. C@w\%,ﬂ\O%)\S(o”lS

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United State:s

Government. Neither the United States Government nor any agency theref)f. nor any of thcl.r

employees, makes any warranty, express or implied, or assumes any legal liability or ;;spt:nsl- WSRC~MS- -91-104
bility for the accuracy, completeness, or usefuiness of any ‘mformguon. appnra@us: pr‘ uc ,r or

process disclosed, or represents that its use would not infringe anately owned rights. Refer- DE92 00 9804

ence herein to any specific commercial product, process, or service by‘trade name, trademark,

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- .
mendation, or favering by the United States Government or any agency thereof., The vxe;lvs

and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof.

THE DWPF PRODUCT COMPOSITION CONTROL SYSTEM AT SAVANNAH
RIVER : STATISTICAL PROCESS CONTROL ALGORITHM (V)

by , B R
R. L. Postles and K. G, Brown
Westinghouse Savannah River Company

Savannah River Site
Aiken, South Carolina 29808

A paper proposed for presentation at the

Fifth International Symposium on Ceramics in Nuclear and Hazardous Wasie
Management

Cincinnati, Ohio
May 1, 1991

and for publication in the proceedings.

This paper was prepared in connection with work done under Contract No. DE-AC09- 89SR 18035
with the U.S. Department of Energy. By acceptance of this paper, the publisher and/or recipient
acknowledges the U.S. Government's right to retain a nonexclusive, royalty-free license in and to

any copyright covering this paper, along with the right to reproduce and to authorize others to
reproduce all or part of the copyrighud paper.

MASIER

| [uyo;?»—
MSTRIBITION OF THIS IRCUMENRT 18 URLIMI

TED

-
e

T R T R TN R R A B U R R A N T R LT ST



THE DWPF PRODUCT COMPOSITION CONTROL SYSTEM AT
SAVANNAH RIVER : STATISTICAL PROCESS CONTROL ALGORITHM (U)

R, L, Postles and K. G. Brown,
Westinghouse Savannah River Company,
Savannah River Laboratory,

Aiken, SC 29808

INTRODUCTION

*The DWPF Process batch-blends aqueous radwaste (PHA) with solid radwaste /Sludge) in a waste
receipt vessel (the SRAT). The resulting SRAT-Batch is transferred to the next process vessel (the
SME) and there blended with ground glass (Frit) to produce a batch of feed slurry., The SME-Batch
is passed to a subsequent hold tank (the MFT) which feeds a Melter continuously. The Melter
produces a molten glass wasteform which is poured into stainless steel canisters for cooling and,
ultimately, shipment to and storage in a geologic Repository.

The Repository will require that the glass wasteform be resistant to leaching by any underground

water that might contact it. In addition, there are processing constraints on Viscosity and Liquidus
Temperature of the melt:

ibili Acceptability

Liquidus Temperature < 1050°C Leach Rate < 1 gm/m2/day
20 < Melt Viscosity < 100 poise

THE PCCS STATISTICAL PROCESS CONTROL (SPC) ALGORITHM

What Is It?

The Product Composition Control Systera (PCCS) is the system intended to ensure that the melt
will be Processible and that the glass wasteform will be Acceptable. Within the PCCS, the SPC
- Algorithm is the device which guides control of the DWPF process.

Why Is It?

The SPC Algorithm is needed to control the multivariate DWPF process in the face of

uncertainties (variances and covariances) which arise from this process and its supply, sampling,
modeling, and measurement systems,



What Does It Do?

The SPC Algorithm

» derives a Target-Blend (mass fractions p pf PHA, s of Sludge, and f of Frit) which will
combine with current SRAT and SME Heels to produce a SME-Batch with desirably

high waste-loading,

* monitors a pending SME-Batch composition for Meit Processibility and Product
Acceptability prior to clearing it for transfer to the Melter Feed Tank,

« and derives a Remediation-Blend of trim chemicals to correct an Unacceptable SME-

Batch

in such a way that thie resulting melt will likely process into good product. The essentials of the
DWPF Process and the PCCS are illustrated in Figure 1. However, for simplicity we limit the

discussion here to monitoring.
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Figure 1 Product Composition Control System

To monitor the SME-Batch composition, the PCCS SPC algorithm takes into account:

« uncertainties inherent in slurry sampling, sample preparation and measurement;

= uncertainty in prediction of properties from slurry composition;

« the simultaneous variation of the individual constituent concentrations;

« mass-balance process information to augment the measurement data;

» and the Waste Acceptance criseria (WAPS).

