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Robot Trajectory Planning via Dynamic Programming
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ABSTRACT OST)

The method of dynamic programming is applied to three ex-
ample problems dealing with robot trajectory planning. The
first two examples involve end-effector tracking of a straight line
with rest-to-rest motions of planar two-link and three-link rigid
robots. These examples illustrate the usefulness of the method
for producing smooth trajectories either in the presence or ab-
sence of joint redundancies. The last example demonstrates the
use of the method for rest-to-rest maneuvers of a single-link ma-
nipulator with a flexible payload. Simulation results for this
example display interesting symmetries that are characteristic
of such maneuvers. Details concerning the implementation and
computational aspects of the method are discussed.

INTRODUCTION

Traditional rigid robot trajectory planning approaches have typically been based
on inverse kinematics techniques [1]. Use of these techniques is appropriate
in many situations, but there are important instances when it is not. Such
instances arise whenever robot flexibility or dynamics are of importance. For
example, inverse kinematics schemes cannot accomodate structural flexibility in
high payload-to-robot weight ratios [2]. Another feature of inverse kinematics
solutions is that trajectories are not unique for redundant robots. The purpose
of this paper is to present an alternative approach for trajectory planning based
on the method of dynamic programming which is applicable to rigid, flexible,
and redundant robots.

The optimal trajectory planning problem for rigid robots is posed as a linear
time-invariant system for both non-redundant and redundant configurations.
The first two example problems demonstrate this approach by generating a pair
of trajectories for end-effector tracking of a straight line with rest-to-rest motions
of planar two-iink and three-link rigid robots. The generality of the dynamic
programming method is presented in the last example problem. A single-link
manipulator with a flexible payload is optimally slewed through a set of rest-to-
rest maneuvers. The problem is posed as a nonlinear system with state variable
equality constraints and input inequality constraints. The simulation results of
the single-link manipulator display interesting symmetries characteristic of such
motions.

'P.0O Box 5800, Albuquerque, NM 87185-0439, USA. This work performed at Sandia Na-

tional Laboratories supported by the U. S. Department of Energy under contract DE-AC04-
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DYNAMIC PROGRAMMING

For purposes of brevity, our discussion of the dynamic programming algorithm
is restricted to a summary of its key points. A more complete description will
likely appear in a forthcoming paper.

To begin, consider the initial value problem

z = f(z,u,t), z(ty) = &y (1)

where z € R" is the state, u € RP is the input, and (") denotes differentiation
with respect to time, t. The input is assumed to be discretized temporally as

u(t) = U ty <t < tk+1 (2)

for k = 1,..., N. Given the existence and uniqueness of the solution to the
initial value problem, adjacent states in time can be related as

Thy1 = Gr(Tk, uk) (3)

where zx = z(tx). The discrete optimal control problem of interest is stated
as follows. Given the initial state z;, find the inputs u; which minimize the
objective function

N
F(;Ek, uk) = Z Fk(:ltk, uk) (4)
k=1
subject to Eq. (3) and the inequality constraints
Ulower _<_ Ug S Uupper k = 1, L) N (5)

Closed form solutions to the optimal control problem cannot be found in
general. Consequently, one must often employ iterative procedures. The itera-
tive approach adopted in this paper can be thought of as an adaptation of the
well-known Newton’s method [3]. As with Newton’s method, a quadratic model
is used to approximate the objective function. The distinguishing feature of the
present approach is that minimization of this model is accomplished using the
method of dynamic programming [4].

In order to obtain a quadratic model of the objective function in terms of
the inputs, it is necessary to determine the first and second derivatives of g; and
['x with respect to their arguments. The amount of effort required for this task
is largely problem dependent. For example, calculation of these derivatives in
the first two examples is relatively straightforward. In contrast, the derivatives
of g in the third example must be determined with recourse to a numerical
integration scheme. Such complexities arise when closed-form solutions to the
initial value problem cannot be found.

The salient features of the dynamic programming algorithm are:

1. Quadratic convergence nearby the solution.
2. Inequality constraints for inputs accounted for exactly.

3. Equality constraints for states imposed using a quadratic penalty function.
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Figure 1: Sketch of planar robots considered in the first two examples.

4. Optimality conditions determined from definiteness of p by p matrices,
5. Order Nnp storage required for each iteration.

6. Order Nn? operations required for each iteration.

The interested reader may consult a text on optimization for detailed descrip-
tions of the various terms used above (see, e.g., Ref. [3]).

