to extend

local averaging to multiphase flow of viscoelastic liquids in porous media. Schneider and Owens

[40] conducted steady state measurements of relative permeability for polymer-oil systems. Savins

et al. [39] recently carried out oil flood experiments in porous media, involving a non-Newtonian

displacing phase and a Newtonian displaced phase. They have developed a model to interpret purely

viscous theological behavior in multiphase flow by considering a capillary model for porous media

and an empirical power-law model for non-Newtonian rheology. More recently, Salman [36] reported

10



an experimental study using kerosene and different polymer solutions on Berea sandstone cores.

Salman et al. [37] modified the Buckley-Leverett theory for power-law fluids and the JBN method to

calculate individual relative permeabilities in multiphase system for power-law fluids. Witherspoon

et al. [51] also reported displacement of a Bingham non-Newtonian fluid by a Newtonian fluid

to obtain insight in the physics of two-phase displacement. However, their approach is mostly

phenomenological.

In a series of articles, Pascal [28, 29, 30, 31] reported on the macroscopic interface stability

involving non-Newtonia_ fluids. He described the conditions under which piston-like displacement

can be obtained, when one or both fluids are of the power-law type. The stability condition with

a non-Newtonian displaciag fluid of a power-law type is

#2 VI_. < 1 (19)
_eff

where #2 and ]Aeff denote viscosity of the displaced phase and effective viscosity of the non-

Newtonian displacing fluid, respectively, while V is the interface velocity. This result is different

from its Newtonian counterpart, where no velocity dependence exists (n=l).

So far all theoretical-numerical studies for displacement involving non-Newtonian fluids are

restricted to the macroscopic scale, where various phenomenological models, mostly extensions of

Newtonian behavior, have been used. To the best of our knowledge, there is no study reported in

the literature on the multiphase flow of rheologically complex fluids where a network model has

been employed. This study is undertaken in this report.

3 SINGLE-PHASE FLOW OF POWER-LAW FLUIDS IN POROUS

MEDIA

The objective of this section is to understand the flow patterns in single-phase flow of power-law

fluids for different model parameters assuming power-law behavior in the pores of the network. For

simulation purposes we have used a network model as also done by Sorbie et al. [44]. The following

assumptions are made:

(i) All bonds in the network are of uniform cross-section, so that any contribution due to

converging-diverging geometries to the pressure drop is not significant. Hence, the overall pressure

11
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Figure 5: Immiscible Displacement Phase Diagram.

drop in the capillary is related to the average flow rate by a power-law

q = g(AP)l/,_ (20)

where q is the volume flow rate in a pore of conductance g, across which there is an applied

pressure drop /xp. This assumption ignores pressure drops associated with extensional flow and

converging-diverging geometries. Hence, the model inherently predicts a macroscopic power-law

exponent equal to the one at the pore level.

(ii) Although there is a considerable experimental evidence of adsorption on the porous media

surface, which thereby reduce the mobility of the flowing phase [11], we have neglected such surface

effects for simplicity.

(iii) The fluids considered are inelastic. This is true for the widely used polymers xanthan gum,

although not for polyacrylamide solutions which exhibit shear thinning as well as elastic behavior

under certain conditions. Heavy oils also exhibit some viscoelasticity [22]. However, our scope is to

first understand shear thinning and shear thickening behavior of simpler fluids such as power-law.

Under the above qualifications, which render the problem to one of power-law resistors, the

following aspects have been addressed" (i) Application of Effective Medium Theory and (ii) Ap-

12



plication of the Critical Path Analysis. Both issues are briefly discussed theoretically before their

validity is tested by the use of numerical simulation.

3.1 EFFECTIVE MEDIUM THEORY

Effective Medium Theory (EMT) is an important technique that has been used to interpret the flow

of non-Newtonian fluids in porous media [46]. It was originally developed to estimate the effective

electrical conductivity for a regular linear network with randomly distributed conductivities [23].

If g is the conductivity of a resistor and G(g) its normalized probability distribution, the effective

conductivity g,_ can be obtained from the expression

fo _ (gin - g))g,nlG(g)dg = 0 (21)[g+ (#2 - 1
where z is the coordination number for the network. This equation has been successfully used for

calculating certain average properties for Newtonian fluids using network models. Cannella and

Huh [7] have recently used mainly qualitative arguments to propose the following expression for gm

f0 _ )" - 1]dg = 0 (22)a(g)[(g + (z/2 - 1)g,.,,

for flow involving power-law fluids. In a different approach, Yortsos [53] applied EMT theory to

Bethe lattices at large coordination numbers. As shown in Figure 6, such a lattice lacks intercon-

nections, hence it is most suitable for analytical calculations, and it has often been used for porous

media applications. Yortsos [53] derived the following EMT

fo_ - 1]dg=0 (23)
(z- 1)g

a(g)[(g. + ((z- 1) _- 1)g#,)l/_

from the solution of which the average and total conductances <g> and <gT>, respectively, can

be evaluated

< g >= ((z- 1)n - 1)'/'_gm (24)

Z

<gT>=_- <g> (25)Z-1

13



°

Figure 6: Schematic of a Bethe Lattice.

There is a significant difference between the two EMT expressions (22) and (23). Numerical simu-

lations will be used to test the validity of the two expressions.

3.2 CRITICAL PATH ANALYSIS

Katz and Thompson [21] developed a model for the single-phase Newtonian permeability k in terms

of the rock conductivity a and a characteristic length lc

= Cit _ (26)
O'o

where the constant C is of the order of (1/226) and ao is the conductivity of brine in the pore

space. The characteristic length lc can be determined experimentally from the threshold capillary

pressure, defined as the point at which the invading mercury, in a mercury injection experiment,

first forms a connected path in a rock sample. Expression (26) was developed from the percolation

arguments of Ambegaokar et al. [1], which were initially applied to electron transport in amorphous

semiconductors. According to this argument, transport in a random system with a broad distribu-

tion of conductances (pore sizes) is dominated by those conductances with magnitude greater than

some critical value ge, such that they form an infinite connected cluster in a random system. Katz

14



and Thompson [21] extended the same percolation idea to the flow of Newtonian fluids in porous

media.

