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Abstract

We describe a computational method for docking flexible molecules into protein binding
sites. The method uses a genetic algorithm (GA) to search the combined
conformation/orientation space of the molecule to find low energy conformations. Several
techniques are described that increase the efficiency of the basic search method. These
include the use of several interacting GA sub-populations or niches; the use of a "growing"
algorithm that initially docks only a small part of the molecule; and the use of gradient
minimization during the search. To illustrate the method, we dock Cbz-GlyP-Leu-Leu
(ZGLL) into thermolysin. This system was chosen because a well refined crystal structure
is available and because another docking method had previously been tested on this system.
Our method is able to find conformations that lie physically close to and in some cases
lower in energy than the crystal conformation in reasonable periods of time on readily
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I. Introduction

One of the most sought after goals of computer aided drug design is the ability to
design a ligand that strongly binds to a biologically important receptor. This is a complex
problem but one that can be broken down into several smaller ones, some of which have
been solved but most of which are still open. The major pieces are experimentally
determined binding site geometries, methods to dock ligands into proteins, and accurate
force fields to quantitatively predict binding energies. High resolution protein structures
that define binding sites are becoming available using either x-ray crystallographic or
solution NMR techniques. Several methods are being developed to search the ligand-
protein conformation space to find energetically favorable binding geometries for specific
ligands. Force fields that describe the internal motion of the proteins and the interaction of
ligands with proteins have been developed, but they still suffer moderate to serious
problems of accuracy. Models of the important water layer about the protein-ligand
complex have been and are being developed, but much work still needs to be done to
increase accuracy and computational efficiency. In addition to these requirements, a long
term need is the ability for the computer to design ligands by itself, i.e. to search molecule
space as well as conformation space.

This paper presents a new approach to the ligand-protein docking problem. A
number of methods have been reported in the literature!-18, each of which treats some
aspects of the problem. A complete model of ligand-protein docking requires; (1) ligand
flexibility; (2) protein flexibility; (3) variable positioning of the ligand; and (4) full protein-
water-ligand interactions. The DOCK method of Kuntz, et al.3%11:1617 for instance treats
a simplified model in which ligand and protein flexibility are ignored. Our present method
treats the following model. The ligand can be freely positioned and is fully flexible. Full
protein-ligand interactions are used. However, the protein is held rigid and only
crystallographically determined waters are included. We give a more complete comparison
of our method to others in the literature in the Conclusion section. We use a genetic
algorithm!%-24 (GA) to guide the conformational search. The GA method has been used by
a number of groups for conformation searching of model systems?%, small molecules26:27,
proteins?8-30 and DNA3!, and it has been largely successful. In particular, the method
appears to be faster than both simulated annealing® and directed search?’. Other chemical



applications of the GA that have been reported include protein®2 33and polymer> folding,
2D NMR peak assignments33, alloy modeling® and pharmacophore elucidation3”.

The method draws on our GA-based small molecule conformation work?’, with a
few modifications to make docking practical. First, we define a pivot atom in the ligand to
serve as the origin for translating and rotating the molecule. Second, to increase
computational efficiency, we screen all conformations with a fast "bump count” potential
that rejects all conformations in which the ligand penetrates into the protein. Third, we use
a "growing" algorithm in which only a small portion of the ligand is initially docked. This
sub-molecule contains the pivot atom and its nearest neighbors. As the search proceeds,
atoms are added to the ligand until it has grown to its full extent.

We begin by laying out the basic method for applying GAs to the ligand docking
problem. We then present the results of a series of computations where we dock Cbz-
GlyP-Leu-Leu (ZGLL) into thermolysin. This system is chosen because a well refined
crystal structure is available84? and because another docking method has previously been
tested on this system’. Our method is able to find conformations that lie physically and
energetically close to the crystal conformation. The major purpose of the runs is to learn
how to adjust GA search parameters to increase the efficiency of the search. A series of
recommendations is presented as well as some future modifications that we plan to
incorporate into the method.

II. Computational Approach

Our approach to docking is similar to our basic conformational search method
described previously?’. A GA is used to generate a large number of conformations that are
ranked based on energy. During the course of the search, conformations are found with
increasingly lower energy. In this section, we briefly describe the workings of the GA and
our search approach.

