
INSTITUTEFOR "
FUSIONSTUDIES

AP/?0 0 I992 '_

DOE/ET-53088-543 IFSR #543

Kinetic Theory of

Toroidicity-Induced Alfv6n Eigenmodes

R.R. METT and S.M. MAItAJAN
Institute for Fusion Studies

The University of Tex_s a,t Austin
Austin, Tex_s 78712

March 1992

P::,_i 'u _ 8 ""

_ ,;, __
'_ _ - _

!_ '_

• ID I,q

THEUNIVERSITYOFTEXAS _g.o{_ooo."=_"._.o_o_o.o.__.,,,°'-"

_'_

__,,,_

_ _:_ ._ o _

AUSTIN ____

DISTRiI_%iTION OF' THIS DOOUMENT IS UNLIMrrED

",11 ......... 311' " ,.......... _1 ..... I_'IlllIl '_ .... 1,,N_,..... IIl'l_r"'lr "''li' "" "'rlTlIl' "_lr,'"'....... I_1' II1' _'t_ ;rl]' ',l_ _',



Kinetic Theory of Toroidicity-Induced
Alfven Eigenmodes

DOE/ET/53088--543

R. R. Mett and S. M. Mahajan
Institute for Fusion,Studies DE92 010424

The University of Texas at Austin
Austin, Texas 78712

Abstract

An analytic kinetic description of the toroidicity-induced Alfven eigenmode (TAE)

is presented. The theory includes electron pa,rahel dynamics non-perturbatively, an

effect which is found to strongly influence the character and damping of the TAE --

contrary to previous theoretical predictions. We use a parallel conductivky model

that includes collisionless (Landau) damping on the passing electrons and collisional

damping on both trapped and passing electrons. Together, these mechanisms damp

the TAE more strongly than preciously expected. This is because the TAE couples (or

merges) with the kinetic Alfv_n wave (KAW) if the gap is sufficiently thin and/or the

magnitude of the conductivity is sufficiently small. The high damping could be relevant

to recent experimental measurements of the TAE damping coefficient. In addition, the

theory predicts a "kinetic" TAE, whose eigenfrequency lies just above the gap, whose

existence depends on finite conductivity, and which is formed by the coupling of two

KAWs.

PACS numbers: 51.10.+y, 52.40.Db
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I. Introduction

Toroidicity-induced Alfvdn eigenmodes (TAg) are currently of great interest because they

may destroy the confinement of fast ions in a burning tokamak plasma. 1-s Their excitation

depends critically on the difference between the growth rate due to the fast ions and the

damping rate, mainly due to electrons. Past theories have predicted a very low intrinsic

damping for the TAE, 2,a and have determined the dominant form to be Landau damping

due to the magnetic curvature drift of the electrons. 2 Perhaps stimulated by recent Tokamak

Fusion Test Reactor (TFTR) results. 4 showing a higher excitation threshold than expected,

more recent theoretical studies have focused on alternate damping mechanisms, such as con-

tinuum damping, 5-r and trapped electron effects, s In contrast, the present study attempts io

demonstrate that a non-perturbative treatment of electron parallel dynamics yields intrinsic

damping of the TAE significantly higher than originally thought.

The higher damping is caused by a coupling between (or Inerging together of) the TAE

and the kinetic Alfv4n wave (KAW) if the gap is sufficiently thin and/or the magnitude

of the conductivity is sufficiently small. In this regime, tile damping is strong and rela-

tively insensitive to the real part of the parallel conductivity a because the KAW carries

the energy of the mode away from the gap region. Outside this regime, as previously pre-

dicted, the TAE damping depends linearly on the real part of a -1, and may be quite small.

Our theory also points out interesting connections between the TAE and the global Alfv4n

eigenmode 9-11 (GAE). In addition to altering the structure of the TAE, finite conductivity

introduces a countable infinity of new modes (like for the GAEg), which are formed by the

coupling between two KAWs. These new modes, which we call kinetic TAE (KTAE), have

eigenfrequencies which lie just above the gap. Their damping scales as a -1/2. We find that

the KTAE closest to the gap has a mode structure very similar to the TAE, but with the
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opposite phase between the coupled modes, and may have a lower damping coefficient than

the TAE. The modes further outside the gap generally have high damping coefficients. The

KTAE correspond to the continuum, which has been discretized by the electron dynamics.

Analytical calculations of the dispersion relations and damping coefl]cients for the various

modes in .various regimes are in good agreement with numerical values obtained by direct

integration of tile basic equations for a wide range of plasma parameters.

