I
||||\
|

Szl
T
o]

I

.,
-
=
-
™
|
5ol

e—
——
—
—

vl

i
|
el =

| =
? 3

I
1ll
|

l\
I
I

I

9l
81

0T
T

ST







7/81/

e /,D//)/P/D, -7/¢//

Chiral symmetry and the threshold yp — n%p reaction
T.-S H. Lee
Physics Division, Argonne National Laboratory, Argonne, Il. 60439
B. C. Pearce

TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3

The threshold y¥p — n%p reaction is investigated by using a chiral invariant 7N model in a
unitary, gauge invariant, dynamical calculation based on a chiral Lagrangian. It is shown
that the chiral invariant # N final state interaction significantly suppresses the Ey+ amplitude
from the value —2.4 x 10~3m ! predicted by the low energy theorem to —0.66 x 10~3m 1.
We discuss questions concerning the implications of the present results in interpreting the
recent Mainz datal and their multipole analysis. The experimental accuracy needed for

investigating chiral symmetry breaking is illustrated.
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In a recent paper, Beck et al. ! reported a measurement of the photo-production of neutral
pions (w°) on the nucleon near threshold. This experiment, performed at Mainz, was more
precise than the previous Saclay experiment? in measuring angular distributions. By keeping
only the real parts of the s- and p-wave multipoles to fit the cross sections, it was concluded
that the Eo+ amplitude at threshold is significantly suppressed from the value predicted by
the well-established low energy theorem. This result has stimulated great interest3*%9 in
investigating the dyne iical origin of chiral symmetry breaking. In Ref. 6, Sachafer and
Weise have explored its possible connection to some basic parameters of the nucleon.

To draw definite conclusions from these interesting developments, it is important to
emphasize that some of the observed deviation from the low energy theorem prediction is
due to the =N final state interaction (FSI), as has been studied by several authors.”#%1% To
investigate chiral symmetry breaking, it is essential to calculate properly the chiral invariant
part of the FSI. In this paper, we address this issue within the Hamiltonian formulation
developed by Nozawa, Blankleider and Lee!* and, independently, by Yang.? In these two
models, chiral symmetry is taken into account properly in defining the basic mechanisms
of the electromagnetic productions of pions. Specifically, at threshold the current matrix
element (in the absence of FSI) is dominated by the pseudo-vector coupling. The main
drawback of these two works is that the FSI was calculated using separable 7V potentials
which are not constrained by chiral symmetry. Their predicted FSI values are at most
suggestive in nature, as stressed at the end of Ref. 8.

Perhaps the most tractable approach to implement chiral symmetry in evaluating TN
rescattering is to start with an effective chiral invariant Lagrangian. The attempts made in
the 1970, for example by Gervais and Lee'? and Lin and Wiley,'® were to calculate the
one-loop corrections and use suitable Pade approximations to generate higher order effects
and unitarize the resulting amplitude. These earlier works qualitatively reproduce the N
phase shifts. But it appears to be very difficult to go beyond the one-loop level and achieve

an accurate description of the 7N data. In this work, we take an alternative to these earlier




approaches and calculate the v N rescattering by using a chiral invariant meson-exchange

7N model developed by Pearce and Jennings.!*

The essence of the 7N model of Ref. 14 is to employ a three-dimensional reduction of
Bethe-Salpeter equation to deduce a 7N potential starting with an effective chiral invariant
Lagrangian. The potential is calculated from the Feynman amplitudes of the nucleon-pole,
crossed nucleon, A-pole, crossed A and p and o exchange terms. Appropriate form factors are
introduced to regularize matrix elements of the 7 N potential at high momenta. The resulting
range of the crucial # NN form factor is similar to that of the cloudy bag model.?® In addition
to giving an excellent description of all s- and p-wave =N phase shifts up to about 400 MeV
pion laboratory energy, the model correctly reproduces the soft pion relation between the
s-wave scattering lengths. The s-wave phase shifts of this model are illustrated in the upper
part of Fig. 1. In the lower part of Fig. 1, we show that, in the limit m, — 0, the calculated
isospin-odd wN scattering length vanishes linearly while the isospin-even scattering length
vanishes quadratically, as required by chiral symmetry. This is an important ingredient for
the present study. All calculations based on purely phenomenological 7N potentials do not
account for chiral symmetry.

