Distribution Category:
Mathematics and
Computer Science (UC-405)

ARGCONNE NATIONAL LABORATORY
9700 South Chass Avenue

Argonne, 1L o0439-1801 ANL--92/47

DE93 008166

ANL-92/47

A Test Implementation
of the MPI Draft Message-Passing Standard

by

William Gropp and Ewing Lusk

Mathematics and Computer Science Division

December 1992

This work was supported in part by the Office of Scientific Computing, U.5. Departiment of Energy.

P

N NEe L TN PO N VT 30 U BTN HEN O L S

[

Contents
Abstract

1 Introduction

1.1 Structure of the Send and Receive Library

1.2 Cand Fortrano

1.3 Additions s
T Omissions © . . . o e
1.5 Restrictions

2 Comments on the Draft Standard
3 Starting and Stopping Processes
4 Very Simple User Interface

5 Examples

6 Availability

7 Basic Routines for Point-to-Point Messages

7.1 General Communication Control
7.2 Contiguous Communicationso e
7.2.1 General Routines
7.2.2 Blocking Routines e
7.2.3 Nonblocking Routines o
7.3 Constant Stride Communications e
7.3.1 General Routines o e
7.3.2 Blocking Routines
7.3.3 Nonblocking Routines o
T.4 General Scatter/Gather o o o o
7.4.1 General Routines e
T.4.2 Blocking Routines Lo e
7.4.3 Nonblocking Routines

7.5 Process Groups o 0 0 0 0 e

7.6 Communication Contexts

7.7 Program Management oL L L e
7.8 Utility Routines 00 L e
Index

i

[

W N

[#a

(]

6

A Test Implementation
of the MPI Draft Message-Passing Standard

by

William Gropp and Ewing Lusk

Abstract

Message passing is a common method for programming parallel computers. The lack of a
standard has significantly impeded the development of portable software and libraries for these
machines. Recently, an ad-hoc committee was formed to develop a standard for message-passing
software for parallel computers. This group first met in April 1992 at a workshop sponsored
in part by the Center for Research on Parallel Computation (CRPC). Four of the attendees
at that meeting produced a draft standard, henceforth referred to as the MPI (Message-Passing
Interface) draft standard. After review by a larger group, and significant changes in the docvment,
a meeting was held in November to discuss the MPI draft standard. This document is a result of
those discussions; it describes a running implementation of most of the propoused standard, plus
additional routines that were suggested by the discussions at the November meeting,.

i Introduction

This document describes a test implementation of the Message-Passing Interface (MPI) draft stan-
dard. Supplying an implementation along with the standard itself provides several benefits. It allows
the draft standard to be tested for expressivity and implementability. It brings to light potential in-
consistencies and omissions in the draft standard as the draft standard develops. It allows . xperiments
that measure possible restrictions on performance imposed by the draft standard.

Subject to the small number of restrictions and omissions cited below, it is an inmiplementation of all
of the draft standard. It also includes other routines that might be considered for inclusion in the
draft standard as it develops.

1.1 Structure of the Send and Receive Library

This implementation provides a relatively large number of simple operations that are small and there-
fore easy to describe precisely. Larger operations can then be implemented and defined in terms of
these operations. The basic send and receive operations are broken down as fullows:

¢ " [.send][._‘][‘_.]
S b)
recv h T
g s
where the first letter specifies the layout of the data, the second specifies the extent to which the
calling process synchronizes with the local message-passing subsystem and with the remote one, the

next four letters specify a send or receive operation, and the final letter(s) specify optional additional
functionality.

e Data layout

¢ (contiguous) The bytes are to be sent from or received into a contiguous region of memory,
described by starting address and length.

s (stride) The data to be sent consists of data items of the same type and size, separated by

a constant distance (stride) in memory, described by a starting address, length of a single
itern, and nunber of itemns.

g (gather) The data to be sent consists of data items of varying lengths and addresses, described
by an array of addresses and lengths.

e Synchronization
n (nonblocking) The operation returns control to the user immediately, to facilitate overlapping
computation and communication.
b (blocking) the operation does not return until the message area is available for reuse.

s (synchronous) The operation does not return until the message has been received by the
destination process (in the case of a send) or the acknowledgment has been sent (in the
case of a receive).

e Send or Receive

send (send) Transfer a message from the calling process to the specified one.

recv (receive) Transfer a message into memory if specified conditions are met.
e Heterogeneity

o (default) This is the default.

h (heterogeneous) The message will be processed in such a way that differing data represen-
tations on different machines will be taken into account. On the [c] and [s] routines this
requires a data type parameter. On the [g] operations, it requires data type information in
the vector describing the data location.

o Alternate Protocol

— (default) This is the default.

rr (receiver ready) The operation will take advantage of any underlying protocol that is available
when the receiver of a message is known to have issued the receive before the corresponding
send is executed.

The routines specitied in the current draft standard, which use a mode argument to specify the
synchronizatien level, can easily be defined (and implemented) in terins of these operations, and we
have done so. This organization makes it easy to experiment with and understand capabilities not
currently in the draft, such as the rr and h options.

1.2 C and Fortran

The tmplementation described here is for the C language. Enough of the Fortran versions of these
routines have been provided to write and run a simple program. These arc the routines MPI_csend,
MPI_crecv, a few inquiry routines (e.g., MPI_getid), and MPI_main.

1.3 Additions

In order to write actual programs, it was necessary to add a few routines for program management.
We have added the routines MPI_main and MPI_stopall for this purpose.

We also have suggested a small set of routines (see Section 4) that are at a higher level than the draft
standard, in order to jucet the needs of users who wish to express a message-passing algorithim, but
wha do not need to know about the more complex performance issues this implementation and the
draft. standard itself tries to address, such as overlapping communication and computation with n or
reducing latency with rr.

We also added an error value for “nnknown mode.”

1.4 Omissions

We have not itnplemented the time and date routines since there seemned to he a consensus that they
need not be part of this standard. We can add them if they are desired. We did not implement the
MPI_pack, etc., routines because they now seem to be subsumed by the [s] and [g] versions of send
and receive. The man pages do not yet include the “Description” section; this can in most cases be
taken from the draft standard.

1.5 Restrictions

This is a very preliminary, fast iinplementation, designed to allow experimentation with at least some
of the ideas in the draft standard. In the interest of getting it out very quickly, we have taken somie
shiortents. We intend to retnove these as time goes by, Currently (November 25, 1992) the following
restrictions apply to the hmplementation of the draft standard:

2

There is only one process group. Since the draft standard does not specify that there be more
than one, this implementation is (draft) standard-conforming. However, it is not currently
possible to run a program that uses more than one group. (You are likely to get the “too mmany
groups” error.)

There is only one communication context. Again, this conforms to the letter but not the spirit
of the draft standard.

Neither selection on source nor selection on type range (that is, the negative type values) is
implemented. This restriction allows us to use existing (vendor-supplied) message-passing im-
plementations on a variety of machines.

Comments on the Draft Standard

One reason for doing a prototype implementation is to identify potential problems with the specifica-
tion of the standard. In this section, we detail some of the problems that we have detected.

The routines that take mode for “blocking,” “nonblocking,” or “synchronous” return a value
whose meaning depends on the value of mode.

The routines to get information on “the last message” are tricky to specify precisely, becatse
the notion of “the last message” is imprecise. ln particular, “the last message” means the last
message received, probed, or otherwise looked at. This means that an MPI_probe will change the
values that these routines will return. It is also unclear how process groups and communications
contexts affect the meaning of “the last message.”

The standard specifies a 32 bit type field. With 64 bit systems on the horizon, this seems
shortsighted.

Because there are no minimurn number of communications contexts or process groups specilied,
an implementation can conform to the standard by providing a single communication context
and a single process group. This is in fact what our implementation does.

Were process groups to be implemented, the interpretation of the destination field (dest) and
the return value from MPI_infos is unclear. Is it the process id? Is it the rank of the process in
the current group? What is the meaning of receive-from-any-processor as a selection in a receive
rotitine?

There is no way for the user to control the ranking of processes in a process gronp.

e There is no way to discover the length of a message before receiving it into a user butfer. This
prohibits using dynatnic memory allocation (either by malloc in (! or by explicit allocation of
work areas in Fortran 77) to manage messages that are of unknown length at compile time.

o As the examples demonstrate, there is no attractive way to determine such simple things as the
process id or the number of processes.

e Error handling is unattractive. A+ written, the user must check return codes. While we agree
that users (particularly software library writers) need this option, not all users will be diligent
about checking the return codes. One of the examples below emphasizes this.

