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ABSTRACT

A survey is given of supersymmetry and supergravity and their phenomenology. Some of the
topics discussed are the basic ideas of global supersymmetry, the minimal supersymmetric Standard
Model (MSSM) and its phenomenology, the basic ideas of local supersymmetry (supergravity), grand
unification, supersymmetry breaking in supergravity grand unified models, radiative breaking of
SU(2) x U(1), proton decay, cosmological constraints, and predictions of supergravity grand unified
models. While the number of detailed derivations are necessarily limited, a sufficient number of
results are given so that a reader can get a working knowledge of this field.

1. Introduction

The Standard Model (SM) with three generations of quarks and leptons,
based on the gauge group SU(3) x SU(2) x U(1) and possessing one Higgs doublet to
realize electroweak breaking, is in excellent agreement with all current data. In fact,
the Standard Model is one of the most successful theories ever constructed, and at
present accounts for all microscopic physics. In spite of this, there is a general
belief that the theory carries within it the seeds of its own destruction, and should
be expected to break down in the TeV energy domain. A number of suggestions
have been made to generalize the ideas of the SM to circumvent its problems but yet
reduce to it at energies < 100 GeV (and hence maintain its successes). These include
supersymmetry models, technicolor models, and models based on the existance of a
tt condensate. Each of these are different ways of treating the quadratic divergence
of the Higgs boson self energy.

The simplest technicolor models appear to be inconsistent with current LEP
data (1], though more complicated models may be able to evade this problem. The
simplest models of tf condensates favor a rather heavy t-quark (m, 2 200 Gev) and

a heavy Higgs boson (mg R 300 GeV) which, while not excluded, is not favored
by current LEP data [2]. Again more complicated models may be able to modify
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these predictions. On the other hand, there has been the first indication of super-
symmetric grand unification arising from the precision measurement at LEP and
elsewhere of the SM coupling constants a;(Mz), a2(Mz), as(Mz) at scale Q = Mz.
Using the renormalization group equations, grand unification does not occur for
the SM, but does appear to take place for its supersymmetrized version at a Gut
scale of [3] Mg =~ 10'® GeV. This may, of course, be just a numerical accident, but
if one takes this result seriously, it suggests the validity of the combined ideas of
supersymmetry and grand unification. Further, in order to combine supersymmetry
and grand unification, in a phenomenologically viable way, one needs to make use
of local supersymmetry i.e. supergravity. It thus appears to be of interest to ask
what other phenomena can one use to test the validity of supergravity grand unified
models.

In these talks, we will survey various aspects of supersymmetry and super-
gravity Gut models. While it will not be possible to give here the derivation of
many of the basic results, the talks will be pedagogic in the sense that enough will
be included to give a working knowledge of this area of particle physics, as well as
some of the recent results. While supergravity may be viewed to arise as a conse-
quence of string theory, we won’t impose any particular string assumptions on the
analysis. The natural scale for superstring theory is the Planck scale

Mpe = (87GN)~1/? = 2.4 x 10'® GeV (1)

Since Mg/Mp, = 1072 it may be that string effects are small corrections to super-
gravity Gut models, and that such models are thus reasonably self contained and
represent another “way station” on the road to a more fundamental theory.

2. What’s Wrong with the Standard Model?

The Standard Model (SM) with three generations of quarks and leptons is
based on the gauge group SU(3)c x SU(2). x U(1)y where C = color, L = left and
Y = hypercharge. Quarks and leptons are left-handed doublets and right-handed
singlets:

g = (ui,di)L; uir,din; 1§ = (visei)L; eir (2)

where i = 1,2,3 is the generation index and o = 1,2 is the SU(2), doublet index. In
addition there is a Higgs doublet:

H® = (HD,HOY): H, =¢c,zH? (3)
with €af = —EBa and g2 = +1.
The dynamics of the SM consists of the gauge interactions, the Yukawa
coupling and the Higgs potential. The first are constructed in the usual way:

Ou = 8, — ilos ALTE + B TT + ¢/ Bu(Y/2) (4)
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where T2 = (A2/2; 0) for (quarks; leptons, Higgs), where the X, a = 1...8 are Gell-
Mann matrices: T* = (r™/2; 0) for SU(2). (doublets; singlets), where the 7™ are
Pauli matrices; and Y is defined by Q = T3 +Y/2. The A2(z), BT (z) and B, are the
color gluons, and the SU(2), and hypercharge gauge bosons, and g, g, and ¢ are
their corresponding coupling constants.

The Yukawa interactions are specified by the potential

W= Af-;)Haﬁ;an’ + A{?Ha Gidn; + )\g)H’i?enj (5)
(u,d,e)

where A{j*** are the Yukawa coupling constant. The Higgs potential is given by

Vi = —m2H H™ + A(H*TH®)?; m2,A >0 (6)

The Higgs potential gives rise to a spontaneous breaking of SU(2) x U(1) due to the
peculiar sign chosen in the mass term. One finds, inserting H©® = (v + H®')/V2,
where v = v2 < H® >, that minimizing Vy yields v = m?/v2) and the Higgs boson
H' then possesses a positive tree level (mass)? of m% = 2m? > 0. The Yukawa
interactions then gives rise to masses for the quarks and leptons, and by making
unitary transformations on the R and L fields one may go to the mass diagonal
states, which for the down quarks are d} = V;;d; where V is the CKM matrix. The
current experimental evaluations of V;; are given in Ref. [4]. The gauge interactions
also give rise to W* and Z boson masses e.g. Mw = g,v/2 which implies v = 246 GeV.
Alternately one may write

=2 MH
Mw=17 22 @
showing that my sets the electroweak mass scale.
The SM has passed a very large number of experimental tests and is currently
in excellent agreement with all the data. However, from the theoretical side, many
aspects of the SM are unsatisfactory, leading one to suspect that one is seeing the

low energy manisfestation of some more fundamental theory. We list here some of
these difficulties:

(i) The SM has 19 adjustable parameters. These are 3 lepton masses (m.,m,,m,);
6 quark masses (m,,mq,,i = 1,2,3); 3 coupling constants as = gZ/4r, a; = g3 /4~,
ay = g”/4r; 4 parameters in the CKM matrix (3 angles, 1 CP violating phase);
2 Higgs potential parameters (A,m?); and the strong CP violating parameter
(8gcpFevFs,). One must go to experiment to fit these [4]. (The current bounds
on m; and my are m; > 118 GeV (CDF) and my > 62.5 GeV (combined LEP
analysis). Clearly a fundamental theory is expected to have fewer arbitrary
parameters.

(ii) The breaking of SU(2) x U(1) is inserted by hand (by choosing ~m? in Eq. (6)
instead of +m?), rather than being a consequence of the theoretical principles
of the model. Thus while the SM can accommodate spontaneous electroweak
breaking, it does not explain its origin.
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(iii) There is no real electroweak unification as the SM group is a product group.
Also there is a mysterious symmetry between quarks and leptons: both have
L particles (not anti-particles) as SU(2) doublets and both obey the relation
Q = Tz +Y/2 which relates quark and lepton charges. This suggests the existance
of grand unification with SU(3) x SU(2) x U(1) embedded in a simple group [e.g.
SU(5) or 0(10)] with quarks and leptons appearing in the same representation.

(iv) Perhaps the most serious issue is the “gauge hierarchy” problem. The loop
corrections to my (an example is given in Fig. 1) are quadratically divergent
leading to a mass

my? = 2m? + c(a/dr) A? (8)

q
Figure 1: One loop correction to Higgs mass from Higgs couplings to quarks.

where a is a coupling constant, and A is the cutoff. One may view A as the scale
where new physics occurs (which cuts off the quadratic divergence). How high
can A be? As A increases, my (which by Eq. (7) scales electroweak physics)
increases, and hence the electroweak scale is driven close to the large scale A.
This is known as the “gauge hierarchy” problem. An alternate possibility is
to choose m? to cancel the large loop correction. This then results in the “fine
tuning” problem. For example if A = Mg ~ 10'®* GeV, one must fine tune m?
to 24 decimal places (!) and in fact troubles begin already in the TeV region.
Thus one expects the SM to break down in the TeV domain, which is why the
SSC and LHC are expected to uncover new physics.

3. Global Supersymmetry

Supersymmetry attempts to shed light on items (ii), (iii) and (iv) above.
It only makes a small amount of progress on item (i), which presumably needs a
much deeper theory to approach (such as string theory). We discuss first global
supersymmetry. -




Supersymmetry is a symmetry between bosons and fermions, i.e. it requires
that the number of bose and fermi helicity states in a multiplet be equal. It was
first introduced on purely “aesthetic” grounds, that nature should be even handed
between boson and fermions.

One may realize supersymmetry (SUSY) algebraically in the following way
[5]. Let Q. be a L spinor obeying the following anti-commutation relations [6]:

{Qa, @} = —2(PLY*1*)apPu (9)

{QasQ5} = [Qas Pl =0=[Pus,P] (10)
where P is the energy momentum vector and P, = (1-+%)/2. Eqgs. (9,10) are referred
to as a “Graded Lie Algebra”. One has that M? = —P¥P, is a Casimir operator and
so all states in a SUSY multiplet have the same mass. One may now verify that
each such multiplet has an equal number bose and fermi states: Define the Witten
index (~1)¥s where Ny is the operator whose eigenvalues are number of fermions in
a state. Since Q, is a fermionic operator, it must anti-commute with (-1)"s. Hence
if Tr is the trace over the states of a multiplet we have

Tri(-)"{Qu @b} = Trl-Qu(~1)"/Q}+(-1)"/Q}Qu
=0 (11)

But by Eq. (9) this implies

0 = Tr(-1)" P, = P.Tr(-1) (12)

where P, is the (common) eigenvalue of the multiplet. Thus Tr(-1)"* =0 for P, #0
and hence the number fermi and bose states must be equal when summed over the
multiplet.

The above considerations would be an amusing toy were it not for two re-
markable theorems. The first of these is the following [7]: Aside from an irrelevant
generalization [8], the only graded algebra for an S-matrix constructed from a local
relativistic quantum field theory is the supersymmetry algebra. Thus supersymme-
try is unique i.e. it is the only graded extension of Lorentz covariant field theory.

We mention now several special features of SUSY systems. Taking the trace
of Eq. (9) gives

P'=H=3(QQ'+Q'Q) 20 (13)

i.e. the Hamiltonian is always a positive semi-definite operator. If the vacuum
state is supersymmetric, i.e. Q.|0 >=0= Q}|0 > then the vacuum energy vanishes:
Eyac =< 0|H|0 >= 0. If there is spontaneous breaking of supersymmetry, i.e. Q.0 >#
0 and Q1|0 ># 0, then E,.. =< 0[H|0 > > 0. This suggests that it may be difficult to
break supersymmetry as the symmetric vacuum always lies lower than the broken
vacuum. To break global SUSY one must arrange it so that the symmetric vacuum
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does not exist (i.e. is not an extrema of the effective potential). In fact, for a wide
class of systems it can be shown that if SUSY doesn’t break at the tree level, it
doesn’t break with quantum corrections [9).

The simplest SUSY multiplets are the massless ones which consist of states
of spin s and s + 1/2. For model building, we will need the following:

(i) Chiral multiplet: (2(z),x(z))

This consists of 2(z), a complex scalar field (s = 0), and x(z) a L Weyl spinor.
There are thus 2 bose and 2 fermi states in this multiplet. These multiplets can
be used to represent matter, since quarks and leptons are represented by L Weyl
spinors. The z(z) fields are additional spin zero fields needed for supersymmetry-the
“squarks” and “sleptons”.
(#) Vector multiplet: (V¥#(z),M(z))

This consists of V#(z), a real vector field (s = 1) and A(z) a Majorana spinor
(s = 1/2). Again there are 2 bose and 2 fermi states (a massless vector boson has
only 2 helicity states). This multiplet can be used to represent gauge bosons, the
additional spinor A(z) being the supersymmetric “gaugino” partner.

The dynamics of global SUSY consists of supersymmetrized gauge and Yukawa
interactions:
Gauge Interactions: Here there are three types of terms: (a) the bose gauge inter-
actions obtained in the usual way by the replacement

8y =+ 0, —i Y qGVST? (14)
i

where V,g; and T? are the gauge bosons, gauge coupling constants and group
representations for the sub-group G;. (The full symmetry group may be a product
group G = [];Gi.); (b) the fermi gaugino interactions with the chiral multiplets
(zm(2), xm(2)),

La==ivV2)_ g:X 2t T Xm (15)

i,m

and (c) an additional bose contribution to the effective potential, the “D term”,
1 a
Vo=3 2‘; @#D¢D?; D? = ;:I,,T,-‘zm (16)

Together, the interactions of Egs. (14,15,16) are supersymmetric and gauge invari-
ant.

Yukawa Interactions: These are governed by a superpotential W(z,). (Note W is
“holomorphic” in the sense it is a function of the z(z) but not the 2*(z).) The bose
Yukawa interactions are the “F term” contribution to the effective potential

2

M, a7)

Oz

Vp=z




and the fermi Yukawa interactions are given by the Lagrangian term,

= z-,zg aaz W e+he. (18)

where x© means charge conjugate ﬁeld. Again Eqs. (17,18) together are supersym-
metric.

Thus, given a gauge invariant superpotential W and the gauge group G,
Eqgs. (14)-(18) are a unique set of supersymmetric gauge invariant interactions.

The above statement of supersymmetric dynamics leads to the second re-
markable theorem of supersymmetry i.e. supersymmetric systems as described
above have no quadratic divergences. More precisely, there is no renormalization at
all for any of the couplings in the F term (i.e. in Vy). The only infinities of the the-
ory are logarithmic infinities of wave function renormalizations and gauge coupling
constant renormalizations [10]. Thus, not only is SUSY the unique graded extension
of the SM [7], but it also eliminates the quadratic Higgs self mass divergence (which
was the most serious theoretic disability of the SM).

