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Abstract

We have proposed that a new type of microwave
resonator, based on Photonic Band Gap (PBG) structures, may
be particularly useful for high energy accelerators. We
provide an explanation of the PBG concept and presznt data
which illustrate some of the special properties associated with
such structures. Further evaluation of the utility of PBG
resonators requires laboratory testing of model structures at
cryogenic temperatures, and at high fields. We provide a brief
discussion of our test program, which is currenty in progress.

I. INTRODUCTION

The use of high Q cavity resonators has become an
integral part of the accelerator technology applicable to
present and future experiments in high energy particle
physics. Currendy, the resonators in use or under
construction, are based on geomewic structures where the
normal modes are readily understood as a consequence of the
electric field satsfying the boundary conditions imposed by
the metal walls of the cavity. The nature of both the
fundamental and higher order modes can often be
qualitatively visualized, even though accurate evaluation of
the mode frequencies may be numerically demanding. In
contast, the resonant cavities that we have proposed for
potential use in a future generation of accelerators are based
on what has been termed Photonic Band Gap (PBG)
structures, and they are sufficiently different from both the
traditional metal walled cavides or the diverse types of
dielectric resonators, that they have to be analyzed and
evaluated in their own right. Because the criteria for
establishing the resonant modes in a PBG structure are so
different, they (presently) cannot be designed or evaluated
with the level of intuition normally applicable to the
traditdonal cavity designs. Indeed, the difference in mode
densities may be one of the principal advantages of PBG
structures, with the possibility, for example, of designs that
have negligible or even no higher order modes.

In this paper, for the convenience of the reader, we
present a physical explanation of the PBG structure and its
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key properties, followed by illustrative data and numerical
simulations. We conclude with a brief discussion of a typical
configuration for a PBG cavity suitable for an accelerator,
and an outline of our test program. We have presented a mors
dewiled inroduction 1o the idea of udlizing PBG structures as
accelerator cavities [1]. We rcfer the reader to several prior
articles that may also be specifically useful (2,3].

II. APHYSICAL EXPLANATION OF THE PBG
RESONATOR

The principal component of a PBG resonator is a
photonic lattice; that is, a configuration which has a
periodically varying dielectric constant in at least one
direction, and is uniform in all other potential directions. We
define the dimension of the PBG element as the number of
directions in which the dielectric function varies periodically.
A 1-D PBG suucture, for example, could be a waveguice
filled with a set of dielectric slabs periodically spacad along
its length. A 2-D PBG system could be 2 lantice of very long
parallel dielectric rods. A 3-D PBG structure could be
composed of dielectric scatterers placed, for example, on a
diamond lamice.# The dimension of the photonic lamice
plays an important role in determining the elecromagnetic
mode characteristics of the PBG resonator.

Any actual PBG resonator will contain a dielectric
lattice terminated in some way (e.g., conducting walls or
absorber). While it is difficult to solve the general boundary
value problem, Maxwell's equations for an infinite penodic
dielectric lattice can be solved numerically with relagve zase,
and the solutions obtained reflect the dominant properties of
any significandy large, but finite, section of such materai.
The essential characteristic of a periodically varving
dielectric medium, common to any dimension, is that regions
of frequency exist for which no propagating modes a-e
present for waves traveling in a particular set of direcaons :n
the lamice. These frequency regions are called band gaps. ‘a
general, one finds band gaps for every direcuon of
propagatdon for which there is periodic modulation of e
dielectric constant. However, if there is a frequency reqion
where these band gaps overlap for all the possibie
propagation directions, then the system is said o possess 2
complete photonic (i.e., electromagnetic wave) band gap. n
1-D some complete band gaps are guaranteed for anv
peniodicity in the dielectric constant, since there is only one
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_direction of propagation. In higher dimensions, whether or
not a complete PBG exists depends on the type of lattice,
filling factor, dielectric mismatch, and scatterer structure.

