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Correlation integralshave playeda centralrole in optical patternrecognition. The
success of correlation., however, hasbeen limited. What is needed is a mathematical
operationmore complex than correlation. Suitablycomplex operationsare the
functionals defined on the Hilbertspace of Lebesguesquareintegrablefunctions.
Correlationis a linear functionalof a parameter. In this paper,we develop a
representationof functionalsin termsof innerproductsor equivalentlycorrelation
functions. We also discuss the role of functionalsin neuralnetworks. Having
establisheda broadrelationof correlationto patternrecognition,we discuss the
computationof correlationfunctionsusing acousto-optics.

1. INTRODUCTION

Patternrecognition is an extremely complex field. At present,a general solution to
the problem of recognizing an arbitraryobject in an arbitrarybackgrounddoes not exist.
In fact, there are veryfew good solutions to restrictedpatternrecognitionproblems.
Man),approachesto the problem havebeen suggested and have been or arecontinuing
to be investigated.I

The evaluation of a correlationintegralis a popularapproachto optical pattern
recognition.2 The initial interestin correlationprobablystems from the applications of
the matchedfilter in radarsignal processingandcommunications theory. Further,there
is a naturalaffinity between correlationand the Fourier transformationrelation in
optical systems.3,4

Considerableresearcheffort has beendirected towardthe analysis of the
performanceof variouscorrelationfilters. There has also been significant effortdirected
at the developmentof optical correlationsystems.

In normalizedform, correlationdoes providea rudimentarypattern recognition
n , , 2,4,5,6,7,8operatio in that it measuresmathematical correlation between objects.

However,one would readilyrecognize thatcorrelationfalls shortof the pattern
recognitioncapabilities of the humanmind. This clearly implies that we need a
mathematical operationmore complex than correlationforgeneral pattern _tion.
Perhaps,a neuralnetworkcan provide the requiredcomplexity.
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One such mathematicaloperationis called a functional. We define a functionalas a
numerical (real or complex) function defined on a set of functions. A correlationor
innerproductis thenjust a linearfunctional. In general, a functional is a nonlinear
mapping of a function into the real (orcomplex) numbers. Fortunately,a verybroad
class of functionals can be evaluated as a sum of productsof innerproducts or
correlations. Thus, correlationcanbe viewed as a fundament_ computation in a broad
sense.

In the following section, we review norn_ized correlationand introducethe
concept of normalizedquadraticfilters. The concept of generalized correlationis
introducedin termsof functionals in Section 3. Further,since perceptronneural
networksare fimctionals on a vector space, we discuss the relation of correlationto
neuralnetworks.

Having arguedthe broad relation of correlationto patternrecogrution, we discuss
the implementation of the computation of correlation functionsusing an acousto-optic
correlatorin Section 4. Ultimately, the success of optical pattern recogn/tiondepends
upon the efficiency andefficacy of the optical components and systems.

2. NORMALIZED CORRELATION AND OUADRATIC FILTERS

The pattern recognitionproblem can be said to be one of discriminating between
different classes of objectsor signals. Frequently,the problem is one of recognition
(detection) of a specific object (signal) in the presenceof al] other possibleobjects
(signals). An example is the detection of a specific vehicle type in the presence of
other veh/cle types, terrainfeatures,and various man-madeobjects. This is a very
di_cult problem and a general solution may not be ach/cvable. The majorproblem is
one of su/tablydefin/ng "all otherobjects." The problem is considerably simplified
when the numberofobjeas to be discriminated is small. In the case of a small number
of well-defined objects, there may be several relativelysimple approaches to the
problem.

The interest in correlationfilters is, in the main, associated with the problem of
recogn/zing an object in an arbitrarybackground. The problem is, then, to determ/nea
recognition system thatwill cause outputvalues forall inputs to be rccogn/zedas the
object of interestto fall with/n a specified range. Forall other objects, the outputvalues
fall outside this range. This may sound simple, but the problem is one of defining all
inputs thatare equivalentto the object of interest. For example, howbig must the tail
on the letter "Q"be before it is discriminated from the letter"O";is a white circle (or
other shapes) conta/ned in a white square?

