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Abstract

Based on screening transformations of muffin-tin orbitals introduced by Andersen et
al. [Phys. Rev. Lett. 53, 2571 (1984)}, we have developed a formalism for calculat-
ing the non-spherically averaged charge densities of substitutionally disordered alloys using
the Korringa-Kohn-Rostoker coherent potential approximation (KKR CPA) method in the
atomic-sphere approximation (ASA). We have validated our method by calculating charge
densities for ordered structures, where we find that our approach vields charge densities
that are essentially indistinguishable from the results of full-potential methods. For sub-
stitutionally disordered alloys, where full-potential methods have not been implemented so
far, our approach can be used to calculate reliable non-sphericallv averaged charge densities
from spherically svmmetric one-electron potentials obtained from the KKR-ASA CPA. We
report on our study of differences in charge density between ordered Al{L7 in L1o phase and
substitutionally disordered Alnsligs on a face-centered cubic lattice.

Introduction

The use of energy-independent linear muffin-tin orbitals (LMTO’s) as basis functions for
solving the one-electron problem with a variational principle has led to the development of
an accurate, reliable, and one of the most efficient appreaches for describing the electronic
structure of solids [1, 2]. In the LMTO formulation, the ease with which the structure-
dependent part with no energy dependence separates out {rom the potential-dependent
part facilitates application to simple as well as complex lattice structures. The energv
linearization of the partial waves, the parametrization of the potential functions. and the
construction of the potential in the atomic-sphere approximation (ASA) have all added to
the efficiency of the LMTO method [3].

With the introduction of localized muffin-tin orbitals (MTOY [4, 5, 6, 7] in the LMTO
method it has become possible to calculate the non-spherically averaged charge densities
from the spherically svinmetric one-electron potentials that compare very well with the
computer-intensive full-potential results. Also, by evaluating the total energy finctional
without the ASA for the charge density we can make definitive statements about the stability
of different ordered structures at 7 = 0K. Thus the approach described in Ref. 8 apart
from providing a localized basis with its manv uses (8, brings the LAMTO-ASA method
closer to its full-potential counterpart without adding anv of the complexities inrerent in

tne full-porential methods.




Some of the advantages offered by the conventional MTO’s have been incorporated in
the calculations of the electronic properties of substitutionally disordered alloys using the
Korringa-Kohn-Rostoker coherent potential approximation (KKR CPA) method {9, 10, 11,
12]. As the KKR CPA with its spherically symmetric potential has been very successful in
describing the electronic structure of substitutionally disordered alloys (13, 14, 15, 16}, we
would like to see if it can be improved further. An obvious.and in many cases desirable
improvement would require a full-potential implementation of the CPA. Since the full-
potential CPA has not been implemented so far, although work in this direction is currently
underway, any attempt at bringing KKR-ASA CPA results closer to the full-potential results
should be welcomed.

In this paper we present a formulation of the KKR-ASA CPA based on the localized
MTO’s that allows us to calculate quantities such as non-spherically averaged charge densi-
ties as well as reproduces the results of Refs. {9, 10, 11] and {12] with an appropriate choice of
representation. Our formulation starts out by setting up the Green functions using the gen-
eralized basis introduced in Refs. [4, 6]. Then by applying the process of ensemble-averaging
as outlined in Ref. [13] we derive the ensemble-averaged Green functions appropriate for
describing the electronic properties of substitutionally disordered alloys.

In the following we concentrate on that part of the Green function that contributes to
the charge density, although our results can be easilv extended to include terms that are
left out. The two main references that we use throughout the paper are Ref. (6] and Ref.
{13]. Here we closely follow the notation used in Ref. {17]. where further details can be
found as well.