A. Genetic Algorithm

Genetic Algorithms!9-2441.42 provide a method for finding optima in high
dimensional search spaces. In the next sub-section, we describe the particular conformation
space we will search over, while here we concentrate on the basics of the GA itself. The
GA evolves a population of strings which represent conformations. Strings compete to
enter a breeding pool based on their fitness, which corresponds to the energy of the
conformation they represent. Over a period of many generations, successively more fit



individuals (i.e. conformations with lower energy) evolve through the process of selection,
breeding and mutation. The GA provides a mechanism for efficiently but coarsely
searching conformation space. The result at the end of the evolution process is a set of
conformations that can be analyzed and in particular, can be gradient minimized.

The form of the GA we use is a modified, binary encoded version of Miihlenbein's
breeding GA method*!42, When searching for an optimal molecular conformation, a GA
population of size N will consist of N sets of M variables which we describe here as a set
of torsional angles, [01,...,0p]. Each set of M angles prescribes a molecular conformation
whose energy can be evaluated. Each angle is stored in gray coded binary representation
and the binary string representing the set of M angles is referred to as a chromosome. Each
of the N chromosomes is M times W bits long, where W is the word size, or number of
bits used to encode a single angle. Increasing the number of bits increases the resolution of
the search. The number of values an angle can assume is 2W, so increasing W increases
the number of values to be considered for each of the M angles and reduces the difference
between values differing in only 1 bit by a factor of 2.

A chromosome's fitness is evaluated in a series of steps. First each chromosome is
decoded into a set of torsional angles. The molecule to be optimized is then built with the
variable torsion angles set to values defined by the chromosome. The energy of the
conformation is calculated and is assigned to the fitness, where the lower the energy, the
higher the fitness. Once the fitness of each chromosome has been evaluated, the
operations of selection, reproduction, crossover breeding and mutation are carried out in
order to create a new population for the next generation. We use either step function
selection in which all parents in the top P% of the population, based on fitness, have equal
probabilities of being selected to enter the breeding pool; or roulette wheel selection in
which parents are chosen for the breeding pool with a probability based on their fitness. A
parent who has rank i out of N individuals has a probability of

N(E_, —E, )/[N E, - Z:; E,.] of being selected, where E; is the energy of parent i and

E_,. is the maximum, or worst energy currently in the population. The reproduction
operator exactly reproduces a copy of a chromosome in the current generation so that it will
appear in the next generation. Crossover breeding trades subsets of angles between two
chromosomes. For instance if a crossover point were chosen between the bits for the ith
and (i+1)st angles, the two parent chromosomes:

[o1,..., 00,04 15e00M]
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would produce the two child chromosomes with angle values:
[al""’ai9ﬁi+ls”°’BM] ’
[B1seesBis it 15-0.,00M]

Mutation, if it occurs, causes a bit to be changed from its current value (0 or 1) to the
alternate value (1 or 0). The mutation rate is defined as the probability that a given bit will
flip. For instance, if a mutation rate of 0.1 is used with a 10 bit chromosome, each
chromosome will have on average one mutation each generation.

The initial population is generated by using a random number generator to set each
bit in each chromosome to either 0 or 1. Populations can be comprised of sub-populations
known as niches, which have different initial chromosomes. Each niche proceeds
independently which allows for checking dependence on initial conditions. Within a
niche, a bit is converged when a preset fraction of the chromosomes has the same value in a
given bit position. For example, with a convergence threshold of 0.8 and a population of
size 10, if there was a bit position that had the same value (0 or 1) in at least 8 of the
chromosomes then that position would be converged. Full convergence is reached when all
bits are converged.

A feature that we find to be important is niche interaction. In the case that several
niches are running in parallel, it helps all of them if they occasionally pass information back
and forth. The way this is done is that at specified generations, before the new sub-
populations are formed, the best individual in each niche is passed to each of the other
niches. These replace the worst individuals in each niche. This is helpful because an
individual sub-population will tend to converge onto one or two regions. By introducing a
few individuals with good fitness which can lie in other regions of conformation space, the
search space can broaden, with the result that new and often better regions can be found.

To summarize, a generation consists of the following steps. The fitness of each
chromosome is evaluated. The chromosomes are then ranked in order of fitness from best
to worst. In the elitist mode (always used here) the best chromosome from one generation
reproduces a duplicate child for the next generation. If niche interaction is to occur in the
current generation, the best individual in each niche is passed to each other niche. Next,
parents are selected for crossover breeding to fill the remainder of the next generation.



Pairs of parents are randomly selected from the available pool for crossover breeding to
produce the next generation's chromosomes. The mutation operator then acts on these
chromosomes. The fitness of each individual is once again calculated and the process
repeats until the requested number of generations have transpired or the population has
converged. There are a variety of stopping criteria that one can use some of which are
discussed in Ref.26.

