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Abstract

The transition state region of a neutral bimolecular reaction may be
experimentally investigated by photoelectron spectroscopy of an appropriate negative
ion. The photoelectron spectrum provides information on the spectroscopy and
dynamics of the short lived transition state and may be used to develop model
potential energy surfaces that are semi-quantitative in this important region.

The principles of bound — bound negative ion photoelectron . :ectroscopy are
illustrated by way of an example: a full analysis of the photoelectron bands of CN~,
NCO~ and NCS~. Transition state photoelectron spectra are presented for the
following systems Br + HI, C1 + HI, F + HI, F + CH,0OH, F + C,H,OH,F + OH and F
+ H,. A time dependent framework for the simulation and interpretation of the bound
— free transition state photoelectron spectra is subsequently developed and applied
to the hydrogen transfer reactions Br + HI, F + OH — O(°P, 'D) + HF and F + H..
The theoretical approach for the simulations is a fully quantum-mechanical wave
packet propagation on a collinear model reaction potential surface. The connection
between the wavepacket time evolution and the photoelectron spectrum is given by
the time autocorrelation function. For the benchmark F + H, system, comparisons

with three-dimensional quantum calculations are made.
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Each system investigated also reveals information on electronically excited
potential energy surfaces in addition to the ground reaction surface. Transitions to
different electronic surfaces may be distinguished and assigned by photoelectron
anisotropy measurements. Upper potential energy surfaces are evaluated for the
excited state interactions correlating to O('D) + HF and F(*P,,) + H, with reference

to the OHF~ and FH,~ experimental photoelectron spectra.



Dedicated to my parents

Jackie and Philip Bradforth



1ii

Table of Contents

ADStract .. . e e e 1
Dedication . . ....co it e e e i1
ContentS ... e e e e il
Acknowledgements ............. . ... e ix

Chapter 1. Introduction.
1. Spectroscopy of the Transition State ....................... 1
2. Principles of Photoelectron Spectroscopy .................... 5

3.  Relationship of the photoelectron spectrum to short time

chemicaldynamics ... ......... ... ... ... .. i 8
4. Photoelectron Angular Distribution ........................ 9
5. Transition state spectroscopy by negative ion
photodetachment ............... ... ... ... ... .. i.... 11
6. TheFuture .. ... ... ... ... ... .. . .. i, 12
Chapter 2. Experimental: modifications and improvements to the
neZative ion photoelectron spectrometer.
1. Enhancements to the apparatus . . ........................ 22
1.1  Electrondetection ......................... o 22
12 JonSource ........... ... .0 24
2. Procedures for improved data collection .................... 29

2.1  Calibration deseription ........................... 29



Chapter 3.

Chapter 4.

2.1.1 Calibrationat213nm ......................

2.2  Background Subtraction ..........................

Photoelectron spectroscopy of CN-, NCO-, and NCS~.

Introduction . . ....... ottt e e e

Analysisand Discussion . . ..........c0 i
41  Electron Affinities ....................... .. ......
4.2  Derived Thermochemical quantities . ... ..............
43 Simulations ........... ... ... . . .. . . ..

ConCluSIONS . .ottt e

Theoretical: Time dependent framework for analyzing
dissociative photoelectron spectra.

Introduction . ....... ... .. ... . .. ...
The photoelectron spectrum from the wave packet time

dynamics .. ... .. e

2.1  The Autocorrelation function from the photoelectron

Spectrum ... ... ... ... e
Wave packet propagation ..............................
31 Method ...... ... .. ...

3.2  Stability criteria and propagation errors .............



Chapter 5.

3.3 Implementation of wave packet propagation to the

simulation of photoelectron spectra ................. 107
3.3.1 Grid size, time step and potential shelves .. ... .. 108
3.3.2 Absorbing boundaries ...................... 110

3.3.3 Windowing and convolution of the
autocorrelation ............... .. ... . ... ... 111

ConCIUSIONS . . v vttt et e e e e e 112

Examination of the Br + HI, Cl + HI, and F + HI Hydrogen
Abstraction Reactions by Photoelectron Spectroscopy of
BrHI-, CIHI-, and FHI™

Introduction . ........ ... ... . . ... . . .. 119
Experimental ......... ... ... ... ... . 0 .. 123
Results ....... .. i 124
Analysis and DiSCUSSION . . . . . v oottt e e 128
4.1  Preliminary considerations ....................... 128
4.2  One dimensional analysis of XHY spectra ........... 130

421 BrHI"and BrDI~ .. ....................... 130

422 ClHI"andFHI- .......................... 133
4.3  Electronic structure in XHY "spectra ............... 135
44  Time dependent simulation ....................... 139

4.4.1 One dimensicnal time-dependent treatment of

the BrHI"spectrum ....................... 141



Chapter 6.

4.4.2 Two dimensional analysis of the BrHI~ and

BrDI~ photoelectron spectra .. ............... 143
SUMMArY . . ... it e e e e 152
Acknowledgements ... ......... ... . i e, 153
Postscript: new experimental results on BrHI= ............. 184

Spectroscopy of the Transition State: Hydrogen Abstraction

Reactions of Fluorine

Introduction . ... ... ... ... . .. .. . i e 187
Experimental . ........ ... ... .. .. ... .. . ., 193
Results & Analysis ... .........c..0i i enrennnn. 194
3.1 Experimental Results ........................... 194
3.2  Ab initio calculations: method and results ............ 199
3.3  Simulation of the OHF~ photoelectron spectrum ....... 206
Discussion .......... . ... i e e 213
4.1 OHF~ photoelectron spectrum ..................... 213
42 CH;OHF~ and C,H,OHF~ photoelectron spectra ....... 218
43 Electroniceffects ................ . ... ... ... 221
SUMMArY . ... e 223
Acknowledgements . ... ......... . ... .. ... 224



Chapter 7.

Appendix A.

Appendix B.

Appendix C.

vii
Photoelectron spectroscopy of FH,~: Results for the F + para

H, reaction and analysis of the *IT electronic bands.

Introduction . . ...... ... ... . . . . . 256
Experimental ......... ... .. . . ... . ... . . 258
Results . ...... .. 260
Analysisand Discussion .. ............. ... . ..., 262

4.1 Nuclear spin statistics in the anion and its effect on
the photoelectron spectrum ....................... 262

4.2 New work on the F + H, reaction using the 5SEC

surface . ... .. ... e e 267
43  Electroniceffects ................... .. ... . ...... 269
UM ATy . o e 276
Acknowledgements . . ............ . ... ... .. . . ... ... 278

Propensities in Photoelectron Angular Distributions for

linear molecular anions. . . .. ........u it 295

Calibration and Background Subtraction Subroutines
for experimental code TENURE.

Introduction . .. ... .. ..., 297

Time Dependent Wave packet Propagation Codes.

Introduction . . ........... ... 314



2. One-dimensional Propagation Code - propl0 ............... 316
3. Two-dimensional Propagation Code - prop2d22 ............. 321
4. How the propl0 and prop2d22 codes work ................. 328
41 Sourcecodelisting.................. ... ... ... ... 331

4.1.1 One-dimensional code »proplo .......... e 331

4.1.2 Two-dimensional code prop2d22 .............. 355

Appendix D. Publications from graduatework ........................ 407



ix

Acknowledgements
I would like to thank Dan Neumark for presenting me with a challenging and
exciting research project, and giving me the opportunity to be involved in such
rewarding science. When I joined the group Dan promised that I would learn a great
deal - how right he was. His guidance and suggestions over matters experimental,
theoretical, conceptual, and postdoctoral has always been forthcoming and (usually!)
very valuable. I have appreciated his generosity in carefully attributing credit to his
students in talks and at conferences and encouraging me to attend and present work
at conferences. I am also grateful to him for his efforts in helping me through the
bureaucracy to (hopefully) secure a pos. - :*taral position in the U.S. It is in part a
tribute to Dan’s enthusiasm and scientific vision that these have been the most
rewarding, and, despite the long hours, some of the most enjoyable, years of my life.
An essential ingredient to the project has been the teamwork and the strong
supporting environment of the talented group of graduate students and postdocs. I
cannot overemphasize the importance to me of those interactions and the amount I
have learned from my fellow coworkers. Of my fellow "Stonehengers”, Alex Weaver
and Ricardo Metz were responsible for my initiation in the art of photoelectron
spectroscopy, vacuum hardware, lasers, American idioms, you name it - it was all new
to me. I was most fortunate to arrive in the group at a time of great excitement: a
machine up and running with a first communication about to appear in the literature.
Alex turned me into a "trained photoelectron spectroscopist” and Ricky inspired me
into adventures in quantum land. Don Arnold arrived a year after myself and brought
a great deal of enthusiasm, machining talent, soot and bad jokes to the project. Don

has been a terrific colleague a good friend: I doubt I would have enjoyed things so



9

X

much without his good natured presence around the place. Eun Ha Kim, while
carrying on the torch for transition sta‘: spectroscopy, is still trying to figure out what
Don and I are up to.

To provide the answers to the questions we could not answer, a second, higher
resolution, machine was built. This ZEKE spectrometer was put together by Theo
Kitsopoulos and Irene Waller. Theo, not only the other "European” in the group but
also the only person more stubborn than I (I believe it was that way round Theo),
showed me how fast a Fiat SuperBrava can go. Theo’s hair brained ideas continue
to j)rovoke some memorable arguments. Irene taught us all the value of photodiodes.
Caroline Arnold has ve-y impressively taken over the controls of the ZEKE machine
and proved that ZEKE works for non-linear ions. Yuexing Zhao deserves special
mention for buying all my furniture off me! Moving onto the third, and most grossly
oversized,‘ machine, Doug Cyr and Bob Continetti, along with Ricky Metz, have put
together a remarkable experiment. Doug, who, even after four yezrs, continues with
the same annoying British accent impersonation, has not quite got to the end of his
hoard of paper towels from the stockroom that he purchased when the project began.
Professor Bob, now a surfing instructor down south, is a tremendous role model for
an experimental scientist. He brought much experimental know-how into the group
and was always challenging others by his example. Dave Osborn has the dubious
delight of inheriting the job of computer guru and sorting out the mess I leave behind.
Dave also managed to sell the University of Chicago to me. Over the past few months
a new crew has come on board, David Leahy, Georg Reiser, Cangshan Xu and Ivan

Yourshaw; I wish them all the best.



xi

Much of the nuts and bolts of research could not take place without the
tremendous support of many other members of the department. I would particularly
like to thank George Weber and Ron Dal Porto in the machine shop, Harry
Chiladakis, T1m Robinson for help with color graphics and Marcia Bogart in
Purchasing who put an unreasonable number of rush orders through for me. Cheryn
Gliebe, Dan’s secretary, has been wonderful. As a foreign student at the Berkeley, I
feel particularly grateful to the University of California for generous fellowship
support over a large part of my time here. I thank also the Fulbright Commission,
London for a scholarship in my first year.

I have been fortunate to have interacted with a number of other scientists in
the course of this research project. I would like to acknowledge the help and advice
of the following: Professor Rich Saykally, Dr. Soo-Y. Lee, Dr. David Manolopoulos and
Professor George Schatz. I would like to thank Professor Y. T. Lee for the loan of a
CO, laser, and the Saykally and Lee groups for the loan of many other pieces of
equipment and gases. Mr. Chris Jackson, my chemistry teacher at King’s School,
Canterbury and Mr. Chris Dashwood, my maths teacher at preparatory school,
deserve much of the credit for inspiring in me an interest in science that has brought
me this far.

I could not have survived graduate school without the friendship of a number
of people inside and outside the laboratory. I had a wonderful first year at the
International House; many of those friendships have lasted my entire stay here and
hopefully will continue for many years to come. Special mention to former roommates
Gary, Hugh, and Nikki and to Rachel, Rich, Sarah, Mimi, Ian, Neil, Matteo, Joe,

Anne, Ken and of course Susan. Susan has shared much of the ups and downs of



i
graduate school with me over the last three and a half years, and I thank her for her
understanding, companionship, patience and love.

Finally, none of this could have been possible without the constant love and
support my parents have given me. They have given me the most wonderful
opportupitizs in life through their constant commitment to my education. For this I
am immensely grateful and proud. Their support and understanding has been ever
present even when I chose to go away to graduate school 5,000 miles from home. This
thesis is dedicated to them.

This research was supported in part by the Director, Office of Energy Research,
Office of Basic Energy Sciences, Chemical Sciences Division of the U. S. Department
of Energy under contract No. DE-AC03-76SF00098, and in part by the Air Force Office

for Scientific Research Contract No. AFQSR-91-0084.



Chapter 1. Introduction

1. Spectroscopy of the Transition State

The fundamental question we wish to address in this research is the detailed
description of a chemical reaction, and, in particular, of the chemical transition state.
We undertake this from a microscopic, or molecular, viewpoint trying to uncover the
forces and interactions experienced by the individual atoms involved in the
transformation from reactants to products. This research builds upon the wealth of
work in the field of reaction dynamics, and is essentially a pursuit of a complete
understanding of chemical mechanism.’

The key to the description of a chemical reaction lies in the transition state.
For a bimolecular reaction, e.g. A + HB — AH + B, this is where bonds are forming
and being broken at the same time: [A..H..BF. This was recognized by Arrhenius and
elaborated by Eyring; it has been the linchpin to many theories of chemical reactivity.
The transition state is the geometrical configuration of the reaction partners where
there is a bottleneck on the free energy surface describing the reaction. Therefore, the
intermolecular forces at play at or around the transition state are the most important
in the dynamics of the reactive encounter.

The goal of reaction dynamics is then to characterize precisely the potential
energy surface(s) governing a reaction particularly in the region of the transition
state. This should, in turn, lead to a complete understanding of the electronic
interactions determining the microscopic mechanism for branching and energy
disposal in a reaction. Unfortunately, the transition state is the hardest part of the

potential energy surface to characterize because of its very nature as an extremely
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short lived transient. A kinetics experiment, which determines the reaction rate as
a function of temperature, provides some information in this respect: the derived
activation energy gives a crude estimate of the barrier height at the transition state.
However, much more discriminating experiments are required to uncover quantitative
information about the potential energy surface.

This thesis describes the application of photoelectron spectroscopy of negative
ions to the investigation of the transition state in a chemical reaction. By using
appropriate negative ions as precursors for our experiment we have developed a
technique that is a direct spectroscopic probe which is uniquely sensitive to this
extremely short lived reaction transient species. Thus this work is termed, along with
others in a new generation of reaction dynamics experiments, "transition state
spectroscopy".??

The chemical reactions for which this technique proves useful are the so-called
"elementary” bimolecular rvc ti=3 - those normally associated with the simplest
individual steps in a chemical process. As such, these are ubiquitous in chemistry,
but their study is particularly important in atmospheric and combustion processes.
Historically, these reactions have been experimentally investigated in the gas phase
by measuring energy disposal and/or angular distributions among the reaction
products with various degrees of control over reactant initial conditions.» * % ¢
Under single collision conditions these experiments can provide fairly detailed
evidence for the shapes of the potential surfaces in the interaction region. However,
their handle on the dynamics is firmly connected to the asymptotic distribution of
products. More ambitious scattering experiments where rovibrational state resolved

differential cross sections are measured, either in crossed beam instruments,’ or via
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laser basecC vector correlation methods,® will provide more rigorous tests of the
potential energy surfaces through comparisons with quantum scattering calculations.
Van der Waals cluster initiated reactions have more recently introduced a new flavor
to full collision dynamics experiments,” ' as have aligned and oriented molecular
beam experiments.*

The results of these experiments provide different and complementary pieces
of information about the important transition state region for the reaction. Although
the differential cross sections and detailed microscopic state-to-state cross sections are
sensitive to the entire reaction potential surface, there is not a straightforward or
intuitive connection between the data and the potential at the transition state. In
contrast, our technique, being a half collision rather than a full collision experiment,
probes the transition state region directly. By preparing a negative ion, AHB~, which
is geometrically similar to the supposed neutral transition state structure [AHB}, and
removing an electron from the ion, we access the transition state region of the
potential energy surface describing the reaction A + HB —» AH + B. The electron
energy spectrum is a probe of the quantum states at the transition state rather than
a mapping onto the asymptotic product states.

As we shall see, photoelectron spectroscopy provides an experimental route
from which the spectrum of an internally cold, mass-selected species yields detailed
information on the ground state dynamics of a neutral reaction. The experiment is
described in Chapter 2. Mass selection is an important feature of our experiment as
we can be sure that there is no background signal du= to other chemical pathways;
such secondary reactions often make the results of full collision experiments hard to

interpret. In addition, because the anion precursor is rotationally cold, the dynamics
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of the half collision are restricted to only a few angular momentum states. This
facilitates comparison with theory.

In many respects our half collision technique is conceptually similar to
molecular beam photodissociation experiments, particularly those that monitor the
photodissociation cross section as a function of excitation wavelength (action
spectroscopy).® **  However, these latter experiments normally measure the
photodissociation cross section by detecting products. The closest analog to our
experimental "transition state” spectrum is the absorption spectrum of a molecule to
a dissociative upper state, such as the first absorption band of H,0."® Such
absorption experiments have not, to date, been recorded in a molecular beam
environment. The use of negative ions as precursors in our experiments is important
as this half collition technique is directly applicable to reactions that normally occur
via bimolecular gas phase collisions (i.e. thermal rather than photochemical
processes), in contrast to photodissociation studies on neutrals. Thus half collision
data (the negative ion photoelectron spectrum) and complementary full collision
kinetic, cross-beam, and product state data may be compared for a single reaction
system. This allows, for the first time, something of a full picture for a bimolecular
reaction to emerge. Many of the advantages of negative ion transition state
spectroscopy as a probe of the chemical transition state are detailed in a recent review
paper.™

Although transition state dissociation occurs on a femtosecond time scale, the
activated complex can vibrate one or more times before complete fragmentation: it is
this motion that leads to structure in the observed photoelectron spectrum. In some

special circumstances long lived states, called scattering resonances, which live for
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many tens of vibrational periods, may be observed in the photoelectron spectrum.
Zewail has pioneered efforts to observe the femtosecond dynamics of the transition
state in real time using femtosecond lasers.!®* The clocking of the dissociation
dynamics by an internal vibration, however, suggests a time domain analysis of our
photoelectron spectra, and we have inrdeed pursued this route for an alternate

understanding of the information revealed in the photoelectron spectra.

2. Principles of Photoelectron Spectroscopy

Photoelectron spectroscopy is a well developed branch of molecular
spectroscopy. The interaction of light with a molecule to form a molecular ion and an
electron (photoionization) is the most common form of photoelectron spectroscopy. If
the precursor is instead a negative ion, the process is termed photodetachment and
a neutral molecule and an electron result. Negative ion photoelectron spectroscopy,
developed in the last 20 years and made possible by the appearance of high power

visible and UV lasers, can be represented as follows:

M @" V") + kv - M (@'v) + e (E). 1)
hv is the photon energy, and is constant in this experiment, i.e. the light source has
a fixed wavelength. E,, the kinetic energy of the electrons resulting from
photodetachment, is the experimental observable. n”, v”, n’ and v’ describe the
electronic and vibrational states of the anion and neutral molecule respectively. By

the relationship



E, = hv - EA(M) - E'(n'v") + E"(n" V") (2)
the observed electron kinetic energy distribution, I(E,), may be associated with the
internal energies, vibrational and electronic, of the negative ion and neutral. As the
energy resolution of current electron detection systems (~ 5 - 10 meV, that is ~ 40 -
80 cm™) is inadequate to resolve the rotational spacings of most molecules, the
rotational state labels are omitted and we shall seldom concern ourselves with the
rotational behavior of the ion or neutral.

In our experiments, the negative ions are formed in a free jet expansion. This
means that they are created with a restricted range of internal energies; typically the
vast majority of the ions are present in their ground vibrational and electronic state.
Hence, E” in equation (2) is usually zero. Therefore, the photoelectron spectrum I(E,)
is a direct measure of the energy levels of the neutral species M. The peaks in the
spectrum at highest electron kinetic energy correspond to transitions to neutral
states with lowest internal energy.