One can see how this comes about as follows. Not only does the Higgs have
the usual interactions with quarks of the SM, but also, from Vy, a squark interaction
is required to maintain supersymmetry. This is shown in Fig. 2. Both diagrams
are quadratically divergent but with opposite sign. With perfect supersymmetry all
divergences cancel! When supersymmetry is broken, the quark and squark masses
are no longer degenerate and a logarithmic divergence survives. The cutoff A? of
Eq. (8) gets replaced, A? =+ (m? — m2)in(A?/m?). To avoid fine tuning we now require
m; < 1TeV. Thus we expect the new SUSY particles to be within striking distance
of current and planned accelerators.

q

Figure 2: Higgs one loop corrections in supersymmetric models. Compare with the Standard Model
diagram of Fig. 1.

4. Minimal Supersymmetric Standard Model (MSSM)

The MSSM is the simplest supersymmetric extension of the Standard Model.
One promotes each particle in the SM to either a chiral or vector supermultiplet.
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The particle content is given in Table 1. Unique to the MSSM is the appearance
now of two Higgs doublets, H; and H,. Higgs doublets must come in pairs in SUSY
models in order to cancel anomalies. Thus the Higgs boson has become a chiral
multiplet, implying the existance now of the fermion Higgsinos, and hence to the
danger of possible anomalies. (Anomalies only arise in fermionic triangle loops and
so the SM does not have this problem.) A necessary condition to cancel anomalies
is that TY; = 0 where Y is the hypercharge. One sees that Yy, = -1 and Yy, = +1
so that the anomaly cancellation condition is obeyed when both Higgs doublets are
present. (Anomalies in the quark and lepton sector of course cancel by the usual
GIM mechanism).

Vector Multiplets
ji=1 i=1
gu(z), a=1.--8 A"(z),.a=1--°8
gluons (g) gluinos (g)
B:(z)’ B}Y(z)’ a=123 A"(z), AY(“")’ a=12,3
SU(2). x U(1)y gauge bosons SU(2). x U(1)y gauginos
Chiral Multiplets
i=} i=0
(viz, diL); uim, dir (&L, dir); @ir, dir
quarks (i = generation) squarks
(viL, eiL); eir (Bir, &L); &n
: _ leptons sleptons
H,=(H), H{); H:=(H, H}) H=H}, HT); H, = (H}, HY)
Higgsinos Higgs bosons

Table 1. Particle content of the MSSM.

The Yukawa couplings are obtained from the superpotential. From Egs.
(17,18), renormalizability and gauge invariance imply that W is at most a sum of
quadratic and cubic terms,

wW=w® 4 W(s)’ (19)
and the general form that preserves baryon number (B) and lepton number (L) and
is SU(3)c x SU(2). x U(1)y invariant is [11]

w® = FH? Hao (20)

WO = A Haif + DG H 4
+ \9%H,,& (21)

ij “é




where A are the Yukawa coupling constants as in Eq. (5). p is a parameter with
dimensions of mass. Note that in the SM with only one Higgs doublet, B and L
are automatically conserved. In SUSY, however, this is not the case as H, has the
same quantum numbers as the lepton doublets ¢;. Thus it is possible, for example,
to violate L by adding to Eq. (20) a term ¢ H,, [and similarly replace H, by ¢ in
Eq. (21)]. We will not consider such models here.

W@ is a general mixing term between the two Higgs doublets and is scaled
by the mass parameter u, while W® are the Yukawa couplings. When SU(2) x U(1)
breaks, one expects, in general, both neutral components, HY and H, to grow VeVs.
Thus one sees that < H? > will give rise to u-quark masses, and < H} > to d-quark
and lepton masses. Further, one needs two distinct Higgs doublets to form the
Yukawa interactions of Eq. (21) e.g. one could not use H, in the u-quark term
as it has the wrong hypercharge. One would need to use H} to form an u-quark
Yukawa term. But supersymmetry requires W to be holomorphic, i.e. a function of
the scalar fields z, only and not of z},. Hence a term with H] is forbidden. Thus,
two Higgs doublets are needed in supersymmetry both on fundamental grounds (to
cancel anomalies) and on phenomenological grounds (so that both « and d quarks
can grow masses), a neat matching of rather disparat requirements.

After SU(2) x U(1) breaks, there is a mixing of Higgsinos and SU(2) x U(1)
gauginos. Thus the H, part of Eq. (15) for the SU(2) gauginos is

- .‘ -~
Ly = -i\/ﬁgz:\‘H;"(%)ang+h.c.

-+ ~iV2g X < Hf >* (‘;:)aﬁﬁ'f (22)

Also, from Eq. (18) W® gives a mixing between H; and A,:

f:-IoC 8w
T2 BHeH,,
~ —uHy Hao (23)

Ly = fIzp + h.c.

Thus one gets a mass matrix coupling Higgsinos and gauginos. The mass diagonal
states are the 2 charginos (Winos) W;,i = 1,2 (charged spin 1/2 Dirac fields) and 4
neutralinos (Zinos) Z;,i = 1---4 (neutral spin 1/2 Majorana fields). (We label our
states such that m; <m; for i < j.). The W* and Z° bosons grow masses by the usual
Higgs mechanism, absorbing a charged Higgs field and a hermitian neutral Higgs
field from the H, and H, doublets. Thus there is left 3 neutral and one charged
Higgs bosons which we denote as follows: 4° and H® (CP even states), 4° (CP odd
state) and H* (charged state). The 4° is defined to be the Higgs boson that most
closely resembles the SM Higgs.

In summary then, the MSSM implies the existance of 32 SUSY particles
(over and above the usual quarks and leptons of the SM): 12 squarks, 9 sleptons, 2
Winos, 4 Zinos, 1 gluino and 4 Higgs bosons.




There still remains, however, the problem of supersymmetry breaking. In
a supersymmetric multiplet, the bose and fermi states all have the same mass.
Thus, for example, one a priori expects the squarks to be degenerate with the
quarks. However, no light bosons of this type exist experimentally, which must mean
that supersymmetry is a broken symmetry if it is to have any validity. The only
satisfactory way of breaking a symmetry is by spontaneous breaking. As we saw,
however, supersymmetry is very resistent to breaking, and no physically acceptable
way of producing spontaneous breaking is known for global supersymmetry. One is
thus reduced to adding, on purely phenomenological grounds, symmetry breaking
terms in order to construct a viable model. However, one must do this in a fashion
that still maintains the cancellation of the quadratic divergences. Such type of
SUSY symmetry breaking is called “soft breaking” and only a limited number of
symmetry breaking terms will do this [12].

The general form of soft breaking terms that one can add to the supersym-
metrized Standard Model is a contribution to the effective potential of the form

Vs = mizaz) + [As;)ks-;)q;quf + AE}-”Aﬁ;-”q.-H 1d,¢

+ APNPGH\e§ + BuH\Hy + h.c) (24)

and a gaugino mass term

Ll oee =~ XN (25)
Here {z,} are the set of scalar fields of the chiral multiplets and {)'} are all the
gauginos. Thus mZ, is the scalar mass matrix, AJ***) and B are soft breaking
constants (sometimes called “Polonyi” constants) and r; are the gaugino Majorana
masses [13]. This general form of the soft breaking terms then depends on 137
parameters (or 87 if one assumes them all real)! Many, of course, can be eliminated
on purely phenomenological grounds, but there would still be too many for the
model to have much predictive value. Instead, a limited number are assumed to
exist in the so called “Minimal Supersymmetric Standard Model” (MSSM) which
we now define by the following conditions:

(i) The particle content is that of the supersymmetrized Standard Model with one
pair of Higgs doublets (no extra “exotic” particles).

(ii) All squarks (except perhaps the t-squarks) are degenerate. All sleptons are
degenerate.

(iii) Gaugino masses i, i = 1,2,3 for U(1)y, SU(2)L, SU(3)c obey

Mmy: Ma: Mg=ay: az: a3 (26)

These assumptions greatly reduce the number of free parameters and make the
theory phenomenologically useful. Further, as we will see later, the MSSM is an
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approximation to the low energy limit of supergravity Gut models (and in fact was
constructed after the invention of the supergravity models).

5. Experimental Bounds on SUSY Masses

Experimental searches for SUSY particles have been on going for a decade
now. Current bounds come from the Tevatron (CDF) and from the absence of
SUSY particles in Z decays at LEP. We list these bounds now for reference. All
analysis of experimental data has been done with the framework of the MSSM.

Lower bounds on the gluino mass m; and on the squark mass m; are difficult
to state as the bounds on the two particles are correlated and the bounds also
depend on the parameters i and tanf =< H, > / < H, >. At present, a full analysis
of the CDF data has not been made but roughly one may say mj;, m; 2 100 GeV
if m; < 400 GeV. Fig. 3 shows the parameter choice that has been analysed [14].
The excluded regions may change as x and tang are varied.
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Figure 3: Excluded region in mj — m; for 4 = —250 GeV, tan 8 = 2 [CDF}.

Bounds on the other SUSY particles come from LEP [15]. Since SUSY
particles are created in pairs, the absence of them in Z decay generally gives a lower
bound of approximately Mz/2 ~ 45 GeV (unless the coupling to the Z is anomalously
small). One finds, in fact for the charged sleptons that m;, mz, m: > 45 GeV
and m; > 42 GeV. The charginos and neutralinos are bounded by my, > 45 GeV,
and m; > 20 GeV and mz > 45 GeV for tang > 3. The Higgs boson bounds are
my > 43 GeV, my > 20— 44 GeV, my: > 42 GeV. However, if m, is large (m? » M3}),
the k boson couplings are similar to the Standard Model Higgs and the bound rises
to my, > 625 GeV.

One sees that if we expect the new SUSY particles to inhabit a domain
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from somewhat below M; up to about 1 TeV, the parameter space has not yet
been much explored, and it is not too surprising that SUSY particles have not yet
been discovered. In the near future, some of these bounds can be increased. Thus
LEP200, with maximum luminosity and energy, should be able to detect the 2 boson
with mass up to 95 GeV, and the W, up to 100 GeV. The Tevatron, with a data
sample of 100 pb~?, could detect squarks (except the #;) up to about 200 GeV, the
#; up to about 100 GeV and the W; up to about 70 GeV (and perhaps higher in
some models). The LHC and SSC will be able to detect the gluino and squarks up
to 2 TeV, as well as be able to see the lighter Wino, Zinos and » boson.

6. Unification of Couplings

About three years ago it became possible to test the question of whether
there is unification of the SU(3)c, SU(2)L, and U(1l)y coupling constants at a high
mass scale. This was a result of accurate measurements of a;, a; and a3 at the Z
mass scale. It is convenient to use the fine structure constant a(Mz) and (sm?6w )z
as input to determine o; = 5a/3cos? 6w and a; = of sin’ 6w. Current determinations
are [16, 17]

a~}(Mz) =127.9:+0.1 (27)

(sin 8w )z = 0.2328 + 0.0007 (28)

Note that a(Mz) is much less accurately known then its value at the Thompson
limit, a~1(m.) = 137.0359895(61). This is due to lack of data in the (1-10) GeV region
in e*e~ scattering needed to accurately run o from m, to Mz. In fact, the error in
a(Mz) is the major error arising in high precision tests of the electroweak sector of
the Standard Model. One finds from Eqgs. (27), (28) for a; 2(Mz) then

a1 (Mz) = (5/3)ay = 0.016985  0.000020 (29)

a2(Mz) = 0.03358 & 0.00011 (30)
and the World average for a3(Mz) is [18]

as(Mz) = 0.118 + 0.007 (31)

Using the Renormalization Group Equations (RGE) one can determine the
a; at any other mass scale and see whether or not they meet at some high scale
s = Mg. The RGE to 2-loop order for a;(s), i = 1,2,3 are [19]

W - Lk 3t o)

where for the Standard Model, b; and b;; are

(32)
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b; = (0,~22/3,~11) + Nr(4/3,4/3,4/3)+ Nu(1/10,1/6,0) (33)

0 o© 0 19/15 3/5 44/15 9/50 9/10 0
b.-,-.-:(o -136/3 0 )+Np( 1/5 49/3 4 )+NH(3/10 13/6 o) (34)

o o0 -102 11/30 3/2 76/3 0 0 o
For the MSSM one has
b; = (0,—6,-9) + Nr(2,2,2) + Nu(3/10,1/2,0) (35)

0 0 0 38/15 6/5 88/15 9/50 9/10 0
bj=[ 0 —24 0 |+Ne| 2/5 14 8 |+Ng| 3/10 7/2 0 (36)
0 0 54 11/15 3 68/3 0 0 o

In Egs. (33-36) Nr is the number of families (Nr = 3) and Ny = the number
of Higgs doublets. (Ny =1 for the SM and Ny = 2 for the MSSM). The difference
between the b; and b;; of the SM and the MSSM is due, of course, to the different
particle spectrum.

Using the experimental values of a;(Mz) as initial conditions, one may check
whether the a; meet at y = Mg:

a;{Mg) = ag = Gut scale coupling constant (37)

o (u)

10 10° 10’ 1 1d' i 18 g7
1 [GeVl

Figure 4: a;!(u) for the Standard Model with 1 Higgs doublet. The three coupling constants do
not meet.

For the SM, grand unification fails by more than 7 std (Fig. 4 Amaldi et al [2]).
For supersymmetry one may consider the simplest approximation of assuming all
SUSY particles are degenerate at a common mass Ms. Then acceptable unification
does occur but only for one pair of light Higgs doublets (Fig. 5, Fig. 6 Amaldi et
al [2]). A fit to the data for the MSSM depends on the value of as(Mz). One finds
az! =25.4:+1.7 and

13




SUSY 2nd order

()

i
wn
(o]

&

8

-
o
Ty —r-v—rvTrﬁ—r"rv-r-v-T VYT e
L4 \
~

(2]
[+]

a3'(s) ;
T R T T T T T L &
M [GeV]
Figure 5: o;(u) for the MSSM with one pair of Higgs doublets showing grand unification.
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Figure 6: a;(p) for the MSSM with two pairs of Higgs doublets. While unification occurs, Mg is too
small to prevent rapid proton decay p — e¥x® and My is too large to resolve the gauge hierarchy
problem.

Mg 2 1018:2+5.7(c3/0.118-1) )

MS o 102.44-17.4(1-0./0.118) (39)

We see that there is an anti-correlation between Mg and Mg:

Mg = 10'%2 [1024/Ms (GeV)]*S3 (40)

i.e a larger Ms gives a smaller Mg, and from Eq. (39) a larger Ms corresponds to a
smaller value of a;.
We note the following points concerning the above results:

(i) The major experimental error in the analysis is due to the experimental error in
as(Mz). Last year there appeared to be the possibility of a discrepency between
the low energy evaluations of as(Mz) and the high energy LEP results. Recently,
however, the LEP average has been lowered to [20] as(Mz) = 0.123 4 0.006 while
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the deep inelastic scattering evaluation is o3(Mz) = 0.112+0.005. Thus the choice
of Eq. (31) is in reasonable agreement with both types of determinations.

