
illliIIIIl:IIII1
w

mu_,lilti-_IIIIl_lllU_



q

o

I



FINAL PROGRESS REPORT

Project title: Yields of Biologically Significant Damage Produced in Mammalian DNA by
IrradiationAssociatedwith Radon Decay

Organization: Department of Radiology
Universityof Californiaat San Diego
9500 Gilman Drive

Jo,,,,CA92093-0610 RE C E iV 15"D
PrincipalInvestigator:, John F. Ward MAR) I // 19_tl
Phone: 619-534-4916

FAX: 619-534-0265 O S T i

Award ID: DE-FG03-88ER60660

1.1. ResearchObjective:
The objectiveof this projectwas to characterizethe differencebetweendamage to DNA causedbyalpha
particles and by lowLET radiation.

1.2. Relevance to Risk Assessment:
Estimationof the riskposed by exposureto highLET radiation(suchas that from radon)relies at present
on epidemiologicaldata, and is therefore largelyempirical. This empiricism is evident fromthe concepts
of 'qualityfactor'or 'RBE' that find usefordescribingthe biologicaleffectsof highLET radiation.We argue
that some effortshouldbe made to addressthe mechanismsof DNA damage by highand lowLET forms
of radiation,and howthese mechanismsmight relateto the biologicalendpoints. This reportsummarizes
the resultsof ourinvestigationsand ourcurrentunderstandingof these mechanisms.

2. Method:
Usingthe genome of the virus SV40, we developeda system with whichto modelthe effectof ionizing
radiationon bothDNA and chromatin. The DNA fromthis viruscan be isolatedin the form of a double
strandedsupercoiledmolecule(analogotisto a plasn',id),and alsoassociatedwithhistonesarrangedin20 -
25 approximatelyequally spaced nucleosomes. This so called minichromosomeis our model for the

chromatinof mammaliancells. These DNA substrateswere preparedand purifiedby modificationsof a
literatureprocedure.Alphaparticleirradiationswereperformedinour laboratoryusinga 840 pCi:('Cm disc
source. Helium-4 ion irradiations were performed either at the Super HILAC, Lawrence Berkeley
Laboratory,or at the RARAF van der Graaff accelerator,Nevis Laboratory,ColumbiaUniversity.

After irradiation,the DNA substrateadoptsoneof three forms:1, supercoiledor form I (undamaged);2,
opencircleorformII (containingat leastonesinglestrandbreak[SSB]);and3, linearorformIII (containing
onedoublestrandbreak [DSB]). Thesethree formscan be separatedon an analyticalscaleusingagarose
gel electrophoresis.The amountsof the three formscan be estimatedfromthe fluorescenceof ethidium
boundto the DNA. Fluorescencewas quantifiedusingimagingequipmentconstructedin this laboratory
from commerciallyavailablecomponents.The fluorescenceimagewas aquiredwitha monochromeCCD



video camera, digitized by a frame grabbber board, and processedwith a PC/AT compatiblecomputer. The
software neededto performthese operationswas developedin this laboratory.

3. Results

3.1. General
Using the assayproceduredescribedabove,we havequantifiedfor alpha particle (or 4He ion) irradiation
bothSSB andDSB yieldsinbothnakedSV40 DNA andthe SV40 minichromosome.In orderto investigate
the radiation chemical processes involved in DNA damage, it was essential that these yields were
determined at various scavenger concentrationsand also with various particleenergies (i.e. at various
LETs). The resultswere thencomparedwiththosefor low LET radiation(gammarays), forwhichwe have
large quantitiesof data.

3.2. Alphaparticleand4He ion irradiations
Originallywe had intendedto carryout the 4He ionirradiationsat LawrenceBerkeleyLaboratory. During
the courseof the project,however,the acceleratorbecame unavailable. Tl_ereforewe arrangedto make
use of the RadiologicalResearchAcceleratorFacilityat ColumbiaUniversity,courtesyof Dr. E. J. Hall.
While usingthe RARAF accelerator,we foundit necessaryto redesignthe irradiationchambers. In our
hands,the gold plated chambersthat we used at Berkeleyfrequentlygave riseto irreproducibleresults.
We speculatethat this problemis related to the need to injectthe sample into the chamber througha
narrowgauge needle.