3 Starting and Stopping Processes

In this section we give the specifications for routines needed to support the creation and destruction
of the processes that will be communicating. We have added a routine MPI_stopall that causes all
processes in an application to exit.

It has been our experience that a major source of portability problems is in how a parallel program
is started up and initializes its environment. We have added MPI main as a standardized way to
accomplish this. This replaces main in (¢ and PROGRAM in Fortran 77. In addition, it may be useful to
provide a subroutine-level interface for initializing the MPI package.

4 Very Simple User Interface

A very shinple interface can be delined that consists of the routines

MPI_numpids = MPI_infog(0, 0, 0)
MPI_mypid = MPI_getid(0)
MPI_send = MPI_cbsend

MPI_recv = MPI_cbrecv

as well ax MPImain for defining a program.

5 Examples

We present here two programs that send a message around a ring of processors. The Fortran version
of this program is

ihteger function MPI_main()
integer buf, size, type, np, right, left
integer actlen

c
size = 4
type = 3
np = MPI_infog(0, 0, 0)
right = mod(MPI_getid(0) + 1, np)
left = mod(MPI_getid(0) - 1 + np, np)

if (MPI_getid(0) .eq. 0) then
buf = 1
actlen = MPI_csend(’blocking’, buf, right, type, size)
actlen = MPI_crecv(’blocking’, buf, left, type, size)
else

§

actlen = MPI_crecv(’blocking’, buf, left, type, size)

actlen = MPI_csend(’blocking’, buf, right, type, size)
endif
MPI_main = O
return
end

The €' version of this program is
#include "../include/mpi.h"

int MPI_main(argc, argv)

int argc;
char **xargv,
{

int buf, siz = sizeof(int), type = 3, np, right, left;

np = MPI_infog(0, 0, (int *)0); /* Number of processes */
right = (MPI_getid(0) + 1) % np;
left = (MPI_getid(0) - 1 + np) % np;

if (MPI_getid(0) == 0) {
buf = 1;
MPI_csend("blocking", &buf, right, type, siz);
MPI_crecv("blocking", &buf, left, type, siz);
}

else {
MPI_crecv(“"blocking", &buf 1left, type, siz);
MPI_csend("blocking", &buf, right, type, siz);
}

return O;

6 Availability

11nsnnphﬂnmnqunisa“uHabh=byanonynunwfq)ﬁon1info.mcs.anl.gov.lnthecﬁrmmorypub/mpi
the file mpi.man.ps.Z is this document. The file mpi.tar.Z contains a compressed tar file of this im-
pletentation. The implementation is built on top of the Chameleon system; the file chameleon.tar.Z
is all that is needed to build Charmeleon for a variety of parallel cornputers (including groups of work-
stations). To use MPI on a system of workstations, either p& or pvm are needed. Both are available
from netlib (net1ib@ornl.gov); we have included a recent version of p4 in the file p4-1.2.tar.Z in
the /pub/mpi directory for convenience.

7 Basic Routines for Point-to-Point Messages

In this section we describe the routines that form the lowest level of the implementation. They are
designed to he consistent with the upper-level routines.

o

7.1 General Commmunication Control

MPI_cancel MPI_cancel

\

MPI_cancel — Cancel a previously initiated nonblocking send or receive

Input Parameter

msgid Message id returned by a call to a nonblocking send or receive
Synopsis

int MPI_cancel(msgid)
int msgid;

Location

mpi.c

MPI_infos MPI_infos

MPI_infos — Determine the source process of a pending receive

Synopsis

int MPI_infos()

Returns

The saurce of the just received message.

Location

mpi.h

MP1_infot MPI_infot

MPI_infot - Determine the type of the last receive

Synopsis

int MPI_infot()

Returns

The source of the just received message.

Location

mpi.h

MPI_probe

MPI_probe

MP'I_probe -- Check for pending messages

Input Parameters

source the PID of the process sending the message
type the message type
Returns

Length of pending message if available, else -1.

Synopsis

int MPI_probe(source, type)
int source, type;

Location

mpi.c

MPI_stats

MPI_stats

MPI_stats -— Check the status of 2 nonblocking send or receive

Input Parameter

msg_id Message id returned by a call to a nonblocking send or receive

Returns

Length of available message if it is pending, else -1.

Synopsis

int MPI_stats(msg_id)
int msg_id;

Location

mpi.c

MPI_wait MPI_wait

MPI_wait — Block until a nonblocking send or receive operation has completed

Input Parameter

msyg_id id returned by a nonblocking send or receive routine (of any type)
Returns

Number of bytes sent or received, or -1 on error.

Synopsis

int MPI_wait(msg_id)
int msg_id;

Location

mpi.c

7.2 Contiguous Communications

7.2.1 General Routines

MPI_crecv MPI_crecv

MDPI_creev - Draft standard contiguous receive

Input Parameters

mode one of “blocking,” “nonblocking,” or “synchronous”
buf buffer to receive into
source sending processor
type niessage type
maxlen maxitum length in bytes of message
Returns

If the mode is “nonblocking,” returns the integer id of receive to be used in MPI_wait, ctc.
or -1 on error.

)

Otherwise, returns the actual length of the message in bytes, or -1 on error.

Synopsis

int MPI_crecv(mode, buf, source, type, maxlen)
char *mode;

void *buf;

int source, type, maxlen;

Location

mpic.c

MPI_crecvh MPI_ereevh

MPI_crecvh — Friendly contiguous heterogeneous receive

Input Parameters

mode one of “blocking,” “nonblocking,” or “synchronous”
buf buffer to receive into
source sending processor
type message type
maxlen maximum length in bytes of message
datatype type of data
Returns

If the mode is “nonblocking,” returns the integer id of receive to be used in MPI_wait, etc.,
or -1 on error.

Otherwise, returns the actual length of the message in bytes, or -1 on error.

Synopsis

int MPI_crecvh(mode, buf, source, type, maxlen,datatype)
char *mode;

void *buf;

int source, type, maxlen,datatype;

Location

mpic.c

MPI_crecvhrr MPI_crecvhrr

MPI_crecvhrr — Friendly cont’guous heterogeneous receive for ready receivers

Input Parameters

» o«

mode one of “blocking,” “nonblocking,” or “synchronous”

9

buf hutfer to receive into

source sending processor
type message type
maxlen maximum length in bytes of message
datatype type of data
Returns

If the mode is “nonblocking,” returns the integer id of receive to be used in MPI_wait, etc.,
or -1 on error.

Otherwise, returns the actual length of the message in bytes, or -1 on error.

Synopsis

int MPI_crecvhrr(mode, buf, source, type, maxlen, datatype)
char *mode;

void *buf;

int source, type, maxlen, datatype;

Location

mpic.c

MPI_crecvrr MPI_crecvrr

MPI_crecvrr — Friendly contiguous receive for ready receivers

Input Parameters

mode one of “blocking,” “nonblocking,” or “synchronous”
buf huffer to receive into
source sending processor
type message type
maxlen maximuin length in bytes of message
Returns

[f the mode is “nonblocking,” returns the integer id of receive to be used in MPI_wait, etc.,
or -1 on error.

Otherwise, returns the actual length of the message in bytes, or -1 on error.

Synopsis

int MPI_crecvrr(mode, buf, source, type, maxlen)
char *mode;

void *buf;

int source, type, maxlen;

10

Location

mpic.c

MPI_csend ’ MPI_csend

MPI_csend — Draft standard contiguous send

Input Parameters

mode one of “blocking,” “nonblocking,” or “synchronous”
buf buffer to send
dest destination processor
type message type
len length in bytes of message
Returns

If the mode is "nonblocking,” returns the integer id of send to be used in MPI_wait, etc.,
or -1 on error.

Otherwise, returns the actual length of the message in bytes, or -1 on error.

Synopsis

int MPI_csend(mode, buf, dest, type, len)
char *mode;

void =*buf;

int dest, type, len;

Location

mpic.c

MPI_esendh MPI_csendh

MPI_esendh - Friendly contiguous heterogeneous send

Input Parameters

mode one of “blocking,” “nonblocking,” or “synchronous”
buf buffer to send

dest destination processor

type message type

len length in bytes of message

datatype tyvpe of data

[
-

Returns

If the mode is nenblocking,” returns the integer id of send to be used in MPI_wait, etc..
or -1 on error.

