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A SAR image-formation algorithm that compensates
for the spatially-variant effects of antenna motion
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ABSTRACT

A synthetic aperture radar (SAR) obtains azimuth resolution by combining data from a number of points along a specified
path. Uncompensated antenna motion that deviates s.gnificantly from the desired path produces spatially-variant errors in
the output image. The algorithm presented in this paper corrects many of these motion-related errors. In this respect, it is
similar to time-domain convolution, but it is more computationally efficient.

The algorithm uses overlapped subapertures in a three-step image-formation process: coarse-resolution azimuth processing,
fine-resolution range processing, and fine-resolution azimuth processing. Range migration is corrected after the first stage,
based on coarse azimuth position. Prior to the final azimuth-compression step, data coordinates are determined to fine
resolution in range and coarse resolution in azimuth. This coordinate information is combined with measured motion data to
generate a phase correction that removes spatially-variant errors. The algorithm is well-suited for real-time applications,
particularly where large flight-path deviations must be tolerated.

2. INTRODUCTION

SAR image formation can be viewed as the process of compressing a return signal by correlating it with a reference point-
target response. In principal, the most general SAR algorithm, time-domain convolution, computes an exact reference
function and correlation for every image pixel. Other methods make approximations that trade performance for reduced
complexity. These various algorithms differ in how they model the reference function and how they implement the
correlation. Much of the difference in reference functions is due to operating conditions (radar frequency, aircraft vs.
satellite platforms) and image requirements (size, resolution). Correlator implementation is affected by a number of factors
including complexity of the reference function, processing-time requirements, and availability of radar and signal-processing
hardware. No single image-formation technique is appropriate for all applications.

The overlapped-subaperture (OSA) algorithm discussed in this paper was designed for real-time, fine-resolution operation in
an environment where the radar platform experiences significant off-track motion. Because of the real-time aspect, the
algorithm is constructed largely with FFT and vector-multiplication operations. This is important since available DSP chips
can compute FFTs quickly and manipulate data as vectors. Some motion-compensation steps are carried out before the
return signal is digitized. This motion compensation is implemented by changing the radar frequency, phase, PRF, and A/D
sample rate on a pulse-to-pulse basis. The radar computes these parameters as functions of motion data measured by an
inertial navigation system. To provide fine resolution in range, the range reference function needs to vary with azimuth
position as well as range. The initial stage of OSA processing filters the input data into Doppler-frequency bands
corresponding 10 coarse azimuth position. Filtering at this point increases computational efficiency, because it limits the
overall Doppler bandwidth and permits a reduction in the azimuth data rate. Since the radar transmits a linear-FM pulse
and de-chirps at the receiver, the range coordinate of a target point is transformed into frequency. In this domain the range
correlation consists of a simple frequency shifi, carried out by a vector multiplication, followed by an FFT. For the procedure
to give acceptable results, the coarse azimuth resolution must satisfy a constraint discussed below.

The azimuth reference function includes terms that depend on range and azimuth pixel coordinates. In addition to the usual
along-track motion terms, the reference function contains expressions that account for off-track motion. The navigator
system computes geometric parameters that characterize the off-track motion. Since azimuth processing occurs in the time
domain, these parameters go directly into the reference function. Correlation with the azimuth reference function occurs at
the last processing stage where pixel coordinates are determined to fine resolution in range and coarse resolution in azimuth.
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Azimuth correlation consists of a vector multiplication followed by a chirp-z transform (CZT). Use of the CZT here instead
of an FFT improves the geometric quality of the image, by keeping the azimuth pixel spacing constant as a function of range.

In what follows, we describe the OSA algorithm and its iimitations in mor¢ detail. The hardware implementation of the
algorithm and quality of the images are interesting topics, but they are not the main subject. This paper emphasizes the
aspects of the algorithm that make it tolerant to flight-path deviations. The initial section discusses the parts of motion
compensation that are done in real time. The remaining sections deal with the three algorithm stages: coarse-resolution

azimuth processing, fine-resolution range processing, and fine-resolution azimuth processing. Figure 1 is a simple block
diagram of the OSA method.
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Figure 1. Overlapped Subaperture Block Diagram

3. REAL-TIME MOTION COMPENSATION

The amount of digital processing is reduced if the radar performs some motion-compensation operations before digitizing the
return signal. This involves changing the frequency and phase of the transmit and receive chirps and varying the sample
rate of the A/D, all as functions of antenna motion. A digital waveform synthesizer generates the chirp signals. For the nth
pulse, both signals have the form

w(Ln)= g(t)cos(2npt + w2 + Ep), 0]
where f}, is the starting frequency, &, is the starting phase, v is the chirp rate, and g(t) is a gating function.