The paper is organized as follows. Section II contains a derivation of the basic coupled

set of equations used to describe the TAE and KTAE. Properties of the system in the ideal

magnetohydrodynamic (MHD) limit are examined in See. III. Analytic dispersion relations

for the modes in various parameter regimes are derived using a variational approach in

Sec. IV. In Sec. V, numerical results obtained by direct integration of the coupled set of

equations are presented and discussed, while conclusions are given in Sec. VI.
J

II. Basic Equations

We consider a TAE formed by the coupling between two poloidal harmonics ml and m2.

As our model, we use an equation describing Alfvdn waves in an inhomogeneous, current

carrying, cylindrical plasma, corrected by toroidal coupling to first order in inverse aspect

ratio ¢(r') = r/R,

r K_ drdrA'I(_drdr - ,'K](A, - G,) + h'_k, "_vr-_v - h:'_ -fi-_r r"_v r - h'_ E,

= - -gr -

In this equation, the poloidal electric field E(r) _ ei(m°+_¢-_t), the poloidal wavenumber

Ii = (q: + e2)-'/2(mq + e2n)/r, the parallel wavenumber k = (q2 +s2)-,/_(rn_ nq)/R, while

A = w:/v A2_ k2,G = (dd/dr)/K - A2/K 2, where m = ¢(2qk - ¢g)/[r(q 2 + ¢2)], and r is



,L

related to the parallel conductivity _ras

r = attoV2A . (2)

The coupled system is completed with the equation formed by exchanging the subscripts

1 _ 2. The left-hand side of this equation was derived in Ref. 9 and used to examine KAW

and G AE. 9-11 It steins from the well-known system of equations describing Alfvgin waves

derived in Ref. 12. Electron dynamics are described by the term containing r, while G

contains the effect of shear or equilibrium current [G ,,_ :i=s where s = dlnq/dlnr; to leading

order in _, G = (dk2/dr)/(rK2)]. We note that the toroidal coupling term on the right-hand

side of Eq. (1) is the same as EQ. (30) of Ref. 1. Neglecting the term containing T, Eq. (1),

apart from the last term on the right-hand side, is the same as Eq. (35) of Ref. 7. Equation

(1) may also be reduced to Eq. (2) of Ref. 6 under appropriate limits.

Our parallel conductivity model includes collisionless (Landau) damping on passing elec-

trons and collisional damping on both trapped and passing electrons. It was derived by

following the drift-tearing mode analysis of Chen, Rutherford and Tang, 13 except we have

added a particle conserving Krook collision operator for the passing electrons on the ions.

The derivation is outlined in the Appendix. We find

T = (3)F '

where p_ = c_/w_i and

{1-(2¢)I/2 + ([Z(_)- Z((t)] [1-(2s)I/2]} {I + BI} . (4)F = 1 - (2¢)'/2 + (_[Z(() - Z((t)]

The variable F factors into a passing particle contribution (coming from an integral over the

passing electrons), given by the first term in curly braces, and a trapped particle contribution

(coming from an integral over the trapped electrons), which is purely collisional, given by the

last term. Here, Z is the plasma dispersion function, ( = (w + ivp)/([k[v,), (t = (/(2¢) _/2,

4
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Cc-- iup/(Iklv_), where up is an effective collision frequency for the passing electrons on the

ions and v. is the electron thermal speed, while

(2_)'/_ 4 ]0_ ___ i_,(x)B, = 1- (2_)_/__/_ d_z . (,_)w+iu(z)

In Eq. (5), u(x) = (u,/e)x -3 where u, is the collision frequency of thermal electrons on

the ions. We comment that F reduces to Eq, (9) of Ref. 13 in the limit up _ 0 (and for

w,/w ---, 0). It also takes the form reported in Eq. (30) of Mahajan, Hazeltine, Stra_ss,

and Ross for _ _ 0.TM In this limit the conductivity becomes the Spitzer conductivity for

up/([klv_ ) :_ 1 and describes collisionless Landau damping [F = 1.+ _Z(¢)] for up << w.

EqUations (2) and (3) may be combined to yield a more familiar relation,

. ne 2

_= -_-_z F, (6)

where n is the plasma density, e is the unit charge and T, is the electron temperature. For

typical plasma parameters, F is of order unity. Neglecting collisions, the trapped particles

(by removing a cone of passing electrons from velocity space) tend to decrease slightly the

real part of F and decrease substantially the imaginary part, to a small fraction of the real

part,. Collisions have their largest effect on the imaginary part of F, increasing it to a

significant fraction of the real part for typical plasma parameters.