Otherwise, retusiis the actual length of the message in bytes, or -1 on error.

Synopsis

int MPI_csendh(mode, buf, dest, type, len, datatype)
char *mode;

void *buf;

int dest, type, len, datatype;

Location

mpic.c

MPI_csendhrr MPI_csendhrr

MPI_csendhrr — Friendly contiguous h-terogeneous send for ready receivers

Input Parameters

mode one of “blocking,” “nonblocking,” or “synchronous
buf buffer to send
dest destination processor
type message type
len length in bytes of message
datatype type of data
Returns

If the mode is “nonblocking,” returns the integer id of send to be used in MPI_wait, ctc..
or -1 on error.

Otherwise, returns the actual length of the message in bytes, or -1 on error.

Synopsis
int MPI_csendhrr(mode, buf, dest, type, len, datatype)
char *mode;

void *buf;
int dest, type, len, datatype;

Location

mpic.c

12

MPI_csendrr MPI_csendrr

MPI_csendrr — Friendly contiguous send for ready receivers

Input Parameters

mode one of “blocking,” “nonblocking,” or “synchronous™
buf buifer to send
dest destination processor
type message type
len length in bytes of message
Returns

y

If the mode is “nonbloci ng,’
or -1 on error.

returns the integer id of send to be used in MPI_wail, ete.,

Otherwise, returns the actual length of the message in bytes, or -1 on error.

Synopsis

int MPI_csendrr(mede, buf, dest, type, len)
char *mode;

void *buf;

int dest, type, len;

Location

mpic.c

7.2.2 Blocking Routines

MPI_cbrecv MPI_cbhrecv

MPI_cbrecv — Blocking contiguous receive

Input Parameters

buf buffer to receive into

source sending processor

type message type

maxlen maximun length in bytes of message
Returns

Number of bytes actually received.

Synopsis

int MPI_cbrecv(buf, source, type, maxlen)
void *buf;
int source, type, maxlen;

Location

npic.c

MPI_cbrecvh MPI_cbrecvh

MPI_cbreevh — Blocking contiguous heterogeneous receive

Input Parameters

buf buffer to receive into
source sending processor
type message type
maxlen maximum length in bytes of message
datatype type of data
Returns

Number of bytes actually received.

Synopsis

int MPI_cbrecvh(buf, source, type, maxlen, datatype)
void *buf;
int source, type, maxlen, datatype;

Location
mpic.c
MPi_chrecvhrr MPI_cbrecvhrr

MPI_cbreevhrr - Blocking contiguous heterogeneous receive for ready receivers

Input Parameters

buf buffer to receive into

sourece sending processor

type message type

maxlen maxiimn length in bytes of message
datatype type of data

14

Returns

Number of bytes actually received.

Synopsis

int MPI_cbrecvhrr(buf, source, type, maxlen, datatype)

void *buf;
int source, type, maxlen, datatype;

Location

mpic.c

MPI_cbrecvrr

MPI_cbreevrr

MPI_cbrecvrr — Blocking contiguous receive for ready receivers

Input Paraineters

buf buffer to receive into

source sending processor

type message type

maxlen maximum length in 1. 'tes of message
Returns

Number of bytes actually received.

Synopsis
int MPI_cbrecvrr(buf, source, type, maxlen)

void *buf;
int source, type, maxlen;

Location

mpic.c

MPI_chsend

MPI_chsend

MPI_cbhsend - Blocking contiguous send

Input Parameters

buf buffer to send
dest destination

type message type
len length in bytes of message

Returns

Nuiber of bytes sent, or -1 for an error.

Synopsis

int MPI_cbsend(buf, dest, type, len)
void *buf;
int dest, type, len;

Location

mpic.c

MPI_cbsendh MPI_cbsendh

MPI_cbsendh —- Blocking contiguous heterogeneous send

Input Parameters

buf buffer to send
dest destination
type message type
len length in bytes of message
datatype type of data
Returns

Number of bytes sent, or -1 for an error.

Synopsis
int MPI_cbsendh(buf, dest, type, len, datatype)

void *buf;
int dest, type, len, datatype;

Location

mpic.c

MPI_chsendhrr MPI_chsendhrr

MPI_chsendhrr —- Blocking contiguous heterogeneous send for ready receivers

16

Input Parameters

buf buffer to send
dest destination
type message type
len length in bytes of message
datatype type of data
Returns

Number of bytes sent, or -1 for an error.

Synopsis

int MPI_cbsendhrr(buf, dest, type, len, datatype)
void *buf;
int dest, type, len, datatype;

Location

mpic.c

MDPI_cbsendrr MPI_cbsendrr

MPI_cbsendrr — Blocking contiguous send for ready receivers

Input Parameters

buf buffer to send

dest destination

type niessage type

len length in bytes of message
Returns

Numnber of bytes sent, or -1 for an error.

Synopsis
int MPI_cbsendrr(buf, dest, type, len)

void *buf;
int dest, type, len;

Location

mpic.c

7.2.3 Nonblocking Routines

MPI_cnrecv

MPI_cnreev

MPI'I_cnrecv —- Nonblocking contiguous receive

Input Parameters

buf buffer to receive into

source sending processor

type message type

maxlen maximurn length in bytes of message
Returns

Integer id of receive to be used in MPI_wait, etc., or -1 on error.

Synopsis
int MPI_cnrecv(buf, source, type, maxlen)

void *buf;
int source, type, maxlen;

Location

mpic.c

MPI_cnrecvh

MPI_curecvh

MPI_carecvh — Noablocking contiguous heterogeneous receive

Input Parameters

buf buffer to receive into
source sending processor
type message type
maxlen maximum length in bytes of message
datatype type of data
Returns

fnteger id of receive to be used in MPI_wait, etc., or -1 on error.

Synopsis
int MPI_cnrecvh(buf, source, type, maxlen, datatype)

void *buf;
int source, type, maxlen, datatype;

18

Location

mpic.c

MPI_cnrecvhrr MPI_cnrecvhry

MPI_cnrecvhrr — Nonblocking contiguous heterogeneous receive for ready receivers

Input Parameters

buf buffer to receive into
source sending processor
type message type
maxlen maximum length in bytes of message
datatype type of data
Returns

Integer id of receive to be used in MPI_wait, etc., or -1 on error.

Synopsis
int MPI_cnrecvhrr(buf, source, type, maxlen, datatype)

void *buf;
int source, type, maxlen, datatype;

Location

mpic.c

MPI_cnrecvrr MPI_cnrecvrr

MPI_cnrecvrr — Nonblocking contiguous receive for ready receivers

Input Parameters

buf buffer to receive into

source sending processor

type message type

maxlen maximurn length in bytes of message
Returns

Integer id of receive to be used in MPI_wait, etc., or -1 on error.

19

Syunopsis
int MPI_cnrecvrr(buf, source, type, maxlen)

void *buf;
int source, type, maxlen;

Location

mpic.c

MPI_cunsend MP1_cnsend
MPI_cnsend — Nonblocking contiguous send
Input Parameters
buf buffer to send
dest destination
type message type
len length in bytes of message
Returns
Integer id of send to be used in MPI_wait, etc., or -1 on error.
Synopsis
int MPI_cnsend(buf, dest, type, len)
void *buf;
int dest, type, len;
Location
mpic.c
MPI_cusendh MPI_cnsendh

MPI_cunsendh -— Nonblocking contiguous heterogeneous send

Input Parameters

buf buffer to send

dest destination

type message type

len length in bytes of message
datatype type of data

20

Returns

Integer id of send to be used in MPI_wait, etc., or -1 on error.

Synopsis
int MPI_cnsendh(buf, dest, type, len, datatype)

void *buf;
int dest, type, len, datatype;

Loca.ion

mpic.c

MPI_cnsendhrr MPI_cnsendhrr

MPI_cnsendhrr — Nonblocking contiguous heterogeneous send for ready reccivers

Input Parameters

buf buffer to send
dest destination
type niessage type
len length in bytes of message
datatype type of data
Returns

Integer id of send to be used in MPI_wait, etc., or -1 on error.

Synopsis
int MPI_cnsendhrr(buf, dest, type, len, datatype)

void *buf;
int dest, type, len, datatype;

Location

mpic.c

MPI_cnsendrr MPI_cnsendrr

MPI_cnsendrr -~ Nonblocking contiguous send for ready receivers

Input Parameters

buf buffer to receive into

21

souree sending processor

type nessage type
maxlen waximum length in bytes of message
Returns

Integer id of send to be used in MPI_wait, etc., or -1 on error.

