INSTITUTE FOR
FUSION STUDIES

DOE/ET-53088-543

Y
1

APy,

IFSR #543

Theory of

Kinetic
Toroidicity-Induced Alfv

des

én Eigenmo

rd

R.R. METT and S.M. MAHAJAN

Institute for Fusion Studies
The University of Texas at Austin

Austin, Texas 78712

"JooIayy £ous8e Aue IG JUIWUILA0L SIBIS PANT[)
31 JO 350§} VL3I 10 1Bl A[UIBSSIV0OU 10U Op U119y possaidxa siogne jo suowido pae
smola 34 Joaiayl AousSe Aue 10 1WIWOIAACG SIIEIS PANuU(} oY) Aq Zuuoas] Io ‘conepusm
-T0J2I ‘JUSTWIISIOPUS S AJdUlt 10 9ININSUOS A[LIESSIOON JOU SIOP ISIAIIYIO JO ‘ISINIOBJHURWI
“JIewapen ‘oureu Spex) £g 301a13s IO ‘ss3001d ‘jonpoid [enIsmImIos sijoads ATe 01 URIAY S0Ud

1939y 's1q3u poumo ApPieaud sSuLiyul jou pmom 3sn Si JRY) Sjuasaidal Jo ‘pesofosIp ssavcid

10 Jonpoid ‘snieredde ‘soneuniojul £ue Jo Ssau[nJasn 10 ‘ssauate[dwoo ‘AoeInooe 9g1 J0j KfIq
-1seodsar 10 Aypiqey [e3s] Aue sommsse jo ‘pordun 1o ssaxdxs ‘Ajusiiem AUe sayewW ‘savkojdwro
Tioq Jo Aue Iou ‘joasag) Aousfe AUe I0U JUSWIUISACH SIIBIS PIMU[] 3Gl JOYNSN UOWIBISACH
satelS palru() 243 jo £ousde ue Aq polosuods XIom Jo JunoooR ue se poredsid sem podar sigy

ATV IOSIA

March 1992

AUSTIN

THE UNIVERSITY OF TEXAS

NASTER

DISTRIBUTION OF THIS DOCUMENT (S UNLIMITED

LRI IR

LRI

L&

e L]

UM R e

"

e

[T




Kinetic Theory of Tor01d1c1ty-Induced
Alfvén Eigenmodes

) DOE/ET/53088~~543
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Abstract

An analytic kinetic description of the toroidicity-induced Alfvén’eigenmodé (TAE)
is presented. The theory includes electron parallel dynamics non-perturbatively, an
effect which is found to strongly influence the character and damping of the TAE —
contrary to previous theoretical predictions. We use a parallel conductivity model
that includes collisionless (Landau) damping on the passing electrons and collisional
damping on both trapped and passing electrons. Together, these mechanisms damp
the TAE more strongly than previously expected. This is because the TAE couples (or
merges) with the kinetic Alfvén wave (KAW) if the gap is sufficiently thin and/or the
magnitude of the conductivity is sufficiently small. The high damping could be relevant
to recent experimental measurements of the TAE damping coefficient. In addition, the
theory predicts a “kinetic” TAE, whose eigenfrequency lies just above the gap, whose
existence depends on finite conductivity, and which is formed by the coupling of two

KAWs.

PACS numbers: 51.10.+y, 52.40.Db
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I. Introduction

Toroidicity-induced Alfvén eigenmodes (TAE) are currently of great interest because they
may destroy the confinement of fast ions in a burning tokamak plasma.!=® Their excitation
depends critically on the difference between the growth rate due to the fast ions and the
damping rate, mainly due to electrons. Past theories have predicted a very low intrinsic
damping for the TAE,*3 and have determined the dominant form to be Landau damping
due to the magnetic curvature drift of the electrons.? Perhaps stimulated by recent Tokamak
Fusion Test Reactor (TFTR) results! showing a higher excitation threshold than expected,
more recent theoretical studies have focused on alternate damping mechanisms, such as con-
tinuum damping,®~" and trapped electron effects.® In contrast, the present study attempts to
demonstrate that a non-perturbative treatment of electron parallel dynamics yields intrinsic
damping of the TAE significantly higher than originally thought.