In general, the literatureon the techniqueof using correlationfilters foroptical
pattern recognitionassumesor implies that pattern recogn/tion canbe efl'ectedby
computing the magnitude of the correlationbetween the object in question and a
reference(filter) function. However, it is clearthat a nonlinear operation is requiredto
accomplish pattern rccogn/tion. A naiveapproachto the nonlinearity is peak detection.
A more sophisticated approachis to normalize the correlation f_nction or innerproduct.
Normalizationachieves intensity invariance.



The treatmentof normalizationand intensityinvariancein the literatureis
relatively sparse. _4 suggested the norn_lized matchedfilter as a means of
achieving characterrecognition. Duda andHart9 suggested normalizationto effect
intensity invariance. Dickey and Romero2,5 have discussednormalizedcorrelationat
length. In their papers, they use the normalizedformto evaluatepartial information
filters and composite filters.

the use of correlationfilters in patternrecognition is essentiallyan innerproduct
betweentwo functions: the objectand referencefunctions. These functions may be
considered vectors in a Hilbertspace.10 The normalizationof the innerproduct
(correlationintegral) defines a unique angle between the referenceand the object
function. It is this angle that providesa measureof similaritybetween the object and
reference functions.

where

f(x) = input (object) function

h *(-x) = filter impulse response

_l,x _ supportofh(x)
Sh(X) =

0, otherwise,

Xo= coordinatethatmaximizes the integral

The indicatorfunction has the properties

s,(x)h(x)=h(x), (2)

(3)

Applying the Cauchy-Schwarzinequalityto Eq. (1) gives

c(y - Xo) < Jlf (x + y- Xo)12sh(x)dx .IJh(x)!2dx. (4)



The preceding suggests a normalizedcorrelationfunction given by

IJh*(x)f(x+ y-xo)dxl _ (5)
c(y-x,)= _lf( x + y_x,)12s.(x)d x llh(x)l,dx

It is a furtherpropmff of the Cauchy-Schwarzinequality thatthe equality in Eq. (5) is
obtainedat y = x o =0 and only ff

i

h(x)=¥(x)s,(x). (6)

For the case y = xo, Eq. (5) is equivalentto

_'(0) = COSz(0) (7)

where0 is theI-filbertspaceanglebetweenh (x) andthe restrictionof fix) to the support
of h(x). It is interestingto notethatthenormalizedinnerproducthasbeenproposed11
asa measureof similaritybetweenvectorsin avectorapproachtoautomatictext
retrieval.

It is theformofEq. (5) andthe_.in Eq. (6) thateffectsintensityinvariance.Thus,
it istheclassicalmatchedfilter associatedwithwhitenoisethatmaximizesthe
normalizedcorrelationgivenbyF_,q.(5). If the filter usedto identifyanobjectfunction
f(x) is notthe matchedfilter, a normalizedcorrelationvaluelessthanoneisobtained.
In this case, there aremanyfunctions differentfrom fix) tlmtgive the same correlation
value. The difference (e.g., mean squaredifference)between these functions and the
object function must approachzero as the normalizedcorrelationfunction approaches
one. Examples of normalizedcorrelationare presented in Section 4.

Forany filter other than the matched filter, the normalizedcorrelationis less than
one when the object function forwhich the filter was made is the input function.
Further,there is always a functionthat gives a normalizedcorrelationvalue of one.
This function is just the filter impulse response. For an arbitraryfilter, there are many
functions that producea correlationvalueequal toor greaterthan that producedby the
object function. Gheen, Dickey, and DeLaurentisa discuss the arbitraryapproximation
of Bayes classifiers by performinga series of correlations. Javidi, Refregierand
Willetl 2 describe a constraintunderwhich normalizedcorrelationis optimum.
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An extension of the correlation(inner product)approachto patternrecognition is
the quadraticform(filter) given by

Q--.[Cv,Av,)] (s)

where ¥ is the input function restrictedto the supportof the targetand A is a linear
operator. Gheen 13, 14 has investigated the invariancepropertiesof quadraticfilters.