Synopsis
int MPI_cnsendrr(buf, dest, type, len)

void *buf;
int dest, type, len;

Location

mpic.c

7.3 Constant Stride Communications

7.3.1 General Routines

MPI_srecv

MPI_srecv

MPI_srecv - Draft standard receive into buffer with constant stride

Input Parameters

mode one of “blocking,” “nonblocking,” or “synchronous”
buf buffer to receive into

source sending processor

type niessage type

lenblk size 1n bytes of each data block

stride wnmber of bytes between the start of each data block
nblks maximum number of data blocks

Returns

If the mode is “nonblocking,” returns the integer id of receive to be used in MPI_wait, otc.,

or -1 on error,

Otherwise, returns the actual length of the message in bytes, or -1 on error.

Synopsis

int MPI_srecv(mode, buf, source, type, lenblk,stride,nblks)

char *mode;
void *buf;
int source, type, lenblk,strids,nblks;

Locatien

mpis.c

MPI_srecvh MPI_sreevh

WIPI_sreevh — Friendly heterogeneous receive into buffer with constant stride

Input Parameters

mode one of “blocking,” “nonblocking,” or “synchironons”
buf buffer to receive into
source sending processor
type nmessage type
lenblk size in bytes of each data block
stride number of bytes between the start of each data block
nblks maximum number of data blocks
datatype type of data
Returns

If the mode is “nonblocking,” returns the integer id of receive to he used in MPI_wait, etc.,
or -1 on error.

Otherwise, returns the actual length of the message in bytes, or -1 on error.

Synopsis

int MPI_srecvh(mode, buf, source, type, lenblk,stride,nblks,datatype)
char *mode;

void *buf;

int source, type, lenblk,stride,nblks,datatyps;

Location

mpis.c

MPI_srecvhrr MPI_srecvhrr

MPI_srecvhrr — Friendly heterogeneous receive into a buffer with constant stride for ready receivers

Input Parameters

mode one of “blocking,” “nonblocking,” or “synchronous”
buf buffer to receive into

souree sending processor

type message type

lenblk size in bytes of each data block

stride nutnber of bytes between the start of each data block

23

nblks maximum number of data blocks
datatype type of data

Returns

If the mode is “nonblocking,” returns the integer id of receive to he used in MP!_wait, cte.,
or -1 on error.

Otherwise, returns the actual length of the message in bytes, or -1 on error.

Synopsis

int MPI_srecvhrr(mode, buf, source, type, lenblk,stride,nblks, datatype)
char *mode;

void *buf;

int source, type, lenblk,stride,nblks, datatype;

Location

mpis.c

MDIPI_srecvrr MPI_srecvrr

MPI_srecvrr -- Fricudly receive into buffer with constant stride for ready receivers

Input Parameters

mode one of “blocking,” “nonblocking,” or “synchronous”
buf buffer to receive into
source sending processor
type lessage type
lenblk size in bytes of cach data block
stride nuber of bytes Letween the start of each data block
nblks raximuim munber of Jata blocks
Returns

)

If the miode is “nonblocking,” returns the integer 1d of receive to be used in MPI_wait, ete

or -1 on error.

Otherwise, returns the actual length of the message in bytes, or -1 on error.

Synopsis

int MPI_srecvrr(mode, buf, source, type, lenblk,stride,nblks)
char *mode;

void *buf;

int source, type, lenblk,stride,nblks;

Location

mpis.c

MPI_ssend MPI_ssend

MPI_ssend ~ Draft standard send with constant stride

Input Parameters

mode one of “blocking.” “nonblocking.” or “synchronous”
buf buffer to send
dest destinat: n processor
type message type
lenblk size in bytes of each data olock
stride number of bytes between the start of each data block
nblks nutnber of data blocks
Returns

If the miode is “nonblocking.” returns the integer id of send to be used in MPI_wait. etc.,
or -1 on error.

Otherwise, returns the actual length of the message in bytes, or -1 en error.

Synopsis

int MPI_ssend(mode, buf, dest, type, lenblk,stride,nblks)
char *mode;

void *buf;

int dest, type, lenblk,stride,nblks;

Location

mpis.c

MPI_ssendh MPI_ssendh

MPI_ssendh — Friendly heterogeneous send with constant stride

Input Parameters

mode one of “blocking,” “nonblocking.” or “synchronous”
buf buffer to send

dest destination processor

type iessage type

lenblk size in bytes of each data block

stride number of bytes between the start of each data block
nblks umuber of data blocks

datatype tvpe of data

Returns

If the mode is “nonblocking,” returns the integer id of send to he used in MPI_wait, cte.,
or -1 on error.

Otherwise, returns the actual length of the message in bytes, or -1 on error.

Synopsis
int MPI_ssendh(mode, buf, dest, type, lenblk,stride,nblks, datatype)
char *mode;

void *buf;
int dest, type, lenblk,stride,nblks, datatype;

Location

mpis.c

MPI_ssendhrr MPI_ssendhrr

MPI_ssendhrr — Friendly heterogeneous send with constant stride for ready receivers

Input Parameters

mode one of “blocking,” “nonblocking,” or “synchronous”
buf buffer to send
dest destination processor
type message type
lenblk size in bytes of each data block
stride number of bytes hetween the start of each data block
nblks number of data blocks
datatype type of data
Returns

If the mode s “nonblocking,” returns the integer id of send to be used in MPl_wait, ete.,
or -1 on error.

Otherwise, returns the actual length of the message in bytes, or -1 on error.

Synopsis
int MPI_ssendhrr(mode, buf, dest, type, lenblk,stride,nblks, datatype)
char *mode;
void *buf;
int dest, type, lenblk,stride,nblks, datatype;

Location

mpis.c

26

MPI_ssendrr MPI_ssendrr

MPI_ssendrr - Friendly send with constant stride for ready receivers

Input Parameters

mode one of “blocking,” “nonblocking,” or “synchronous”
buf buffer to send
dest destination processor
type message type
lenblk size in bytes of each data block
stride nutnber of bytes between the start of each data block
nblks nutnber of data blocks
Returns

If the mode is “nonblocking,” returns the integer id of send to be used in MPI_wait, etc.,
or -1 on error.

Otherwise, returns the actual length of the message in bytes, or -1 on error.

Synopsis
int MPI_ssendrr(mode, buf, dest, type, lenblk,stride,nblks)
char *mode;

void *buf;
int dest, type, lenblk,stride,nblks;

Location

mpis.c

7.3.2 Blocking Routines

MPI_sbrecv MPI_shrecv

MPI_shrecv — Blocking receive into buffer with constant stride

Input Parameters

buf huffer to receive into

source sending processor

type tiessage type

lenblk size in bytes of each data block

stride number of bytes between the start of each data block
nblks maximum number of data blocks

27

Returns

Number of bytes actually received.

Synopsis
int MPI_sbrecv(buf, source, type, lenblk,stride,nblks)
void *buf;
int source, type, lenblk,stride,nblks;

Location

mpis.c

MPI_sbrecvh MPI_sbrecvh

MPI_sbreevh - Blocking heterogeneous receive into buffer with constant stride

Input Parameters

buf buffer to receive into
source sending processor
type message type
lenblk size in bytes of each data block
stride number of bytes between the start of each data block
nblks maximum number of data blocks
datatype type of data
Returns

Number of bytes actually received.

Synopsis

int MPI_sbrecvh(buf, source, type, lenblk,stride,nblks, datatype)
void *buf;
int source, type, lenblk,stride,nblks, datatype;

Location

mpis.c

MPI_sbreevhrr MPI_sbreevhrr

MPI_sbrecvhrr — Blocking heterogeneous receive into buffer with constant stride for ready receivers

28

Input Parameters

buf buffer to receive into
source sending processor
type message type
lenblk size in bytes of each data block
stride number of bytes between the start of each data block
nblks maximum number of data blocks
datatype type of data
Returns

Nuniber of hytes actually received.

Synopsis

int MPI_sbrecvhrr(buf, source, type, lenblk,stride,nblks, datatype)
void *buf;
int scurce, type, lenblk,stride,nblks, datatype;

Location

mpis.c

MPI_sbhrecvrr MPI_sbrecvrr

MPI_sbrecvrr — Blocking receive into buffer with constant stride for ready receivers

Input Parameters

buf buffer to receive into
source sending processor
type message type
lenblk size in bytes of each data block
stride number of bytes between the start of each data block
nblks maximum number of data blocks
Returns

Number of bytes actually received.