The higher damping is caused by a coupling between (or merging together of) the TAE
and the kinetic Alfvén wave (KAW) if the gap is sufficiently thin and/or the magnitude
of the conductivity is sufficiently small. In this regime, the damping is strong and rela-
tively insensitive to the real part of the parallel conductivity o because the KAW carries
the energy of the mode away from the gap region. Outside this regime, as previously pre-
dicted, the TAE damping depends linearly on the real part of o=, and may be quite small.
Our theory also points out interesting connections between the TAE and the global Alfvén
eigenmodeg‘“ (GAE). In addition to altering the structure of the TAE, finite conductivity
introduces a countable infinity of new modes (like for the GAE®), which are formed by the
coupling between two KAWs. These new modes, which we call kinetic TAE (KTAE), have
eigenfrequencies which lie just above the gap. Their damping scales as =12, We find that

the KTAE closest to the gap has a mode structure very similar to the TAE, but with the
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opposite phase between the coupled modes, and may have a lower damping coefficient than
the TAE. The modes further outside the gap generally have high damping coefficients. The
KTAE correspond to the continuum, which has been discretized by the electron dynamics.
Analytica} calculations of the dispersion relations and damping coefficients for the various
modes. in .various regimes are in good agreement with numerical values obtained by direct
integration of the basic equations for a wide range of plasma parameters.

The paper is organized as follows. Section Il contains a derivation of the basic coupled
set of equations used to describe the TAE and KTAE. Properties of the system in the ideal
magnetohydrodynamic (MHD) limit are examined in Sec. III. Analytic dispersion relations
for the modes in various parameter regimes are derived using a variational approach in
Sec. IV. In Sec. V, numerical results obtained by direct integration of the coupled set of

equations are presented and discussed, while conclusions are given in Sec. VL.

II. Basic Equations

We consider a TAE formed by the coupling between two poloidal harmonics m; and m,.
As our model, we use an equation describing Alfvén waves in an inhomogeneous, current
carrying, cylindrical plasma, corrected by toroidal coupling to first order in inverse aspect

ratio ¢(r) = r/R,

2d M d d d n (1d d ,
K? ~rK? e !
[ grrkiar TR (B - G‘)”‘lk‘ (d R ) Kiky (r2 drdr’ 1“)] b
d w2 d 2 2 N
= - <Zi_1: Eagdr K, 67) rE; . (1)

In this equation, the poloidal electric field E(r) ~ e(m?*+n¢-!) the poloidal wavenumber
K = (¢ +€?)~Y*(mg +€?n)/r, the parallel wavenumber k = (¢? +£?)~/?(m — ng)/ R, while
A = w/v — k%G = (dA/dr)/ K — A*/K?, where A = ¢(2qk — cK)/[r(q* + €?)], and 7 is
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related to the parallel conductivity o as

—1w

T= (2)

opovy
The coupled system is completed with the equation formed by exchanging the subscripts
1 « 2. The left-hand side of this equation was derived in Ref. 9 and used to examine KAW
and GAE.S~1! [t stems from the well-known system of equations describing Alfvén waves

derived in Ref. 12. Electron dynamics are described by the term containing 7, while G

contains the effect of shear or equilibrium current [G ~ +s where s = dIng/dinr; to leading

order in ¢, G = (dk?/dr)/(rK?)]. We note that the toroidal coupling term on the right-hand
side of Eq. (1) is the same as Eq. (30) of Ref. 1. Neglecting the term containing 7, Eq. (1),
apart from the last term on the right-hand side, is the same as Eq. (35) of Ref. 7. Equation
(1) may also be reduced to Eq. (2) of Ref. 6 under appropriate limits.

Our parallel conductivity model includes collisionless (Landau) damping 6n passing elec-
trons and collisional damping on both trapped and passing electrons. It was derived by
following the drift-tearing mode analysis of Chen, Rutherford and Tang,'® except we have
added a particle conserving Krook collision operator for the passing electrons on the ions.

The derivation is outlined in the Appendix. We find

k?p?
T'—“——F{) , (3)

where p, = ¢,/w,; and

F= { 1 - (26)2 +¢[2(¢) — Z(¢)]
= (20772 1 L[2(0) = 2(C)]

- (2e)‘/21} (1+B). (4)

The variable F' factors into a passing particle contribution (coming from an integral over the
passing electrons), given by the first term in curly braces, and a trapped particle contribution
(coming from an integral over the trapped electrons), which is purely collisional, given by the

last term. Here, Z is the plasma dispersion function, { = (w + iv,)/(|k|ve), ¢ = ¢/(2¢)"/?,
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Co = 1vp/(|k|ve), where v, is an effective collision frequency for the passing electrons on the

ions and v, is the electron thermal speed, while

28 1/2 2 iL'(."L')

7 — 5
B = 1 —(2e)1/2 ‘/2/ dza’e” w+iv(z) (5)