(ii) It is a; = (5/3)ay that unifies with a; and as. From low energy SUSY (e.g.
the MSSM) this looks mysterious, i.e. why a 5/3 factor? However, from Gut
physics based on SU(5), SO(10) and other groups this is just what is expected,
i.e. the unification should occur when the hypercharge is embedded in the
grand unified group with a factor 5/3. This implies that the unification of
the couplings is not just a property of low energy SUSY, but also requires
information about Gut scale physics, i.e. the MSSM by itself does not imply
grand unification.

(iii) The SUSY masses are, of course, not all degenerate and one needs to include
SUSY mass splitting. There are also similar mass thresholds at the Gut scale
and these can also modify the results. However, one cannot discuss this within
the framework of the MSSM as one needs a Gut model. We will come back to
this within the framework of supergravity grand unification.

(iv) Unification of couplings does not appear to be good news for string theory
which also expects unification, but at the Planck scale Mp, = 2.4 x 10!®* GeV.
Two possible explanations for this discrepency have been proposed: There may
be string threshold effects that modify the unification point. Alternately, the
string model (vacuum state) may predict the existance of “exotic” particles
with masses (less than Mg) of just the right values so that the (modified) RGE
delay unification until Mp,. However, up to now, no string model that predicts
the desired properties has been constructed.

7. Local Supersymmetry (Supergravity)

In order to obtain a phenomenologically acceptable spontaneous breaking of
supersymmetry, it appears to be necessary to promote supersymmetry from a global
to a local symmetry (which theoretically is a natural thing to do). This turns out
to require that gravity be included into the analysis, i.e. local supersymmetry is
supergravity. We give in this section a brief discussion of the ideas of supergravity.

To see why local supersymmetry forces one to include gravity, consider the
simplest global SUSY system of a non-interacting chiral multiplet, {z(z), x(z)}. The

Lagrangian is [6):
L = ~8,z'0"z = X(-i)1*8,x (41)

L is invariant under the global SUSY transformation

62(z) = Ex(x); bx(z) = - [, (2)le (42)

where ¢ is an infinitesimal anti-commuting constant spinor. Suppose now we replace
¢ by ¢(z). Now £ is no longer invariant i.e.
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5L = [8,5(z)] (+*y*Baz(x)] x) + divergence (43)

To compensate for this term, we proceed as usual by introducing a compensating
gauge field (the “gravitino”)

Y4 (z) = spin 3/2 field (44)

(a = spinor index) with transformation rule

Sy = k™10%(z); [K] = (mass)™? (45)
We add to £ the interaction term

Ly = =P, 7" [1*8az(2)] x (46)

which clearly cancels the §,z(z) term of Eq. (43) under the combined transformations
of Eqs. (42) and (45). However, £ + £, is still not supersymmteric, since one finds

Lo + L1 = K, 7, T e(z) (47)

where T*" is the z(z) stress tensor. This term can be canceled if we now add to the
system a second field,

Guv(z) = spin 2 field (48)
with supersymmetry transformation

0Guy = n%,m,e(z) (49)
and add the coupling

£2 = __g‘pry (50)

Thus the requirement of local supersymmetry leads to a gauge theory based on the
SUSY massless “supergravity multiplet”:

{¥*(z), guv()}
s = 32, 2 (51)

gu(z) is clearly the gravitational field (a massless spin 2 particle), £, being the gravi-
tational coupling, and one recognizes ! as the Planck mass: x~! = (82Gy)~1/2 = Mp,
(where Gy is the Newtonian constant).

Next, let us consider the supergravity multiplet, neglecting coupling to mat-
ter. The supergravity Lagrangian is just the sum of the spin 2 plus spin 3/2 La-
grangians. Thus introducing the vierbein e(z) by

Iuv(Z) = €5 (Z)Mmne(2) (52)
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the N = 1 supergravity Lagrangian can be written as [21]

1 -
Lsg = _%"—2eR(e;Ts"’;T "= -2'5’””"'#757"13 Yo (53)

where e = det [e7], R is the curvature scalar, w" is the spin connection (determined
by varying Eq. (53) with respect to w™) and D, = &, + ¥ 0mn, Omn = § [Ym,¥n]
is the covariant derivative. Eq. (53) is invariant under the local supersymmetry
transformations ’

et = 3 RE()Y™$ui 89 = K71 Dye(z) (54)

and one finds sw™ = 0. Eq. (54) is just the generalization of Eqs. (45) and (49)
to maintain the general coordinate invariance required by the gravitational interac-
tions.

8. Supergravity Coupling to Matter

Just as one couples Einstein gravity to matter, one needs to couple super-
gravity to matter. For physically interesting systems, we saw that matter consists
of a number of chiral multiplets (to represent quarks, leptons etc.) and an arbitrary
vector multiplet (to represent the gauge particles). The analysis of how to couple
the matter multiplets to the supergravity multiplet and maintain supergravity in-
variance is very complicated [22, 23]. We give here only that part of the Lagrangian
relative to Gut mode] building.

The general couplings of N = 1 supergravity depend upon three functions,
the superpotential W(z;), the Kahler potential d(z;, z!) and the gauge kinetic function
fap(zi,2!]). Here the {z;} are the spin zero components of the left handed chiral
multiplets. {z;,x:}, and e, g are adjoint representation gauge indices. W, d and fa.g
are hermitain, W and d are gauge singlets and f,s is a gauge tensor. Actually,
W and d enter in a single combination

G = —k?d — ([ WW1] (55)

so the general supergravity Lagrangian really depends only on two functions f.s and G.
From Eq. (55) one also sees that the theory is invariant under a Kahler transforma-
tion '

d=d=f(z) - f'(z), W e 'W (56)
The “Kahler metric” is defined by
i i O%d —2p
gi=dj=o— =—r"g; (57)

For the special case d = T, z:z} one has gi = §! which is a flat Kahler metric.
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The total Lagrangian is quite complicated containing many non-linear terms
scaled by factors of (Mp,)~". Most of these are negligibly small at energies below
the Planck scale. There are five important terms that we list now:

(i) Effective Potential
The effective potential has the form

V = —xte ¢ [(G'l)_';-g,iG‘j +3)

+ Z Re(/™)esl DD (8

where (G!)}, (f~!)ap are the matrix inverses of g%}, fap and g is the gauge coupling
constant. The quantity D, is given by

o = =K"2G4 (T*)ij2; (59)
where T is the group generator. Re-expressing V in terms of W and d gives
ow
8z;
where Vj is the last term of Eq. (58)

(i) Scalar Kinetic Energy
The spin zero kinetic energy is given by

V=e [(d)i(5— + nza,.-W)(%zvz_ +r2d ;W) = 3s2W[?] +Vp (60)
¢

— d5(D*z) (Duz)! (61)
where D, is the usual gauge covariant derivative. We will consider Kahler metrics
where the non-linear terms are scaled by 1/Mp, = x;

g;: =d:j- =c§-+xc§kz,,+~-- . (62)
After spontaneous breakings (of the Gut gauge group and supersymmetry) some of
the z, fields will grow VEVs. One can write then g} =< gi > +¢{ where < gi’ >=0.
One may then make unitary and scale transformations on z;, z{ which reduces < gi >
to & and hence the kinetic energy to canonical form i.e.

gi—di+ wehzl; <zl >=0 (63)
The extra non-renormalizable terms in Eq. (61) are scaled by « = 1/Mp, and hence
negligible below the Planck scale.

A similar analysis holds for the spinor kinetic energy term of the chiral mul-
tiplet which has the form —dx'y*D,x’ where D, is the gauge and gravitational
covariant derivative. The same transformations used in the spin zero sector also
reduces the spinor kinetic energy to canonical form.

(i#i) Gauge Kinetic Energy
The gauge kinetic energy has the form
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- % (Refup)FS,F™* (64)

We consider f.s whose non-linear parts are also scaled by 1/Mpy, i.e. fap = cap +
Kcapizi + +-+; which after spontaneous breakings takes the form ¢ ; + rcapirzi + -,
< z} >= 0. One may now make orthorgonal and scale transformations on Fg, to
reduce fop t0 fap = dap + sclip2) + -+ and hence the kinetic energy to canonical
form. The same transformations simultaneously reduces the gaugino kinetic energy,
—1 (Refap)X*v#D,)f to canonical form.

(iv) Gaugino “Mass” Term
A term quadratic in the gaugino fields exists in the Lagrangian:

[% &"le=9/2(G)igv f, .:p.i] a8 (65)

When supersymmetry breaks, we will see that it is possible for the bracket of
Eq. (65) to grow a VEV and hence give rise to a gaugino mass.

(v) Gravitino “Mass” Term

A term quadratic in the gravitino mass also exists in the Lagrangian,

[x~1e=9/% 0", (66)

and if supersymmetry breaks, a VEV of the bracket of Eq. (66) gives rise to a
gravitino mass.

The effective potential of Eq. (60) is the supergravity generalization of the

global SUSY effective potential. Thus if we consider the expansion of Eq. (63) and

take the limit x = 0 (i.e. Mp, = o0), the first term of Eq. (60) reduces precisely to

Vr of Eq. (17) with the notational change W —+ W. Similarly, D, of Eq. (59) reduces
to

e = (d¥ + K72WH [W)(T*)ij2; (67)

However, W/T3z; = 0 (since W is a gauge singlet) and writing d* = 2} +--- one gets
in the limit x — 0 that D, = z}(T°);;z; [24]. With the expansion of fos = o+ -
discussed below Eq. (64) we see that in the x — 0 limit Vp of Eq. (58) reduces
precisely to Eq. (16) of global supersymmetry. Thus global supersymmetry can be
viewed as the limit of supergravity when Mp, =+ co.

However, Planck scale effects are crucial in that they allow spontaneous
breaking of supersymmetry to occur in a natural way. Thus the full supergravity
effective potential of Eq. (60) differs from the global one of V7 + Vp, [Egs. (16)
and (17)] by not being positive definite. Hence Eq. (60) can easily accommodate
supersymmetry breaking. A simple example of this is the choice [25] W = m?(z + B)
(where m? and B are constants) with a flat Kahler potential (d = ¥°; z;2}). Minimizing
the potential of Eq. (60) yields the result

<z>=k"'a(V2~V6); a==%1 (68)
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We see that < z >= O(Mp,) and so the Planck terms in V are crucial to achieve
this result. [One can also fine tune the cosmological constant to zero (arrange that
Vinin = 0) by chosing B = —x~1a(2v2 — v6).] The existance of a non-zero <z > is a
signal of supersymmetry breaking via a “super-Higgs” effect. The chiral partner of
z(z) ie. x.(z) is absorbed by the gravitino y#(z) which then becomes massive with
mass mys,. (The extra two helicities of x. then gives the y#(z) four fermionic helicity
states, the correct number for a hermitian massive spin 3/2 field. The complex Higgs
field z(z) has two bose degrees of freedom, which with the massless graviton g,.(z)
gives four bosonic states.) From Eq. (66) one has

maje = % K| < W(< z>)e¥<> (69)

which shows that my;,, = xm?. We will see below that supersymmetry breaking
triggers SU(2) x U(1) breaking at the electroweak scale so that xm? = O(Mz), which
implies m = 0(10'® GeV) for this case.

An alternate way of breaking supersymmetry is via a gaugino condensate
[26], m} =< M®A ># 0. Then it turns out that ms;, ~ 8% < XA9®A > which is of
electroweak size for ms = 0(10'2-13 GeV). Such an effect requires non-perturbative
phenomena to occur, and hence it is difficult to make an explicit calculation in this
mechanism for supersymmetry breaking.

9. Supergravity Gut Models

We consider in this section the construction of grand unified models based on
supergravity [27]. The advantage of using local supersymmetry is that, as we have
seen, spontaneous breaking of supersymmetry is easily achieved as a consequence of
the supergravity interactions. However, a new hierarchy problem arises. Since the
super Higgs VEV < z >= O(Mp,), there is a danger that the breaking of supergravity
will communicate huge Planck size masses to the physical particles. The secret of
preventing this is to allow the super Higgs field to couple only very weakly to
the physical matter fields i.e. only gravitationally. This can be accomplished by
requiring:

(i) The super Higgs field z(z) be a gauge singlet.
(ii) W(2;) = W(zs) + Wa(z) where {z,} are the physical fields.

Condition (i) guarentees that there are no gauge couplings between z(z) and the
physical fields {2,(z)}, while from Eq. (60) one sees that the other couplings between
z(z) and z,(z) are always scaled by powers of « = 1/Mp, and hence gravitationally
suppressed. Thus (i) and (ii) implies that supersymmetry breaking lives in a “hid-
den” sector, screened from the physical sector by gravity. (Such hidden sectors also
exist in string theory.)

The discussion of the unification of the SM coupling constants suggests that
the SM group is a valid symmetry below the Gut scale M. Thus as one proceeds
from Mp, down to Mg, one expects the Gut gauge group G of the physical sector
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to break to the SM at u= Mg: G = SU(3)c x SU(2)L x U(1)y. For the theory to be
reasonable this must happen spontaneously with some of the fields, {z4(z)} growing
VEVs and superheavy masses:

< z4 >= O(Mg); M., = O(Mg) (70)

One may now integrate out the superheavy fields 2, and eliminate the super
Higgs fields to obtain an effective SU(3) x SU(2) x U(1) theory just below Mgz. A
remarkable theorem then holds [28]:

Consider a class of models which obey the following conditions:

(i) There exists a “hidden” sector which is gauge singlet with respect to the physical
sector gauge group G which breaks supersymmetry (e.g. by a super Higgs or
gaugino condensate). The hidden sector communicates only gravitationally
with the physical sector.

(ii) There exists a Gut sector which breaks G to the Standard Model at scale
Q = Mg : G - SUB)c x SU(2)z x U(l)y.