B. Conformational Search Strategy

Here we describe the translation from the generic GA chromosome to a molecular
conformation and from there to an energy or fitness. We treat the case of a flexible
molecule or ligand docking into the binding pocket of a rigid protein. A conformation is
defined by the position and orientation of the ligand as a whole and the values of its
dihedral angles. Bond distances and angles are typically fixed during the search phase.

We define one atom in the ligand as the "pivot" and one.in the protein as the
"target". These should be chosen from some knowledge that the pivot and target atoms will
lie close to one another in the actual bound conformation. A reference position is chosen
for the pivot atom, lying close to its expected position in the bound conformation. A
conformation is built as follows, starting from a constant reference conformation. Each of
the dihedrals is set to the value prescribed by the chromosome. The direction of the dihedral
is specified so that atoms on the pivot side of the bond being rotated do not move. Once the
dihedrals are positioned, the ligand as a whole is rotated about the pivot atom using 3 Euler
angle values. Finally, the ligand is positioned in the binding site by placing the pivot atom
at the reference position and then adding a specified offset (8x, éiy,6z). The Euler angles

span the range from 0-360. In our numerical calculations, we let the offset variables span
the range ~1.5< dx < 1.5, etc. This ensures that all conformations of the ligand are
"interesting" in that they lie close to the binding site. The chromosome is a bit string that
codes for the 3 offset values, the 3 Euler angles and the specified number of dihedral
angles.

Once the conformation is defined, the energy can be calculated. For all
conformations, we first calculate a "bump energy". This is defined as

Epump =1000N, ;, — 10N, +100000 — 10(R,; - R, )* 1)



where Njp,qis the number of "bad" Van Der Waals contacts (defined below), Nygoqis the

number of "good" contacts, Rpris the distance from the pivot to the target, and R is the
reference distance. To calculate the number of good and bad contacts, each ligand atom -
protein atom distance is calculated. If that distance is closer than an inner cut off, Np.q is
incremented. If the distance is between the inner and outer cutoffs, then Ngooq is
incremented. The inner cutoff is defined to be 0.4 times the sum of the Van der Waals radii
of the two atoms and the outer cut off is defined as 1.25 times the same sum. The
performance of the method is relatively insensitive to the precise values of the numerical
parameters in Eq. (1). The main requirements are that conformations that penetrate into the
protein are heavily penalized and that the best values of the bump energy are greater than
the values of the MM energy calculated for non-interpenetrating conformations. The
rational behind calculating the bump energy is thatitis fast and provides a good diagnostic
of whether a conformation will have a high MM energy because of bad non-bonded
contacts.

If a conformation has no bad contacts, then the full MM energy is calculated and
returned as the fitness. We use the CHARMm® force field as implemented in CCEMD, a
C-language molecular dynamics/molecular mechanics program which is based on the MD
code of Windemuth, et al.** To speed up the computations, no bond, angle or dihedral
energy terms are calculated for fixed atoms and no fixed-atom/fixed-atom non-bonded
terms are calculated. If the MM energy is sufficiently low, we also have the option to
perform a gradient minimization of the conformation and to return the minimized energy as
the fitness.

A further modification to the basic method which is vital to its efficiency is what
we call "growing". During the early part of the search, few conformations will be found
that can slip into a typically narrow binding site, and much effort will be wasted. The idea
behind growing is that a small part of the ligand around the pivot atom is docked initially.
This sub-molecule is small enough that the GA will quickly find a few good
conformations. After a period of time, the ligand is grown by adding the nearest neighbors
of the atoms currently included, and the now slightly larger sub-molecule is allowed to
search for low energy conformations starting from, but not limited to, a set of reasonable
conformations. The growing procedure continues until the entire ligand is included, but the
GA search continues on for many generations after the growing procedure terminates. The
growing algorithm is implemented as follows. The initial sub-molecule is made up of the
pivot atom and its nearest neighbors. All other ligand atoms are added to the non-bonded
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exclusion list so that even if they penetrate into the protein, no energy penalty is incurred.
This is true for both the bump energy and the MM energy. However, the full chromosome
is used and all dihedrals are manipulated. This sub-molecule is used for the first "grow
period" generations. At the end of each grow period, the nearest neighbors of each of the
currently included atoms are deleted from the non-bond exclusion list and another set of
"grow period" generations is run.

