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INTRODUCTION

The DWPF Process batch-blends aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste
receipt vessel (the SRAT). The resulting SRAT-Batch is transferred to the next process vessel (the
SME) and there blended with ground glass (Frit) to produce a batch of feed slurry. The SME-Batch
is passed to a subsequent hold tank (the MFT) which feeds a Melter continuously. The Melter
produces a molten glass wasteform which is poured into stainless steel canisters for cooling and,
ultimately, shipment to and storage in a geologic Repository.

The Repository will require that the glass wasteform be resistant to leaching by any underground
water that might contact it. In addition, there are processing constraints on Viscosity and Liquidus
Temperature of the melt:

Processibility Acceptability

Liquidus Temperature < 1050°C Leach Rate < 1 gm/m2/day
20 < Melt Viscosity _<;100 poise

THE PCCS STATISTICAL PROCESS CONTROL (SPC) ALGORITHM

What Is It?

The Product Composition Control System (PCCS) is the system intended to ensure that the melt
will be Processible and that the glass wasteform will be Acceptable. Within the PCCS, the SPC
Algorithm is the device which guides control of the DWPF process.

Why Is It?

The SPC Algorithm is needed to control the multivariate DWPF process in the face of
uncertainties (variances and covariances) which arise from this process and its supply, sampling,
modeling, and measurement systems.
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What Does It Do?

The SPC Algorithm
• derives a Target-Blend (mass fractions p pf PHA, s of Sludge, andfof Frit) which will

combine with current SRAT and SME Heels to produce a SME-Batch with desirably
high waste-loading,

• monitors a pending SME-Batch composition for Melt Processibility and Product
Acceptability prior to clearing it for transfer to the Melter Feed Tank,

• and derives a Remediation-Blend of trim chemicals to correct an Unacceptable SME-
Batch

in such a way that the resulting melt will likely process into good product. The essentials of the
DWPF Process and the PCCS are illustrated in Figure 1. However, for simplicity we limit the
discussion here to monitoring.

PROCESSIBLE??? ACCEPTABLE?_

LIQUIDUS
' WAPS DURABILITY

_ VISCOSITY

N •HEF,L "_[I _ 2L_/ 'le"DErtlVE'/_ t'Pstq'SME'TARGET IILEND
2. MONITOR PENDJNG SME BATCH

saA'r
3. REMEDIATE OFF.TARGET SME-BATCHES

I

Figure 1 Product Composition Control System

To monitor the SME-Batch composition, the PCCS SPC algorithm takes into account:

• uncertainties inherent in slurry sampling, sample preparation and measurement;

• uncertainty in prediction of properties from slurry composition;

• the simultaneous variation of the individual constituent concentrations;

• mass-balance process information to augment the measurement data;

• and the Waste Acceptance cri'_eria (WAPS).

It also will take into account process and input feed variations, as they become known during
operation.



,, CHARACTERIZING THE PROCESS PRIOR TO MAKING PRODUCT

The process is characterized prior to making product by relating glass and melt Properties to feed
slurry Composition• The composition is expressed through a hybrid combination of elements
denoted _. Each property has its own unique _. Both glass chemistry theory and empirical least-
squares fitting show that straight-line regressions relate the glass property (Leach Rate) and the
process melt properties (Viscosity and Liquidus Temperature) to the _'s. Thus, to characterize the
process prior to making and inspecting either the melt or product, these properties are predicted
from measured feed slurry composition using straight-line regressions in _. Back-solving any such
regression line to get the G-value corresponding to its property limit transforms the constraint on
that property into an equivalent constraint on its _. This constraint on _, in turn, becomes a
constraint on the concentrations of the individual constituent oxides (the "x's"). For example,

the Liquidus regression is: T L = 803.8698 + 2276.8724_t

134[Fe20 31
aral its _ is: _t = .

156[SIO2] - 360[A120 3]

Its property limit is: TL_ 1050°C

1050-803.8698]which transforms to: _t < _ = 2276.8724 ]'

Graphically, this is illustrated in Figure 2.

T_ 1 I'r,= 803.869
I

1050°C

ii!i!::::....

_t* - 0,108!/

_t
kt= 1561SIO2 ] . 360[AI203]

Figure 2 Liquidus Correlation

Thus, T L _ 1050°C becomes: 134[Fe20 3] _ 0.108(156[si0_ - 360[A1203])
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or: (134[Fe203]- 16.848[SIO 2] + 38.88[A1203] ) < 0

or: _t] [oct]'-< 0

where: Ix t] = ( [Fe203],[SiO2],[AI203] ) and _ t] = [134, -16.848, 38.88].

The inequality thus formed determines a region in meatsured composition space K-Space), ali
points of which give predicted values of T L that are Acceptable (ie, < 10500C). Denote this region

the g_,xpected Property Acceptable l_egion (EPAR). Figure 3 illustrates the EPAR for Liquidus
(using only 2-dimensions for clarity).