The essential features of the TAE may be obtained from Eq. (1) and its counterpart by

expanding A(r) in powers of r about the position ro where Aa = A2. For simplicity we

assume the radial variation in all other quantities (except E) about ro is unimportant. We

take ¢(r) = rE(r), r = ro + x, A, = A- a,x, A2= A + a2x, where a, = -dA,/d.,[,.o,

a2 = dA2/drl_o and obtain

d d K_(A-alx-G,)+7- dx 2 =-ev2 A dx 2_x(A - alx)_ x K_ ¢1 -- Ii ¢2.

(7)



The other equation has 1 _ 2 and the opposite sign of a. Here, the quantities A, r,¢, vA, K1,

K2, G1, G2 are ali evaluated at 7' = ro and are therefore constants. (The subscripts were

dropped on A and r since 1 = 2.)

Equation (7) and its counterpart are conveniently analyzed in Fourier space. Parseval's

theorem implies that any function localized (square integrable) in x will also be localized in

the conjugate Fourier variable. We take

c/)(x) = dp¢(p)e 'p* (8a)
OO

: ~ 1 /_¢(p) = _ _-_ d,,C(x)e -'_" (8b)

and Eq: (7) becomes

[ d iA p iI,'_G, ir (p2 + K_)] _, = is w2 p2 + h'_+ --_,+ p_+ K_ _,(p_+ K_) _, _, ¢,v2+K,__ ' (9)

This equation and its counterpart may be symmetrized by defining the new functions

¢, = ¢,[a, ein(p 2 + h'_)] '/2 (10a)

¢_= _[_',(p_ +K_)]'/_ (_0b)

where r/= (a_l-a_I)(Ap-½ wpa) -r(h'_/al-l(_/a2)p-I(,G,a7 1 atan (keT) +I(2G,aa_ 1 atan (k_72).

Then Eq. (9) and its counterpart reduce to the simple normalized system

[_+ ih(y)] ¢, = -ig¢2f(y) , (1la)

[._j ] i .'g_b, (lib)d -ih(y) g'2 = -f(y--"_,

where the normalized Fourier coordinate y = p/a, the normalized inverse aspect ratio g =

ctc(alo_2)-l/2w2/V2A, while the functions h(y) - _,- G(y)- ?(y2 + 1), and f(y) -[(y2 +

= _ _A/a, the normalized "shear"y,_)/(y2 + y_)],/2. Here, the normalized eigenvalue _

'[G,/(I+ _/y_) + G2/(l + y2parameter G(y)= 7 y /y_)], and the normalized inverse parallel

6



' _/_, wh._ _ [_(K_/_,+ K_/_)]'/_ _ (_' +_')-' _',conductivity ? = _r = , = , =

_;G1/al, G2 = _G2/a2, YI = KI/_, and y2 = K2/t_. We have reduced the TAE problem

to a coupled pair of linear, first order, ordinary differential equations with the eigenvalue w

entering through z_(co), ?(co), and g(co). For the TAE, we expect z_(co) to be small (zX ,-_g)

and so it is a good approximation to put ?(co) = ?(kVA) and _(co) = g(kva) and treat _ as

the eigenvalue. It is clear from the definition of h(y) that since _ is small, it will influence

only the high frequency (in p or y) components of the wave function, as expected. In terms

of the normalized variables, the eigenfrequency is given by

£ 1/2

co = kVA 1 + 2s !rnlm2)l/2
rnl + m2 _ ' (12)

and so the damping is, to leading order in _,

---- lm , (13)
co rnl +rn_

and the gap boundary
ml +m2

£g_p = _+g2(mlm2)l/_ . (14)

III. Existence of TAE in Ideal MHD Limit

Before solving Eqs. (lla) and (llb), it is illuminating to examine properties of the system

with ? = 0. Then these equations may be combined into

Since f(y), O(y), g"are all real, we expect _ to be real. Since f(y) _ 1 and G(y) --*0 as

y --, c_, asymptotically Eq. (15) becomes

+ (5_- e_) ¢_= 0. (x6/



Consequently for a bounded solution, _2 _ g2 < 0. Taking the inner product () = f°°oody of

