

1 of 1

EOM 08/13/93

2.

FINAL TECHNICAL REPORT
September 1, 1992 through August 31, 1993

Project Title: **MICROBIAL STRAIN IMPROVEMENT
FOR ORGANOSULFUR REMOVAL FROM
COAL DE-FC22-92PC 92521**

Principal Investigator: **Dr. John J. Kilbane II, Institute of Gas Technology**

Project Manager: **Dr. Ken Ho, ICCI**

ABSTRACT

IGT has developed a microbial culture of Rhodococcus rhodochrous, designated as IGTS8, that is capable of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum without significantly sacrificing the calorific value of the fuel. Although IGTS8 possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop improved strains of microorganisms that possess higher levels of desulfurization activity and therefore will permit more favorable biodesulfurization process conditions: faster rates, more complete removal, and smaller reactor size. Strain improvement is the single most important aspect to the development of a practical coal biodesulfurization process and accordingly is the focus of research in this project.

During the past year, significant progress was made toward improving the biodesulfurization capabilities of Rhodococcus rhodochrous IGTS8. Our main objective was to identify and characterize strong promoters of IGTS8. The DNA sequencing of the promoter region and chloramphenicol resistance gene of pRF2, as well as six mutant promoters, was determined. The 16S structural gene of IGTS8 was isolated and used to identify the putative promoter of this gene. Four promoter probe vectors were constructed and are currently being used to analyze the strength of Rhodococcus promoters: from the IGTS8 genome, mutants of promoters from the chloramphenicol resistance gene of pRF2, the promoter from the 16S RNA gene, and various strong inducible promoters.

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

U. S. DOE Patent Clearance is NOT required prior to the publication of this document.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED *878*

EXECUTIVE SUMMARY

The objective of this project is to develop derivatives of Rhodococcus rhodochrous IGTS8 that possess enhanced levels of desulfurization activity and to evaluate the ability of improved cultures to remove organic sulfur from coal.

The approach taken in this project to achieve that objective is to use genetic engineering/recombinant DNA techniques to produce strains of IGTS8 with improved desulfurization activity. IGTS8 has been shown to be capable of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and in coal. The challenge now is to develop a practical, economical coal biodesulfurization process. It is not only desirable, but absolutely essential, that improved derivatives of IGTS8 with greatly enhanced levels of desulfurization activity should be developed in order to allow briefer treatment times, more complete removal, smaller reactor volumes, and more favorable coal-to-bacterial culture ratios in the biodesulfurization of coal.

For the past year, the focus of research was on the identification and characterization of Rhodococcus promoters. The plan was to obtain microbial cultures with enhanced levels of desulfurization activity ultimately by replacing the promoter/regulatory sequences of the desulfurization genes with stronger promoters capable of achieving high levels of transcription/ expression.

We have compiled a database containing all of the published DNA sequences that are known or suspected to encode promoters in Rhodococcus species and have taken steps toward establishing guidelines for the identification of Rhodococcus promoters. The data that are being compiled include ribosomal binding sites, transcriptional start sites, and particularly DNA sequences upstream from transcriptional start sites. Computer comparisons will be made to aid in finding the formula for locating Rhodococcus promoters.

The rules for genetic expression in Rhodococcus differ significantly from those of more well-characterized microorganisms such as E. coli and B. subtilis. We plan to better characterize the genetic expression in Rhodococcus through the isolation and characterization of many different Rhodococcus promoters.

The promoter controlling the expression of the chloramphenicol resistance gene of pRF2 was chosen for thorough analysis because chloramphenicol resistance is a selectable marker, and because mutant candidates that may contain altered promoters can be readily isolated.

The DNA sequence of the promoter and structural region of the chloramphenicol resistance gene of pRF2 was determined. Six of the Cm mutant promoters, designated pCP8, pCP11, pCP12, pCP14, pCP17 and pCP18, have been sequenced in both the forward and reverse directions. Several base pair changes have been noted when these sequences were compared to the original sequence, and these changes are being evaluated.

Four promoter probe vectors have been constructed and one commercially purchased vector has also been utilized for studying promoters in IGTS8. These vectors are called pRCM1, pRCAT1, pRCAT2, pRCAT3, and pKK232 (Pharmacia, NJ). Each of these vectors contain structural genes encoding chloramphenicol resistance, but lack a promoter to express these resistance genes. One or more unique restriction sites is present on each vector just proximal to the resistance genes, allowing the insertion of DNA fragments that can be assessed for the presence of promoters by selection for those derivatives that express chloramphenicol resistance. Promoter probe vectors are being used to identify promoters capable of functioning at higher levels in Rhodococcus rhodochrous than those that have currently been characterized, and these strong promoters will subsequently be characterized to determine their DNA sequences and transcriptional start sites and will then be used to express the desulfurization genes.

Ribosomes are among the most abundant components of bacterial cells. The promoter for the 16S ribosomal RNA gene is a good candidate for a strong promoter since it must allow for many copies of 16S RNA to be transcribed, especially in log phase cultures. Moreover, straightforward methods are available to isolate this promoter. While the 16S RNA gene of Rhodococcus rhodochrous IGTS8 has not been cloned prior to this work, 16S RNA genes from dozens of other bacterial species have been cloned and sequenced. Although the promoters for the 16S RNA gene vary considerably, the structural gene is highly conserved between prokaryotic species. Small primers from both the 5' and 3' ends have been synthesized and recognized as universal. These primers were used in conjunction with polymerase chain reaction (PCR) technology to amplify and clone the structural portion of the 16S ribosomal gene of R. rhodochrous IGTS8. Then colony hybridization was used to isolate the promoter region of the 16S RNA gene. This DNA fragment is being analyzed in three ways: primer extension combined with DNA sequencing to determine the size of the RNA transcript and transcriptional start site; ligation into pRCAT3 for analysis of CAT activity; and ligation of this fragment with the desulfurization genes. Analysis of this promoter will continue in the next fiscal year.

A strategy for the isolation of strong inducible promoters is currently being studied through a technique called subtractive RNA hybridization. Subtractive RNA hybridization allows specific genes in a microorganism to be identified through a multi-step process. Inducible promoters are desirable for the reason that the expression of some genes/proteins at high levels may cause cell death. When using an inducible promoter, cells may be grown to stationary phase under normal conditions, then as the inducer is added the genes are expressed and cell death is no longer a concern. The search for inducible promoters for IGTS8 genes related to the utilization of urea and guanidine hydrochloride is in progress and will continue in the next fiscal year.