General Formalism

As shown in Ref. [6] an appropriate energy-dependent muflin-tin orbital, which is con-
tinuously diiTerentiable everywhere, can be written as

XRo(E,rr) = OR(E,rR) + D OF (B, v p) b pp(E) + XRL(E, TR), (1)
RILI

The muffin-tin orbitals, Eq. (1), reduce to the conventional MTO for ag = 0. When
apt # 0, the MTO in that representation is obtained by noting that the potential functions
P*(E) and the structure constants S are related to the conventional potential functions
P°(E) and the structure constants S° through

PYEY = PYEY/(1 -~ aP"(ED (2)

and
S - SU(] -~ ()SH‘ ! (\ﬂ)

For agt = qpt, the structure constants §7 decav exponentially and theyv depenc explicitly on
the potential parameter ;. In the tight-binding representation. agpy - . the structure
constants §7 hecome vanishingly small bevond the sccond neares'-neighbors for close-packed
structures. The resulting MTO’s are very localized and exiend @i most up te 2o



Now the part of the Green function that contributes to the charge density can be written

as

Go(Brrr) = X 3wk Borw) |Pul )]
R

‘L' RL

1/2

xre(E:TR) -

(4)

It is useful to rewrite the Green function, Eq. (4), in terms of on-site contribution,
G;’Zf"RL(E,r,r), and off-site contribution, G;‘,’}J{{RL(E,r,r), because then the ensemble-
averaging of the Green functions for the disordered alloys can be carried out in a simplified

manner. From Eq. (4) the on-site and off-site contributions to the Green functions are seen
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respectively. Then the charge density, p(r), can be evaluated by integrating the imaginary
part of the Green function upto the Fermi energy, Er.
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For describing the electronic structure of substitutionally disordered alloys made of
atoms of type A and B, we associate with each lattice point a coherent potential function,
PeC(E . determined self-consistently from

L . !

paC(E) = CaPP(B)= Caby" ()
s APTAE) - P;f,’C(E)}S:z,L{P;’"B(z-;s - B} (8)

where C4 and Cp are the concentratinns of 4 and B atoms, respectively. The electronic
properties of such allovs are calculated with the help of Green functions, which are the
appropriate ensemble-averages of the on-site and off-site Green functions given by Egs. (5)
and (6), respectively. Within the KKR CPA formalism the process of taking the ensemble-
average of on- and off-site Green functions is described in detail in Refs. 13, 141 The -
multi-site nature of x® prevents us {rom directly applving ine results of Ref. {13}, but
if we could make @ site-diagonal we should be able 1o carry out the ensemble-average
of our Green functions using the procedure outlined in Ref 13 As we will show, the
y*’s become site-diagonal in pure-L approximation. Thus. in 17e following we evaluate the
ensemble-averaged Green functions vithin the pure-L approsimation for x's
The ensemble-average of the on-site {or off-site) Green furciion given by Ra. (5) (or
6 is taken by first averaging over all possible structures thz: leave the potential at the

n-th site (or n- and m-th site) fixed, and then averaging over e possible occupations of
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the n-th site (or n- and m-th sites) by atoms A and B. From Eq. (5) we see that the
ensemble-averaged on-site Green function can be written as

(1/2) a4 a
} D37 piA E) SRy R (E)

GREm(Eirr) = Caxii(er) |Pai(E)
S, (1/2) g,
[PRIA(E)} X5 (*R)

a, W 1(1/2) g, <a
+ CBXRI{;'("R)[PRV (E)] DXE alE)S% R (E)

[ B e) (9)

PP (E)
In Eq. (9) the superscript C stands for the ensemble- averaged Green functions.

Similarly, the ensemble-averaged off-site Green function is obtained by averaging over
all structures that leave the potentials at sites n and m fixed, and then averaging over the
possible occupations of sites n and m by atoms of type A and B. After ensemble-averaging,
the off-site Green function, Eq. (6), becomes the ensemble-averaged off-site Green function
becomes

a,C,o (1:2)
CR’? if?fr,(Eer”'R') = {CAXR " (rR) [PR'I‘ ,)] DR’I rp(E)
a,B Sa,B (1.2) a,B 3
+ Coxi(er) [PRt(E) " DRE, i (B)}

