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Abstract

We have conducted experiments to demonstrate the enhanced detectability of buried land mines using sensor

fusion techniques. Multiple sensors, including visible imagery, infrared imagery, and ground penetrating ra-
dar (GPR), have been used to acquire data on a number of buried mines and mine surrogates. Because the
visible wavelength and GPR data are currently incomplete, this paper focuses on the fusion of two-band in-
frared images. We use feature-level fusion and supervised learning with the probabilistic neural network (
PNN) 1o evaluate detection performance. The novelty of the work lies in the application of advanced target
recognition algorithms, the fusion of dual-band infrared images and evaluation of the techniques using two
real data sets. :

1. Introduction

The goal of this work is the detection and location of buried objects, specifically land mines, given images
obtained from a suite of remote sensors. Past research has shown that it is extremely difficult to distinguish
buried mines from background clutter in images obtained from any single sensor. It is hoped that information
fused from a suite of different sensors will provide better detection reliability, because the variety of physical
properties separates more clearly targets from clutter and background.

We are acquiring data over the relevant breadth of the electromagnetic spectrum, including two infrared sen-

sors (5 micron and 10 micron wavelengths), a ground penetrating radar (GPR) of the short pulse, wide-band

synthetic aperture type, UV, visible and near IR images. The visible and near IR data is from a high resolution

imaging spectrometer. The detection system uses advanced algorithms from the areas of automatic target rec-

ognition (ATR), computer vision, signal and image processing, and information fusion. The system allows
_the use of both physical principles and image processing for iraage interpretation.

This work is application research in progress. The individual algorithms used are advanced, but mostly
known, and the novelty of the work lies in the combination of the algorithms and their application to the very
difficult and important problem of detecting buried land mines. To date, no successful operational system ex-
ists for airborne standoff detection of buried mines. We believe that data fusion applied to simultaneous ob-
servations with a variety of different sensors may provide a reliable signature for buried mines. This paper
focuses on the fusion of images from two infrared sensors with different band passes.

Section two describes the data which was used for analysis. Section three describes the data fusion and the
automatic target recognition. Section four describes the results obtained in a clutter free environment. Section
five describes the results obtained in a cluttered environment. Lastly, sections six through eight present con-
clusions, acknowledgments, and references, respectively.

2. Experiments and Measurements

The data set described here was taken at two separate sites. The Lawrence Livermore National Laboratory
(LLNL) site was a clutter free site in which mine surrogates were buried in sand and clay plots with no cov-
ering vegetation. There were a total of 18 mine surrogates of different types and 9 holes with no mine surro-
gate. The Nevada Test Site (NTS) is located in the Nevada desert. Mines were buried with no deliberate
alteration of the native vegetation. There are about 500 real mines and mine surrogates, both plastic and metal,
buried at this site at depths between 1 and 10 cm. In both locations, care was taken to avoid leaving obvious
surface signatures. At the NTS site it is not possible to locate mines visually. The data from the LLNL site
was acquired in both the daytime and the nighttime. For the NTX site, data was only acquired in the nighttime.



Thermal infrared data were taken with two Agema 880 scanners covering the 3-5pm (S) and 8-12um (L) IR
regions. The instruments are capable of resolving temperature differences equivalent to.1°C. The images
were taken from a tower or lift truck at heights from 13 ra to 20 m.The 140 by 280 pixel ficld of view of the
cameras covered an arca Sm - 7m square, with ground resolutions between 2-6 cm. The data analysis dis-
cussed below will be primarily based on the fusion of these two bands of infrared imagery.

The ground penetrating radar (GPR) data[1] was taken at both sites using pulsed ultra-wide band systems.
The data was processed as SAR imagery to provide images which could be coregistered with other data.
While the radar systems do show signatures of buried mines, the analysis of data sets which include the GPR
is still in progress at the time of this writing.

In addition to panchromatic visible data, UV and hyperspectral visible/near IR data [2] are also being ac-
quired. The UV data are taken with a intensified camera with a UV sensitive photocathode and appropriate
band pass filters to cover the 310-330 nm region. The hyperspectral data are taken with a linc imaged grating
instrument using a CCD as the imaging device. Its coverage is variable over the visible and near IR from 425
to 850 nm. The channel bandwidth is 3.4 nm in each of 125 channels. This data will be acquired in October
1993.