If we consider the distribution of electrons in a molecule in terms of a
molecular orbital model, then Equation (1) implies the removal of an electron from a
single mlecular orbital. This "one-electron” picture is often used in photoelectron
spectroscopy and characterizes the only. electronic selection rule: any transition
between ion and neutral is allowed that occurs by removal of an electron from a single
orbital without rearrangement of the electron occupation of the other orbitals. If
several electronic states of the neutral are accessible energetically from the anion with
the photon energy employed, those that are related to the anion electronic

configuration by a one-electron process will be seen in the photoelectron spectrum.
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The photoelectron process for a diatomic negative ion is illustrated
schematically in Figure 1-1. The potential energy curve for the anion and for the
ground and first excited states of the neutral are shown. The expected photoelectron
spectrum is shown on the right hand side. The spectrum shows two bands due to the
two electronic states of the neutral; each band exhibits a vibrational progression. The
spacings of peaks in the spectrum directly yields the separations of eigenstates in the
neutral. The length of the progression and the exact intensities of the peaks in each
band are governed by the Franck Condon Principle. This principle states that
electronic transitions are fast compared to nuclear motion;'® for example, a
photoelectron departs its parent negative ion in ~ 107'¢ s. Therefore, the neutral is
born on the upper state potential surface in the configuration of the precursor anion.
Quantum mechanically speaking the resulting distribution_ of neutral states is given
by the projection of the anion wave function y” over the neutral vibrational wave

7

functions y’.'” The intensities are given by the so called Franck Condon Factors

(FCF's)
FCF(v'-v") = [(y/, [y/) I? @)

Therefore, if the anion and neutral have very different equilibrium geometries, there
is a correspondingly long vibrational progression in the photoelectron spectrum, and
vice versa. The theoretical evaluation of the Franck Condon factor, for the purposes
of simulatiné the photoelectron spectra, is discussed in detail in Chapter 4.

The above description and schematic pertains to case where the upper neutral

state has a bound potential. Chapter 3, which reports the photoelectron spectra of
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CN-, NCO~ and NCS-, provides a complete example of this bound — bound

spectroscopy and shows the straightforward generalization of the above rules to

polyatomics. This chapter lays much of the groundwork and language for the more
complex transition state spectroscopy results that follows. The bound — free
formalism required to describe the transition state experiments is detailed in

Chapter 4.

3. Relationship of the photoelectron spectrum to short time chemical
dynamics.

An alternative picture for the interpretation of a photoelectron spectrum is to
consider the relationship between spectral structure and the short time dynamics of
the neutral species formed by photodetachment.’®* A simple Fourier transformation
relates the photoelectron spectrum, I(E,), with the time autocorrelation function, C(t).
C(t) describes the time evolution of a wave packet prepared on the neutral potential
surface.”® The time resolution of the autocorrelation function constructed in this way
is given by the overall spectral bandwidth. Likewise, the window in time allowed
from Fourier transformation of the experimental spectrum depends on the
instrumental energy resolution. Assuming a typical bandwidth of 1 - 2 eV and the
energy resolution of our spectrometer (ca. 10 meV), the autocorrelation function could
be constructed with a time resolution of 0.5 fs for a Lorentzian time window with a
half-width at half-maximum (HWHM) of 66 femtoseconds.

This time dependent picture is developed in Chapter 4, where a derivation of
the photoelectron spectrum couched in the time-dependent formulation is also given.

We will, in the main, use the connection between the time dynamics, expressed by
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C(t), and the spectrum in the opposite sense, i.e. wave packet propagation will be used
to theoretically simulate the dissociation dynamics of the transition state species, and
the Fourier transformation of the calculated autocorrelation is compared with the
experimental photoelectron spectrum. The quantum wave packet method is also
described in Chapter 4.

The theoretical simulations will prove invaluable in assigning and interpreting
the structure in the transition state photoelectron spectra. Once qualitatively
assigned, we may modify the potential energy surface on which the wave packet
propagation takes place, to try and improve the fit between theoretical simulation and
experiment. In most cases ab initio calculations to estimate the properties of the
anion are necessary as a precursor to the dynamics simulation because data of
spectroscopic quality is scarce for negative ions. This, unfortunately, limits the extent
to which the neutral reaction surface may be fit from the experimental spectrum and

the simulation process.

4. Photoelectron Angular Distribution

The photoelectron departing the neutral molecule carries with it a well defined,
quantized, angular momentum. For atomic anion photoelectron spectroscopy the
angular momentum of the leaving electron is restricted by selection rules relating to
the orbital angular momentum of the parent ion and detached neutral. The nature
of the allowed angular momentum states of the departing electron, and their mutual
interference, along with the polarization of the detachment laser, determines the
angular distribution of electrons in the laboratory frame. If the electron leaves the

neutral complex as an "s-wave" (1 = 0) only, as for the threshold photodetachment of
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an electron from a p atomic orbital of a halide ion, the angular distribution is
isotropic.?*® For all other waves, and for a superposition of various waves, the
distribution of electrons is anisotropic. To first order, the differential
photodetachment cross section is given by

do
dQ

= 22 (1. oos0- 1) )
where ©,,, is the total photodetachment cross section and B is the asymmetry
parameter (-1 < f <2, B = 0 implies an isotropic distribution) and is a function of
electron kinetic energy. dQ is the solid angle subtended by an imaginary infinitesimal
detector and 9 is the angle the detector position vector makes with the laser
polarization axis. Notice that the effect of the asymmetry parameter is removed if the
direction of electron collection is chosen to be at the "magic angle", 8 = 54.7°.

For molecular photoelectron spectroscopy, B parameters are often hard to
rigorously relate to the symmetry of the molecular orbital in the ion from which the
electron was removed.?® However, qualitative information is available from
polarization measurements. Although B may vary weakly over a vibrational
progression in transitions to a single electronic state of the neutral, transitions to
different electronic states of the neutral are expected to have quite different B values,
particularly if the neutral states arise by the removal of an electron from molecular
orbitals of different symmetry in the anion. Therefore it is often useful, particularly
in cases where the spectrum has overlapping electronic bands, to record photoelectron

spectra at both extreme laser polarizations (8 = 0° and 8 = 90°) to facilitate

assignment of peaks to the different states. The actual value of B for a photoelectron
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reaction, where to some extent the energy release for the reaction is decided.
Photodetachment of FH, ", on the other hand, lands to the entrance valley side of a
very early barrier, and finally OHF ~ has an anion geometry which coincides with the
anticipated saddle point geometry.

In all cases, the structure in the photoelectron spectra contains information
about the ground reaction potential energy surface in the vicinity of the transition
state, or equivalently the femtnsecond dynamics of the transition state complex. In
each of the three chapters we make strong connections with theoretical simulations
and explore possible electronically excited Born-Oppenheimer surfaces that may also
contribute to the spectra. The assignment of spectral features to these excited

electronic surfaces is supported by photoelectron anisotropy measurements.

6. The Future

The extension of the technique to reaction systems with much higher molecular
complexity, e.g. F + ROH, and the success of transition state studies in solvated
complexes® is very encouraging. This represents a significant new avenue for
exploration. Diatom-diatom reactions remain an important target, especially as these
present a challenge to full quantum scattering theory. For the more esoteric goal of
using our spectroscopic technique to quantitatively determine a reaction’s potential
energy surface, much new work remains to be done but is achievable.

The negative ions, which provide such a useful springboard to learning about
the neutral reaction, need to be much more quantitatively characterized. Although
ab initio calculations can provide helpful estimates of their properties, full

spectroscopic investigation of their equilibrium geometries, vibrational energy levels
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band can often be useful in adding weight to the assignment of that band to a

particular electronic state. This is explored in Appendix A.

5. Transition state spectroscopy by negative ion photodetachment

The remaining chapters of this thesis demonstrate the application of negative
ion photodetachment as a transition state spectroscopy for a number of reaction
systems. All are hydrogen transfer reactions of the type A + HB — AH + B. This is,
however, a very important class of reaction systems,’ in terms of both fundamental
reaction dynanics interest and in applications such as chemical lasers and
atmospheric processes. Chapter 5 reports the photoelectron spectra of FHI-, CIHI~
and BrHI~ and describes their relationship to the bimolecular reactions X + HI -» HX
+ I(X =F, C], Br). In Chapter 6 the series of reactions F + OH — HF + O, F + CH;OH
-» HF + CH,0 and F + C,H;OH — HF + C,H,O are investigated. Finally, in Chapter
7 the benchmark F + H, reaction is studied by transition state spectroscopy of FH,".

The systems featured in the three chapters turn out to illustrate three
experimental scenarios. Photodetachment of BrHI-, OHF~ and FH,™ accesses
different parts of their respective ground neutral reaction surface. This is shown
pictorially in Figure 1-2. Let us divide up the transition state (or interaction) region
of the potential surface describing a direct reaction arbitrarily into three parts: the
saddle and the entrance and exit valleys to either side of the saddle. The latter are
not, however, the same as the asymptotic reactant or product regions. Further, we
adopt the usual chemical dynamics convention and talk about a reaction proceeding
from reactants (entrance) to products (exit) in the exothermic direction. In this

language, we see that BrHI~ photodetachment probes the exit valley for the Br + HI
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and dissociation energies is urgently required. Using this information, experiments
that control the region of the neutral potential energy surface probed in the anion
photodetachment can be devised. In much the same way as collision based
experiments can use rovibrational state selected reactants to probe higher detail in
the reactive collision dynamics,’ so may we vibrationally pump the anion prior to
photodetachment to choose the part of the reaction transition state region we wish to
learn about. This is not unlike Crim’s photodissociation excitation spectroscopy from
O-H overtone pumped H,0.2

Figure 1-3 shows this selectivity with a schematic of such an experiment using
the negative ion BrHI™ as an example. The vibrationally excited ion has
substantially better overlap (lightly shaded) with the saddle point than the ground
state ion (darker shading). Vibrational excitation of a single quantum in this
hydrogen stretching mode v, requires around 920 cm™ of energy to be resonantly
deposited in the ion.** Twe possible optical excitation schemes to achieve this are
shown in the lower half of Figure 1-3. Tunable infrared sources of radiation, required
for scheme (i), in this range are few: difference frequency mixing of visible light in
non-linear media or line tunable CO, lasers are possibilities. Free-electron lasers,
which can provide tunable, high power, 1 cm™ bandwidth radiation in this region look
particuiarly suitable, and if such a source becomes available®® this may well be the
optimal photon source. Another attractive possibility is stimulated Raman pumping,
as shown in scheme (ii), using two visible photons from a YAG/ dye or YAG/
Ti:sapphire laser system.?

The results of such an experiment are simulated in the closing section of

Chapter 5. The simulations indicate that the restriction imposed by the anion
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equilibrium geometry may be lifted by the proposed vibrational pumping scheme.
Preliminary experiments to investigate the feasibility of such an approach have
demonstrated that a line tunable CO, laser, despite its high fluence, is inappropriate
for two reasons. It is not continuously tunable and the linewidth is too narrow to
move a large population of rotational substates. Prior to a new effort in this direction,
the exact gas phase anion fundamental frequency needs to be determined.

It is perhaps evident that spectroscopic approaches to the characterization of
reaction transient species are becoming increasingly important in the experimental
armory of the reaction dynamics field. The recent introduction of commercially
available femtosecond laser systems will surely bring an explosion of time-domain
measurements of reaction transients in the gas phase.!® 2 The advance of
theoretical methods to describe the quantum dynamics of a reaction, and the
development of electronic structure methods that are accurate enough to compute
reaction potential energy surfaces to chemical accuracy, are driven by the quality of
experimental information available. Transition state spectroscopy experiments can
provide the sort of high quality data on the part of a chemical transformation that

1s most important in this respect.
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Figure Captions for Chapter 1.

Figure 1-1.

Figure 1-2.

Figure 1-3.

Schematic of the photodetachment process for a diatomic negative ion.
The photoelectron spectrum expected for the hypothetical potential
energy curves is shown on the right hand side of the Figure.
Photodetachment of the anions (a) BrHI-, (b) OHF~ and (¢) FH,™
access different regions on their respective neutral surface. Contours
of the neutral potential and the approximate extent of the Franck
Condon region (shaded) are shown. The region probed is, in all three
cases, in the three atom interaction region of the potential energy
surface, however each case is sensitive to a different segment of the
transition state region. Assumptions for anion and neutral potential
surfaces for each system detailed in chapters 5, 6 and 7.

Schematic of a vibrationally-pumped photodetachment experiment.
(Top) BrHI™ anion and Br + HI — HBr + I neutral potential curves
along an idealized reaction coordinate. The anion v, = 0 and v; = 1
wave functions are shown, and the upward shaded regions indicate the
section of neutral reaction curve detachment from each vibrational state
would access. (Bottom) Excitation schemes with anion levels shown in
solid lines and detachment continuum shaded; (i) direct infra-red
excitation of negative ion with tunable IR laser, (ii) stimulated Raman
pumping of negative ion with two-color scheme where hv, is "pump" and

hv, "Stokes" laser.
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Chapter 2. Experimental: modifications and improvements to the negative

ion photoelectron spectrometer

The experimental apparatus employed for all work presented in this thesis, a
pulsed time-of-flight negative ion photoelectron spectrometer, was constructed by Theo
Kitsopoulos, Ricardo Metz, Alex Weaver and Dan Neumark in 1986-7. The machine
is described in detail in the Ph. D. thesis of Alex Weaver." The computer program
used to control the apparatus and to perform some of the data manipulation is
likewise described in the thesis of Ricardo Metz.? A brief description of the apparatus
appears here and also in each of chapters 3, 5, 6 and 7 with emphasis on the
particular features important to those individual studies.

In this chapter, I will describe in delail the major modifications to the
apparatus hardware and enhancements to the data collection program, that have been
made in the last few years. A full description of the calibration and background
subtraction procedures applied to the raw data is given. As these two processes are
routinely applied as a first step in analyzing virtually all data recorded on the
photoelectron spectrometer, it seems appropriate to detail their correct usage.

The apparatus is a dual time-of-flight spectrometer. Ions are created in a free-
jet/ electron impact source of Johnson and Lineberger design.® The ion for study is
selected in a Wiley-McLaren type mass spectrometer,! and the electrons liberated
from the ion on irradiation with the photodetachment laser are energy analyzed by
time-of-flight. A schematic of the experimental apparatus is shown in Figure 2-1. The
experiment relies heavily on the advances in negative ion sources in recent years. The

source region is shown on the left hand side. A pulsed molecular beam valve (1)



22

introduces the reagent gases into the source chamber. A free jet expansion ensues
which, when crossed by a fast electron beam (2), generates cold molecular ions
suitable for spectroscopic study. The ion source is described in greater detail in
section 1.2. The negative ions produced in the free jet are injected into a time-of-flight
mass spectrometer (3) which separates them into packets according to their mass.
The ion signal can be monitored at the microchannel plate detector (4). The timing
of a pulsed fixed-frequency laser, which intersects the ion beam at (5), is chosen so
that only the ion packet corresponding to the mass of interest is photodetached. The
resulting neutrals can also be monitored at the detector (4) when a retardation field
is applied to the front of the detector to block undetached ions.

The polarization of the laser radiation is varied by means of a half wave plate.
The angle between the electric vector of the radiation field and the direction of
electron detection, denoted by 0, may therefore be controlled. Photodetachment
produces electrons that travel away from the center of mass over all 4% steradians.
Only electrons that are released into the small solid angle subtended by the electron
detector (6) at the end of a 1 meter flight tube are detected. The energy of each
electron is determined by its flight time in the field-free flight tube (6). The resultant
electron energy distribution gives information about the vibrational eigenstates, or

scattering states, of the neutral.

1. Enhancements to the apparatus
1.1  Electron Detection
A simple but significant improvement to the apparatus was the installation,

in July 1991, of a new electron detector with a set of larger diameter microchannel
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plates (at position (6) on Figure 2-1). The original 40 mm diameter plates (the quoted

diameter refers to plate active area) were replaced by two new 75 mm diameter plates
(Galileo), and a new detector mount was constructed. The channel plates are, as
usual, mounted in chevron configuration. An identical circuit to that used previously
is employed to bias each of the detector elements.’ The electron collection efficiency
is improved by a factor of ~ 3.5 because of the increased solid angle subtended by the
electron detector at the laser interaction region. Now about 0.04% of the total
photoelectrons are collected yielding a three- to four-fold signal-to-noise improvement
in the photoelectron spectra. One would expect a small degradation in the electron
energy resolution because of this change; there is now a greater uncertainty in the
lab to center-of-mass correction term (see section 2.1 below) for the electron energy
due to the increased acceptance angle of the detector.’ Calculations indicate an
expected resolution of 11 - 12 meV for a 0.65 eV electron, photodetached from I-, with
this new detector. Indeed, we experimentally observe the peak width of the I(*P,,) «
I~ transition in the 266 nm photoelectron spectrum of I, which occurs at this electron
kinetic energy, broadens from 8 - 9 meV with the 40 mm plates to 12 - 13 meV with
the new plates.

Despite the increased electron collection efficiency, the background electron
signal, which is due to electrons released from metal surfaces in the detector chamber
by scattered light, has been reduced. This has been achieved by new laser baffles, to
reduce the amount of scattered light, and a realignment of the electron baffles
(marked (7) on Figure 2-1) in the electron flight tube,’ which block many of the

background electrons. Together, the improvements to the detector and to the baffling
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have increased the signal-to-background ratio for 213 nm photoelectron spectra by a

factor of four.

These signal collection improvements make a significant difference to the
experiment in several ways. Clearly, it takes less time to accumulate spectra of
comparable quality to earlier work, but also it allows spectra to be recorded for
systems that were impossible before the change. For example, spectra can now be
recorded for systems at both parallel and perpendicular polarizations of the laser,
where collecting data on one of the polarizations may have been impossible earlier due
to very low signal. This is demonstrated in results presented by way of postscripts to
chapters 5 and 6, and in all the new data in chapter 7. The most persuasive
demonstration of the power of a "factor of four” is the recent successful observation of
resonances in the 213 nm photoelectron spectrum of CIHCI-? which had eluded us

in many previous attempts!’

12 Ion Source

The operation of our ion source is described in Weaver’s thesis.! Synthesis of
a large variety of negative ions has been achieved in this source. The modifications
to our basic source, necessary to make various ions, and some of the more
unconventional modes of operation of the source, are described below. For example,
a small mixing chamber can be added to the front of the main pulsed valve for the
purpose of mixing a secondary gas into the expansion. A more complicated version
of this arrangement involves two pulsed valves. Toimprove the cooling and clustering

properties of the pulsed expansion, a piezo-electric valve has been incorporated into
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our source. An important piece of diagnostic equipment for this work is the Fast Ion
Gauge® (FIG) for testing the gas pulses from each valve arrangement.

The two main components of the source are the pulsed valve, or the device that
introduces the gaseous sample into the vacuum system, and the electron beam that
crosses the free jet and induces various fragmentation, ionization and electron capture
events which in turn generate the desired negative ions. The continuous electron
beam, produced from an electron gun of a Tektronix scope, is easy to manipulate;
consequently this component of our source is seldom altered. The pulsed valve in
contrast has seen numerous changes. The ’basic’ arrangement is a small pulsed
commercial solenoid valve, a General Valve Series 9 (General Valve Corporation,
Fairfield N.J.), which is backed by 2 - 5 atmospheres of a dilute gas mixture. The
operation of this valve and the pulsing circuits used to drive it are described in detail
elsewhere.”® Synthesis of many of the negative ions described in this thesis have
been achieved with this basic arrangement.

