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ABSTRACT

Correlation integrals have played a central role in optical pattern recognition. The
success of correlation., however, has been limited. What is needed is a mathematical
operation more complex than correlation. Suitably complex operations are the
functionals defined on the Hilbert space of Lebesgue square integrable functions.
Correlation is a linear functional of a parameter. In this paper, we develop a
representation of functionals in terms of inner products or equivalently correlation
functions. We also discuss the role of functionals in neural networks. Having
established a broad relation of correlation to pattern recognition, we discuss the
computation of correlation functions using acousto-optics.

1. INTRODUCTION

Pattern recognition is an extremely complex field. At present, a general solution to
the probiem of recognizing an arbitrary object in an arbitrary background does not exist.
In fact, there are very few good solutions to restricted pattern recognition problems.
Many approaches to the problem have been suggested and have been or are continuing
to be investigated. !

The evaluation of a correlation integral is a popular approach to optical pattern
recognin'on.2 The initial interest in correlation probably stems from the applications of
the matched filter in radar signal processing and communications theory. Further, there
is a natural affinity between correlation and the Fourier transformation relation in
optical systems.3

Considerable research effort has been directed toward the analysis of the
performance of various correlation filters. There has also been significant effort directed
at the development of optical correlation systems.

In normalized form, correlation does provide a rudimentary pattern recognition
operation in that it measures mathematical "correlation” between objects.z»“» 6,78
However, one would readily recognize that correlation falls short of the pattern
recognition capabilities of the human mind. This clearly implies that we need a
mathematical operation more complex than correlation for general pattern recognition.

Perhaps, a neural network can provide the required complexity.
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One such mathematical operation is called a functional. We define a functional as a
numerical (real or complex) function defined on a set of functions. A correlation or
inner product is then just a linear functional. In general, a functional is a nonlinear
mapping of a function into the real (or complex) numbers. Fortunately, a very broad
class of functionals can be evaluated as a sum of products of inner products or
correlations. Thus, correlation can be viewed as a fundamental computation in a broad
sense.

In the following section, we review normalized correlation and introduce the
concept of normalized quadratic filters. The concept of generalized correlation is
introduced in terms of functionals in Section 3. Further, since perceptron neural
networks are functionals on a vector space, we discuss the relation of correlation to
neural networks.

Having argued the broad relation of correlation to pattern recognition, we discuss
the implementation of the computation of correlation functions using an acousto-optic
correlator in Section 4. Ultimately, the success of optical pattern recognition depends
upon the efficiency and efficacy of the optical components and systems.

2. NORMALIZED CORRELATION AND QUADRATIC FILTERS

The pattern recognition problem can be said to be one of discriminating between
different classes of objects or signals. Frequently, the problem is one of recognition
(detection) of a specific object (signal) in the presence of all other possible objects
(signals). An example is the detection of a specific vehicle type in the presence of
other vehicle types, terrain features, and various man-made objects. This is a very
difficult problem and a general solution may not be achievable. The major problem is
one of suitably defining "all other objects.” The problem is considerably simplified
when the number of objects to be discriminated is small. In the case of a small number
of well-defined objects, there may be several relatively simple approaches to the
problem.

The interest in correlation filters is, in the main, associated with the problem of
recognizing an object in an arbitrary background. The problem is, then, to determine a
recognition system that will cause output values for all inputs to be recognized as the
object of interest to fall within a specified range. For all other objects, the output values
fall outside this range. This may sound simple, but the problem is one of defining all
inputs that are equivalent to the object of interest. For example, how big must the tail
on the letter "Q" be before it is discriminated from the letter "O"; is a white circle (or
other shapes) contained in a white square?

In general, the literature on the technique of using correlation filters for optical
pattern recognition assumes or implies that pattern recognition can be effected by
computing the magnitude of the correlation between the object in question and a
reference (filter) function. However, it is clear that a nonlinear operation is required to
accomplish pattern recognition. A naive approach to the nonlinearity is peak detection.
A more sophisticated approach is to normalize the correlation function or inner product.
Normalization achicves intensity invariance.