The quadraticform given by Eq. (8) can be normalizedusing the Cauchy-Schwarz
inequalitygiving

= _<1, (9)

with equalityobtainediff

Thus, we can obtain the equality in Eq. (9) fora set of normal image functions_ i, if we
define the operatorby

If theOi arealso orthogonal and the _-iarereal, we have a Hermitianoperator.

However, ff _ = kj forsome i, j, we havea multipleeigenvalue. Multiple eigenvalues

are not desirable in that all linearcombinationof Oi for which Zi = _ satisfy the
equality in Eq. (9).

It appearsthatthere is no requirementthattheOi be orthogonal. However,we

would want to retainthe requirementthat ki _ _j forall i, j. Thus, the quadraticfilter
defined by Eq. (9) and Eq. (12) defines a composite filter systemwith the major
computations consisting of innerproducts(correlations). There, however,does not
appearto be any increase in computationalefficiency of the quadratic filterover the
correspondingset of correlations. In fact, there is more informationavailable in the set
of individual correlations.
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3. GENERALIZED CORRELATION AND FUNCTIONALS

Normalized correlationand normalizedquadraticfilters discussed in the last section
arerelativelysimple fun_onals. Althoughthese functionals providea degree of pattern
recognition, it is clear (see Reference8) that considerablymore complex functionalsare
requiredibr general pattern recognition.

In this section, we assumethat the ability to compute an arbitraryfunctional on the
input function is sufficient fora large class ofpattern recognitionproblems. A
fun_onal is the transformationof a vector space X into the real numbersR,

F:X.--_ R. (13)

The vector space X will typicallybe a function space. The Hilbert (function) space of
_gue squareintegrablefunctions (L2) is an adequatespace formodeling input
(image) functions.

In the following, we show that arbitrarynonlinearfun_ionals can be computed in
termsof sums of productsof linearfunctionals (innerproducts). That is, we can
eompute any pattern recognitionfunctionalas a sumof productsof correlations. We
develop this result fromtwo approaches. Oneapproachuses the theory of Volterra
functionals. The otherapproachis based on the theory of perceptronneuralnetworks.

3.1 Volterra Functionals

Volterrafunctionals (Volterrafilters) have beenapplied to the nonlinear signal
processing and nonlinearsystemsanalysis.15,16,17 Gheen 18 has investigatedthe
invariantpropertiesof Volterrafilters forpattern recognition. Volterra19 introduced
regular homogeneousfunctionals of degree n,

F,[f(x)]=JJ...Jk,,(x,,x2...x,,)f(x,)f(x2)... f(x,)dx, dx2...dx .. (14)

Analogousto polynomials,he thendefines regularfun_onals of degree n as

G.[/¢x)]-ko+F,[ZCx)]+ + r.[S¢x)]
The finite sum in Eq. (15) is readilyextended to include an infinite numberof terms. It
b importantto determinewhat class of functionals canbe representedby infinite sums
of terms given by Eq. (14). For ourpurposes, the answer is containedin a theorem
given by Volterra.



Theorem: Every functional continuousin the field of continuousfunctions can be
representedby

G[I x)l= J...J x,...i

f(x,)f(x,).., f(xp)dx,dx 2 ...dxp], (16)

where the functions kn,p (x1, x2..... xp) are continuousfunctions. 19

We only need to consider continuous because continuous functions are dense in L2.
The limit in the theorem can be appreciated by considering the quadratic functional
given by

H2[f(x)] = J f2(x)dx. (17)

This functional cannot be expressed by a second degree functional of EZl.(14) without
the use of distributions.15 The Dirac delta function allows one to write Eq. (17) as

H2[ f (x)] = JJ gx, - x2) f (x ,) f (x2)dr,,dx2. (18)

Palm and Poggio15give a theorem corresponding to the above theorem that eliminates
the limit process by employing distributions.