(iii) After integrating out the superheavy fields and eliminating the super Higgs
fields, the only light particles remaining below the Gut scale are those of the
supersymmetrized Standard Model with one pair of light Higgs doublets.

(iv) Any super Higgs couplings that appear in the Kahler potential are generation
independent.

Then, for models where the non-linear parts of f,s and d are scaled by x = 1/Mp,,
the renormalizable interactions below Mg (which equivalently arise in the limit
x — 0) are described by an effective superpotential with quadratic and cubic parts,
W =w® 4+ w®), and effective potential Vv,

W
V = (15 + Vo) + {mizaz! + (AW® + BoW® 4 he), (71)
a a

and a universal gaugino mass term

‘C,A,m" = -m1/2.xaxa (72)

If the model is R parity invariant or alternately lepton number conserving, then W
has the unique form (required by SU(3) x SU(2) x U(1) invariance),

W = poHi Hy + M) i Hzuf + 2D d:Hyd§ + X1 H, dS) (73)

where A{j" are the Yukawa coupling constants [analogous to those in Eq. (5)] and
H, > the two light Higgs doublets.

Assumptions (i) - (iv) lead to a wide class of models. Thus conditions (ii)
and (iii) are what is needed to achieve grand unification [i.e. the SM group holds
up to Mg with the particle spectrum as stated in (iii)]. Condition (i) is what is
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required maintain the gauge hierarchy and (i) and (iv) guarantee the suppression
of flavor changing neutral interactions. Thus it is difficult to remove any of these
assumption and still maintain a phenomenologically viable model.

Egs. (71) and (73) show that the effective theory below the Gut scale is a
broken global SUSY theory (Vp is the usual D term) with four soft breaking terms.
These are scaled by the mass parameters mo (universal mass of the chiral multiplet
spin zero fields), m,/, (universal gaugino mass), 4, and B, (scaling factor of cubic
and quadratic parts of the superpotential). These four constants are determined
by the nature of the hidden sector, i.e. they parameterize our ignorance of the
hidden sector where supersymmetry breaks (e.g. by a hidden sector superpotential
Whi(z) or by hidden sector gaugino condensates). In addition there is a Higgs mixing
parameter go.

It is interesting to compare the simplicity of this result to global SUSY
theory. There one added in soft breaking terms by hand, Eqgs. (24) and (25), and
the most general form depended on 137 parameters. Effectively the supergravity
theory determines 133 of these parameters!

We briefly indicate how the various soft breaking terms in Egs. (71), (72) arise
for the case of super Higgs brea.king of supersymmetry. Thus from Eq. (60), the term
(d~1)i[x%d ;W] [s2d;W]' gives rise to (x?|W[*)zz] and hence to mZ ~
(n2 < Wi >)%. Similarly, cross terms in Eq. (60) such as (d71)in?d ;W (8W /82;) give
rise to z;(6W?3 /8z;,)s* < W, > which yield 4, and B, type structures. If f,5 =

dag(1+cxz+---) then from Eq. (65), for i = j = z, the VEV of the bracket gives a term
of form x® < :W,, > and since < z >~ x™! one has m, s, ~ x? < W;, >. Finally we note
that the Kahler potential can have a form d = z;2! + £(2;) + f(2;) and the most general
gauge invariant and lepton number invariant quadratic piece for f is f(z) = cH\H;
where c is dimensionless. (Higher terms in f(z;) load to non-renormalizable interac-
tions scaled by « =1/Mp,.) By the Kahler transformation of Eq. (56) this term can
be moved into the superpotential yielding We*'/ = W + cx? Hy HoW + --- and hence a
quadratic term cx?> < W;, > H,H, showing that uy ~ x? < W, >. Thus we see that all
the parameters mq, m,/,, Ao, By and po are of the same general size, i.e. s < W), >,
and we will see later that this mass is the electroweak mass scale.

10. An Example: SU(5) Supergravity Gut Model

In this section we discuss an explicit example of a supergravity Gut model
based on the Gut group G = SU(5). Here each generation of quarks and leptons are
in the 10 + 5 representations of SU(5):

10=M* = MYX 5=Mi; i=1,23X,Y=1.-. (74)
where i is the generation index and X,Y are group indices. In add:txon, the Higgs
are in 5+ 5 representations

5=HX; 5=H.x (75)



Thus if we decompose the SU(5) labels into their SU(3) x SU(2) content, X = (a,a) a =
1.--3, a = 4,5 then Hy and H,, are the H;, H, doublets of the Standard Model, and
in addition there are two color triplets (3 and 3) Higgs Hg, Ha.

The total superpotential has a Yukawa, a Gut and a hidden part: W =
Wy + Wg + W,. W, is chosen to break supersymmetry. The SU(5) invariant Yukawa
interactions are

Wy = Mjexvz woHE MY ZMPY + N HoxMiy MY (76)

In writing Eq. (76) we have assumed invariance under the discrete symmetry (matter
panty) of (M{‘[Y,ﬁ;x) - (_M‘XY’ —ﬁ.'x), (Hlx,ﬁzx) - (Hf{,.ﬁzx) to forbid the cubic
interactions M;xM;y MXY which would give rise to too rapid proton decay. The Gut
sector (originally proposed in global SUSY models [29]) uses a 24 representation of
SU(5),Z¥, to break SU(5) to the SM. The form of Wg is

We = A;[%TrE’ + %MTrE’
A Hyx[EF + 2M'6Y) HY (77)

where Tr is the trace over SU(5) indices, and M, M’ are mass parameters of O(Mg).
In the following we will set M’ = M.

One may now minimize the effective potential. W, causes the breaking of
supersymmetry and gives rise to the soft breaking parameters of Eq. (73). Assuming
these are much smaller than Mg, one finds upon minimizing the effective potential
of Eq. (71) that =¥ grows a VEV which to leading order is

diag < TF >= M(2,2,2,-3,-3) [1 + 0(%)'] (78)

where msp is any of the soft breaking parameters mo, m,;, etc. (Since we will
see that msp = O(M;z), characteristically O(msp/M) =~ 10~ and hence negligible.
Eq. (78) clearly breaks SU(5) and preserves SU(3) x SU(2) x U(1). The £¥, Hf and Ha,
become superheavy with masses O(M) s Mg while the SU(2) doublets Hf, H;, re-
main light with masses O(msg) and O(u,). Integrating out the superheavy fields in
Wy and W and eliminating the super Higgs (which effectively means replacing it by
its VEV) one finds that the renormalizable interactions are governed by an effective
superpotential which is precisely the form of Eq. (71) [with effective potential and
gaugino mass term of Egs. (73) and (72)]. Thus at the Gut scale, the theory has
precisely the form of the MSSM with H, = H and H; = H,, playing the role of
the two light Higgs doublets but with four soft breaking terms and a Higgs mixing
parameterized by

m09m1/29AOaBO and o (79)

There is one theoretically unpleasant aspect about the above model. In

Eq. (77) we set M’ = M, and it is this that kept the Higgs doublets light (i.e.
the doublet masses are proportional to M’ — M.) While the no-renormalization
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theorem of supersymmetry guarantees that this condition is maintained even with
loop corrections, this is indeed an awkward fine tuning. There are several ways of
avoiding this problem:

(i) Missing Partner Mechanism

By using the 75, 50 and 30 representations in W¢ to break SU(5), instead of
the 24, one can prevent the Higgs doublets from growing masses [30]. Recall that

75 = LN, Iiy =0; 50=06%Y;, 65Yw =0
. XYW
m = va};z, §UW =0 (80)

where subscripted indices are all anti-symmetric as are superscripted indices. In-
stead of Eq. (77) one can chose

=XYZ

WG = I\IQ?,YZEJU‘;’;’H;Z + A290“' EK"]"’TI-ZZ
-=XYZ
+MOY,BXYZ | 4(x) (81)

where f(T) is chosen so that £X} grows a non-vanishing VEV of 0(M). Now the
SU(3)c x SU(2). content of the 50 is '

50 = (8,2) + (6,3) + (6,1) + (3,2) + (3,1) + (1,1) (82)

i.e. there is no doublet (1,2) term. Thus when £ is replaced by its VEV in Eq. (81)
there is no piece of & to match up to form a mass term with the H? doublet in the
A term (and similarly no piece of © can form a mass term with the H,, doublet in
the ) term). Note that the 50 does contain a (3,1) piece and the 50 contains a (3,1)
piece and so the color triplets, H, H,, do indeed become superheavy.

(it) Higgs Doublets as Goldstone Bosons

An alternate procedure is to choose a form for W with a larger global sym-
metry which has the gauge group G as a subgroup [31). [For example, in the case
G = SU(5), one may give W a global SU(6) symmetry by extending =¥ X,Y =1..-6 to
be a 35 of SU(6) and similarly H¥, H.x be 6 and § of SU(6).] When the local SU(5)
breaks spontaneously, the global SU(6) also breaks. The Higgs color triplets become
superheavy as before, but the Higgs doublets are the Goldstone bosons arising from
the breaking of the global SU(6). Thus they remain massless. One in fact finds in
this analysis that M = M’ occurs automatically, which illustrates that one man’s
fine tuning may be another man’s group symmetry!

(iii) Flipped SU(5) x U(1)

A third method of keeping the Higgs doublets light is to change the group
symmetry to SU(5) x U(1) and flipping the embedding of the particle spectrum [32].
Thus one uses a 10+ 5+ 1 of SU(5) for each generation, but interchanges u and d
quarks and e and v leptons, the € field then appears in the singlet representation
with a right handed neutrino replacing it in the 10 representation. Instead of using
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a 24 to break SU(5), one introduces 10 and T0 fields along with the usual H, and H..
The Gut Yukawa couplings are then A;10 10 H; + .10 10 H.. The SU(3)c x SU(2).
content of a 10 representation is (3,1)+(3,2) +(1,1) and so when the 10 grows a VEV
one has a natural missing partner for the doublets (e.g. no (1,2) piece in the 10 to
form a mass term with the H,,). However, there is a (3,1) which combines with the
H? to make the color triplets superheavy. The drawback of this model is that it is
not fully unified since G is a product group. A possible solution to this difficulty is
discussed in Sec. 17.

11. Radiative Breaking of SU(2) x U(1)

In the SM, the spontaneous breaking of SU(2) x U(1) is arranged by hand by
inserting in a negative (mass)? in the Higgs potential. Thus the SM accomodates
the breaking of SU(2) x U(1) but does not deduce it’s existance from any of the
basic principles of the theory. One of the remarkable features of supergravity grand
unification is that it offers a natural explanation of SU(2)xU(1) breaking arising from
radiative corrections which generate dynamically the required negative (mass)? [33].
Further, it is the spontaneous breaking of supersymmetry at the Planck scale that
triggers the breaking of SU(2) x U(1) at the electroweak scale, a result that is a
consequence of supergravity theory [34]. Hence the two spontaneous breakings are
unified.

We consider here the general supergravity model which is described at the
Gut scale by Egs. (71)-(73). Aside from the Yukawa coupling constants (which are
the same as in the SM) this theory depends upon seven constants: m, 5, mq, Ag,Bo;
o} ag, Mg. This might be compared with the SM which depends upon m?, A (from
the Higgs potential); a;,02,a;. Thus one needs only two more parameters in super-
gravity Gut models than in the SM. (Also, ag and M may be viewed as having been
“measured” by the unification analysis of Sec. 6.) As we will see, radiative breaking
of SU(2) x U(1) will allow us to eliminate one more parameter, and so the general
model depends on relatively few parameters and therefore should have significant
predictive power.

The Gut theory is initially defined at Mg, while experiment takes place at the
electroweak scale. One may use the Renormalization Group Equations (RGE) to
connect these two domains. For discussion of electroweak breaking we need the part
of the effective potential involving the Higgs fields H, and H,. The renormalization
group improved Higgs potential is Vi = V, + AV; where V, is the tree part [which can
be read off Eqgs. (71) and (73)] and AV, is the one loop correction. One finds

Vo = milHif’ +mi|H? - mi(H\H; + h.c.)
1
+3 (& +9%) (IHLP® - |Ha?)? (83)

and [35]
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AV, = 6'41172 ;(—1)2'-n,M:zn[;%feQ—2 ] (84)

All parameters, m;(t), gz(t), gv(t) are “running” parameters at scale Q where ¢ =
In[M%/Q?%. Thus

mi() = mh,(0)+p2(0); i=1,2
mi(t) = -B(H)u(t) (85)

with boundary conditions at Q = Mg (t =0):

m}(0) = m}+pd, i =1,2 m3(0) = —Bouo
a(0) = ag=(5/3)ay(0) (86)

In Eq. (84), M, = M,(vi,v,) is the tree level mass of particle a as function of the VEVs
v; =< H; >, and s, and n, are the spin and number of helicity states of particle a.

The RGE are given at the end of this section. They allow one to express all
the parameters in Eqgs. (83,84) in terms of the Gut scale parameters. The procedure
one uses is as follows: A specific model corresponds to a choice of Gut scale param-
eters mo, my;, Ao, Bo, and po. At the Gut scale, all scalar particles have an initial
positive (mass)? of m2. One then integrates down in energy until a (mass)? turns
negative, signaling the breakdown of SU(2) x U(1) and a VEV growth v; =< H; ># 0.
Let us first look at the tree potential v;. Here SU(2) x U(1) breaking implies that
the determinant of the (mass)? matrix be negative (so that one negative (mass)?
eigenvalue exists) i.e. from Eq. (83),

D=mimi-mi<0 (87)

Also, for a valid minimum, one requires that the potential be bounded from below,
which is satisfied if

L=mi+mi-2mi|>0 (88)

Turning now to the full potential, the minimization conditions, 8Vy/8v; = 0 yields
the relations

1., p—pjtan®g . 2m} .
2M%“ tan? B~ 1 »mzﬂ—”¥+”§ (89)
where tang = v2 /vy, p? = m? +I; and £, is the loop correction
1 s
Zi = 555 Ta(=1)*naMZin[M2/e/*Q?) (OM3/6v:) (90)

Since |sin 26| < 1, the second equation of (89) includes a generalization of the stability
condition Eq. (88) with loop corrections.
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Normally, one would use minimization of Vy to solve for the two VEVs
v; =< H; >. Instead, it is more convenient to use them to eliminate two of the Gut
parameters in terms of tang and the other parameters. A convenient choice is to
use the second equation of (89) to eliminate B, and the first equation to eliminate
po. Since only u? enters into the first equation, there are two branches depending
on the sign of u i.e. 4 > 0 and u < 0. One then has that the low energy physics
depends only on four parameters:

mo, My /2, Ao, tan 8 = vz /vy (91)

Thus the 32 SUSY particle masses can be determined in terms of these four param-
eters (and the as yet unknown ¢-quark mass m,).
There are several fine points worth mentioning:

(i) If we define Q, as the mass scale where D(Q) of Eq. (87) vanishes and Q; the point
where £(Q) vanishes, in general one finds that Q, > Q,. Thus at the tree level,
satisfactory electroweak breaking occurs when Q; < Q < Q,. In running the
RGE from M¢ down to Q, what value should we choose for Q7 (Where should
we stop the RG “clock”?) It has been shown that when the loop correction
AV, is included, the results are approximately independent of @ [36]. In the
following we will set Q = Mz. This is convenient since then Mz(Q = Mz) is
the physical (experimental) Z boson mass. [All other masses then are running
masses at scale Q = Mz (and can differ from their physical values)]. Actually,
matters are simpler. In most of the parameter space, there is a large amount
of cancelation in ¥; and so the one loop correction is small [37]. Thus using V,
alone generally gives a good approximation, and the Q dependence of results
are small.