Eq. (15) with ¢2' and addirig the result to its complex conjugate, We find

Since f(y)is positive for all y, this (virial-type) equation shows that finite _'(y) is required

to make £2 _g2 < 0 and thus to create a localized mode. The function f(y) plays essentially

no role in the formation of the mode. Consequently, with no parallel electric field (? = 0),

equilibrium current (essential for the GAE °-11) and toroidal coupling are both essential for

the formation of the TAE. The function G(y) plays a similar role as boundary conditions

in other analyses. 1'6'7 Notice also that since g is small, it is quite likely that there is only

a single mode -- one with no nodes (zero crossings) in ¢2. This is because as one creates

a node, [d¢2/dy[ 2 increases, requiring [£[ to increase (on the right-hand side), but thereby

preventing £2_ g-2< 0. It is also seen that a larger G(y)[ requires a larger [d¢2/dy[ 2 and a

smaller 1¢21_,which implies a more locali: ed mode in y-space (and thus a broader mode in

x-space). These tendencies are born out in the numerical solutions of Eqs. (11a) and (llb),

presented in Sec. V.

If the K_ and I(_ terms are dropped in the coupling terms on the right-hand side of Eq. (7)

and its counterpart (often used as an approximation), a similar virial-type construction shows

that a finite (_(y)is not required to make _x2 - g,2< 0. It indicates, incorrectly, that a TAE

may be formed by toroidal coupling alone. Since it is more accurate to keep the K_ and

K_ terms, this suggests that many terms are of the same order and so one must be cautious

when dropping various terms.

Finally, we point out that with ? ¢ 0 tile condition _,_ - g,2< 0 is no longer necessary

to permit a localized solution.
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i IV. Analytic Dispersion Relations

We now analytically derive the dispersion relations and damping coefficients using a wria-

tional technique. Two distinct modes emerge from the analysis. One, the TAE, persists in

the limit ? _ 0. The other, the KTAE, does not. For ? sufficiently small, the damping of

the TAE is scales _s Im(?), but may be enhanced significantly by _"and C_. For larger _, the

d_mping depends on the magnitude of ? and becomes relatively insensitive to Im('_). For
,

the KTAE the d_mping scales _s _t/2. Analytical results are in good agreement with v_lues

obtained by direct numerical integration of the basic equations.

Recognizing from the _rguments of the previous section that f(y) plays _ minimal role

inthe form of the TAE, for simplicity we set f(y) = 1 in Eqs. (lla) and (llb). We further

"" l
make the simplification (_(y) -_ Go/(y 2 + 1), where G0 = _(C,, + C_2) (generally (_0 > 0).

This makes h(y) symmetric in y. From our numerical solutions of Eqs. (lla) and (llb), we

observe for the TAE that

¢,(-v), (lS )

to a good _pproximation, while for the KTAE

¢_(y) U -¢_(-y) . (18b)

Substituting Eq. (18a) into Eqs. (lla) and (llb) with our simplifications, we form a coupled

system for symmetric and antisymmetric functions defined by ¢_(y) = ¢_(y)+ ¢,(-y) and

¢_(y) - _bz(y)- ¢,(-y). This system ma.y then be combined into a single equation for ¢,,

d'-y g'- ho(y) dy j - [_"+ ho(y)]¢, -- o, (19)

where ho(y) = A- (_o/(y 2 + 1)- _(y2 + 1). A similar procedure using Eq. (18b) for the

KTAE leads to Eq. (19) with _"replaced by---g. [Equations (lla) and (llb) may also be

combined into a single (SchrSdinger) equation, _ -t- V_2 - 0_ where the effective potential

9
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V(y) = h2o- g2 _ idho/dy, It is interesting to note the similarity between ho(y) and the

effective potential for the GAE discussed in Ref. 8 c.f. Eqs. (23) and (24) and Figs. !

and 2. However, the correspondence is not complete since in the present case the effective

potential is significantly more complicated.]

In leading up to our variational procedure, we take the inner product of Eq. (19) with

¢., to obtain the quadratic form

S = I_+ I_= 0, (20)

/ )/,where It = t (dc, 2,-h0"-_v-_\Tr and /2 = -([g+ ho(V)]¢,2), We take the trim function _b, =

e -_2/2 with the (complex) parameter ,k,substitute into Eq. (20), and carry out the integrals.

Perhaps surprisingly, the integrals may be carried out exactly and written in terms of the

probability integral @,t_We find
i

I,= _(z+-z_) I+-I_, OA(I+-I-) , (21)

12=

where
i

I_= -+(_-z_)'/_,'('-_,_{I-+[(I-z+)'/_'/_]},(23)

z±= 2? (__-- X)ij . (24)

The integrals are strictly valid for Arg()_t/2)l < { and Re[(1 - z+) _/2] > O.