Often, a precursor required as a reagent in the jet exists in the liquid state
under standard conditions. If the liquid is volatile at room temperature, the liquid
may be entrained into a carrier gas by bubbling the carrier through the liquid and
then pulsed successfully into the vacuum chamber. All valves will seize up after a
period of time in this mode of operation , and need some serious maintenance work.
An advantage of the simple solenoid valve, over a more advanced valve like the piezo-
electric valve, is the General valve has only a few internal parts, which may be
cleaned, or if necessary, cheaply replaced in a few minutes. Moreover, it is often hard
to get sufficient liquid entrained into the carrier gas, i.e the liquid does not have a

sufficiently large vapor pressure at room temperature. The General Valve is robust
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enough that the liquid sample may be physically dropped into the body of the valve,

while it is hanging in vacuum, and then the valve pulsed a few times to flow some of
the liquid » 3r the surfaces inside the valve. Once this initial cycling has been
completed, a fairly stable beam of the precursor, entrained in the carrier at much
higher dencity, can be achieved. This ’short cut’ has been employed for the liquids
benzyl isocyanate, benzyl thioisocyanate, formic acid and methanol to prepare the ions
NCO-, NCS-, HCO,™ and CH,OH..F~ respectively.

Further experimentation with pulsed nozzle design however has been
necessitated by the quest for other negative ‘ions. A common requirement is for two
different reagent gases to be present in an expansion in order to perform the desired
ion-molecule chemistry in the electron beam interaction region. One gas mav be
required to produce the seed ion, sy N,O to prod c2 O~ and the second as the target
molecule for reaction or clustering, e.g. methane or hydrogen for the processes O~ +
CH, - OH™ + CH; or O~ + H, - O~ (H,). Iu many cases, the two gases can be
premixed thoroughly in a stainless steel cylinder, foo example N,O and HCl used in
the source clustering reaction of O~ with HCl. However, in these two examples the
reagent gases definitely cannot be premixed at high pressure before introduction to
the pulsed valve. Other such combinations of active gases, e.g. oxidizing and reducing
agents or acid/ base gaseous mixtures, would often be desirable for producing some
interesting ions, but are impossible to premix and thus to use with the single valve
inlet arrangement. Instead, each active gas needs to be introduced separately into the
jet expansion. Another powerful use of such a double inlet arrangement would be for

varying the ratio of two active gases at run time, rather than finding the optimal ratio
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for premixing by trial and error - each trial mix needs to stand for several hours. For
some of the more exotic AHB~ ions (where A # B) this would be extremely useful.

The basic General valve is ideal for designing hybrid gas inlet assemblies as
it is small and it is easy to attach add-ons to its flat faceplate. We have experimented
with both continuous and pulsed secondary gas inlets. The idea is to merge the
secondary reagent gas with the main pulsed beam after the pulsed valve but prior to
the free jet expansion. The gas through the main valve carries one reagent and the
carrier gas fo- the expansion, and the secondary reagent gas is introduced via a small
mixing chamber (see Figure 2-2) attached to the exterior of the pulsed nozzle orifice.
Ideally, the mixing is optimized by creating maximum turbulence in the main flow
within the mixing chamber. This is how we arrived at the triple-injector design of
Figure 2-2. A free jet expansion, albeit somewhat weaker than that from the
unimpeded pulsed valve, then takes place from the front aperture of this mixing
chamber. This apprnach has been successful for producing good densities of OH™ by
the reaction of O~ (from N,0) with NH; introduced continuously through the "mixing
chamber". The flow of ammonia is controlled by a leak valve outside the chamber.
OH " is surprisingly difficult to make from any simple dissociative attachment process;
neither H,0O or H,0, produces OH~ in our source! Clusters based on OH™ are in fact
highly desirable targets for future transition state studies in our laboratory.

A pulsed design for the secondary gas inlet would clearly be advantageous over
the above continuous scheme so as to reduce the gas load on the pumping system and
toincrease the density of the secondary gas present during the main valve pulse cycle.
An in-line General Valve (Series 9, two way) has successfully been incorporated into

the secondary gas supply line to the mixing chamber. Instead of the mix chamber
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design of Figure 2-2, we use a similar, but simpler, single injector (0.070" diameter)
chamber; the central hole, for the main flow, has the same 0.080" diameter as before.
Unfortunately the secondary gas pulses are not limited by the in-line valve’s open
time, but rather by the small conductance of the 1/8 " tubing (inner diameter is only
0.052") attaching the second valve to the mix chamber. Even so, the ~2 ms duration
pulses reduce the pumping load by a factor of ca. 25 when running at 20 Hz, allowing
much higher concentrations of the secondary gas in the expansion at reasonable total
source chamber pressures. The yield of FHC]™ in the mass spectrometer, when
running NF; behind the main valve and 5% HCV/ He behind the second in-line pulsed
valve, can be varied over an order of magnitude by adjusting the pulsing delay and
duration of the in-line valve driving circuit.

Despite the flexibility of the General valve, the fast ion gauge clearly shows
that the gas pulses produced by this valve are not limited only by the flow through the
faceplate aperture (choke’ flow). The internal armature of the valve, which withdraws
the poppet sealing the valve when the solenoid is activated, does not respond very fast
compared to the overall pulse duration. This problem is compounded by the wedge
tip design of the poppet in the General Valve, and so choke flow is achieved only very
late in the gas pulse. The properties of a free jet expansion that make its use
attractive to spectroscopists are the high degree of internal cooling achieved in the jet
and the high local molecular densities that accompany this dramatic cooling. Pulsed
valves are used to reduce the overall load on the vacuum system. Thus a pulsed valve
that delivers a high gas intensity in a short pulse, with choked flow during the large
part of that pulse, is optimal. The above two problems of the General valve in this

respect are mostly removed in the piezo-electric valve.®'® This valve has a fast rise
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time - the motion of the piezo-electric crystal keeps up with the high voltage driving

pulse - and uses a flat o-ring, rather than a wedge, seal against the faceplate aperture.
We have therefore recently built!! and used a piezo-electric valve in our experiments

on FH,™ and other clusters.'?

2. Procedures for improved data collection
2.1 Calibration description

The calibration procedure has been described briefly in the thesis of Alex
Weaver.! Here we outline the procedure in full, detailing several new aspects of this
important part of the photoelectron experiment. The calibration of 213 nm
photoelectron spectra is dealt with; hitherto there were no good calibrant ions to
anchor the electron energy scale for this laser photon energy (5.822 eV) in the region
of principal use (0.5 - 1.5 V). This work has indicated a more serious problem in the
calibration process itself. The linear calibration procedure used by our group up until
now proves inadequate to accurately calibrate over a 2 eV range of electron energies.
A quadratic scheme, similar to one used in the Zare group for their multiphoton
ionization photoelectron spectrometer (MPI-PES) apparatus,'® has been implemented,
and yields a much more useful and accurate energy scale. This is important for the
precise determination of electron affinities and electronic state separations from
spectra recorded on our apparatus.

Conversion of the electren flight time, t, measured on our apparatus, to the
electron center-of-mass kinetic energy, E_- .., is given, in the absence of any electric

or magnetic fields, by
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E. -AE=1m 2 )
e ,com 2 e (t—to)z

where AE is the correction term to the electron energy from the laboratory to center-

of-mass frame. For electron detection at right angles to the ion beam, AE is given by

m‘ ext
= V, + (2)
AE ¥+ =

and m, and m,, are the mass of the electron and the mass of the ion from which the
electron was photodetached.! V, and V,,, are the experimental float and extraction
voltages, which have been set up in the experiment to yield a stable and focussed ion
packet at the interaction region for the particular ion of mass m,,. The parameters
1 and t,, respectively, describe the zero of time and the distance from the laser
interaction region to microchannel plate detector. To find these parameters, which in
fact do vary from day to day, it is necessary to record photoelectron spectra of several
atomic ions, to calibrate the energy scale. The energies for the transitions of these
calibrant ions are well known to fractions of meV.
To perform this calibration we invert equation (1) to yield

- m, 2 1 Y 3)

-t°+ . +

2 "JE-AE E-AE

where we have dropped the e~, com label for the electron energy, and we have

included an extra term, v/ (E - AE), for flexibility. For the moment, we shall assume
v = 0, however later we will see it is necessary in some cases to include a non-zero y
to yield a reasonable calibration fit. The introduction of this term physically

corresponds to recognition that there is some acceleration of the electron over its flight



' 31
path, and therefore not all fields have been eliminated. One important field that

should not be neglected is the interaction of the electron with the residual charge
cloud due to the undetached ions.

The calibration takes place as follows. A set of photoelectron spectra are
recorded at the lowest possible ion levels, or at least below the "space charge limit"
for that ion. The Coulomb repulsion of the residual ion cloud on the departing
electron shifts the peaks in the ion’s photoelectron spectrum to higher electron kinetic
energy. The space charge limit is the highest ion density at which the peaks in the
ion’s photoelectron spectrum are unshifted due to this Coulomb repulsion. This
varies for ion to ion, and to some extent on the nature of the ion’s spectrum. For
example, a molecular, rather than atomic, calibrant’s photoelectron spectrum will have
broader peaks and so the onset of Coulomb shifting will seem to appear at a higher
ion level. For cases where it proves impossible to obtain spectra at the space charge
limit (usually around 10 mV ion level, with ion detector stack voltage set at 1650 V,
see Table 2-1), because of signal-to-noise considerations, extrapolation down to "zero-
space-charge" will be necessary. This should occur only for CN~ calibration at 213 nm
because of the high background level for the low electron energy lines. In my
experience this calibrant ion may be satisfactorily run at 80 mV ion level, and a "zero-
space-charge" extrapolation (of the order of 5 meV for 80 mV CN~ ion level), with

care, can be carried out to good accuracy.' These more tedious measures are

" This assumes that the space charge shift is constant for all peaks in the ion’s

photoelectron spectrum. Recent work shows that there is a dependence on the
electron’s kinetic energy, but that this is small for overall shifts less than 10

meV.
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unfortunately necessary as the calibration fit for 213 nm can be poor without lines at

low electron kinetic energies.

Table 2-1. Estimated space charge shift (in meV) for calibrant lines, as a function
of ion level. Ion levels are height of ion peak measured on scope trace
(in mV) when ion detector stack voltage set at 1650 V.

Ion Level 100 mV 50 mV 30 mV 10 mV

Ion mass
F- 19 4.5 3.0 1.5 0.0
CN- 26 5.0 3.0 1.5 0.0
Cl- 35 6.0 4.0 25 0.0
Br- 79 4.5 1.0
I- 127 10.0 4.0 1.0

For each calibrant photoelectron spectrum, the time-of-flight for each spectral
line and the extraction and float voltages set while obtaining that ion’s spectrum, V,,
and V;, are recorded. Note, in order to achieve zero-space-charge conditions for each
calibrant ion the extraction voltage may vary widely. It is therefore important to
record, to the nearest 10 V, the extraction voltage used for each ion so as to compute
accurately the center-of-mass correction, which may be as large as 35 meV (F~) and
depends on V,, according to Eqn. 2. This set of observed information, along with the
expected electron energies (Table 2-2 and 2-3) are used to perform a weighted linear
least squares fit to Eqn. 3. The uncertainties in the time-of-flight for each line are
the weights input into the fit; for most lines this is the 2.5 ns uncertainty in

estimating a peak center. This fitting procedure has been simply and conveniently



33
automated* in the TENURE data acquisition computer program,? and should be

performed at the time of calibrant data collection. The goodness-of-fit, x*, a quality
factor (Q) and any disparities in the fit are displayed, along with an root-mean-square

(rms) error, in meV. Q is the probability of ¥, equal to or poorer (higher) than that
in the fit, occurring by chance.” Q factors higher than 0.50 (1.00 is perfect fit,
indicative of a fudge!) and rms errors smaller than 2 meV are usually obtainable, Q
factors above 0.95 usually indicate that the uncertainties in the time-of-fiight
datapoints have been over-estimated. Because this information is available at run
time, the operator can go back and re-record specific calibration spectra immediately
if this is deemed necessary. In this way highly accurate electron energies, with
quantitative error bars, can be deduced from recorded spectra. This procedure has
been adopted in the reporting of all spectra in this thesis, and particular attention has

been paid to this issue in Chapter 3.

2.1.1 Calibration at 213 nm

Whenever a spectrum has peaks over a broad range of electron energies, the
electron energy scale needs to be calibrated over the entire range. This is generally
the case for our 213 nm spectra, although it may be true at any other wavelength.
This causes a particular problem for 213 nm, as the shortest wavelength of our atomic
calibrant lines (I*P,,) « I7) yields electrons with 1.82 eV kinetic energy. New
calibrant lines to cover smaller electron kinetic energies at this laser wavelength are

required. No suitable atomic ions have excited states in this region. The CN-—

#2

The subroutine that performs the calibration in the TENURE program has

been completely rewritten and is reproduced in Appendix A.
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photoelectron spectrum does have several lines spanning this electron kinetic energy
range,'® and so we choose this diatomic as our calibrant of the 213 nm spectra, along
with some of the halide ions for the high electron kinetic energy end of the scale.
Using a diatomic ion has disadvantages; the peaks are broader and peak shapes
temperature dependent, and so assignment of peak centers have larger uncertainties.

For 213 nm calibration, and for any other laser wavelength where a large
energy range is being calibrated, a satisfactory linear calibration of the energy scale
is impossible, and/ ;a. quadratic fit is needed. Then the factor v, called the quadratic
scale compression factor, is non-zero in Eqn. 3. It is noted that y should always be
negative and typically has a value in the range of -100 to -130 eVens. Once the
inclusion of this parameter becomes necessary, the conversion of observed flight times

to electron kinetic energies no longer follows Eq. 1, but instead is given by

b+ 29(t - 1) + JBB* + 4Y(t - 1)) @)
2(t - t,)?

E,__ - AE =

where b? = %m . Eq. 4 reduces to Eq. 1 in the limit of y — 0, as required. This
reformulation of the time-of-flight to energy relationship has been included into the

data acquisition program TENURE.
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Table 2-2  Calibration lines typically used for UV laser wavelengths.
Electron kinetic energies for atomic and diatomic transitions at
213, 266, 299 and 355 nm.”

Transition® Mass 213 nm 266 nm 299 nm*® 355 nm
5.822 eV  4.657 eV 4.141 eV 3.493 eV

CN(A,v=2)

a) All electron kinetic energies correspond to the zero space charge limit.

b) CN~ transitions labelled by neutral electronic (X(*z*), A(*I1)) and vibrational
state. See Figures 3-1 and 3-2 for sample spectra.

c) First Stokes Raman line in H, using Nd:YAG fourth harmonic (266 nm) as
pump wavelength.

Data used to construct table: Nd:YAG fundamental 1064.8 nm, (9391 cm™, 1.164 eV).

First Stokes Raman scattering in H,, v = v - 0.516 eV.* EA(I) = 3.0591 eV,”

pump
EA(Br) = 3.363590 eV,!” EA(C]) = 3.61269 eV, EA(F) = 3.401190 eV" and raw
EA(CN) = 3.861(3) eV."® Atomic spin orbit splittings: (F, 0.05010;'® Cl, 0.10940;® Br,

0.4569;'° and 0.94268 eV,'®). CN electronic and vibrational levels.®
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Table 2-3  Calibration lines typically used for near UV and visible laser
wavelengths. Electron kinetic energies for atomic and diatomic
transitions at 355, 416, 532 nm."

Tru.usition® Mass 355 nm 416 nm* 532 nm
3.493 eV 2977 eV 2.329 eV

32 o
82 1238
32 1187 . 067

32 1.067
O,b, v=3) 32 0.900
 Oyb, v=4) 32 0.736
ICP,,) 127 0.434
a) All electron kinetic energies correspond to the zero space charge limit. All O,~

transitions are to centers of unresolved spin orbit doublets.
b) O,~ transitions labeled by neutral electronic (X(’L,), a(’a,), b(’L;")) and

vibrational state. See sample spectra in Figure 2-3 and 2-4.
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Table 2-3 continued

c) First Stokes Raman line in H, using Nd:YAG third harmonic (355 nm) as
pump wavelength.

d) Spin orbit splitting (20 meV) of anion O, resolved in these transitions.

Data used to construct table: Nd:YAG fundamental 1064.8 nm (9391 cm™, 1.164 eV).

First Stokes Raman scattering in H,,v=v

pump

-0.516 eV.’® EA(I) = 3.0591 eV,'" raw
EA(O,) = 0.454(3),® and O, electronic and vibrational levels from Ref. 16.
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2.2 Background subtraction

The background signal, despite improvements described in section 1.1, can still
be signifiravt for 213 nm photoelectron spectroscopy. We estimate that around one
background electron is collected every shot at this laser wavelength. This signal must
be removed to restore the correct intensity distribution in the molecular photoelectron
spectrum. As the spectrum of background electrons is smooth and does not change
from day to day, the background signal may be separately averaged, typically for at
least 120,000 laser shots, and stored. This background spectrum may be filtered to
remove any high frequency noise, and then scaled and subtracted from the
photoelectron spectrum of the ion under study. This procedure is less time consuming
than background subtraction at run time, where alternately 250 shots, say, of signal
+ background and then 250 shots of background are collected and subtracted.
Additionally, as the signal-averaged background spectrum is filtered before
subtraction, the overall signal-to-noise for the subtracted data is higher than in the
"run time" method.

The method of filtering the background data deserves some discussion. The
background time-of-flight dataset is fast Fourier transformed. A fast Fourier
transform (FFT) works on a dataset that has 2" data points, i.e. 128, 256, 512 or 1024
etc. points. Although padding of the time-of-flight dataset from the usual 800
channels (0 - 4000 ns time-of-flight) with zeroes up to 1024 channels works, in practice
it is better to sample the background spectrum into 1000 channels (i.e. out to 5000 ns)
and pad with only 24 zeroes. The power spectrum of the dataset, that is the modulus
squared of the complex frequency (Fourier) representation of the dataset, has

approximately the form of a Lorentzian function centered about zero frequency,
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although it has a non-Lorentzian tail. This is no surprise; the infinitely averaged

background spectrum varies smoothly, i.e. would have only low frequency components.
The high frequency components of the power spectrum are due to nocise in the
incompletely averaged data. To remove the noise we use optimal (Wiener) filtering.
The reader is referred to Ref. 14 for a complete discussion of this technique.
Essentially, the Fourier spectrum is multiplied by a narrow Lorentzian filter function
that has approximately the same form, i.e. the same FWHM, as the Fourier dataset
itself. In this way the high frequency tail is damped out. The user can alter the
precise value of the filter width so as to control the damping of the high frequency
components. The product dataset is then reverse Fourier traﬁsformed back into the
time domain by another FFT. The result is a smoothed background :ime-of-flight
dataset, which can be truncated to 800 channels (0 - 4000 ns) and saved to disk.
Comparison of the filtered and original background datasets, by plotting the two files,
is strongly recommended.

This Fourier filtering is preferable to simply fitting the background spectrum
with a polynomial function for two reasons. Firstly, it does a better job at reproducing
the shape of the background spectrum, and secondly it is a lot less arbitrary as the
only variable is the Lorentzian filter width. The filtered background is subtracted off
the summed photoelectron spectrum of the ion under study, after appropriate scaling
of the background spectrum by the ratio of the total laser shots for which data was
accumulated for the ion to the total shots for the background.

We have observed that the background spectrum is slightly different for
different polarizations of the laser, mostly in the integrated number of counts, but

there can also be small variations in the background distribution. Therefore,
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background spectra should be recorded for each polarization used in the ion

photoelectron study. The reader is referred to Appendix A for details on the use, and
source code, of the relevant background filtering and subtraction subroutines in the

program TENURE.
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Figure Captions for Chapter 2.

Figure 2-1.

Figure 2-2.

Figure 2-3.

Figure 2-4.

Experimental apparatus schematic. The photoelectron spectrometer
contains four differentially pumped chambers. Numbered components
are described in Figure key and in the text.