We subsequentlymade use of 3.5 cm diameterstainlesssteel ringswith a mylarmembranegluedto them
withepoxyresin. The DNA solutionis ,._preadoverthe mylarby placinga 2.5 cmx 2.5 cmglass coverslip
directlyon top of the liquidsample. The thicknessof the sampleisthus determinedby itsvolumeandthe
surface area of the coverslip (4.8 pl havinga thicknessof 10 pm). These ringchambersare superiorto
the goldplated chambers,sincethey are much less expensive,trivialto assemble,andthe solutionscan
bequicklyloadedintoand recoveredfromthem. RelativelyhighDNA concentrationswere requiredsothat
the smallvolumescontainedsufficientDNA for our assay procedure,but thisposed no seriousdifficulty.

Inadditionto the accelerator4Heionbeams,we also havetwoinhouseisotopicalphaparticlediscsources.
Bothof these contain2=_Cmprotectedby a thin goldlayer. These sourceshaveseveraldisadvantagesfor
quantitativework, since they can only accomodate one sample at a time; the alpha particles are
uncollimatedand as a consequencethe dose rate and attenuationof dose with depthare uncertain;and
the doseratesare relativelylow,irradiationtimes are thereforelengthy,andas a consequencethe aqueous
samplestend to dry out.

3.3. SSB formation
The hydroxylradicalyield decreasesbothwithincreasingparticleenergy (i.e. increasingLET, due to an
increasedfrequencyof reactionswithinthe track) and alsowithdecreasingscavengerconcentration(i.e.
increasing lifetime). These yields are known for low LET radiation,and more recently have also been
measuredfor 4He ions at various energies and lifetimes. In all cases we foundthat the SSB yieldwas
proportionalto the hydroxyl radical yield. This suggests that the mechanismof SSB formation is
straightforward,with the SSB yieldsimplybeing a consequenceof the competitionfor the hydroxylradical
betweenthe DNA substrateand anyscavengersthat are presentinsolution.The natureof thiscompetition
is complicatedto some extent by the phenomenonof non homogeneouskinetics(or time dependentrate
constants),since one of the species involved(the DNA substrate)is a macromolecule.A fixed fractionof
thosehydroxylradicalsthat reactwith the DNA then go onto forma SSB.



3.4. DSB format.ion
For 4Heions, we found thatthe DSB yield decreases with increasingscavenging capacity (as for the SSB
yield). However, the DSB yield was observed to increase slightly with increasing LET (the DSB yield
increases by ca. 2 fold "_';the LET increases from that of _ZTCsgamma rays to that of a 5 MeV 4He ion),
which is the opposite of the case for SSBs. This second observation impliesthat with increasing LET there
is an increase in the DSB yield per hydroxyl radical. Therefore the mechanism of DSB formation is more
complex than that described above for SSB formation, presumably with more than one hydroxyl radical
attack being required to lead to DSB formation. Presumably the higher density of hydroxyl radicals in high
LET particle tracks is responsible for the increasing efficiency of DSB formation with increasing LET.

3.5. Protectionby histoneproteins
BothSSB and DSB yieldsinthe minichromosomewere lowerthan in nakedDNA, althoughthe difference
was smallestat the highestscavenger concentrations. We interpretthese observationsin terms of a
physical protectionof the DNA by the histonesagainst hydroxyl radical attack. At high scavenger
concentrations,a significantfractionof DNA damage is due to the direct effect, and it is not unexpected
that histonesare unableto protectthe DNA againstdamagearisingas a consequenceof directionization.
In this respect,alpha particle and =He ions behave very similarly to gamma rays.

3.6. Effectof scavengingcapacity
For 4Heion irradiation,the ratioof the SSB:DSB yield remainedconstantas the scavengingcapacitywas
varied. This observationis not consistentwith the decrease in thisratiowithincreasingLET, since both
increasingLET and decreasingradicallifetime (increasingscavengerconcentration)wouldbe expectedto
have superficiallythe same effect, that beingto increase the radicaldensity withinthe charged particle
track. Further and more sophisticatedqualitativeinvestigationsmay resolvethis issue, since DSBs (as
detected by our assay procedure)are expectedto representa variety of DNA damage structures.

3.7. BiologicalSignificance
The slightincrease in DSB yield with increasingLET (referred to above) is significantlysmallerthan the
qualityfactorsgenerallyappliedto highLET radiations. This suggeststhat it is notsimplythe increasein
DSB yield that is responsiblefor the greater biologicaleffectivenessof highLET radiation,but that the
DSBs producedby it are morebiologicallyactive. This supportsthe argumentforqualitativeinvestigations
of the structureof DSBs producedby alpha particles and "He ions.
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