Yortsos [53] extrapolated the concept to power-law fluids and derived the following macroscopic

law for porous media

q'_ = klAk_'_-l)/2AP (27)mL

where the constant A is related to the formation factor a/ao and the exponent n as

(7.84)I-'_31+'_ (23.57tn) t"A
22-+ (1+3.)-(3+ ]

(2s)

and for a 3-d network

t,_ _ 1.76 + 0.24/n (29)

In the above, kl is the Newtonian permeability

1 -2 a

= (30)
where l_ is a percolation length obtained from mercury porosimetry. The concept of critical path

requires a wide conductance distribution such that substantial flow occurs only over a subset of

the pore network close to the percolation cluster. EMT and CPA predictions are the only available

theories involving networks of pores where power-law behavior occurs.

3.3 NUMERICAL MODELING OF SINGLE-PHASE POWER-LAW FLOW

The computer simulation of a single phase non-Newtonian fluid was undertaken to understand the

flow patterns in network-like porous media for different values of the power-law index n. As men-

tioned earlier, Sorbie et al. [44] used numerical simulation for the single-phase flow of pseudoplastic

fluids in a network-like porous media. Their objective was to understand pore level phenomena for

such flow and then proceed to scale up. The objective of our numerical simulation was to test the

previous theories, to understand the flow patterns in the single-phase flow of both shear thinning

and shear thickening fluids in a network of capillaries and to delineate the departure from the

Newtonian behavior (n= 1).
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In our simulations, the porous media were represented by a 2-D network of capillaries of coor-

dination number 4. The bond length was taken constant, but the capillary radii were randomly

distributed. Various wide distributions were considered as required by the CPA approach. Impor-

tant assumptions in the simulations are that there is no pressure drop in the network due to the

nodes and that all the pressure drop across the system is due to the flow in bonds. As before, excess

pressure drop associated with entrance and exit flow in each capillary is neglected. The following

expression for the single-phase flow of a power-law fluid in a single capillary was used

7rR ,, nAP 1/n

q = (2Lg)a/n(3n + 1) (31)

where R and L denote the radius and length of the capillary, respectively. Appropriately rescaled,

a dimensionless form of equation (31) reads

Q* = R* " (AB*) x/n (32)

n _ 1
where flow rates have been normalized by _r3--g_(R ) - _KL /'_(Po- Px) 1/'_, radii by R - and

pressure differences by (Po - Pl) 1/_', with R as a characteristic radius and Po and P1 as inlet and

outlet pressures of the network.

We next applied mass balances at each node of the network, where the fluid is considered

incompressible. Thus, for each node

___ Q,_ = 0 (33)
J

where j runs over ali nodes connected to node i. To solve (33), we used successive relaxation

methods, with a fairly stringent convergence criteria for shear thinning and shear thickening fluids.

The iterative method is detailed in Appendix A. Once the dimensionless pressure field is obtained,

we can calculate the normalized flow in each bond using (32). Results for both flow and conductance

distribution have been obtained for shear thinning as well as for shear thickening fluids for networks

of size 100 × 100. The dimensionless total flow and effective conductance gm of the network was

then obtained to test EMT and CPA theories.

To test the validity of the two EMT equations (22) and (23), we compared the numerical

results for gm obtained for different values of the power-law index n with the values calculated
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from theEMT expressions.We probedtheirvalidityfordifferent(uniform)poresizedistributions,

rangingfrom narrow to wide. We chosenarrow [0.9-1.1],medium [0.4-1.6]and wide [0.01-1.99]

distributions,allnormalizedwith a mean pore sizeof unity.The expressionused forcalculating

gm for the network size of N x M reads as

Q (Y- 1)'/" (34)g,n ='_

where Q is the flow rate through the network and n is a power-law index.

Figures 7-9 show plots of the effective conductance g,_ vs. the power-law index n. Solid lines

indicate values of gm obtained from Cannella and Huh (22), dotted lines show the values calculated

from Yortsos (23), while numerical values are plotted as crosses. As shown in Figure 7, the values of

gm calculated from the two analytical expressions are in good agreement with the numerical values

obtained from the network for narrow pore size distributions and for a wide range of n, covering

both shear thinning and shear thickening fluids. To a certain degree, this result is anticipated from

EMT. Expression (23) seems to be fitting the network value more closely, however, and also has

the proper trend over the entire range of n. Expression (22) shows the reverse trend for n>l.

Figure 8 shows a comparisons for intermediate ranges of pore size distributions. Expression (22)
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developed mainly by qualitative arguments, shows much less agreement with the network results

than (23) and also maintains the reverse trend in the shear thickening cases. The values obtained

from expression (23) are quite close to the numerical values, which is quite satisfactory considering

the degree of approximation involved. One should recall that (23) is a rigorous asymptotic EMT

expression for Bethe lattices. Figure 7-8 suggest that it may be also approximately valid for porous

media as well, although its applicability should be limited. As the distribution becomes wider, the

agreement between analytical and numerical results deteriorates, particularly at low values of n

(Figure 7). Even then, expression (23) appears reasonable, provided that the distribution is not

very wide. For wide distributions, however, EMT is not expected to be valid. Instead, the critical

path analysis is likely to be applicable.

Critical path analysis requires a broad conductance distribution, such that a substantial flow

occurs only over a subset of the pore network, which can be taken to be the percolation cluster.