It also will take into account process and input feed variations, as they become known during

operation,




CHARACTERIZING THE PROCESS PRIOR TO MAKING PRODUCT

The process is characterized prior to making product by relating glass and melt Properties to feed
slurry Composition. The composition is expressed through a hybrid combination of elements
denoted . Each property has its own unique &, Both glass chemistry theory and empirical least-
squares fitting show that straight-line regressions relate the glass property (Leach Rate) and the
process melt properties (Viscosity and Liquidus Temperature) to the &'s. Thus, to characterize the
process prior to making and inspecting either the melt or product, these properties are predicted
from measured feed slurry corposition using straight-line regressions in & Back-solving any such
regression line to get the E-value corresponding to its property limit transforms the constraint on
that property into an equivalent constraint on its & This constraint on §, in turn, becomes a
constraint on the concentrations of the individual constituent oxides (the "x's"). For example,

the Liquidus regression is: T = 803.8698 + 2276.8724&,
134[Fe 0
and its & is: B=ole0sl
156[5102] - 360[1\1203]
Its property limit is: TL< 1050°C
which transforms to: £, <]0.108 =1050 - 803.8698 |

2276.8724

Graphically, this is illustrated in Figure 2.
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Figure 2 Liquidus Correlation

Thus, Ty, < 1050°C becomes:  134{Fe 03] < 0.108(156[SiO5] - 360[A1,04])
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or: (134[F0203] - 16.848[Si0,] + 38.88[A1,05]} < 0

or; Xdlod'<0
wherg: [x {1 = ( [Fep04],[Si03],{A1;03] ) and [ (] = [134, -16.848, 38.88].

The inequality thus formed determines a region in measured composition space (x-Space), all
points of which give predicted values of Ty, that are Acceptable (ie, < 1050°C). Denote this region
the Expected Property Acceptable Region (EPAR). Figure 3 illustrates the EPAR for Liquidus
(using only 2-dimensions for clarity). ‘
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Figure 3 Liquidus EPAR in 2 Dimensions
ACCOUNTING FOR PREDICTION UNCERTAINTY

To monitor an already blended SME-Batch, the algorithm first accounts for the (random)
uncertainty of prediction through use of Scheff¢ simultaneous confidence bands! around the
straight-line regressions:

Scheffe-type Bands:  Model Value + s Vg FanalV £o(xX) &4

These bands utilize the estimate of the random crror standard a. iation (s) , the design of the
parent data (X'X)"1, and the F-statistic to provide at any & = &q cuafidence limits on the model
value which hold simultaneously for all €. They are appropriate for repeated use of the line.

Back-solving the appropriate (upper and/or lower) confidence band for a new E-limit !’;*
corresponding to the acceptable property limit produces other inequalities like those which
generated the EPAR. These new inequalities are constraint hyperplanes in x-Space which
accommodate the random uncertainty in the predictions. Call them Constraint Uncertainty Plancs
and denote them as x-CUP’s. These new inequalities generate the Property Acceptable Region
(PAR), the locus of all compositions which give acceptable property predictions even allowing for



the random uncertainty of prediction. The PAR is interior to (and thus everywhere more
conservative than) the EPAR. See Figure 4 for illustration for Liquidus. (There are corresponding
but different cases for Viscosity and Durability.)
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Figure 4 Liquidus Property Acceptability

There is a separate PAR for each property. The confluence of all 4 such PAR's forms the overall
PAR. (Actually, only 3 determine the overall PAR since only one of the Lo Viscosity and Hi
Viscosity constraint pair will apply to a particular case.) Any point located within the overall
PAR represents a SME-Batch measured composition which will give predicted properties that meet
all the stated limits, even allowing for predictive uncertainty. The PAR is illustrated in Figure 5,