Synopsis
int MPI_sbrecvrr(buf, source, type, lenblk,stride,nblks)

void *buf;
int source, type, lenblk,stride,nblks;

Location

mpis.c

29

MPI_sbsend

MPI_sbhsend

MPI_sbsend ~- Blocking send with constant stride

Input Parameters

buf buffer to send
dest destination
type message type
lenblk size in bytes of each data block
stride number of bytes between the start of each data block
nblks number of data blocks
Returns

Number of bytes sent, or -1 for an error.

Synopsis
int MPI_sbsend(buf, dest, type, lenblk,stride,nblks)

void *buf;
int dest, type, lenblk,stride,nblks;

Location

mpis.c

MPI_shsendh

MPI_sbsendh

MPI_sbsendh - Blocking heterogeneous send with constant stride

Input Parameters

buf buffer to send
dest destination
type lessage type
lenblk size in bytes of each data block
stride number of bytes between the start of each data block
nblks number of data blocks
datatype type of data
Returns

Nutnber of hytes sent, or -1 for an error.

30

Synopsis
int MPI_sbsendh(buf, dest, type, lenblk,stride,nblks, datatype)

void *buf;
int dest, type, lenblk,stride,nblks, datatype;

Location

mpis.c

MPI_sbsendhrr MPI_sbsendhrr

MPI_shsendhrr -~ Blocking heterogeneous send with constant stride for ready receivers

Input Parameters

buf buffer to send
dest destination
type message type
lenblk size in bytes of each data block
stride number of bytes between the start of each data block
nblks number of data blocks
datatype type of data
Returns

Number of hytes sent, or -1 for an error.

Synopsis

int MPI_sbsendhrr(buf, dest, type, lenblk,stride,nblks, datatype)
void *buf;
int dest, type, lenblk,stride,nblks, datatype;

Location

mpis.c

MPI_sbsendrr MPI_sbsendrry

MPI_sbsendrr —— Blocking send with constant stride for ready receivers

Input Parameters

buf huffer to send

dest destination

type message type

lenblk size in bytes of each data block

31

stride uumber of bytes between the start of each data block
nblks number of data blocks

Returns

Nurber of bytes sent, or -1 for an error.

Synopsis
int MPI_sbsendrr(buf, dest, type, lenblk,stride,nblks)

void *buf;
int dest, type, lenblk,stride,nblks;

Location

mpis.c

7.3.3 Nonblocking Routines

MPI_snrecv

MPI_snrecv

MPI_snrecv —— Nonblocking receive into buffer with constant stride

Input Parameters

buf buffer to receive into

source sending processor

type message type

lenblk size in bytes of each data block

stride number of bytes Letween the start of each data block
nblks maxitnum number of data blocks

Returns

Integer id of recetve to be used in MPI_wan. ete., or -1 on error.

Synopsis
int MPI_snrecv(buf, source, type, lenblk,st:iide,nblks)

void *buf;
int source, type, lenblk,stride,nblks;

Location

mpis.c

MPI_snrecvh MPI_sureevh

MPI_snureevh - Nonblocking heterogeneous receive into buffer with constant stride

Input Parameters

buf hufler to receive into
source sending processor
type message type
lenblk size in bytes of each data block
stride number of bytes between the start of each data hlock
nblks maximum number of data blocks
datatype type of data
Returns

Integer 1d of receive to be used in MPI_wait, etc., or -1 on error.

Synopsis

int MPI_snrecvh(buf, source, type, lenblk,stride,nblks, datatype)
void *buf;
int source, type, lenblk,stride,nblks, datatype;

Location

mpis.c
MPI_snrecevhrr MPI_snrcevhrr
MPI_surceevhrr Naonblocking heterogeneous receive into buffer with constant stride for ready

FeCeIvers

Input Parameters

buf huffer to receive into
souree sending processor
type message Ly pe
lenblk size in bytes of each data block
stride number of bytes between the start of each data block
nblks maximum number of data blocks
datatype type of data
Returns

Integer id of receive to he used in MPI_wait, ete., or -1 on error.

33

Synopsis
int MPI_snrecvhrr(buf, source, type, lenblk,stride,nblks, datatype)

void *buf;
int source, type, lenblk,stride,nblks, datatype;

Location

mpis.c

MPI_surecvrr MPI_snreevrr

MPI_snrecvrr —— Nonblocking receive into buffer with constant stride for ready receivers

Input Parameters

buf buffer to receive into
source sending processor
type niessage type
lenblk size in bytes of each data block
stride number of bytes between the start of each data block
nblks maxunum number of data blocks
Returns

Integer id of receive to be used in MPI_wait, etc., or -1 on error.

Synopsis
int MPI_snrecvrr(buf, source, type, lenblk,stride,nblks)

void *buf;
int source, type, lenblk,st.ide,nblks;

Location

mpis.c

MP1_snsend MPI_snsend

MPI_snsend -~ Nonblocking send with constant stride

[nput Parameters

buf buffer to send

dest destination

type message type

lenblk size w bytes of each data block

stride number of bytes between the start of each data block

34

nblks number of data blocks
Returns

{nteger id of send to be used in MPI_wait, ete., or -1 on error.

Synopsis

int MPI_snsend(buf, dest, type, lenblk,stride,nblks)
void *buf;
int dest, type, lenblk,stride,nblks;

Location

mpis.c

MPI_snsendh MPI_snsendh

MPI_snsendh — Nonblacking heterogeneous send with constant stride

Input Parameters

buf buffer to send
dest destination
type message type
lenblk size in bytes of each data block
stride number of bytes between the start of each data block
ublks number of data blocks
datatype type of data
Returns

Integer id of send to be used in MPI_wait, etc., or -1 on error.

Synopsis

int MPI_snsendh(buf, dest, type, lenblk,stride,nblks, datatype)
void *buf;
int dest, type, lenblk,stride,nblks, datatype;

Location

mpis.c

MPI_snsendhrr MPI_snsendhrr

MPI_snsendhrr - Nonblocking heterogeneous send with constant stride for ready receivers

Input Parameters

buf butfer to send
dest destination
type message type
lenblk size in bytes of each data block
stride number of bytes between the start of each data block
nblks number of data blocks
datatype type of data
Returns

Integer id of send to be used in MPl_wait, etc., or -1 on error.

Synopsis
int MPI_snsendhrr(buf, dest, type, lenblk,stride,nblks, datatype)

void *buf;
int dest, type, lenblk,stride,nblks, datatype;

Location

mpis.c

MPI_snsendrr MPI_snsendrr

MPI_susendrr - Noublocking send with constant stride for ready receivers

Input Parameters

buf buffer to reccive into
source seuding processor
type tessage type
lenblk size in bytes of cach data block
stride nimber of bytes between the start of each data block
ublks number of data Liocks
Returns

Integer id of send to he used in MPI_wait, etc., or -1 on error.

Synopsis
int MPI_snsendrr(buf, dest, type, lenblk,stride,nblks)

void *buf;
int dest, type, lenblk,stride,nblks;

Location

mpis.c

7.4 General Scatter/Gather

These routines use structures named MPI_DATAVEC and MPI_HDATAVEC (for heterogeneous connnuni-
cation). The definitions of these are in mpi.h. MPI_DATAVEC is the same as struct iovec; this is a
structure that contains a pointer to data and the size of that data in bytes. MPI_HDATAVEC adds a
value that is the type of the data, in MPI format.

7.4.1 General Routines

MPI_grecv MPI_grecv

MPI_grecv - Draft standard receive into buffer with arbitrary scatter

Input Parameters

mode one of “blocking,” “nonblocking,” or “synchronous”
source sending processor
type message type
dese description of data to be scattered, in MPI_DATAVEC format
bent nuinber of blocks
Returns

If the mode is “nonblocking,” returns the int,eger id of receive to be used in MPI_wait., etc.,
: :
or -1 on error.

Otherwise, returns the actual length of the message in bytes, or -1 on error.