To proceed, we recall the Hamiltonian formulation developed in Ref. 11 to write the

considered 7° photo-production amplitude in the following form

Moy p(Eoy @) = Broperp(Ko, @) + (FSI)pop + (FSI)xtn, (1)

where §and ko are respectively the initial photon and final pion momenta. The Born term, B,
is calculated from the lowest order Feynman amplitudes of an effective Lagrangian describing
interactions among 7, N, A, p,w and 5. They are given explicitly in Ref. 11. The final state
interaction terms (F'SI) of Eq. (1) are calculated from

Twop*—wN(k-;vga E)BwNo—'vp(Ea‘D (2)
E -~ EN(k) - E',(k) + te

(FSI)en = / dk

where the *N half-off-shell t-matrix is generated from the following Lippmann-Schwinger



equation

=, = - - #*UxNx iﬁ" E" E T-;r )X I;” E’E
T (R, R, B) = vanon (R, 5, B) + [ dF N'EN—(EL(IS"))-EV (Z'S)-;ie L

Here vyn,«n is @ ®N potential. It is determined by vertices 7V « N, A and a background
n N potential. More detailed formulations can be found in Ref. 11. The gauge invariance
and unitarity of the photo-production amplitude Eq. (1) are also discussed in detail there.
For the present purposes, Eqgs. (1)-(3) are sufficient.

The Born amplitude B of Eq. (1) contains the standard pseudo-vector pion coupling terms
and hence, in the absence of FSI, the calculations at threshold are in excellent agreement
with the low energy theorem predictions (the effect due to vector mesons and A are very
small at threshold, as explicitly shown in Tables II and III of Ref. 8). To fully account
for the dynamical consequences of chiral symmetry, we need to generate the off-shell 7NV
t-matrix from a chiral invariant 7N potential in a way that preserves chiral symmetry. This
is achieved by casting the N scattering equation of Ref. 14 into the form of Eq. (3). In
doing this, the main step is to approximate the lower-lower component of the “smooth” 7V
propagator of Ref.14. This approximation is exact at the pole in the propagator and does not
alter the results of Ref. 14 in any significant way. With some straightforward derivations,'®
Eq. (3) can then be derived from the formulation of Ref. 14. The resulting w N potential can

be written as
vernrN(}?! i"": E)= rl/z(k,) E)i"_(’?, E, s')V(I:':’, 1;1 E)u(l;, E, 3)r1/2(k7 E). (4)

where V is the TN potential used in Ref. 14. Here we have introduced

4my E*[En(k) + Ex(k))?
(27)E[E + En(k) + Ex(F)|[E*(En (k) + Ex(k))? — (my — m3)*]’

and u(l-é, E,s) is an “off-shell spinor” defined by

u(k, B, s) = fgﬂfﬁi'_’ifl x , (6)

2my g kx‘
En(ko) + mn

I(k,E) =

(3)




where kg is the on-shell momentum corresponding to energy E and x, is the two-component
spinor corresponding to spin projection s. Numerically, the t-matrix obtained by solving
Eq. (3) with the potential given by Eq. (4) reproduce within 2% the results of Ref. 14. Thus
we have transformed the off-shell scattering amplitude constructed in Ref. 14 into a form
suitable for the calculations based on Egs. (1)—(3).

With the # N off-shell t-matrix specified above, the model has three free parameters: Gy
and Gg of the magnetic M1 and electric E2 transitions of the yN « A vertex, and a cutoff
parameter A of a monopole form factor Fi,.(k) = A?/(A? 4+ k?) applied to the non-A part of
the Born term. Note that the cut-off factor Fi,:(k) is introduced to assure that the current
matrix elements are square-integrable and hence the integration in the FSI terms of Eq. (2)
is finite. Following Ref. 11, we adjust these three parameters to get the best description of
allyN — w N data (including the charged pion data) up to about 400 MeV incident photon
energy. The strengths Gpr and Gg are strongly constrained by the fits to the data in the
A region. The over-all energy dependence of the cross sections from the threshold to the A
region is sensitive to the value of A. Therefore, only in a small region of the parameter-space
of Gy, Gg and A are the fits acceptable. Our fits to the data up to 400 MeV are as good as
that of Ref. 8. The resulting parameters are Gy = 3.065, Gg = 0.07 and A = 550 MeV/c.
Note that these parameters are significantly different from that of Ref. 8. It reflects the
importance of using a theoretically well-constrained NV off-shell t-matrix in FSI calculation.
We will discuss this in detail in a longer paper?® to follow, along with our extensive results.
For the present discussion, we show in Fig. 2 our results (solid curves) for the considered
vp — 7% reaction.