In Eq. (8), v(z) = (v./e)z~> where v, is the collision frequency of thermal electrons on
the ions. We comment that F' reduces to Eq. (9) of Ref. 13 in the limit v, — 0 (and for
w,../Q — 0). It also takes the form reported in Eq. (30) of Mahajan, Hazeltine, Strauss,
and Ross for ¢ — 0.'* In this limit the conductivity becomes the Spitzer conductivity for
vp/(|klve) > 1 and describes collisionless Landau damping [F = 1 + (Z({)] for v, € w.
Equations (2) and (3) may be combined to yield a more familiar relation,

ne? w

R T~

F, (6)

where n is the plasma density, e is the unit charge and T, is the electron temperature. For
typical plasma parameters, F' is of order un‘ity. Neglecting collisions, the trapped particles
(by removing a cone of passing electrons from velocity space) tend to decrease slightly the
real part of F' and decrease substantially the imaginary part to a small fraction of the real
part. Collisions have their largest effect on the imaginary part of F', increasing it to a
significant fraction of the real part for typical plasma parameters.

The essential features of the TAE may be obtained from Eq. (1) and its counterpart by
expanding A(r) in powers of r about the position ro where Ay = A,;. For simplicity we
assume the radial variation in all other quantities (except E) about ¢ is unimportant. We
take ¢(r) = rE(r), r = ro+z, Ay = A — o4z, Ay = A + oz, where oy = —dA,/d/|
oy = dAg/dr|, and obtain

ro?

d d d? ’ WL
(8 —ae) = — KA —aiz - Gh) +7 (d—-wg - 1{12) ] 1 = e (:i'm—? - K{) $s -

(7)



The other equation has 1 « 2 and the opposite sign of . Here, t};e quantities A, 7, ¢, v4, K,
K;,Gy, Gy are all evaluated at 7 = ry, and are therefore constants. {The subscripts were
dropped on A and T since 1 = 2.)

Equation (7) and its counterpart are conveniently analyzed in Fourier space. Parseval’:;
theorem implies that any function localized (square integrable) in z will also be localized in

the conjugate Fourier variable. We take

~

4(a)= [ dpdlp)e (8a)
~ 1 oo . .
= — : —~ipw
#(p) o /;oo dzd(z)e (8b)
and Eq. (7) becomes |
d A P iKEGh i, o] = ie W p? + K2 - .
I - - —— (¢ ———— s .
dp * oy ¥ PP+ K} a(pP+KE) o (p* + K7)| 1 a1 08 p? 4 K? ¢z . (9)

This equation and its counterpart may be symmetrized by defining the new functions
P = 51[018{"(172 + Kf’)]l/z (10a)

1y = Goaze™(p? + K2)|V/? (10b)

wheren = (a7 '—a;')(Ap-5p°) —7(K}/an—K2/a2)p — K1Gai ! atan (-,f—l-) +K,G0; ! atan (—[%)

Then Eq. (9) and its counterpart reduce to the simple normalized system

41400 o = i8]0 (11a)
T
[E& - iht)| v = 5. (11b)

where the normalized Fourier coordinate y = p/«, the normalized inverse aspect ratio & =
ex{ayay)~ V2w v}, while the functions h(y) = A — G(y) — 7(¥* + 1), and f(y) = [(y* +
y3)/(y* + y3)]"/%. Here, the normalized eigenvalue A = 1 xA/a, the normalized “shear”

parameter G(y) = -;-[C:‘l/(l +y2/yd) + Ga/ (1 + y?/y3)], and the normalized inverse parallel

6



conductivity 7 = 1763/a, where & = [a(K?/ay + K}/ap)]'?, a = (a7 + 7)), G, =
&G/, Gy = £Ga/ay, y, = Ki/k, and y, = Kz/k. We have reduced the TAE problem
fo a coupled pair of linear, first order, ordinary differential equations with the eigenvalue w
entering through A(w), #(w), and &(w). For the TAE, we expect A(w) to be small (A ~ &)
;'md so it is a good approximation to put F(w) = T(kva) and E(w) = &(kvy) and treat A as
the eigenvalue, It is cleér from the definition of A(y) that since 7 is small, it will influence
only the high frequency (in p or y) components of the wave function, as expected. In terms

of the normalized variables, the eigenfrequency is given by

1/2 A 1/2
w=kvyg |1+ ZEM—“ - y (12)
my + My 13
and so the damping is, to leading order in ¢,
1/2 A
Y lmma) By (2 (13)
w myq + Ms €
and the gap boundary
~ A~ my + ma
Agap = :}ZEW . (14)

I11. Existence of TAE in Ideal MHD Limit

Before solving Eqs. (11a) and (11b), it is illuminating to examine properties of the system

with 7 = 0. Then these equations may be combined into
A gl (A= -] it [fB -] b =0. (15)
dy * dy dy e