The treatment of normalization and intensity invariance in the literature is
relatively sparse. Goodman? suggested the normalized matched filter as a means of
achieving character recognition. Duda and Hart? suggested normalization to effect
intensity invariance. Dickey and Romero2:3 have discussed normalized correlation at
length. In their papers, they use the normalized form to evaluate partial information
filters and composite filters.

The use of correlation filters in pattern recognition is essentially an inner product
between two functions: the object and reference functions. These functions may be
considered vectors in a Hilbert space. 10 The normalization of the inner product
(correlation integral) defines a unique angle between the reference and the object
function. It is this angle that provides a measure of similarity between the object and
reference functions.
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where

f(x) = input (object) function

h*(—x) = filter impulse response

s\(x) = Lx e support of A(x)
* 0, otherwise,

x, = coordinate that maximizes the integral

The indicator function has the properties
$y(x)h(x) = h(x), ()
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Applying the Cauchy-Schwarz inequality to Eq. (1) gives
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The preceding suggests a normalized correlation function given by
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1t is a further property of the Cauchy-Schwarz inequality that the equality in Eq. (5) is
obtained aty = x o= 0 and oniy if

h(x) = Af (x)s,(x). (6)

For the case y = Xo, EQ. (5) is equivalent to

¢(0) = cos(6) %)

where 0 is the Hilbert space angle between h (x) and the restriction of f(x) to the support
of h(x). It is interesting to note that the normalized inner product has been pl'oposedl ]
as a measure of similarity between vectors in a vector approach to automatic text
retrieval.

It is the form of Eq. (5) and the A in Eq. (6) that effects intensity invariance. Thus,
it is the classical matched filter associated with white noise that maximizes the
normalized correlation given by Eq. (5). If the filter used to identify an object function
f(x) is not the matched filter, a normalized correlation value less than one is obtained.
In this case, there are many functions different from f(x) that give the same correlation
value. The difference (e.g., mean square difference) between these functions and the
object function must approach zero as the normalized correlation function approaches
one. Examples of normalized correlation are presented in Section 4.

For any filter other than the matched filter, the normalized correlation is less than
one when the object function for which the filter was made is the input function.
Further, there is always a function that gives a normalized correlation value of one.
This function is just the filter impulse response. For an arbitrary filter, there are many
functions that produce a correlation value equal to or greater than that produced by the
object function. Gheen, Dickey, and DeLaurentis® discuss the arbitrary approximation
of Baycs classifiers by performing a series of correlations. Javidi, Refregier and
Willet12 describe a constraint under which normalized correlation is optimum.




An extension of the correlation (inner product) approach to pattern recognition is
the quadratic form (filter) given by

0=y Ay (8)

where v is the input function restricted to the support of the target and A is a linear
operator. Gheen 13, 14 pas investigated the invariance properties of quadratic filters.

The quadratic form given by Eq. (8) can be normalized using the Cauchy-Schwarz
inequality giving

s |y Ay)
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[l vl
with equality obtained iff
Ay=2Ay. (10)

Thus, we can obtain the equality in Eq. (9) for a set of normal image functions @;, if we
define the operator by

Ay=Y A,(4,,¥)9, (11)
or

A=Y 2,(4,)9.. (12)

If the; are also orthogonal and the A; are real, we have a Hermitian operator.
However, if A; = )‘) for some i, j, we have a multiple eigenvalue. Multiple eigenvalues

are not desirable in that all linear combination of @; for which A; = A, satisfy the
equality in Eq. (9).

It appears that there is no requirement that the(); be orthogonal. However, we
would want to retain the requirement that A; # Z.j for all i, j. Thus, the quadratic filter
defined by Eq. (9) and Eq. (12) defines a composite filter system with the major
computations consisting of inner products (correlations). There, however, does not
appear to be any increase in computational efficiency of the quadratic filter over the

corresponding set of correlations. In fact, there is more information available in the set
of individual correlations.



3. GENERALIZED CORRELATION AND FUNCTIONALS

Normalized correlation and normalized quadratic filters discussed in the last section
are relatively simple functionals. Although these functionals provide a degree of pattern
recognition, it is clear (see Reference 8) that considerably more complex functionals are
required for general pattern recognition.