Once we have identified an infinite dielectric latnce
with a complete PBG, we may then ask how a finite section
of such a lattice will behave. Rather than having absolute
forbidden frequency regions, a finite lattice will now have
modes in the band gap region which grow or decay in some
direction with exponential dependence. As a practical
example, if we imagine varying the frequency of a wave
incident on a lattice and measuring the power which is
ransmitted, we would find regions of nearly perfect
transmittance, usually designated as pass bands, separated by
regions of strong attenuation corresponding to the band gaps.
If we are to apply the solutions obtained from the infinite
lattice to a finite lattice, we require that the length scale of
that lattice be at least several times larger than the largest
attenuation length in the lamice.

Having defined a PB( structure, how can it be useful
for devices requiring a cavity-like resonance? Let us now
restrict our discussion 1o a specific 2-D geometry. Our PBG
structure simply consists of a periodic array of dielectric
cylinders, with the axes of the cylinders perpendicular to a
pair of bounding conducting plates on top and botom. This
configuration may be tested (either in the laboratory or via
nurnerical simulation) and it is found that indeed there are
regions of frequencies for which the ransmission through a
finite length of the structure is exponentially attenuated for
waves incident from any direction. We will see later that it is
quite practical to find such configurations far 2-D systems at
microwave frequencies, and that the characteristic
artenuation lengths can be comparable to the lattice constant.

We now consider a sample of the structure that is
made with any circumferential geometry, as long as the
distance from boundary to center is many times the value of
the longest atenuation length for the frequency range of
interest. One can make a perturbation to the dielectric region
near the center of this lamice, and arrange to couple energy
into that region via a smail probe placed in a hole drilled
through one of the metal plates above the perturbed site. We
know that no energy radiating from the probe will propagate
radially outward, because waves in all directions are
exponenually atenuated for frequencies within a complete
PBG. Thus, in general, the energy incident via the probe will
be fully reflected. However, if the perturbation to the
dielectric is strong enough, it may be possible that for some
frequency, occurring within the PBG region, the
electromagnetic fields may just match onto the exponentally
decaying waves perfectly, for all directons, and consdtute a
resonant mode of that system. Indeed, we find that we can
make configurations with the properties just described. The
perturbation is termed a "defect”, and the resonant mode is a
defect mode. In this special circumstance we would find
that energy can be coupled into the "cavity” where the
electromagnetic fields corresponding to that mode will build
up untl the losses equal the incident power flow. As it turns
out, completely removing a cylinder from an otherwise

periodic laaice often produces a defect mode with the desired
properties.

To utilize the preceding type of resonance to
accelerate an electron beam we consider modes where the
electric rf field is everywhere normal 10 the metal plates
with a maximum at the center (i.e. a monopole character).
The bunched electron beam, suitably phased, would enter via
a hole in one plate, and emerge with increased energy
through a similar hole in the other plate. As with other types
of resonant cavities, there would have to be provisions for
coupling drive power into a cavity, which in tum could feed
many other resonant cavities all at the same frequency, and
suitably coupled by adjustments to the intercavity apertures.
An illustration of a possible 3 section, 2r acceleratcr
modular unit based on a triangular periodic lattice is
presented in Figure 1. As we shall discuss, the triangular
lattice appears to be particularly advantageous as a PBG-
defect resonant cavity for accelerator applications.

High Dielectric
Cylinders

o

Conducting
Plates

Figure 1. A schematic view of the proposed 2x
accelerator unit. In this example the unit consists of three
triangular photonic lattices, separated by superconducting
sheets, Each of the lattices has a cylinder removed to allow
the formation of a defect mode with an electric field
maximum in the center. Holes drilled through the conducting
plates would allow a particle beam to be accelerated through
the unit.

IO NUMERICAL SIMULATIONS AND
ILLUSTRATIVE EXPERIMENTS

As a first approach to designing a potental PBG
accelerator cavity, we need 10 determine whether the structure
has complete photonic band gaps. This information can be
found by computing what has come to be termed the photonic
band structure. Since we are concerned with 2-D
configurations, and we wish 10 accelerate particles from one
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plate to the next, we restrict our attention 0 modes in which
* the electric fields are polarized along the cylinder axes (TM
modes). Thus, the wave equation we solve reduces to:

VE(R) = - & e()E(X) (1)
where the dielectric function satsfies
s(i-i-a): £(x) ey

The vector d is any primitive lattice vector. The methods for
solving Eq. (1) are well-known (1-5]; the solutions are Bloch
waves, which have the form