3. Data Fusion and Automatic Target Recognition

We use a supervised learning pattern recognition approach to detecting the metal and plastic land mines bur-
ied in soil. The overall process consists of four main parts; preprocessing, feature extraction, feature selection,
and classification. These parts are used in a two step process to classify a sub-image. The first step, referred
to as feature selection, determines the features of sub-images which result in the greatest separability among
the classes. The second step, image labeling and post-processing, uses the selected features and the decisions
from a pattern classifier to label the regions in the image which are likely to correspond to buried mines. We
process images using a SUN Sparc 2 and the VISION software package written at LLNL (the primary author
is J. E. Hernandez). VISION is an object-oriented package, and it runs under Franz Allegro CL, which im-
plements the Common Lisp Object System (CLOS) [12].

3.1. Image Preprocessing

The preprocessing of images consists of operations on the image prior to feature calculation. This includes
registration of images so that corresponding spatial position occur in corresponding image pixels, and calcu-
lation of pseudo-images from existing images in order to isolate specific physical processes into specific im-
ages.

Registration: The multiple images of the scenes do not, in general, superimpose correctly, due to fundamen-
tal sensor differences (scalings, fields of view, etc.) and sensor geometric distortion (barrel distortion, etc.).
We manually identify fiducial markers on the ground to be used as control points for a perspective warping
algorithm, which performs translation, rotation, scaling and perspective corrections to the images[3,4]. We
obtain an ensemble of corrected images which can then be processed pixei-wise with the assurance that pixels
in the various images correspond very closely with same point on the surface.

A separate geometric mapping operation is performed on each image. For each image to be mapped, we com-
pute two mapping polynomials (one to map the X coordinates of the control points to their target locations,
and the other to map the Y coordinates of the control points to their target locations). Because our images
require perspective corrections, we used a perspective mapping algorithm [24-27]. This algorithm performs
translation, rotation, scaling and perspective correction. We used four control points and their target locations
in each image to determine the mapping. Once the mapping polynomials have been computed, each image
can be geometrically mapped using its mapping polynomials. The mapping is performed by iterating through
the pixels in the corrected image. At each pixel location in the corrected image, we compute the pixel coor-
dinates of the corresponding pixel in the uncorrected image using the inverse mapping functions. In general,
these computed coordinates fall between pixels in the uncorrected image, so we use bilinear interpolation
among the four nearest neighbors in the uncorrected image to compute the pixel value. A pixel of that value
is inserted at that location in the corrected image. We then step to the next pixel in the corrected image and
repeat the process. The result is the geometrically corrected image.



Calculation of Pseudo-images: If certain physical parameters which are more likely to contain signatures of
targets can be emphasized in an image by combining data from more than one sensor, then this pseudo-image
can be calculated and treated as an independent image. While sophisticated classification algorithms may in-
fer these relationships from the original images, they may require a larger number of samples than arc avail-
able to do so accurately. Hence, we have calculated two such images, called “emissivity” (e) and
“temperature” (T). Emissivity is defined as the natural logarithm of "S/L", and temperature is defined as the
natural logarithm of "LYS . Smean/Lzmcan"' where L is the long wavelength band, S is the short wavelength

band, Seqn is the mean of the short wavelength band, and Lzmean is the mean of the squared long wave-

length band. Emissivity should be insensitive to difference of temperature of a single substance, but should
show contrast between different substances. Temperature should isolate differences in temperature of a sub-
stance and be less sensitive to differences of emissivity.

3.2. Feature Extraction

After the pre-processing has been performed, the sub-image samples in the image are selected. These sub-
images are square regions (N x N) which have dimension (N) of approximately the diameter of a mine. This
allows the majority of the pixels to be contained within the mines. This value differed for-the experiments
presented in sections four and five. This was due to differences in pixel resolution in both cases.

Given these sub-images, we compute a vector of statistical features from the pixel values in the sub-images.
For the results in this paper, we use amplitude histogram features and spatially-dependent features, including
texture features [4, 5].