In this section, we assume that the ability to compute an arbitrary functional on the
input function is sufficient for a large class of pattern recognition problems. A
functional is the transformation of a vector space X into the real numbers R,

F:X >R (13)

The vector space X will typically be a function space. The Hilbert (function) space of
Lebesgue square integrable functions (L) is an adequate space for modeling input
(image) functions.

In the following, we show that arbitrary nonlinear functionals can be computed in
terms of sums of products of linear functionals (inner products). That is, we can
compute any pattern recognition functional as a sum of products of correlations. We
develop this result from two approaches. One approach uses the theory of Volterra
functionals. The other approach is based on the theory of perceptron neural networks.

3.1 Volterra Functionals
Volterra functionals (Volterra filters) have been applied to the nonlinear signal
processing and nonlinear systems analysis. 15,16,17 Gheen 18 has investigated the

invariant properties of Volterra filters for pattern recognition. Volterra!? introduced
regular homogeneous functionals of degree n,

F;[f(x)]=”'”jku(xvxz"'x.)f(xl)f(xz)"'f(x.)dxldxz"'dxn- (14)

Analogous to polynomials, he then defines regular functionals of degree n as

G [f(0)]=k,+F[f(0)]+F[f(0)]+F[f(x)] (15)

The finite sum in Eq. (15) is readily extended to include an infinite number of terms. It
is important to determine what class of functionals can be represented by infinite sums
of terms given by Eq. (14). For our purposes, the answer is contained in a theorem
given by Volterra.



Theorem: Every functional continuous in the field of continuous functions can be
represented by

6lr )= timlk,,+ 11 Tk (35,3,

FONS () () dudey-dx, ] (16)

where the functions kp 5 (x}, X2, ....Xp) are continuous functions. 19

We only need to consider continuous because continuous functions are dense in L.
The limit in the theorem can be appreciated by considering the quadratic functional
given by

H[f(x0)]=] f3(x)dx. (17)

This functional cannot be expressed by a second degree functional of Eq. (14) without
the use of distributions.13 The Dirac delta function allows one to write Eq. (17) as

H,[f(x))=1]8(x, = x,) £ (x,) f (x,)dx,dx, (18)

Palm and Poggio”’ give a theorem corresponding to the above theorem that eliminates
the limit process by employing distributions.

In general, we can expand the kn,p functions in terms of one-dimensional basis
functions giving

kn.p(xnxz’"xp)=ZZ"'zaq Yiy-i Va,(xl) (19)
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where the y; are the appropriate basis functions. If we substitute Eq. (19) in Eq. (16),
we obtain an expression for the functional in Eq. (16) as a sum of products of inner
products (equivalently: linear functionals, correlations). Clearly, examining Eq. (18)
and Eq. (16) leads one to the conclusion that the computation of a general functional
would require a large number of correlations.

It should be noted that Eq. (16) may not be the most compact form for expressing an
arbitrary functional. For example, normalized correlation given by Eq. (5) is a
continuous functional and can be expressed in the form of Eq. (16). Analogous to
ordinary functions, functionals can be expressed in a functional Taylor series.20 The
terms in the Taylor series are determined using the Frechet derivative.



3.2 Neural Networks

Pcrocgtron neural networks compute functionals on an mput vector. 21-27
Cybcnk02 Hornik, Stinchcomb and White22, and Hornik23 show that a perceptron
neurz! actwork with a single hidden layer can approxlmate any continuous function with
arbitrary precision. DeLaurentis and chkcy2 show that a network with two hidden
layers with nonnegative linear combinations and compositions of excitatory and
inhibitory response functions uniformly approximate arbitrary nonnegative continuous
functions.

Perceptron neural networks can also be represented as a sum of products of inner
products (linear functionals, correlations). For simplicity, we consider single hidden
layer networks. These networks compute functions (functionals) given by

G(x)=Y. o[(y.x)+b,], (20)

where © is an activation function, x is the input vector, y; is a vector defining the
weights to hidden node i, b; is a bias and (*,") denotes an inner product. Based on the
Weierstrass approximation theorem, we can uniformly approximate continuous
functions with polynomials. Also, continuous functions are dense in Ly Hence, we
can approximate the activation function by a polynomial,

o‘(z):f:sz”. 1)

Substituting Eq. (21) in Eq. (20) gives

N
G(x)= 2}%8,[(y..,x)+b.-]’. (22)

Thus, we can express arbitrary neural network functionals as sums of products of
correlations. As in the previous subsection, it is clear that, in general, a large number of
correlations are required. It should be noted that N in Eq. (20) and Eq. (22) and Q in
Eq. (21) are determined by the complexity of the functional and the precision required.
Generally, without other constraints, the size of a neural network (number of nodes) will
be quite large. Attempts to bound neural networks with respect to a given problem have
met with little success. Koiran 29 has derived a bound on the number of hidden layer
nodes that is an exponential function of the dimension of the input vector.