Mixing chamber for the continuous introduction of secondary reagent
gas into the pulsed expansion, to the vacuum side of the main pulsed
valve. The Figure shows the two component parts of the chamber front-
on and in cross section. The two pieces are assembled (the smaller
piece fits tightly inside the larger donut), and bolted to the faceplate of
the General Valve by the four bolt holes. The overall dimensions of the
assembled chamber is 1.330" diameter by 0.394" thick.

Raw time-of-flight photoelectron spectrum for O, recorded at 355 nm.
Peaks labelled according to transitions denoted in Table 2-3. The
positions of unlabelled peaks (x5, a0) are typically too poorly
determined without lengthy signal averaging, and are not therefore
used in the calibration.

Raw time-of-flight photoelectron spectrum for O, recorded at 532 nm.
Peaks labelled according to transitions denoted in Table 2-3. The spin
orbit splitting in the O, ion (20 meV) can often be resolved in the al

and a2 peaks.
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Front View Side View

Center hole has 0.080" dia.

Three feeder holes for second gas have inner dia. of 0.010"

Material Aluminum

Chamber bolts to General Valve Faceplate

Second gas introduced through 0.0625" stainless steel tubing
which mates at indicated point by a 1-72 NF fitting.

Figure 2-2



46

T

(sl) 1y31J-jJo-own

01

G0

T

. t (4
('r)a +——
(‘v)e
wu 6§
[4
O

yecdlo

Figure 2-3



47

(sm) 1y3113-Jo-owm

0¢ ¢¢C 07¢ ol | 0l
| AN
|
| ¢ ¢ ﬁ_ 0 : | “
- Cyye | |
L _ |
l 1
X wu 7ceC |
C -
0 Crox LS v Eere

: _ . | . | _

Figure 2-4



48
Chapter 3. Photoelectron spectroscopy of CN-, NCO-, and NCS—"

Abstract

The 266 nm photoelectron spectra of CN~, NCO~ and NCS~ have been
recorded with a pulsed time-of-flight photoelectron spectrometer. The photoelectron
spectrum of CN~ has also been recorded at 213 nm revealing transitions to the A%
state as well as the ground X°T* state of the CN radical. The following adiabatic
electron affinities (EAs) are determined: EA(CN) = 3.862 = 0.004 eV, EA(NCO) =
3.609 = 0.005 eV and EA(NCS) = 3.537 + 0.005 eV. The adiabatic electron affinity of
cyanide is in disagreément with the currently accepted literature value. Our
measurement of the electron affinity of NCS confirms recent theoretical estimates that
dispute the literature experimental value. By Franck Condon analysis of the
vibrational progressions observed in each spectrum, the change in bond lengths
between anion and neutral are also determined. For NCO~this yields Ry(C-N) = 1.17
+ 0.01 A and R(C-0) = 1.26 = 0.01 A, and for CN~ the equilibrium bond length is
found to be R(C-N) = 1.177 = 0.004 A. The gas phase fundamental for CN~ is

determined for the first time: v = 2035 + 40 cm™.

1. Introduction

The CN—, NCO™, and NCS~anions are of considerable interest in both solution
phase and gas phase chemistry. The three anions are "pseudohalides” in that they are
closed shell species with relatively high electron binding energies. On the other hand,

there are important chemical differences in comparison to the halide ions; in

‘J. Chem. Phys., in press (1993)
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transition metal complexes, for example, the halide and cyanide anions are at opposite
ends of the spectrochemical series. A number of experimental and theoretical studies
of the spectroscopy and thermochemistry of these anions have been performed in
recent years. However, several quantities, particularly the electron affinities of the
NCO and NCS radicals, are not well-determined. In order to address this, we have
measured the ultraviolet photoelectron spectra of the three anions. The spectra yield
accurate values of the radical electron affinities, as well as some anion vibrational
frequencies and bond lengths.

The spectroscopy of the CN radical has been thoroughly studied,! but, while
CN- has been investigated in various condensed phase environments,>*** CN~ has
not been fully characterized in the gas phase. Neither the bond length nor the
vibrational frequency for gas phase CN~ have been experimentally determined,
although there has been very high quality ab initio theory performed to describe the
ion.®” The CN electron affinity (EA) has been measured by Leone and coworkers,®
whose value of 3.821 =+ 0.004 was in good agreement with the previous experimental
measurement of Berkowitz (3.82 + 0.02 eV).? CN- has a higher reported electron
binding energy than any atomic or other diatomic species, and is therefore a desirable
calibration standard for our photoelectron spectrometer. However, our photoelectron
spectra show the CN electron affinity to be slightly but significantly higher than the
currently accepted value of Leone. In addition, we observe a ‘hot band’ from
vibrationally excited CN -, yielding the gas phase vibrational frequency, and we obtain
the CN~ bond length from a Franck-Condon analysis.

Despite the well characterized spectroscopy of the radicals NCO and NCS,"

the electron affinities for these species have not been accurately determined;
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currently the EA’s listed in the compilation of Lias et al.!’ are 3.59 + 0.36 and 2.15

+ 0.02 eV for NCO and NCS respectively. The value for the electron affinity of NCS,
obtained from Page’s magnetron experiments,'? is particularly suspect. Not only
does it seem inconsistent with the other CN containing molecules, it is also
considerably lower than theoretical estimates of this quantity.'> We note that Page’s
accompanying result for EA(CN), 2.80 eV, is similarly too low.’ Dillard and Franklin
derived EA(NCS) = 3.51 eV from measured heats of formation of NCS and NCS~in
ion molecule reactions;' the most recent theoretical work supports this value with
a calculated EA of 3.45 eV."®* We show that the true electron affinity is close to that
derived from the thermochemical cycle and the theoretical value, and that the
previous "direct” measurement of the EA is in error.

The vibrational spectroscopy of ‘the NCO~ and NCS~ anions have been
thoroughly investigated in various alkali halide matrices.!®'¢"'®* In addition,
high resolution infrared gas phase spectroscopy has been performed on both NCO~
and NCS~ in Saykally’s laboratory.’®*® This work yielded the v, fundamental
frequency and the equilibrium rotational cbnstant for each of these linear ions.
However, as isotopically substituted spectra were not recorded, the rotational constant
does not completely define the molecular structure, and therefore the two bond lengths
remain unknown for each ion. In contrast, for the NCO radical at least, '*N isotopic
substitution in the optical spectra, along with microwave data for *NCO, yields the
individual neutral bond lengths, R(C-N) and R(C-0)?' With this data for the
neutral bond lengths, and a Franck Condon analysis of the NCO~ photoelectron

spectrum, we determine the individual bond lengths for the NCO~ anion.
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2. Experimental

The photoelectron spectra of NCO~, NCS—, and CN~ were recorded on our
fixed-frequency negative ion photoelectron spectrometer. This apparatus has been
described in detail elsewhere.?? Briefly, the instrument is a dual time-of-flight
photoelectron spectrometer. A gas mixture at a stagnation pressure of ca. 3 atm is
expanded through a pulsed molecular beam valve. Just below the orifice of the pulsed
valve, a continuous 1 keV electron beam intersects the gas beam at 90°. Ions are
made in the continuum flow region of the jet. Subsequent collisions in the expansion
cool the internal degrees of freedom of the ions. Varying degrees of cooling of the
vibrational modes can be achieved by changing the carrier gas.

In these experiments, to make CN ™, a mixture of 3% HCN, 8% NF, seeded in
N, is expanded through the pulsed valve. CN~is produced in the jet by the following
reactions:

NF,+e~ - NF, + F~

F~+ HCN - HF + CN~
To produce NCO~ and NCS-, a few drops of benzyl isocyanate or benzyl
thioisocyanate respectively are dropped into the valve, and 3 atmospheres of He or a
40% CF,/He mix, is expanded through the ‘wet’ valve. NCO~ and NCS~ are
produced by dissociative attacﬁment of an electron to PhCH,NCO or PhCH,NCS. The
CF, / He mix is found to give far superior cooling for vibrational modes of the NCS~
ion.

The ions are perpendicularly extracted into a time-of-flight mass spectrometer
of Wiley-McLaren design.?®> The mass-selected ion of interest is photodetached using

a pulsed Nd:YAG laser that propagates perpendicular to the ion beam. In these
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experiments, the fourth (266 nm, 4.657 eV) or fifth (213 nm, 5.822 eV) harmonic of the

Nd:YAG laser is used. Photoelectrons ejected from the mass selected ion are detected
at the end of a 1 meter field-free flight tube which is orthogonal to the laser and ion
beams. The energy of the detached electrons is determined by time-of-flight. The
energy resolution is 8 meV for electrons with 0.65 eV of kinetic energy and degrades
as E** for higher kinetic energies. The polarization of the laser can be adjusted by
means of a half-wave plate such that the angle 6 between the electric vector of the
laser radiation and the direction of electron detection may be sampled. Adjustment
of the laser polarization to the magic angle (8 = 55°) can be used to eliminate the
photoelectron angular anisotropy term.?

Due to the high photon energy employed, any scattered light will release
electrons from metal surfaces inside the chamber. This effect is minimized by electron
and laser baffles but, even so, at 213 nm the background level is sufficiently high that
the background signal must be subtracted from the data. As the kinetic energy
distribution of the background photoelectrons is smooth and does not change from day
to day, a smooth function is fitted to the background, scaled and subtracted from the
experimental spectrum. This subtraction procedure has been followed for the 213 nm
photoelectron spectrum of CN~ here.

The calibration procedure used in these spectra is worthy of some discussion.
In the photoelectron spectrum of A~ at photon energy hv, the electron kinetic energy

of each peak is determined by

eKE = hv-EA(A)-E(A)+E(A"), )
where EA(A) is the electron affinity of A (or, equivalently, the electron binding energy

of A7), and E(A) and E(A") are the internal energies of A and A~ for that transition.
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Ideally, for calibration purposes, the electron affinity and the internal energies of the

calibrant species should be extremely well known. At 266 nm the electron kinetic
energy scale is calibrated using photoelectron spectra of the atomic ions F-, C1-, Br—,
and I, for which the corresponding neutral electron affinities (3.401190, 3.61269,
3.363590, and 3.0591 eV, respectively’®) and neutral atom spin-orbit splittings
(0.05010,%¢ 0.10940,%" 0.4569% and 0.94268 eV, respectively) are known to good
precision. Each calibrant ion gives two narrow peaks in the photoelectron
spectrum,®® and these atomic lines cover the range of electron kinetic energies (0.65-
1.60 eV) appropriate for photodetachment at 266 nm. At this wavelength, we can
access the ground electronic states of CN, NCO, and NCS, and can therefore
accurately determine their electron affinities.

The calibration proceeds as follows: the recorded flight times, t, for each
calibrant line are fitted to the following form:

t=1, + m.l’. 1 + (2)
2 ‘/E; E,

where m, is the electronic mass and E,,, is the expected electron kinetic energy in the

laboratory frame-of-reference. Using the 8 or more calibrant lines, the offset t,, the
effective flight length ¢, and the quadratic correction factor y are determined by least
squares. For 266 nm, a linear calibration of the energy scale (y = 0) is generally
sufficient. Using these constants that define the electron energy scale, the flight times
for the spectrum of interest are converted to electron kinetic energies; this conversion
procedure includes a small center-of-mass correction to the energy.?

The situation at 213 nm is less auspicious. For this photon energy the halide

lines are clustered near electron kinetic energies of 2 eV or above. There are no other
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atomic negative ions with higher electron binding energies so it is necessary to go to
a molecular calibrant ion. One of our motivations for studying CN~ was to obtain
calibration points for 213 nm at lower electron kinetic energies. This can be done
using the transitions from CN~ to the first excited electronic state of CN, the A%
state, which lies 0.83 eV above the X** ground state. This, of course, requires the
accurate value for EA(CN) determined at 266 nm. Thus, the results presented in the
next section will allow us to better calibrate future spectra at 213 nm. We note here
that to fit the electron kinetic energy scale at 213 nm over the entire range covered
by the halide and cyanide transitions, the quadratic scale compression factor, y, must
be included. This calibration fit then reproduces all lines to within the measured
time-of-flight uncertainties for all points.”® The inclusion of a quadratic term in the
calibration is similar to that employed on negative ion photoelectron instruments in
the Lineberger® and Ellison® groups. Our conversion scheme from time-of-flight
to electron kinetic energy is analogous to that used on the multiphoton ionization

photoelectron spectrometer described by Anderson et al.*?

3. Results

The 266 nm photoelectron spectra of the three molecular ions are shown in
Figure 3-1. The NCO~ spectrum was recorded using the laser polarized at the magic
angle (6 = 55°) because a change in relative intensities across the band was noticed
as a function of laser polarization. For NCS~ and CN-, although there is sizeable
change in absolute counts recorded with the twe extreme laser polarizations, the band
profile did not change, so spectra were recorded with polarization chosen to maximize

signal/noise. This was with 6 = 0° for CN~ and 6 = 90° for NCS~. Figure 3-2 shows
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the 213 nm photoelectron spectrum of CN~ with the polarization of the laser

perpendicular (6 = 90°) to the electron collection direction.

The spectra in Figure 3-1 are all relatively simple. Photodetachment of each
ion leads to very little vibrational excitation in the corresponding neutral. The CN-
266 nm spectrum shows only a single peak, the 0-0 transition, indicating virtually no
geometry change between CN~ and the X?L* ground state of CN. In the 213 nm
spectrum (Fig. 3-2), in addition to the X state transition, a more extended progression
(peaks A0-A2) in the vibrational levels of the Al state is observed. Thus, according
to the Franck-Condon principle, there is a somerhat larger geometry change for this
anion—neutral transition. Since the vibrational spacings and the energy of the
ele@mﬁc origin in the CN A’[1 state are known,' peaks Al and A2 can be used in
addition to AO to calibrate the electron energy scale at 213 nm. The only new
spectroscopic feature in Figure 3-2 is peak a0. This is a hot band originating from the
v=1 level of the anion. This spectrum was recorded under source conditions which
increased the vibrational temperature of the anions; in other spectra (not shown), this
feature can be eliminated. Observation of the hot band is desirable since it represents
the first gas phase measurement of the CN~vibrational fundamental frequency, 2035
+40 cm™,

The NCO~ photoelectron spectrum shows a short progression in the v,
‘antisymmetric stretch’ mode of the NCO X*I state (Fig. 3-1). Each peak consists of
overlapping transitions to the two spin-orbit components of NCO (A, = -95.6 cmi™).®
For the NCS X’I state, the spin-orbit splitting is much larger (A,,, = -323.4 cm™),*
and transitions to the individual fine structure components are resolved. The spacing

between the doublets is close to the v, (C-S stretch) fundamental in NCS. However,
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a more detailed comparison of the observed peak positions and the term values
derived from extensive optical measurements® reveals some discrepancies. This is
discussed in more detail when we attempt to simulate the NCS~ photoelectron
spectrum.

The widths of the observed peaks (~ 28 meV for NCO~, ~ 21 meV for NCS~
and ~ 16 meV for CN~, 266 nm) are larger than that due the instrumental resolution
alone. In the case of NCO, the extra width is due to the unresolved spin-orbit
splitting. For the remainder, the peak width is due to sequence bands and the

underlying rotational contour for the transition.

4, Analysis and Discussion
4.1 Electron Affinities

The electron affinities for the three radicals can be determined from the 266
nm spectra shown in Figure 3-1. The adiabatic electron affinity is estimated as
follows. The electron kinetic energy at the peak center of the assigned origin (E(A)

= E(A7) = 0.0, see Eq. 1) yields the raw electron affinity via

EA = hv - eKE 3)
where hv is 4.657 eV for 266 nm. Corrections are made for the spin-orbit splitting (if
appropriate), sequence bands, and any shift between the center of the rotational
contour and the rotationless origin. Another factor to be considered in deriving
accurate electron affinities is the effect of Coulomb repulsion of the remaining ion
charge cloud on the ejected electrons. The interaction of the undetached ion packet
with the electron causes the kinetic energy of the departing electron to be increased

slightly. We correct for this effect by determining the magnitude of this shift for an
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atomic ion of similar mass, for the same ion density. Values for all of these
corrections are listed in Table 3-1. As can be seen, the magnitude of this latter ’space
charge’ effect is fairly small.

The rotational correction is calculated by simulating the expected rotational
contour®®* using the known rotational constants for each molecule and assuming
a simple s-wave detachment model developed by Fano® and Walker®. This is an
approximation; an s-wave model is not strictly appropriate here, since the electron
kinetic energies are on the order of 1 eV. Using an anion rotational temperature of
200 + 50 K, the rotational contour, when coniroluted with the instrumental resolution
function, matches the experimental lineshape, and the (small) correction between peak
maximum and rotationless origin for the transition may be estimated. It turns out
for all these systems that the correction is smaller than the error bars for the
correction process, which nevertheless are propagated into the final uncertainty in the
electron affinity. The rotational contour simulation for the photoelectron band to the
CN ground state is shown in the inset of Figure 3-1. The possibility of broadening of
the origin peak in the CN~266 nm photoelectron spectrum due to the 1 « 1 sequence
band has been checked for; the simulated profile does not change even for vibrational
temperatures as large as 1400K. The final electron affinities derived from this work
appear in the final column of Table 3-1.

Let us compare our electron affinity determinations with those currently in the
literature. The reported CN electron affinity of Klein et al.® obtained via laser
optogalvanic spectroscopy is slightly lower than our measurement, and both
measurements lie outside the range of their mutual error bars. Klein reports EA(CN)

= 3.821 + 0.004 ¢V® whereas we deduce EA(CN) = 3.862 + 0.004 eV from the 266 nm
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spectrum. We have repeated this measurement several times with independent
calibrations, and are therefore confident in our value. To resolve the discrepancy
between these two measurements we attempted to measure the total photodetachment
cross section on a different apparatus,® with a tunable dye laser. Such an
experiment is much more akin to the optogalvanic experiment, and should provide an
independent test. However, in contrast to Klein’s experiment, we mass-select the CN~
before irradiation. This experiment confirmed that the threshold for CN-
photodetachment occurs to the blue of Klein’s reported threshold; our total detachment
cross section rises at 321.1 =+ 0.3 nm (3.862 eV) compared to 324.4 nm (3.821 eV). One
possible explanation of this discrepancy is that Klein et al., who only observed the
324.4 nm threshold when using BrCN as their source of ions, were actually observing
the threshold for the channel Br(*P,,)«Br-, which occurs at 3.8205 eV.%*® Indeed
the authors noted a strong slowly rising background due to the Br(*P,,)«Br-
transition throughout the wavelength region they investigated.