3.3. Feature Selection

Human experts generally classify objects based on a very few of the most important attributes in the image.
The fundamental function of the feature selection process is to select the most useful information from the
representation vector and present it in the form of a relatively low-dimensional pattern vector removing any
redundant and irrelevant information which may have a detrimental effect on the performance of the classi-
fier. A useful by-product in the process is knowledge about the discriminatory potential of the features and
the associated highest achievable performance for a given set of features. Statistical decision theory tells us
that the probability of misclassification is a decreasing function of the number of features provided, if the
sample size is very large. In practice however, only a small number of training sets is available and estimation
errors are no longer negligible. Since the number of parameters and the associated estimation errors increase
rapidly with dimension, it may be advantageous to sacrifice some useful information in order to keep the num-
ber of these parameters to a minimum.

An important goal in our work is to use feature selection techniques to choose the subset of features that con-
tribute most to correct classification. In order to accomplish this, features must be extracted from known sub-
image samples, providing a known database. We gain two main benefits from feature selection. First, we wish
to minimize the computational complexity of our processing algorithms, so they can eventually be imple-
mented in “real time.” Second, we wish to determine which sensors are the most important for classification.
By rank ordering the features according to their importance for classification, we are able to eliminate from
consideration sensors which do not contribute significantly. Feature selection is typically accomplished by
computing a distance measure wnich is the sum of probabilistic distances between all pair-wise combinations
of classes [5,6]. Commonly used algorithms include Branch and Bound, Sequential Forward Selection, and
Sequential Backward Selection [5,6].

3.4. Classification

The pattern recognition problem is difficult because various sources of noise distort the patterns, and often



there exists substantial variability among the patterns belonging 1o the same class |13-22]. “Rules” based on
the premise such as “buried targets are warmer than the background during night” can be constructed provid-
ing a data-driven threshold for the purpose of classification. Our initial work focused successfully on this
method [9-11, 23]. However, rules of this type are in effect modified parallelepiped classifiers that do not take
into account the covariance structure of the classes. The rule-based approach is valuable, particularly as pre-
processing step, but we have found that the supervised learning approach is generally more robust to varying
data scenarios.

In our studies, we have used a variety of classifiers, including the nearest ncighbor classitier [6], and the prob-
abilistic neural nctwork [8, 16].

4. Supervised Learning Results for a Clutter-Free Environment

The data which was processed for these results was acquired at the LLNL site. This site contained both clay
and sand plots. Additionally, the data were acquired in both daytime and nighttime.

In this experiment, we defined a two-class problem. The first class (called “Mines”) corresponds to buried
mines and filled-in holes. Filled-in holes were combined with the buricd mines because some preliminary re-
sults indicated that it is very difficult to differentiate them using thermal IR. Moreover, it is safe to assume,
in a typical operational situation, that wherever a filled-in hole exists, a mine may also exist. The second class
(called “No Mines”) corresponds to background, clutter, and fiducial markers. Although these plots visually
appear clutter free, there was some thermal clutter. This class was defined as regions in the image which were
in the background but had thermal intensity values similar to mines.

The sub-images which were sampled from these images were of size 21. This size was selected because it
was approximately the diameter of a mine. For the results discussed below, only the amplitude features were
generated. This features consisted of mean, standard deviation, skewness, kurtosis, energy and entropy.

Because daytime and nighttime images have differing thermal characteristics, they were evaluated separately.
Additionally, the clay and the sand images had differing thermal characteristics, so they were also evaluated
separately. In an attempt to determine whether features which represent temperature and emissivity charac-
teristics resulted in better detection probabilities than features which simply represent long and short wave-
length intensity values, the four case given above were repeated once for long and short wavelength features
and once for temperature and emissivity features. Therefore, cight cases were studied: daytime, clay, short
and long; nighttime, clay, long and short; daytime, sand. short and long; nighttime, sand, long and short; day-
time, clay, temperature and emissivity; nighttime, clay, temperature and emissivity; daytime, sand, tempera-
ture and emissivity; and nighttime, sand, temperature and emissivity.

4.1. Feature Selection

Because the sample set was small, conventional feature selection techniques, such as the branch and bound
and the sequential forward selection algorithms, could not be applied. Since the ultimate goal of this work
was to detect mines, the probability of detection was used as a means of defining class separability for features
subsets. This was computed by training a classifier, which in this case was the nearest neighbor classifier,
with all the feature vectors except for one feature vector was held out for testing. Following this the unknown
vector was then classified. This was repeated for all the training vectors, and probability of detection was
computed. Since cach feature vector could consist of up to twelve features (six histogram features * two im-

ages), there were 4095 (2 12 1) possible features subsets tested for each case. The feature subset which pro-
vided the highest probability of detection were selected as the “optimal” subset. The image labeling along
with the post-processing are described in the next section.