In general, we can expand the kn,p functions in terms of one-dimensional basis
functions giving

(x2)'."Ig,,(x,),

where the ¥i are the appropriatebasis functions. Ifwe substitute EZl.(19) in EZl.(16),
we obtain an expression for the functional in Eq. (16) as a sum of products of inner
products (equivalently: finear functionals, correlations). Clearly, examining Eq. (18)
and F.,q.(16) leads one to the conclusion that the computation of a general functional
would requirea large numberof correlations.

It should be noted thatEq. (16) may notbe the most compactform for expressing an
arbitraryfunctional. For example, normalizedcorrelation given by Eq. (5) is a
continuous functional and can be expressedin the form of Eq. (16). Analogous to
ordinaryfunctions, fenctionals can be expressed in a functional Taylorseries.20 The
terms in the Taylor series aredetermined using the Frechetderivative.
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3.2 Neur_ Networks

Perceptronneuralnetworkscompute functionalson an inputvector. 21-27
Cybenko21, Homik, Stinchcomband White22, andHomik23 show that a perceptron
neural _etworkwith a single hidden layercan approximateany continuousfunction with
arbitraryprecision. DeLaurentisand Dickey27 show that a networkwith two hidden
layerswith nonnegative linear combinationsand compositions of excitatoryand
inhibitory responsefunctions uniformlyapproximatearbitrarynonnegative continuous
functions.

Perceptronneuralnetworkscan also be representedas a sum of productsof inner
products 0inear functionals, correlations). For simplicity,we considersingle hidden
layer networks. These networkscomputefunctions (functionals)given by

N

G(x)= (20)
i

where t_ is an activation function, x is the inpui vector,Yi is a vector defining the
weights to hidden node i, bi is a bias and (.,.) denotes an inner product. Based on the
Weierstrass approximation theorem, we can uniformly approximate continuous
functions with polynomials. Also, continuous functions are dense in L2. Hence, we
can approximatethe activationfunction by a polynomial,

Q

_z)=_Bpz'. (21)

Substituting Eq. (21) in Eq. (20) gives

i p

Thus,wecanexpressarbitraryneuralnetworkfunctiona]sassumsofproductsof
correlations.As in theprevioussubsection,it isclearthat, in general, a large numberof
correlationsarcrequired.It shouldbenotedthatN in Eq. (20) andEq. (22) andQ in
Eq. (21) aredeterminedby the complexity of the functionaland the precision required.
Generally, without otherconstraints,the size of a neural network(numberof nodes) will
be quite large. Attemptsto boundneuralnetworkswith respectto a given problemhave
met with little success. Koiran 29 has derived a hound on the number of hidden layer
nodes that is an exponential functionof the dimension of the inputvector.
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3.3 Functionals and Pattern Recognition

In this section, we have shown a strong relationbetween correlationand pattern
recognition. This is based on the assumption that the computationofan arbitrary
functional shouldbe sufficient forpatternrecognition problems. However,_ n_'ults
indicate thatthe amountof computationrequiredfor an arbitraryfunctional is very
large.

It is thus clear that the real problem in opticalpatternrecognition is in determining
what functionalto calculate. Once this is done, correlation mayplay a large role in the
computation.

4. ACOUSTO-OPTIC CORRELATOR

In Section 3 we pointed out thatlarge numbersof correlationscanbe instrumental
in expressing arbitraryfunctionals.A naturalconcernthen arisesabout the ability to
compute large numbers of correlations in a shorttime, since correlationis
computationally intensive. Historically this is whereoptical correlatorshave been
employed, due to the ability of optical lenses to performtwo-dimensional Fourier
transformations.4 Crlowever,we note thatdigital electronics areadvancing to
comparablespeeds.30) In this section we briefly review the method of acousto-optic
correlation,which performs space-domain correlationinstead of traditionalfrequency-
domain correlation. We also present some examples of normalized correlation, both
simulated and actual.

Currentreal-timefrequency-domainoptical correlatorsare unableto produce the
full complex values necessary forFourier-basedcorrelation. Approximatevalues
(partial information filters) are typically substitutedfor the full complex values. This
in_oduces some errorinto the final correlation result. We do not wish to debate the

implications of such errors for traditionalapproachesto patternrecognition using a
correlationfollowed by a thresholdingoperation.Rather,it is of interest to considerthe
impact such errorswould have forthe computationof arbitraryfunctionals via sums of
productsof correlations asshown in Section 3. Inthis situation, it is obviously desirable
to reducethe error in correlationsto a minimum.