Our reported values for the electron affinity of NCO and NCS are in excellent
agreement with some recent theoretical determinations, but in varying agreement
with experimental estimates. For NCO, there have been numerous experimental
determinations of the electron affinity. Brauman and coworkers?® observed that
NCO has a higher EA than fluorine (3.401 eV®). Oster and Illenberger estimate
EA(NCO) = 3.8 = 0.2 eV based their observed 0 eV appearance potential of NCO~and
SF;~ from low energy electron attachment to SF,NCO,*! although this is only an
upper limit if the appearance energies are less than 0 eV. Dillard and Franklin
calculated EA(NCO) = 1.56 eV from he heats of formation of NCO and NCO-

measured in their ion-molecule experiments,™ but the heats of formation found in this
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work appear to be inconsistent with currently accepted values. Wight and

Beauchamp calculated a value of 3.62 + 0.2 eV from their measured NCO~ proton
affinity using literature heats of formation for AH(HNCO) and AHYANCO).#* Our
direct measurement of the adiabatic electron affinity is consistent with the
measurements of both Brauman and Oster, and also with Wight and Beauchamp’s
derived value. As discussed in the Introduction, previous ’direct’ measurements of the
NCS electron affinity,'* in contrast, appear to be incorrect. Our value of 3.537 + 0.005
eV, however, is in agreement with Dillard’s derived value of 3.51 eV.!*

The theoretical values for the adiabatic electron affinities of Koch and
Frenking, 3.71 eV for NCO and 3.45 eV for NCS, are in good agreement (better than
0.1 eV) with our observed values. These calculated electron affinities are zero-point
corrected MP2/6-31+G* energy differences between the optimized ion and neutral
structures. Baker et al. have presented an exhaustive comparison of ab initio
estimates of electron affinities for several molecular systems including NCO.** An
interesting conclusion of that study was that the use of a simple MP2/6-31+G* scheme
for calculating the energy difference between ion and neutral was among the most
effective methods for estimating the adiabatic EA, with the caveat that spin
contamination in the unrestricted (UHF) radical wavefunction should be small (as is
the case for NCO). This explains the success of Koch’s calculations, and we have
ourselves found that a MP2/6-31++G** model reliably yields excellent EA’s in our own
calculations when we compare to other experimental measurements in our laboratory.
This is certainly an encouraging result for ab initio theory which has traditionally

viewed negative ions as one of the hardest classes of molecules to describe correctly.
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It appears that all three ions studied here have very similar electron binding

energies. This would lead one to suspect that the ‘extra’ electron would be closely
associated with the CN part of the molecule. The considerably larger electron
affinities of NCO and NCS relative to OH and SH (1.828, 2.314 eV respectively®®)
seem to support this, since, in OH™ and SH™, the electron is localized on the oxygen
and sulfur atoms. However, the HOMO (of ® symmetry) for NCO~has amplitude over
all three atoms, not just the CN group, as is shown in Figure 3-3. This suggest that
the ’extra’ electron is actually somewhat delocalized just as for N;~ (E.A.(N;) = 2.68
eV*®). The HOMO in NCS~is also shown in Figure 3-3. It appears more localized
than the HOMO in NCO-, but actually has more amplitude on the sulfur end of the
molecule than on the CN group. This is consistent with Ramsay’s explanation for the
large spin-orbit splitting in X?I1 NCS radical (323 cm™) which he attributed to the
valence structure that has the unpaired electron localized on the sulfur atom
dominating the electronic description of this radical.** The replacement of an oxygen
atom by a sulfur atom usually raises the electron affinity of a molecule, but the
observation that NCO and NCS have similar electron affinities suggests this effect is
approximately canceled by the more extensive electron delocalization in NCO™~ than
in NCS~. Overall, the electron affinities appear to be determined by the interaction
of electron delocalization and electronegativities of various chromophores in the

molecule.
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42 Derived Thermochemical quantities

With a precise estimate of the NCO and NCS electron affinities, we may
critically review some related thermochemical quantities. Shobatake*® has recently
reported the threshold for photodissociation .of HNCO

HNCO +hv — H + NCO (A%")

tobe A = 162 + 1 nm. This implies the bond dissociation energy to the A state of
NCO, DA(H-NCO) = 7.65 eV.*5 As the T, for the A state is well known at 2.82 eV,*
these data together yield a bond dissociation energy, D (H-NCO)<1'i.4 + 1 kcal/mol.
Using the ionization potential of hydrogen and our electron affinity for NCO, we
calculate D,(H*-NCO-) < 341.9 = 1 keal/mol, and a bond enthalpy DH,(H*-NCO") =
343.2 + 1 kcal/mol. Wight and Beauchamp observed DH,(H*-NCO™) = 344.7 = 2
kcal/mol by the proton abstraction reaction of HCO,~ with HNCO in an ion cyclotron
resonance (ICR) machine. Their heterolytic bond dissociation enthalpy is evaluated
by comparison to that for formic acid, HCO,H. The homolytic and heterolytic bond
dissociation thermochemistry therefore appears to be consistent. AH{ (NCO™) may
also be re-evaluated from the recent direct determination of the heat of formation of
neutral NCO in our laboratory,® AH,(NCO, g, 0K) = +30.4 = 1 kcal/mol, and the
electron affinity reported here. Adopting the "ion convention" for ionic heats of
formation,' AH,(NCO-, g, OK) = -52.8 = 1 kcal/mol. Using the frequencies in Table
3-I1, we estimate AH? (NCO™) at 298K to be unchanged at -52.8 kcal/mol.

For the thermochemical cycles involving NCS—, the energy for the HNCS
homolytic bond dissociation is less well defined than the heterolytic bond dissociation.
We may thus use our electron affinity with the DH,o(H*-NCS") of Bierbaum et al.*’

and the ionization potential of the H atom to deduce DH,4(H-NCS) = 96 + 6 kcal/mol.
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The temperature dependence of the electron affinity and ionization potential have
been ignored here. The homolytic bond dissociation energy calculated here is
considerably lower than the 111 + 1 kcal/mol literature value listed in Lias."
However this value for DH,,,(H-NCS) was derived from Page’s comparison of the
’apparent’ electron affinities of NCS measured with the magnetron technique using
HNCS and (NCS), as precursors.'? It is becoming fairly clear that this technique
relies on rather too many other thermochemical assumptions to be trusted.
Surprisingly, Lias’ compilation neglected the more recent work of D’Amario*® from
which DH,4,(H-NCS) could be calculated. D’Amario’s derived AH} (NCS) = 76.4 = 1
kcal/mol from the photodissociation thresholds of CH,SCN and CH,NCS to produce
NCS. Using

DH,4,(H-NCS) = AH; (NCS) - AHf (HNCS) + AHf (H), 4)

AH{ (HNCS) = + 30.6 + 0.5 kecal/mol,' and AH} (H)= + 52.1 keal/mol,*® DH,4,(H-NCS)
= 98.0 = 1 kcal/mol is derived.®® Our unambiguous result for the electron affinity of

NCS, coupled with Bierbaum’s gas phase acidity for HNCS confirms this lower value
for DH,.,(H-NCS).

43 Simulations

Our goal in this section is to use a simple Franck-Condon model to simulate
the photoelectron spectra, allowing us to derive some structural and vibrational
parameters for the negative ions. The method employed for Franck-Condon modelling
is due to Hutchisson,’’ and treats each mode as an independent Morse or harmonic
oscillator within the normal mode approximation. In addition, we assume that the

form of the normal coordii:ate for a mode changes little between anion and neutral;

]
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this is known as the parallel mode approximation. Anion state populations are
determined by Boltzmann factors characterized by one (or more) vibrational

temperatures.

CN-

The 266 nm spectrum (Fig. 3-1) consists of a single peak: CN (X*Z*) (V' = 0) «
CN~ (v" = 0). The absence of a (V' = 1) « (v" = 0) peak indicates that CN~ has a
bond length similar to ground state of CN: 1.1718 A!! The 213 nm spectrum (Fig.
3-2) shows a single peak due to a transition to the X state, as well as a progression
due to transitions to the A state of CN. The A state bond length is 1.2223 A.! By
simulating the Franck Condon Factors for transitions to the two states we may
bracket the value of R, in CN~.

In the simulations we use the known equilibrium bond lengths, harmonic
frequencies and anharmonicities for the X and A states of CN, as well as the spin
orbit coupling parameter of -52.6 cm™ for CN A(*IT).! There is no spin orbit splitting
in the CN ground X(*¢*) state. The anion vibration is also treated as a Morse
oscillator; the anharmonicity used is that calculated for CN~by Peterson and Woods,*
and the harmonic frequency is derived from this anharmonicity and the value of the
fundamental observed in our spectrum. We vary only the anion equilibrium bond
length and the vibrational temperature until a satisfactory fit to the experimental
spectrum is obtained. Franck-Condon factors for transitions to the two electronic
states of the neutral are calculated separately. For transitions to the X(2T*) state,
values of R, in the range 1.162 A < R*"*" < 1.182 A were acceptable in predicting

intensity < 2% in the v=1«0 transition, in accord with the absence of this feature in
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the experimental spectrum; this range is centered on the value of R, in the ground

state of the neutral (1.1718 A). This result also confirms that the anion bond length
is shorter than that in the CN A(*IT) state (1.2333 A). Figure 3-4 shows our best fit
to the photoelectron band due to transitions to the A state, with R,***(C-N) = 1.1765
A. Values of R, ranging from 1.173 to 1.182 A gave acceptable fits to the observed
intensity distribution, allowing for the uncertainties in experimental peak heights
determined from Poisson counting statistics. The experimental observation of two
photoelectron bands allows independent determinations of R *"**(C-N). The results
are completely consistent; our final estimate of the anion equilibrium bond length is
R, = 1.177 = 0.004 A. This result is in excellent agreement with the Peterson and
Wood’s MP4(SDQ) prediction of R, = 1.1772 A and Botschwina’s value of 1.1768 =
0.001 A calculated with the Coupled Electron Pair Approximation (CEPA-1) method.®”

Let us compare our observed gas phase value of 2035 = 40 cm™ for the CN~
fundamental frequency with other reported values. The vibrational frequency of the
anion is 2080 cm™ in aqueous solution and 2076 cm™ in KCN crystal.? Frequencies
ranging from 2068 to 2106 cm™ were observed in various CN~ doped alkali-metal
halides.> Mendenhall et al gave o, = 2125 + 6 cm™ and 0, = 14.2 + 0.7 cm™ for CN-
in KCl, and similar values for CN~ in NaCl and NaBr.> Sherman and Wilkinson
plotted the observed CN~ frequency in these various alkali halides (over 250
measurements) versus the estimated shift due to the matrix, calculated from a lattice
perturbation model, and predicted a free space vibrational frequency for CN~ of 2038
+ 3 em™,! in excellent agreement with our measurement. Very recently, Forney et al.®
isolated CN~in a neon matrix. The observed fundamental frequency in this inert and

non-polar environment was 2053.1 ecm™. The ab initio calculation of Peterson and
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Woods predicted @, = 2081.7 cm™ (and ©.x, = 13.58 cm™ which we have used in our

fit), giving a fundamental of 2055 = 6 cm;® Botschwina similarly computed 2052 =+
6 cm™! for the anion fundamental.” It appears that the observed value is in reasonable
accord with the ab initio work, and is, as expected, lower than the reported
frequencies in condensed media. This trend is also reported for the C-N stretching
frequency in NCO~ and NCS—*% For comparison, the vibrational fundamentals for
CN radical in the X(*Z*) and AC?IT) states are 2042.4 and 1787.3 cm™ respectively.
A simple molecular orbital picture of bonding in the CN species would suggest
that the neutral has a bond order of 2 while the negative ion has a bond order of 3;
we thus expect the bond length in the ion to be shorter than that of the radical
(1.1718 A) and the harmonic frequency to be higher. The A state of CN also has a
bond order of 2%, but it has a longer bond length than the ground state (1.2333 A).
In fact we find, in agreement with the ab initio calculations, that the negative ion has
a slightly longer bond length than the ground state of the neutral and a similar or
slightly smaller vibrational frequency. Thus, in contradiction to the bond order
arguments, the bond in CN~is the same strength or slightly weaker than that in CN
radical. It appears that the ¢ electron removed from the negative ion is only very
weakly bonding and has part lone pair character (see Fig. 3-3), whereas the x electron
removed to form the A(*IT) state is strongly bonding. This result is consistent with the
photoelectron spectra of N,,*®* where ionization to N,* X(22;) gives a very small
lengthening of the N-N bond, and a photoelectron band dominated by the 0-0
transition, but ionization to N,* A(*T1,) gives a much larger bond length change and
consequently a longer progression. One additional effect comes into play for negative

ions: the extra charge on the negative ion weakens, in the absence of any other
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effects, the bonding overall because all valence electrons are held less tightly by the

nuclear charge relative to the corresponding neutral. These arguments go some way
in explaining why CN~ has a longer equilibrium bond length than CN, and the

relative vibrational frequencies of the anion and radical X and A states.

NCO-

Both NCO and NCS are known to be linear in neutral and anion ground states.
Therefore photodetachment is expected to excite only the bond stretching normal
modes. In fact, only the v, mode is appreciably excited in the NCO~ and NCS~
photoelectron spectrum. The intensity distribution in the v, progression allows us to
evaluate the normal coordinate displacement between anion and neutral. From these
displacements and the force constant matrix, the individual bond length changes
between the neutral and anionic species can be determined. We will employ ab initio
predictions to guide this process. The literature ab initio values have been
supplemented by our own computations where appropriate; we have used the
Gaussian 90 package for all our calculations.®® Because of the larger data set
available for NCO, we will describe our simulation for the NCO™ photoelectron
spectrum in detail. For NCO, the individual neutral bond lengths have been
experimentally determined by comparing the ground state rotational constant for
NCO, observed in the spectroscopy of the A?Z<X*I1 electronic band,?* and the
rotational constant for NCO determined (to higher precision) in the microwave
spectrum.®®* This means that we can then use the bond length changes derived

from our photoelectron data to extract the two anion bond lengths. These values are
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then checked for consistency with the anion rotational constant as evaluated by
vibration-rotation spectroscopy.®

The ab initio data in Table 3-III"***5"% gsuggest that the difference in
equilibrium structure between anion and neutral is that the C-N bond lengthens and
the C-O bond contracts on removal of an electron. This is because the HOMO of the
anion (from which the electron is detached to form ground state NCO) is C-N bonding
and C-O anti-bonding in character (Fig. 3-3). Further, the ab initio data suggests that
the change in equilibrium structure involves very little change in the overall end-to-
end length (R,(N-0)). As the normal modes for this molecule are very close to the
symmetric and antisymmetric stretch of CO,, these described geometry changes map
almost exclusively onto a displacement along the ’antisymmetric’ normal coordinate,
Q;, and little change along the ’symmetric’ stretch, Q,. This qualitative description
is clearly in good agreement with the progression seen in the v, mode in the
experimental spectrum in Figure 3-1. Using the data for vibrations of anion and
neutral in Table 3-II, a Franck-Condon simulation is performed to fit the observed
photoelectron band. The data shown in the table comes entirely from experimental
determinations for NCO in the gas phase,***%°¢! and for NCO~ mainly from
extensive measurements of vibrational frequencies in several alkali halide
matrices.'>'®!" All three vibrational modes are included in the simulation to model all
sequence and hot bands arising from excited anion states. For both the anion and
neutral, Morse potentials are used to describe the v, and v; modes and the bending
mode is treated as a degenerate harmonic oscillator; the Renner-Teller effect in the
neutral radical is neglected. This level of treatment for the bending mode should be

sufficient to describe the peak broadening due to sequence bands. In our one-
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dimensional model there can be no provision for cross anharmonicity terms y 3
Consequently, the ‘harmonic’ frequencies, @', quoted in Table 3-II are effective values
given the independent and diagonal treatment of anharmonicity. Thus ®’, = o, +
YeXys + Xap @and @'y = @3 + ¥%Y,3 + X25. The simulation yields a stick spectrum which
is then corvoluted with our instrumental resolution function,?? and with an 8 meV
Gaussian to approximately include the rotational band contour for the transition.

In the fit, all vibrational parameters (anion and neutral) and the spin-orbit
coupling constant are treated as fixed; transitions to each of the spin-orbit components
of NCO are weighted equally. The Q, displacement is the most important variable
parameter in the fit. The Q, displacement and the temperatures, T,, T, and T,
describing the Boltzmann distribution of anion vibrational states, are also varied.
Varying the temperatures will essentially fit the width and lineshape of each peak.
Finally, the electrun kinetic energy for the progression origin is allowed to vary; this
essentially allows improved estimation of the electron affinity and the effect of
sequence bands. We use this to evaluate the sequence band correction to the electron
affinity (See Table 3-I).

The overall best fit is shown in Figure 3-5. The variable parameters are
determined as 1AQ,! = 0.128 = 0.008 amu*-A, T, = T, = 775 = 50 K, T, = 600 = 50
K. The change in the ‘symmetric’ stretch coordinate is limited to be 1AQ,! < 0.04
amu”:A. The position of the 3° hot band at 1.32 eV is well fit by the v, fundamental
from the gas phase work of Saykally et al.” The intensity of this hot band
determines the vibrational temperature, T,, describing this v, anion mode; we obtain
an improved fit by assuming a higher temperature for the stretching vibrational

modes relative to the lower frequency v, bend mode. This is presumably justifiable
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because the stretching modes are expected to be more strongly excited initially in the

dissociative electron attachment reaction used to generate the NCO~ions. Moreover,
the lower frequency bend mode should be cooled more effectively by collisions in the
free jet expansion. Overall, the high vibrational temperatures needed in the fit show
that vibrational cooling is fairly poor in the helium expansion.

Jacox has constructed a force constant matrix from infrared observations of
all vibrational frequencies of various isotopically substituted forms of NCO in an
argon matrix.> From these force constants, we have calculated the bond stretching
normal coordinates. When combined with the values of 1AQ;| and 1AQ,! derived

from the fit, we may calculate ARy and AR, from anion to neutral.

ARey) [0.210 -0.332) A, 5)
AR, 0155 0349) |AQ,

As we expect the C-O bond to shorten in the neutral and the C-N bond to lengthen,
the sign of AQ, must be negative, but it is not possible to determine the sign of the
small AQ,. Let us then consider 3 values for AQ,: +0.04, 0.0 and -0.04. Using AQ, =
+0.04 and AQ, = -0.128, Equation 5 yields AR¢y = 0.050 A and AR, = -0.039 A. If we
take the R, structure for NCO neutral from Misra et al. (Table 3-III),*! then these
displacements yield Ry(C-N) = 1.15 A and Ry(C-O) = 1.25 A for NCO~. For AQ, = 0.0
and AQ, = -0.128, then ARy = 0.042 A and AR, = -0.045 A; resulting in R(C-N) =
1.16 A and R(C-0) = 1.25 A. Finally if AQ, = - 0.04 and AQ, = -0.128, then AR¢y =
0.034 A and AR, = -0.051 A; resulting in Ry(C-N) = 1.17 A and R,(C-O) = 1.26 A for
NCO~. If we use these values to calculate the rotational constant B, for NCO-, then,
by comparing with the high resolution experimental rotational constant, we can

determine the sign for AQ,. For AQ, = + 0.04, 0.0 and -0.04 the calculated rotational



70
constants are B, = 0.3925, 0.3878 and 0.3834 cm™ respectively. The last of these is

closest to the observed B,, 0.3841 cm™," indicating that the sign of AQ, is negative.
The values that best fit the data and agree with Saykally’s rotational constant are
then AQ,=-0.035 + 0.01, AQ,=-0.128 + 0.008.

The final result for the anion R, bond lengths are shown in Table 3-III. The
quoted error bars of + 0.01 A include the uncertainties in the normal coordinate
changes in our fit and the error bars in Misra’s neutral bond lengths, but not the error
in assuming the parallel mode approximation (i.e. the neglect of Duchinsky rotation®)
or in Jacox’s force constants. Comparing our result to the ab initio values shows that
the C-N bond length in NCO~ is considerably overestimated at the highest level of
theory (MP2). In fact, it appears that all levels of ab initio theory shown do not
correctly describe the relative bond lengths R(C-N) or R(C-O) in either anion or
neutral. It is well known that multiply bonded systems are difficult to describe
theoretically and it appears that this system, which has somewhere between a single
and double bond between C and O atoms, and between a double and a triple bond

between C and N atoms, is certainly a strong test case.

NCS-

The NCS- photoelectron spectrum has four major peaks; as already noted,
these are due to a short progression in the C-S stretch (v,) in each of the two spin-
orbit components of the NCS X*IT state. According to this assignment, the four peaks
correspond to transitions to the 1,,(000), *I,,(000), *I1,,(001) and >, ,(001) levels of
the neutral. However, the spacing of the peak centers from the origin, 0.040, 0.091

and 0.130 eV, differ for the two 3] transitions from the corresponding term values
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given by Northrup and Sears® (0.040, 0.094 and 0.137 eV) in their laser induced

fluorescence/stimulated emission pumping study of NCS.  Although these
discrepancies are small relative to our resolution, a simulation using Northrup’s
observed 001 term values cannot fit the observed photoelectron band.