To see why it is useful to vary f;, and &, consider the geometry in Figure 2. Let rg be the range from the radar to some point
s in a ground patch, and let r.. be the range to the parch center. Also let y be the depression angle between the XY plane and
the line joining the radar and patch center. If f, and &, are constant, the dechirped return signal has Doppler-frequency and
range components that are proportional t6 r.. These components need to be removed eventually, since the algorithm
estimates the range and azimuth coordinates of a point s by operating on the difference

Tsc =Ig - Ic. (2)

A signal processor can accomplish the subtraction in (2) by multiplying the sampled return by appropriate vectors. The
disadvantage is that the radar needs to have excess bandwidth to accommodate the variation in r.. A much better approach
is to change the dechirp waveform as a function of r. By appropriately incrementing the starting frequency and phase of the
receiver chirp, the radar produces the baseband point-target response

Jan

I
= ron -,
xg(t,n)=e ¢ [ a1l )], (3)

where {; , is the radar center frequency, and 1, is a constant. For simplicity, we have omitted from (3) the signal amplitude
and a phase expression that varics slowly with n.

This first motion-compensation step is adequate for many situations. However, for finc-resolution and/or squint-mode
imaging two other steps are helpful to reduce the variation in xg(t,n) duc to rg.. Let s = (s5.5.,5;) denote the azimuth,
ground-range, and vertical coordinates of s measured with respect to the patch center. Then the first few terms in an
expansion for rg can be written as
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Figure 2. Imaging Geometry

The variable o in (4) is the change in squint angle 6 during the aperture. As a second element of motion compensation, the
radar adjusts the PRF so that o changes in constant increments as a function of n.

The third element of real-time motion compensation involves the cosy in the equation for rg.. When s, is large enough, the
leading term in (4) can vary by more than a range bin. For broadside imaging, this usually occurs as a consequence of cross-
track motion. For squint-mode imaging, cosy has a large linear component even without off-track motion. The range-
migration correction described below is a function of s, but not s, so the range correlation implemented by the algorithm
cannot deal with significant variations in s,cosy. Azimuth correlation can account for the expression, but the cosy increases
Doppler bandwidth, particularly in squint-mode conditions. Both these reasons, suggest dividing rg. by cosy 1

Equation (3) shows that one way to do this scaling in real time is to make the center frequency and either y or the A/D
sample period proportional to l/cosy. For hardware reasons, we decided to use the sample period instead of the chirp rate.
Since the RF bandwidth requirements increase when the center frequency changes, we have attempted to limit fo,n by setting
itto

-

cos
fo,n = fo( co;u\: ), (5)

where f; is a nominal center frequency, and y,, is the depression angle at the beginning of the aperturc. An equation similar
to (5) holds for the A/D sample period. The total change in center frequency or sample period increases rapidly for squint
angles away from broadside (6 = £ 90°). This is a disadvantage of real-time scaling. In the case where the radar flics along
a line parallel to the x axis, the linear change in the cosine ratio is

d(coswo ]E Aw 4 COS Yo tan? W

(6)
cos 2p, tanb

where A is the RF wavelength, w, is the azimuth window bandwidth in bins, and p, is the azimuth resolution. The change
in the ratio is larger at fine resolution and low frequency, since the aperture is longer. For squint angles near broadside, the
expression in (6) is negligible, and it is necessary to consider a quadratic variation. We will omit the results here.




Let rg' be the product of rg and the cosine ratio factor,

' Sg COS
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Also let Ty be the nominal A/D sample period, FI a sample index, and F the number of samples per return pulse. Then from
(3), the sampled point-target response is

04 *
Eafuon(r]
xs(FI,n)=¢ © .

The processor correlates the return signal with xg(FI,n). To simplify range correlation, the algorithm compensates for the
range migration due to the third term in (7), and neglects higher-order terms. This is an approximation that is appropriate in
many situations. For azimuth correlation, the algorithm includes higher-order terms that are functions of o, as well as y and
1.. The last two are important when the radar experiences off-track acceleration.