3.3 Functionals and Pattern ognition

In this section, we have shown a strong relation between correlation and pattern
recognition. This is based on the assumption that the computation of an arbitrary
functional should be sufficient for pattern recognition problems. However, thess results
indicate that the amount of computation required for an arbitrary functional is very
large,

It is thus clear that the real problem in optical pattern recognition is in determining
what functional to calculate. Once this is done, correlation may play a large role in the
computation.

4. ACOUSTO-OPTIC CORRELATOR

In Section 3 we pointed out that large numbers of correlations can be instrumental
in expressing arbitrary functionals. A natural concern then arises about the ability to
compute large numbers of correlations in a short time, since correlation is
computationally intensive. Historically this is where optical correlators have been
employed, due to the ability of optical lenses to perform two-dimensional Fourier
transformations.® (However, we note that digital electronics are advancing to
comparable speeds.3°) In this section we briefly review the method of acousto-optic
correlation, which performs space-domain correlation instead of traditional frequency-
domain correlation. We also present some examples of normalized correlation, both
simulated and actual.

Current real-time frequency-domain optical correlators are unable to produce the
full complex values necessary for Fourier-based correlation. Approximate values
(partial information filters) are typically substituted for the full complex values. This
introduces some error into the final correlation result. We do not wish to debate the
implications of such errors for traditional approaches to pattern recognition using a
correlation followed by a thresholding operation. Rather, it is of interest to consider the
impact such errors would have for the computation of arbitrary functionals via sums of
products of correlations as shown in Section 3. In this situation, it is obviously desirable
to reduce the error in correlations to a minimum.

Unlike the frequency-domain approach, a space-domain correlation does not
require complex values. (Correlation of real functions will only require real values.
Correlation of complex functions can be performed by processing real and complex
parts separately.) Thus a space-domain correlator can in principle produce correlation
results with less error than a frequency-domain correlator, resulting in arbitrary
functionals closer to the desired form. We now highlight the fundamentals of our
working acousto-optic correlator, which has been detailed elsewhere 31




CORRELATION OUTPLT

Figure 1 Acousto-optic correlator.

Our acousto-optic correlator consists of a vertical "stack” of multiple one-
dimensional time-integrating correlators as shown in Figure 1. This architecture was
first proposed by Psaltis.32 The reference template (or filter) h(t,n) is applied to the
diode array while the iaput image f{1,n) is applied to the acousto-optic (AO) cell. Let ¢
be time, and n be the row number (line number) of the images. Each row of the
reference template 4 is used to time modulate a given input diode, while each row of
the input image / is input sequentially into the AO cell. The inputs are synchronized
such that each combination of diode output, AO cell, and CCD row forms an individual
one-dimensional (along the image rows) time-integrating correlator. To illustrate,
assume for the moment we are computing C] , the correlation of two one-dimensional
functions {1, n,) and h(t,n,) . Let T1 be the duration of one line of the input image,
andT be the duration of the reference template. The one-dimensional time-integrated
correlation result at row n, of the CCD would then be

T+0

Clnm)= [ f(t-m)h(t=T,,n5)dt, (22)
T,

where bias terms and constant multipliers have been ignored. Thus correlation is
accomplished in the horizontal dimension, along the CCD rows.

The next step is to compute C , the two dimensional correlation of two-dimensional
functions f{1,n) and h(t,n). Using the CCD in time delay and integrate (TDI) mode, with
charge shifting in the direction of the vertical arrow in Fig. 1, accomplishes correlation
in the vertical dimension. Let M be the number of rows in the input image /. The final
result is then given by

1| T+
C(1,n)= i:'[ [ £t -n=iyhir- T,,M—i)dt], (23)
i=0
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where again bias terms bave been neglec(ed.31 This is the desired two-dimensional

correlation result. Equations (22) and (23) illustrate the basic ability of this system to
compute correlations.