(ii) In the analysis given above, we have tacitly assumed that it is a Higgs (mass)?
that turns negative as one runs the RGE from Mg to the electroweak scale.
It is possible that some other (mass)? might turn negative first e.g. a squark
or slepton. This would lead to a catastrophe that SU(3)c or electromagnetism
breaks down. A number of necessary conditions for this not to happen have
been established [38] (though sufficiency conditions are not known). Through-
out most of the parameter space, the known conditions are satisfied, and it is
m%, which turns negative. The characteristic situation is shown schematically
in Fig. 7.

The existance of solutions to Eqs. (89) is the necessary conditions that elec-
troweak breaking actually occurs. No satisfactory solutions will exist, however,
unless three requirements are met:

1. At least one of the soft breaking parameters mo, m,/;, Ao, Bo are non-zero
2. pe is non-zero

3. m, is heavy (m, 2 90 GeV)




Figure 7: Schematic diagram of running of masses from Mg to electroweak scale. The heavy top
quark bends m};, downwards as Q decreases.

Condition (1) shows in a real sense that the breaking of supersymmetry at the Gut
scale generates SU(2) xU(1) breaking at the electroweak scale for if all the soft break-
ing parameters generated by supergravity vanished, there would be no electroweak
breaking. Similarly uo (which is also generated from supergravity interactions) must
be non-zero and m; must be heavy since it is the t-quark Yukawa coupling to H,
that drives m}, negative. Thus there is a confluence of three items, two of them
theoretical aspects of supergravity, and one of them experimental that gives rise to
electroweak breaking. The fact that the top quark must be heavy was one of the
first predictions of supergravity Guts [33)}.

Renormalization Group Equations

We list here for reference the one loop RGE. For simplicity, we keep only
the large ¢-quark Yukawa couplings, which is a good approximation for tang < 10.
Our notation follows mainly that of Ibafiez et al [33] (except that a; = (5/3)ay).
Unfortunately, a number of different sign conventions for t, A; and x exist in the
literature. We use t = In(MZ/Q?).

(i) Gauge couplings:

da; b _ ~
- T a2; b; = (33/5, 1,-3),&; = a;[4n (92)

with boundary conditions «;(0) = ag.
(ii) Gaugino masses:
din; by .

= = M) mi(0) =myp (93)
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(iii) Higgs masses:

2
dmy

2 = 3ag13 + (3/5)a1m; (94)
dm ~ =2 s =2
5 = (3823 + (3/5)Gurmy)
-3Y; (m2Q +m} + mi,, + A?) (95)

with boundary conditions mg,(0) = m,. (Note that it is the t-quark Yukawa
couplings, ¥;, which causes m}, to decrease as t increases.)

(iv) t-quark Yukawa coupling:

dY; 16 . ., 13
Tti =(-§- a3+3az+ﬁal-6Yt)Yt2 (%6)

where Y; = A} /4r and X\,(Q) is the t-quark Yukawa coupling constant defined by
m; = Ag(ﬂh) < Hp >.

(iv) t-quark A parameter:

dA s .
-;ti = (16/3)asing + 3Gathz + (13/15)a;1h,; ) — 6Y: A, (97)

where A4,(0) = A,.
(v) B parameter:

dB

= = (320 +(3/5)amm) — 3Yad, (98)
where B(0) = B,.
(vi) 4 parameter:
du? ~ ~ 2

where 4(0) = po. (Note that the sign of yo is undetermined by the 4 RGE.)

(vii) Squark masses (i = 1,2):

Qi = (g, dir); Ui = tipi, D; = dp;

dm?2
dtQ‘ = (16/3)asm? + 3a2im3 + (1/15)a;m? (100)
dm?j . ~2 o~ ~2
- = (16/3)asrng + (16/15)&;m? (101)
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2
dmp,

= (16/3)Gsm? + (4/15)@1m?) (102)

where mq,(0) = my,(0) = mp,(0) = my.

(viii) Slepton masses (i = 1,2,3)

L; = (PpiyéLi); Eisép
dmi;

=L = 30pm + (3/5)am? (103)
de.' . ~2

where my;(0) = mgi(0) = mo. (Note that the slepton and first two generations of
squark (mass)? all increase with increasing ¢.

(ix) Squark masses (i = 3)

Q = (dsz,dsp); U=iisg,D =dsr

dm?
d—tQ = (16/3)asim3 + 3aym3 + (1/15)a, M3
= Yi(mj, + my +my + A7) (105)
dmi, S B
—-&;— = (16/3)031"3 + (16/15)01"‘61
- 2Yi(m}, + m% +mi + A7) (106)
dm}, - - - o
% = (16/3)asms + (4/15)&17m3) (107)

where mg(0) = my(0) = mp(0) = me.

The procedure of solving these equations is the following: (1) Solve (92) for
a; and insert into (93) to solve for ;. (2) One can then integrate (94), (100)-(102)

for m},, (m%,,m},,mbh,,i = 1,2), (103) and (104) for (m%;, m%;,i = 1,2,3) and (107)
and (96) for m}, and v:. (3) Using Y; one can solve (97) and (99) for 4, and x4 and
using then using ¥; and A, one determines B from (98). (4) The three remaining
equations, (95), (105), and (106) are coupled and must be solved simultaneously.

12. Expressions for SUSY Masses

The SUSY masses are quantities that are defined at the low energy elec-
troweak scale and are experimentally accessible to current and future accelerators.
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Using the RGE one can express each SUSY mass in terms of the 4 + 1 parameters
which define the Gut model: mo, m, /3, Ao, tan, § and m;. In this section, we discuss
the explicit formulae for each SUSY mass.

(i) Gauginos

From Egs. (92), (93) one finds ;(t) = [ai(t)/ag]m:/2 Where ai(t) = ac/(1+
Bit) and B; = bag/4r. These relations then imply

fy: M2: M=o : az: as (108)
a relation that is postulated in the MSSM.
(3i) Squarks (i = 1,2); Sleptons (i = 1,2,3)
The squark and slepton masses can be obtained from the mass matrix m?, =

< 8°VelS 182,82z} > where Vel/ is the low energy renormalization group improved
effective potential derived from Eq. (71). Using Eqgs. (100)-(104) to relate the low
energy mass parameters to the Gut scale parameters for the first two generations
of squarks and all the sleptons, one finds

m3, =mi+ml, + Gcl(8/3)fs + (3/2)f2+ (1/30)film}),

+ (G -3 sin’6w)MEeos’ (109)
mi, =mo+mi + G&cl(8/3)fs +(3/2)fz + (1/30)fi)mi,

+ (—% +% in? w )M cos 28 (110)

mi, =mg+my, + &cl(8/3)fs +(8/15)fi]m] .
+ (2/3)sin® 0w MZ cos 28 (111)

mi.=mitmy + Gcl(8/3)fs+(2/15)filmi
+ (—1/3) sin® 9wM;2; cos2f (112)

where m,;, mgi = 1,2 are quark masses, G = ag/4r and fi(t) = t(2 — Bit)/
(1 + Bit)?, B = (33/5,1,-3). For the sleptons one similarly has

mi, =mi+ms; + &cl(3/2)f:+ (3/10)fi}m},,
+ (-:.12- + sin® Ow )MZ cos 28 (113)

mip=m: + mf‘ + 60(6/5)f1mf/2 — sin? Ow M2 cos 28 (114)
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m?,, =m§ +acl(3/2)f2 + (3/10)fijm3 ;, + (1/2) M7 cos 28 (115)

where m.;, i = 1,2,3 are the charged lepton masses. The quark and lepton mass
terms arise from the Yukawa coupling terms of the superpotential Eq. (73).

If m, is large, the squarks and sleptons are nearly degenerate, and even if
mo = 0 (as in the No-scale models), the squarks are still approximately degenerate
since the f; term dominates. This is indeed what is assumed in the MSSM. If m, is
small, however, one would not expect the sleptons to be degenerate.

One of the remarkable features of Eqgs. (109,111) is that

m? —mZ = m? —m2 (116)
W w -
s s s B
g v
KL u,c \)p g,c u
d s d - W
W 1]

Figure 8: Contributions to K; = p*u~. The left diagram (the usual GIM term) is of size (m2 —
m3)/M3, while the right diagram (the additional SUSY term) is of size (m% — m3)/M2, or (mf —
m3)(m3).

Condition (116) guarentees a super GIM mechanism for suppressing flavor changing
neutral interactions. Fig. 8 shows this phenomena for the case of K — utu— (first
discussed in global SUSY models by Dimopoulos and Georgi [29]). Were it not for
Eq. (116), the Wino contribution to K — u*u~ would be very large since m; 2
100 GeV. Thus there is an enormous cancelation in the squark mass differences.
This cancelation can be traced to the fact that at the Gut scale, each squark gets
a universal (mass)? m? (which may be very large but cancels in the difference) and
a mass from gauge interactions (which govern the m?,, and D term contributions)
that are generation blind. The universal nature of m? arises from conditions (i) and
(iv) of Sec. 9 which guarentees that the super Higgs fields communicate with the
physical fields in a generation independent fashion.

(iti) Squarks (i = 3) and Radiative Breaking Masses
The bz squark behaves as the first two generation d-squarks with mass given
by Eq. (112). However, as can be seen from Eqs. (105) and (106), the bz, i, and iz

are strongly effected by the large t-quark Yukawa coupling. One finds for b; the
result
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mitm + 3 mdo+ald/Dfs+ (/1)

1 1 .
+ (‘E +3 sin 8w )M% cos 28 (117)

Further, the t-quark Yukawa coupling contribution to the A term of Eq. (71) and

the uH, H, contribution to Eq. (71) cause mixing between the #, and i states in the
t-squark mass matrix:

mt?L m:(Ag + 4 cin ﬁ)
m¢(A: + p ctn B) m} '

tr

(118)

where m¢(Q) = A(Q)v; and A, is the t-quark A parameter at the electroweak scale.
The solution of the RGE yields

m} = mb +m] +[(~1/2) + (2/3) sin® Ow]M3 cos’ B (119)
m} =m} +m} + (~2/3)sin’ 0w M} cos 2 (120)

where

1 2 2 2
my=zm§ + 3 fAomy—3 kA +3 hmi

+ [g e+&a(§ hi-F2 +% H)mi g, (121)

m'g,:g m + % onmllz—é kA?,-}-% hm2
+ I3 e+do(5 S+ fa=ax Sl (122)
where the functions e(t), f(t), h(t), k(t) depend on t = In[MZ/Q?] and the t-quark Yukawa
coupling, but are independent of mqg, m, /2, 4s, Bo and po. They are defined in Ibafiez

et al [33]. We also note that the three masses of Eq. (85) that enter into the radiative
breaking equations (89) are obtained from Eqgs. (94), (95), (98) and (99). One finds

mi(t) = mg + p3(t) + gmi (123)
m3(t) = p(t) + e(t)m3 j; + Aomy 2 f + mih — Ak (124)
m3 = —Bop*(t) + rpom, ;2 + sAopio (125)

where p?(t) = u3q and g(t),q(t), r(t), s(t) are defined in Ibafiez et al [33].
(iv) Charginos and Neutralinos

As discussed in Sec. 4, supersymmetric dynamics causes SU(2) xU(1) gaugino-
Higgsino mixing after SU(2) x U(1) breaking. The mass diagonal states are two
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charged Winos (charginos) and 4 neutral Majorana Zinos (neutralinos). The chargino
masses are [23]

MW = % 462 + (1 — i2)]} F 402 + (4 + 2) ) (126)

where v2vy = Mw(sinB £ cos8). The neutralino masses are the four roots of the
secular equation f(\) =0 [23]

M- (ﬁll + ﬁ‘lz)A’ + (M% + ”2 - ﬁllﬁ’lz)Az
[y — psin 28)M7Z + (i) + z)u’]A
+ [piyM2sin28 — fiymap®] = 0 (127)

1)

+

where fii, = iy cos? w + 1z sin’ Ow. We label the Zino states by Z;,i = 1.--4, where
mz <mz for i < j.
(v) Higgs Bosons

Since there are two Higgs doublets, one is left with three neutral Higgs bosons
[r and H (CP-even states) and 4 (CP-odd state)] and one charged boson H*. The
tree level masses can be obtained from the mass matrix calculated from the Higgs
potential of Eq. (83). One finds

m% = m? + m} = 2m?/sin2p (128)

mys =m} + My (129)
where the last equality of Eq. (128) follows from Eq. (89). For the CP-even neutral
Higgs, loop corrections to the light Higgs (k boson) are important since k may be
very light and a heavy top quark enhances the loop corrections. Keeping only the
top sector in the loops, m? and m%, become [39]:

1
2

where ¢ and ¢, are the loop corrections. They can be written in terms of two 2 x 2
matrices »;; and A;; according to

Mg = 5 [MZ +m +F {(MZ +m) +¢)* — 4miM7 cos 26+ 1 }'/?) (130)

e=TrA; g = —4(TrvA +detA) (131)

where

= &M% +mk; vy = EME + 8°ml; vz =y = sc(ME +m%)
zp2yz; Arg = zpy(w + Awsz) = An
= z(v+ 24w + AY?2) (132)
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4 m? +m?
4r My, s m; —m; m; —mg
w = In(m}/ml); v=In(m}m} [m}) (133)

and (s,c) = (sinB,cos B). Large correction can arise for the light Higgs » boson for
large m, due to the m{ factor in the z parameter. Loop corrections also exist for the
A and H* boson but these are small effects unless 4 and H* are very light.