S ru(B)]

a4 ya Ay 'I(l' a,d
{Caxpp (rr) |PRi7(E)| DR p(E)
o, B Sa, (1/2) a,B -
+ Coxb(rr) [PRP(B) " DRERL(E)} . (10)

Eqs. (9) anc (10) represent the ensemble-averaged Green functions for the substitutionally
disordered allovs in the coherent potential approximation. Within the approximations made
so far and for ap = 0, the results for site-diagonal properties such as density of states
calculated with the Green function given by Eq. (9) are identical to that of Ref. (9], as
expected. The off-site Green functions are used to describe the non-site-diagonal properties
of the substitutionally disordered alloys. Our main interest lies in the evaluation of the
non-spherically averaged charge densities in the CPA, which can be calculated from

1 Ep _ .
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It can be easily shown that o¢(r) can be written as the conceniration-weighted average of
the individual charge densities p”'(r) and p¥(r).

pE(r) = Capt(r) = CrpPin) . (12)

\ ‘ . . - ' . . -
where p~ (1) describes the charge density with X' atom ar the central site with X == 4 or
B. Yor a real-space evaluation of the charge density Ui\m noby Eaoolh) we use the ag; - g
representation and the pure-L approximation for the TB orbitals




We have applied the formalism developed to the calculation of the non-spherically av-
eraged charge densities of ordered AlLi in L1y phase and the substitutionally disordered
Alg sLig s on a fcc lattice. For comparison with the charge densities of the substitutionally
disordered AlgsLig s, in Figs. 1(a) and 1(b) w: show the charge densities of L1g AlLi in the
(001) and (100) planes with Al and Li at the central site, respectively.
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Fig. 1. The valence charge density of AlLi (L1p) (a) in the (001) plane and (b) in the
(100) plane calculated with the LMTO method and the pure-L approximation for the TB
orbitals. The atom at the center in (a) ((b))is Al (Li).

The differences in charge densities of L1y AlLi and the substitutionally disordered
AlgsLigs in the (001) plane with Al at the central site are shown in Fig. 2(a). The most of
the changes in charge density occur midway along the nearest-neighbors Al-Al directions.
The decrease in charge density around the nearest-neighbor sites upon substitutional dis-
ordering. evident in Fig. 2(a). is due to the presence of CPA atoms at those sites. Some
of the differences betwc n the charge densities of ordered and substitutionally disordered

allovs arise because of the chauge in the svinmetries of the lattice involved. For example,
the change in the charge densities due to change in svmmetry in going from Llg for AlLi
1o fec for AlysLips can be easily seen by comparing Fig. 1(b) with Fig. 2(b} which shows
the charge density of the substitutionallv disordered AlysLips i the (U91) plane with Li at



the central site. As expected. the charge densities close to the individual atoms (= 0.55w)
in disordered Alg sLigs remains essentially unchanged from the ordered AlLi system.

(a) (b)

Fig. 2 (a) The differences in valence charge density between Llo AlLi and the substi-
tutionally disordered Alg.sLigs in the (001) plane of the fcc lattice. (b) The valence charge
density of the substitutionallv disordered Alg sLips in the (001) planc of the fcc lattice. The
atom at the central site in (a) ((b)) is Al (Li) while all other sites are occupied by CPA
atoms. The contours are plotted at an inteival of (.5 in units of 1072 electrons/(a.u.)*.

We have presented a formulation of the KNR-ASA CPA that allows us to calculate elec-
tronic properties of substitutionally disordered allovs that are closer to their full-potential
counterparts. We have demonstrated the usefulness of our approach by calculating the
non-spherically averaged charge density for the substitutionallv disordered AlgsLig s {rom
the spherically svimmetric one-electron poteutial obtained from the SCEF KKR-ASA CPA
method. Our approach also offers the possibility of more accurate 1otal energy calculations
as well as the inclusion of lattice relaxations in real-space for the substitutionally disordered
aliovs,

This work was supported by the U.S. Department of Euergy under Coutract No. W-

T405-Ene-48 with Lawrence Livermore National Laboratory.
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