Since f(y), G(y), € are all real, we expect A to be real. Since f(y) — 1 and G(y) — 0 as

y — oo, asymptotically Eq. (15) becomes

VN |
[.__ 4 (A -52)] b=0. (16)
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Consequently for a bounded solution, A? — &% < 0. Taking the inner product () = [%_ dy of

Eq. (15) with 13 and adding the result to its complex conjugate, we find

dips

(822 (1hl?) = (1|%2] ) - (160G - aBiw) (1)

Since f(y) is positive for all y, this (virial-type) equation shows that finite G'(y) is required’

to make A? —&? < 0 and thus to create a localized mode. The function f(y) plays essentially
no role in the formation of the mode. Consequently, with no parallel electric field (7 = 0),

equilibrium current (essential for the GAE®=!1) and toroidal coupling are both essential for

the formation of the TAE. The function G(y) plays a similar role as boundary conditions

in other analyses,!'®7

Notice also that since £ is small, it is quite likely that there is only
a single mode — one with no nodes (zero crossings) in ;. This is because as one creates
a node, |dip;/dy|? increases, requiring |A| to increase (on the right-hand side), but thereby
preventing A? — &% < 0. It is also seen that a larger |G(y)| requires a larger |dy/dy|* and a
smaller |1)5|?, which implies a more locali: ed mode in y-space (and thus a broader mode in
z-space). These tendencies are born out in the numerical solutions of Eqgs. (11a) and (11b),
presented in Sec. V.

If the K2 and K2 terms are dropped in the coupling terms on the right-hand side of Eq. (7)
and its counterpart (often used as an approximation), a similar virial-type construction shows
that a finite G(y)is not required to make A% — &2 < 0. It indicates, incorrectly, that a TAE
may be formed by toroidal coupling alone. Since it is more accurate to keep the K? and
K2 terms, this suggests that many terms are of the same order and so one must be cautious
when dropping various terms.

Finally, we point out that with 7 # 0 the condition A? — & < 0 is no longer necessary
g

to permit a localized solution.
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IV. Analytic Dispérsion Relations

We now é,nalytically derive the dispersion relations and damping coefficients using a varia-

tional technique. Two distinct modes emerge from the analysis. One, the TAE, persists in

the limit 7 — 0. The other, the KTAE, does not. For ¥ sufficiently small, the damping of

the TAE is scales as Im(7), but may be enhanced significantly by & and &. For larger 7, the

damping depends on the magnitude of 7 and becomes relatively insensitive to Im(7). For

the KTAE the damping scales as 7'/2, Analytical results are in good agreement with values
' obtained by direct numerical integration of the basic equations.

Recognizing from the arguvments of the previous section that f(y) plays a minimal role
in the form of the TAE, for simplicity we set f(y) = 1 in Eqgs. (11a) and (11b). We further
make the simplification G(y) = Go/(y? + 1), \‘A;here Go = %(@1 + Ga) (generally Go > 0).
This makes h(y) symmetric in y. From our numerical éolutions of Egs. (11a) and (11b), we

observe for the TAE that
Pa(y) = hi(-y) , (18a)

to a good approximation, while for the KTAE
Pa(y) & —hi(-y) . (18b)

Substituting Eq. (18a) into Eqs. (11a) and (11b) with our simplifications, we form a coupled
system for symmetric and antisymmetric functions defined by ¥,(y) = ¥1(y) + ¥1(~y) and
Ya(y) = ¥1(y) — ¥1(—y). This system may then be combined into a single equation for ,,
d [ 1 dy,
dy [€— ho(y) dy

where ho(y) = A — Go/(y® +1) — 7(3? +1). A similar procedure using Eq. (18b) for the

] CE+ bl =0, (19)

KTAE leads to Eq. (19) with € replaced by —&. [Equations (11a) and (11b) may also be

combined into a single (Schrédinger) equation, ¥j + Vi, = 0, where the effective potential

L T U] iy o ey W ey - TR [T TR no R T R T T I TR T ] I A TR LA A AR WA IR T



V(y) = hi — € — idho/dy. 1t is interesting to note the‘ similarity between ho(y) and the
effective potential for the GAE discussed in Ref. 8 — of. Eqs. (23) and (24) and Figs. 1

and 2. However, the correspondence is not complete since in the present case the effective

“potential is significantly more complicated.]