13. MSSM as a Low Energy Approximation

In the previous section, expressions were given allowing one to calculate
each of the SUSY masses in terms of the Gut scale parameters. In addition, the
mass parameters m?, m2, m3 entering in the radiative breaking equations (91) were
similarly expressed allowing one to use these relations to eliminate B, and . (Since
the masses are also expressed in terms of the VEVs v; and v, the loop corrections
of Eq. (84) can also be calculated.) Thus the 32 SUSY masses can be expressed in
terms of four parameters mq, m,/, (or alternately the gluino mass, m; = (as/ag)mi /2
3.0 m,;2), Ao (or alternately A,, the :-quark 4 parameter at the electroweak scale)
and tang.

It is interesting to compare these results of supergravity grand unification
with the MSSM. As discussed in Sec. 4, the MSSM assumes Eq. (108) for the gaugino
masses as well as degeneracy of the first two generations of squarks [which was seen
to be a good approximation to Eqgs. (109)-(112)]. However, there are some places
where the MSSM is not a good approximation to supergravity models:

(i) The third generation of squarks are badly split and except for bx not degenerate
with the first two generations. (The usual MSSM analysis of data assume all
six squarks (or sometimes five squarks) are degenerate.)

(ii) The sleptons will not be degenerate if m, is small (which is the case for the
No-scale model). In addition, the MSSM depends on more parameters (and
hence is less predictive) than the supergravity models. For example,

(iii) The chargino and neutralino masses depend on u, which is arbitrary in the
MSSM but is determined (by radiative breaking) in supergravity models.

(iv) The A Higgs boson mass, which by Egs. (129) and (130) determine the other
three Higgs boson masses, is arbitrary in the MSSM but depends on the same
four parameters in supergravity models [see Eqs. (128) and (125)] and hence
is correlated with other masses.

These differences are illustrated in Fig. 9. One sees that the third generation
of squarks are badly split with the lightest stop, f,, being the lightest squark. Also
there are three light Winos and Zinos and three heavy ones, and one very light
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Figure 9: Predictions of 32 SUSY masses for supergravity grand unification for the case m; =
150 GeV, mo = 600 GeV, m; = 160 GeV, tanf8 = 1.73, A; = 0.0 (4 < 0). These parameters
uniquely specify all masses. The first column is the sleptons and first two generations of squarks, the
second column is the third generation of squarks, the third column is the charginos and neutralinos,
and the last column the Higgs bosons.

Higgs (k) and three heavy ones (H, A,H*). The sleptons are nearly degenerate with
the first two generations of squarks since m, is fairly large for this case.

14. Threshold Corrections to Grand Unification

In the discussion of the unification of the coupling constants in Sec. 6, it was
assumed that all SUSY particles had a common mass Ms. As we have seen, the
SUSY spectrum is split ranging from below Mz up to about 1 TeV. As a consequence
there are threshold corrections to the RGE that describe the unification of the
couplings. Similarly at the Gut scale, as seen in the SU(5) example of Sec. 10, we
may expect an array of superheavy non-degenerate states with masses of O(Mg)
which will also have threshold corrections. These corrections can modify the grand
unification results and some analyses of these problems have been given [40]-[43].

'We consider first the case of the low energy thresholds at Ms. For a fixed Gut



model defined by specific Gut parameters mo, m,/, etc., we saw we can calculate all
the SUSY masses and thus be able to insert the thresholds in the RGE running of
the coupling constants. Each threshold causes a kink in o;' (Fig. 10) which shifts
the positions of Mg and ag. However, the positions of each SUSY mass depends on
Mg and ag (from the running of the RGE) as can be seen in Sec. 12. Hence one
has an additional dependence of the final grand unification point on the position of
the threshold. Thus a complicated numerical analysis is needed to deal with this.

It is possible to parameterize the SUSY thresholds phenomenologically [42].
Thus integrating Eq. (32) from u = Mg to p = Mz gives:

a7} (Mz) = a3 +bito — Ai +2—loop (134)
where t, = In[Mg/M.]/2r and A; are the SUSY threshold pieces,

1 o
A= 3 oin(M./M.) (135)

Here 5 is the contribution of the ath particle to the beta functions g; = bia?/2x
(each particle decoupling at its mass as one proceeds downwards from Mg). The
A; are of course functions of the Gut parameters and can be explicitly calculated
using Sec. 12. Instead, one may use a phenomenological parameterization defined
by three masses M;, i =1,2,3:

36 In(Ma/Mz) = (MM — 65M )in(M;/Mz) (136)

Clearly, if all SUSY particles are degenerate, M; = Ms, but otherwise the M; are
distinct. Now one may use the place where o; and o intersect to define the grand
unification point y = Mg and the value of ag. Then by requiring also o3(Mg) = ag
one can predict the value of ay(Mz) (which can then be compared with experiment).
The threshold contributions to as(M;) are

25 In(M;/Mz) - 100 In(Mz/Mz) + 56 In(Ms/Mz) = ~19 In(MZ'/ [M3) (137)

which defines an effective Ms. Note however, that Mg.f ! is different from the average
SUSY mass since it is an average of logarithms weighted by g function factors, one
of which is negative. Thus it is even possible to have M/ < Mz. In general one
finds that these threshold corrections are about as large as the current error flags,
and hence will become more important as experimental errors decrease.

An important point to remember in considering the above analysis is that
the energy scale of supersymmetry breaking is the same of SU(2) x U(1) breaking.
This can be seen, for example, in Fig. 9, where the mass spectrum of the third
generation squarks, the Winos and Zinos etc. are not SU(2) x U(1) invariant. (In
fact, the Z,; and W; may lie below Mz.) Thus in proceeding up in energy from Mz,
one cannot assume SU(2) x U(1) invariance holds in the SUSY particle region, as is
sometimes done.
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Figure 10: Schematic diagram showing effects of SUSY mass thresholds. The values of Mg and ag¢
are shifted when threshold effects are taken into account.

We turn next to consider the Gut scale thresholds. The physics at the Gut
scale is unknown, and so treatment of threshold effects here are more speculative.
In order to learn the general nature of these effects we consider the SU(5) model of
Eqs. (77) and (78). From explicit calculation of the mass matrix one finds that the
superheavy particles arising from the breaking of SU(5) are the following:

(i) Two color Higgs triplet chiral multiplets transforming under SU(3)c x SU(2). as
(3,1) and (3,1) with mass My, = 5\, M.

(ii) Two massive vector multiplets (consisting each of a massive vector boson,
Dirac spinor and hermitian scalar) transforming as (3,2) and (3,2) with mass
My = 5/2gM, where ag = ¢*/4x.

(iii) Those components of the chiral multiplets of 3% not absorbed by the vector
bosons in their mass growth. These are two degenerate representations trans-
forming as (8,1) and (1,3) with masses M = 5),M/2 = M3 and a SM singlet
with mass M2 = A, M/2.

Upper bounds on the ), » arise by requiring that the model stay within the
perturbative domain. We take this to mean A,z < 2, or ay,, = Af,/4r < 1/3. Then
since ag' =~ 25 one has

Mpy, A < M < M <
== =2 39 I J1; =k 02 138
My \/fg My . My (138)
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Thus the superheavy particles cannot get much larger than My. Since the super-
heavy particles are expected to be O(M¢) we will also require A, 2 > 0.01 or a,, & 10~%.

Log,, [MH3(GeV)]

G o.115 .12 0.135 .13 9.135 0.14

a3(M z)

Figure 11: Grand unification including Gut thresholds of the model of Eq. (77). The allowed region
is that bounded by the solid quadrilateral.

One may now run the RGE up to the Gut scale, taking into account the ad-
ditional Gut thresholds. An accurate analysis requires inclusion of two loop effects.
Fig. 11 [43] shows the effects of the Gut scale thresholds neglecting the low energy
SUSY thresholds. Grand unification implies a correlation between My, and a3(Mz).
For A; > 0.01 or A; < 2, the horizontal line moves downwards. The effective Ms
is assumed to obey the bounds 30 GeV < Ms < 1 TeV. The solid quadrilateral
thus represents the allowed region of grand unification. The model thus predicts
a3(M;) < 0.135 consistent with the experimental value of a3(Mz) = 0.118+0.007. At the
1o upper bound of a3(Mz) = 0.125, one finds My, < 2 x 10'” GeV. Clearly, an accurate
determination of a3(Mz) would allow further tests of this model as My, is related to
the proton decay rate.

15. Models with Proton Decay

The analysis to obtain predictions of supergravity Gut models can proceed
as follows: One calculates the 32 SUSY masses in terms of the 4 + 1 parameters
me, mysz, Ao, tanf and m,. One then varies these parameters over their entire range
subject to the conditions that (i) Radiative breaking of SU(2), xU(1)y occurs, and (ii)
Experimental bounds on SUSY masses are not violated. One then gets the allowed
mass bands and correlations between SUSY masses. These are the experimental
predictions of the model.




It is possible to reduce the size of the allowed parameter space by imposing
additional constraints. Three possibilities that have been considered are: (i) Con-
straints due to experimental bounds on proton decay, (ii) Cosmological constraints
from SUSY candidates for dark matter, and (iii) Constraints from conditions on
Yukawa couplings at the Gut scale [e.g. A\(Mg) = A,Mg)]. We consider the first of
these here.

There are two main decay modes possible in SUSY Gut models: p = e* +
#° and p - 7+ K*. The current 90% CL bounds from Kamiokande and IMB are [44]

7(p = e*7°) > 5.5 x 10%%yr (139)

r{p = PK) > 1.0 x 10%%yr (140)

The decay p =+ e*x® can occur in both SUSY and non-SUSY models. It proceeds
through the superheavy vector bosons (X*, Y* in SU(5) theory) with mass My as
shown in Fig. 12. For SUSY models, the lifetime for p - e*x° is given by [42]:

d e+
P X
u u
0
m
u u
Figure 12: Proton decay diagram for the mode p = e+ + 7%,
r(p = etz®) = (——Aﬂ'———)‘m"*‘yr (141)
3.5 x 10} GeV

Super Kamiokande plans to be sensitive to this mode up to about 1 x 10* yr. To
be observable at this level requires (at about 90% CL) that My < 5 x 10'5 GeV.
Since the mean Mg value is Mg ~ 1.5 x 10'® GeV, it is doubtful that this model will
be observable at Super Kamiokande.

The decay p = v+ K+ is specifically a supersymmetric mode and hence obser-
vation of this decay would be a real indication of the validity of supergravity Guts.
However, it does not necessarily arise in all supergravity models. We consider here
“SU(5)-type” proton decay models defined as follows:

(i) The Gut group G contains an SU(5) subgroup [or is SU(5)].




(i) The matter that remains light after G breaks to SU(3)c x SU(2), x U(1)y at
Mg is embedded in the usual way in the 10 and 5 representations of the SU(5)
subgroup.

(iii) After G breaks, there are only two light Higgs doublets which interact with
matter, and these are embedded in the 5 and § of the SU(5) subgroup.

(iv) There is no discrete symmetry or fine tuning condition that forbids the proton
decay amplitude.

The above conditions can hold for a variety of groups besides SU(5) e.g. 0(10), Es
etc. Remarkably, models obeying (i) - (iv) give rise to a universal decay amplitude
[45, 46] for p =+ T+ K* arising from the exchange of the superheavy Higgsino color
triplet of mass My,. A characteristic diagram is shown in Fig. 13.

d _
(U > T — B
~o ] ~S
W Hy
P ~ ! E > S
d - - - K+
u > — u

Figure 13: One diagram contributing to the decay amplitude for p & 7+ K*. The Wino “dressing”
converts quarks to squarks and the Hj vertices violate baryon and lepton number. There are
additional diagrams with ¥,, 7, final states. Also the CKM matrix elements appear at the W
vertices allowing all three generations to enter in the loop.

~ Proton decay is characteristic of grand unified models and one might ask
under what circumstances it can be suppressed. It appears difficult to find a discrete
symmetry that can suppress the p -+ ¥K+ decay without introducing additional Higgs
doublets (which would ruin grand unification) or produce some other illness. The
only other natural way of suppressing the decay is by violating condition (ii). This
is done in the flipped SU(5) x U(1) model where the interchanges « ++d and e ¢+ v in
the particle embeddings suppresses proton decay. We will come back to this model
later.
Conditions (i) - (iv) imply the existance of an SU(5) invariant contribution
to the Yukawa part of the superpotential of

Wy = MiexyzwoHF MYZMYU + N Hox Moy MEY (142)

where we have used the notation of Sec. 10. It is the superheavy Hf and H,,
couplings in Eq. (142) which give rise to the p-decay interaction. One may eliminate
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these fields to obtain an effective dimension five interaction scaled by 1/My,. The
total decay rate is

T(p— FK"’) = Zr(p - 7.'K+) (143)

where 7; = (7., 7, 7,-). The calculation of I'(p —+ PK*) is rather lengthy. We state here
the final result [46) for reference. The first generation contributions are negligible,
and so one may limit i to i = y,7. One can write

T(p ~+ %iK*) = C(5p2-VAPIB (144)
where C is a chiral current algebra factor (Chadha and Daniels [45])

C-'32 fz K +T_’%&) (1 mK)lz

(D =0.76, F = 0.48, f, = 139 MeV, my = 938 MeV, mp = 1154 MeV, mx = 495 MeV).
The factor A is

2
w

where V;; are CKM elements, 4, s are renormalization group factors to take the
operator at the Gut scale to the proton scale (Ellis et al [45]). We find A, = 0.283,
As = 0.833. The quantity 8, describes the quark content of the proton,

BoUL = Eabetap < old3 ufulilp > (146)

where U} is the proton wave function, d2;, uf, are quark operators (e, = spinor
indices). 8, has been evaluated by lattice gauge theory [47]:

_ Bp = (5.6 £0.5) x 10~ GeV? (147)
The loop integral B; may be written as

Va1 V4 1
B.‘= g gl P My Vay Vs2 PB i -
mavhy PP v DB g

where m? are d-quark masses and Bj;, the contribution of jth generation particles
in the loop to the amplitude for p -+ ¥;K+ may be written as

(148)

where |

F (@, d;, W) = [E cos y_sin 4. f (@i dj, W1) +
3 ol ~ T T 1 6! 26"!
CO8 Y4 m‘Y—-f(“h djv Wz)] 2 Vs—ﬂbli‘;_- I{Em7‘m7+f(uchdjswl)

—cosy-cos 74 f (iil,‘iiv Wz)} - {&n = tin}] (150)
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with the definitions v+ = 6, £ 8-,

(p F 1m2)

028 = [T (a7 V2 Ve = Mwin gk cosf) a5

. —2(A¢+p ctn B
6in 265 = =2 :"2‘_‘_ m% me (152)

+1, 8in28 > pma /M3,
E= { -1, sin28 < umx/M%, (153)
and
F(@i,d;, W) = sin® 8uif (&ix,dj, Wi)

+ cos? 8y;f(iiia, dj, Wi) (154)

with @;; and &;, being the u-squark mass states and

2 2
J@h,) = g [ In() = (my > mo)] (155)

Again j =1 gives a neglegible contnbutnon and we have include L-R mixing only for
the t-squarks.