Synopsis
int MPI_grecv(mode, source, type, desc, bcnt)
char *mode;
int source, type, bcnt;

MPI_DATAVEC *desc;

Location

mpig.c

MI'I_grecvh MPI_grecvh

MPI_greevh — Friendly heterogeneous receive into huffer with arbitrary scatter

Input Parameters

mode one of “blocking,” “nonblocking,” or “synchronous™

source sending processor

type tessage type

dese deseription of data to be scattered, in MPI_DATAVEC format

37

bent number of blocks

Returns

1

Il the mode is “nonblocking,’
or -1 on error.

returns the integer id of receive to be used in MPI_wait, cte.,

Otherwise, returns the actual length of the message in bytes, or -1 on error.

Synopsis
int MPI_grecvh(mode, source, type, desc, bcnt)
char smode;
int source, type, bcnt;

MPI_HDATAVEC *desc;

Location

mpig.c

MPI_grecvhrr MPI_grecvhrr

MPI_grecvhrr -— Friendly heterogeneous receive into a buffer with arbitrary scatter for ready re-
ceivers

Input Parameters

mode one of “blocking,” “nonblocking,” or = yn fironous”
source ser ing processor
type message type
desc description of data to be scattered, in MPI_DATAVEC format
bhent number of blocks
Returns

)

I the mode is “nonblocking,
or -1 on error.

returns the integer id of receive to he used in MPI_wait, ete.,

Otherwise, returns the actual length of the message in bytes, or -1 on error.

Synopsis
int MPI_grecvhrr(mode, source, type, desc, becnt)
char *mode;
int source, type, bent;

MPI_HDATAVEC *desc;

Location

mpig.c

38

MPI_greevrr MPI_greever

MPI_greever Friendly seveive isto buffer with arbitrary scatter for ready receivers

Input Parameters

mode one of “blecking.” “nonblocking.” or “syvnchronons”

souree sending processor

type thessage type

dese deseription of data to be scattered. in MPI_DATAVEC foriat
hent ninnber of Mocks

Returns

I the mode s “nonbdocking.” returns the integer id of recetve to be used i MPL_wait et
ar -1 on error

Otherwise, roturns the actual length of the message in bytes, or -1 on error

Syvnopsis

int MPI_grecvrr(mode, source, type, decc, bcnt)
char *mode;

int source, type, bcent;

¥PI_DATAVEC =desc;

Location

mpig.c

MPI_gsend MPI_gsend

MPI_gsend Draft standard send with arbitrary gather

Input Parameters

mode o of “hlocking.” “nonblocking.” or “synchronons”

dest destintion processor

type fressage type

dese deseription of data to be gathered. in MPI_DATAVEC forimat
bent numnber of blocks

Returns

Hothe nede = Tuonblocking ™ retarns the integer id of send to be used o MPI_want ote,
ar) o arrer

Cfperwise rotarnes the acta ength of the apessage i bytes or 1 onerron

Synopsis

int MPI_gsend(mode, dest, type, desc, bcnt)
char *mode;

int dest, type, bcent;

MPI_DATAVEC *desc;

Location

mpig.c

MPI_gsendh MPI_gsendh

MPI_gsendh - ¥ iendly heterogeneous send with arbitrary gather

Input Parameters

mode one of *blocking,” “nonblocking,” or “synchronous™

dest destination processor

type Hiessage type

dese description of data to be gathered, in MPI_DATAVEC format
hent number of blocks

Returns

If the mode s “nonhlocking.” returns the integer id of send to be used in MPI_wait, ete
or -1 on error.

Otherwise, returns the actual length of the message in bytes, or -1 on error.

Synopsis

int MPI_gsendh(mode, dest, type, desc, bent)
char *mode;

int dest, type, bcent;

MPI_HDATAVEC *desc;

Location

mpig.c

MPI_gsendhrr MPI_gsendhrr

MPI_gsendhrr Friendly heterogencons send with arbitrary scatter for ready receivers

Input Parameters

mode one of “blocking.” “nonblrcking,” or “synchronous”
dest destination processor

-in
<

type message type

dese description of data to be gathered. in MPI_DATAVEC forinat
bent number of blocks
Returns

If the mode is “nemblocking,” returns the integer id of send tn be used in MPI_wait. ete..
or -1 on error.

Otherwise, returns the actual length of the message in bytes, or -1 on error.

Synopsis
int MPI_gsendhrr(mode, dest, type, desc, becnt)
char *mode;
int dest, type, bcnt;

MPI_HDATAVEC *desc;

Location

mpig.c

MPI_gsendrr MPI_gsendrr

MPI_gsendrr - Friendly send with arbitrary gather for ready receivers

Input Parameters

mode one of “blocking,” “nonblocking,” or “synchronous”
dest destination processor
type message type
dese description of data to be gathered, in MPI_DATAVEC format
bent number of blocks
Returns

If the mode is “nonblocking,” returns the integer id of send to be used in MPl_wait. ete..
or -1 on error.

Otherwise, returns the actual length of the message in bytes, or -1 on error.

Synopsis
int MPI_gsendrr(mode, dest, type, desc, bent)
char *mode;
int dest, type, bcnt;

MPI_DATAVEC #*desc;

Location

npig.c

7.4.2 Blocking Routines

MPI_gbhreev MPI_gbrecv

MPI_gbreev — Blocking receive into buffer with arbitrary scatter

Input Parameters

source sending processor
type message type
desc description of data to be scattered, in MPI_DATAVEC format
bent number of blocks
Returns

Number of bytes actually rcceived.

Synopsis
int HPI_gbrecv(source, type, desc, bent)

int source, type, bcnt;
MPI_DATAVEC *desc;

Location

mpig.c

MPI_gbreevh MPI_gbreevh

MPI_gbreevh - Blocking heterogeneous roccive into buffer with arbitrary scatter

Input Parameters

source sending processor

type tiessage type

dese description of data to be scattered, in MPI_HDATAVEC format
bent number of blocks

Returns

Number of bytes actually received.

Synopsis
int MPI_gbrecvh(source, type, desc, bcnt)

int source, type, bcnt;
MPI_HDATAVEC *desc;

12

Location

mpig.c

MPI_gbrecvhrr MPI_gbreevhrr

MPI_gbreevhrr - Blocking heterogeneous receive into buffer with arbitrary scatter for ready re-
celvers

Input Parameters

source sending processor
type message type
desc description of data to be scattered. in MPI_DATAVEC format
bent nutber of blocks
Returns

Number of bytes actually received.

Synopsis
int MPI_gbrecvhrr(source, type, desc, bcnt)

int source, type, bent;
MPI_HDATAVEC *desc;

Location

mpig.c

MPI_gbrecvrr MPI_ghreever

MPI_ghreever - Blocking receive into buffer with arbitrary scatter for ready receivers

Input Purameters

souree sending processor
type 1message type
dese description of data to be scattered, in MPI_LDATAVEC format
bent number of blocks
Returns

Numnber of hytes actually received.

43

Synopsis
int MPI_gbrecvrr(source, type, desc, bent)

int source, type, bent;
MPI_DATAVEC *desc;

Location

mpig.c

MPI_gbsend MPI_gbsend

MPI_gbsend - Blocking send with arbitrary gather

Input Parameters

dest destination
type niessage type
dese description of data to be gathered, in MPI_DATAVEC format
bhent number of blacks
Returns

Number of bytes sent, or -1 for an error.

Synopsis
int MPI_gbsend(dest, type, cesc, bent)

int dest, type, bcnt;
MPI_DATAVEC *desc;

Location

mpig.c

MDPI_shsendh MPI_gbsendh

MPI_ghsendh Blocking send with arbitrary gather

Input Parameters

dest destination

type message Lype

lenblk size in bytes of each data block

dese deseription of data to be gathered, in MPI_DATAVEC forimat
bent number of blocks

44

Returns

Number of bytes sent, or -1 for an error.

Synopsis
int MPI_gbsendh(dest, type, desc, bcnt)

int dest, type, bcnt;
MPI_HDATAVEC xdesc;

Location

mpig.c

MPI_gbhsendhrr MPI_gbsendhrr

MPI_gbsendhrr - Blocking heterogeneous send with arbitrary gather for ready receivers

Input Parameters

dest destination
type message type
dese description of data to be gathered, in MPI_DATAVEC format
bent number of blocks
Returns

Number of bytes sent, or -1 for an error.

Synopsis

int MPI_gbsendhrr(dest, type, desc, bcnt)
int dest, type, bcnt;
MPI_HDATAVEC *desc;

Location

mpig.c

MPI_ghsendrr MPI_gbsendry

MPI_ghsendrr - Blocking send with arbitrary gather for ready receivers

Input Parameters

dest destination
type niessage type

dese deseription of data to be gathered, in MPI_DATAVEC format
hent numnber of blocks

Returns

Nutnber of bvtes seut, or -1 for an error.