Unlike the frequency-domainapproach,a space-domain correlationdoes not
require complex values. (Correlationof real functionswill only require real values.
Correlationof complex functionscan be performedby processing real and complex
partsseparately.)Thus a space-domaincorrelatorcan in principle produce correlation
results with less errorthan a frequency-domaincorrelator, resulting in arbitrary
functionals closer to the desired form. We now highlight the fundamentalsof our
working acousto-optic correlator,which has been detailed elsewhere.31
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Figure 1 Acousto-opticcorrelator.

Ouraconsto-optic correlatorconsists of a vertical "stack"of multiple one-
dimensional time-integral'_g correlatorsas shown in Figure i. This architecturewas
firstproposed by Psaltis.32 The reference template (or filter) k(t,n) is applied to the
diode arraywhile the iaput imagef(t,n) is applied to the acousto_ptic (AO) cell. Let t
be time, and n be the row number0ine number) of the images. Each row of the
referencetemplate h is used to time modulatea given inputdiode, while each row of
the input image f is inputsequentially into the AO cell. The inputs aresynchronized
such thateach combinationof diode output,AO cell, and CCD row formsan individual
one-dimensional (along the image rows) time-integrating correlator.To illustrate,
assume for the momentwe arecomputing CI, the correlationof two one-dimensional
functions f(t, ha)and h(t,n,) . Let T1 be the durationof one line ofthe inputimage,
andT2 be the durationof the reference template. The one-dimensional time-integrated
correlationresult at row noof the CCD would then be

r_+_

C_('c, no)= _ f(t-'c, no)h(t- T_,no)dt, (22)
rl

where bias terms and constantmultipliers have been ignored. Thus correlationis
accomplished in the horizontaldimension, along the CCD rows.

The next step is to compute C, the two dimensional correlationof two-dimensional
fimctionsf(t,n) and h(t,n). Using the CCD in time delay and integrate (TDI) mode, with
charge shifting in the directionof the verticalarrowin Fig. i, accomplishes correlation
in the vertical dimension. Let M be the numberofrows in the input imagef. The final
result is then given by

u_l r r_,r_ ]
C(_,n)= ___J _ f(t-_,n-i)h(t- T_,M-i)dt , (23)

J=oL r,
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where again bias terms have been neglected. 31 This is the desired two-dimensional

correlation result. Equations (22) and (23) illustrate the basic ability of this system to
compute correlations.

We now present some result.,;of normalized correlation, partly to illustrate the
motivation for using nonlinear functionals. Examination of these results leads to a
discussion of the hardware constraints imposed on the computations, which cause
roundoff errors when computing the correlations. This will demonstrate the effects of
such errors when computing a combination of correlations, such as might be done to
compute a nonlinear functional.

The first example of normalized correlation consists of computer simulation results.
The correlations were performed using FFTs with double precision floating point

arithmetic and single precision storage.6 Figure 2a consists of four images of the same
object at four different intensities. Figure 2b is a plot illustrating the different intensifies
,along a horizontal cut through Figure 2a.

/

Figure 2a. Tank image at four different intensities.

Figure 2b. Tank image intensity profiles.



Figure2c shows the resultof an unnormalizedcorrelationon the image of Figure2a.
The matchedspatialfilterwas used.Figure2d shows a profdeof the correlationresultof
Figure2c. As expected, the correlationpeaks varywith the image intensity.

Figure2c. Resultof unnormalize_correlation.

Figure2d. Unnormalizcdcorrelationprofile.

Figure 2e shows theresult of a normalizedcorrelationon the image of Figure 2a.
Again the matched spatial f'flterwas used. As expected, the normalizedcorrelationpeaks
are equal,as shown in Figure2f.



Figure2e. Result of normalizedcorrelation.

Figure2f. Normalizedcorrelationprofile.