The results displayed in Fig. 2 show that the model can describe very well the differential
cross section data at all energies above 159 MeV. At lower energies, the predicted cross
sections (solid curves in the right hand side of Fig. 2) overestimate the data of Beck et al. ;!
except perhaps in the region of large scattering angle and at the lowest considered energy

(146.8 MeV). In Table 1 we list the calculated multipole amplitudes for I < 2. It is seen



that the My+ amplitude is the largest one at all considered energies. The contribution
from this amplitude alone will yield a symmetric bell-shape angular distribution peaked at
§ = 90°. The other multipoles are much weaker but they can strongly influence the angular
distribution through the interference with the M;+ amplitude. In particular, the rising
shapes of the calculated angular distributions at 146.8 and 149.1 MeV are mainly due to the
interference with the Eg+ amplitude. This interference effect is much less at higher energies
and hence the calculated angular distributions have the shapes predominantly determined
by the p-waves. The higher multipole amplitudes listed in Table 1 also play non-negligible
roles in determining the cross sections.

It is interesting to explore in which way the discrepancies seen in Fig. 2 (solid curves) can
be removed by modifying the calculated multipole amplitudes. We have found that this can
not be achieved by only modifying the Eg+ amplitude which is the focus of the studies®*>®
of chiral symmetry breaking. To bring the calculated magnitudes close to the experimental
values at the peaks 8 ~ 90°, it is necessary to weaken the p-wave multipoles by about 20%.
The resulting differential cross sections are the dashed curves shown in Fig. 2. More detailed
analysis of this p-wave suppression at low energies is clearly needed and will be presented in
our future publication.®

The predicted Eg+ amplitude is compared with the low energy theorem prediction in
Fig. 3. Its main feature is the cusp structure in the region near 151 MeV. This is due to the
opening of the mtn channel, as discussed in detail in Ref. 8. It is important to emphasize
that the FSI suppression of the real part of the Eg+ amplitude from the low energy theorem
prediction shown in Fig. 3 is calculated within the constraints of chiral symmetry. Hence, by
comparing the solid curve with that from a multipole analysis of the data, we can determine
the chiral symmetry breaking. However, it is inappropriate to use the Eo+ extracted in Ref. 1
to make such a comparison and draw any conclusion about this important issue. The main
uncertainty is because the fit to the data is sensitive to the interference between the Fo+ and

the other multipoles. The theoretical interpretation of their Eg+ values is therefore closely




related to their extracted p-wave multipoles and the assumptions they made. By using
Table 1, we find that the values of M; =3 x Ey+ + My+ — M,- = 2.021, 2.963, 3.583, 4.175
and 4.730 x10~3m ! for E, = 146.8, 149.1, 151.4, 153.7 and 156.1 MeV respectively. These
values are significantly different from those extracted from the analysis of Beck et al. (see
Fig. 3 of Ref. 1). In addition, the imaginary part of Ey+ as well as the higher multipoles
(M+ and E;+ with [ > 2) are neglected in their analysis. It would be interesting to perform a
multipole analysis constrained by the . = 2 multipoles listed in Table 1( [ > 3 multiploes are
found to be of much less significant in our calculation). The difference between the resulting
Eo+ and the present chiral invariant calculation results (shown in Fig. 3 and Table 1) would
then be the effect due to chiral symmetry breaking. This, however, can not be done reliably
unless the quality of data is improved and some polarization measurements are performed.

Let us now consider what effect chiral symmetry breaking may have on the differential
cross sections. For simplicity, we will follow the studies of Refs. 3,4,5,6 to assume that
chiral symmetry breaking will only modify the Eq+ amplitude (although there is no reason
to believe why higher multipoles can not be modified). As discussed above, the main effect
of Eq+ is through its interference with the dominant p-wave multipoles (see Table 1). For a
more realistic estimate, we therefore include the 20% suppression of p-wave multipoles in this
analysis. This assures that the fits (dashed curves in Fig. 2) to the magnitudes of the data
are reasonable and hence the non-Ey+ background amplitude is realistic. The effect on the
calculated cross sections of adding +0.5 x 10~3m* to the E¢+ amplitude, is illustrated in the
dashed and dash-dotted curves of Fig. 4. We see that the change in Eo+ significantly alters
the angular distributions at the forward and backward angles. The magnitudes in the region
near 90° are virtually unchanged. It is clear that more accurate experiments are needed for
a quantitative determination of chiral symmetry breaking effects on the Eo+ amplitude.