OBJECTIVES

The objective of this research is to develop improved derivatives of Rhodococcus rhodochrous IGTS8 with greatly enhanced levels of desulfurization activity and to evaluate the ability of improved cultures to remove organic sulfur from coal. Specifically, recombinant DNA techniques will be used to identify DNA fragments that encode desulfurization genes which will be subsequently manipulated to achieve enhanced expression of these genes.

INTRODUCTION AND BACKGROUND

There are numerous physical, chemical, and microbiological techniques that can effectively remove inorganic sulfur from coal prior to combustion. Moreover, there are physical and chemical techniques for pyrite/ash removal that have been successfully commercialized and are routinely employed in the coal industry. While there are technologies capable of removing organic sulfur from coal prior to combustion, no commercially viable technology currently exists. The removal of organically bound sulfur from coal by physical/chemical techniques requires harsh conditions as compared with microbiological techniques; therefore a microbiological approach may result in more favorable economics than currently available technologies.

Unfortunately, with nearly all Illinois coals, physical cleaning alone will not produce a coal that complies (if burned without additional sulfur removal from the combustion gases) with New Source Performance Standards (NSPS). To remove the additional organic sulfur, another method such as microbiological treatment that breaks the chemical bonds binding the sulfur to the carbon must be developed. A coal cleaning strategy employing only physical or chemical cleaning methods to remove as much of the pyrite and other mineral matter as economically possible will be unlikely to produce a product capable of meeting emission standards. A separate step such as microbial cleaning will likely be needed that focuses on the removal of the organic sulfur. A microbial culture, Rhodococcus rhodochrous IGTS8, has been identified that is capable of selectively cleaving carbon-sulfur bonds in model compounds and in coal; however, the level of expression of desulfurization enzymes by IGTS8 is low. Improved bacterial cultures are needed if a practical coal biodesulfurization process is to be developed. The goal of this project is to use recombinant DNA techniques to develop microbial cultures with enhanced desulfurization abilities.

EXPERIMENTAL PROCEDURES

Restriction digests were performed at 37°C for 1 hour at a concentration of at least 1 enzyme unit per microgram of DNA (Gibco BRL, CA). Dephosphorylation of vectors was performed with HK phosphatase (Epicenter Technologies, WI) as instructed. Ligation was accomplished using T4 DNA ligase (Gibco BRL, CA). Southern hybridization and colony hybridization were performed by the published methods in Perbal, A Practical Guide to Cloning, pp. 424-428 and 422-423. DNA probes were labelled using ³²P dCTP and a nick translation kit (Amersham, IL). Polymerase Chain Reaction (PCR) was accomplished using published methods and apparatus of Perkin Elmer, CT. Sequencing reactions were carried out using the Sanger chain termination method with Sequenase™ 2.0 (USB, OH). Sequencing gels were run on a 7M urea, 6% Long Ranger™ gel (AT Biochem, PA) in 1XTBE buffer for 2 hours at 1500 volts with the Sequigen (Bio-Rad Laboratories, CA) sequencing apparatus. DNA sequences were computer analyzed with the PC Gene program (Intelligentics, Inc., CA).

RNA was isolated by a modification of the method of Chomczynski, P. et al. (1987) in Anal. Biochem. Vol. 162, pp. 156-157. Vanadyl ribonucleoside complexes were purchased from Gibco BRL, MD and Trisolv™ was purchased from Biolecx Laboratories, Inc., TX. Primers for primer extension and RNA for subtractive hybridization were labelled with gamma ³²P dATP (Amersham, IL) and T4 polynucleotide kinase (Promega, WI). Primer extension experiments were performed using the methods of Ausubel et al., Current Protocols in Molecular Biology, pp. 4.8.1-4.8.3; Sambrook et al., Molecular Cloning A Laboratory Manual, pp. 7.79-7.83; and Forsman, M. et al. in Molecular Microbiology (1989), Vol. 3(10), pp. 1425-1432. Avian-reverse transcriptase was purchased from Promega, WI. Subtractive hybridization experiments were carried out according to the method of Apte, S. K. et al. in Plant Molecular Biology (1990), Vol. 15, pp. 723-733.

RESULTS AND DISCUSSION

We continue to examine various methodologies to isolate improved promoters that will eventually be used to achieve enhanced expression of the desulfurization gene(s) of IGTS8. The methods employed include the construction of promoter probe vectors suitable for isolating *Rhodococcus* promoters, sequencing the promoter region and chloramphenicol gene of pRF2, isolation of mutants capable of growing on high levels of chloramphenicol, subcloning the mutant promoters for this gene and sequencing them. We have also isolated a putative promoter for the 16S RNA gene of *Rhodococcus rhodochrous* IGTS8 and are simultaneously analyzing this DNA fragment while searching for strong inducible promoters in IGTS8.

Characterization of the relative strength of the native desulfurization promoter was the first step toward promoter evaluations. However, before this experiment could be done, a good procedure for the isolation of large amounts of *Rhodococcus rhodochrous* IGTS8 RNA was needed. This was a difficult task as long incubations are required to lyse *Rhodococcus* cells and RNA is notoriously unstable. During the extended period required for the lysis of IGTS8 cells, RNase is steadily released into the environment, thus degrading the RNA. The successful isolation of large amounts of undegraded RNA from IGTS8 has been completed. Northern blot experiments indicate that the relative abundance and/or stability of mRNA from cloned desulfurization genes is apparently low as no clear mRNA transcripts were identified. This was expected based on the relatively low specific desulfurization activity of IGTS8 cells. RNA hybridization experiments did detect two possible transcripts of approximately 2.6 Kilobases (Kb) and 1.2 Kb of the chloramphenicol resistance gene originally found on the *Rhodococcus fasciens* plasmid pRF2. These results suggest that mRNA transcripts for this chloramphenicol resistance gene are present at relatively high levels and/or have high stability in IGTS8. Therefore, the promoter of this chloramphenicol resistance gene may be useful in obtaining increased levels of expression of desulfurization genes.