Figure 3a is similarto Fig. 2a, except thattwo false objectshave been insertedinto
the image. Figure3b shows the intensityprofiles. Figure3c is the unnonnalizeA
correlationresult,with thecorrespondingprofde in Figure3d.

Figure 3a. Tankimages withfalse objects.
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Figure 3b. Intensityprof'desof tanksand false objects.

Figure 3c. Resultof unnormalizedcorrelationwithFig. 3a.

0 •
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Figure 3d. Unnormalizedex_relationprofile.

As shown in Figures 3c and3d, the brightestfalse objectproducesthehighest
correlationpeak,resulting in a false identification.This illustratesthe undesired
dependence of unnormalizedcorrelationon scene intensity. Normalizedcorrelation
allows identificationof the correcttargetindependentof scene intensity. Figure 3e shows
the resultof a normalizedcorrelation on the image of Figure3a, with the profile shown in
Figure3f.



Figure 3e Resultof normalizedcorrelationwith Fig. 3a.

m,, i ,, ,, ,, =,

Figure 3f NormalizedcorrelationproFde.

The simulationresultsof Figs. 2 and3 illusu'a_ the results of normalizeAcorrelation
when highnumericalprecisionis used.We now show normalizedcorrelationresults
generatedusing the AOcorrelator,where opticalhardwarelimitationsresult in lower
numericalprecision.Figure4a containsthreepossible targetsanda brightfalse objectin
the lowerfightcomer, similar to the situationin Fig. 3a.
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Figure 4a Targetswith a false brightobject.

F_t, this image was correlatedon the AO correlatorwith a matchedspatial filter for
the targetin the upperleft comer.The resultis shown in Figure4b.

Figure4b AOcorrelation(unnormalized)of Fig. 4a.
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As expected, the false brightobjectresults in the highest correlationpeak, causing a
false detection. The intended target has a peak well below the false peak, musing a
missed detection. The image was thenprocessed with the AO correlatorusing normalized
correlation.The result is shownin Figure4c.

Figure 4c AO correlation (normalized)of Fig. 4a.

As expected the normalizedcon'elation producesthe highest peak for the intended
target,while the false peakis much smaller. Thus the simulationresultsareIx)me outon
the AO correlatot.

We now addressthe situationof Fig. 2a, with identical targetsat differentintensities
asshown in Figure 5a.

t
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Figure 5a Identicaltargetat fourdifferentintensities.

This scenariois of interest becauseit raisesnumericalprecisionissues, since the
normalizedcorrelationpeaks shouldbe equal. While thepeaks areequal when floating
pointdouble precisionis used for the computations,the resultsarequite different when
precision(dynamicrange)constraintsof the optical systemareimposed. The results of a
simulatednormalizedcorrelationusing low precision8-bit integercomputationsare
shown in Figure5b.

Figure5b Simulatednormalizedcorrelationwith8-bit arithmetic.
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The use of 8-bit arithmeticresultsin the unequalpeak values as shown in Figure5b.
The normalizedcorrelationresultsfromthe AO correlatorin Figure5c show similar
effects.

Figure 5c AO nornudizedcorrelationresults

The principalsource of computationalerrorhas been shownto be the limited
dynamicrangeof the CCD accumulatorin the AO correlatorsystem.7 Simulationresults
assuminga 12-bitdynamic rangefor the CCD show a resultingdecreasein error,as
shown in Figure 5d.

ta

Figure5d Simulatednormalizedcorrelationwith 12-bit accumulator.
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In this section we have shown examplesof the utility of normalizedcorrelationfor
patternrecognition.We havealso reviewed the principlesof the acousto-optical
correlator,andpointedoutthe effects of systemhardwarelimitations.Since the hardware
in the existing AO correlatordoes not representthe state of theart (particularlythe diodes
and CCD) thereis promise thatmuchmore accuratecomputationscanbe achieved.This
wouldprove beneficial lot computingeither normalizedcorrelationsor anothertypeof
functionalconsisting of sums of productsof correlations.