To test this approach we considered computer simulations for the flow of power-law fluids in a 3-D

11 × 11 x 11 lattice with power-law index n varying from 0.2 to 2. To test theory and simulation,

we rearranged expressions (27) to (30) as follows

1[logkl + logc_]n + logB (35)log( qn / D ) = -_

where we defined

B = k_/2AP
cmL ' (36)

c = (a/ao)°'as¢ 0"12, (37)

and

(7.84)l-n31+n(23.57tn) t"

D = 22,_+1(3n + 1)"(3 + tn) 2+'- (38)

In this form, we can directly test the critical path aaalysis by searching for a linear relation

between q'_/D and n in a semilog plot. Figures 10 and 11 show sernilog plots of q'_/D against the

power-law index n for two different distfit)._tio_s of bo_'a sizes. As can be seen, the theoretical

prediction of a straight 'h'l_e_n ,(35) 'is _el] sa_ed for all values of n that are not too small. We
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Figure 12: Conductance Distribution for n=l [0.01-1.99].

do observe, however, a deviation from a straight line behavior for small n. The effect of the pore

size distribution is not very significant, both Figures 10 and 11 displaying approximately the same

behavior. This can be explained by noting that despite the relatively narrow pore size distribution

used in Figure 11, the corresponding conductance distribution, which scales as r3+l/n, is still wide,

thus satisfying the CPA conditions.

The above simulations in a 3-D lattice confirmed the qualitative accuracy of CPA, except for

small values of n. When n is small, a different flow mechanism should be obeyed (see section 4).

An illustrative and instructive confirmation of these results is offered by the corresponding flow

patterns. In these illustrations, the normalized flow in each bond is denoted with level of grayness

proportional to the flow rate through the bond. Thus, black color represents the maximum flow

rate, white color corresponds to little or no flow through the bonds of the network. Only flow

through the bonds is shown, flow through the nodes connecting two bonds depicted in white. The

conductances in the network are also represented in the same manner. Typical results of single

phase flow in a network for various values of n are shown in Figures 12-19.

Figures 12-19 show flow and conductance patterns for different values of power-law index with

a wide distribution [0.01-1.99]. Figures 12 and 13 show conductances and flow patterns for a
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Figure 13: Flow Pattern for n=l [0.01-1.99].

7"

Figure 14: Conductance Distribution for n=O.4 [0.01-1.99].
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Figure 15: Flow Pattern for n=0.4 [0.01-1.99].

_ ._

Figure 16: Conductance Distribution for n=0.2 [0.01-1.99].
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Figure 17: Flow Pattern for n=0.2 [0.01-1.99].

Newtonian fluid (n = 1) for comparison purposes. As expected, the conductance distribution

is quite wide, the flow being distributed over the entire network. We may identify a connected

cluster, resembling a percolating cluster, through which most of the flow is taking place. Indeed,

it is apparent that there exist empty pockets (holes), where flow rates are small. The conductance

distribution becomes much wider as we decrease the value of n, because of the relation g _ r 3+1/n.

A typical example for n = 0.4 is shown in Figures 14 and 15. The flow occurs through a limited

network of connect'ng bonds with most of the flow occuring through few connected paths. We can

also identify large empty pockets, where no flow takes place, in accordance with the theory. Similar

results were also obtained for n=0.8 and 0.6 (not shown), indicating that shear thinning fluids in this

range flow through the network as expected from CPA. At smaller values of n, the conductance

distribution is very wide and flow occurs only through a small subset of the percolating cluster

corresponding to the highest conducting bonds. The subset becomes smaller as n decreases [4, 5]

(Figures 16 and 17). In this case, the entire flow occurs through a very small number of connected

bonds. The remaining network contributes very little to flow and it is almost impermeable. Clearly,

the application of effective medium theories would be fruitless in such situations. The existence

of a critical path requires that the conductance distributions are wide. Since the conductance is
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Figure 18: Conductance Distribution for n=2 [0.01-1.99].

related to the bond size through g _ r 3+1/n, such a hypothesis is satisfied better as n decreases.

Nonetheless, shear thickening fluids also qualify for an application of CPA. Figures 18 and 19 show

the conductance and flow patterns for a shear thickening fluids (with n = 2), where, as expected,

the flow distribution resembles the Newtonian case (n = 1).

The above confirm quantitatively the validity of the critical path analysis, particularly for shear

thinning fluids. When n becomes very low the application of the theory is questionable, as already

anticipated in [53]. In fact, this case is similar to the flow of Bin,ham plastic in porous media,

which is subsequently discussed.

4 FLOW OF BINGHAM PLASTICS IN POROUS MEDIA

Bin,ham plastics exhibit a finite yield stress at zero shear rate and have been used to model the

flow of some heavy oils. Laboratory investigations and field tests have indicated that flow of heavy

oil takes place only after the applied pressure gradient exceeds a certain minimum value [33, 52].

Also, flow of groundwater in certain clayey soils, flow of foam in porous media, flow of certain

drilling and hydraulic-fracturing fluids, all exhibit rheologicai behavior that in certain instances
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Figure 19" Flow Pattern for n=2 [0.01-1.99].

can be described as a Bingham plastic.

The simulation procedure for the single-phase flow of Bingham plastic in a network-like porous

media is the same as outlined in Section 3, except that the governing equations for the flow are

different and more difficult to solve. The expression for the flow of Bingham plastic in a capillary

is given by [3]

q - 8#oL_'R4 (1 - _(4_) + 3(1"_r° )4)A P when rR > ro, (39)

and by

q = 0 when rn < ro (40)

where R and L denote radius and length of the capillary respectively, q is the volume flow rate in

a pore, across which there is an applied pressure drop Ap and vn is the wall shear stress.

Appropriately rescaled, the dimensionless form of the equations are

 41/q, = R,_(1 _ _( ) + _( )4)Ap* = g*AP* when vn>ro,
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Figure 20: Flow Pattern for ro = 0 [0.01-1.99].