Experiments were performed to determine the mechanism of resistance encoded by the chloramphenicol resistance gene obtained from pRF2. Standard spectrophotometric assays used to monitor chloramphenicol acetyltransferase (CAT) enzymatic activity using *Rhodococcus rhodochrous* IGTS8 containing pRF29 (which contains the Cm gene from pRF2) and *E. coli* containing pBR325 (which contains a 1-cm gene known to possess a CAT enzyme). Table 1 clearly illus-

trates that the Cm gene of pRF2 does not appear to encode the CAT enzyme. Similar results were obtained when lysed cell extracts were examined. To further examine the mechanism of resistance encoded by the Cm gene of pRF2 growth inhibition assays were performed using spent culture medium resulting from the growth of *R. rhodocrous*/pRF29, *R. erythropolis*/pRF29, *E. coli*/pBR325, and *B. subtilis*/pBD64 (another plasmid known to encode for a CAT enzyme) in nutrient broth containing 30 micrograms of chloramphenicol per ml. After each culture had grown to stationary phase, the cells were removed by centrifugation followed by filtration through 0.45 micron filters. These filtered supernatants were then added to top agar containing either of two chloramphenicol sensitive *E. coli* strains: LE392 or DH5a. These top agars were then spread onto nutrient agar plates and incubated at 37°C O/N. These tests are designed to determine if chloramphenicol is altered (acetylated), degraded, or left unaltered by chloramphenicol resistant cultures. Acetylation or degradation of chloramphenicol will destroy its antibiotic activity and allow the growth of chloramphenicol sensitive strains in the presence of spent culture medium, whereas unaltered chloramphenicol, resulting from cultures having altered permeability to chloramphenicol, will yield spent culture medium that still inhibits sensitive bacteria. The results of growth inhibition assays are shown in Table 2 which indicate that the mechanism of resistance encoded by the Cm gene of pRF2 is probably altered membrane permeability.

Southern blot experiments have indicated that the Cm gene of pRF2 does not hybridize with pBR325, pBD64, or with pGR71 which is consistent with the hypothesis that the Cm gene of pRF2 does not encode a CAT enzyme. Since the chloramphenicol gene of pRF2 has a mechanism of resistance that involves the bacterial membrane as does the desulfurization genes, this promoter was chosen for a more thorough investigation.

The promoter controlling the expression of the chloramphenicol resistance gene of pRF2 was chosen for thorough analysis because chloramphenicol resistance is a selectable marker, and because mutant candidates that may contain altered promoters can be readily isolated. The DNA sequence of the promoter and structural region of the chloramphenicol resistance gene of pRF2 was determined (Figure 1). [While this work was in progress, the sequence of this gene was independently determined by other researchers, confirming data reported here (Desomer et al., *Molecular Microbiol.* 6:2377-2385, 1992).] The important elements of this sequence are the XbaI site indicated by the number 1, the farthest boundary of the

suspected promoter region indicated by the number 2, the two NlaIII sites indicated by the numbers 3 and 4, the transcriptional initiation point indicated by the number 5, the HindIII site indicated by the number 6, the translational initiation point indicated by the number 7, the EcoRI site indicated by the number 8, and the site at which translation terminates indicated by the number 9. Primer extension studies identified the transcriptional initiation point (no. 5), and subcloning experiments indicated the farthest boundary of the suspected promoter region (no. 2). This then defines a 50 bp region suspected of encoding the promoter. An examination of this 50 bp region using PC-GENE software (Intelligenetics Corp.) and libraries of published DNA sequences indicates that this *Rhodococcus* promoter does not possess sequences normally associated with promoters of other more well characterized microorganisms such as *E. coli* or *B. subtilis*, nor does this 50 bp region show obvious similarities to the limited number of published sequences of genes derived from members of the genus *Rhodococcus*. What this means then is that while a potentially useful promoter capable of functioning in *Rhodococcus* has been localized to a 50 bp region, the sequence/structural features important for the functioning of *Rhodococcus* promoters is unknown.

Mutant colonies capable of growth in the presence of 400 to 500 microorganisms of chloramphenicol (Cm) per milliliter (mL) were obtained (the normal level of resistance is 25 to 50 micrograms/mL). These mutants may very well contain altered/improved promoters. The promoter regions of 20 of these high level chloramphenicol resistant mutants have been subcloned and DNA sequencing is in progress. The promoter region can be excised as a 70 bp NlaIII fragment or as a 700 bp XbaI-HindIII fragment and cloned into pUC19 for subsequent sequencing. The status of the analysis of these 20 promoter mutant candidates is summarized in Table 3.

The 70 bp NlaIII fragment contains the 50 bp region suspected of encoding the promoter and little else; however, in the event that sequences beyond those contained in this region are important for the functioning of the Cm resistance promoter, then an examination of the larger XbaI-HindIII fragment may allow the identification of other regulatory sequences. Six of the Cm mutant promoters, pCP8, pCP11, pCP12, pCP14, pCP17 and pCP18 have been sequenced in both the forward and reverse directions. Several base pair changes were noted when the sequences were compared to the original sequence. These changes occur in pCP12, pCP17, and pCP18 (Figure 2). The base change in pCP12 occurs at position 20 where

a C has been replaced with an A, in pCP17 a C at position 7 was replaced with a G and there is a C missing at position 59. The mutation in pCP18 the bases TA at positions 56-57 have been reversed to AT. The differences between these mutants and the original can be seen in Figure 2. These base changes may contribute to promoter strength in allowing *Rhodococcus* strains to have increased resistance to chloramphenicol.

To begin the process of transcription, RNA polymerase must recognize specific binding sequences on the DNA template. These recognition sequences are called promoters. Organisms such as *E. coli* and *B. subtilis* have been extensively studied, and from comparisons between promoters, rules have been made to find promoter sequences. In *E. coli*, two common sequences of 6 nucleotides occur at 10 bases and 35 bases upstream of the transcriptional start site. Consensus sequences were determined by comparison and most *E. coli* promoters differ by only a few base changes from the consensus sequence. However, other *E. coli* promoters have been found that recognize different consensus sequences which occur at 12 and 24 bases upstream of the transcriptional start site, and the consensus sequences found for promoters in *B. subtilis* follow altogether different but consistent rules.

Rhodococcus promoters do not seem to follow the rules determined for *E. coli* and *B. subtilis*. *Rhodococcus* promoters have not been as extensively studied as *E. coli* and *B. subtilis*. We have been collecting DNA sequence data of *Rhodococcus* promoters and suspected promoter regions. This information should allow the determination of promoter sequences more easily than at present. Sequences have been collected from the EMBL GenBank and recent publications of *Rhodococcus* species and other Gram positive species which are related, such as microorganisms from the genus *Corynebacteria*, *Lactococcus*, *Streptococcus*, *Streptomyces*, *Arthrobacter*, and *Brevibacteria*. Through the study of *Rhodococcus* promoter sequences, rules for the identification of promoters will be determined. The data that are being compiled include ribosomal binding sites, transcriptional start sites, and particularly DNA sequences upstream from transcriptional start sites. Computer comparisons will be made to aid in finding the formula for locating *Rhodococcus* promoters. Once the promoters have been identified, site specific mutagenesis would be a logical next step. It will be important to be able to recognize how base changes within promoters effect promoter strength to analyze mutants and find a strong promoter for the desulfurization genes.

