Introduction

When multiple fluids flow through a porous medium, the interaction between the fluid interfaces

can be of great importance. While this is widely recognized in practical applications, numerical
models often disregard interactions between discrete fluid phases due to the computational
complexity. And rightly so, for this level of detail is well beyond most extended Darcy Law
relationships. A new model of two-phase flow including the interfacial area has been proposed by
Hassanizadeh and Gray based upon thermodynamic principles. A version of this general equation set
has been implemented by Niessner and Hassanizadeh. Many of the interfacial parameters required by
this equation set have never been determined from experiments. The work presented here is a
description of how the interfacial area, capillary pressure, interfacial velocity and interfacial
permeability from two-phase flow experiments in porous media experiments can be used to determine

the required parameters.

Experiments

* Porous flowcell created using stereolithography.

 Variable throat heights, for greater range
of pore level resistances.

« 10.16 by 10.16 cm viewable matrix.
* 5000 throats. S TS
« Computer-generated geometry. ' |

CCD Camera

« Air injection into water.

« Constant rate injection via syringe pump.
« Grey scale images from CCD camera.

* Time to breakthrough, 5 min to 10+ hours.
« 2000 to 5000 images per experiment.

. Pressure
. Transducer

Syringe -

e Batch image processing
performed on grey-scale
Images.

Injection
Side 1

* Isolates the injected air.

« Constant rate injection,
Q =0.2to 0.002 ™/ ., with

min?

Injection



Image Processing

 Conversion of black and white
Images to binary text files.

 Map the known flowcell matrix _ i
geometry onto this ‘image’. o e l‘ f,
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* The resulting lattice of invaded - F 4™ ¥R

throats allows the location and e gt
size of the individual interfaces to ok
be determined.

i

 Knowledge of the invaded throats enabled the calculation
of saturation as a function of the time.
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Saturation of Non-Wetting Invading Air
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*The saturation profiles were also w1, . e I I
determined, as a function of the ~ _*| *:.
total amount of injected fluid. N O
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- A fractal scaling of the saturation "] ~,:;fii.itiie, 0" ¥,
profiles using the predictions of -
Ferer et al. was attempted, and fair L] e e
agreement was observed. e

0.1 L (PN
_..?

0 T T ‘=
0 2 4 6 8 10 12 14

Representative
Elemental Volumes

« To get more information from the
data, analysis was performed on
different sized REVSs.

e Cell subdivided into n x n REVS.

* The porosity was used as an initial
n | average [%] minimum [%] maximum [%] standard deviation [%] estlmate Of hOW mUCh Var|at|0n

35.89 35.41 36.71 0.57 between REVs there is.
35.61 34.23 37.21 0.92
35.99 34.16 38.82 1.28
35.77 32.08 38.87 1.66 * For REVs with n <4, quite similar.
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Interfacial Area

15001 o . Individual interfaces were identified
f,f"‘ from the digitized images.
1000l Entire Cell f/
mber ~ « The area of each interface was
of approximated by the area of the throat.
Interfaces
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h=2 Cee . .
o rev  * The specific interfacial area Is
e, Mﬂ e observed to increase linearly with
05 3 10 Increasing saturation during the initial
Time (hr) drainage of the flowcell.
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Capillary Pressure
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* The capillary pressure of each interface was calculated with PC ~ ZG(ht + W, )

» Calculated P_s were averaged over the entire flowcell,

as well as within the REVS.

*The average capillary pressure was
approximately constant throughout the

P
P, = 2P

~ #Interfaces

Pressure Transducer Measurements Across Entire Cell
800

experiments, similar to what was measured by

the pressure transducer.

 Calculations of p. in REVs with n =2 and 3
were observed to follow similar behavior, with a
greater amount of variation due to the smaller

number of throats being averaged.
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Interfacial Velocity

« Calculations of the interfacial velocity are currently plagued by the large scale
‘bursting’ behavior of the invading fluid, making the determination of an appropriate
At to average the interface location over difficult, using the following equations,
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* Velocity calculations using these equations fluctuate frequently, over a wide range.
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* Once a proper method of describing the interfacial velocity is determined, we plan
to describe the interfacial production, E,,, and the interfacial permeability, K,
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Conclusions

This work, while on-going, has shown the possibility of digitizing images within
translucent porous media and identifying the location and behavior of interfaces
under dynamic conditions. Using the described methods experimentally derived
Interfacial functions to be used in larger scale simulations are currently being
developed. In summary, the following conclusions can be drawn,

« By mapping a pore-throat geometry onto an image of immiscible fluid flow, the
saturation of fluids and the individual interfaces between the fluids can be identified.

 The resulting saturation profiles of the low velocity drainage flows used In this
study are well described by a invasion percolation fractal scaling.

« The interfacial area between fluids has been observed to increase in a linear
fashion during the initial invasion of the non-wetting fluid.

 The average capillary pressure within the entire cell and representative elemental
volumes were observed to plateau after a small portion of the volume was invaded.
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