In Eq. (148), the phases P; = ¢'*, j = 2,3 appear. These are new CP violating
phases (independent of the CKM phase) that enter in the dimension five operators.
Thus there are two limiting cases: Ps/P; = —1, destructive interference between the
second and third generation contributions to the loop, and P;/P; = +1, constructive
interference. .

1t is convenient to define the quantity

B=[Baf? +|Bst]} [Ms/10%* GeVP™ x 10° GeV-!  (156)
and using Eq. (40) (to account for the anti-correlation between Ms and Mg), the

Kamiokande experiment bound, Eq. (140), can be written as

B < 100 (M”') Gev~! (157)

for 8, = 5.6 x 10-3 GeV3. The quantity B is a function of the SUSY masses (squarks,
sleptons, Winos) and so the experimental bound on B becomes a constra.mt on the
SUSY mass spectrum.

16. Predictions for Models with Proton Decay

We now discuss what predictions can be made for the SUSY mass spectrum
for models possessing SU(5)-type proton decay. We will see, in fact, that with
sensitivity expected in future underground and accelerator experiments, it should
be possible to test whether these models are right or wrong.
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Our procedure is to allow the basic parameters, mo, m;/;, Ao, tans and m,
to vary arbitrarily subject to the following constraints: (i) Radiative breaking of
SU(2).xU(1)y occurs. (ii) Current experimental bounds on SUSY masses are obeyed.
(iii) Two theoretical constraints are imposed: (a) No extreme fine tuning of param-
eters are allowed which we quantify by requiring m;, m; < 1 TeV, and (b) My, is
O(Mg) which we quantify by requiring My, /Mg < 10.

Condition (iiia) accepts fine tuning up to about the 1% level which is about
the limit of loop corrections. Condition (iiib) implies Mz, < 2x10' GeV. Any larger
value of My, would need to include Planck physics corrections and the supergravity
Gut theory would not be self-contained. Note also that in the simple Gut model
discussed in Sec. 13, Fig. 9, the experimental value of as(Mz) requires a bound of
this size for grand unification to occur.

We review briefly now the procedure of calculation: (i) Run the one loop
SUSY RGE from Mg to Mz and impose radiative breaking on the Higgs potential.
(ii) Calculate all 32 SUSY masses as a function of mo, m,/2, Ao, tang and m,. (iii)
Limit the parameter space so that the experimental bounds on SUSY masses are
obeyed. (iv) Limit the parameter space so that proton decay bounds are obeyed
(i.e. B <1000 GeV-!). (v) Allow parameters to vary over the remaining allowed
regions and obtain the allowed bands of SUSY masses and the correlations between
masses. These are the predictions that can be checked experimentally.

The calculations discussed below are made under the following conditions:
(1) In (i) above we neglect loop corrections to the Higgs potential. As discussed
above, these are generally small [37]. (2) However, in (ii) above we do include the
loop corrections to the light Higgs mass m, as these may be large, particularly for
large m,. (3) In calculating B, we assume the distructive interference possibility
i.e. P/P; = -1. This minimizes as much as possible the effects of proton decay on
the SUSY mass spectrum. (4) Central values of CKM matrix elements are used:
Va1 = 0.011, V3, = —0.042, Vi3 = —0.002. (5) Only the t-quark Yukawa coupling was
included. This is a good approximation for tan 8 < 10, which we will see is generally
valid.

The proton decay amplitude function B of Eq. (156) is a complicated func-
tion of SUSY masses. We can get a qualitative picture of what the proton decay
constraint implies by considering only the second generation contribution in the
limit of large mo (i.e. m3 »> M%,W2). Then B takes the simple form

~o_202_ ™
By ———t = x 10° (158)

where the RGE give m} & mj + (0.65)m?. An upper bound on |B;| generally implies
(1) an upper bound on m; (unless m; is very large, i.e. m? > m} as then |B,| ~ 1/m;),
(2) a lower bound on m, so that m? does not get too small (again unless m; is very
large), and (3) an upper bound on tan 8 so that sin 28 does not get too small.

The above qualititive features are exhibited in Fig. 14 and Fig. 15 [48]. These
figures also exhibit the fact that current proton decay data for p - PK+ requires

My, & 1x10" GeV (My,/Mc 2 2/3). In the Gut model of Sec. 10, then, Eq. (138)
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Figure 14: B as a function of my for m; = 125 GeV, m; = 160 GeV, tan 8 = 1.73, p < 0. The low
myg cutoff for A; < 0 is due to £, turning tachyonic.

and the bound on My of Eq. (141) would make it unlikely that Super Kamiokande
would detect the p = et#® mode (and if it did, the model predicts that the p - 7K+

mode would be very copious). The bound on My, also implies as(Mz) R 0114 in
this model.
It is convenient to consider the results as a function of My,:

1. My, /Mg <3

For this case, where My, is relatively small, one finds that me X 500 GeV
and m; S 450 GeV (as illustrated in Figs. 12 and 13). In addition one finds
|Ad/me < 15and 1.1 S tanB < 5. One expects therefore that the squarks (with
the possible exception of £,) and probably also gluinos will require the SSC or
LHC to be detected. The ¢t quark and h boson are limited to m; < 180 GeV and
my < 110 GeV.

2. As one increases My,, the lower bound on m, decreases and the upperbound

on m; increases. Thus for My, /Mc R 7, m; can saturate its upper bound of
1 TeV (though usually a large m; requires a small m,.) The allowed bands on

tang and A, widen a little (e.g. tang < 8).

3. Perhaps the most remarkable results is a set of scaling relations that hold among
the charginos, neutralinos and gluino over most of the allowed parameter space
[48, 49]

2mz Emy, Xmy (159)
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Figure 15: B as a function of m; for m; = 125 GeV, 4; = —0.6my, tan 8 = 1.73, u < 0. An upper
bound my < 1 TeV implies a lower bound on m;.

mwxz%mgforp<0; mﬁ,l::i-m;,forp>0 _ (160)
my, Emz Emy P my (161)

In addition the Higgs boson masses obey
my X my X my: > my (162)

Egs. (159) and (162) are illustrated in the example of Fig. 7.

Eqs. (159)-(162) are a consequence of the radiative breaking equations Eqs. (89),
which determine the parameter 4 [49]. From Egs. (123)-(125), one sees that the pa-
rameters entering there depend on m, 4> and m; 2 3m,;,. Since the proton decay
‘constraints require that m, be relatively large (or if m, is small, m; is large), the p?
contribution must cancel these large numbers if the r.h.s. of the first equation in
(89) is to add up to £ MZ. Thus in general, one has y* » M2, Mm? (a result that often
holds also even in the No-scale model when m, = 0, since then m,, is often large).
Expanding Eq. (126) in this limit gives [50] :

my, &M ~ .M_zﬂ;;f_ﬂé,mw,zp-}—bf‘—% (163)
where the O(1/p) corrections are small. Since i, = (az/as)m; 2 0.285m; one sees the
origin of Eq. (160) since my, is increased (decreased) a small amount depending on
whether 4 is negatlve (posmve) The secular equatlon (127) has two light roots and
two heavy roots in this limit:




- M%sin2ﬂsin20w
ms =m - p ; mz,

(164)
a2, ® i3 -"z—% (1 £ sin20] (165)
Since ;/f; = oyfa; = 0.506, Eqs. (163) and (164) lead to Eq. (159) while from
Eq. (163) and (165) one deduces Eq. (161). Finally from Eq. (123),(124) one has
m?+m? = 24?4+ mi+--. > M2, and expanding the formulae for the Higgs boson masses,
Eqgs. (128)-(130), one deduces Eq. (162). We note also that Eq. (162) implies that
the h boson couplings are close to those of the SM.

The theoretical origin of the upper bound m, < 180 GeV (in good agreement
with the phenomenological result from data analysis [2]) is due to the left-right
mixing in the squark mass matrices. Thus from Eq. (118), as m, increases the lower
stop eigenvalue m? decreases (since the off diagonal elements increase) until m,l
is reduced below 45 GeV (it’s current experimental bound) beyond which m? is
rapidly driven tachyonic. Thus large m, reduces the parameter space by requmng

A; and ctn 8 to decrease. But proton decay puts a lower bound on ctn g (ie.

tang S 8), and so eventually the allowed parameter space is exhausted. This

occurs for m, ~ 180 GeV.

To illustrate the significance of the proton decay constraint, one can examine
the class of No-scale models (where mg = 0 = 4,) which allow proton decay. One
finds that present data for proton decay excludes this model except in a small
corner of the parameter space, m; ~ 900 GeV, tang < 2 [51]. Thus No-scale
models that are phenomenologically acceptable must forbid proton decay. The one
model that does this in a natural way is the flipped SU(5) x U(1) model [32], which
is phenomenologically acceptable and is discussed below.

Future proton decay experiments will be able to give strong tests for models
with proton decay. Super Kamiokande will be able to detect the p -+ 7K+ mode for a
lifetime up to 2x 10’ yr [52] and ICARUS expects to be able to reach 5x10* yr [53).
To exhibit the reach of these experiments, we maximize the partial lifetime r(p — 7K)
at fixed m, by varying all the other parameters over the entire allowed parameter
space. Fig. 16 exhibits this for the case m, = 150 GeV for three characteristic values
of My, [54). One can see that ICARUS can test proton decay for m, < 800 GeV,
and Super Kamiokande for my < 600 GeV. Fig. 17 shows a similar plot but with
the parameters restricted so that my, > 100 GeV. Here we can see that ICARUS
can detect proton decay over the entire allowed parameter space, mp < 1 TeV,
Mpy,/Mg < 10 (and Super Kamiokande over the region mq < 950 GeV, My, /Mg < 10).
Thus if ICARUS does not see proton decay, then my, < 100 GeV, and the W,
should be observable at LEP200 (and also possibly at the Tevatron). Thus we have
the prediction that for models with proton decay obeying the conditions (i) - (iii)
stated at the beginning of this section, either proton decay is observable at future
underground experiments, or the W, is observable at LEP2 (or the Tevatron). One
may in fact show further for the entire parameter space mo, m; < 1 TeV, My, /Mg < 10,
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Figure 16: The maximum value of 7(p = ZK*) for m; = 150 GeV, 1 < 0 as all other parameters are
varied. The three curves are for My, /Mg = 3,6, 10 (lower, intermediate, upper curves). ICARUS
can detect signals below the upper horizontal line and Super Kamiokande below the lower horizontal
line.

that if 7(p = PK) > 1.5x10* yr (which is testable at Super Kamiokande and ICARUS)
then either m; < 95 GeV or my;, < 100 GeV i.e. either the light Higgs or the light W,
should be observed at LEP200 [54]. Thus models of this type can be experimentally
checked in the near future even before the SSC or LHC are operating.

17. Model Without Proton Decay: Flipped SU(5) x U(1).

As discussed in Sec. 14, proton decay is a normal feature of grand unified
models and one must do something special in order to suppress it. One natural way
of doing this arises in the flipped SU(5) x U(1) group [32]. Here particles are assigned
to the 10 and 5 representations of SU(5) but with u & 4 and e & v interchanges.
There exists than a vz state, and % is put into an SU(5) singlet representation. The
p - 7K+ amplitude is then suppressed by a factor O(Mz/Mg) and is hence negligible.

One difficulty with this model is that it is not fully unified at the Gut scale
as G is still a product group. It has been proposed that unification in this model
should actually be at the Planck scale (as one would want in string theory) rather
than at the Gut scale [55]. This can be achieved by adding an additional pair of 10
and 10 representations with masses arranged to delay unification until 10'®* GeV. For
as(Mz) = 0.118 one needs a right (R) handed color triplet and left (L) handed doublet
at masses mp = 4.5 x 10° GeV and m; = 4.1 x 10'2 GeV. This is illustrated in Fig. 18
[65). For the strict No-scale model, where 4y = mg = 0 = B,, radiative breaking
implies a relation between tan 3 and m;. One finds that solutions exist for x4 > 0 only

if m¢ S 135 GeV, and for 4 <0 only if m; 2 140 GeV. This is illustrated in Fig. 19.
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Figure 17: The maximum value of 7(p = VK*) for m; = 150 GeV, u < 0 subject to my, > 100 GeV.
Curves are labeled as in Fig. 14.

Also for u > 0 one has m; < 105 GeV, while for 4 < 0 one has m; > 100 GeV. Since the
No-scale model has fewer parameters, it can make more precise predictions. Squark,
gluino and slepton masses obey the following relations: m; = m;, m;, & m; = 0.3m;,
m;, = 0.18m;. Since the sleptons can be quite light, the tri-lepton SUSY signature
[0 = Wi+ Z:+ X = (.71Z1) + (€282 21) + X] should be accessible to the Tevatron [55]. It
is interesting that these predictions are quite different from the SU(5) models, and
so the two approaches are experimentally distinguishable.