The chloramphenicol resistance gene of pRF2 probably does not encode a chloramphenicol acetyltransferase enzyme like the majority of Cm resistance determinants. The mechanism of resistance appears to be altered membrane permeability. Since the desulfurization enzymes are also thought to function within the bacterial membrane, then structural features of the Cm resistance gene/protein may be useful in understanding the expression, transport, and functioning of desulfurization genes/proteins.

Four promoter probe vectors have been constructed and one commercially purchased vector has also been utilized for studying promoters in IGTS8. These vectors are called pRCM1, pRCATA1, pRCAT2, pRCAT3, and pKK232 (Pharmacia, NJ). Each of these vectors contain structural genes encoding chloramphenicol resistance, but lack a promoter to express these resistance genes. One or more unique restriction sites is present on each vector just proximal to the resistance genes, allowing the insertion of DNA fragments that can be assessed for the presence of promoters by selection for those derivatives that express chloramphenicol resistance. Except for pRCM1, which has the Cm gene from pRF29 whose mechanism of resistance is related to permeability rather than acetylation of chloramphenicol, the promoter probe vectors can be used to measure the relative strength of the promoter inserts through the chloramphenicol acetyl transferase (CAT) assay which is a convenient, well documented assay. Several Cm resistant colonies have been isolated using these vectors. These derivatives have been found to contain inserts of R. rhodochrous IGTS8 chromosome ranging in size from about 100 to 2000 bp and providing levels of chloramphenicol resistance ranging from 25-200 ug/mL. Figure 4 shows the maps of the promoter probe vectors constructed at IGT and Figure 5 shows the commercially purchased vector pKK232.

The search for strong promoters in *Rhodococcus* would not be complete without looking for known promoter regions that may be stronger than the native desulfurization promoter. Ribosomes are among the most abundant components of bacterial cells. The promoter for the 16S ribosomal RNA gene is a good candidate for a strong promoter since it must allow for many copies of 16S RNA to be transcribed, especially in log phase cultures. Moreover, straightforward methods are available to isolate this promoter. While the 16S RNA gene of Rhodococcus rhodochrous IGTS8 has not been cloned prior to this work, 16S RNA genes from dozens of other bacterial species have been cloned and sequenced. Although the promoters for the 16S RNA gene vary considerably, the structural gene is highly conserved between prokaryotic

species. Small primers from both the 5' and 3' ends have been synthesized and recognized as universal. These primers were used in conjunction with polymerase chain reaction (PCR) technology to isolate the structural portion of the 16S ribosomal gene of R. rhodochrous IGTS8. The primers used to amplify the 16S RNA structural gene and a plasmid containing this cloned 1.5 Kb gene designated pEBC2, is shown in Figure 6.

In order to find the Rhodococcus promoter for this gene, partially digested genomic DNA from R. rhodochrous IGTS8 was analyzed through Southern hybridization to radio-labelled pEBC2. Hybridization occurred at 4.5 Kb+3.2 Kb EcoRI digested chromosomal fragments, a 4.0 Kb Bam HI fragment, and a 3.0 Kb HindIII fragment (Figure 7). Chromosomal DNA fragments corresponding to the sizes that hybridized were ligated into the vector pUC19. Then colony hybridization was used to isolate the promoter region of the 16S RNA gene.

A 1.5 Kb EcoRI fragment was identified as a candidate likely to contain the 16S RNA promoter. This clone was designated p16SPRO. This DNA fragment is being analyzed in three ways: primer extension combined with DNA sequencing to determine the size of the RNA transcript and transcriptional start site; ligation into pRCAT3 for analysis of CAT activity, and ligation of this fragment with the desulfurization genes. Analysis of this promoter will continue in the next fiscal year.

A strategy for the isolation of strong inducible promoters is currently being studied through a technique called subtractive RNA hybridization. Subtractive RNA hybridization allows the specific microorganism to be identified through a multi-step procedure. Genomic DNA is immobilized on nitrocellulose by Southern blotting. Total RNA of uninduced cells is used to bind to sites that are not specific for the gene of interest, then the DNA is hybridized to radiolabelled total RNA isolated from cells induced for the genes of interest. A flow chart depicting subtractive RNA hybridization is shown in Figure 8. Inducible promoters are desirable for the reason that the expression of some genes/proteins at high levels may cause cell death. When using an inducible promoter, cells may be grown to stationary phase under normal conditions, then as the inducer is added the genes are expressed and cell death is no longer a concern. The search for inducible promoters for IGTS8 genes associated with the utilization of urea and guanidine hydrochloride is in progress and will continue in the next fiscal year.

JOHN\40312-4.93

Table 1. SPECTROPHOTOMETRIC ASSAY FOR
CHLORAMPHENICOL ACETYLTRANSFERASE

A 412 nm (background subtracted)

Time, min.	E. coli control	E. coli/ pBR325	R.r. Control	R.r.pRF29
5	0.013	0.900	0.015	0.015
10	0.012	0.995	0.010	0.005
15	0.000	0.970	0.001	0.003

Table 2. GROWTH OF CHLORAMPHENICOL SENSITIVE CULTURES
IN THE PRESENCE OF FILTERED SUPERNATANTS DERIVED FROM
CHLORAMPHENICOL RESISTANT CULTURES

Source of Supernatant	Bacterial Growth	
	LE392	DH5 α
Cm Control	-	-
E.c./pBR325	+	+
R.r./pRF29	-	-
B.s./pBD64	+	+