Figure 21: Flow Pattern for ro = 0.01 [0.01-1.99].
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Figure 22: Flow Pattern for ro = 0.05 [0.01-I.99].

and

q* = 0 when vn<ro (42)

where g* is a dimensionless conductance for a single capillary and

APR

rn= 2L (43)

The pressure field in the network was calculated by applying a successive relaxation iteration

method. Results for the flow and conductance distributions have been obtained for Bingham plastic

fluids in networks of size 21 × 21. Two uniform size distributions, a narrow and a wide were used.

Figure 20 shows the flow pattern of a Newtonian fluid (ro = 0.0) in a uniform distribution

of bond sizes in the interval [0.01-1.99]. We observe that the flow is distributed over the entire

network, and we may identify a connected cluster, resembling a percolating cluster, through which

most of the flow is taking place. Figure 21 represents the corresponding flow pattern for Bingham

plastic fluid with the value of yield stress equal to 0.01. We observe additional empty pockets in

the network as more bonds in the network become non-conducting due to the higher value of yield
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Figure 25: Flow Pattern for "ro = 0 [0.9-1.1].

stress. As it is not possible to accommodate all the simulation results in this report, two typical

examples are shown in Figures 22 and 23, where the values of yield stress are 0.05 and 0.065,

respectively. In Figure 22, flow occurs only through a limited network of connecting bonds. We

identify large empty pockets in the network, where no flow occurs. We observe more pronounced

effects when ro = 0.065, where the entire flow occurs through a very small number of connected

bonds. The remaining network ha_ a limited participation to flow and behaves much like an empty

pocket. These results are similar to those obtained for shear thinning fluids when the value of

power-law index is small [41]. Figure 24 shows a plot of the effective conductance versus yield

stress. We can identify a macroscopic critical yield stress beyond which the flow is zero.

The other case involves a narrow size distribution [0.9, 1.1]. Figure 25 shows flow patterns for

the Newtonian fluid (7"o = 0). The flow is quite uniform throughout the entire network and we do

not observe many empty pockets. Flow is taking place mainly along the pores in the flow direction

and very limited flow is observed in the transverse direction. As we increase the value of the yield

stress (Figure 26) all flow occurs basically through straight paths, each connecting the same number

of pores. Figure 27 indicates flow patterns for larger values of the yield stress vo=0.045, where flow

takes place through only a few horizontal paths and the rest of the network is non-conducting.
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Figure 26: Flow Pattern for ro = 0.01 [0.9-1.1].

Figure 27: Flow Pattern for rb = 0.045 [0.9-1.1].
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Figure 28: Flow Pattern for n=0.07 [0.01-1.99].

We suggested earlier that the flow behavior of shear thinning fluids with small n would be

similar to the flow of a Bingham plastic. To test this argument, typical flow patterns for the single-

phase flow of shear thinning fluid, with n=0.07, for the same network size and distribution used

for Bingham plastic, are shown in Figure 28. We observe a striking similarity in the flow patterns

with the patterns of Figure 22 corresponding to a Bingham plastic with ro=0.05. This analogy,

however, needs to be tested further.

5 IMMISCIBLE DISPLACEMENT INVOLVING POWER-LAW

FLUIDS

The previous sections dealt with single phase flow. In this section, we consider two phase flow and

displacement. First, we will simulate the displacement of a Newtonian fluid by a power-law fluid

in a drainage process. The long-term goal of this study is to examine the displacement patterns

obtained for various types of non-Newtonian fluids and proceed with scale-up. We have mainly

concentrated on shear thinning fluids. In the case of Newtonian fluids, it is common practice to

relate displacement patterns to the viscosity ratio of the two fluids (stable vs. unstable). However,
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the viscosity of power-law fluids changes depending on the applied shear rate and it is varying from

bond to bond in the network. Therefore, the previous results do not apply and must be modified. In

modeling such immiscible displacement through the network, we have used the following standard

assumptions [26]: (i) Volume calculations apply to pore bodies only, the pressure drop occurring in

pore throats. (ii) Throats are filled by either invading or displaced fluids, while bodies may contain

both fluids. (iii) The capillary pressure in a throat is inversely proportional to the tube radius,

while the capillary pressure drop in a node is negligible. Two cases were considered, one involving

constant pressure and another involving constant flow rate.

In the simulations we have considered the drainage of a wetting Newtonian fluid by injecting a

non-wetting power-law fluid. When the bonds in the network are occupied by the Newtonian fluid,

Poisseuille's law for the flow rate Qij across each bond connecting adjacent nodes i and j applies

Qij = 7rR_j(Pi- Pi)s ,z,j = - Pi) (44)
where Pi is the nodal pressure, Rij and Lij are the radius and length of the bond, respectively, and

# is the viscosity of the Newtonian fluid.

The pressure field in the network is calculated by applying the mass balance equation (33) at

each node as described in the simulation of single-phase flow. The non-wetting fluid (non-Newtonian

in this case) cannot enter a bond unless the pressure difference across that bond exceeds a threshold

pressure Pc, given by Laplace's law

27 (45)
Pc = R,"-_

where 7 is the interfacial tension. Hence, a particular bond is invaded if there is no trapping and

the capillary pressure condition is satisfied. Once the bond is invaded, the governing flow equation

in the bond changes to

- '='(3n+l )/"n(,,l,_ij Pi pj)l/n
Qij = - = gijAl.,jn__l (46)

(2L)_fn(3n + 1)g "

hence, the value of gij depends on both the power-law index n and the consistency index K. In the

subsequent steps for pressure calculation, the same iterative method is applied, except that we use

a combination of linear and non-linear flow equations depending on the type of the fluid present in
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each bond of the network. The node saturation is updated at each time step using (46). In time

At the node saturation Si(t) increases as follows

s (t + ,at)= + ,atv Q;j (47)
J

where _ is the volume of node i. The time interval At is calculated such that only one node

is filled at each time step. For the next time step, the calculations are repeated and the flow of

the two immiscible fluids is solved. Two dimensionless groups emerge depending on the boundary

conditions and they are defined as follows (APPENDIX B)

R2AP
Nta1:' = _ (48)

N/,ij7

where Neap is the capillary number for constant pressure displacement

and

Ca = Q oN Neap (49)
8M

where Ca is the capillary number for constant rate displacement. Here, QD is the dimensionless

flow rate calculated for an N x M network.