Synopsis

int MPI_gbsendrr(dest, type, desc, bcnt)
int dest, type, bcnt;
MPI_DATAVEC *desc;

Location

mpig.c

7.4.3 Nonblockiug Routines

MPI_gunrecv MPI_gureev

MPI1_gnreev Noublocking receive into buffer with arbitrary scatter

Input Parameters

souree sending processor
type message type
dese deseription of data to be scattered, in MPI_DATAVEC format
bent ninber of blocks
Returns

Integer 1l of recetve to be used in MEP'L_wait, etc., or -1 on error

Sviopsis

int MPI_gnrecv(source, type, desc, bcnt)
int source, type, bcnt;
MPI_DATAVEC *desc;

Location

mpig.c
MDP1_gnreevh MPI_gnrecevh
MPI_gnreevh - Nonblocking heterogeneous reecive into buffer with arbitrary scatter

406

Input Parameters

source sending processor
type message type
dese description of data to bhe scattered, in MPI_DATAVEC format
bent number of blocks
Returns

Integer id of receive to be used in MPI_wait, etc., or -1 on error.

Synopsis
int MPI_gnrecvh(source, type, desc, bcnt)

int source, type, bcnt;
MPI_HDATAVEC *desc;

Location

mpig.c

MPI_gnrecvhrr MPI_gnrecvhrr

MPI_gnrecvhrr -- Nonblocking heterogeneous receive into buffer with arbitrary scatter for ready
receivers

Input Parameters

source sending processor
type message type
desc description of data to be scattered, in MPI_DATAVEC format
bent number of blocks
Returns

Integer id of receive to be used in MPI_wait, etc., or -1 on error.

Synopsis

int MPI_gnrecvhrr(source, type, desc, bcnt)
int source, type, bcnt;
MPI_HDATAVEC *desc;

Location

mpig.c

47

L 1] v

MPI_gnrecvrr MPI_gurcevrr

MPI_gnrecvrer - Noublocking receive into buffer with arbitrary scatter for ready receivers

Input Parameters

source sending processor
type message type
desc description of data to be scattered, in MPI_DATAVEC format
bent number of blocks
Returns

Integer id of receive to be used in MPI_wait, etc., or -1 on error.

Synopsis
int MPI_gnrecvrr(source, type, desc, bent)

int source, type, bcnt;
MPI_DATAVEC *desc;

Location

mpig.c

MPI_gnsend MPI_gunsend

MPI_gnsend -- Nonblocking send with arbitrary gather

Input Parameters

dest destination

type tessage type

dese deseription of data to be gathered, in MPI_DATAVEC format
bhent nunber of blocks

Returns

Integer id of send to be used in MPI_wait, etc., or -1 on error.

Synopsis
int MPI_gnsend(dest, type, desc, bcnt)

int dest, type, bcnt;
MPI_DATAVEC *desc;

48

Location

mpig.c

MPI_gusendh MPI_gnsendh

MPI_gnsendh - Nonblocking heterogeneous send with arbitrary gather

Input Parameters

dest destination
type nmessage type
dese description of data to be gathered, in MPI_DATAVEC format
bent nuinber of blocks
Returns

Integer id of send to be used in MPI_wait, etc., or -1 on error.

Synopsis

int MPI_gnsendh(dest, type, desc, bcnt)
int dest, type, bcnt;
MPI_HDATAVEC *desc;

Location

mpig.c

MPI_gnsendhrr MPI_gnsendhrry

MPI_gnsendhrr - Nonblocking heterogeneous send with arbitrary gather for ready receivers

Input Parameters

dest destination
type message type
dese description of data to be gathered, in MPI_DATAVEC format
bent number of blocks
Returns

Integer id of send to be used in MPI_wait, etc., or -1 on error.

49

Synopsis
int MPI_gnsendhrr(dest, type, desc, bcnt)

int dest, type, bcnt;
MPI_HDATAVEC *desc;

Location

mpig.c

MPI_gnsendrr MPI_gnsendrr

MPI_gnsendrr — Nonblocking send with arbitrary gather for ready receivers

Input Parameters

source sending processor
type message type
dese description of data to be gathered, in MPI_DATAVEC format
bent uumber of blocks
Returns

Integer id of send to be used in MPl_wait, etc., or -1 on error.

Synopsis

int MPI_gnsendrr(dest, type, desc, bcnt)
int dest, type, bcnt;
MPI_DATAVEC *desc;

Location
mpig.c
7.5 Process Groups

MDPI_child MPI_child

MPT_child - Get information about the children of a specified group

Input Parameters

gid process group id
maxlis size of clist

Output Parameter

clist array containing process group id
Returns

Number of children in the group, or -1 on error.

Synopsis

int MPI_child(gid, maxlis, clist)
int gid, maxlis, *clist;

Location

group.c

MPI_copyg

MPI_copyg

MPI_copyg — Create a root group from an existing group

Input Parameter

gid process group id
Returns

The gid of the new root group, or -1 on error.

Synopsis
int MPI_copyg(gid)
int gid;

Location

group.c

MPI_defrg

MPI_defrg

MPI_defrg - Define a root group

Input Parameters

nprocs number of processes in the group

plist array of PID that are members of the group

Returns

The gid of the new root group, or -1 on error.

Synopsis

int MPI_defrg(nprocs, plist)
int nprocs, *plist;

Location

group.c

MPI_freed MPI_freed

MPI_freed — Discard the descendants of a specified group

Input Parameter
gid group id
Returns

0 on success, or -1 on error.

Synopsis
int MPI_freed(gid)
int gid;

Location

group.c

MPI_freeg MPI_freeg

MPI_freeg -- Discard a specified group and all of its descendents

Input Parameter
gid group id
Returns

0 on success, or -1 on error.

Synopsis
int MPI_freeg(gid)
int gid;

Location

group.c

MPI_getid MPI_getid

MPI_getid Determine the group context P1D of the calling process for a specified group id number.

Input Parameter

gid grovp id
Synopsis
int MPI_getid(gid)
int gid;
Returns

Relative process nuinber of the calling process in the specified group.

Location

mpi.h

MPI_infog MPI_infog

MPI_infog Determine the namber of processes in a group and return the PH) nunbers of the
group metbers

Input Parameters

wid group id

maxlis size of plist

plist integer array to hold the members of the group
Returns

The number of embers in the group, or -1 on error.

Synopsis

int MPI_infog(gid,maxlis,plist)
int gid, maxlis, #*plist;

Location

mpi.c

MPI_parent

MPI_parent

MPI_parent — Determine the group id number of the parent of a specified group

Input Parameter

gid group whose parent is to be found
Returns

The group id of the parent, or -1 on error.
i

Synopsis
int MPI_parent(gid)
int gid;

Location

group.c

MPI_partg

MPI_partg

MPI_partyg — Partition a group into subgroups

Input Parameters

gid group to be partitioned
key key whose value determines the partitioning
Returns

The gid of the subgroup to which the calling process belongs, otherwise -1.
Synopsis

int MPI_partg(gid, key)
int gid, key;

54

Location

group.c

MPI_popg

MPI_popg

MPI_popg — Reestablish the process group context

Returns

The process group id that is reestablished as the root, otherwise -1.
Synopsis
int MPI_popg()

Location

group.c

MPI_pushg

MPI_pushg

MPI_pushg — Establish the process group context

Input Parameter

gid The group context to establish
Returns

The nuinber of processes in the group gid, or -1 on error.

Synopsis
int MPI_pushg(gid)
int gid;

Location

group.c

MPI_rootg

MPI_rootg

MPI_rootg - Get information about root groups

-
i |

Input Parameter
maxlis size of rlist
Output Parameter
rlist array of the process group id numbers

Returns

Number of defined root groups, or -1 on error.

Synopsis

int MPI_rootg(maxlis, rlist)
int maxlis, *rlist;

Location

group.c

MPI_siblg

MPI_siblg

MPI_siblg -~ Get information about the siblings of a group

Input Parameters

gid process group id
maxlis size of slist

Output Parameter
slist array of the process group ids
Returns

Nunher of siblings, or -1 on error.