ACCOUNTING FOR SAMPLING & MEASUREMENT UNCERTAINTY

The PAR accommodates the random uncertainty inherent in property prediction arising from
uncertainty only in the propertics themselves. But, in operation, the composition of the feed
slurry will not be measured to the same accuracy and precision as that of the standard glasses on
which tlie predicting relations are based. Thus, zhere will be appreciable errors in £, 1t remains to
deal with this component of uncertainty from the sampling and measurement systems which
produce the composition measurement,

A current SME-Batch composition measurement x™ is a 1xq row-vector of measurements on
several constituent oxides simultaneously :

lﬂ‘l = ( [Fe203] ) [Si02] 3 aeey [Mgo] ) = [ xl ’ x2 3000y xq ]~
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Figure 5§ The DWPF Property Acceptable Region (PAR)

To describe its uncertainty thus necessitates use of multivariate statistical techniques.’ If the
concentrations of the individual constituents can be assumed multivariate Gaussian, then traditional
methods of multivariate normal theory apply. Assuming the process to be q-variate Gaussian
centered at x™, the uncertainty around this measurement duc 1o “usual and customary" noise is
described by Hotelling's T2, Hotelling's T2 is the multivariate analog? of the square of "Student's
"

T2=[L-xmlsh}|[1-zsml‘.

Sp is the covariance matrix based on an historic sample of several such measurements (but not
including x™). Sy consists of the variances within and covariances between the "q" individual
constituents:

[ 7
$11 812 -~ S1q
812 829 .. qu

leq qu S(g

where the s: are the sample variances (i=j) 4nd covariances (i#)):
1)

sij= 7 2 i Bk 1)

T A more simplistic alternative, that of applying several sets of univariate control limits independently,
is theoretically and pragmatically counterproductive since it causes the false-reject rate to sky-rocket. If
there are =10 constituents to be controlled, and if 95% control limits are applied independently on
each, from probability considerations alone some 40% of the candidate feed batches will be rejected even
though they are good feed material.
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lj‘;zxjk k—1,2,...,n.

The locus of all points x such that T2 < T2 is a q-dimensional ellipsoid which represents the
uncertainty envelope around the measurement x™, This ellipsoid is denoted the Measurement &
Sampling uncertainty Ellipsoid (MSE). The aspeci ratios and tilts of the MSE are determined by
Sy, the inverse of the covariance matrix Syq. The size (ie, probability volume) of the MSE is
determined by the number and allocation of samples and measurements, and by the critical value
T‘,2 of Hotelling's T2 corresponding to whatever confidence level is chosen, If "r" replicate
measurements are averaged to get x™, the covariance matrix becomes Sy; = 1Sy ; and thus the
expression above corresponds to the case of a single measurement, r=1. T2 is distributed as:

2. [(n+l)Ig(n-1)JF(q' ng)
n

n-q

where F(g, n-q) is the variance-ratio statistic with "q" numerator and "n-q" denominator degrees of
freedom.” Thus, the "radius" T, of the MSE can be set according to the probability level

appropriate for the test. See Figure 6 for continued illustration of the Liquidus case.
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Figure 6 Mecasurement and Sampling Uncertainty Ellipsoid

MONITORING A SME-BATCH

With the property modeling uncertainty accommodated by the CUP and the composition
measurement uncertainties accommodated by the MSE, it remains to determine whether the MSE
is everywhere inside the PAR and distinct from the CUP. If it is, not only is the composition
measurement itself Acceptable, but it is also far enough away from the CUP to be statistically
distinguishable from it. The algorithm now decides whether x™ meets both these criteria; if so,
the SME-Batch is judged to be Property and Measurement Acceptable for that property. To decide
this, it determines whether or not the point on the CUP "nearest" the MSE is geometrically
distinct from it. Denote that nearest point x*, and denote its T2-value by T+2: !