5.1 CONSTANT PRESSURE DROP DISPLACEMENT

Simulation results were used to understand the effect of power-law index n on displacement patterns.

For convenience, we have chosen the value of consistency index K to be the same as the viscosity

of the Newtonian fluid for all the values of n used. As the simulation procedure involves highly

nonlinear iterative calculations, networks of small size (25 × 25) were selected. The results were

verified with larger networks of size 100 x 100 in few cases, however, to ensure their validity. The

simulation patterns reported below are for two values of Neap. In all Figures, black color refers to

the Newtonian fluid and white color represent the invading non-Newtonian fluid.

Figure 29 shows displacement patterns for n=l (Newtonian fluid) which serves as a basis of

comparison with different values of n (with Neap=0.02). The mobility ratio for this case is unity and

we observe more or less stable displacement in this range of capillary number (10 -3 ) in agreement

with Lenormand et al. [26]. Typical results of two-pha_e flow in the network for both shear
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Figure 29: Immiscible Displacement for n=l (Neap = 0.02) at Four Different Time Steps (a) 90
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thinning (n = 0.8,0.4 and 0.2) and shear thickening (n = 1.5) are shown in Figures 30-33 for the

same capillary number. In all Figures, four displacement patterns (a)-(d) are shown at different

time steps.

Figure 30 shows displacement patterns for shear thinning fluids with n = 0.8. We observe

patterns quite similar to the Newtonian case although we see little tendency for fingering and

trapping during displacement. The pattern is very close to that of unstable displacement. Further

lowering of the power-law index shows instability ( Figure 31, n = 0.4), the interface advancing with

large fingering and bypassing. Viscous fingers, developed right after the onset of flow, penetrate

rapidly through the Newtonian fluid. For n=0.2, the flow of the invading fluid increases rapidly

through the network and we see faster movement of the fingers. In general, we observe excessive

tendency for fingering, trapping and bypassing in the shear thinning case, particularly at low values

of n. These results are consistent with the previous flow patterns of single-phase flow (Figures 11-

19). Indeed, one would anticipate that the shear thinning fluid would select a narrow flow path,

and thus show a pronounced tendency for fingering. The opposite picture develops for the shear

thickening case (Figure 33, n=1.5). It is observed that the interface is quite compact with a

very small amount of trapping at the indicated capillary number. In these constant pressure drop

simulations, the capillary number Ca increases as the shear thinning fluids advances through the

network (Figure 34). The increase is very steep for smaller values of n as can be predicted from

the macroscopic law for power-law fluids. For the shear thickening case, on the other hand, Ca

decreases with time.

In the above, we found excessive fingering and tendency for unstable displacement as n decreases.

As is the case with Newtonian fluids, this can be explained in terms of the mobility ratio. We

decrease the value of n, the shear thinning tendency of the fluids is more visible, the mobility ratio,

being the ratio of the viscosity of the Newtonian fluid to the average effective viscosity of shear

thinning fluid, increasing dramatically. Typical simulation results for n=0.2 but with different

viscosity for the Newtonian fluid (0.001 poise) are shown in Figure 35 for a 50 x 50 network. We

observe that the tendency for fingering and bypassing is still unabated. In all these results, the

capillary number Ncap is equal to 0.1 for the displacement to be purely viscous. For such small

values of n the pattern is one of unstable displacement dominated by viscous fingering, irrespective

of the displaced phase viscosity in the observed range. After a certain time, which varies with Neap,
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Figure 32: Immisccible Displacement for n=0.2 (Neap = 0.02) at Four Different Time Steps (a) 30

(b) 60 (c) 90 (d) 120.
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Figure 33: Immisccible Displacement for n=l.5 (NcaP = 0.02) at Four Different Time Steps (a) 90

(b) 150 (c) 300 (d) 420.
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Figure 34: Change in Ca with Time Step for n < 1.

the finger accelerates and a very high value of flow rate through the network is obtained.

5.2 CONSTANT FLOW RATE DISPLACEMENT

In the constant flow rate problem, the invading fluid is injected at a constant rate through the

inlet face, while the pressure at the outlet face is constant. This type of displacement is of great

practical interest. Values of the power-law parameters K and n based on [7] were used in the

numerical simulation. Before we proceed with the numerical simulations, we shall describe some

macroscopic results.

Pascal [31, 29, 30, 28] reported a theoretical work on the stability of a moving macroscopic

interface in porous media in the case of immiscible displacement at a constant rate for power-law

fluids. In the absence of gravitational and capillary effects, the stability condition reads

_...22v _eff V n _ 0 (50)
k2 kl

and if we assume kl -" k2,
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(c) (4)

Figure 35" Immiscible Displacement # = 0.001 (Ncap = 0.1) at Four Different Time Steps (a) 60

(b) 90 (c) 120 (d) 150.
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_ V:-"< I (51)
#eff

Thus, stability requires V to be low for shear thinning fluids (n < 1) and high for shear thickening

fluids (n > 1). This prediction is to be tested in the pore network displacement process.

To characterize the non-linear immiscible displacement, the following dimensionless number is

introduced

q (:2)
Np = R( K) _"

where q is the flow velocity, R is a characteristic radius of the network and K and n are the usual

power-law parameters. The simulation procedure is as described in the case of constant pressure.