The apparent shift in our peak spacings is probably from Fermi resonances in
NCS; Northrup showed these are responsible for extensive mixing of the 020 and 01
states with I1 vibronic symmetry. The separation between the ("'HM(OOI) and
n°I1,,(020) levels is less than 10 meV (80cm™) - the 1,,(001) is higher - as is the
separation between the I1,,(001) and «*[1,,(020) levels.?® (The subscript here refers
to P, the projection of the electronic, vibrational, and spin angular momentum along
the internuclear axis.’®) Close-lying levels with the same value of P can interact via
Fermi resonance. In the absence of this .'effect, the unperturbed 020 levels are
expected to have poor Franck-Condon overlap with the NCO~ground vibrational level.
However, because of the Fermi resonance, transitions to the 020 levels can occur with
appreciable intensity in the photoelectron spectrum via intensity borrowing from the
nearby 001 levels. Thus, we would expect to observe two unresolved doublets in the
photoelectron spectrum for the "3;" peaks. The spacing from the origin of the center
of each unresolved doublet would be expected to be the weighted average of the two
mixed states making up the doublet. While our resolution is insufficient to resolve
these doublets, each "3," peak in the photoelectron spectrum does lie approximately
at the average of Northrup’s term values for the strongly interacting n?1,,(020) and
’T1,,(001) levels, for the P=3/2 component and at the average of x*I1,,(020) and
’[1,,(001) levels for the P=1/2 component. Additional evidence for the hypothesis that

the "3;" peaks are unresolved doublets is provided by the observation that these peaks
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around 1.0 eV are broader (25-28 meV) than their respective origin peaks (21 meV)

at around 1.11 eV. The contribution to the peak width from instrumental resolution,
in contrast, is smaller for peaks at lower electron kinetic energy.

An analogous Franck-Condon simulation can still be performed for the NCS—
spectrum as for NCO~. However, because of the complications due to the Fermi
resonance, which we ignore, and because the observed vibrational progression is very
short, we use a simpler, purely harmonic model in this simulation. Because the
bending mode is included only for simulation of sequence bands, the v, mode is treated
as a degenerate harmonic oscillator for the neutral as well as the ion, without account
for the Renner-Teller effect. Northrup and Sears’ vibronically deperturbed harmonic
frequencies are used for the v, and v; modes (Table 3-II). The deperturbed @,
frequency actually matches the observed "v," peak spacing in the photoelectron
spectrum. The calculated intensities, however, average the complicated state mixing
taking place in the "3)" peaks. For the anion, we also use an entirely harmonic
treatment despite the existence of a thorough anharmonic force field derived from
alkali halide matrix spectroscopy of NCS~.!® This is reasonable because the anion
vibrational temperature turns out to be far lower than in NCO™, so that anion states
higher than v=1 are not significantly populated. Further, a more complicated
treatment does not seem warranted given the simple treatment of the neutral
vibrations. The anion v, (C-N stretch) frequency is fixed at the gas phase
fundamental observed by Polak et. al.,*® whereas the v, and v, frequencies are taken
from CsI matrix work.”® Of all the alkali halide matrices, Csl is expected to have the
least perturbation on the NCS~ vibrational frequencies, as compared to the gas phase,

because it has the largest vacancy sites. Even so, the free ion value for the C-S
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stretching frequency (v,) has been the subject of considerable discussion; it has been
suggested that there is still some perturbation caused by the CsI matrix on this ’soft’
vibration.’®*? The position of the 37 hot band in our photoelectron spectra, particularly
where this feature is enhanced in spectra recorded from ions which are formed in a
hotter pure helium expansion, is consistent with the v, fundamental observed in
cesium iodide. Our resolution precludes determining the free-ion value with any
greater precision.

The variable parameters in the simulation are 1AQ, 1, the position of the origin,
and the vibrational temperature T,,. Here, we can adequately fit the spectrum
assuming the same temperature for each vibrational degree of freedom. 1AQ,! is
constrained to be less than 0.03 amu*-A, because little signal is observed at 0.24 eV
to lower kinetic energy of the origin, where the 1} transition is expected, and 1AQ,!
must be zero by symmetry. The best fit is shown in Figure 3-6, where T,;, = 350 K
and 1AQ,;! = 0.13 amu*-A. Unlike the NCO radical, only the overall rotational
constant for the neutral is known,* and thus the two individual bond lengths are
unknown. While there is no force constant matrix available for the radical, one has
been constructed for the ion from the alkali halide matrix work.”® Calculating the
normal coordinates for the stretching modes from this force constant matrix, we may
again translate our observed AQ, value into equilibrium bond length changes. In
using the anion normal coordinates for this purpose we are once again invoking the
parallel mode approximation. By noting that Q; corresponds to almost purely C-S
shortening/lengthening, that there is no change in Q,, and that the rotational constant
increases (therefore the overall molecule contracts) from anion to neutral, we can

determine that the change in equilibrium bond length between anion and neutral is
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AR(C-N) = 0.00 = 0.01 A and AR(C-S) = -0.03 = 0.01 A, Comparing these geometry

changes with the ab initio data in Table 3-IV,*% the HF/6-31+G* and HF/6-31G*
results are consistent with the changes derived from the Franck Condon analysis.
However the MP2 results are surprisingly poor; they predict the opposite result, AR(C-
S) > 0 and a substantial shortening in the C-N bond, which is clearly not consistent

with the absence of the 1] peak in the photoelectron spectrum.

5. Conclusions

We have presented the photoelectron spectra of three pseudohalogen anions.
The relatively simple spectra hav;a yielded the electron affinity of CN, NCO, and NCS
to a precision of about 5 meV. The electron affinities for all three radicals are now
clearly established. Various related thermochemical quantities, including the bond
dissociation enthalpy of HNCS, have been derived. The first gas phase determinations
of the equilibrium bond length and vibrational frequency for the cyanide ion have also
been reported. These data compare very well with high level ab initio theory. The
results for the 213 nm photoelectron spectrum of CN~ provide some usefu! calibrant
lines for negative ion photoelectron spectroscopy at this and shorter laser way-i=ngths
where there have been none hitherto available. A Franck-Condon analysis has yielded
the bond lengths in NCO~ and the change in geometry for NCS~to NCS. These have

been compared to ab initio results.
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Figure Captions for Chapter 3.

Figure 3-1.

Figure 3-2.

Figure 3-3.

Photoelectron spectra of (top) CN~, (middle) NCO™, and (bottom) NCS~
with 266 nm (4.657 eV) laser radiation. The polarization of laser with
respect to the electron collection direction is parallel (6=0°) for CN-,
‘magic angle’ (6=55°) for NCO™, and perpendicular (6=90°) for NCS~,
The experimental spectra have been smoothed by convolution with a
5 meV full-width at half-maximum Gaussian. The inset of the CN~
photoelectron spectrum shows a rotational contour simulation of the CN
X(*z*) « CN~X('T*) transition assuming an ion rotational temperature
of 200K (solid line); the experimental data points are indicated by
circles. Rotational constants used in the simulation : B",= 1.875 cm™,
B’,=1.891 cm”, D" = -6.202x 10® cm™, D’,= -6.. 723 x 10® cm™’. Refs. 1, 7
Photoelectron spectrum of CN~ with 213 nm (5.822 eV) laser radiation.
The polarization of the laser is perpendicular (8 = 90°) to electron
detection direction.

The highest 6 and n molecular orbitals for CN-, and the highest
occupied molecular orbital (HOMO) for each of the NCO~ and NCS—
anions. These are the SCF molecular orbitals computed at the
MP2/6-31+G* optimized geometry for each ion. Photodetachment
(removal) of an electron from each of these orbitals yields the ground
electronic state of the respective neutral radical, except
photodetachment from the CN~ n orbital which yields the CN(A?I)

excited state.



Figure 3-4.

Figure 3-5.

Figure 3-6.

85
Franck-Condon simulation for the CN ACIT) « CN- X('z*) band.

Experimental 213 nm data plotted as points. R = 1.1765 A,
T,.= 1400 K.

Simulated photoelectron band for NCO~ photodetachment assuming
spectroscopic parameters in Table 3-II. Simulation has anion
vibrational temperature set at T = 775 K for the two stretching modes
and T = 600 K for the bend mode. Experimental data plotted in points.
Simulated photoelectron band for NCS— photodetachment with anion
vibrational temperature set at 350K, assuming spectroscopic

parameters in Table 3-II. Experimental data plotted in points.
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Chapter 4. Theoretical: Time-dependent framework for analyzing

dissociative photoelectron spectra.

1. Introduction

In the interpretation of our transition state photoelectron spectra we have to
relate the observed structure to the neutral reaction potential energy surface(s). This
will mean simulating each photoelectron band with a fairly rigorous quantum
mechanical procedure. However, we should choose a model that is not overly
complicated, as we would like to be able to vary the neutral potential energy surface
several times to try to improve the fit with the observed spectrum. This chapter
describes the methods we have chosen to perform this operation, and some of the
underlying theory and the philosophy behind the model.

The photoelectron spectrum of a cold negative ion involves transitions from the
ground vibrational state of the ion to many possible states supported by the upper
neutral surface. If there is more than one neutral electronic state accessible from the
ion with the photon energy used, and transitions to that surface are allowed,' then
bands due to each surface will be cbserved. Let us assume for the moment that there
is only one neutral surface contributing to the photoelectron spectrum. The structure
in the spectrum, i.e. the peak positions, widths and spacings, is due to the neutral
states, and the peak intensities are due to the overlap of each neutral state with the
anion ground state wave function. The problem then typically breaks into two parts,
characterizing the upper neutral states, and calculating the overlap of these neutral

state wave functions with the simple anion wave function.
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Expressing the above mathematically, the photoelectron spectrum as a function

of energy is, within the Franck-Condon approximation,

o(E) = |{¥o | ¥/ (B))]? 1))

where y,” is the anion v = 0 wave function and y’(E) is the wave function on the
neutral potential energy surface with energy E. If the neutral is bound, i.e. is not
unstable with respect to dissociation, then y’ is a discrete function of energy. vy’ is
non-zero only at eigenvalues of the neutral potential surface. If the neutral is
unbound, then y’ is a continuous function of energy. E is defined with respect to
some (arbitrary) zero of energy :::ualiy the bottom of the lowest well on the neutral
surface. The relationship between the electron kinetic energy, E,, of the photoelectron

spectrum and E, often described as the neutral or scattering energy, is

E, =hv - A, - E (2)
where hv is the photon energy and A, is a constant energy relating the ground state
level of the anion to the neutral’s zero of energy. For example in a simple M~ - M
photoelectron process where both anion M~ and neutral M are bound molecules, A,
would be the adiabatic electron affinity less the zero point energy of the M neutral.

For the less interesting case when the neutral potential surface is bound,
equation (1) is routinely solved by invoking the normal mode approximation, and
separating out all the nuclear degrees of freedom.? Usually the parallel mode
approximation is also assumed, i.e. the normal coordinate decomposition of nuclear
motion is identical for both the anion and neutral. The eigenvalues and

eigenfunctions for motion in each separable mode are found, or are known analytically
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in the case of a Morse or harmonic oscillator, and the spectrum is calculated by

performing the one dimensiong verlaps of each eigenfunction with y,”.*> This was
the method used in Chapter 3 to simulate the photoelectron spectra of CN—, NCO~
and NCS—.

In cases where a mode is not modeled by a harmonic or Morse potential
function, numerical solution of the Schridinger equation is required, and this is can
be accomplished by a variety of numerical algorithms. One of the most efficient
algorithms is the DVR method of Light and coworkers,! which has been described by
Metz.? I note here that it is also possible, and simple, to use time-dependent methods
to solve for bound levels, and although not as efficient as DVR for this problem, a
time-dependent solution has been used to find the eigenstates of the "one-dimensional
cut" in Chapter 5.

The nature of our transition state experiments, where the species formed by
photodetachment lives only on a femtosecond time scale, dictates that the neutral
state wave functions are not bound. The potential energy surface is repulsive and the
y’ are scattering states. In general the full Schrédinger equation must be solved
numerically, and separation of nuclear degrees of freedom along the lines of the
normal mode approximation has only limited success. An alternative formulation to
the problem, and along with it an alternative langu:.ge from that of scattering states,
is given by Heller.® This is set up in time-dependent quantum mechanics, and
involves motion of wave packets to describe molecular spectra. Although this
formulation is mathematically equivalent to the above time-independent method, and
the solutions via the two approaches are therefore identical, the time-dependent

formalism gives rise to an entirely different conceptual framework to extract the
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dynamics from the photoelectron spectrum. In fact that framework is in many senses
more appealing, as it carries with it a classical feel, but does not suffer from the
inadequacies ot classical mechanics in describing light particle motion. The inherent
principle of dynamical processes occurring along a time axis is restored. This
framework has become increasingly popular over the last few years, and the language
of scattering and photodissociation is now decidedly mixed between time-independent
and time-dependent. These developments have been spurred, in part, by the
appearance of experiments that cbserve chemical dynamics explicitly in real time,
such as those of Zewail and coworkers.®

The numerical iinplementation of time-dependent solutions of the Schrodinger
equation has been driven by the work of Kosloff.””® In section 3, we will outline the
Kosloff method for solving the time-dependent Schrodinger equation, and describe the
practical issues involved in a successful wave packet propagation calculation. Several
other groups have used the time-dependent approach to simulate frequency domain
spectra,” ° as well as to interpret Zewail’s time-domain experiments. The
application of a time-deperident analysis to a frequency-domain experiment, such as
photoelectron spectroscopy, is not contradictory. Although a wave packet is not
created in our "long pulse" photodetachment experiment, but rather a well defined
neutral scattering state y’(E) with a transition probability given by Equation (1), the
photoelectron spectrum can nonetheless be interpreted in terms of the dynamics of a

wave packet prepared in a hypothetical "short-pulse” experiment. First let us

n Our experiments employ a nanosecond laser. Thus the pulse length is

infinitely long compared to the molecular dynamics.



96
establish the relationship between the time-dependent wave packet and the energy

spectrum.

2. The photoelectron spectrum from the wave packet time dynamics
The ground state wave function of the lower (anion) surface, y,"(x), is

transferred "up” to the neutral surface by the laser: an electronic transition dipole

moment links the two surfaces. The vertical transition gives birth to a wave packet

¢(x, 0) on the upper surface given by

¢(x,0) = p@ Yo (x) . 3

u(x), the electronic transition moment, is usually taken to be a constant over the range
of coordinates where y,"(x) has any amplitude, as in the Franck Condon formula (1).
¢(x, 0) is not an eigenfunction, or stationary state, of the neutral surface but evolves
' in time. ¢(x, 0) of Equation (3) is then the wave packet at the "zero" of time. From
now on we do not refer to the explicit coordinate dependence of the wavepacket: the
initial wavepacket is thus denoted ¢(0). The wave packet motion is governed by the

ti.ne-dependent Schriodinger Equation

i a_q;g = Ho®) 4

where H is the Hamiltonian for the neutral surface. The solution of (4) is formally

expressed as
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() = e $(0) ®)
where e“#/* is the time evolution operator. This gives the dynamics of the wave

packet for all times ¢. The autocorrelation function, C(2), is defined by

C) = ($(0) |d(®) 6
and monitors the time development of the overlap of the moving wave packet with the
initial wave packet at ¢ = 0. In other words, the behavior of the wave packet with
respect to the Franck-Condon region is mapped by C(¢). Once the wave packet has
completely disappeared from the Franck-Condon region, C(t) — 0.

The photoelectron spectrum is related to the autocorrelation function by the

Fourier transformation®

o(E) = f e C(Hdt . Y]

This can readily be shown to be rigorously equivalent to Equation (1) by the following

steps. Substituting (5) and (6) into (7) yields

o(E) = [ = ($(0) |e"F ™ |d(0)) dt . C)

Inserting the completeness relationship for the set of wave functions, y’, of the

neutral Hamiltonian H,

[dE" [W(ENYW'ED| =1 (8)



98
into (8) gives

oB) = [ €™ (6(0) |eH > [dE! |W(E") W(E) [6©O)dr .  (10)

As y’(E’) are eigenfunctions of H, then

U(E) oc ff elEtl'h (¢(0) le-ﬂ:’t!h IIIJ,(E’)) (IIJI(EI) |¢(0)) dE/ dt (11)

= o(B) = [dE' [dr 5> |(9(0) | WEN) P (12)
- o(B) = [dE' 2x1n B(E-E') |($(0) | ¥'(E)? 13)
= o(E) = |(60) | W(EN] (14

As we have assumed ... :% ::r%) is a constant over x in Equation (3) then expression (14)
is equivalent to the Franck-Condon relationship (1).

The major approximation in both expressions (1) and (7) is that the
photodetachment electronic transition moment is taken to be a constant, and is an
average over not only the nuclear coordinates but also over all final electron kinetic
energies. Reutt has considered these approximations and given a similar, but more
rigorous, derivation of (7) to that appearing here.!!

We have established through (7) that the photoelectron spectrum is simply
related to the autocorrelation function by a Fourier transform. This is a powerful
result. If we calculate C(t) from a theoretical wave packet propagation, we can

immediately simulate the photoelectron spectrum. Let us first make a few
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observations concerning the autocorrelation function. The wave packet is a complex
function of the nuclear coordinates, i.e. it has real and imaginary parts. Even if ¢(x;t)
is a stationery state, the wave function has a time evolution that involves a constantly
changing phase. We usually define the phase to be zero at ¢ = 0. It follows that C(?)
is also complex, and even for a stationery state, where | C(t)| = 1 for all ¢, the real and
imaginary parts of C(¢) vary sinusoidally in t.ime. Usually when the autocorrelation
function is plotted to gain insight into the wave packet dynamics, only the absolute
value, |C(t) |, is shown. However, numerically, the phase time dependence cannot be
ignored.

The Fourier integral limits in Equation (7) indicate evaluation over the time
interval [-oo, o]. Two points concern us with the physical implementation of this
Fourier transform (FT). Firstly, time reversal symmetry dictates that C() is a
Hermitian function, i.e. C(-¢) = C*(¢). Thus we need only run the dynamics from ¢ =
0 onwards! Secondly, how long in time must C(¢) be computed so that the
photoelectron spectrum may be evaluated? Clearly only a finite time of dynamics is
required to yield the spectrum to a resolution equivalent to the experiment. We will
return to this point later.

Some examples of the dynamical signatures one may expect in the auto-
correlation are given in the papers of Heller,” Imre,” Reutt,"* and Lorquet'? as well
as in chapters 5 and 6 of this thesis. | Heller discusses some of the general
relationships between peak spacings, homogeneous peak widths, as well as the overall
Franck Condon envelope width in the energy spectrum and their characteristic time
periods in IC(t)l. Some simple examples are illustrated in Figure 4-1. The re-

appearance of the wave packet in the Franck Condon region, signalled by a peak in
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the autocorrelation subsequent to ¢ = 0, is termed a recurrence. Recurrence features,
are shown in Fig. 4-1(ij, iii). These are significant as they yield vibrational structure
in the energy spectrum. In fact one single recurrence in C(t) is necessary, but
sufficient, to see undulations, or diffuse structure, in the energy spectrum (see Fig.
4-1(iii)).° Correlation loss over several vibrational periods is possible from a number
of processes other than direct dissociation. Anharmonicity in a bound vibrational

mode or non-adiabatic effects are possible mechanisms for losses at each recurrence

in IC®)!.

2.1 The Autocorrelation function from the photoelectron spectrum
Equation (7) may be inverted

+

CO = [o@e ™ dE 15)

yielding the autocorrelation from the (experimental) spectrum. This has been the
approach adopted by other groups in all prior photoelectron studies where the
spectrum was interpreted, via C(t), in terms of the short time molecular dynamics.'*
1213 Torquet has demonstrated how the reverse Fourier transform procedure may
also be used for deconvolution purposes. The instrumental response function, any
spin orbit splitting and rotational peak broadening can be removed to uncover the
bare vibrational dynamics.*®

We make a much stronger connection to the dynamics by simulating the wave

packet dynamics that determine C(t). From this simulation we may then compare

either the theoretical | C(#)| with the Fourier transformed experimental data or the
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simulated photoelectron spectrum, from Equation (7), with the raw experimental

photoelectron spectrum.