Figure 1. DNA SEQUENCE OF THE CHLORAMPHENICOL RESISTANCE GENE OF pRF2

BASE	COUNT	458	a	813	c	817	g	628	t	ORIGIN
1	t'ctagagcg	acgcaggcg	cgccggc	ctc	gttcgcattt	gctgctctcg	cccggccgca			
61	gcgcgggtgc	atgcgtcaat	gttggaccga	actggattcg	tgcaccgacg	tctctgtgtg				
121	atgcccacg	ctgcgcgatc	cgtctacgt	ctcgacttcg	gcccagatgg	cgttctgtat				
181	gagatcagat	gaccgggtcg	ttggggttgc	ggcggatgaa	gtccgcatt	tcggggacag				
241	tgaaggcaac	caggccgcgg	gagaccagat	gagtccctt	cgtatgcagg	agtcacggtg				
301	cggtgcacatc	gattgcgggt	tcgatccgag	ggactcggcg	agggttgctg	tccgcggagt				
361	gtctgttccg	ctgcgtgcga	ttggcgaccag	atagcgctt	tcatgtcggt	gcggtcgagt				
421	ccctgcaata	gctctgttag	agctttacga	cacggaactg	tgccttcgct	gggtgctctc				
481	tgcacatcg	taggcctac	cgcgtgaag	tgtgccccat	cgagcgaactc	acagtccact				
541	gcgtactccg	gtagagcaai	gagtgcatac	cctggaatct	gttgggttgc	agcgttgcgt				
601	ggcattgttq	tgcgggttac	ggaccaactg	cgcgaacg	gcgtc'atgccc	gttggata				
661	cg'cgacgccc	cgaatcggtt	ggacaatcac	atccgacatt	gtaacttcgatg	acatgtc				
721	ca'gccccaa	gcttccagac	tctagccacc	ggcagcagcc	ggtggccacg	cacccgtcg				
781	tcgatgccgt	tctctctacg	gctcaattt	cagtgcgcga	ttcgtggcac	cctctgcct				
841	ccg'aagctta	agtctggct	tggcggtca	cattcttca	ctgtggcgct	gtcaggtc				
901	ccgctccgag	atcgattgc	atcgctctg	aatccgacga	tgcaaacaat	cccgtagcct				
961	cccttgac	ttctcagaca	cgaggctca	cag'tgcccatt	cgccatctat	gtccctgggt				
1021	ttgctgtatt	cgcccagg	acatcg'gaat	tcatgtgtc	cgactcata	ccggatatgg				
1081	ctcaggatct	acaggttc	gtccccactg	caggactt	cacttcggca	ttcgaatcg				
1141	gcatgatcat	cggtgcccc	ttgatggca	ttgtcagtat	gccccggca	cgtcgacgag				
1201	cgctcttgac	tttcctcatc	acttttatgg	ttgtcagt	catcgccgca	ctcaccgaca				
1261	gttcggcgt	ttgctggc	acccggatcg	taggagact	ggcaacg	ggtttctgg				
1321	ctgttagcg	gggcgcagcc	atgtcgatgg	ttcctgccc	catgaagg	cgagcga				
1381	cagttctact	gggcggag	accatcg	gctgttt	agtcccgg	ggagcgtat				
1441	tgggcgaact	gtggggatgg	cgcgcctcg	tctggaggt	agtgtgt	tccgcaccg				
1501	cagtggcagc	gatcatggca	tcgaccc	ctgattcccc	tacagatt	gttccgaac				
1561	cgacccgcga	actgtcctcg	ctgcgtca	gcaaaacttca	actgtat	gtgctggcg				
1621	cgctgatcaa	cggtgcccacc	ttctgttcc	tcacctac	ggctccgac	ctcaccgac				
1681	tcgcccgg	cgactctcg	tggatcc	tgcttctcg	actgtt	ctggggtcgt				
1741	tcatcggt	cagtgtcg	ggccggctcg	ctgacacc	tccgtt	ttgtcggt				
1801	cgggctcggc	agcttctcg	gtcgggttga	tcgtgtt	tatca	tctcacc				
1861	tagtgcac	gtgtatgt	ttcgtgc	gaacgctgt	gttcgtgt	gggtcgac				
1921	tgtatctcg	agtgtctac	gtcgccgac	gtgtccgac	tttgggg	tccttcg				
1981	cggctgcctt	caatgtcg	gccgcattt	ggccggcc	cggcggtgt	gccatcggt				
2041	tcggaatgg	ctatcg	ccactgtt	ccagcg	tctgggtt	cttgcgtat				
2101	tgatcggt	cgcgacgt	acgcgtt	ggaaccac	tccagcg	gacaccgtt				
2161	tcccg	gtatcgac	gtcg	cgattgc	attgtcg	cttgggt				
2221	tccgcac	cgatcc	tcacc	gccacgt	agcg	gccgc				
2281	cta	aggtag	at	cgat	cgat	gtat				
2341	aa	cttt	ttt	gaaat	gaaat	ggcc				
2401	ttgc	ccc	gc	gtcg	gtcg	cc				
2461	ttt	cct	tc	gtcg	gtcg	cc				
2521	tcgt	cg	gt	gtcg	gtcg	cc				
2581	ccgt	tgag	ac	gtat	gtat	cc				
2641	ttgt	agcg	gt	ggat	ggat	cc				
2701	ccgg	cata	cc	gat	gat	cc				

Table 3. STATUS OF THE ANALYSIS OF THE
PROMOTER REGION OF HIGH LEVEL
CHLORAMPHENICOL RESISTANT MUTANTS

Strain	Isolated From	XbaI-HindIII Fragments	NlaIII Fragment
CP1	CW22/pIGTS3	+	-
CP2	CW22/pIGTS3	+	+
CP3	CW22/pIGTS3	+	+
CP4	CW22/pIGTS3	+	+
CP5	CW22/pIGTS3	+	+
CP6	CW22/pIGTS3	+	+
CP7	CW22/pIGTS3	+	+
CP8	CW22/pIGTS3	+	+
CP9	CW22/pIGTS3	+	+
CP10	IGTS8/pRF29	+	+
CP11	IGTS8/pRF29	+	+
CP12	IGTS8/pRF29	+	+
CP13	IGTS8/pRF29	+	+
CP14	IGTS8/pRF29	+	+
CP15	IGTS8/pRF29	+	+
CP16	IGTS8/pRF29	-	-
CP17	IGTS8/pRF29	+	-
CP18	IGTS8/pRF29	+	-
CP19	IGTS8/pRF29	+	-
CP20	Cw22/pTOXI1	+	-

Figure 3. DNA SEQUENCE COMPARISON OF NLAIII FRAGMENTS

The alignment was done on 7 Nucleic acid sequences.

Character to show that a position in the alignment is perfectly conserved: '*'
 Character to show that a position is well conserved: '..'