In leading up to our variational procedure, we take the inner product of Eq. (19) with
¥, to obtain the quadratic form

S=hL+1L,=0, (20)

where I = < é-%)2> and I = — ([& + ho(y)]¥?). We take the trial function ¥, =

1
e-ho(y) ( dy
e=M'/2 with the (complex) parameter A, substitute into Eq. (20), and carry out the integrals.
Perhaps surprisingly, the integrals may be carried out exactly and written in terms of the

probability integral ®.!5 We find

L=—"2 {11 ——8-(1 1) (21)
b= F2p — 22) L3 Y e A B
N 1/2 . 1/2
L =—(+A) (3“-> +1Goe(1 - 84 4 7 (T) (1 4 —1-) , (22)
A A 2\
where
o\ 1/2 ,
Iy = (K) — (1 — 24 )/ 2eM1-22) {1 - ®[(1 - zi)l/zz\lﬁ]} , (23)
~ oA 12
_A-g 47G, |’
Ty = —é-i::_— {1 + [1 (5_- A)2] } . (24)

The integrals are strictly valid for |Arg(AY/?)| < Z and Re[(1 - 2:)1%] > 0.
We now take advantage of the ordering of the various terms. In general, |7| < |A| ~

|&| < 1, while 0 < Gy < 1 and |A| < 1. Then

A-¢ on
Go |
I = 26
A—-¢ (26)
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Consequently, |24| > 1 ~ |z_|. If 7 is sufficiently small, z; becomes sufficiently large that

we can use the asymptotic expansion of ® to evaluate [,.. Then to leading order in A~1/2,

/2

I = ‘ 27
=g 2)
Since A is small and z_ is of order unity, we can use the small argument expansion of ® to

W

“determine I_. To leading order

T\ 1/2
L=(3) | (28)
With these results,
1/2
11 = —(—"::'\—)——:— 3 (29)
2(A —¢€) ‘
and our quadratic form Eq. (20) becomes
S=d e At Gy —2 =0, (30)
2\ 2( — A) '

The parameter A is determined by finding the extremum of Eq. (30), which corresponds
to a solution of 85/8A =0, or

~

7 ~ [T\ /2 1

If 7 is sufficiently small, an accurate solution of Eq. (31) may be obtained by solving pertur-

batively in 7,

‘ Al’/z — W1/2G0£€ - A)A .
14 7/[rGE(€ — A)]

[We comment that the solution neglecting G does not satisfy the constraints on the inte-

(32)

grals.] Substituting this into Eq. (30) gives the dispersion relation

Ao _gl- TG /2 7
14 7GY2  2rGR(E - AR(1+7GE/2)

(33)

This shows that for 7 = 0, A? < & in accord with the results from the previous section.
Furthermore, for |7/(87G2&2)| < &, Im(A) ~ Im(%). Consequently [see Eq. (13)] the damp-

ing coefficient is proportional to Im(7) and is enhanced by the small parameters & and Go.
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Iterative solutions of Eq. (33) show that as |7/(87G2&%)| ~ &, Im(A) increases dramatically
‘with |7|. This is shown in Fig. la, where Eq. (33) is shown as “D.R. 1.” The solid lines
indicate the real part and the dashed lines the negative imaginary part of (A/€+1), plotted
as a function of |7|/&% over several decades. The (representative) values & = 0.1, Go = 0.3,
and Arg(7) = —0.3 were used. The rapid increase in Im(7) is also reflected in the numerical
solution of Egs. (11a) and (11b), shown as “code,” although the increase is a bit more grad-
ual and begins for smaller |7|/€°%. As |7/(8wG2%)| ~ &, our approximations begin to break
down and Re(A) predicted by D.R. 1 diverges from its true value.

The TAE root may be traced further by going back to Eq. (23) and using the small

argument expansion ¢f ® to determine I, (since |z4| is reduced by larger 7). Then

1/2)3/2 .
=22 (34)

-
and our quadratic form Eq. (20) becomes

KPS S N SV S S (35)
2 ° 7o )

)

S =

m

The extremum of this equation which satisfies the conditions on the integrals is, to a good
approximation,

i7) ¥/°
=(3) (36)

and gives the dispersion relation

A=-:-(3) " 7

[In this equation and all subsequent discussion, only the primary root (the one with smallest
absolute value of argument) is implied. The other roots do not satisfy the constraints on
the integrals. Note in Eq. (37) that the argument of 7 still makes —€ < Re(A) < 0, which
is also true for Eq. (33).] This result is independent of Go, suggesting that the electron

dynamics in some sense dominate over the MHD effects as ¥ becomes sufficiently large.