®

Real-time motion-compensation based on r and y is best for the OSA algorithm when operating conditions call for spotlight
or squint modes. This approach to motion compensation has been assumed in the discussion which follows, however, the
algorithm described can be modified if the motion compensation described above is not available. One example is a
broadside gecometry where motion compensation is based on the range and depression angle to a line through the patch
center rather than to a point at the patch center. The benefit of the algorithm is maintained in this situation.

4. COARSE-RESOLUTION PROCESSING

Each dechirped return pulse is sampled F times, digitized, and read into the first corner-turning memory CTMO as an FxI
complex vector. The first processing stage filters the sampled data into Doppler frequency bands that correspond to coarse
azimuth position. Overlapped FFTs realize the filtering. Figure 3 is a block diagram of coarse-resolution processing
showing the memory CTMO, along with vector multiplies and an FFT. The signal generator is a chirp synthesizer used in
the case where . is not subtracted out of the signal phase at an earlier stage.
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Figure 3. Coarse-Resolution Processing

Data in the corner-turning memory are arranged into FXM matrices, called subapertures. Azimuth samples in the
subapertures are overlapped as indicated in Figure 4. The total number of return pulses N, and the number of subapertures S
are related by

Na=(S-DA+M, ©)

where A is the number of azimuth samples between subapertures.




Coarse-resolution processing operates on 1XM row vectors from a subaperture. Each row vector is shifted in frequency,
windowed, and Fourier transformed. By transforming sequences of overlapped 1xM vectors, the first processing stage
implements a bank of bandpass filters, followed by a decimation in time. The decimation factor is A, since as indicated by
(9), S = Ny/A. Efficiency considerations suggest making A as large as possible. However, the bandpzss decimator introduces
aliased azimuth sidelobes into the Doppler spectrum that are spaced 1/A apart in normalized frequency, so A is limited by a
function of the bandwidth of the window function. For a -50 dB Taylor window and peak aiiascd azimuth sidelobe energy of
-40 dB, an upper limit on A is
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Figure 4. Overlapped Subapertures

The choice of M has a significant effect on the total number of operations required to form an image. Let 8., be the azimuth
resolution corresponding to the bandwidth of a Doppler bin. M and 8., are inversely proportional. The minimum value of
8cq is limited by a range-walk constraint. At the coarse-resolution stage, range-walk due to the third expression in (7) has
not been compensated. Points at the azimuth edge of a ground patch will move in range during a coarse-resolution interval,
and M needs to be small enough that the motion is less than one range cell. This results in a Jower bound on 8.,. Let P, be
the azimuth size of a patch. Then to limit the range walk to one range cell, 3., should satisfy

AP
8ca2—4, (11)
@ 4pr

where p, is the range resolution!.

After the FFT, the data are corrected for the azimuth antenna pattern. If the output images are for a SAR interferometry
application, a correction for the phase introduced by the FFT is applied here also. Since the azimuth sample rate is chosen to
oversample the Doppler spectrum, the outputs of some filters correspond to points outside the ground patch of interest. Only
A < M coarse-resolution bins need to be saved, where A is proportional to the azimuth patch size. A is typically less than
one-half M, so memory size is reduced at an early stage. If the effect of cosy on the Doppler bandwidth had not been
removed, A would need to be larger; however the algorithm still functions correctly. The memory reduction is significant for
squint-mode imaging with large range swath.

Following the antenna-pattern correction the 1xA row vectors are read into the second corner-turning memory, CTMI.
These rows form an FXA matrix in CTM1. The input data for coarse-resolution processing can be thought of as an FxN,
complex matrix. The output is a sequence of S matrices each of dimension FxA. We will not show it here, but N, is on the

order of S-A. So this first processing stage divides the input data into coarse azimuth bins with only a slight increase in the
total amount of data.