Alignment

NLA3	TGCCGTCTGGATAACCGGACGCCCGAATCGGTTGGACAATCACATCCGA	50
CP12	TGC-GTCTGGATAACCGGACGCCCGAATCGGTTGGACAATCACATCCGA	49
CP17	TGCCGTGTGGATAACCGGACGCCCGAATCGGTTGGACAATCACATCCGA	50
CP18	TGC-GTCTGGATAACCGGACGCCCGAATCGGTTGGACAATCACATCCGA	49
CP8	-----GGATACCGGACGCCCGAATCGGTTGGACAATCACATCCGA	41
CP14	-----ATACCGGACGCCCGAATCGGTTGGACAATCACATCCGA	39
CP11	TGC-GTCTGGATAACCGGACGCCCGAATCGGTTGGACAATCACATCCGA	49

NLA3	CATTGCTAACTTCGATGACATGTCCAGCC	79
CP12	CATTGCTAACTTCGATGACATG--CAA--	74
CP17	CATTGCTAA-TTCGATGACATG--CAA--	74
CP18	CATTGCATAACTTCGATG-----	66
CP8	CATTGCTAACTTCGATGACATG-----	63
CP14	CATTGCTAACTTCGATGACATG--CCT--	64
CP11	CATTGCTAA-----	58
	*****..*	

Figure 4. MAPS OF PROMOTER PROBE VECTORS

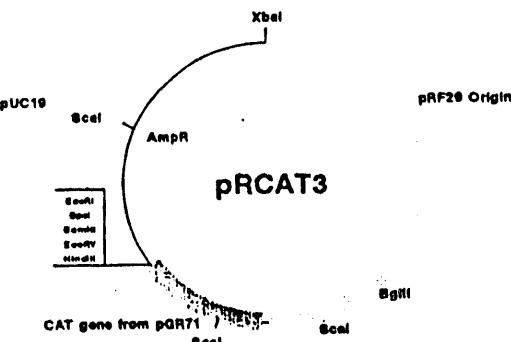
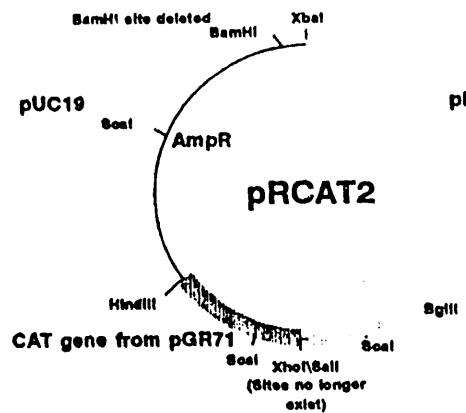
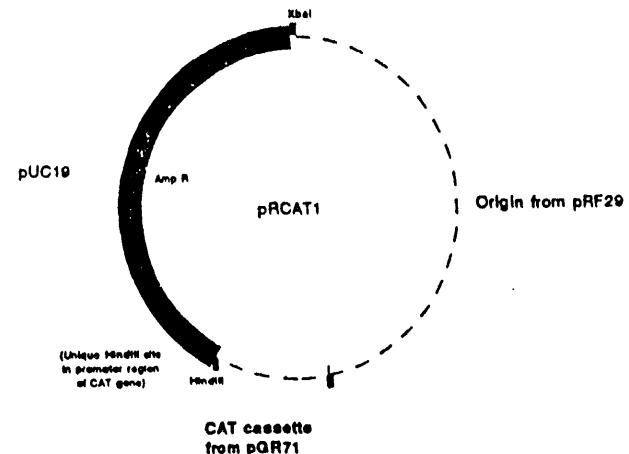
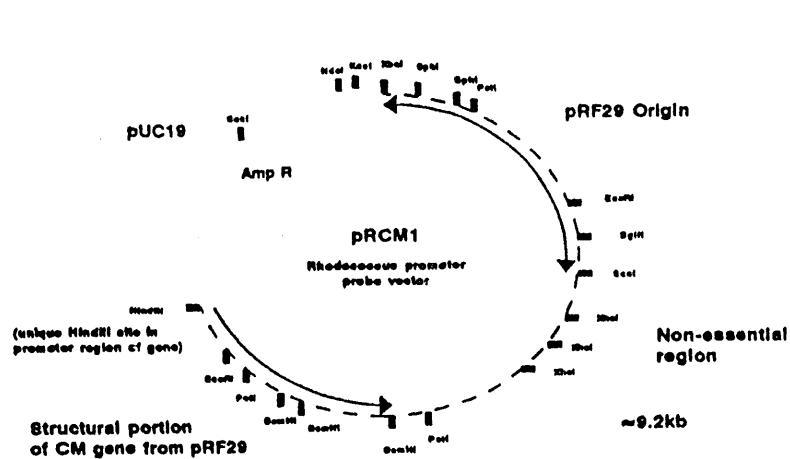





Figure 5. MAP OF PROMOTER PROBE VECTOR pKK232

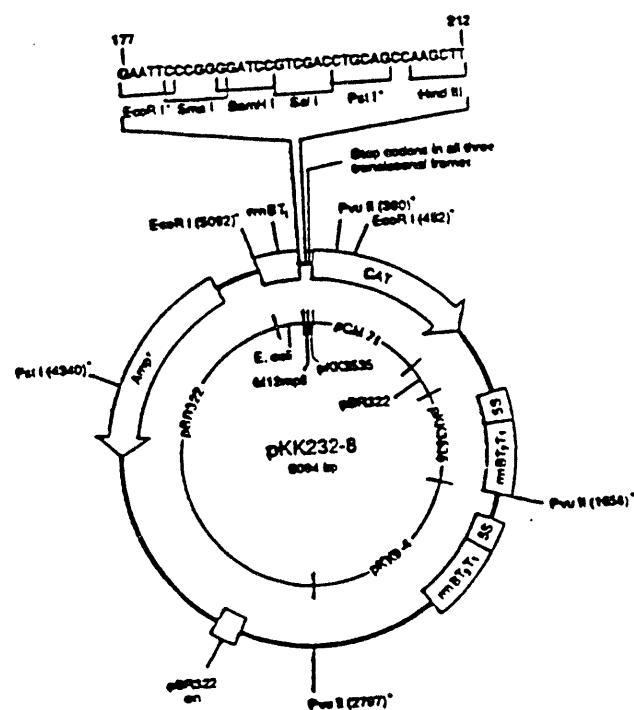


Figure 6. DNA SEQUENCE OF 5' PRIME AND 3' PRIME UNIVERSAL PRIMERS FOR THE 16S RNA GENE AND MAP OF pEBC2

Primer A

5' CCGAATTCTCGACAGAGTTGATCCTGGCTAG 3'