Pseudo code for the logic of the main loop of the docking program is given in
Figure 1. The only piece that has not yet been described is the analysis stage. Once the
grow phase of the search is complete, we save to disk every conformation that passes the
bump count test. The set of orientation and dihedral values and the conformational energy
are also saved. At the end of the search phase, the energy file is read and conformations are
sorted by energy. Duplicates are discarded, where two conformations are considered to be
duplicates if their energies are within 1 kcal/mol and their conformational distance is within
5°. The conformational distance between conformation a and b is defined as

ri = VT O -6 @

where for convenience the offset distance and the Euler angles are included in the sum.
Next, each unique conformation within 40 kcal/mol of the best found during the GA search
is gradient minimized (this number is designated Nbset) and a pdb file containing just the
minimized ligand conformation is written to disk with its final energy. These files are then
further analyzed using Sybyl43.

III. Test Problem Definition

For our numerical tests, we dock the molecule ZGLL (Cbz-GlyP-Leu-Leu) into
thermolysin. The input files for our computations were prepared as follows. The crystal
structure of ZGLL in thermolysin was taken from the Brookhaven Protein Data Bank
(pdbStmn.ent). All modifications to the structure were performed in QUANTA.46 Each
residue with at least one atom within 12 A of any atom in the crystal conformation of ZGLL
was retained and all others were deleted. This includes crystallographically determined
waters, i.e. nearby waters are included and others are deleted. The remaining residues were
capped with COOH or NH; groups. All polar hydrogens were added. GLU 143 and HIS
231 were protonated as described in Ref.7. All aryl hydrogens were added. This was
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found to be necessary to correctly define the fine details of the shape of the binding pocket
and the ZGLL molecule and to reproduce proper binding geometries. Default charges from
QUANTA were used. At this stage, pdb and psf files were produced and all subsequent
calculations were performed using CCEMD. We used infinite cutoffs and a distance-
dependent dielectric with a coefficient of 2r.

The next step was to relax the orientations of the waters whose hydrogens had been
added by QUANTA in arbitrary directions. All atoms in the protein and ZGLL were fixed
and the waters were allowed to reorient, using conjugate gradient minimization. After this,
the protein and waters were fixed and ZGLL was relaxed to get a reference energy. The
ZGLL ligand moved only very slightly from its crystal conformation. The energy of the
relaxed crystal structure was -75.1 kcal/mol. In all of our calculations, the protein and
associated waters are treated as fixed, and only the ZGLL ligand is allowed to move. In
Figure 2, we show the structure of ZGLL and its rotatable dihedrals. Each of the non-
rotatable dihedrals was fixed in the trans. orientation. '

IV. Numerical Results

The phosphorus atom in ZGLL is defined as the pivot atom and the Zn atom in
thermolysin is defined as the target atom. See Section IIB for a description of the pivot and
target atoms. The nominal pivot-target distance is 3.25 A and the nominal position of the
pivot is (51.73,18.97,-6.10) which is the crystal position of the phosphorus atom. The
pivot atom was allowed to move +1.5 A from the nominal position in each direction
(x,,z). The Euler angles and the dihedrals were allowed to rotate over the entire range 0-

360°. We used 10 bits to represent each variable, so the resolution is 0.003 A in the pivot
positioning and is 0.35° in each of the angle variables . The search space has 20 degrees of
freedom - 6 for the overall position and orientation and 14 dihedral angles. Therefore the
chromosomes each contain 200 bits. Several runs were performed to determine how the
search variables affected the efficiency of the search. These variables include: (1) the
population size; (2) number of niches; (3) grow period; (4) use of gradient minimization
during the search; (5) convergence criteria for the gradient minimization; (6) selection
method; and (7) the selection and mutation rates. Table 1 summarizes the input parameters
for the runs and some measures relevant to the performance. Each run was allowed to
proceed for 500 generations except for one case noted in the table. Niche interaction
occurred every S0 generations.
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From Table 1, we can already draw some conclusions about what helps and what
does not in the search, based on the finzl lowest energy found in each run. The relevant
energy is Ebest (2) from Table 1, i.e. the energy after final gradient minimization. We
discuss other criteria below. For instance, going from 1 niche to 4 always yields lower
final energies which can be seen by comparing the run pairs (4,1), (8,9) and (12,13). The
two runs in each pair differ only in that the first uses 1 niche and the second uses 4. In
each case there is a large decrease in the best energy found and an increase in the number of
low energy conformations found when 4 niches are used instead of 1. To test if the effect is
just one of having 4 times as many individuals, we compared runs 2 and 4 which only
differ by population (100 vs. 400). Both used a single niche. Here the results are
interesting, but difficult to explain because the larger population actually did significantly
worse. This shows that the search is sensitive to initial conditions so that starting with
multiple populations is important. Both runs effectively converged relatively quickly to one
or two regions of conformation space; the larger run just happened to not find one of the
lower energy regions.