S. RANGE PROCESSING

For range processing, Fx1 column vectors are read from CTM1. Each subaperture has a total of A such vectors. The
correlation that is carried out at this stage consists of vector multiplications and FFTs, as indicated in Figure 5. There are
two basic parts. First, each column is multiplied by a different range-walk correction vector. This compensates the lincar
range variation over an aperture as a function of coarse azimuth position. Since the radar transmits a linear-FM waveform




and dechirps the return pulse, range appears in these column vectors as frequency. So a range translation corresponds to a
simple frequency shift. The second part of the correlation is just an FFT.
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Figure 5. Range Processing

The range-walk correction involves an approximation. As shown by (7), the amount of range walk is a function of the
azimuth coordinate s;. Suppose we divide the azimuth width of the patch into intervals of width 8s, and use the azimuth
coordinate at the center of each interval to construct a correction vector. Data from points at the center of an interval will be
compensated correctly while that from the edges will have some residual range walk. The impulse response function is
widened by about 4% when the residual error is one range resolution cell. To hold the maximum error at one cell or less, 8s,
is constrained by the inequality

853 < SPaPr (12)

}\.Wa

A small range dependence is ignored in (12).

The size of s, relative to the width of a coarse bin affects how the correction vector is applied. If 5., < max(8s,), then one
correction vector per bin is sufficient. This is the simplest case. On the other hand, if 8., > max(s,), then each Fx1 input
column must be multiplied by more than one correction vector, and the resulting vectors saved for the remaining processing
steps. This case is less desirable because the amount of processing is greater. For example, if it is determined that two
corrections need to be applied to each input vector, the FXA input array expands to Fx(2A). Since the minimum value of 5.,
is limited by (12), some combination of radar parameters make the multiple-correction situation necessary. However, to
simplify our discussion, we will deal with the single-correction case.

For each Fx1 input vector, the correction function is a constant-frequency complex exponential, which is generated easily by
the digital synthesizer shown in Figure 5. If r. has not been subtracted from the return-signal phase in real time, it can be
included in the frequency shifi. Afier multiplication by the correction and window functions, the resulting vector is Fourier
transformed. At this point range is determined to fine resolution. The output is corrected for the roll-off in elevation
antenna pattern, range path loss, video filter response, and FFT phase components. Only R range bins are saved where R is
less than or equal to the number of samples in the FFT output. This allows an adjustment in range pixel spacing, since the
return pulse may be oversampled. The output from range processing is a sequence of Rx1 column vectors that are loaded
into a third corner-turning memory, CTM2. The range index is Rl in figures which follow.

The flow of data from the processor input to the output image is illustrated in Figure 6. Notice that the coarse-azimuth and
fine-range stages operate on subapertures. With real-time pipelined processing, subapertures flow through these two stages
into CTM2 as the aperture is flown. Each RxA matrix in CTM2 is a complex image having coarse resolution in azimuth and
fine resolution in range as shown in Figure 7. There are S of these images during the synthetic aperture. One of the most
significant benefits of OSA processing is that unique fine-resolution focus vectors are computed for each cell in Figure 6

during the fine-resolution correlation operation. This focusing operation corrects for range and azimuth dependent effects of
non-ideal motion.
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Figure 7. Range and azimuth representation of coarse-resolution image.
6. FINE-RESOLUTION AZIMUTH PROCESSING

The azimuth correlation implemented at the last processing stage consists of vector multiplications and FFTs. However, for
at least three reasons, the situation is more complicated than for range correlation. First, the correction function applied to
the input vector depends on measured antenna position in addition to range and coarse-azimuth coordinates. Second,
navigator-system errors produce an azimuth phase error that must be estimated by an autofocus technique and included in
the correction function. Finally, the processor needs to adjust the frequency band and sample spacing in the azimuth
correlation as functions of range.

Up to this point, the algorithm has dealt with each subaperture separately. Now processing extends across subapertures. All
the return pulses must be processed by the first two stages before this last stage can begin. The input to fine-resolution
azimuth processing is a length-S vector read from CTM2 for fixed range and azimuth bins. Figure 6 shows CTM2 as a
three-dimensional array, indexed by coarse-azimuth, range, and subaperture. Figure 8 is a diagram of fine-resolution
azimuth processing. Since the chirp-z transform (CZT) is computed with three FFTs, the basic elements in the diagram are
again complex multiplies and FFTs. The correction function before the CZT is divided into three parts: quadratic focus,
higher-order focus and autofocus. This particular division is based on how the processor generates each part.
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transform output

Y
from range
processing ~~ [CTM2

phase and coarse az
filter correction

autofocus > X

|

fme res _high Ofder
window focus
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Figure 8. Fine-Resolution Azimuth Processing




6.1. Focus Vectors

The azimuth correlation function includes terms in rg' that are not shown in (7). Some of these consist of expressions that
are quadratic or cubic in o. For convenience, we have grouped the quadratic components with another function needed for
the CZT and generated the resulting chirp waveform with the synthesizer in Figure 8. For this, the control program
computes a starting frequency f,, chirp rate v, , and starting phase ¢, repeatedly as functions of range and coarse azimuth
position. An expression that is cubic in « is placed in the high-order focus vector.