We now take advantage of the ordering of the various terms. In general, ]_] << j_x],-_

Ig'l<< 1, while 0 < (_o < 1 and I)_[<< 1. Then

£__-
z+ -_ .. , (25)

: , '7"

G0
z.... .. (26)

/k-e

10
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Consequently, iz+l .'>>1 ~ Iz_l. If ? is sufficiently small, z+ becomes sumciently large that

we can use the asymptotic expansion of _' to evaluate 4. Then to leading order in _-,/2,

:,rl/2

s+= 2(1-_+)A_I_-' , (27)

Since A is small and z_ is of order unity, we can use the small argument expansion of cp to

determine I_. To leading order "

s_= , (2s)

With these restllts,
(TtA)l/2

I1 = 2(£- g) ' (29)

and our quadratic form gq. (20) becomes

_ .. A

2A g-A+00(uA)*/' 2(g-£) =0 , (a0)

The parameter A is determined by finding the extremum of Eq. (30), which corresponds

to a solution of aSOA - 0, or

-a-v + 00 ^ = 0, (al)g-A

If ? is sufficiently small, an accurate solution, of Eq. (31)may be obtained by solving pertur-

batively in _,

All' = ,_'/'Oo(g-- £) (32)
, + _/[_O=0(e- 5)].

[We comment that the solution neglecting G0 does not satisfy the constraints on the inte-

grals.] Substituting this into Eq. (30) gives the dispersion relation

_x = -g 1 - rr002/2 ? (aa)
, + 7r02o/2+ 2r_O_(g--£)2(1+ ,_0_ol2)'

This shows that for _ = 0, )_2 < g2 in accord with the restllts from the previous section.

Furthermore, for I_/(sTr00_ga)l<<g, Im(£)~ Im(-7). Consequently [see Eq. (xa)]the damp-

ing coefficient is proportional to lm('?) and is enhanced by the small parameters _"and (_0.

ll



Iterative solutions of Eq. (33) show that as l?/(87r(_02g'2)l,.- g, Im(£) increases dramatically

with I?1. This is shown in Fig. la, where Eq. (33) is shown as "D.R. 1." The solid lines

indicate the real part and the dashed lines the negative imaginary part of (A/g+ 1), plotted

as a function of ]?l/g 3 over several decades. The (representative) values g = 0.1, Go = 0.3,

and Arg(?) = -0.3 were used. The rapid increase in Im(_)is also reflected in the numerical

solution of Eqs. (lla) and (llb), shown as "code," although the increase is a bit more grad-

ual and begins for smaller [?l/g 3. As 17/(Srr(_2092)l,_ g, our approximations begin to break

down and Re(_) predicted by D.R. 1 diverges from its true value.

The TAE root may be traced further by going back to Eq. (23) and using the small

argument expansion cf • to determine I+ (since z+l is reduced by larger 7). Then

7rl/2A3/2
.[1= , (34)

]"

and our quadratic form Eq. (20) becomes

A2

S = 2-5 - _- £ + Oo(_A) _/_ r̂ - 0. (35)

The extremum of this equation which satisfies the conditions on the integrals is, to a good

approximation,

A = , (36)

and gives the dispersion relation

[In this equation and all subsequent discussion, only the primary root (the one with smallest

absolute value of argument) is implied. The other roots do not satisfy the constraints on

the integrals. Note in Eq. (37) that the argument of _ still makes--g < Re(_) < 0, which

is also true for Eq. (33).] This result is independent of Go, suggesting that the electron

dynamics in some sense dominate over the MHD effects as ? becomes sufficiently large.

12



Equation (37) is plotted in Fig. la and labelled "D.R. 2." Note the surprising continuity in

Im(_x) from D.R. 1 to D.R. 2 as [?l/g _ increases. Taken together, these dispersion relations

follow Ira(A) determined by numerical solution of Eqs. (lla) and (llb) within a factor of

two or three. The real and imaginary parts of/_ from D.R. 2 agree well vJith tile code for

[?/g3 > 10. The correspondence is good considering the simplifications and approximations

used. Equation (37) also has the surprising feature _hat the damping does not wnisb as

Im(?) ---, 0. This is because irl this regime TAE is dominated by the interaction of two

KAWs. Neglecting the toroidal coupling term on the right-hand side, Eq. (1) describes a

KAW, which is propagating for £xl > 0 and evanescent for A1 < 0.16 Toroidal effects couple

together the poloidal harmonics 1 and 2. As shown in Fig. 2a, when the eigenvalue A < 0,

(true for the TAE) a small evanescent region separates the propagating regions. If this region

is small enough, or if _[ is sufficiently large, the TAE excites a KAW on harmonic 1 which

propagates away to the left and another KAW on harmonic 2 which propagates away to the

right. As long as Im(_) is finite, the KAWs will damp and not be reflected back in this plane

slab model. Consequently there is significant damping for wtIlishingly small Ira(F).