[Fe203 ]_ [ [xt] [._t]' =0 i

i!ii!!!iii!iiiliii ii i:!ii
---- [siozl

Figure 3 Liquidus EPAR in 2 Dimensions

ACCOUNTING FOR PREDICTION UNCERTAINTY

To monitor an already blended SME-Batch, the algorithm first accounts for the (random)
uncertainty of prediction through use of Scheffd simultaneous confidence bands 1 around the
straight-line regressions:

Scheffe-type l[all._: Model Value + Sr_ Flq,n-q}-_/ _o{X'X) 1 _0'

These 'bands utilize the estimate of the random error standard a, ,iation (Sr), the design of the

parent data (X'X) -1, and the F-statistic to provide at any _ = _0 cc,lfidence limits on the model

value which hold simultaneously for ali _. They are appropriate for repeated use of the line.

Back-solving the appropriate (upper and/or lower) confidence band tbr a new _-limit _*
corresponding to the acceptable property limit produces other ineqtmlities like those which
generated the EPAR. These new inequalities are constraint hyperplanes in x-Space which
accommodate the random uncertainty in the predictions. Call them Constraint Uncertainty Elanes
and denote them as _-CUP's. These new inequalities generate the Property Acceptable Region
(PAR), the locus of ali compositions which give acceptable property predictions even allowing for



the random uncertainty of prediction. 'TlaePAR is interior to (and thus everywhere more
conservative than) the EPAR. See Figure 4 for illustration for Liquidus. (There are corresponding
but different cases for Viscosity and Durability.)

LIOUIDUS PROPERTY COI_RELATION

1050 _ FITTED

Fe 2O3 /.LIQUIDUS CUP 1,

134Fe20_. 15o288SiO2 +3 5,28AI203 _<0

Figure 4 Liquidus Property Acceptability

There is a separate PAR for each property. The confluence of ali 4 such PAR's forms the overall
PAR. (Actually, only 3 determine the overall PAR since only one of the Lo Viscosity and Hi
Viscosity constraint pair will apply to a particular case.) Any point located within the overall
PAR represents a SME-Batch measured composition which will give predicted properties that meet
ali the stated limits, even allowing for predictive uncertainty. The PAR is illustrated in Figure 5.

ACCOUNTING FOR SAMPLING & MEASUREMENT UNCERTAINTY

"IlaePAR accommodates the random uncertainty inherent in property prediction arising from
uncertainty only in the properties themselves. But, in operation, the composition of the feed
slurry will not be measured to the same accuracy artdprecision as that of the standard glasses on
which the predicting relations are based. Thus, ;here will be appreciable errors in _. It remains to
deal with this component of uncertainty from the sampling and measurement systems which
produce the composition measurement.

A current SME-Batch composition measurement_x m is a lxq row-vector of measurements on
several constituent oxides simultaneously :

xm = ( [Fe203], [SiO2] ..... [MgO] ) = [ x 1 , x2 ..... Xq].
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Figure 5 The DWPF Property Acceptable Region (PAR)

To describe its uncertainty thus necessitates use of multivariate statistical techniques.t If the
concentrations of the individual constituents can be assumed multivariate Gaussian, then traditional
methods of multivariate normal theory apply. Assuming the process to be q-variate Gaussian
centered at _m the uncertainty around this measurement due to "usual and customary" noise is

described by Hotelling's T2. Hotelling's T2 is the multivariate analog 2 of the square of "Student's
t":

SM is the covariance matrix based on an historic sample of several such measurements (but not

including xm). SM consists of the variances within and covariances between the "q" individual
constituents'

1=

Sll Sl2 ... Slq

SM'- Sl2 s22 S2q

Slq S2q Sqq.

where the sij are the sample variances (i=j) and covariances (i#j):

1 x
sij = n-_i-E( ik" xi_xjk" _j)

"_A more simplistic alternative, that of applying several sets of univariate control limits independently,
is theoretically and pragmatically counterproductive _inee it causes the false-reject rate to sky-rocket. If
there are q=10 constituents to be controlled, and if 95% control limits are applied independently on
each, from probability considerations alone some 40% of the candidate feed batches will be rejectexleven
though they are good feed material.



=1_ xj k k = 1,2,...,n.xj

The locus of ali points x such that T2 _ Tc2 is a q-dimensional ellipsoid which representsthe
uncertainty envelope around the measurement xm. This ellipsoid is denoted the Measurement &
Sampling uncertainty Ellipsoid (MSE). The aspect ratios and flits of the MSE are determined by
SM"l , the inverse of the covariance matrix SM. The size (ie, probability volume) of the MSE is
determined by the number and allocation of samples and measurements, and by the critical value

Tc2 of Hotelling's T 2 corresponding to whatever confidence level is chosen. If "r" replicate

measurements are averaged to get xm, the covariance matrix becomes _M = r'lSM ; and thus the

expression above corresponds to the case of a single measurement, r=l. T2 is distributed as:

T 2 -[_[ (n_]F(q, n-q)

where F(c], n-q) is the variance-ratio statistic with "q" numerator and "n-q" denominator degrees of
freedom? Thus, the "radius" Tc of the MSE can be set according to the probability level
appropriate for the test. See Figure 6 for continued illustration of the Liquidus case.
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Figure 6 Measurement and Sampling Uncertainty Ellipsoid