The major difference is that to maitain a constant injection rate. The following mass balance at

the inlet face must be solved

M

ek) =0 (s3)
k=l

where Pin isthepressureat the inletface,Pk isthepressureat the nodes adjacentto theinlet

nodes and Q istheprescribedconstantflowrate.P;,_iscalculatediterativelyuntilconvergence.

We typicallyusea networkofsize25 x 25.

Numericalsimulationswerecarriedout forfourdifferenttypesofshearthinningfluidsforthe

parametersofTableI.The displacementpatternsarefortwo typesofshearthinningfluidsand for

a wide rangeofcapillarynumbers.The power-lawparametersn and K are0.35and 6.20Psecn-1

forthe firstinvadingfluid,which ishighlyshearthinningin nature.A similarsetof resultsis

alsoreportedfortheotherfluidwith n = 0.6and K = 0.43Psecn-l,which can be considered

as moderatelyshearthinning.The simulationswere made to understandtheeffectsofcapillary

number and power-lawparameterson thedisplacementpatterns.

'Figures36 to37show displacementpatternsforthefirstcase.Figure36 showsthedisplacement

atfourdifferenttimestepsfora highvalueofthecapillarynumber (Ca=3.33 × 10-I).At such

highvelocity,thedisplacementissimilartotheviscousfingeringdomain ofa Newtonianfluid.As

theinjectionratedecreasestoCa=3.33 × 10-4,(Figure37),we observelesstendencyforfingering

and bypassingand percolation-likepatternsareemerging.We thusobservethe transitionfrom
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(c) (d)

Figure 36' Constant Rate (100 cm/sec) Immiscible Displacement for n=0.35 and K=6.20 Psec '_-1

(Ca=0.333 and Np=174.8) at Four Different Time Steps (a) 30 (b) 60 (c) 90 (d) 120.
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for n=0.35 and K=6.20 Pse¢ n-1
_' el_lgur 37: Constant Rate (0.01 cm/sec) Immiscible Displacement

(Ca=3.33 × 10 -4 and Np=0.0174) at Four Different Time Steps (a) 120 (b) 210 (c) 270 (d) 360.
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n K (Psec n-1 )

0.75 0.17

0,60 0.43

0.48 1.95

0.35 6.20

Table 1: Power-law Parameters (from [7]).

viscous fingering as the capillary forces increase. Further decrease in the capillary number leads to

the capillary fingering domain. Figures 38 and 39 show displacement patterns for the other shear

thinning fluid. Although, the tendency for viscous fingering, channeling etc. has decreased, the

general trend in the two patterns remains the same. It will be interesting to verify the theoretical

stability condition by the numerical simulation of tile microdisplacement. Simulation results are

shown below for a displacement in the absence of capillary forces.

Figures 40 to 42 show displacement patterns for the shear thinning fluid with power-law param-

eters n = 0.35 and K = 6.20 Psec n-1 at various injection rates. As required by the macroscopic

analysis, we have progressively reduced the injection velocity in order to study the transition from

instability to stability. Figure 40 shows the displacement patterns for a high injection rate of 1

cm/sec at four different time steps. We observe pronounced viscous fingering with the invading

non-Newtonian fluid rapidly trying to break-through. As we decrease the injection velocity to 0.01

cm/sec (Figure 41), the tendency for viscous fingering has disappeared and the interface advances

uniformly. Figure 42 represents displacement patterns for the much lower injection velocity of

0.0001 cm/sec. We now observe almost piston-like displacement of the interface and the tendency

for viscous fingering no longer exists for such low velocity. The opposite results were obtained

for shear thickening fluids with power-law parameters n = 2.0 and K = 0.1 Psec n-1 as shown in

Figures 43 and 44. Now, macroscopic stability requires high interfacial velocities. Figure 43 shows

displacement patterns for an injection velocity of 0.00001 cm/sec. We observe unstable interface

and fingering. As we increase the injection rate to 0.01 cm/sec piston-like movement of tile interface

sets in (Figure 44). Both these results confirm the validity of the macroscopic predictions of Pascal

[28].
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Figure 38: Constant Rate (1 cm/sec) Immisccible Displacement for n=0.6 and K=0.43 Psec n-1

(Ca=3.33 x 10-2 and Np=26) at Four Different Time Steps (a) 30 (b) 90 (c) 180 (d) 240.
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Figure 39: Constant Rate (0.01 cm/sec) Immiscible Displacement for n=0.6 and K=0.43 Psec '_-1

(Ca=3.33 x 10-4 and Np=0.26) at Four Different Time Steps (a) 180 (b) 240 (¢) 360 (d) 420.
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Figure 40: Constant Rate (1 cm/sec) Immiscible Displacement for n=0.35 and K=6.20 Psec n-1

in the Absence of Capillary Effect at Four Different Time Steps (a) 60 (b) 90 (c) 120 (d) 150.
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Figure 41' Constant Rate (0.01 cm/sec) Immiscible Displacement for n=0.35 and K=6.20 Psec n-1

in the Absence of Capillary Effect at Four Different Time Steps (a) 60 (b) 180 (c) 240 (d) 360.
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Figure 42: Constant Rate (0.0001 cm/sec) Immiscible Displacement for n=0.35 and K=6.20

Psec '_-1 in the Absence of Capillary Effect at Four Different Time Steps (a) 60 (b) 180 (c) 240 (d)

360.
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Figure 43: Constant Rate (0.00001 cm/sec) Immiscible Displacement for n=2.0 and K=O.1 Psec n-1

in the Absence of Capillary Effect at Four Different Time Steps (a) 60 (b) 120 (c) 180 (d) 240.
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Figure 44: Constant Rate (0.01 cm/sec) Immiscible Displacement for n=2.0 and K=0.1 Psec n-1

in the Absence of Capillary Effect at Four Different Time Steps (a) 60 (b) 180 (c) 240 (d) 33o.
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6 DRAINAGE INVOLVING TWO POWER-LAW FLUIDS