2 -1+ . -1
o=k - xTS ik -5 =minx{[_'* xSyt -x™ } .
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To determine T+2 , do a Lagrangian minimization of T2 subject to the auxiliary condition that x be
on an x-CUP. This means that x a' + € = 0 where € = 0 for Liquidus and Viscosity, € = 5.67 for
Durability, and the 3 are known constants deriving from the back-solution of the confidence bands
around the property model. Thus:

Minimize T2 subject to the constraint: db=xa+e=0.
Construct the Lagrangian: F=T2+A o

Solve for the x which minimizes F, which by Lagrange is also the x which minimizes T2, Find
the partial derivatives:

2 .
aF aT QQ_ -1 [ (]
OF =20 4+a8% =28 - A
o o + % M [x 2sml +A2

| g§=zﬁ+e

Set the partials to zero and solve for x+: 284S Ixi x*- x"1'+S MAa =0

KT =" (-’;—) Sy a

&+g'+e=0—+_)_gmg'-(%)aSM a+e=0

A_xa+e
2 aSya
+ m | xMy
The solution is: ‘ X=X - -2—‘——;3—1?- aSmMm.
aSma

This solution gives the minimum, since there can be no maximum. The minimum T2
corresponding to this is:

2
2 -2 (x"a+é)
minl ‘T+""_“"'T‘" >

aSyua

m 2
! 2
Thus, the test devolves to: -(i-a—Jr—e,—)—— 1T, .
aSya

for the case of a single measurement (r=1). For the average of r >1 replicates:
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2 2
(T+)r= rT,

m, 2 9
and the test becomes: r& 8498 0% ro03
aSMma

If T+2 > TCZ, then x* is outside of, and thus does not tduch, the MSE. If this is true for x™, it
being "nearest" the measurement, then it must be true for all points on the x-C'JP. If this is true
for all 4 x*, then x™ is statistically distinct from all CUP's, and x™ differs froin x* by more than

sampling and measurement noise, and is judged to be statistically distinct from it. See Figure 7
for continuation of the Liquidus illustration,
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Figure 7 Property and Measurement Acceptability

IfT +2 > Tc2 for all properties, the SME-Batch is judged to be overall Property and Measurement
Acceptable. 1t is then cleared for transfer to the MFT, ‘

INCORPORATING OTHER PROCESS INFORMATION

In order to improve the precision of the measurements, the algorithm augments the measurement
information available for process control by incorporating other relevant process information into
the measurement system through use of a Kalman Filter™ mass-transfer state model. The KF
mass-transfer state model gives a state projection for the SME composition after receipt of the
SRAT transfer but prior to the control lab measurement:

[State Projection for Mass in SME Now] =
[Mass out of SRAT+Mass into SME]/2 + [SME Heel]

The Kalman-filtered state estimate is the following combination of this state-model projection and
the relevant lab measurement:



[SME State Estimate] =
[State Projection] + K[Lab Measurement - State Projection]

where the "Kalman Gain" K varies over (0,1) to favor the State Projection or the Lab Measurement
as its current notion about the uncertainties in each dictates.

ADVANTAGES OF THE ALGORITHM

By correctly accommodating the multivariate uncertainty of the composition measurement system,
and by incorporating the uncertaiity of property prediction, it correctly maintains the false-alarm
rate (proportion of good SME-Baiches wrongly judged to neec remediation) at a reasonable level.

By incorporating mass transfer measarements into the composition measurcment systcm it
increases the useful information and thus relieves some of the stress on the composition
measurements. The built-in redundancy of the mass transfer measurements with the composition
measurements also provides a means of detecting aberrations ( ”outlzers") in either,

By devising a Target Blend to give acceptable propertics, it smooths out batchwise differences in
feed composition to give an "on-aim" type of control scheme on properties rather than a "within-
limits" type of control on composition. In so doing, it has the effect of constructing a Property
"Macro-Batch" out of possibly variable input feed material,

Its quantification of process control enables DWPF (o take quantitative credit for the control eﬁ“om
upstream of the MFT ; thereby relegating the MFT sample measurements to a "confirmatory"
rather than a "determmmg" role. This translates into fewer MFT samples and less MFT
measurements for equal confidence.

Expressed another way: without such an algorithm, the pre-MFT prior model is a "total ignorance”
prior; namely, that the feed slurry arrives at the MFT at random . In that case, all the load of
Waste Qualification falls on the MFT samples and measurements.
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