The KTAE dispersion relation is found by replacing g"by -g in Eqs. (30) and (31). The

extremum that satisfies the constraints on the integrals is approximately

A=[+(£+ (38)

and gives the dispersion relation

-- r (39)

There are several differences between this mode and the TAE. First, the mode lies on the

top side of the gap boundary, Re(_) > 0. Second, the mode may be outside the gap,

Re(A2) > g_. Third, the damping scales as _/_. Equation (39) is plotted along with the

code results in Fig. lb. The _1/2 behavior for both are clearly seen, although there is a

moderate increase in the slope of Im(/_) vs. [_/g_ for [?[/ga ,,_ 0.1 which is not represented

13
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in the D.R. This increased damping is due to the excltation of KAWs propagating away from

the gap region, similar to that described for the TAE. In this case, however, the transition

to this regime is not as strong. Since Re(/_) > 0, the KTAE is formed by the interaction

of two KAWs as shown in Fig. 2b. Here, the propagating regions for harmonics 1 and 2

overlap. Apparently this situation is less favorable to the excitation of propagating KAWs

than the TAg case. Perhaps the evanescent region in the TAE case forces out the KAW for

I_l/g"a> 1 and causes the large damping. The damping of the KTAE is larger than the TAE

for _[/_a (( l due to the _1/2 scaling, but smaller than the TAE for _[/g3 > 1.

V. Numerical Results and Discussion

The dispersion relations given by Eqs. (33), (37), and (39) are valid if the symmetric wave

function _s(y) = ¢1(y) + ¢1(-Y) is relatively close to the assumed form e-_y2/2. This was

tested by direct numerical integration of the basic equations with a shooting code (originally

developed by J. Sedlak). Our code solves the coupled system given by Eqs. (lla) and (llb)

with the WKB-type boundary conditions

_, {+i[_ _ - h_(y)] _/_ - h(y)}

¢---_- [E/f(y)] (40)

at y >> 1 and y << -1 respectively. The code input GI,G2, y_,y_,_,g, which are calculated

from their definitions. The solutions are rapidly convergent and robust.

The numerical solutions discussed in Sec. IV and shown in Figs. la and lb were calculated

with the values _"= 0.1, (_, = 1.4, G2 - -0.35, y_ = 0.5, y_ = 2.0, and Arg(_) - -0.3.

These values reflect representative plasma parameters as shown in Table 1 and discussed

below.

As a benchmark, we chose to run the code for TFTR device parameters under two quite

different operating conditions. The first case corresponds to the TFTR TAE experiment

discussed in Ref. 4. The second case corresponds to a D-T burning experiment. The plasma

14
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parameters for each case are shown in Table 1. In both cases the plasma density and q profiles

were chosen to scale parabolically with r/rp, while the temperature Tr "_ [1 - (r/rp)2] 2. An

effective mass of 2.5 was assumed. For each case, we consider a low mode number: n = (1, 1),

m = (1,2) with q = 1.5, and a higher mode number: n = (2,2), m = (2,3) with q = 1.25.

The latter case fits the experimentally measured q -,_ 1.3 of Ref. 4 with n = 2. In Table 1,

the corresponding normalized para,meters g, (_0, and ?/g are shown with the numerically

computed eigenvalues for the TAE and KTAE and the damping coefficients 7/w [calculated

from Eq. (13)]. For comparison, corresponding values of (7/W)mcd due to the magnetic

curvature drift of the electrons [calculated from Eq. (10) of Ref. 2] are also indicated.

We see from Table 1 that the numerically computed damping coefficients for the TAE

are in all cases significantly (a factor of 3-16) higher than the Landau damping (')'/03)mcd

predicted by past perturbative approaches. Fortuitously, our predicted damping coefficient

for the TAE experiment is close to the experimentally measured value (of Ref. 4) of ,,_ 3%.