By far the worst run is number 3 where no growing was done. We tried several
other combinations of variables without growing and none of them helped. So far we have
been unable to get the method started without growing. We tried longer grow periods, up
to 10 generations, but they did not work significantly better than a period of 4. Table 1
also shows that some degree of gradient minimization of "useful" candidate structures
during the search phase is helpful. Otherwise, the energies that are passed back as the
fitness function can be dominated by one or a few exceptionally high energy interactions.
These could be easily alleviated with a few steps of gradient minimization. However it is
not essential in our experience to pass back the coordinates of the minimized structure or
to minimize to completion. Performing a few steps of minimization proved in our hands to
be the best compromise between a time consuming complete minimization and a potentially
misleading energy resulting from no minimization at all. However, minimization during

the search phase can be very expensive, increasing the search cost by a factor of between 5
and 30.

The step function selection method works better than roulette wheel selection. This
is due to the fact that in a population with fitnesses of widely varying magnitudes, the
lowest energy conformations will dominate. (For instance energies of conformations vary
between -80 and +10000.) These will quickly take over the population, and drive it into a
local minimum. Roulette wheel selection is best used on fitness landscapes with less
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variability in magnitude than we have here. Low selection rates are better than high rates.
This seems to be due to the fact that in a given generation, only a small fraction of the
individuals are viable, meaning that they pass the bump count test. This fraction is between
10 and 20% typically. High selection rates have the effect of diluting the contribution to the
geune pool of the best 10-20% of the parents by including more low fitness, non-viable
parents in the breeding pool. These parents are less likely to produce viable children and
they therefore slow down the rate of evolution. The effect of each of the search variables
are summarized in Table 2. From this we arrive at the conclusion that it is best to : (1) use
niching; (2) use growing; (3) use a few steps of gradient minimization during the search
phase; (4) use step function selection; and (S) use relatively low selection and mutation
rates.

In any attempt to dock a guest molecule into a host, one is faced with questions
about how to best evaluate the results. In the preceding discussing we evaluated an
individual docked structure based solely on the final energy. However, there are other
criteria for assessment in this case because we know the "right" answer, from the
experimental crystal structure. Obviously, a successful run would be one where the
docking algorithm converged, in a reasonable amount of time, to the single experimental
crystal conformation. Several factors separate reality from this ideal scenario. In most real
cases, even where an x-ray structure of the protein-ligand complex exists, it is not clear if
the experimental solution is unique or instead if several energetically degenerate states exist
from which the crystallization or soaking conditions have simply selected one. Thus a non-
unique result from the run need not be viewed as a failure of the method. One important
question that can be asked is whether a run finds the particular dockéd mode that had been
observed in the crystal structure. It is safe to assume that this configuration of protein and
ligand will represent a low energy state even though it may not be the only one possible.

We now expand our analysis of the runs to include 4 criteria, including the final
best energy which has already been discussed. These are: (1) the energy of the best docked
conformation (as the protein/ligand complex) from the run. This was always compared to
the energy of the crystal structure (=-75.13 kcal/mol). (2) The minimum all atom RMS
deviation of the ligand from its known crystal structure. This involved all of the atoms in
the ligand that were used during docking (including hydrogens) in our test system (41
atoms). This criterion was used to see how close the run came to actually visiting the
crystal conformation at any point during the run, regardless of energy. (3) The minimum
torsional RMS deviation of the ligand from the known crystal structure. This was a
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measure of the same criterion as in point 2 above but in torsional space instead of Cartesian
space. (4) The overall efficiency of the run as measured by the total CPU time used. We
have observed that the analysis of the combination of the two RMS criteria is often better
than either one alone. Sometimes when torsions are sequentially arranged in a linear array
of rotatable bonds, a slight deviation of a value for a rotatable torsion in a bond that is early
in the sequence will result in great apparent movement of all atoms past that point in the
molecule. This will be reflected in a large all atom RMS even though the two conformations
are clearly very similar to the eye. Correspondingly, large compensatory deviations can
occur in adjacent torsions to produce conformations that have low all atom RMS values but
relatively large torsional RMS values. It is only by viewing both these measure that we find
that we get a good overall measure of the "similarity" of two conformations to one another.