3. Wave packet propagation
3.1 Method

To compute the motion of a wave packet on a model potential energy surface
we must find a numerical solution to Equation (4). H is the Hamiltonian for the

neutral state and is given by

2
H=T+V=-"v2.vy (16)

where V and V are the N-dimensional Laplacian and potential respectively.
Throughout we shall use atomic units (i.e. # = m, = I). Note that the potential
energy, and therefore the Hamiltonian, is time independent. The actual physical
problems we will address in this work involve one or two dimensions, although the
approach is completely general. For sake of illustration, we will consider the two-
dimensional case where the Cartesian coordinates, x and y, are the mass-scaled Jacobi
coordinates for A + BC collinear reactive scattering. The coordinates are defined by
x=(Ucap / Ma)'® Re spandy=R,p. lcapis the reduced mass of the system C and
AB, likewise u,; is the reduced mass of A-B. The kinetic energy operator for this case

1s separable
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a2 +Ei] , amn

The numerical solution of (4) thus involves both spatial and temporal
derivatives. Following Kosloff's formulation,”® this differential equation is solved by
discretizing both time and space on a uniform grid. Accordingly, let ¢"(i,, i,)
represent the wave packet at time ¢ = (n-1) A¢ at the location x = (i,-1) Ax, y =
(i,-1) Ay. At, Ax and Ay are the time step and the spacings of the Cartesian grid
points respectively. Rewriting (4) in this discrete representation gives

; 3 Goiy)

= = HY"G,.i) . (18)

This expression suggests an iterative (marching) scheme in time where the next wave
packet is calculated from the previous packet(s) by evaluating the right hand side of

Equation (18). Approximating the time derivative with a second order differencing

formula
W"Gni,) "Gy -7 o) (19)
ar 241
then
é"! = o™ - 2iAt HY" (20)

Thus the (n+1)-th wave packet at ¢ = nAt may be calculated from the two
preceding packets once we have established how to compute the H operator. This
second order differencing propagation scheme is a stable iterative solution of the time-

dependent Schrédinger equation, whereas the slightly simpler first order analog is
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not.” This is, therefore, the simplest finite difference scheme for solution of (18).
Several more sophisticated propagators have been proposed that may be more
efficient.

Equation (20) gives an iterative scheme that allows us, in principle, to
propagate the wave packet for any desired time length. To initialize the solution,
however, we require both ¢’, the initial wave packet (which we are setting equal to
the anion ground state wave function), and ¢2. To find ¢* we use second order Runge-

Kutta®®:

»* = o' - iAt HY 21

where the intermediate packet ¢’ is given by

¢I = ¢1 - ___ Hd’l (22)

To compute the spatial derivatives involved in the operation of the Hamiltonian
a pseudo-spectral (or Fourier) method is adopted, in contrast to the standard finite
difference approach employed for the time derivative. The advantage of using a
Fourier method is that it is extremely efficient and it requires substantially fewer grid
points than finite difference schemes of similar accuracy.’® The conceptual appeal
of the method is that it allows calculation of both the kinetic and potential operators
locally. The operation of V on the wave packet ¢" is simply to multiply together the
value of the potential and the wave packet at each grid point - thus V is local in the
position (Cartesian) representation. The Laplacian, however, is not local in the
position representation - it involves spatial derivatives of the wave packet. The

Fourier method uses the property of a Fourier transform that a derivative in the
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spatial domain becomes a multiplication in the Fourier (momentum) domain. Thus
the Laplacian operator is local in the momentum representation.®

If the spatial grid is set up in a rectangular set of coordinates, i.e. the kinetic
energy can be written in the form of Equation (17), then the kinetic energy operator

in momentum space is also Separable:
_ 1 42 42
nkx’ky) = E:(kx +k),) (23)

where &, and &, are the wavenumbers along the x and y spatial directions. Operating
with T on ®"(%_, k), the Fourier transformed wave packet, is as simple as multiplying

@"(k,, k,) by (k* + k?)/2u. In the discretized form
T®'G, i) = L1(G,-DAKY + (G, -DAKY] @Gy ,0)  (24)

From the properties of the discrete Fourier transform, Ak, is given by Ak, = 2n/(x,,,. -
X,..» ) Wwith a similar expression for Aky.15 The resulting T' ®*( i,,*, i,,y) is reverse Fourier
transformed back to the spatial domain and added to V¢"(i,, i,) to form H¢". Because
the grid points are equally spaced, an two-dimensional fast Fourier transform (FFT)
algorithm may be used to compute both Fourier transforms. Library routines for the
extremely efficient evaluation of 1 and 2 dimensional FFTs are available.!’
Numerical solution of the problem then boils down to the following recipe.” '
(a) Specify the initial wave packet on a chosen grid: ¢’ = y,”, the anion ground
state wave function.
(b) Calculate the time evolution of ¢(¢) by obtaining ¢ " for successively higher n

by relation (20); each time step involves:
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@{) compute T¢" by an N-dimensional FFT on ¢" followed by a

multiplication by (k,? + £,2/2u and a reverse FFT.

(i)  calculate V" by multiplication of the potential function evaluated at
each grid point by the wave packet at the same grid point.

(iii)  after summing (i) and (ii) to give H¢", form ¢"*’ from ¢’ and H¢".

(c) At intervals of At,,;,, compute the self-overlap of the wave packet <¢’1¢"> by
integration on the spatial grid and store.

(d) At the end of the time propagation, Fourier transform the stored
autocorrelation function C(t} according to (7) to yield the photoelectron
spectrum.

The method is relatively easy to implement as most of the numerical work is done in

the library FFT routine. Appendix C describes the wave packet propagation codes

developed for use in this work.

3.2  Stability criteria and propagation errors.

Kosloff and Kosloff show that there is a numerical dispersion in the Fourier
method, which must be considered when choosing the time step for a propagation.’
For time steps larger than a certain value, known as At,,, the propagation will
become unstable and exponentially increasing solutions will take over from the

desired wave-like solutions. At is given by the following relationship
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At = 1 (25)

crlt

_ni(_!_ . _1_)]
2plAx? Ay?
for a two dimensional spatial grid and zero potential. The term inside square brackets
represents the maximum kinetic energy (in atomic units) for the wave packet allowed
by the grid. This is derived from the range of momenta supported by the choice of
grid; in the x direction, for example, this is -2,™* to k,"* where k™ = n/Ax. Relation
(25) is merely a statement of the energy-time uncertainty principle: the time step
cannot be larger than 1/AE , where AE represents the total range of eigenvalues
possible in the Hamiltonian.® For a real system where the potential is non-zero, AE
is the sum of the complete range of kinetic and potential energies. Therefore,
Equation (25) is an overestimate for A¢,,, and the range of potential energies expressed
on the grid should be monitored carefully (see below). In order to achieve a converged
solution of the time-dependent Schriodinger equation, values of the time step should
be chosen such that At ~ 0.2 At,,, . Kosloff and Kosloff show the numerical dispersion
in this regime is almost identical to the intrinsic dispersion in the time-dependent
Schrédinger equation.’

Kosloff has also shown that the Fourier/ second order differencing method
necessarily preserves the norm and the energy of the wave packet.” The error in a
propagation thus accumulates ir ‘he phase; this limitation essentially determines the
maximum propagation times possible with this discrete propagator approximation.®
Convergence of a propagation solution is checked for by reducing the time step and/or

decreasing the spatial grid spacings.
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3.3 Implementation of wave packet propagation to simulation of
photoelectron spectra.

In later chapters, we apply the wave packet propagation method to simulate
the photoelectron spectra for several transition state systems. The ions AHB™ are in
general linear, so photodetachment will access a linear configuration of the atoms in
the transition state region of the neutral reaction surface. If the saddle point for the
A + HB reactions is collinear,”” a simulation that computes only the motion of the
atoms on a collinear potential surface should yield a reasonable approximation to the
true photoelectron spectrum. To construct the initial wave packet, i.e. the anion
ground state wave function, we require information concerning the equilibrium bond
lengths and fundamental frequencies of AHB~. If appropriate, the form of the two
stretching normal modes and anharmonicity data should be included. At best, some
vibrational frequencies may be available from matrix isolation work. In most cases
the remaining information has to come from ab initio calculations, or even empirical
guesses in the worst case scenario.

Next, a trial potential function for the neutral reaction is chosen; this should
be an analytic function of the nuclear coordinates. A grid is set up in mass scaled
coordinates subject to some of the criteria outlined below. The grid covers the reaction
interaction region and the entrance and exit valleys. The number of grid points in
each dimension should be a power of two for compatibility with the FF'T algorithm.

The grid may be fairly sparse: often a grid as small as 64 x 32 points is sufficient for

2 Most potential surfaces for the systems we are studying indeed have collinear

saddle geometries. However, recent ab initio calculations for both the O + HF

and F + H, reaction suggest non-linear saddle point geometries.



108
a converged propagation. Rarely is it necessary to exceed a grid size of 128 x 64

points. Finally a time step and total propagation time is chosen. The time step is
chosen to meet the stability and convergence criteria outlined in section 3.2; the total
propagation time is chosen to reflect the resolution required in the simulated energy
spectrum. Propagation for 1 psec is sufficient to yield features in the simulated
photoelectron spectrum as narrow as 4 meV. Usually 300 - 400 fs of dynamics is
adequate to produce a simulation of resolution comparable to the experimental spectra
(ca. 12 meV).

33.1 Grid sizes, time steps and potential shelves.

These three aspects of the numerical wave packet propagation are linked
together. The denser the grid, i.e. the larger the number of spatial grid points used,
the smaller the spatial grid intervals, Ax and Ay, become. As the range of momenta
that can be described in the related discrete 2 space representation is inversely
proportional to the spatial grid intervals, the smaller the gird spacings becomes the
larger the range of kinetic energies that can be represented in the propagation. This
may be physically necessary in some cases. However in cases where it is unnecessary,
it leads to dramatically increased computation time for two reasons: (a) the more grid
points used the slower the spatial fast Fourier transforms and (b) the larger the
possible range of kinetic energies, according to relation (25) the smaller the time step
becomes for a stable propagation. Thus, as a preliminary to a production run
propagation it is useful to establish the range of kinetic energies that are physically
reasonable for wave packet motion in each spatial dimension and plan the grid

spacings accordingly.” Then the overall range in coordinate space (i.e. x,;,, X, etc.)
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should be decided such that the number of grid points in each direction is a power of

two and that the grid includes the Franck Condon region and enough of the entrance/
exit valleys to accommodate an absorbing boundary (see 3.3.2 below). Finally, as
mentioned earlier, for a converged propagation the time step must be around 5 times
smaller than the time step that satisfies the stability criterion (25).

If the grid contains points where the potential becomes very high, as is usually
the case for small interatomic separations (the potential "walls"), the range of
potential energy may become very large and force a restrictively small time step for
stable propagation.’® The fact that the potential is huge in those regions of
configuration space is actually irrelevant to the propagation; as long as the potential
at these "no go" regions is much higher than the energy available in the wave packet
then the propagation will not "know" the difference. Thus an arbitrary shelf is
routinely established for the potential energy: for any grid points where the potential
energy would be higher than that value, the potential is set equal to the shelf value.'®
The truncated range of potential energy is now contained at some reascnable value,
and the time step necessary to converge tie propagation becomes manageable again.
A typical time step for a two dimensional propagation (involving hydrogen motion) is

1 atomic time unit (1 a.t.u. = 0.024 fs).
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3.3.2 Absorbing boundaries

For the dissociative systems we are interested in studying, the wave packet
will finally leave the grid, via either the entrance or exit valleys, or both. (It is not
unusual for the wave packet to split up into fragments - this is a reflection of its
quantum nature!) At the grid boundaries what happens to the wave packet? Discrete
Fourier transforms, which are used in the numerical method to evaluate the motion
of the packet, assume periodic boundary conditions. In other words, without a
potential, the wave packet would leave one side of the grid and appear again at the
far side. This is not acceptable behavior és far as the physics of our problem is
concerned. As we are only interested in any parts of the wave packet that end up
returning into the Franck Condon region, and parts of the wave packet that are
leaving the grid are not expected physically to return (if the grid has been chosen
sensibly), we may damp out all flux that approaches the edge of the grid, so that we
do not encounter the "wrap around"” effect described above.

We follow the simple scheme of Bisseling et al.’® The wave packet is multiplied
by a one-sided gaussian absorbing function £,,, at each propagation step. For a two

dimensional grid £,,, is given by

Jass®:Y) = Sap(%) S0 ®) (26)

where

Jor x<x,,

) 27)
exp(—Cg, (x-X4,)7) for x2x,,

fab(x) = {

and likewise for f,;(y). The situation is illustrated pictorially in Figure 4-2; the

shaded regions of the grid are used for the absorbing boundary and the effect of the
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damping function can be seen on a wave packet leaving along the valley parallel to
the x axis. x,,, and y,,, are usually chosen so that a region 10 grid points wide is used
for the absorbing boundary; c,,,, and c,,,, are empirically chosen to minimize both
reflection and transmission of the wave packet through the boundary. This can
require careful attention to plots of the wave packet evolution at the boundary and
artifacts in the autocorrelation. If the wave packet is reflected from the boundary and
makes it back to the Franck Condon region before the end of the propagation, false
resonances will appear in the simulated photoelectron spectrum. A more detailed

discussion of the absorbing boundary problem has been given by Kosloff.!®

33.3 Windowing and convolution of the autocorrelation.

Once the propagation has been carried out to ¢ = ¢, , and the autocorrelation
has been stored at (¢, / At,,,) +1 values, the photoelectron spectrum o(E) is obtained
by a one-dimensional fast Fourier transform of the discrete C(t). The finite
propagation of the wavepacket leads to a finite resolution in the simulated energy
spectrum. In principle this is given, in atomic units, by AE = = / ¢,. .}* However, in
practice, if C(t) has not decayed to zero by ¢, then its Fourier transform will show
artificial high frequency oscillations; this "leakage” problem is rectified by applying
a windowing function before the Fourier transform.!®

Choice of a Gaussian window function is equivalent to convoluting the

theoretical spectrum with a Gaussian energy resolution function.”® Specifically, C(2)

#3

We are making use of the Convolution theorem (Ref. 15, p. 383) and the fact

that the Fourier transform of a Gaussian is another Gaussian.
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is multiplied by a time window function, I'(¢) = exp(-y*) , where yis chosen so that the

product T(t) C(t) has fallen to zero by t,,,. The transform, I(E) given by

KE) = [ > T Cydt (28)

is the photoelectron spectrum convoluted with the energy resolution function. The

energy resolution AE , in atomic units, in the simulation is related to y by
AE =4/log,2 v . (29)

Finally, a change of variable from E, the scattering energy, to E,, the electron kinetic
energy, using relation (2) allows us to compare the simulation with the spectrum

measured in the laboratory.

4. Conclusions

The theoretical framework behind the numerical simulations and the
qualitative time-dependent picture have been described. The mathematical approach
is completely equivalent to a Franck-Condon time-independent approach. We apply
the wave packet method in two dimensions which allows us to solve for the collinear
dissociation dynamics of a transition state species. The wave packet methodology is
suitable for spectra that manifest both long-lived resonance states and fast
dissociating direct scattering states. The calculation is an exact quantum solution of
the collinear dynamics. This can provide a useful test of more approximate adiabatic
methods.? In the next chapters we use wave packet propagation to simulate

photoelectron bands for BrHI-, OHF~ and FH,".
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The most significant computational advance to be made in terms of simulating
transition state spectra would be to extend the above technique to three dimensions
so that a triatomic dissociation could be treated in full. This would allow routine
simulations of the quality of the time-independent methods of Schatz,?’° Zhang and
Miller,*! and Manolopoulos,?* and would once again provide a useful comparison to
Metz’ approximate three-dimensional adiabatic simulations.? Importantly, however,
the results would retain the useful time-dependent perspective that allows insight into
the mechanism behind features in the transition state spectrum. In the last few years
several groups have achieved 3D wave packet codes; the methods used by each varies
somewhat but most are a synthesis of basis set and FFT based solutions to the time-

dependent Schrédinger equation. 2 24 252627
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Figure Captions for Chapter 4.

Figure 4-1.

Figure 4-2.

Example wave packet evolutions on upper state surfaces. In each case,
the schematic potentials involved in the transition, the autocorrelation
function and photoelectron spectrum obtained by Fourier
transformation are shown. (i) bound — bound, no Franck-Condon
excitation; (ii) bound — bound, large Franck Condon excitation; (ii1)
bound — (bound + continuum) and (iv) bound — free.

Schematic showing the region of the grid used for absorbing wave
packet as it leaves grid. The shaded area indicates the absorbing
boundary region. Contours of the wave packet as it hits this boundary
are superimposed on contours of the potential energy. Parameters for
this propagation are given in the caption of Figure 6-9. Absorbing
parameters are [refer to Equation (27)}, x,,, = 14.17, y,, = 2.625,

Cavsx = 0.001/ Ax, ¢, , = 0.001/ Ay.
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Chapter 5. Examination of the Br + HI, Cl + HI, and F + HI Hydrogen

Abstraction Reactions by Photoelectron Spectroscopy of BrHI -,
CIHI- and FHI-'

Abstract

The photoelectron spectra of the ions BrHI~, CIHI~and FHI ", along with their
deuterated counterparts, are presented. These spectra provide information on the
transition state region of the potential energy surfaces describing the exothermic
neutral reactions X + HI - HX + I (X = Br, Cl, F). Vibrational structure is observed
in the BrHI~ and CIHI™ spectra that corresponds to hydrogen atom motion in the
dissociating neutral complex. Transitions to electronically excited potential energy
surfaces, that correlate to HX + I(*P,,,°P,,) products, are also observed. A one-
dimensional analysis is used to understand the appearance of each spectrum and the
BrHI™ spectrum is compared to a two-dimensional simulation performed using time-

dependent wave packet propagation on a model Br + HI potential energy surface.

1. Introduction

We have recently shown that negative ion photodetachment can be used to
investigate the transition state region of a neutral bimolecular reaction. ' In our
experiments, the spectroscopy and dissociation dynamics of the short-lived [AHB]
complex formed during the hydrogen transfer reaction A + HB — HA + B are studied
via photoelectron spectroscopy of the stable, hydrogen-bonded anion AHB~. Thus far,

results have been reported for the symmetric hydrogen transfer reactions Cl + HCl,!

* Published in J. Chem. Phys. 92, 7205 (1990)
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I+ HI? and Br + HBr® which were investigated by photodetaching the negative

ions CIHCI1, IHI-, and BrHBr~, respectively. The photoelectron spectra of these
ions show resolved vibrational progressions assigned to the unstable neutral complex
associated with the corresponding bimolecular reaction. Our analysis as well as
simulations of these spectra by other investigators*>® have shown that this
vibrational structure provides a sensitive probe of the neutral potential energy surface
near the transition state.

This paper describes the application of our method to asymmetric hydrogen
transfer reactions. We have studied the entire series of reactions X + HY - HX + Y,
where X and Y are unlike halogen atoms, via photoelectron spectroscopy of the
asymmetric bihalide ions XHY~. In the same fashion, we have also conducted
experiments on the polyatomic reactions F + CH,OH — HF + CH,0 and F + C,H,OH
— HF + C,H;0.” Results are presented here for the triatomic reactions Br + HI —
HBr + I,Cl + HI- HCl + I, and F + HI - HF + 1. The remaining XHY™ spectra and
the ROHF~ results will be discussed in a future article. In each case, the
photoelectron spectrum of the precursor negative ion yields resolved vibrational and/or
electronic structure associated with the unstable neutral complex formed by
photodetachment.