Primer B

5' CCCGGGATCCAAGCTTAGAAAGGAGGTGATCCA 3'

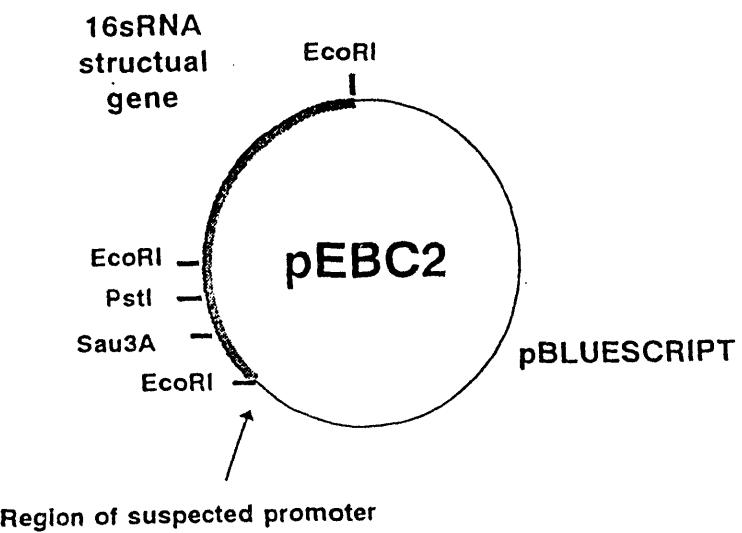
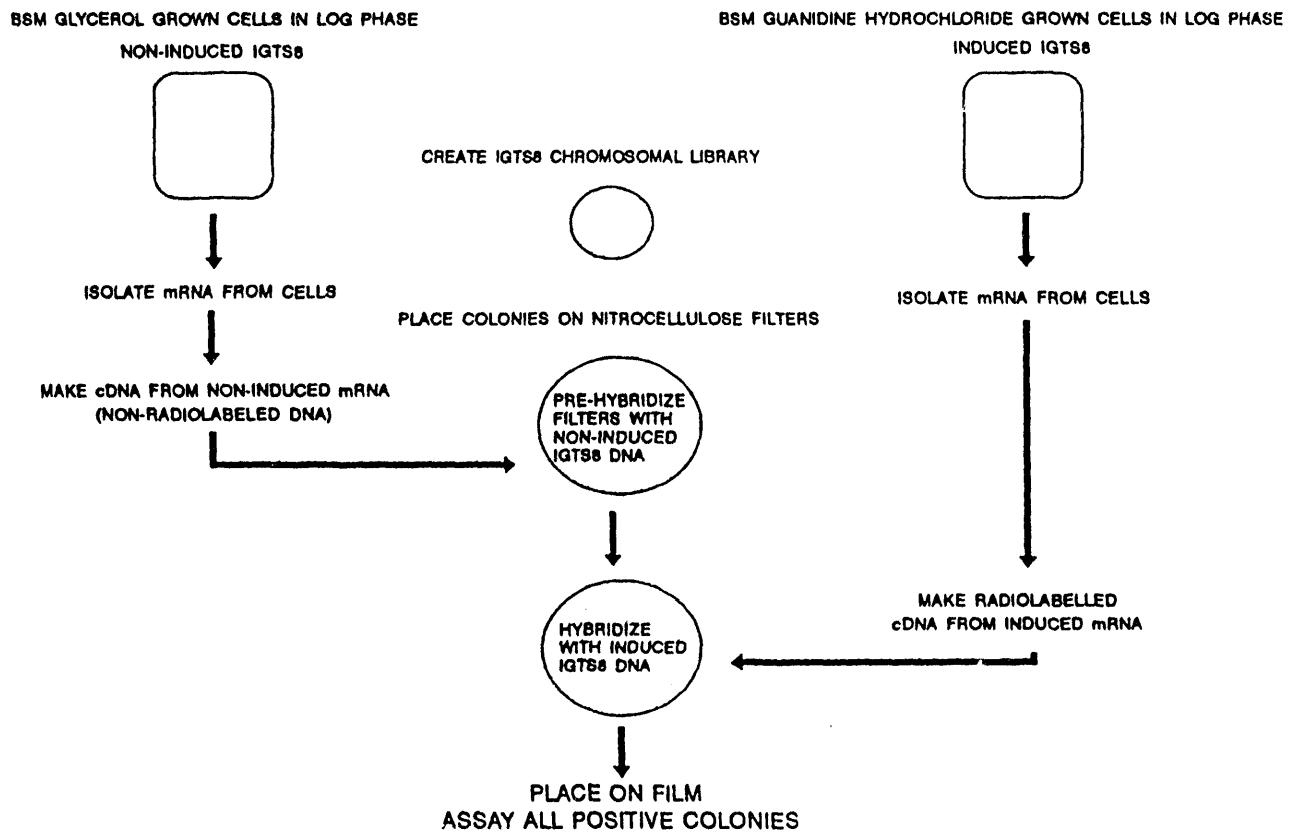



Figure 7. SOUTHERN HYBRIDIZATION OF
RHODOCOCCUS CHROMOSOME WITH pEBC2

LANES 1 2 3 4 5

Figure 8. SUBTRACTIVE RNA HYBRIDIZATION FLOWCHART

CONCLUSIONS AND RECOMMENDATIONS

The isolation and characterization of *Rhodococcus* promoters is proceeding extremely well. This work should continue so as to identify particularly strong *Rhodococcus* promoters and to understand the sequence requirements for gene expression in *Rhodococcus* so that this information can be used to construct improved promoters which will ultimately be used to express the desulfurization genes of IGTS8.