We now present some results of normalized correlation, partly to illustrate the
motivation for using nonlinear functionals. Examination of these results leads to a
discussion of the hardware constraints imposed on the computations, which cause
roundoff errors when computing the correlations. This will demonstrate the effects of
such errors when computing a combination of correlations, such as might be done to
compute a nonlinear functional.

The first example of normalized correlation consists of computer simulation results.
The correlations were performed using FFTs with double precision floating point
arithmetic and single precision storage‘6 Figure 2a consists of four images of the same

object at four different intensities. Figure 2b is a plot illustrating the different intensities
along a horizontal cut through Figure 2a.

Figure 2a. Tank image at four different intensities.

P

Figure 2b. Tank image intensity profiles.



Figure 2c shows the result of an unnormalized correlation on the image of Figure 2a.
The matched spatial filter was used. Figure 2d shows a profile of the correlation result of
Figure 2c. As expected, the correlation peaks vary with the image intensity.

Figure 2c¢. Result of unnormalized correlation.

Figure 2d. Unnormalized correlation profile.

Figure 2e shows the result of a normalized correlation on the image of Figure 2a.
Again the matched spatial filter was used. As expected, the normalized correlation peaks
are equal, as shown in Figure 2f,




Figure 2¢. Result of normalized correlation.

Figure 2f. Normalized correlation profile.

Figure 3a is similar to Fig. 2a, except that two false objects have been inserted into
the image. Figure 3b shows the intensity profiles. Figure 3¢ is the unnormalized
correlation result, with the corresponding profile in Figure 3d.

Figure 3a. Tank images with false objects.



Figure 3b. Intensity profiles of tanks and false objects.

Figure 3c. Result of unnommalized correlation with Fig. 3a.

o)

Figure 3d. Unnormalized correlation profile.

As shown in Figures 3c and 3d, the brightest false object produces the highest
correlation peak, resulting in a false identification. This illustrates the undesired
dependence of unnormalized correlation on scene intensity. Normalized correlation
allows identification of the correct target independent of scene intensity. Figure 3e shows

the result of a normalized correlation on the image of Figure 3a, with the profile shown in
Figure 3f,



Figure 3e Result of normalized correlation with Fig. 3a.

Figure 3f Normalized correlation profile.

The simulation results of Figs. 2 and 3 illustrate the results of normalized correlation
when high numerical precision is used. We now show normalized correlation results
generated using the AQ correlator, where optical hardware limitations result in lower
numerical precision. Figure 4a contains three possible targets and a bright false object in
the lower right comer, similar to the situation in Fig. 3a.



Figure 4a Targets with a false bright object.

First, this image was correlated on the AO correlator with a matched spatial filter for
the target in the upper left corner. The result is shown in Figure 4b.

Figure 4b AO correlation (unnormalized) of Fig. 4a.




As expected, the false bright object results in the highest correlation peak, causing a
false detection. The intended target has a peak well below the false peak, causing a
missed detection. The image was then processed with the AO correlator using normalized
correlation. The result is shown in Figure 4c.

Figure 4c AO correlation (normalized) of Fig. 4a.

As expected the normalized correlation produces the highest peak for the intended
target, while the false peak is much smaller. Thus the simulation results are borne out on
the AO correlator.

We now address the situation of Fig. 2a, with identical targets at different intensities
as shown in Figure Sa.

{




Figure 5a Identical target at four different intensities.

This scenario is of interest because it raises numerical precision issues, since the
normalized correlation peaks should be equal. While the peaks are equal when floating
point double precision is used for the computations, the results are quite different when
precision (dynamic range) constraints of the optical system are imposed. The results of a

simulated normalized correlation using low precision 8-bit integer computations are
shown in Figure 5b.

Figure 5b Simulated normalized correlation with 8-bit arithmetic.




The use of 8-bit arithmetic results in the unequal peak values as shown in Figure 5b.
The normalized correlation results from the AO correlator in Figure Sc show similar
effects.