12




Equation (37) is plotted in Fig. la and labelled “D.R. 2.” Note the surprising continuity in
Im(A) from D.R. 1 to D.R. 2 as |?|/&% increases. Taken together, these dispersion relations
follow Im(A) determined by numerical solution of Eqs. (11a) and (11b) within a factor of
two or three. The real and imaginary parts of A from D.R. 2 agree well with the code for
|7|/&8% > 10. The correspondence is good considering the simplifications and approximations
used. Equation (37) also has the surprising feature ihat the damping does not vanish as
Im(7) — 0. This is because in this regime TAE is dominated by the interaction of two
KAWs. Neglecting the toroidal coupling term on the right-hand side, Eq. (1) describes a
KAW, which is propagating for A; > 0 and evanescent for A; < 0.'® Toroidal effects couple
together the poloidal harmonics 1 and 2. As shown in Fig. 2a, when the eigenvalue A < 0,
(true for the TAE) a small evanescent region separates the propagating regions. If this region
is small enough, or if |7| is sufficiently large, the TAE excites a KAW on harmonic 1 which -
propagates away to the left and another KAW on harmonic 2 which propagates away to the
right. As long as Im(7) is finite, the KAWs will damp and not be reflected back in this plane
slab model. Consequently there is significant damping for vanishingly small Im(7).

The KTAE dispersion relation is found by replacing € by —¢ in Eqs. (30) and (31). The

extremum that satisfies the constraints on the integrals is approximately

A= [F(A + &)V? (38)
and gives the dispersion relation
~ 1/2
- T
A =4 | : 39
e )

There are several differences between this mode and the TAE. First, the mode lies on the
top side of the gap boundary, Re(ﬁ) > 0. Second, the mode may be outside the gap,
Re(A2) > &2 Third, the damping scales as 7'/2. Equation (39) is plotted along with the

code results in Fig. 1b. The 7/2 behavior for both are clearly seen, although there is a

moderate increase in the slope of Im(A) vs. |7|/&% for |7|/€% ~ 0.1 which is not represented

13




in the D.R. This increased damping is due to the excitation of KAWs propagating away from
the gap region, similar to that described for the TAE. In this cése, however, the transition
to this regime is not as strong. Since Re(A) > 0, the KTAE is formed by the interaction
. of two KAWs as shown in Fig. 2b. Here, the propagating regions for harmonics 1 and 2
overlap. Apparently this situation is less favorable to the excitation of propagating KAWs
than the TAE case. Perhaps the evanescent region in the TAE case forces out the KAW for
|7|/€% > 1 and causes the large damping. The damping of the KTAE is largér than the TAE

for |7|/€® < 1 due to the 7'/? scaling, but smaller than the TAE for |7|/&° R 1.

V. Numerical Results and Discussion

The dispersion relations given by Eqs. (33), (37), and (39) are valid if the symmetric wave
function ¥,(y) = ¥1(y) + ¥1(—y) is relatively close to the assumed form e~M*/2 This was
tested by direct numerical integration of the basic equations with a shooting code (originally
developed by J. Sedlak). Our code solves the coupled system given by Eqgs. (11a) and (11b)
with the WKB-type boundary conditions

b _ (&= B - b))
b Bl

at y > 1 and y < —1 respectively. The code input @l,ég,yf,yg,?,€, which are calculated

(40)

from their definitions. The solutions are rapidly convergent and robust.

The numerical solutions discussed in Sec. IV and shown in Figs. 1a and 1b were calculated
with the values & = 0.1, Gy = 1.4, G, = —0.35, y? = 0.5, y2 = 2.0, and Arg(7) = —0.3.
These vé,lues reflect representative plasma parameters as shown in Table 1 and discussed
below.

As a benchmark, we chose to run the code for TFTR device parameters under two quite
different operating conditions. The first case corresponds to the TFTR TAE experiment

discussed in Ref. 4. The second case corresponds to a D-T burning experiment. The plasma
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parameters for each case are shown in Table 1. In both cases the plasma density and ¢ profiles
were chosen to scale parabolically with r/r,, while the temperaﬁure Te~[1=(r/rp)%% An
effective mass of 2.5 was assumed. For each case, we consider a low mode number: n = (1, 1),

m = (1,2) with ¢ = 1.5, and a higher mode number: n = (2,2), m = (2,3) with ¢ = 1.25.

The latter case fits the experimentally measured ¢ ~ 1.3 of Ref. 4 with n = 2. In Table 1,

the corresponding normalized paraineters €, Go, and 7/€ are shown with the numerically

computed eigenvalues for the TAE and KTAE and the damping coefficients «y/w [calculated
from Eq. (13)]. For com.parison,. corresponding values of (7/w)mea due to the magnetic
curvature drift of the electrons [calculated from Eq. (10) of Ref. 2] are also indicated.