$. SUMMARY

In this paper,we have discussedsolving generalpatternrecognition problems in
termsof arbitraryfunctionals.This was motivatedby the factthatthe common methodof
correlationfollowed by thresholdingis unableto solve many real patternrecognition
problems.The problemof varyingscene intensity is only one example wherestandard
correlationfails. It has been shown thatnormalizedcorrelationand normalizedquadratic
filters providesolutions to this problem.Intuitively,one realizesthat the degreeof
nonlinearityintroducedto the correlationmethod neednot stopwith the use of
normalization.Given thatnormalized correlationand normalizedquadraticfaltersare
simple functionals,it is logical to considermote general functionals.Then we pointed out
a fundamentalrelationshipbetween nonlinear functionalsand correlation,namely that
arbitrarynonlinearfunctionalscanbe computedin termsof sums of products of
correlations. This relationshipwas illustratedin termsof Volterrafunctionalsand neural
networks,two types of nonlinearfunctionalsused forpatternrecognition.

We note several implications of this relationship.First, it shows thatcorrelationsmay
be quite importantto general patternrecognition. This is despite the fact thatcorrelation
alone is insufficient for solving manypatternrecognitionproblems.In a sense,
correlationscan serveas a basis set for the space of nonlinearfunctionals applied to
patternrecognitionproblems.Thisprovidesimpetus to using optical correlatorsas high-
speed correlation"engines",since a verylarge numberof correlationsmay be neededto
compute the desiredfunctionaLs.We cautionhowever, thatit is an open questionas to
whether generatingfunctionalsin this mannerwouldbe advantageousor not. For
example,as mentioned in Section 2, a seriesof normalizedcon'elationscan approximate
an optimalBayes classifier.Computationaliy,normalizedcorrelationis not
extraordinarilydifficult, thus a seriesof normalizedcorrelations mightbe easier to
compute than a very large seriesof productsof correlations.

Given ourcaution, however, we feel that this relationshipoffers the opportunityto
approachgeneralpattern recognitionproblemsin an orderlymanner,ratherthan usingad-
hoc methods. The fast step would he the determinationof the desiredfunctional to solve
the patternrecognition problem.Whether this can bemade tractableis anotheropen
question. Once the functional is determined,thenext step wouldbe to express the
functionalin termsof a combinationof correlations.Even though the problem of
determiningthe functional is a dauntingone, framingpatternrecognition problems in this
way may prove useful. For instance,some problemshave "known"functionals basedon
currentapproachesthat "work".Anexample wouldbe a neuralnetworkwhich appearsto
solve a specific pattern recognitionproblem.Onecould derive the nonlinearfunctional
the neuralnetwork is computing.The functional can then be analyzed in terms of its
constituentcorrelations,perhapsin a manneranalgous to Fourieranalysis. This may
provide a good basis forcomparisonwith alternativeapproaches.Ratherthancomparing
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differentapproachesstrictlyon the basis of nebulous simulationresultsto determine
which is "best",comparisonscan bemade on even groundin termsof correlations.We
areencouragedin this respect by the fact that two seemingly disparateapproachesto
patternrecognition,namelynonlinearfiltersandneuralnetworks,are seen to be
variationson a common theme.

Finally, we have discussed acousto-opticcorrelationandbriefly raised some of the
performanceissues. If an opticalcorrelation "engine" proves to be useful in the
computationof nonlinearfunctionais,speed andaccuracywill be of paramount
importance.The principalhardwarelimitation inthe AO correlator(forboth speed and
accuracy)has been identifiedas theCCD. Use of a stateof the artCCD (with better
dynamicrange)canenhance the AO correlatorperformance.Again we note thatin
comparison,currenthardwarelimitationsfor frequency-domainoptical correlatorsare
muchmore severe. The use of partialinformationfilters, necessitatedby currentSLM
technology,severely limits the usefulnessof suchcorrelatorsascorrelation"engines",
since errorsare introduced into the correlationresults.Only the developmentof f Uy
complex SLMs wouldmake frequency-domainopticalcorrelatorsviable for the
computationof nonlinearfunctionalsas sums of productsof correlations.Until the
developmentof such SLM technology, we favora space-domaincorrelationapproach.
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