The damping is high in these cases because the normalized parameter I?]/g 3 is near or greater

than unity. Consequently, these cases are near or into the regime where the dispersion

relation given by Eq. (37) is valid. In this regime, the dampiilg is dominated by excitation

of KAWs propagating away from the gap region. This indicates the importance of our non-

perturbative approach. The KTAE damping coefficients are in all cases a bit lower than the

TAE.

Figure 3a shows the m = 1 TAE wave function ¢1(Y) in normalized Fourier space for

the D-T burning experiment (third column in Table 1). The oscillatory character is due to

the influence of _ and the connected excitation of the KAW. For n = 2, m - 2 (column

4), ¢,(y) has a slightly more oscillatory character due to the larger value of I_[/_"3. Figure

3b shows the perpendicular electric field El(r/rv) in real space corresponding to the inverse

transform [Eqs. (8a) and (10ai] of _b,(y). Oscillations to the left are a propagating KAW.

This may be compared to the diagram of Fig. 2a. Figure 3c shows the perpendicular electric
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field Es(r/rp) corresponding to the inverse transform [Eqs. (aa) and (10b)] of ¢2(y)(m = 2).

Oscillations to the right are a propagating KAW. Note that E1 and Es are in phase. For the

KTAE, (not shown) it is interesting that E1 and E2 in real space are very similar to E1 and

Es for the TAE, although the oscillations are less prominent -- only a hint of the KAWs is

visible. The major difference is that Ex and E2 are out of phase.

Predictions of the A/g from the dispersion relations given by Eqs. (33), (37), and (39)

generally were found tolie within a factor of two of the values from the shooting code for the

cases cited in Table 1. We comment that for lower mode numbers (m = 1,2), decreasing the

value of G0 by 35% from its definition G0 1 ""_ = 7(Gz +G's) is found to improve the prediction

of Eq. (33). This is not unreasonable considering the approximations used in its derivation.

For higher mode numbers, the wave functions become more localized in real space. Damp-

ing coefficients generally become higher. For the TAE, this is due to an increase in the

normalized parameter ?l/g a with m to values greater than unity. Then the dispersion re-

lation given by Eq. (37) holds. The damping coefficient in this case can be estimated by

writing ?/g3 in terms of the unnormalized parameters to leadillg order in _ (unnormalized)

and combining Eqs. (37) and (13). The result is

-=- Im i . (41)
w \n_ _m2 2'/s r

Note that F _ 1 and therefore Im[i(i/F) _/3] _ 1, even for vanishingly small Im(F). For

1 and, with a parabolic q profile q = 1+(r/rp) 2ml =ni =ns=mandm2=m+l,q= l+y- d

the shear s = (r/rp)(2/m)'/2/(1 + _-d)' Then, in the high m limit, Eq. (41) becomes

- = m 1/3Im i , (42)
OJ

,. This equation gives surprisingly good agreement with the code results when I_l/g 3 _> 1 and

even fbr the cases given in Table 1.

Finally we comment that for other plasma parameters, e.g. for DIII-D, the kinetic effects
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on the TAE are not as prominent for tile lower mode numbers, resulting in a moderately

lower damping coefficient. In this case [_l/g ° < 1 and Eq. (42) overestimates the damping.

VI. Conclusions

In conclusion, a non-perturbative treatment of electron parallel dynamics predicts a non-

negligible combined collisional and collisionless (Landau) damping of the TAE. The damping

rate for tile TAE predicted in this study is of the same order as the resonant or continuum

damping, 5-7 which is caused by a mechanism not treated in this study. Our theory points out

the possible importance of a non-perturbative treatment of damping for the TAE. Although

the form of damping examined in this study may not in itself be enough to overcome the

a-particle drive, it should be taken into a,zcount in more careful future studies. Our theory

also predicts the existence of a new TAE (the KTAE) which depends on finite conductivity

and is formed by the coupling of two KAWs. Since the damping of these modes can be

smaller than the TAE, a study of the effect of a-particles on these modes is also warranted.
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A. Conductivity Model

Our parMlel conductivity model is derived by following the drift-tearing mode analysis of
i'

Chen, Rutherford and Tang. la This is reasonable since the essential features of the TAE

mode structure are described by electrostatic potential y_and the parallel component of the

magnetic vector potential A, as in the tearing mode. That k _ 0 for the tearing mode

does not affect the derivation of the conductivity. In this anMysis, the perturbed electron

distribution function h is determined by the drift-kinetic equation. Trapped ('t) and passing