In the previous section, we discussed drainage patterns when the displacing fluid is non-Newtonian

but the displaced fluid is Newtonian. It is also important to understand the patterns when both

displacing and displaced fluids are of the power-law type [31]. The principle of the simulation is

as described previously except that the viscosities of both displacing and displaced fluids are now

varying with the shear rate. We shall study the case where the power-law index n is the same

for both displacing and displaced fluids, but the consistency index K differs. The two appropriate

dimensionless numbers are the modified capillary number Ca and the ratio of consistency indices

M, defined as

Kaq'_ (54)
,Ca = R_,_17

and

.K2,1/,_ (55)
M = (,_--_1J

where K1 and K2 denotes the consistency indices for displacing and displaced fluids, respectively,

and R is a characteristic radius of the network. The network size was 25 × 25. We carried out

a sensitivity analysis for the effect of capillary number (at constant M) and the effect of M ( at

constant Ca). Simulations were run until a steady state was reached. In M1 simulations, black

denotes pores occupied by the invading fluid. The power-law index n was chosen as 0.6 for the two

non-Newtonian fluids.

In the first series, the value of M was set to 14.7. At high flow rates, the patterns are charac-

teristic of viscous fingering (Figures 45), while at low Ca, the displacement patterns is very similar

to capillary fingering (Figures 46 and 47). In the second series, M was set equal to 0.07. The

resulting flow patterns are shown in Figure 48 for a low capillary number. We can observe a stable

displacement as in the Newtonian case when a more-viscous fluid is injected. In M1simulations, we

observe the transition from one pattern to the other depending on the relative ratio of viscous to

capillary effects.
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Figure 45: Viscous Fingering at Constant Rate (0.01 cm/sec) Immiscible Displacement for

ni=n2=0.6 (Ca=0.001 and M=14.7) at Four Different Time Steps (a) 90 (b) 210 (c) 330 (d)

45O.
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Figure 46: Capillary Fingering at Constant Rate (0.001 cm/sec) Immiscible Displacement for

ni=n2=0.6 (Ca=8.4 x 10-7 and U=14.?) at Four Different Time Steps (a) 90 (b) 150 (c) 240

(d) 316.
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Figure 47: Capillary Fingering at Constant Rate (0.001 cm/sec) Immiscible Displacement for

ni=n2=0.6 (C'a=4.2 × 10-7 and M=3.2) at Four Different Time Steps (a) 60 (b) 150 (c) 270

(d)ass,
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Figure 48: Stable Displacement at Constant Rate (0.001 cm/sec) hnmiscible Displacement for

al=n2=0.6 (Ca=O.O05 and M=0.07) at Four Different Time Steps (a) 30 (b) 90 (c) 150 (d) 210.

58



Figure 49: Schematic Phase Diagram for Immiscible Displacement for Non-Newtonian Fluids.

6.1 DOMAIN BOUNDARIES

Comparison of the above results for n=0.6 with other simulations for n=0.4 indicated that all the

three displacement domains are observed, although the boundaries of the domains change depending

on the power-law index n. The three basic domains can be mapped on a plane with axes Ca and

M as shown in Figure 49. A detailed discussion of these three domains for Newtonian fluids was

presented by Lenormand [25]. Here, we shall extend his analysis to power-law fluids. The principle

of the calculation is the same as in the Newtonian case [25]. We define the limit Ca* or M* of each

domain such that

IS(M*)- s(pl tu)l = (56)

where S is the saturation at breakthrough and e is a small constant. The analysis proceeds as

follows:

Consider a pore network of size L x L of bond length equal to a. The bonds are uniformly

distributed. For single-phase flow of a power-law fluid, the pressure gradient AP/L across the

network is expressed in terms of the volumetric flow rate Q, the permeability k, the cross-sectional
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area A and the consistency index of invading fluid K2

a--P-P= K_Q----2" (57)
L kA

The mean conductance go for a power-law fluid in a single capillary is

•" 3.+i " )" (58)go= 2K_aRO (3.+ i
Hence,

r" R3,_+,(3n+ 1.),_ (59)k -" -_a2 - _o

Following the arguments of Lenormand [25] and based on percolation theory we can express

L/a_ (po- f)-_ (60)

Nb/L 2 oc (Pc- P*)_ (61)

and

G/go_ (p_-f)'" (62)

where pc and p* denote the percolation threshold for a network of size L and for an infinite net-

work, respectively. Here, exponent t, is also dependent on the power-law index n. Now, due to

viscous effects, the pressure will increase at the entrance. When we inject the fluid with the higher

consistency index, we shall have

n

AP = -_ (63)

The corresponding variation of size of the accessible throats is

AR
= RoAP/7 (64)

Ro

while the variation Ap of the fraction of accessible bonds is
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Ap- AR/2aRo (65)

where a is the standard deviation for the distribution of bonds. The corresponding variation of

bonds in the cluster is obtained by taking the derivative of equation (61)

AN/L 2 (x (Pc-P')_-IAP (66)

Substituting the values of Ap, AR and go from equations (61), (64) and (62) respectively, we get

AN L)(I+e.__)/_aK1Q nL--T (-; R (67)
To obtain the limiting value Ca* on the boundary we equate the relative variation AN/Nb in the

number of bonds in the percolation cluster to e

L a2n+ 1 Rn-lCa*
= (68)

( )(,+,.+n_)/_ R_" a

Thus,

Aea L )(1+,.+,_)/_ n3n (69)Ca* = R,__ , (a a_n+'

where A is a prefactor and can be evaluated from numerical simulation for a particular value of

power-law index.