In Table 3, we rank each of the runs against the 4 criteria and also give 2 composite
criteria. The score on which the first composite is ranked is the sum of the ranks of the 4
criteria, energy, all atom RMS, torsional RMS and total CPU time used. The score on
which the second composite is ranked is the same except that CPU time is ignored. For
instance, the Composite 1 score of run 1 is 2+3+3+9=17 and the composite score of run 2
is 6+9+8+8=31. Therefore run 1 ranks above run 2. There are 4 runs that rank in the top 4
using both composite scores, those being runs 1, 6, 9 and 11. All use the grow algorithm;
all but run 6 use 4 niches, all but run 1 use minimization during the search phase, and all
use step function selection. Runs 11 and 6 use the high selection/mutation rate. With the
exception of run 6, the composite rankings substantially validate the conclusions
summarized in Table 2 of the effect of search variables on the success of the run. Run 6 is
anomalous in several ways, and its success may be due to chance. It found very few
reasonable conformations, but some of those happened to be low in energy and have small
RMS deviations.

Several interesting facts emerge from this analysis. None of the runs actually
converged on the crystal structure. This is not unexpected (see above). However, one run
(9) found solutions that had better overall energies than the known crystal structure as
assessed in the same force field. Thus it may be concluded that the docking method is
working. However, it may still be necessary to further calibrate the force field or to choose
another one. This issue is currently being addressed. In Figure 3, we show all of the
conformations found during run 1 which were within 10 kcal/mol of the best conformation
found (which was 2 kcal/mol higher in energy than the crystal conformation). Plots for the
other runs look essentially the same. The basic structure is conserved but there are a wide
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variety of conformations of the phenyl end which can move out away from the protein. In
the force field used here, this group moves into vacuum; presumably with a solvent model,
this hydrophobic group will tend to miove out of solution and back towards the surface of
the protein. Likewise, the carboxyl terminus of the ligand displays quite a bit of flexibility.
Guida, et al.” found similar flexibility in their lowest energy conformations (c.f. Figure 2
of Ref.7).

Figures 4a-4d are scatter plots showing the correlation between final energy and
either all atom RMS deviation or torsional RMS deviation from the crystal structure. Plots
are given for the 4 best runs 1, 9, 6 and 11. From these plots we see that there is at most a
very weak correlation with all atom RMS and practically no correlation with torsional
RMS. There are no points in the torsional RMS plots with values near zero. In all
conformations found, the orientation of the peptide O-C-N-H group at the phenyl end was
reversed, so that the amide hydrogen pointed into the protein and the carbonyl oxygen
pointed away, rather than the reverse seen in the crystal structure. This results from several
torsional angles being shifted significantly from their values in the crystal conformation.
The last two torsion angles before the phenyl ring are also very variable. In Table 4, we
compare the energy and RMS criteria for the best structures in each category for runs 1 and
9. The fact that there are 2 or 3 different conformations in both cases underscores the lack
of correlation between RMS deviation and energy. In fact the best all atom RMS
conformations are 15 and 23 kcal/mol higher in energy than the lowest energy
conformations in the two runs. In Figures 5a-Se, we display the conformations tabulated
in Table 4, superimposed on the crystal conformation. In all cases, the computed backbone
is close to the crystal backbone, but the phenyl and carboxyl ends vary substantially. One
can also see the reversed conformation of the peptide group at the phenyl end.

Y. Conclusions

In this paper we have demonstrated the feasibility of using a genetic algorithm
search method to dock flexible ligands into protein binding sites. For the test case
considered, our method was able to find conformu.ions lower in energy than the crystal
conformation. The major purposes of this paper were to describe the method, demonstrate
feasibility and explore how the method's efficiency was affected by changing selected
search parameters. Several other issues need to be addressed before the final usefulness of
the method can be measured.
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The first is the accuracy of the potentials, which will in large part determine whether
computed low energy conformations (which we find) correspond to actual low energy
conformations. This is part of a larger problem of defining good potentials for proteins and
ligands, but we see one aspect as being more important than others and this is the treatment
of water. Here the only waters we treat are those determined crystallographically. Guida, et
al.” found that if those water were removed, it was necessary to at least include a
continuum water model. We are currently building such a model into our code to test this
observation. It may still be necessary to explicitly include a few important bound waters,
provided that it is known that their positions are independent of the ligand being docked.
Guida, et al. also found that protein flexibility was required, which is a feature we do not
include. To increase the selectivity of the method, we may also need to include more
accurate charges on the protein.