For squint mode and/or situations with off-track motion, the azimuth correlator needs to account for variations in r. and
that occur during an aperture. One expression in rg:' that does this is

2.2 .2
s-sin” y+s
h(SI) = cos g -1 al SOV (13)
0
T COSY Ic

where Sl is the subaperture index. Both . and y are estimated by the navigator system as functions of SI. Since the
correlator operates in the time domain, it uses r; and y directly. Whether or not more terms are needed to describe the phase

of the point-target return depends on several factors including the patch size, range, wavelength, and resolution. We will
limit the discussion to h(SI).

The function h(SI) contributes a phase of 4nh(SI)/A to the exponent of the point-target response. Linear components in this
phase expression shift the impulse-response function in azimuth position. Since the amount of shift depends on the target
coordinates s; and s,, these linear components distort the image instead of simply translating it. The effect is most
noticeable for squint mode, but even for 6 = 90°, off-track motion can produce a skewing in the image. The algorithm
correlates the return signal with the linear components by adjusting the frequency band over which it computes the CZT.

Higher-order components in h(SI) are not separated into powers of SI. The algorithm simply computes a complex
exponential with the appropriate phase and makes it part of the higher-order focus vector shown in Figure 8. This is the
advantage of having fine range and coarse azimuth coordinates available before azimuth correlation.

To judge whether or not h(SI) matters in a particular application we need to look at its behavior in more detail. If radar
motion is only in the along-track direction, h(SI) has a quadratic component that can be significant. For example, the peak
quadratic phase duc to the s;-dependent part of (13) is

sznkwg coswo(Bcos2 0 - l)

L e PR (14)
I()rcp; sin“0cos” v

Qxa =

Usually, the peak quadratic error allowed is in the range of 60° to 90° based on image quality constraints. If Q4 is small
enough for some set of parameters, it can be neglected.

Off-track motion increases the phase variation. Suppose the aircrafl acceleration is constant during an aperture and equal to
and a, along the Y and Z axes. Also, let vy be the along-track velocity. Then, neglecting the last expression in
parentheses in (13), the peak quadratic phase due to the range-dependent part of h(SI) is

2
.4_2;_] [ay Lzmz\,usin()(HZoos2 q:)+ZaZcoswsimy]. (15)
paVy sin0

r= sfnk cos Wo[
Since (15) is not a function of r, increasing the operating range docs not reduce Q. The dependence on a, is probably not
important because we attempt to fly at a constant altitude during a synthetic aperture. In this case, vertical motion is largely

due to turbulence, and the average a, is nearly zero. However, the part of (15) that is a function of ay modecls the realistic
situation where the aircrafl turns during an ap.rture.




The peak quadratic phase due to the s,-dependent part of off-track acceleration is

sZmAw zay COsYo

Qa =2 (16)
sm9(4pavx oosw)

Since OSA processing deteriines s, to coarse resolution, the error in sa2 is approximately s,;8s,. After multiplication by the
fine-resolution focus vector, points at the edge of a coarse bin have residual errors of (8s,/5,)Qya and (3s5/53)Q,.

Another SAR algorithm would need some amount of range and azimuth resolution before the final azimuth compression
stage to compensate the changes in h(SI). An algorithm that does range compression before azimuth compression should be

able to compensate for Q. Algorithms that cannot compensate for Qy, and Q, need to restrict some of the parameters in
(14) and (16) to keep the errors at a tolerable level.

For a strip-map application, processing efficiency is enhanced if the azimuth patch size is at least equal to the synthetic
aperture length. This requlrcs that the maximum s, increasc linearly with wavelength. In this case, since Qy, and Q, are
functions of the product s, 2),, the wavelength dependence of the maximum of either error is proportional to A3,

6.2 Autofocus

The variables estimated by the navigator system contain errors that affect image quality. The dominant error comes from the
motion-compensation step that subtracts r. from the return signal phase. Since this operation applies equally to all target
points, the resulting error is a function of SI but not of s; or s,. The processor incorporates the Phase Gradient Autofocus?
(PGA) algorithm to estimate and remove this phase error. Figure 8 omits the PGA structure and shows the output from
autofocus as a single component of the focus vector.