E(R) = vy (%)e¥ ©)

where u;(iﬂ—i): ug(%). The vector k indexes solutions,
and is referred to as the wave vector. For each value of k
there is a discrete set of solutions with a discrete set of
frequencies (@wp(k)}. The solutions for a given n are
continuous as a function of the wave vector, forming sheets in
reciprocal space. These sheets are known as bands, and n, the
band index, refers to a given sheet. The bands, due the
periodicity of the lattice in coordinate space, are also periodic
in reciprocal space; it is thus sufficient to view the solutions in
a restricted region of reciprocal space called the Brillouin
Zone (BZ). Because the real lattice has fourfold rotational
and reflection symmetries, only the solutions for a single
octant of the square BZ are unique. A plot of the mode
frequencies {wn(k)) corresponding to lattice vectors along
the boundary of the BZ comprises the photonic band structure.
The Brillouin Zones and band structures for lattices with other
symmetries can be similarly defined.

When we calculate the band structure for a given
lattice configuration, we expect to learn at what frequencies
complete band gaps occur, and how large the band gaps are.
An example of a photonic band structure calculation is shown
in Figure 2, where we find three band gaps in the spectrum
within the lowest fourteen bands. We and others [5.6] have
systematically studied the behavior of band gaps for 2-D
lattices over a large variation of dielectric constants and filling
factors, and for a variety of lattice types. The latice
configurations include the square and triangular lattices with
dielectric cylinders at the lattice sites, as well as the inverse
cases of dielectric hosts with holes (e=1) at the lattice sites.

Experimental confirmation of photonic band gaps can
be readily obtained through transmission experiments. As
discussed above, waves incident on a photonic lattice with
frequencies corresponding to the band gap region of the
lattice, decay into the latice with exponential dependence.
Thus, band gaps in the band structure will be manifest as
regions of amenuation in a transmission measurement. A
schematic diagram of our test apparatus is found in reference
(3]. We are able to make simple transmission measurements
with the equipment, as well as make measurements of the
electric energy density of standing wave modes. In Figure 3
we present the ransmission spectrum through a square lattice
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Figure 2. The photonic bandstructure for the square
lattice of cylinders with dielectric constant €=9. The lawmc®
cylinder diameter is 1 cm, and the lattice spacing is 1.27 cm.
The three band gaps are indicated by the shaded area.

along the (10) direction. The sample was a 7 X 19 array of
cylinders, with dielectric constant €=9, set in a precision
drilled Styrofoam template. Microwave absorber was placed
surrounding the scattering region, which minimized reflecton
back into the lattice. Note the sharp attenuation at frequencies
corresponding to the gap region in the calculated
bandstructure of Figure 2. The transmittance is reduced by
over 40 dB, and has reached the noise floor of the microwave
sweeper (a Hewleu-Packard 8756A scalar network analyzer).
The configuration used for Figure 3 also had one central
cylinder removed. Note the appearance of the sharp
resonance in the gap, corresponding to the resonant defect
mode.

In Figure 4 we present a detailed mapping of the
electric energy density (t-:E2) as a function of the distance
around a removed cylinder from a square lattice. The mode
corresponds to a resonance similar to the one shown in Figure
3, except the lanice spacing is 1.33 cm. The defect mode
shown is a monopole mode (antinode in the center), has the
four fold symmetry of the lattice, and is well localized. The
fields decay most gradually along the (10) and related
symmetry directions. A plot along a cut in these direcuons
logarithmically revealed the 1/e decay length to be
approximately 0.6 lattice constants. We will compare this
value with numerical simuladons in Section [V.

IV COMPLEX BANDSTRUCTURE

In addition to the Bloch type of solutions with real
wave vector k, the wave equation also has solutions with real
frequency corresponding to complex values of k. These
solutions will exist only when the periodicity of the lattice is
broken, for example at a surface or defect. The analytic
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Figure 3. Transmittance vs. frequency of microwaves through
a square lartice of 7 x 19 cylinders. The cylinders have radius
a=1 cm, and lattice constant d=1.27 cm (0.57). The dielectric
constant of the cylinders is €=9. The gap which is shown
corresponds to the second photonic band gap in Figure 2. The
sharp spike in the band gap occurs only after a single central
cylinder is removed and is the resonance of interest.