EXAMPLES

The first two examples deal with straight line tracking, rest-to-rest maneuvers
of rigid two-link and three-link robots moving in a plane (see Fig. 1). Here the
goal is to move the tip of the terminal link from point A to point B, tracking a
straight line connecting the two points, bringing the robot to rest in time 7.
Joint trajectories for such maneuvers are not unique. That is, there are an
infinite number of joint time histories which meet the above stated goal. Here,
the optimal trajectory is defined as the one which minimizes the function C,

defined as
NN
C=3 3 (uw)? (6)
k=1 j=1

where N is the number of time steps, N; is the number of joints, uj = 0 (7s),
7, = (k — 1)t/T, and ( )’ denotes differentiation with respect to 7 = t/T. The
function C' can be thought of as a measure of the smoothness of the trajectory.

Letting £ = z/L; and § = y/L,, consider a two-link robot with 8;4 = /4,
0a = /12, zp = 1.8, yg = —0.2, Ly/L; = 1, and N = 201. The states for
this problem are the joint angles and the joint velocities, and the inputs are the
joint accelerations. Plots of the states and inputs as functions of 7 are shown in
Figure 2. Also shown in the figure is the path followed by the tip of the second
link. Notice that the straight line path is tracked and the robot is at rest at
the conclusion of the maneuver. We mention again that the trajectory shown in
Figure 1 is one of many which can accomplish the goal of the stated maneuver.
The distinguishing feature of this one is that it minimizes the function C.

For the three-link robot consider the problem in which 6,4 = 7/4, 0,4 =
71'/12, 93,4 = 7'('/6, LfJB = 26, gB = '—-0.4, Lg/L] = 1, L3/L] = 1, and N = 201.
Plots of the states, inputs, and tip path are shown in Figure 3. Notice again that
the straight line path is tracked and the robot comes to rest at the endpoint. It
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Figure 3: Straight line tracking rest-to-rest motion of three-link robot.



qL= radia} displqcement of payload v+
relative to link

q L = tangential displacement of "\
2 payload relative to link

T = time for maneuver
m = payload mass

k = spring constant
I = link inertia about O
M = input moment on link

\ AA<M<A
O )
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Figure 4: Sketch of single-link manipulator with a flexible payload.

is worthwhile mentioning that there is not a one-to-one correspondence between
the joint angles for straight line tracking in the case of the three-link robot. This
is in contrast to the situation for the two-link robot in which there is only a single
value of 0, for each value of 8;. The redundant degree of freedom introduced by
the additional link in this example poses no computational difficulties since the
minimization of C' leads to a unique solution.

The final example is concerned with rest-to-rest maneuvers of a single-link
robot with a flexible payload. A sketch of the model showing the relevant
parameters is given in Figure 4. The equations of motion in dimensionless form
are given by

a+(l+qa)+q¢ —q¢ 1+q 6" cau — 2[(1 + q1)q1 + 4245160’
—q2 L 0 @ | = 29"+ (1 +@)(0') — e
L+ 0 ! 7 210" + ¢2(8')* — caqa
(7)

where ¢; = I/(mL?), c; = AT*/(mL?), ¢5 = (k/m)T?, and u = M/A is the
input subject to the constraints —1 < u < 1. For this example, the optimal
rest-to-rest trajectory is defined as the one which minimizes the function D,

defined as N
D = Z uﬁ (8)
k=1

where up = u(7y).
Since closed-form solutions to Eq. (7) are generally not available, the dy-
namic programming algorithm made use of a numerical integration scheme to
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Figure 5: Rest-to-rest motion of single-link manipulator with a flexible payload.

determine the g;’s and their first two derivatives (see Eq. (3)). In this exam-
ple, a fixed-step, fourth-order Runge-Kutta numerical integration scheme with
N = 201 was used.

Results presented in Figure 5 show the states and inputs as functions of 7
for a maneuver with 6(0) = 0, (1) = 1/2 radian, ¢; = 1, ¢; = 5, and ¢3 = (87)2.
The symmetries of the inputs and states about 7 = 1/2 are evident in the figure.
Similar symmetries have been observed by Petterson and Robinett [5] for the
control of a flexible beam and by Ben-Asher et al. [6] for planar, time-optimal,
rest-to-rest maneuvers of undamped flexible satellites.

The effect of varying payload stiffness on the optimal torque profile is also
shown in Figure 5. Results are presented for the two values of c¢3 indicated in
the figure. As c3 is increased, the torque profile approaches the one for a rigid
payload. As c3 decreases, a critical value is reached below which the rest-to-
rest maneuver is not possible. This lower bound is an important constraint to
consider for the control of flexible payloads where the final angle and final time
are specified.

CONCLUSIONS

Robot trajectory planning using a method based on dynamic programming
is presented for three example problems. The first two examples demonstrate
the effectiveness of the approach for end-effector tracking of a straight line for



planar two-link and three-link rigid robots. The third example demonstrates
the generality of the approach for nonlinear systems with input and state con-
straints. Based on the results of this paper, the proposed method for trajectory
planning shows much promise. Additional testing and evaluation will be re-
quired, however, to assess more completely the strengths and limitations of the
method.
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