Figure 5¢ AO normalized correlation results

The principal source of computational error has been shown to be the limited
dynamic range of the CCD accumulator in the AO correlator syslcm.7 Simulation results
assuming a 12-bit dynamic range for the CCD show a resulting decrease in error, as
shown in Figure 5d.

Figure 5d Simulated normalized correlation with 12-bit accumulator.



In this section we have shown examples of the utility of normalized correlation for
pattern recognition. We have also reviewed the principles of the acousto-optical
correlator, and pointed out the effects of system hardware limitations. Since the hardware
in the existing AO correlator does not represent the state of the art (particularly the diodes
and CCD) there is promise that much more accurate computations can be achieved. This
would prove beneficial 1or computing either normalized correlations or another type of
functional consisting of sums of products of correlations.

5. SUMMARY

In this paper, we have discussed solving general pattern recognition problems in
terms of arbitrary functionals. This was motivated by the fact that the common method of
correlation followed by thresholding is unable to solve many real pattern recognition
problems. The problem of varying scene intensity is only one example where standard
correlation fails, It has been shown that normalized correlation and normalized quadratic
filters provide solutions (o this problem. Intuitively, one realizes that the degree of
nonlinearity introduced to the correlation method need not stop with the use of
normalization. Given that normalized correlation and normalized quadratic filters are
simple functionals, it is logical to consider mote general functionals. Then we pointed out
a fundamental relationship between nonlinear functionals and correlation, namely that
arbitrary nonlinear functionals can be computed in terms of sums of products of
correlations. This relationship was illustrated in terms of Volterra functionals and neural
networks, two types of nonlinear functionals used for pattern recognition.

We note several implications of this relationship. First, it shows that correlations may
be quite important to general pattern recognition. This is despite the fact that correlation
alone is insufficient for solving many pattern recognition problems. In a sense,
correlations can serve as a basis set for the space of nonlinear functionals applied to
pattern recognition problems. This provides impetus to using optical correlators as high-
speed correlation "engines”, since a very large number of correlations may be needed to
compute the desired functionals. We caution however, that it is an open question as to
whether generating functionals in this manner would be advantageous or not. For
example, as mentioned in Section 2, a series of normalized correlations can approximate
an optimal Bayes classifier. Computationally, normalized correlation is not
extraordinarily difficult, thus a series of normalized correlations might be easier to
compute than a very large series of products of correlations.

Given our caution, however, we feel that this relationship offers the opportunity to
approach general pattern recognition problems in an orderly manner, rather than using ad-
hoc methods. The first step would be the determination of the desired functional to solve
the pattern recognition problem, Whether this can be made tractable is another open
question. Once the functional is determined, the next step would be to express the
functional in terms of a combination of correlations. Even though the problem of
determining the functional is a daunting one, framing pattern recognition problems in this
way may prove useful. For instance, some problems have "known" functionals based on
current approaches that "work”. An example would be a neural network which appears to
solve a specific pattern recognition problem. One could derive the nonlinear functional
the neural network is computing. The functional can then be analyzed in terms of its
constituent correlations, perhaps in a manner analgous to Fourier analysis. This may
provide a good basis for comparison with alternative approaches, Rather than comparing




different approaches strictly on the basis of nebulous simulation results to determine
which is "best", comparisons can be made on even ground in terms of correlations. We
are encouraged in this respect by the fact that two seemingly disparate approaches to
pattern recognition, namely nonlinear filters and neural networks, are seen to be
variations on a common theme.

Finally, we have discussed acousto-optic correlation and briefly raised some of the
performance issues. If an optical correlation “engine" proves to be useful in the
computation of nonlinear functionals, speed and accuracy will be of paramount
importance. The principal hardware limitation in the AO correlator (for both speed and
accuracy) has been identified as the CCD. Use of a state of the art CCD (with better
dynamic range) can enhance the AO correlator performance. Again we note that in
comparison, current hardware limitations for frequency-domain optical correlators are
much more severe. The use of partial information filters, necessitated by current SLM
technology, severely limits the usefulness of such correlators as correlation “"engines”,
since errors are introduced into the correlation results. Only the development of fi lly
complex SLMs would make frequency-domain optical correlators viable for the
computation of nonlinear functionals as sums of products of correlations. Until the
development of such SLM technology, we favor a space-domain correlation approach.
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