When we inject the power-law fluid with a lower consistency index, the fraction of accessible

channels decreases by a value of Ap due to fingering. The decrease in pressure is given from equation

(57) by assuming that the displaced fluid flows in the entire network [25]

K n

AP= 2Q L
kaL (70)

Following the same approach as before, we obtain the corresponding variation of bonds in the

network as

AN (pc-p*)_-laK2Q n
_cx (71)
L 2 R_na.,/

or, after substitution,
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AN L _n)lTLn a2n+lL----5- cx ( )(1 (72)an R3onaCaMnR n-1

The relative variation z_N/Nb of the number of bonds in the percolation cluster is given by

AN a2n+l Rn-1M n
- L)(l+J'n)/v,-- , Ca" =e (73)

Nb - ( a R3ona

and, finally

Ca" )-('+'")/" a o"
= Rn_l ain+lM n (74)

The value of the prefactor B can be estimated from simulation results for specific values of the

power-law index.

We next derive boundary equations pertaining to the viscous and capillary limits for the viscous

fingering domain. For the viscous limit we obtain

(75)M* = e(2

while for the capillary limit we get

3-
Ca*= Rn_I a2n+aM n (76)

where C is a prefactor to be determined from simulation results.

Finally, the boundaries for the stable displacement are obtained: For the capillary limit we have

Ra°n (77)Ca* = Deaa2¥nLn_lrn_l

while for the viscous limit the simple result is found

M*= E/e (78)

where D and E are the prefactors to be determined from simulation.
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7 CONCLUSIONS

In this report we described our ongoing research related to the flow of non-Newtonian fluids in

porous media. Most of the work presented pertained to power-law fluids in pore networks, where

extensional flow effects were neglected. Extension of the research to cover more general viscoelastic

fluids is currently under consideration. For power-law fluids we considered the comparison of the

numerical simulation results with previous theoretical expressions based oil EMT and CPA. Except

for very small values of n, the latter was found to be in excellent agreement with the simulations

pointing out to the usefulness of CPA-derived estimates for power-law fluid flow in porous media.

Numerical simulation of the flow of Bingham plastics, taken to represent the behavior of some

heavy oils, showed the existence of a macroscopic yield stress for the onset of flow. This behavior

resembled somewhat that of power-law fluids at small values of the exponent n. We subsequently

described simulation for the displacement (drainage) of one fluid by another of different power-law

indices. Displacement patterns similar to the Newtonian case, namely percolation, viscous fingering

and compact displacement were found. For the case of fluids of equal power-law indices, but of

different consistency indices, we were able to classify the patterns extending Lenormand's phase

diagram to power-law fluids.
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APPENDIX A SOLUTION METHOD

Following the notation of Figure 50, the mass balance at the node (i, j) is

_ p.._l/n )1lh _ )_/ngl(Pi,j+l Pi,j) 1lh + g2(Pi+lj - .. ,,_/ + g3(P/,/-x - Pi,j + g4(Pi-l,j Pi,j = 0 (A.1)

where g denotes conductance and P denotes node pressure (Figure 50). There are N x M such

equations where N and M are the number of nodes on the horizontal and lateral sides of the

network. Equation (A.1) is nonlinear and is solved by a successive relaxation iterative method. We

first rewrite

• " g3Pi,._-i u4

and subsequetly apply successive relaxation as follows

' " gaPi,j-I g, Pi-l,_
g2 Pi + l,j _{_ .jr.g_P_][+_+ U2 U3 U_

(A.3)
where w is a under-relaxation parameter, F is the value of Pij from the previous iteration and

n--1

U 1 "- (IP/,j.t.1- FI)-"fi- (A.4)

U2 = ([Pi+l,/- F[)'_ (A.5)

U3 = (IPij-1- FI) "_'_x (A.6)

u, = (IP_-_,j- FI)_ (A.7)

The point iteration method was found to lead to good results for all the values of power-law

index studied in this report. A good initial guess for each pressure in the network will help in

achieving faster convergence for the set of N × M nonlinear equations.
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Figure 50: Network Schematic.
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APPENDIX B DIMENSIONAL NOTATION

If we define inlet and outlet pressures for the network as Pin and Pod,t, respectively, the dimensionless

pressure 7rij is

Pij - Pout (B.1)
?rij "- Pin- Pout

-" o" *We next define dimensionless quantities as follows Rij = pijR* and gij ijgn , where , denotes

a characteristic quantity. For power-law fluids, we have

* 3nn 1 _KL )l/n= r R*_'_"' ( -I- )( (B.2)
gn

and

(B.3)o'ij = Pij n

The capillary condition for the advancement of menisci in drainage is

Pi- Pj >_ Pc (B.4)

which in view of the above becomes

71"i -- 7tj >__ 2")' (B.5)
PijR*AP

The conventional capillary number based on the flow of Newtonian fluid in the network is

Nc,_p = Q-A7 (B.6)
#

where, NcaP is a capillary number based on total pressure drop across the network of size N × M.

In expression (B.6), we can substitute Q from Darcy's law for Newtonian flow in porous media, and

assuming a permeability k dependence as R .2, we obtain

R*2Ap

NcaP = N L7 (B.7)

Based on these, we can express the displacement condition as
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2R*
71"i- 71"j _> (B.8)

Plj N L Nc,_p

Finally, we can define the dimensionless flow rate QD,j as

Qij = QD,_Q* (B.9)

where

Q* - gl*AP 1/n (B.10)

depending upon the type of the fluid present in the bonds of the network. The dimensionless flow

through the network is

QD. - _ aij(Tri - 1tj)1/'_ (B.11)
inj

or

QD = _ aij(lri- 7tj) (B.12)
out

Based on the above, the capillary number Ca is

Ca = QDNNcap (B.13)8M
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