A second issue is one of speed. As reported here, our method can find
conformations close to the crystal structure, although not the crystal conformation itself, in
about 40 CPU hours on a workstation (see Run 1). This is acceptable for studying one or a
few compounds but is problematic if thousands of compounds are to be screened as in the
work of Kuntz and coworkers®?11:17_ The two approaches we are investigating are
simply using a larger computer by porting the code to a massively parallel machine; and
improving the basic efficiency of the serial version. We have not optimized the number of
generations run, and in fact, most of the runs did not make significant progress after about
300 generations. We also have not looked at the effect of changing the number of bits in the
binary chromosome which defines the resolution of the search. The resolution we use here
is probably unnecessarily high. More efficient energy functions could be implemented,
such as the grid methods used by Kuntz, et al 8:9:11.17

A considerable amount of work is being done in the docking area and it is
interesting to compare the functionality of the methods reported in the literature. In Table
3, we list each of the methods of which we are aware along with whether they include
ligand flexibility, protein flexibility, and full orientational motion of the ligand. From the
table we see that there are essentially four groups: (1) those that dock rigid ligands into
rigid proteins; (2) those that dock flexible ligands into rigid proteins; (3) those that dock
flexible ligands into flexible p: oteins; and (4) those that perform conformational search on
ligands in a protein pocket but do not vary overall translation and rotation of the ligand. The
present method falls into category (2) but can be extended to include protein flexibility by
adding torsional motion of selected protein sidechains to the GA chromosome. However, it

17



is an open question whether this added expense is justified in the absence of more realistic
protein-ligand potential functions.
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| Run Pop Niche Grow Min. Select/  Search Analyze Nbest Ebest Ebest Best Best 7
I e CPU _CPU_____ () () AARMS TRMS

1 1004 4 n 02002 2058 396 453 -67.8 -73.5 126  53.9
2 1001 4 n  02/002 605 288 351 -49.0 -53.1 220 779
3 1001 0 n 02/002 466 187 44 3487 630 3.06  76.0
4 4001 4 n 02002 2333 532 296 14 -249 254  73.1
5 1001 4 n 05005 95 7 2 476 -112 223 967
6 1001 4 ya 05005 323 22 11 329 -569 114  65.1
7 1001 4 y 05005 567 10 5 537 -227 156 91.1
8 1001 4 y 02002 21369 411 592 -55.6 -558 2.04  72.0
9 1004 4 y 02002 17270 641 1205 -70.7 -80.0 1.05  50.4
10 1004 4 n 05005 384 5 2 1057 -385 1.67  99.4
11 1004 4 y 05005 2579 101 71 -434 -625 141  33.1
12 1001 4 n roul0.0291 3 1 4172 251 216  107.5
13 1004 4 n_ roulf002377 11 5 459 -268 2.62  107.8

Table 1 - Parameters for the 13 runs performed. Pop is the population. Niche is the number of
niches each of size Pop. Grow is the grow period (see text). Min. says whether or not gradient
minimization was performed during the search phase. (a): In run 6, a smaller number of
minimization steps (5) was used than in the other runs (10). Select/Mutate are the selection and
mutation rates. roul indicates that roulette wheel selection rather than boxcar selection was used.
Search and Analyze CPU are the times (in minutes) used for the two phases on an SGI R4000
Indigo. Nbest is the number of unique unminimized conformations found within 40 kcal of the
minimum energy conformation before gradient minimization. Ebest (1) gives the lowest energy
found before final gradient minimization and Ebest (2) the lowest energy after gradient
minimization. The two conformations are typically not the same. The energy of the relaxed crystal
conformation is -75.13. Best AARMS gives the best all atom rms distance from the relaxed crystal
structure. Best TRMS gives the best torsion angle rms from the relaxed crystal structure. Neither
of these are necessarily the same conformation as Best E (2). All runs ran for 500 generations
except for 9 which was stopped after 130.
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lGAvariable  RunPars  Summary of effect |

Population size 2,4) Ambiguous
(100 vs. 400)
Number of niches (4,1) (8,9) (12,13) Adding niches always helps
(1vs.4)
Grow period 3,1) Growing is required
(0 vs. 4)
Use of gradient minimization| (1,9) (5,7) (2,8) Gradient minimization always
(no vs. yes) helps but is very expensive
Gradient minimization conv. | (6,7) Ambiguous
(loose vs. tight)
Selection method (2,12) (1,13) Step function always better
(step function vs. roulette than roulette wheel
wheel)
Selection and mutation rates | (1,10) (2,5) (8,7) (9,11) Lower rates always help
(0.2/0.02 vs. 0.5/0.05)