We see from Table 1 that the numerically computed damping coefficients for the TAE
are in all cases significantly (a‘factor of 3-16) higher than the Landau damping (7/w)m§.d
predicted by past perturbative approaches. Fortuitously, our predicted damping coefficient
for the TAE experiment is close to the experimentally measured value (of Ref. 4) of ~ 3%.
The damping is high in these cases because the normalized parameter |7|/&% is near or greater
than unity. Consequently, these cases are near or into the regime where the dispersion
relation given by Eq. (37) is valid. In this regime, the damping is dominated by excitation
of KAWs propagating away from the gap region. This indicates the importance of our non-
perturbative approach. The KTAE damping coefficients are in all cases a bit lower than the
TAE.

Figure 3a shows the m = 1 TAE wave function ¥,(y) in normalized Fourier space for
the D-T burning experiment (third column in Table 1). The oscillatory character is due to
the influence of 7 and the connected excitation of the KAW. For n = 2,m = 2 (column
4), ¥1(y) has a slightly more oscillatory character due to the larger value of |7|/£%. Figure
3b shows the perpendicular electric field Ey(r/rp) in real space corresponding to the inverse
transform [Eqs. (8a) and (10a)] of ¥,(y). Oscillations to the left are a propagating KAW.,

This may be compared to the diagram of Fig. 2a. Figure 3c shows the perpendicular electric
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field Ey(r/rp) corresponding to the inverse transform [Eqs. (8a) and (10b)] of ¥,(y)(m = 2).
~ Oscillations to the right are a propagating KAW. Note that £, and FE; are in phase. For the

KTAE, (not shown) it is interesting that £y and E; in real space are very similar to E; and
 E, for the TAE, although the oscillations are less prominent — only a hint of the KAWs is
visible. The major difference is that F, and E; arc out of phase.

Predictions of the A/ from the dispersion relations given by Eqgs. (33), (37), and (39)
generally were found to lie within a factor of two of the values from the shooting code for the
cases cited in Table 1. We comment that for lower mode numbers (m = 1,2), decreasing the
value of G by ~ 35% from its definition G = %(@1 +G,) is found to improve the prediction
of Eq. (33). This is not unreasonable considering the approximations used in its derivation.

For higher ‘mode numbers, the wave functions become more localized in‘real space. Damp-
ing coefficients generally become higher. For the TAE, this is due to an increase in the
normalized parameter |?|/53‘with m to values greater than unity. Then the dispersion re-
lation given by Eq. (37) holds. The damping coefficient in this case can be estimated by

writing 7/&% in terms of the unnormalized pararmeters to leading order in ¢ (unnormalized)

and combining Egs. (37) and (13). The result is

v mims s py\ 2 '(i)x/a
T _g( M2 S ps Al , 41
w 3<m,+m2 21/2 r) Im [z r (41)

Note that F' & 1 and therefore Im[i(i/F)'/3] & 1, even for vanishingly small Im(F). For
my =ny =ny = mand my = m+1, ¢ = 1+ and, with a parabolic ¢ profile ¢ = 1+(r/r;)?,

the shear s = (r/r,)(2/m)'/?/(1 + 5). Then, in the high m limit, Eq. (41) becomes

2/3 ©\1/3
l I Ps 1/3 . (_%_)
- 3 (21‘,,) m/® Im [z 7 } : ‘(42)

This equation gives surprisingly good agreement with the code results when |7|/€% 2 1 and

even for the cases given in Table 1.

Finally we comment that for other plasma parameters, e.g. for DIII-D, the kinetic effects
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on the TAE are not as prominent for the lower mode numbers, resulting in a moderately

lower damping coefficient. In this case |7|/€% < 1 and Eq. (42) overestimates the damping.

VI. Conclusions

in conclusion, a non-perturbative treatment of electron parallel dynamics predicts a non-
negligible combined collisional and collisionless (Landau) damping of the TAE. The damping
rate for the TAF predicted in this study is of the same order as the resonant or continuum
damping,>~7 which is caused by a mechanism not treated in this study. Our theory points out
the possible importance of a non-perturbative treatment of damping for the TAE. Although
the form of damping examined in this study may not in itself be enough to overcome the
a-particle drive, it should be taken into av:count in more careful future studies. Our theory
also predicts the existence of a new TAE (the KTAE) which depends on finite conductivity
and is formed by the coupling of two KAWs. Since the damping of these modes can be

smaller than the TAE, a study of the effect of a-particles on these modes is also warranted.
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A. Co.nductivity Model

Our parallel conductivity model is derived by following the drift-tearing mode analysis of

Chen, Rutherford and Tang.!® This is reasonable since the essential features of the TAE

mode structure are described by electrostatic potential o and the parallel component of the
magnetic vector potential A, as in the tearing mode. That k = 0 for the tearing mode
does not affect the derivation of the conduct‘iv‘ity. In this analysis, the perturbed electron
distribution function b is determined by the drift-kinetic equation. Trapped (t) and passing
(p) components are treated as separate species h = h, + h, but are related to each other
through the collision operator. The collision operator acting on the perturbed trapped

particle distribution is modelled as
Chy = —v(v)hy . (A1)