PROJECT MANAGEMENT REPORT
June 1, 1993 Through August 31, 1993

Project Title: **MICROBIAL STRAIN IMPROVEMENT
FOR ORGANOSULFUR REMOVAL FROM
COAL**

Principal Investigator: **Dr. John J. Kilbane II
Institute of Gas Technology**

Project Manager: **Dr. Ken Ho, ICCI**

COMMENTS

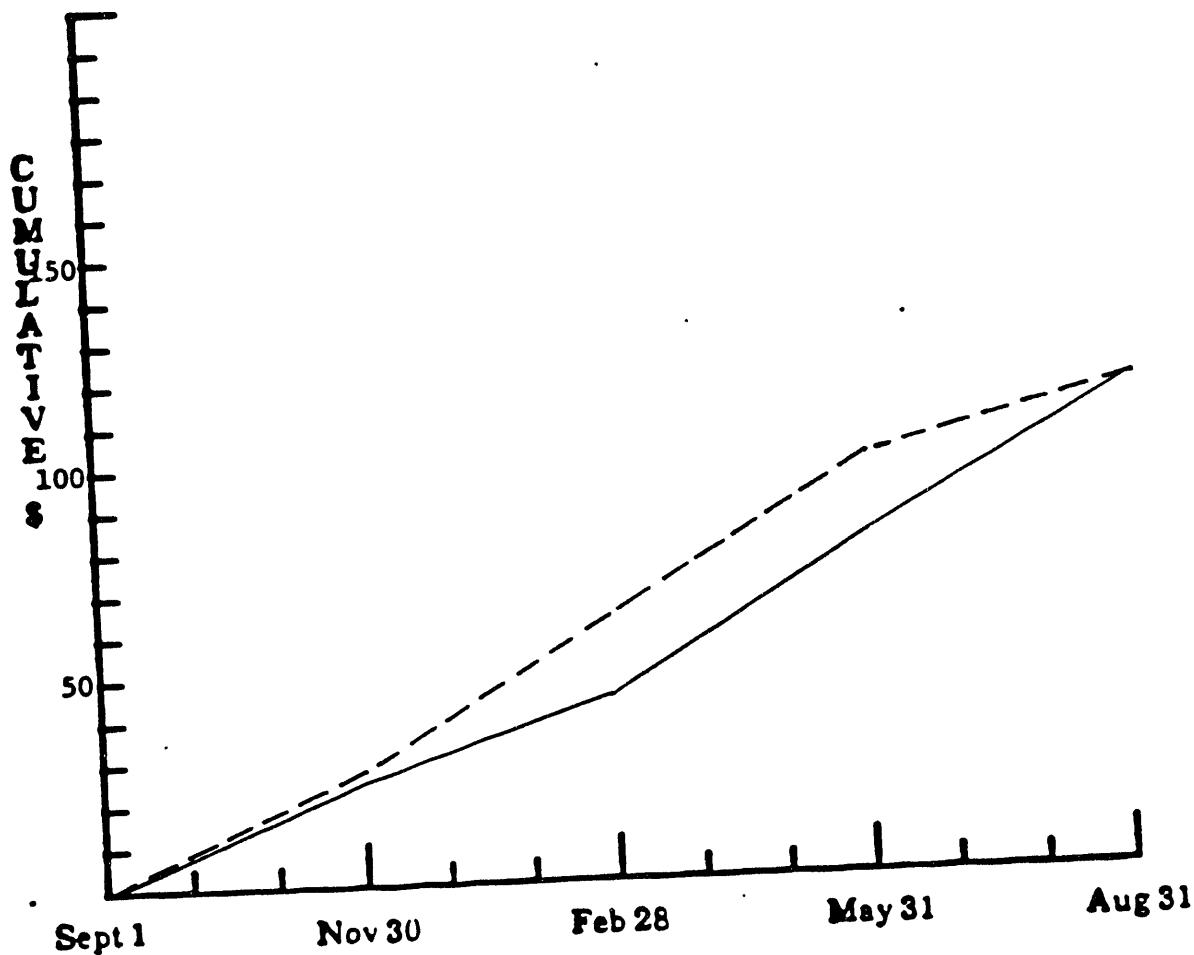
The project was as scheduled.

40312-4.93

11.

EXPENDITURES - EXHIBIT B

Cumulative Projected and Estimated Actual Expenditures by Quarter


Quarter *	Types of Cost	Direct Labor	Materials and Supplies	Travel	Major Equipment	Other Direct Costs	Indirect Costs	Total
Sept. 1, 1992 Projected	8,000	5,000	-	-	-	15,508	28,508	
to Nov. 30, 1992 Estimated Actual	9,000	750	-	-	-	15,980	25,730	
Sept. 1, 1992 Projected	18,000	9,000	-	-	-	34,420	61,420	
to Feb. 28, 1993 Estimated Actual	14,000	2,500	-	-	-	25,151	41,651	
Sept. 1, 1992 Projected	30,000	10,000	410	-	-	56,402	96,812	
to May 31, 1993 Estimated Actual	24,500	9,000	-	-	-	45,031	78,531	
Sept. 1, 1992 Projected	36,789	10,800	410	-	-	68,839	116,838*	
to Aug. 31, 1993 Estimated Actual	37,048	11,880	160	-	-	67,750	116,838	

* Cumulative by quarter

* Requested from CRSC

CUMMULATIVE COSTS BY QUARTER - EXHIBIT C
(IN THOUSANDS)

"Microbial Strain Improvement for Organosulfur Removal from Coal"

Months and Quarters

0 = Projected Expenditures -----

Δ = Actual Expenditures —————

Total CRSC Award \$ 116,838

| S | O | N | D | J | F | M | A | M | J | J | A |

Task 1. Isolate Additional Desulfurization-Deficient Mutants of IGTS8

Completed

Task 2. Screen Genomic Libraries for the Ability to Complement Desulfurization-Deficient Mutants

1
|=====■

Task 3. Analyze Cloned DNA Fragments That Encode Desulfurization Functions

2
|=====■

Task 4. Manipulate Cloned Desulfurization Genes to Achieve Enhanced Expression

3 4
|=====■-----■

Task 5. Evaluate the Ability of Improved Cultures to Remove Organic Sulfur From Coal

5
|=====■

Task 6. Reporting

■ ■ ■ ■

X = Milestone

Q = Quarterly Report

F = Final Report

■ = Completed Milestone

1 = Screening of genomic libraries is completed.

2 = Analysis of all cloned desulfurization genes is completed.

3 = The effect of supplying IGTS8 with multiple copies of at least some desulfurization genes is evaluated.

4 = Manipulation of cloned genes is completed.

5 = Evaluation of improved cultures in coal biodesulfurization experiments is completed.

A high-contrast, black and white graphic image consisting of three distinct horizontal bands. The top band features a central white rectangle flanked by two black rectangles. The middle band is a thick, solid black rectangle. The bottom band is a thick, solid black rectangle with a diagonal black wedge extending from its left side towards the center.

DATE
TIME
PLACE
HOTEL