Table 2 - A summary of the effect of GA run variables on the minimum energy found.
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1 2 3 3 9 3 2(t)
2 6 9 8 8 7 5

3 13 13 7 7 13 10(t)
4 9 11 6 11 10 (t) 7

5 11 10 10 2 8() 8

6 4 2 4 3 1 3

7 10 5 9 6 6(1) 6(t)
8 5 7 5 13 6(t) 4

9 1 1 2 12 2 1

10 7 6 11 5 5 6(t)
11 3 4 1 10 4 2(t)
12 12 8 12 1 8(t) 9

13 8 12 i3 4 10 (t) 10(t)

Table 3 - Ranking of the runs by criteria other than the best energy found. The first 3
columns give the ranks of the runs based on the best conformation found, as measured by
energy, all atom RMS deviation from the crystal conformation and torsional RMS deviation
from the crystal. The fourth column gives the rank based on total CPU time (search +
analysis) used, where the run using the least amount of time is rank 1. Composite 1 is the
rank based on the sum of columns 1 through 4; Composite 2 is the rank based just-on the
sum of columns 1 through 3, i.e. with CPU time neglected. (t) indicates a tie.
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Best AARMS -58.2 1.26
Best TRMS -70.8 1.52
run9 Best Energy -80.0 1.90
Best AARMS -57.3 1.05
Best TRMS -57.3 1.05

81.8
50.4

50.4

Table 4 - A comparison of the conformations that had the best rank for the 3 criteria of
final energy, all atom RMS (AARMS) and torsional RMS (TRMS) for runs 1 and 9.
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orsons AllT Torsions All Terms

g;%m%’; yes no no m o 2,14
gz::grlfatic no yes no no no 12
mlctgo?nag}i%l) no yes no no no 7
3%333& yes()  yes(D)  yes()  yes()  yes( ¢
?S’gg%mng yes no no no no 8.9.11,17
?)d;rlxicnnulg yes(?) yes yes yes yes 3.18
miﬁ‘(gsybn? yes yes yes no no 4

no yes yes(?) no no 10,13,15

yes yes yes yes yes 3
Distance Geometry yes yes yes(?) no no 1

Table § - A comparison of docking methods reported in the literature. This list is not
meant to exhaustive. It is merely intended to illustrate the different strategies that have been
used to dock small molecules into macromolecules. A question mark indicates that the
method could have the ability indicated, but that the reference either did not use the ability
or did not say it was used.
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Figure Captions:
Figure 1 - Logic for the GA search.
Figure 2 - Structure of ZGLL with rotatable dihedrals defined.

Figure 3 - A plot showing all conformations found during run 1 that had energies within
10 kcal/mol of the lowest energy structure after final gradient minimization. The crystal
conformation is represented by heavy lines. Note the large degree of flexibility at the
phenyl end and at the carboxyl group.

Figure 4 - Scatter plots showing RMS deviation from the crystal structure vs. final
energy for all structures which were gradient minimized. The left panel uses torsional RMS
and the right panel uses all atom RMS. (a) Run 1; (b) Run 9; (c) Run 6; (d) Run 11. Note
that there are no points with torsional RMS close to zero. See text for a discussion of this
point.

Figure 5 - Plots showing a number of individual conformations superimposed on the
crystal conformation (dark lines). (a) Lowest energy conformation from run 1; (b)
conformation with best all atom RMS, run 1; (¢) conformation with best torsional RMS,
run 1; (d) conformation with lowest energy, run 9. This conformation also had the lowest
energy for any run in the set. (¢) Conformation with lowest all atom and torsional RMS,
run 9.
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generate initial population
setup exclusion list for growing
for (i=1; i=Number of generations) {
if(i=multiple of grow period) grow ligand one shell
for (j=1, j=number of niches) {
evaluate conformations ({
for (k=1;k=Population size) {
generate conformation k from chromosome k
fitness[k] = bump energy
if (Npaa=0) {
fitness(k] = MM energy
if (MM energy < threshold and minimization on)
fitness[k]=gradient minimized MM energy

save conformation and energy to disk

}
sort population by fitness

if (i=niche interaction generation)
exchange best individuals between niches

reproduce best individual
perform selection to define breeding pool
perform crossover breeding to form balance of new population

perform mutation on new population except best individual

}
analyze results {
sort all saved conformation by energy

delete duplicates
gradient minimize all conformations with energy < set value

Figure 1 - Logic for the GA search.
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Figure 2 - Structure of ZGLL with rotatable dihedrals defined.
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