It simply tells the rate of scatter of trapped electrons out of the trapped region. In this
equation, the carat designates the non-Maxwellian part, while v(v) = (v¢/€)(v./v)3, where
v, is the collision frequency of thermal electrons on the ions and v, is the e}ectron thermal
speed. [The quantity (v./¢) représents the effective collision rate of the trapped electrons
out of the trapped region.] The collision operator acting on the perturbed passing electron

distribution is modelled as

Chy = Jo /dav!/(v)ﬁt ~Vp { P Jo / da”hp] ‘ (A2)
t P

Nop Nop
The first term describes the rate of scatter of the trapped electrons into the passing region.
Here, fo and ng represent the unperturbed distribution function and density. The second
term is added to the analysis of Chen, Rutherford and Tang. This term is a particle-
conserving Krook collision operator where v, is an effective collision frequency for the passing

electrons on the ions. For simplicity, v, is taken to be a constant in our analysis. We take
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Vp = ue(vﬂ/vA)é to account for the importance of the resonance w = kv4 in the drift-kinetic
equation for the passing particles. We comment that a velocity dependence up(v‘) results in
an integral equation for h, that is not readily solved. Trapping and collisional effects of the
ions are neglected.

Relationships between the perturbed electron distributions k, and h; and the fields ¢ and
A are obtained by substituting Eqs. (A1) aud (A2) into the drift-kinetic equation and bounce-
averaging. (For simplicity, no distinction is made between ¢ and A and their bounce-average
values. We also take g)*/w -+ 0.) From the total electron and ion (iistribution functions, we
obtain density and current perturbations which are substituted into the quasineutrality con-

dition and Amperé’s law. The parallel conductivity is extracted from the resulting coupled

equations for the fields ¢ and A.
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L ]

=y

rp(m)
R(m)
T, (keV)
n{cm~3)
B(T)
Gentr
Gadge
nlm
€
Go
Arg(7)
J?|/é‘3
(A/€)rar
(A/&)kTAB
(v/w)taAE
(7/w)KkTAE
(7/‘-")mcd

[ YA

Table I: Eigenvalues, damping rates, and other parameters

TAE exp

0.75
24
17
2.7 x 1013
1.1
1.04
2.8
(1L,1) ] (1,2)
6.55 x 10~2
0.504
—0,585
0.685
—0.67 — 0.34¢
2.0 - 0.292
—-2.6 x 102
—2.2 x 10™*
-3.7 x 10-3
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(2,2) | (2,3)
8.06 x 102
0.164
—0.479
5.61

—-0.93 — 1.44:
2.9 —0.78:.
7.6 x 10~2
—4.1 x 1072
—4.8 x 1078

I CR ]

D-T exp

0!8
2.5
10

1014

5

1.04

3.1

(1,1)[(1,2)
6.20 x 10~

0.505
-0.241
0.302

—-0.65 -- 0.18:
1.7 — 0.084¢
—-1.3 x 102
—6.0 x 1078
—4,1 x 1073

[ S AR TR

(2,2) [ (2,3)

7.63 x 10~?
0.163
—-0.187

2.14

—-0.83 — 0.88¢ -

23027

—4.4 x 10™?
-1.3 x 10~?
-5.1 x 10~3
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" Figure Captions

1. Comparison of analytic dispersion relations with numerical shooting code results. Solid
lines indicate real part and dashed lines the negative imaginary part. a) (A/€ + 1)
vs. |7|/€%: D.R. | corresponds to Eq. (33) and D.R. 2 corresponds to Eq. (37). b)
(AJg = 1) vs, |?|/8% D.R. corresponds to Eq. (39).

2. Superimposed plots of A; and A; in real space near the gap indicating regions of

propagating and evanescent KAWs. a) TAE case. b) KTAE case.

3. Wave functions from the numerical shooting code corresponding to the D-T burn-
ing case n = (1,1) and m = (1,2) (third co]umri) in Table 1. a) Wave function
¥1(y)(m = 1) in normalized Fourier space. b) Perpendicular electric field correspond-
ing to the inverse transform [Eqs. (8a) and (10a)] of 4, (y). Oscillations to the left are
due to a propagating KAW. ¢) Perpendicular electric field corresponding to the inverse
transform [Eqs. (8a) and (10b)] of ¥y(y)(m = 2). Oscillations to the right are due to

a propagating KAW.
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' b) KTAE
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Fig. 3b
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