4.2. Image Labeling and Post-Processing
After the feature selection had been performed, the “optimal” subset of features were computed for every pix-

el in the testing images. These feature vectors were then classified as either a “Mine” or a “No Mine” using
a nearest neighbor classifier. In an attempt to “clean up” this binary image, a morphological “opening” oper-



ation was performed. Following this, a region growing algorithm was applied to isolate “Mine” regions. Re-
gions which were very small (less than 1/4 the arca of a mine) were climinated from further consideration.
The centroids of the remaining regions were estimated mine locations. If the estimated location was within a
mine radius of the actual location, the detection was considerced a success. Otherwise, the detection was con-
sidered a falsc alarm. The feature selection results and the detection results for all eight cases are presented
next.

4.3. Results

Results of using long and short wavel :ngth features are given in Table 4.1, and results of using temperature
and emissivity features are given in T.ible 4.2. The “probability of detection” is calculated as the ratio of the
number of actual mine locations detecicd to the total number of actual mines. The “probability of false alarm™
is calculated as the ratio of the estima'ed mine locations which do not lie within a mine radius of an actual
mine to the total number of estimated riine locations. These ratios are given below the probabilities in Tables
4.1 and 4.2.

Probaility Probability
Time of Day, Terrain, "Optimal” of of
Image Pair Feature Subset Detection False Alarm
mean (long)
Daytime, Clay, standard deviation (long) 100.0 0.00
Long & Short skewness (long) (18/18) (0/18)
Nighttime, Clay, mean (short) 88.89 0.00
Long & Short (16/18) (0/16)
standard deviation (long)
Daytime, Sand, kurtosis (long) 83.33 47.06
Long & Short standard deviation (short) (10/12) (8/17)
skewness (short)
N;Jgg‘:m;’sigid‘ standard deviation (long) 75.00 23.08
£ mean (short) (9/12) (3/13)
Table. 4.1. Feature selection and image and detection results using only the long and short

wavelength images

Several conclusions can be drawn based on the results of this work. First, in general it is easier to detect
“mines” buried in clay than it is to detect “mines” buried in sand. Second, there does not appear to be any
clear advantage to using nighttime images over daytime images when detecting mines. Lastly, there seems to
be little difference between results acquired using amplitude features of the long and short wavelength images
and results acquired using amplitude features of the temperature and emissivity images.



" ) - . . . Probaitity Probability
Fime of Day, l_crrum. i Optimal of of
[mage Puir Feature Subset Detection False Alarm
mean (temp)
. c kurtosis (temp)
g%';n; E[*n?lyb skewness (emis) 83.33 0.00
entropy (emis) (15/18) (0/15)
Nighttime, Clay, mean (temp)
Temp & Emis standard deviation (temp) 94.44 0.00
(17/18) 0/17)
mean (temp)
Daytime, Sand standard deviation (temp)
Temp & Emis mean (emis) 66.67 42.86
standard deviation (emis) (8/12) (6/14)
mean (temp)
Nighttme, Sand, sandard devialion tcmp) (
Temp & Emis skewness (emis) 91.67 7.64
kurtosis (emis) (11/12) (1/12)

Table. 4.2 Feature selection and image and detection results using only the temperatures and
emissivity images

5. Supervised Learning Results for a Cluttered Environment

The data for this experiment were acquired from the NTS site. This site, which is located in the Nevada desert,
was uncleared and therefore contained a large amount of clutter. Additionally, the mines were buried in a
manner such that they were not visually apparent.

The clutter in these images, was due mainly to the presence of bushes. These areas had pixel intensity valucs
which were much greater than the background and the mines arcas. By using an automatic thresholding tech-
nique with the long wavelength image, the pixel locations of the bushes could be determined, and eliminated
from further consideration as a mine by forming a mask. Since the ground truth of the fiducials was known,
these areas were also masked from further consideration. After these steps, only mines, surrogates, and back-
ground areas were left unmasked in the images. The background consisted of areas of relatively navigated
ground similar to where mines were actually buried. The sub-images which were sampled from these images
were of size 13. This size was selected since it was approximately the diameter of a mine. For each sub-image,
we computed nine amplitude features, nine texture features for a distance of one, and nine texture features for
a distance of two. The amplitude features consisted of the mean, standard deviation, skewness, kurtosis, en-
ergy, entropy, local minimum, local maximum, and median. The texture features consisted of mean, standard
deviation, contrast, angular second moment, correlation, entropy, local homogeneity, cluster shade for sum,
and cluster prominence for sum. Each physical location consisted of 108 features, 27 features times 4 images
(long, short, temperature, and emissivity). It is important to note that these results were acquired by using the
long, short, temperature, and emissivity images together. This differs from the experiment described in sec-
tion four, which analyzed the long and short wavelength images separately from the temperature and emis-
sivity images,