MONITORING A SME-BATCH

With the property modeling uncertainty accommodated by the CUP and the composition
measurement uncertainties accommodated by the MSE, it remains to determine whether the MSE
is everywhere inside the PAR and distinct from the CUP. If it is, not only is the composition
measurement itself Acceptable, but it is also far enough away from the CUP to be statistically
distinguishable from it. The algorithm now decides whether xm meets both these criteria; if so,
the SME-Batch is judged to be Property and Measurement Acceptable for that property. To decide
this, it determines whether or not the point on the CUP "nearest" the MSE is geometrically

distinct from it. Denote that nearest point g-+,and denote its T2-value by T+2:

2+= [+. [_+- minx{_ +- S _[x +-xm]s _ g m],= g m] mi, }.
T
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To determine T+2, do a Lagrangian minimization of T2 subject to the auxiliary condition that x be
on an a-CUP. This means that x a' + e = 0 where e = 0 for Liquidus and Viscosity, e - 5.67 for
Durability, and the, a are known constants deriving from the back-solution of the confidence bands
around the property model. Thus:

Minimize T2 subject to the constraint: (1)= x a' + e = 0.

Construct the Lagrangian: F = T 2 + _ (I)

Solve for the x which minimizes F, which by Lagrange is also the x which minimizes T2. Find
the partial derivatives:

OF_ aT2 + _,O(1)= 2S_ rx-arn]' + Xa'

OF

i a--_-=aa' + e

Set the partials to zero and solve for x+: 2S MS M rx+- an_ ' + S M_' a' = 0

m 0x +e=0__ - S _' =

L _ x_m_'+ e

2 IISMa'

The solution is: x = x [ g S M a' ] g S M'

This solution gives the minimum, since there can be no maximum. The minimum T2
corresponding to this is:

2 ( ma,+,..2 r+--
_SMIt'

Thus, the test devolves to: (rn,+ e)2
2

aSMI 1, ' T c .
i

for the case of a single measurement (r=l). For the average of r >1 replicates:
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and the test becomes: r _ma' + e)2 2
ItSMIt' "T c r=2,3 ....

If T+ 2 > _c 2, then x+ is outside of, and thus does not touch, the MSE. If this is true for x+, it
being "nearest" the measurement, then it must be true for ali points on the x-C_JP. If this is true

for all 4 x+, then xm is statistically distinct from ali CUP's, and x_m differs from x_+ by more th_
sampling and measurement noise, and is judged to be statistically distinct from it. See Figure 7
for continuation of the Liquidus illustration.

iL
B _LIQUIDUS

' Fe203 jfLIQUIDUS _" CUP

'_ EPAR_
/ _" -"LIQUIDUS

/ + / PAR

- .._ SiO 2

Figure 7 Property and Measurement Acceptability

If T+ 2 > Tc2 for ali properties, the SME-Batch is judged to be overall Property and Measurement
Acceptable. lt is then cleared for transfer to the MFT,

INCORPORATING OTHER PROCESS INFORMATION

In order to improve the precision of the measurements, the algorithm augments the measurement
information available for process control by incorporating other relevant process information into
the measurement system through use of a Kalman Filte# mass.transfer state model. The KF
mass-transfer state model gives a state projection for the SME composition after receipt of the
SRAT transfer but prior to the control lab mea.surement:

[State Projection for Mass in SME Now] =

[Mass out of SRAT+Mass into SME]/2 + [SME Heel]

The Kalman-filtered state estimate is the following combination of this state-model projection and
th_ relevant lab measurement:



[SME State Estimate] --

[State Projection] + K[Lab Measurement - State Projection]

where the "Kalman Gain" K varies over (0,1) to favor the State Projection or the Lab Measurement
as its current notion about the uncertainties in each dictates,

ADVANTAGES OF THE ALGORITHM

By correctly accommodating the multivariate uncertainty of the composition measurement system,
and by incorporating the uncertaintyof property prediction, it correctly maintains thefalse-alarm
rate (proportion of good SME-Balzhes wronglyjudged to needremediation) at a reasonable level.

By incorporating mass transfer measarements into the composition measurement system, it
increases the useful irformation and thus relieves some of the stress on the coml_sition
measurements. The built-in redundancy of tilemass transfer measurements with the composition
measurements also provides a means of detecting aberratiot_s("outliers") ineither,

By devising a Target Blend to give acceptableproperties, it smooths out batchwise differences in
feed composition to give an "on.aim" type of control scheme on properties rather than a "within-
limits" type of control on composition. In so doing, it has the effect of constructing a Property
"Macro-Batch" out of possibly variable input feed material.

Its quantification of processcontrol enables DWPF to take quantitative creditfor the control efforts
upstream of the MFT; thereby relegating the MFT sample measurements to a "confirmatory"
rather than a "determining" role. This translates into fewer M}Wsamples and less IVlFT
measurements for equal confidence.

Expressed another way: without such an algorithm, the pre-MFT prior model is a "total ignorance"
prior; namely, that the feed slurry arrives at the MFT at random. In that case, ali the load of
Waste Qualification falls on the Mvr samples and measurements.
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