properties of the solutions to the Scrodinger equation with a
periodic potential have been rather tharoughly analyzed (7).
For illustration we restrict the propagation vector o lie along
the (10) direction of the lattice. In Figure 5 we present the
calculated complex bandstructure for the (10) direction of a
square lattice. The dimensions of the lattice are the same as
the lattice used to make the defect mode in Figure 4. Real
frequency lines with complex k must either form loops

Figure 4. A spatal map of the electric energy density of a
defect mode corresponding to the resonance shown in the
band gap in Figure 3. All parameters of the lattice are the
same as those for Figure 3, except for the lattice constant
which in this case wasd = 1.33 cm.

connecting one band to another, or must come up from minus
infinity and connect to a band. The trajectory of any given
real frequency line must increase monotonically with

frequency; the collection of these real frequency lines form
paths which wind their way through the bandstructure. If we
select any given frequency, we find each path gives us no
more than one solution at that frequency.

The complex bandstructure provides us with
relatively quick insight which can be useful in many
instances. As an example, when we consider a lattice
geometry for possible use as a PBG structure, we can find
from the complex bandstructure not only the size of the gaps,
but also the attenuation length of the given gap. The longest
attenuation length available to the system will dictate the
minimum lateral dimension of the structure; parameters can
thus be roughly optimized to find a smallest structure. Note
that in the second gap there are three real frequency paths
shown with imaginary k (there are, of course, infinitely many
solutions with imaginary k at any frequency); however, the
smallest imaginary k has a mid-gap value of 0.83,
corresponding to a field decay length of A=1.21 lattice
constants. This is in good agreement with the power decay
length of 0.6 lattice constant along the (10) direction of the
defect mode, measured from the experimental data above.
While the complex bandstructure is important for insight and
for certain calculations such as surface modes and
transmission spectrums, it is necessary to perform a complete
calculation 1o verify the existence of a desired defect mode,
and then to evaluate near field shape, symmetry, etc., of the
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Figure 5. Complex band structure for the (10)
direction. The parameters for this caiculation match those
used for the lamtice used in Figure 4, The solid lines between I”
and X correspond to pure traveling waves. The dotted lines
on either side of that region correspond to the imaginary (i.e.,
attenuative) part of the complex wave vector.

mode. Calculations such as these have been successfuily
carried out with very good accuracy for both two- and three-
dimensional structures (8].
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V. DISCUSSION AND FUTURE EXPERIMENTS

Extensive numerical simulation studies are required
to design an optimum PBG resonant structure. An important
criterion will be to find a structure that has no resonant higher
order modes. As another example, we find that the
exponental decay of the fields for a triangular lattice can be
~30% faster than that of the square lattice with similar
parameters. This in turm means that one can have a smaller
physical structure for a given design value of unloaded Q (The
periphery of a PBG resonator has absorber so as to reduce the
Q of all other frequencies, and this in turn means that the
unloaded Q will be set by the net Poynting energy flow (o the
periphery of the finite PBG lattice). Using superconducting
niobium plates and high purity sapphire for the dielectric
cylinders, we can expect to achieve intrinsic unloaded Q
values of >109. While such high unloaded Q values are
required for the regions cooled to liquid helium temperature,
we note that the loaded Q for other superconducting designs is
typically only ~108. For the structures discussed, we can
expect to reach such Q values with a radius of <10 latice
constants.

Our immediate experimental program is to determine
several key properties via measurements in a cryogeanic
apparatus. These include the demonstration of unloaded Q
>10%, operation at high gradients (>10 MV/m), and an
investigation of the frequency stability, wnability, intercavity
coupling, and external power coupling. One may expect
particular difficulties due to dielectric breakdown at high field
strengths. Once the cryogenic tests are successful, we plan o
place a modest multi-cavity unit on a beam line and determine
for the presently available superconducting cavities.
However, we feel this effort is particularly worthwhile
because the properties of PBG structures are so very different
the limitations set by multipaction, charging, etc. Clearly

there are formidable problems to be investigated and solved in
order to make PBG resonant structures a practical replacement
than those of the usual resonant cavities. We suggest that
other interesting applications may arise, particularly as the
special features of PBG structures and resonators become
fully appreciated.
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