Because this research is currently in progress, only nighttime images which contained metal mines and sur-
rogates have been processed. These results are presented below.



5.1. Feature Selection

The feature selection was accomplished using 1480 background samples, 60 mine samples, and 45 surrogate
samples. Since preliminary results indicated that the mine and surrogates had similar characteristics, they
were combined into one class. The sequential forward sciection algorithm was used to determine the “opti-
mal” subset of features. Preliminary results indicated that by using the best three features as determined from
the sequential forward selection algorithm, adequate separation between the two classes could be achieved.
These three features in order of importance are the contrast of the emissivity for a distance of two, the local
minimum value of emissivity, and the standard deviation of the emissivity for a distance onc. The physical
significance of these particular features seems to be related to the relative homogeneity of the soil surface
where the holes were dug. Specifically, the soil surface is more homogeneous where the holes were dug. The
differences, however, were subtle, as indicated by the probability density functions of the three features

shown in Fig. 5.1. The image labeling using these features is described in the next section.

probability.

Figure 5.1. Probability density functions of the three "best"” features. The
smoothest curves represent the background statistics. The others repre-
sent mine and mine surrogate statistics.
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5.2. Image Labeling

Feature vectors were generated for every unmasked pixel in the testing images. These feature vectors were
then classified by a probabilistic neural network (PNN) [8]. The output was an image where each pixel rep-
resents the probability of a mine existing at that location. Next, this probability image could be thresholded
to determine the most likely mine and surrogate pixels. The results of these operations are shown in Fig's 5.2
ato 5.4. Fig. 5.2 displays the long wavelength, short wavelength, temperature, and emissivity images for a
plot. Fig. 5.3 displays the probability image which results after the classification. The posterior probability of
the class "mine" is plotted at each pixel. The brighter areas of this image indicate locations for which a high
probability of a mine exists. Lastly, Fig., 5.4 displays the labeled image which results from thresholding the
probability image. This figure indicates the 500, 1000, 1500, and 2000 most likely mine pixels. In all these
images, the squares indicate actual mine/mine surrogate locations. We have developed further algorithms to
perform connected component analysis, implement size and shape constraints, and automatically compute
probability of detection and probability of false alarm. However, because this research is currently in
progress and post-processing results are incomplete, we defer the discussion of postprocessing to future re-
ports.

Figurc 5.2. Long wavelength (a), short wavelength (b), temperature(c), and emissivity
(d) images. Locations of mines and mine surrogate are indicated by squares.



Figure 5.3. Image representing the proability of a mine or surro-
gate pixel. The black area were masked out as they were identi-
fied as vegetation.

Q

Figure 5.4. Most likely mine pixels : most likely 500 pixels (a), 1000 (b), 1500
(c), and 2000 (d) pixels are shown in white. Squares indicate mine positions.

(d)
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6. Discussion

Using supervised learning pattern recognition techniques we found that we could detect land mines buried in
an uncluttered clay soil from fused dual-band IR images with the use of simple amplitude features. While this
exercise was instructive, the data did not require such sophisticated methods to detect mines. In fact, it was
not clear that a two sensor IR system was necessary or even beneficial for the purpose. We did determine that
probabilistic neural nets provided performance superior to nearest neighbor methods and even backpropoga-
tion neural nets. Using PNN we could distinguish between holes with and without mines.

However, further work with cluttered fields provided considerable instruction as to the utility of data fusion
techniques. Current results indicate that the best performance was achieved using texture features extracted
from the pseudo-image “emissivity”. We currently believe this to be physically related to the surface distur-
bance resulting from the mine emplacement. It is clear that even with these results, additional sensors must
be included for reasonable detection reliability to be achieved. This data are currently being collected and will
be included in the processing during the coming year.
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