(p) components are treated as separate species h = ht + hp but are related to each other

through the collision operator. The collision operator acting on the perturbed trapped

particle distribution is modelled as

Cht= -u(v)ht . (Al)

It simply tells the rate of scatter of trapped electrons out of the trapped region. In this

equation, the carat designates the non-Maxwellian part, while u(v)= (u,/e)(v,/v) a, where

u, is the collision frequency of thermal electrons on the ions _md v, is the electron thermal

speed. [The quantity (u_/e) represents the effective collision ra,tc of the trapped electrons

out of the trapped region.] The collision operator acting on the perturbed passing electron
i

distribution is modelled as

Chp= f° /davu(v)ht--u" [hpnopnopf°_davhT'] ', (12)

The first term describes the rate of scatter of the trapped electrons into the passing region.

Here, fo and no represent the unperturbed distribution function and density. The second

term is added to the analysis of Chen, Rutherford and Tang. This term is a particle-

conserving t<rook collision operator where up is an effective collision frequency for the passing

electrons on the ions. For simplicity, up is taken to be a constant in our analysis. We take

18



vp = v_(v_,/vA)3 to account for the importance of the resonance w = kva in the drift-kinetic

equation for the passing particles. We comment that a velocity dependence vp(v) results in

an integral equation for hp that is not readily solved. Trapping and collisional effects of the

ions are neglected.

Relationships between the perturbed electron distributions hv and ht and the fields qoand

A are obtained by substituting Eqs. (Al) and (A2) into the drift-kinetic equation and bounce-

averaging. (For simplicity, no distinction is made between _ and A and their bounce-average

values. We also take w,/w .--+0.) From the total electron and ion distribution functions, we

obtain density and current perturbations which are substituted into the quasineutrality con-

dition and Amper_'s law. The parallel conductivity is extracted from the resulting coupled

equations for the fields _, and A.
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Table I: Eigenvalues, damping rates, and other pnrameters

TAE exp D-T exp

r_(m) 0,75 0,8
n(m) 2.4 2,5

T_(keV) 1,7 10
n(cm "'3) 2,7 × l0 t'_ 10t4

5
qcntr 1,04 1,04

qodg_ 2,8 3,1
nim (1,1) 1(1,2) (2,2) 1(2,3) (1,1) 1(1,2) (2,2) (2,3)

g 6,55 × 10"2 8,06 × 10-2 6,20 × 10-2 7,63 × 10-2

Go 0,504 0,164 0,505 0,163

Arg(?) -0,585 -0,479 ' -0,241 -0,187
I?l/g'3 0,685 5.51 0,302 2,14

(_/g)TAE --0,67 -- 0,34i --0,93 -- 1,441 --0,65 -- 0,18i --0,83 -- 0,88i "
(/_/_')KTAE 2.0 -- 0.29i 2,9 0,78i 1.7 - 0,084i 2,3 - 0.27i
(7/_)TAE --2,6 × 10"2 --7.6 X 10-2 --1.3 × 10-2 --4,4 × 10-2
(_//W)KTAE -2,2× 10-2 -4,1× 10-2 -6,0× i0-3 -1,3× 10-2

("//_,t))mcd -3,7 × 10-3 -4.8 x 10-3 -4,1 × 10-3 -5,1 x 10-3



Figure Captions

1, Comparison of analytic dispersion relations with numerical,shooting code results, Solid

lines indicate real p_rt and dashed lines the negative imaginary part, a) (_x/g" + 1)

vs, _l/ga: D,R, 1 corresponds to Eq, (33) and D,R, 2 corresponds to Eq, (37). b)

(_x/_'- 1) rs, _/g,'3: D,R, corresponds to Eq, (39),

2, Superimposed plots of A 1 and A 2 in real space near the gap indicating regions of

propagating and evanescent KAWs, a) TAE case, b) KTAE case,

3. Wave functions from the numerict_l shooting code corresponding to the D-.T burn-

' ing case n = (1,1)and m = (1,2) (third column) in Table 1, a) W,_ve functio_n

_Pl(y)(m = 1) in normalized Fourier space, b) Perpendicular electric field correspond-

ing to the inverse transform [Eqs, (Sa) and (10a)] of _/Jl(y), Oscillations to the left are

dueto a propagating KAW, c) Perpendicular electric field corresponding to the inverse

transform [Ems, (8a) and (10b)] of _2(y)(m = 2). Oscillations to the right are due to

,_ propagating KAW,
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