In conclusion, we have carried out a chiral invariant calculation of 7° photo-production
on the nucleon. It was achieved by inserting the meson-exchange wN model of Pearce

and Jennings'* into the gauge invariant and unitary Hamiltonian formulation of Nozawa,




Blankleider and Lee.!! The calculated final state interaction effects strongly suppress the
Ey+ from the value predicted by the low energy theorem. Our results suggest that the effects
of the imaginary part of Fy+ and of the | > 2 multipoles should be included in multipole
analyses of the data. As illustrated in Fig. 4, the experimental data is not yet accurate
enough to enable a measurement of the degree of chiral symmetry breaking.

We would like to thank W. Weise for useful discussions. This work was supported in
part by the U.S. Department of Energy, Nuclear Physics Division, under contract W-31-109-
ENG-38, and by the Natural Sciences and Engineering Research Council of Canada.



References

1R. Beck et al. , Phys. Rev. Lett. 85, 1841 (1990).

?E. Mazzucato et al. , Phys. Rev. Lett. 57, 3144 (1986).

3D. Drechsel and L. Tiator, Phys. Lett. B148, 413 (1984).

‘L.M. Nath and S.K. Singh, Phys. Rev. C 39, 1207 (1989).

5Z.-J. Cao and L.S. Kisslinger, Phys. Rev. Lett. 64, 1007 (1990).

8T. Schdfer and W. Weise, University of Regensburg preprint TPR-90-49.
"™™. Araki, Phys. Lett. B219, 135 (1989).

8S. Nozawa, T.-S.H. Lee and B. Blankleider, Phys. Rev. C 41, 213 (1990).
S.N. Yang, Phys. Rev. C 40, 1210 (1989).

10A.N. Kamal, Phys. Rev. Lett. 63, 2364 (1989).

11§, Nozawa, B. Blankleider, and T.-S. H. Lee, Nucl. Phys. A513 459, (1990).
12B W. Lee, Nucl. Phys. B9, 649 (1969); J.L. Gervais and B.W. Lee, ibid. B12, 627 (1969).
13W.-L. Lin and R.S. Wiley, Phys. Rev. D 14, 196 (1976).

14B.C. Pearce and B.K. Jennings, submitted to Nucl. Phys. A.

15A.W. Thomas, Adv. in Nucl. Phys. 13, 1 (1984).

16T..S. H. Lee and B. Pearce, in preparation.

17D, Menze, W. Pfeil and R. Wilcke, ZAED Compilation of pion photoproduction Data,
University of Bonn 1977.




Tables

TABLE I. The calculated complex s- p- and d-wave multipoles (in units of 10~3m?).

E, E,. Eys M. M,

146.8 (-0.6561, 0.0058) (0.0859, 0.0000) (1.3840, 0.0000) (-0.3791, 0.0000)
149.1 (-0.4958, 0.0128) (0.1275, 0.0002) (2.0740, 0.0028) (-0.5060, 0.0000)
151.4 (-0.0598, 0.0232) (0.1349, 0.0003) (2.5010, 0.0055) (-0.6776, 0.0000)
153.7 (-0.0480, 0.5250) (0.1492, 0.0000) (2.9290, 0.0108) (-0.7983, 0.0013)
156.1 (-0.0935, 0.7403) (0.1632,-0.0007) (3.3620, 0.0201) (-0.8786, 0.0020)

E, Eq E;- M;+ M,-

146.8 (-0.04516,—0.0000) (-0.0004,-0.0000) (0.0883, 0.0000) (-0.1346,-0.0005)
149.1 (-0.06741,-0.0000) (-0.0007,-0.0000) (0.13086, 0.0000) (-0.2002,-0.0009)
151.4 (-0.07401,-0.0000) (-0.0007,-0.0000) (0.1418, 0.0000) (-0.2189,-0.0001)

153.7 (-0.08426,-0.0000) (-0.0008,-0.0000) (0.1599, 0.0000) (-0.2485,-0.0018)
156.1 (-0.09563,-0.0000) (-0.0010,-0.0000) (0.1803, 0.0000) (-0.2814,-0.0029)
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Figures

FIG. 1. The calculated s-wave w N phases are compared with the data. Also shown are the
isospin-odd and isospin-even s-wave scattering lengths (labeled S~ and S+ respectively)

plotted as functions of the pion mass.

FIG. 2. Results for the differential cross sections. The dashed curves are obtained by weaken-
ing the calculated p-wave multipoles by 20%. The data are from Ref. 17 (E, > 159 MeV)
and Ref. 1 (E, < 156.1 MeV).

FIG. 3. The calculated Ey+ amplitude near threshold.

FIG. 4. The effect on the differential cross sections of adding (dashed curves) and subtracting
(dash-dotted curves) 0.5 x 10-3m? to the Eg+ amplitude.
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