18. Cosmological Constraints

The recent COBE data has given strong support to the Big Bang cosmology
and to the inflationary scenario. COBE has measured the cosmic microwave back-
ground roughly at year 300,000 and finds large scale fluctuations in temperature of
size AT/T ~ 10~5. We define the quantity Q = p/p. where p is the mass density of the
universe and p. is the critical mass density need to close the universe, i.e.

pe = 3H3/8aGy
1.88h2 x 10~2gm/cm® (166)
Here H, is the current Hubble constant, h, is the Hubble constant in units of 100
km/secMpc, and Gy is the Newtonian constant. The inflationary scenario then
requires 2= 1.
Recent measurements of H, give a range of

0.65 < ho < 0.75 (167)
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Figure 18: a;(Q) for a3(Mz) = 0.118 in the flipped SU(5) x U(1) model with additional triplet and
doublet, states. The dotted curves are where unification would be without these additional states.

The visable (baryonic) matter in the universe is estimated at @5 < 0.1. Thus
there must be a considerable amount of dark matter present in the universe if the
inflationary scenario is valid. A popular model is to assume a mix of cold dark
matter (CDM) and hot dark matter in the ratio of Qcpn/Qupm =~ 2 (i.e. Qcpm =~ 0.6,
Quapm =~ 0.3). This gives a good fit to the COBE and other cosmological data.
[We note one possible problem with this picture having to do with the age of the
universe to: For Q =1, one has , = 6.5 x 10° yr/hy or t; = 10 billion years for ry = 0.65.
However, astrophysical calculations of the age of globular clusters gives a 20 spread
of (13 < to < 20) billion years and one would need 4y < 0.5 to satisfy this bound.]

It is commonly assumed that the HDM are massive 7 neutrinos (left over from
the Big Bang). The contribution of massive neutrinos to  is Q, = (1/4h2) (m, /23 eV)
giving m,, = (10) eV for Q, = 0.3. Two experiments at CERN, CHORUS and NO-
MAD, plan to measure v, — v, neutrino oscillations and should be able to detect a
v, mass in this range (if the mixing angle ¢ obeys sin? 26 R 2x 10-3).

For SUSY models with R parity, the lightest supersymmetric particle (LSP)
is stable. For most models the LSP is the Z;. The Z, particles created at the time
of the Big Bang are hence a natural candidate for CDM. In general, in order not to
overclose the universe, a minimum requirement on models with R parity is

Qz k<1 (168)

If the Z, is the CDM one would need 2; h} =~ 0.25 — 0.30.

While the Z, that were initially created cannot decay, they can annihilate in
pairs in the early universe. The main mechanisms are via h and Z s-channel poles
and squark and slepton t-channel poles as shown in Fig. 20.
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Figure 19: Strict No-scale model with unification arranged to be at 10'® GeV. Note that for u > 0,
the m; — tan g relation is double valued with m, < 135 GeV, while for g < 0, the model predicts
m; & 140 GeV.

The calculation of @3 43 follows well known procedures [56] which we briefly
summarize now. If n = number/vol of Z,’s, then n obeys a Boltzman equation in
the early universe:

% = —3Hn- < av > (n? —nl) (169)
where H is the Hubble constant at time ¢, n, is the value of n at thermal equilib-
rium, ¢ is the annihilation cross section, and v is the Z; relative velocity. The first
term on the r.h.s. of Eq. (169) represents the decrease in n due to the expansion
of the universe (increase in volume). The collision term assumes that the annihi-
lation products go quickly into equilibrium with the thermal background so that
the inverse scattering process is governed by n,. The expression <> means thermal
average, and since annihilation generally occurs at temperatures when the Z, are
non-relativistic, one may use the Boltzman distribution to calculate it:

00 o0
<ov>= / dvv(ov)e="/4=/ / dvvev /4= (170)
° °

where = = kT/m; and T is the temperature.

It is convenient to introduce f(z) = n/T?, and replace ¢ by T as the independent
variable. Then

g 25 SO cous (12 ) (1)
where Ny is the number of degrees of freedom at temperature T and f, = no/T3:
2% .
o= Gy (172)

At large T, the Z, is in thermal equilibrium with the background and so 7 = f,.
However, when the annihilation rate becomes smaller than the expansion rate, the
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Figure 20: Annihilation processes for 2, pairs. f= squark or slepton and f = quark or lepton.

Z, decouples from the background. This occurs at the “freeze out” temperature T;.
Then f obeys

d wmz 8r3N;Gn._
= = kf= ( 45f )t <ov> f% z<z=kTy/my (173)
with boundary condition

f(zs) = fo(zs) (174)
Egs. (173),(174) allows one to solve for z;:

- , 45
.‘l:ll o ln[z}/z <oV>,, mz, -IV,G—N] (175)

In general z; is small, i.e. z; ~ 1/20 (showing that the freeze out does indeed occur
in the non-relativistic domain) and Eq. (175) can be solved for z; by iteration.

Integrating Eq. (173) from z; to zo = kTy/m; = 0, where T; is the present
temperature, one obtains the relic density at present time ¢,:

)3 (NI)

T
- —40/2Z;\s
pz, =4.75x10 (“'.E,L) (2 %' S g/cm (176)
Here T, is the current microwave background temperature, and J is
2y
Hzp) = / dz < ov > (z)GeV? )
[
From Eq. (166) we have then
x 1/2
Qz by =253 x 10-"(-1:&)’ ( L) (/)i (178)
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In Eqs. (176) and (178), the factor (T}, /T,)* arises from the reheating of the photon
temperature due to the annihilation of particles of mass less than ¥T} [56]). For a Z,
with mass of (20-50) GeV, one has [57]

( =L)® =>185; Ny=289.5 (179)
T3,

Eqs. (178) and (179) allows an explicit calculation of 23 hf once the double integral
J(zz) is computed.

We come now to an important fine point. Since z; is small and hence we
are in the non-relativistic regime, it had generally been thought previously that one
could expand ov in a power series in v?, ov = a+bv?/6+---. Then the thermal average
becomes trivial to perform i.e. < ov >2 a+bz (since < v* >= 6kT/m; ). However,
as has been pointed out [58] this approximation can breakdown badly near a pole
or threshold. The breakdown is particularly serious for the physical case at hand
due to the narrowness of the h and Z poles [59], invalidating a good deal of the
earlier analysis. To see what the problem is, consider the A-pole where ov has the
Breit-Wigner form

2
[(v* — er)? + 7x]
Here eg = (m} —4mz )/m 2 TR= m;.l‘;./m2 and 4, is a constant [60] The h width is
T = 2.5 x 10~ GeV and hence ~r is very 'small. When one thermally averages, one
“smears” v?, and if ep > 0 (i.e. 2m; < m;) then when v? = ¢g the integrand becomes
very large and one can get a large enhancement in < ov >. This will modify the
value of z; and produce changes in Q3 h} by factors as large as 1,000.

In general one may calculate the integral for < ov > numerically without much
trouble and thus obtain the correct freeze out parameter z,. It is more complicated
to calculate the double integral of J(z;) due to the singular nature of the pole. A
convenient procedure is to do the z integral anatylically first to obtain

_ Apn hnd ~Ee~3 (453; 63)2+‘7}3
= m4212"1/2/o Ke™ { [ er+Th

ER 1, 4zs—¢pR -1/ER
+ 2 [ (L) D ]} sy

ov ™ A,

(180)

The remaining integral can then be done numerically without difficulty. A similar
analysis can be carried out for the Z pole contributions. For the ¢-channel exchanges
of sfermions, the expansion ov = a + bv?/6 is good approximation as one is not near
a singularity.

Fig. 21 shows the ratio of the approximate value of 2 to the correct value as a
function of m;. One sees that the approximate value of 2 makes a large error in the
region prior to each pole. From Fig. 22 this is precisely the region where the correct
Q;z h§ <1 and hence cosmologically acceptable. One can also see from Fig. 22, that
the correct cosmologically allowed region is both larger and in a different m; region
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Figure 21: Qapproz/St for mg = 700 GeV, tan g = 2.25, p > 0 for m; = 110 GeV, Ayfmo = —0.8
(dashed), m, = 125 GeV, A;/mq = —0.4 (solid), and m; = 140 GeV, A;/mo = 0.0 (dotted). The
h and Z poles occur where the curves steeply go from positive to negative.

then for the approximate calculation, showing that the approximate analysis can
lead to significant error.
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Figure 22: QhZ (solid) and ($2h2)appro- (dashed) for m; = 125 GeV, mo = 700 GeV, tan g = 1.88,
A;/mqg = 0.5, 4 > 0 in the vacinity of the h pole.

We now turn to consider the effect on the parameter space implied by the
cosmological constraint of Eq. (168). For the flipped No-scale model (m, s, 3> mo) one
generally finds QhZ < 1, so no additional condition is implied [55]). For models where
me is not zero, one generally finds QA2 to be large, e.g. O(10) except, as illustrated
in Figs. 21 and 22 in the region prior to the h and Z poles. Thus for the h pole,
this would imply an allowed region where 2m; < m; and since the Z, and gluino
masses scale, to a band of allowed gluino masses. The cosmological constraint then
reduces the five dimensional parameter space (m;, mo, Ao, tang and m,) to a five
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dimensional shell with thickness in m; of = (5 — 125) GeV thick. This is illustrated
in Figs. 23 and 24. In Fig. 23, the allowed region between the two solid lines comes
from the region where 2m; < mj; while the region between the dashed curves comes
from the Z pole contribution. Sometimes, these two regions overlap, leading to one
large allowed region. An example of this is illustrated in Fig. 24.

.................
T el
,‘a ---- -
- -
120
2 300p =
>
3]
O 250f
e’
120
= 250}
-
240}
220
3.6

o) =3.2 3 6.2 0.4

A/m,

Figure 23: Allowed m; region as a function of 4; for m, = 125 GeV, mo = 600 GeV, tan g = 1.73,
# > 0. The allowed region is that between the two solid lines (from the h pole) and that between
the two dashed lines (from the Z pole).
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Figure 24: Allowed m; region as a function of A, for m¢ = 140 GeV, m¢ = 700, tan 8 = 2.75, 4 > 0.

As a final point we consider the combined relic density constraint Eq. (168)

) and proton decay constraint. Both of these could operate in a supergravity Gut
model with R parity and SU(5)-type proton decay. The regions allowed by relic den-

sity constraint in Figs. 23 and 24 also obey the current proton decay experimental

bounds with My, /M¢ < 6 (B < 600 GeV~'). Fig. 25 shows the value of the proton decay
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amplitude B for the region allowed by the relic density constraint for me = 700 GeV
as a function of A, (as one varies all other parameters) for m, = 110 GeV, 125 GeV
and 140 GeV. Note that the allowed region increases with m,. The region below the
horizontal line is that allowed by proton decay for My,/Mg < 6. For My, /Mg < 10
this line would be at B = 1000 GeV~!. The simultaneous relic density and proton
decay constraints reduce the allowed parameter space. However, a considerable re-

gion is still allowed. For My,/Mg < 6, one finds that the combined constraints imply

my < 105 GeV, my, < 100 GeV, m3, S 50 GeV and m; < 165 GeV. These bounds

are relaxed somewhat if one raises My, to My,/Mg < 10 (and there are small corners
in parameter space where my, =300 GeV and m; =150 GeV).

Figure 25: Proton decay amplitude B as a function of A, for mp = 700 GeV. The dashed line is for
m; = 110 GeV, the solid line for m,; = 125 GeV and the dotted line for m; = 140 GeV. (The gap in

the central region for m; = 110 GeV is due to the requirement m; > 60 GeV.) The region allowed
by the relic density constraint is between the upper and lower curves.

19. Concluding Remarks

Several proposals currently exist to remedy the theoretical weaknesses of the
Standard Model. Supersymmetry offers a solution to the gauge hierarchy problem
in that it offers a natural way for the quadratic divergences of the Higgs self energy
to cancel. However, it does this at the expense of greatly enlarging the theoreti-
cal structure. Thus the number of particles in the low energy domain is doubled.
Further, in order to obtain a phenomenologically acceptable way of spontaneously
breaking supersymmetry, one is lead to promoting it to a local gauge symmetry i.e.
supergravity. Here, supersymmetry breaking arises from Planck scale interactions,
implying that one is dealing with a theory whose natural energy scale is high above
the electroweak scale. The recent data, suggesting the validity of supersymmet-

ric grand unification supports this view and implies also the existance of a desert
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between the two scales. Thus the simplest way of consistently implementing the
supersymmetric solution to the gauge hierarchy problem is within the framework of
supergravity grand unification.

Such an enlargement of the theoretical structure would be unreasonable were
it not for two things. First, one can control the unknown nature of the Planck scale
interactions which give rise to supersymmetry breaking by imposing simple phe-
nomenological constraints i.e. the absence of flavor changing neutral interactions,
and the existance of grand unification. This then allows one to parameterize the
supersymmetry breaking sector in terms of only four unknown constants. Hence
the masses, production cross sections, decay widths etc. of the 32 new SUSY par-
ticles can be obtained in terms of these four new parameters. Second, throughout
the entire energy domain, the theory stays within the perturbative domain. As a
consequence, explicit calculations of the predictions of the theory can be made and
the theoretical extropolations made can be experimentally tested. How to calcu-
late some of the consequences of supergravity grand unified models is given in this
report. Some of the more natural models should be tested experimentally in the
relatively near future, with detailed tests requiring the SSC or LHC.

There are a number of important questions not explained by supergravity
models. Perhaps the most important is the nature of the quark and lepton mass
matrices, and this may require Planck scale physics to understand. Superstring
theory has the capability of deducing Yukawa couplings, though the huge number
of candidate string vacua and the problem of supersymmetry breaking in string
theory has inhibited progress in this direction. There have been, however, recent
phenomenological analyses of mass matrices [61] based on the idea that the gener-
ational hierarchy is scaled by Mg/Mp,, implying a Planck physics origin of at least
the first two generations mass. Finally we mention the important question of the
origin of CP violation. Supergravity models appear to shed no light on this ques-
tion either. CP violation may also be a Planck physics phenomena (in the Standard
Model CP violation is characterized by a phase in the CKM matrix and hence is
related to the quark mass matrix). More experimental data is obviously needed to
understand this phenomena better.
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