Implementation of an autofocus algorithm within OSA processing has some advantages. Potential autofocus inputs include
all the length-S vectors in CTM2. Because of the coarse-resolution stage, it is usually possible to limit the number of input
vectors to a few having sufficiently high signal-to-noise ratio. The signal-to-noisc ratio estimate is computed from data
flowing out of the range processing of Figure 5. The processor multiplies these selected inputs by the quadratic and high-
order focus vectors, so spatially-variant errors are compensated prior to autofocus processing. This is an important aspect,
since PGA assumes the phasc error in each input is the same. Finally, the fact that the input vectors have length S instead of
N, reduces the autofocus computation requirement substantially.

6.3 Height of focus

After multiplication by the azimuth correction function, the dominant phase variation in the point-target response is due to
the second and third terms in rg'. The first of these, s,cosyqtany, is a function of s,. Since s, is not resolved by 2-D SAR,
the azimuth correlation simply ignores it. To describe the effect of this term on the image, we need to define the slant planc.
This is the plane containing the patch center and a nominal flight path parallel to the x axis. Bricfly, if the aircraft remains
in the slant plane during an aperture, the term does not widen the azimuth response. Motion out of the slant plane can
defocus the image. For example, assume the off-track velocity components are small compared with V,, and the acceleration
normal to the slant plane is a constant a;,. Then the expression produces a quadratic phase with peak value

2
NALap COSY W,
, =8 , 17
Q zScoswocoscb(pavxsinO (1n

where ¢ is the angle between the slant and XY planes. In general, the height-of-focus is the range of s, values for which Q,
is less than some acceptable valuc.




6.4 Azimuth correlation DFT

Neglecting the phase errors mentioned above, the last remaining phase variation in the point target response comes from the
third expression in (7). Since it is linear in a, the final step in azimuth correlation can be computed as a discrete Fourier
transform (DFT). In computing this transform, it is necessary to account for the range dependence indicated in (7). This is
done simply with the CZT. If the range dependence ignored, the correlation will be with Doppler frequency instead of
azimuth position, and the resulting image will need to be resampled from a Doppler-frequency grid to an azimuth-position
grid.

For each range bin and a sequence of adjacent coarse bins, the processor reads an S-vector from CTM2, multiplies it by the
correction vector, and computes its DFT over a specific frequency band. The exact frequency band is a function of range and
coarse-azimuth bin numbers. Use of the CZT instead of an FFT makes this calculation straightforward, since precise
frequency limits can be speciﬁed3. However, other DFT implementations such as mixed-radix FFTs may be used with
appropriate modifications to the synthesizer frequency, f,, in Figure 8. A CZT requires multiplications by chirp waveforms
and calculation of three FFTs. These operations are readily implemented in typical processor hardware. Since the CZT
output sample spacing is only a function of range and not azimuth lo. .ion, one of the FFTs in the CZT does not need to be
recomputed for each coarse-resolution azimuth bin of the processing. This reduces the overhead of using the CZT to perform
the final processing step by approximately one-third.

At the very last step, the algorithm corrects the output from each DFT for the amplitude response of the coarse-resolution
filters, and for a phase function introduced by the transform. The sequence of outputs from each coarse-resolution bin for a
fixed range bin is one line of a complex image as illustrated in Figure 6. Figure 6 illustrates the output from a single coarse-
resolution bin as have P samples. The processing is repeated for all ranges to form the complete image.

7. CONCLUSIONS

The OSA algorithm was designed for a real-time, fine-resolution SAR operating in an environment where off-track motion is
significant. This paper emphasizes aspects of the algorithm that provide tolerance to flight-path deviations. The first of
these is real-time motion compensation. By changing the starting frequency and phase of the waveform synthesizer, the A/D
sa:nple period, and the PRF as functions of antenna motion, the radar removes many undesired components from the return
signal in real time. This simplifies the correlations carried out by the signal processor. The first element of the algorithm is
a bandpass filter and decimator that provides coarse azimuth resolution and a data rate reduction. Range correlation at the
next stage consists of a frequency shift, realized as a vector multiplication, followed by an FFT. Azimuth correlation
involves a phase correction and DFT. Since the phase correction is a function of range and coarse-azimuth position, the
correlation includes motion effects that other algorithms neglect.
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