Synopsis

int MPI_siblg(gid, maxlis, slist)
int gid, maxlis, slist;

Location

group.c

7.6 Communication Contexts

MPI_infoc MPI_infoc

MPI_infoc - Get information about valid communication contexts

Input parameter

maxlis maximum size of ilist

Output parameter

ilist array containing communication context I numbers
Synopsis

int MPI_infoc(maxlis, ilist)
int maxlis, *ilist;

Location

mpi.c

MPI_newe MPI_newe

MPI_newe Create a new communication context,

Returns

The id number of a new communication context, or -1 on error.

Synopsis

int MPI_newc()

Location

mpi.c

MPI_popec MPI_pope

MPI_pope - Reestablish former communication context

Returns

The id numiber of 4 new conmnunication context, or -1 on error.

-1
-1

Synopsis

int MPI_popc()

Location

mpi.c

MPI_pushe MPI_pushe

MPI_pushe — Establish a new communication context

Input Parameter

ceid the ID number of communication context to establish
Returns

0 on suceess or -1 on error.

Synopsis

int MPI_pushc(ccid)
int ccid;

Location

mpi.c

7.7 Program Managemeni

MPI_main MPI_main

MPI_main - Name of main program for MPI applications

Note
Use “MPI_main” instead of “main” in C programs, and instead of "PROGRAM <names"
in Fortran programs.
Synopsis
(c)
int MPI_main(argc, argv)
int argc;

char #**argv;

Synopsis

(Fortran)
integer function MPI_main()

Location

mpi.c

MPI_stopall MPI_stopall

MPI_stopall stop all processes

Input Parameter

re return code to pass back to calling environment
Synopsis

void MPI_stopall(rc)

Location

mpi.c

7.8 Utility Routines

MPI_error MPI_ecrror

MPI_error -— Detertuine the error status

Returns

Integer giving the error status for the preceding call to an MPI routine.

Synopsis

int MPI_erroxr()

Location

mpi.c

MPI_etext

MPI_ctoxt

MPI_etext — Return the text corresponding to an error value

Input Parameter

lerrno Value returned by MPI_error
Synopsis

char *MPI_etext(ierrno)
int ierrno;

Location

mpi.c

MPI_machine

MPI_machine

MPI_machine - Get machine name, version, and related information

Returns

A character string giving the name, etc., of the machine.

Synopsis

char *MPI_machine()

Location

mpi.c

MPI_infonm

MPI_infonm

MPI infonm - Get information on the machine configuration

Input Parameter
maxlis the size of ilist
Output Parameter

ilist integer array containing information about the systen.

60

ilist[0] - nunber of physical processors in the machine
ilist[1] - total number of processors in the machine

Synopsis

int MPI_infonm(maxlis, ilist)
int maxlis, *ilist;

Location

mpi.c

MPI_syne

MPI_syne

MPI_sync - Synchronize all processes

Synopsis

int sync

Location

mpi.h

61

Index

MPl_cancel, 6
MPl.cbrecv, 13
MPIL_cbhrecvh, 14
MPl_chreevhrr, 14
MPi_cbreever, 15
MPl_chsend, 15
MP1i_cbsendh, 16
MP1_cbsendhrr, 16
MP Ll chsendrr, 17
MPI_child, 50
MPl_cnrecv, 18
MPI_cnrecvh, 18
MPl_cnrecvhrr, 19
MP L cnrecvrr, 19
MPl_cnsend, 20
MPl_cnsendh, 20
MPI_cusendhrr, 21
MPI_ensendrr, 21
MPlL.copyg, 51
MPl_creev, 8
MPI_ereevh, 8
MPI_ereevhre, 9
MPi_creevrr, 10
MPlesend, 11
MPlesendh, H
MPlesendhrr, 12
MPl_esendrr, 13
MP defrg, 51
MPLerroe, 59
MDPLetext, 60
MP I freed, 52
MPLfreeg, H2
MPIghreev, 42
MPI_ghreevh, 42
MP L ghreevhrr, 43
MPlahrecevrr, 43
M P shsend, 44
MPI shsendh. 44
MEPE ebsendhrr, 45
ML shsendrr, 45
M l)l,.;_"l‘ti(l, n3
MPl_snrecv, |16
MPI_gnrecvh, 46
MPLgnreevhrr, 47
MPL enreever, A8
MPLgnsend, 48
VP pnsendh, 19
MPL_gnsendhrr, 19
MPL_pnsendre, H0
MPLurecv, 37
MPLgreevh, 37

62

MPI_grecevhrr, 38
MPl_grecvrr, 39
MPl_gsend, 39
MPl_gsendh, 40
MPl_gsendhrr, 40
MPl_gsendrr, 41
MPlLinfoc, 57
MPlLinfog, 53
MPLinfonm, 60
MPLinfos, 6
MPL.infot, 6
MPI_machine, 60
MPI_main, 58
MPIl_newc, 57
MPIl.parent, 54
MPIL_partg, 54
MPIL popec, H7
MPlL_popg, 55
MPI_probe, 7
MPIL.pushc, 58
MPIl_pushg, 55
MP1l_rootg, 55
MPI_sbrecv, 27
MPIl_sbrecvh, 28
MPl_sbrecvhrr, 28
MPI_sbrecvrr, 29
MP1_sbsend, 30
MPIi_sbsendh, 30
MPILsbsendhrr, 31
MPI_sbsendrr, 31
MPLsiblg, 56
MPl_snrecv, 32
MPl_surecvh, 33
MPI_snrecvhrr, 33
MPlI_snrecvrr, 34
MPl_snsend, 34
MPl_snsendh, 35
MPLsnsendhrr, 35
MPI_susendrr, 36
MPl_srecv, 22
MPIl_srecvh, 23
MPl_srecvhrr, 23
MPl_srecvrr, 24
MPIl_ssend, 25
MP1_ssendh, 25
MPl_ssendhrr, 26
MPl.ssendrr, 27
MPlL.stats, 7
MPl.stopall, 59
MPl_sync, 61
MPI_wait, 8

Distribution for ANL-92/47

Internal:
J. M. Beumexr (100)
F. Y. Fradin
Ww. D. Gropp (10)
E. L. Lusk (10)
G. W. Pieper
R. L. Stevens
C. L. Wilkinson

ANL Patent Department
TIS File

External:

DOE-0STI, for distribution per UC-405 (54)

ANL-E Library

ANL-W Library

Manager, Chicago Field 0ffice, DOE

Mathematics and Computer Science Division Review Committee:
W. W. Bledsoe, University of Texas, Austin

B. L. Buzbee, National Center for Atmospheric Research

J. G. Glimm, State University of New York at Stony Brook

M. T. Heath, University of Illinois at Urbana

E. F. Infante, University of Minnesota

D. O’Leary, University of Maryland

R. E. 0’Malley, Rensselaer Polytechnic Institute

M. H. Schultz, Yale University

Berryman, Yale University

Cavallini, Department of Energy - Energy Research

Choi, Oak Ridge National Laboratory

Dongarra, University of Tennessee

Flower, ParaSoft Corporation

Frye, IBM Corporation

Geist, Oak Ridge National Laboratory

Glendinning, University of Southampton, U.K.

Greenberg, Thinking Machines Corp.

Hart, National Oceanic and Atmospheric Administration

Hempel, GMD, Germany

Henderson, National Oceanic and Atmospheric Administration

Hey, University of Southampton, U.K.

Hill, University of Southampton, U.K.

Ho, IBM Almaden Research Center

Howes, Department of Energy - Energy Research

Huss-Lederman

Kapenga, Western Michigan University

Kennedy, Rice University

Knighten, Intel Scientific Computers

MacDonald, University of Edinburgh, U.K.

z:ﬂﬂum’ﬂﬂ:‘ﬁ-—i:ﬂt“bl—i>c‘_‘uuum

63

npProostrrExxaX>P»voOoXITONOO0

. McBryan, University of Colorado, Boulder
. Mosher, ARCO Exploration and Production Technology

Otto, Oregon Graduate Institute

Pancake, Oregon State University

Panda, IBM Corporation

Peters, IBM UK Scientific Centre

Pierce, Intel Scientific Computers
Rigsbee, Cray Research, Inc.

Skjellum, Mississippi State University
Snir, IBM T. J. Watson Research Center
Sunderam, Emory University

Surridge, University of Southampton, U.K.
Tucker, Thinking Machines Corp.

van de Geijn, University of Texas, Austin
Walker, Oak Ridge National Laboratory
Ward, IBM Corporation

Zenith, Kuck and Associates, Inc.

64