In contrast to the symmetric hydrogen transfer reactions, a vast body of
experimental results exists concerning the kinetics and product state distributions for
the asymmetric reactions.® Experimental studies of the triatomic X + HY reactions
date back to the dawn of chemical reaction dynamics. This work has inspired the
construction of model potential energy surfaces for these reactions which attempt to

reproduce and explain the experimental results, using either classical trajectory * °

\
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or quantum scattering calculations. These model surfaces have provided the
foundation of many fundamental ideas in our understanding of the relatiouship
between the features of a potential energy surface and the experimentally measurable
asymptotic properties of a chemical reaction. Our experiment provides a direct test
of the validity of these proposed model X + HY surfaces. Using such a surface, one
can, in principle, simulate the XHY™ photoelectron spectrum and compare the
simulation to our experimental result.

The methods of analysis which have been developed to simulate the vibrational
structure seen in the XHX ™ photozlectron spectra *® can also be applied to the XHY~
photoelectron spectra. These methods all involve calculating the Franck-Condon
overlap between the initial vibrational level of the ion and the set of scattering wave
functions supported by the neutral potential energy surface. A one-dimensional
analysis, in which the scattering coordinate is ignored, can approximately predict the
spacing and integrated intensities of the peaks in each vibrational progression. This
type of analysis is applied to the spectra presented in this paper as a first step in
understanding our results.

In addition to probing the ground electronic potential energy surfaces of the
X + HY reactions, photodetachment of XHY ™ anions can access electronically excited
reactive surfaces. These excited states of the neutral complex are in most cases quite
distinct in the spectra presented here and provide information on an aspect of these
reactions iargely inaccessible to scattering-based experiments. The electronic features
in our spectra provide a more quantitative foundation for the electronic correlation

diagrams proposed for these reactions '* ** and are discussed at length.
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Final'y, the BrHI~ photoelectron spectrum is simulated using time-dependent

wave packet propagation in two dimensions. This approach simulates peak profiles
and widths as well as peak separations, thus testing more stringently the accuracy of
the potential surface used in this simulation, but differs from the time-independent
treatments mentioned above in that the scattering wave functions are never
calculated. The use and implementation of a time dependent formalism to describe
spectral profiles due to a repulsive state draws on the ideas of Heller* and
Kosloff . The time-dependent approach provides considerable insight into the
experimental results and makes more concrete the relaticnship between oux
experimental spectra and the short time dynamics initiated on the nzuiral reaction
surface.

The systems chosen here illustrate bofh the promise and limitations of negative
ion photodetachment as a probe of the neutral transitior state region. The main
concern is that the ion geometry must be sir-‘lar to that of the neutral transition
state. For symmetric X + HX reactions, the precursor ion XHX ™ is most likely linear
and centrosymmetric; ' the only issue is how close the equilibrium interhalogen
distance in the ion is to the saddle point geometry on the neutral surface. For an
asymmetric X + HY reaction, an additional factor is the location of the hydrogen atom
in XHY™. This is largely determined by the proton affinities of X~ and Y=, In a
related experiment, Brauman and co-workers observed substantial differences in the
total photodetachment cross sections for the series of ions ROHF~ depending on
whether the F~ or RO~ proton affinity is higher.'® If RO~ has the higher proton
affinity, then photodetachment of the ion primarily accesses the F + ROH entrance

valley on the neutral reactive surface, whereas if the proton affinity of F~ is higher,
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the ion is more accurately pictured as (ROHF and photodetachment accesses the

RO + HF valley of the surface. We shall see that these considerations have a

profound effect on our experiment.

2. Experimental

The experiments were performed cn a negative ion time-of-flight photoelectron
spectrometer which has beex; described in detail previously. *!° Briefly, an
internazily cold, mass-selected negative ion beam is photodetached with a pulsed fixed-
frequency laser. A small fraction of the ejected photoelectrons is collected and the
electron kinetic energy distribution is analyzed by time-of-flight. The ion beam, based
on the design of Lineberger and co-workers,? is generated by expanding an
appropriate mixture of neutral gases through a pulsed molecular beam valve and
crossing the molecular beam with a 1 keV electron beam just outside the valve orifice.
Negative ions are formed through a variety of dissociative attachment and clustering
proccsses in the continuum flow region of the free-jet expansion and their internal
degrees of freedom are cooled as the expansion progresses. BrHI™ and CIHI™ were
generated from 5% HBr (HClY 1% HI/Ar mixture and FHI~ was made from a 1% HF/
1% HI/Ar mixture. Similar mixtures were used to make the ions BrDI~, CIDI~ and
FDI~.

Several centimeters downstream from the beam valve, the negative ions in the
molecular beam are extracted at 90° and injected into a time-of-flight mass
spectrometer.” The ions are accelerated to 1 keV and spatially separate into
bunches according to their masses as they pass through the mass spectrometer. The

pulsed photodetachment laser crosses the ion beam at the spatial focus of the mass
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spectrometer, 140 cm downstream from the extraction region. Mass selection of the
ions to be photodetached is achieved by timing the laser pulse to intersect the ion
bunch of the desired mass. In the results presented here, either the fourth (266 nm,
4.66 eV) or fifth harmonic (213 nm, 5.83 eV) of a Nd:YAG laser was used for
photodetachment. A small fraction (0.01 %) of the photoelectrons produced are
detected by a 40 mm diameter dual microchannel plate detector 100 cm from the
laserfion beam interaction region. The electron time-of-flight distribution is recorded
with a 200 MHz transient digitizer. In all experiments reported here, the laser beam
was plane polarized perpendicular to the direction of electron collection. The
resolution of the spectrometer is 8 meV for 0.65 eV electrons and degrades as E*? at

higher electron kinetic energies.

3. Results

The BrHI™ and BrDI~ photoelectron spectra at 213 nm are shown in Figure
5-1. Each spectrum shows two progressions of approximately evenly spaced peaks.
The peak positions are listed in Table 5-1a. The peaks labelled A and A* occur at the
same electron kinetic energy in both spectra and are taken to be band origins of the
progressions. The peak spacing within each progression in Figure 5-1 is noticeably
less in the BrDI~ spectrum than in the BrHI~ spectrum. The direction of this isotope
shift shows we are observing progressions in the neutral [BrHI] complex in a
vibrational mode primarily involving H atom motion. This is assigned to the v,
stretching mode of the [BrHI] complex. The A-A* separation in each spectrum is 0.90
+ 0.02 eV (7300 = 200 em™). This is slightly less than the spin-orbit splitting in

atomic I (7600 cm™) and suggests that the two progressions with band origins A and
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A* correspond to two electronic states of the [BrHI] complex which asymptotically

correlate to HBr + I(*P;,) and HBr + I*(*P,,), respectively.

The peak widths in the progression at higher electron kinetic energy are ~170
meV, somewhat wider than the peaks in the second progression (~140 meV). All the
peaks are substantially broader than our experimental resolution. Figure 5-2, the
photoelectron spectrum of BrHI~at 266 nm, shows only the first two peaks (A and B),
where their electron kinetic energies are 1.165 eV lower than in Figure 5-1. Thus, for
these peaks, the energy resolution of the spectrometer is considerably higher (8 meV
vs. ~37 meV). While the positions of these peak centers can be determined more
precisely from Figure 5-2, the appearance of this region of the spectrum is essentially
unchanged from Figure 5-1; no additional structure is observed at higher resolution.
The 266 nm data are also tabulated in Table 5-1a.

The exothermicity of the Br + HI reaction and relevant energetic quantities for
the BrHI™ anion are tabulated in Table 5-2, as are the same quantities for the other
systems studied here. In Figure 5-1, the arrow at 2.07 eV shows the electron kinetic
energy that would result from forming I + HBr (v = 0), which is the lowest energy
asymptotic decay channel available to the [BrHI] complex. This energy is given by
E = hv - D(BrHI") - EA(I). Here hv is the photon energy, D (BrHI™) = 0.70 = 0.04 eV
is the dissociation energy of BrHI~ to form I~ + HBr (v = 0), # and EA(I) = 3.059 eV
is the electron affinity of 1.2* The electron energy corresponding to the higher
energy Br + HI (v = 0) asymptote is also indicated with the arrow at 1.36 eV. All of
the peaks in Figure 5-1 occur at electron kinetic energies lower than 2.07 eV and

therefore correspond to states of the [BrHI] complex that are unstable with respect to
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dissociation to I + HBr (v = 0). Recall that peaks at lower electron kinetic energy

correspond to higher internal energy levels of the neutral species.

As discussed in previous work,® the v, mode in the complex formed in a
heavy + light-heavy reaction is essentially a bound degree of freedom; it is poorly
coupled to the dissociation coordinate of the complex. This is why a progression in the
v; mode can be observed in the BrHI™ photoelectron spectrum. The v, progressions
and multiple electronic states in the BrHI~ and BrDI™ spectra were also seen in the
symmetric XHX~ photoelectron spectra. An important difference between the
symmetric and asymmetric systems becomes apparent, however, when the peak
separations are compared to the asymptotic HBr and DBr vibrational energy level
spacings (refer to Table 5-1a). In the BrHBr~ spectrum, the peak separation was
nearly 1000 cm™ (0.13 eV) less than the HBr spacings. Much smaller shifts are seen
in the BrHI™ and BrDI~ spectra. Table 5-la shows that for the ground state
progressions of both [BrHI] and [BrDI], the separation between peaks A and B is
essentially equal to the v =0 - v = 1 spacing in HBr and DBr. However, the B-C
separations in both spectra, and the C-D separation for the BrDI~ spectrum, are
smaller than the corresponding 1-2 and 2-3 vibrational spacings in the isolated
diatomic. In the excited state progressions, a somewhat larger shift of the v, level
spacing is observed.

The CIHI~ and CIDI~ spectra at 213 nm are shown in Figure 5-3. A
comparison of the two spectra indicates that each consists of two vibrational
progressions separated by 0.935 = 0.020 eV (7540 = 160 cm™). As in the BrHI/
BrDI~ spectra, the two progressions are attributed to different electronic states of

[CIHI], and once again all peaks correspond to states of the [CIHI] complex that are
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unstable with respect to dissociation into I + HCI (v = 0). %2 The most noticeable
difference between the spectra in Figure 5-1 and Figure 5-3 is that the intensity of
transitions to higher v, levels of the neutral complex fall off more rapidly in the CIHI~
and CIDI™ spectra than in BrHI~/ BrDI~. The peak positions and widths are listed
in Table 5-1b. In comparison to the BrHI~ and BrDI~ spectra the peak separations
in CIHI~ and CIDI~ spectra are somewhat closer to the corresponding HCI and DCI
vibrational spacings. In fact the A-B interval is just slightly larger than the diatomic
0-1 interval in both hydride and deuteride.

The FHI™ and FDI~ spectra at 213 nm are shown in Figure 5-4. The peak
positions are listed in Table 5-1c. The two spectra are essentially identical. Each
spectrum shows three peaks of comparable intensity. The splitting between the two
highest energy peaks (labelled X and Y) is shown to better resolution in Figure 5-5,
the photoelectron spectrum of FDI™ at 266 nm. This splitting is 0.154 = 0.007 eV
(1240 + 60 cm™). The large uncertainty in the dissociation energy* of FHI™ does
not allow us to say whether or not the state that corresponds to peak X is stable with
respect to dissociation into I + HF (v = 0). The separation between peaks X and Z is
1.045 + 0.020 eV (8430 + 160 cm™), which is larger than the separation between the
two progressions in either the BrHI™ or CIHI™ spectrum. In contrast to the
BrHI7/BrDI~ and CIHI/CIDI~ spectra, no isotope shifts are observed. This implies
that the two closely spaced peaks, X and Y, do not represent a vibrational progression
and that all the structure in the spectrum is due different electronic states of the
[FHI] complex. We will show that this can be understood in terms of perturbations

of the I atom electronic states by a neighboring HF molecule.
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4. Analysis and discussion

4.1 Preliminary considerations

As a prelude to understanding the peak positions and intensities in the XHY ™
photoelectron spectra, one must consider what region of the X + HY potential energy
surface is probed when the ion is photodetached. Within the framework of the
Franck-Condon approximation, this depends solely on the geometry of the ion. The
available experimental '® and theoretical } evidence indicates that the bihalide ions
are linear. However, while ab initio calculations on FHCl™ have yielded both
structural information® and vibrational frequencies,* there are no examples for
which the equilibrium interhalogen distance and location of the hydrogen atom in an
asymmetric XHY ~ion have been experimentally determined. One can estimate the
location of the hydrogen atom in XHY™ from the proton affinities of X~ and Y. The
zero-order structure of an asymmetric anion can be written as XH.-Y~ or X~-HY
depending on whether the proton affinity of X~ or Y~ is higher. The proton affinities
of F-, Cl17, and Br— are 2.47 eV, 0.82 eV, and 0.40 eV higher, respectively, than the
proton affinity of I=.# One therefore expects BrHI~ to look like I=-HBr, with the
hydrogen atom considerably closer to the Br than to the I atom. This asymmetry
should become progressively more pronounced in CIHI™ and FHI".

To understand the effects of the interhalogen distance and H atom location in
XHY"™ on the photoelectron spectrum, the potential energy surface for the neutral
reaction must be considered. Figure 5-6 shows?® a collinear section of the London-
Eyring-Polanyi-Sato (LEPS) functional form proposed for the Br + HI reaction by
Broida and Persky (hereafter referred to as the BP surface). '° The three-dimensional

surface has a collinear minimum energy path and a 0.21 kcal/mol barrier in the
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Br + HI entrance valley. The surface is plotted using the mass-weighted coordinates
defined in the figure caption. The acute skew angle and low entrance channel barrier
in Figure 5-6 are characteristic of all X + HY reactions. Note that the product valley
is lower most in the figure.

The region of the surface in Figure 5-6 that has the best Franck-Condon
overlap with BrHI™ is in the neighborhood of the equilibrium geometry of the ion. In
the figure, this geometry is given by the intersection of the dashed vertical line
corresponding to the equilibrium interhalogen distance in the ion (R (IBr)) and the
dashed horizontal line corresponding to the location of the H atom (R, (HBr)). The
values for R(IBr) and R(HBr) used in the figure are obtained from the one
dimensional fit discussed in Section 2, below. For the general X + HY case, if R (XY)
is sufficiently small in XHY ", the correspoﬁding vertical line in Figure 5-6 will pass
through or near the barrier. Our experiment can then probe the transition state
region on the X + HY surface, where the vibrational and/or electronic properties of the
[XHY] complex are distinct from separated reactants or products. On the other hand,
R (HX) in the ion determines if photodetachment primarily accesses the X + HY
reactant valley or the Y + HX product valley.

In the case of BrHI-, since the ion can be pictured as I~-HBr, better overlap
with the I + HBr product valley rather than the reactant valley is expected. The most
intense peaks seen in the experimental spectrum lie well below the asymptote for
Br + HI (v = 0) confirming that the experiment accesses the product I + HBr valley.
However, the observation of a ‘red shift’ in the v, spacings of the [BrHI] and [BrDI]

complexes, compared to the vibrational level spacings in HBr and DBr, suggests that
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R (IBr)in BrHI"is sufficiently small so that the transition state region of the Br + HI

surface is accessed via photodetachment.

Similar considerations apply to the CiHI‘ and FHI™ photoelectron spectra.
The potential energy surfaces for the Cl + HI and F + HI reactions should resemble
the surface in Figure 5-6, although earlier barriers might be expected due to the
higher exothermicity of these reactions. However, the expected location of the H atom
in CIHI™ and FHI™ means that photodetachment should result in progressively
greater overlap with the I + HX product valley. This effect will be discussed in more
detail below.
4.2 One dimensional analysis of XHY~ spectra

In this section, the peak positions and intensities of the ground state
vibrational progressions in the three XHY~ (and XDY™) photoelectron spectra are
analyzed using a one-dimensional model similar to that used in the analysis of the
BrHBr~ spectrum.® The BrHI™ and BrDI~ spectra are simulated using this model,
which then serves as a framework for discussing the CIHI~ and FHI™ spectra. In
addition to explaining the observed spectra, the analysis yields an approximate
equilibrium geometry for BrHI~ which will be used in the time-dependent analysis in

Section 4.

4.2.1 BrHI™ and BrDI-

In order to simulate the peak positions and intensities in the BrHI~and BrDI~
photoelectron spectra, we need to calculate the Franck-Condon overlap between the
vz = 0 level of the ion and the v, levels supported by the neutral potential energy
surface. We assume the ions prepared in our experiment are in their vibrational

ground states. This analysis requires approximate potential energy surfaces for
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BrHI™ and the Br + HI reaction. We will use the BP surface, shown in Figure £-6,

for the Br + HI reaction. The development of a model v, potential for BrHI~ will now
be discussed.

In our earlier analysis of the symmetric XHX ~spectra, we assumed a harmonic
potential for the v, vibration of the ion. This is likely to be a poor approximation for
an asymmetric XHY™ ion. In an ab initio study on FHCl™, Sannigrahi and
Peyerimhoff 2° calculated the potential energy curves governing H atom motion for
several fixed interhalogen distances. At the equilibrium F-Cl distance, they found a
highly asymmetric, single minimum potential. Based on the FHC]™ calculation, the
analogous potential energy curve for BrHI " is expected to look like the solid curve in
Figure 5-7. For the purposes of calculating the v, = 0 wave function which is localized
near the minimum, this curve can be approximated by the Morse potential,

URy.5,) = D, (1 - expl -B (Ry.g, - R(HBI)) 1%, (1)
shown by the dashed curve in Figure 5-7. We use Eq. (1) as the v, stretching potential
for BrHI™. The v, coordinate is Ryy,, and pyg, is the appropriate reduced mass for
determining the vibrational energy levels and wave functions. Here R,(HBr) is the
H-Br separation at the minimum of the potential; its determination is described
below.

The parameters D, and B in Eq. 1 are fixed using the matrix isolation values
for the v, fundamental in BrHI~ and BrDI~.?* The choice of these values merits
some discussion. Matrix studies by Ault and co-workers yielded two frequencies
assignable to the v, mode for each asymmetric XHY " ion. ** This was attributed
to the existence of two forms of the ion in a matrix: a highly ‘asymmetric’ structure

(type I) with a relatively high v, frequency, and a more ‘symmetric’ structure (type II)
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with a considerably lower frequency. For FHCI™, the v, fundamental is 2491 ¢cm™ for

the type I structure and 933 cm™ for the type II structure.* The high degree of
asymmetry in Peyerimhoff's potential ® and a recently calculated value by Botschwina
26 of 2814 cn.’' for the v, fundamental in FHCI™ suggest that the more asymmetric
type I structure is closer to the gas phase structure. We have therefore used the type
I frequencies, * 920 cm™ and 728 cm™, for the v, fundamental in BrHI~ and BrDI-,
respectively. D, and B are then obtained analytically.

The BP potential energy surface in Figure 5-6 will be assumed for the Br + HI
reaction. This surface was devised on the ‘basis of quasi-classical trajectory
calculations which produce reasonable agreement with the experimental rate
constants at several temperatures and the product HBr v = 2/ v = 1 ratio at 300 K.
1% The v, coordinate is taken to be the same as in the ion, namely y = Ry .. Thus, the
effective potential for the hydrogen stretch in the neutral [BrHI] complex is found by
taking a vertical cut through the surface at x = x,, the value of x at the equilibrium
structure of the ion given by

X, = (W g, / Ppp)™® (R(IBr) - (my/myg,) R(HBr) ) (2)
Note that my/myg, = 1/80, so to a good approximation x, = 7.0 R(IBr). Here, as before,
R (IBr) is the equilibrium interhalogen distance in the ion. The energy levels and
wave functions supported by this potential are then solved for numerically.

The peak spacings and intensities in the BrHI~ photoelectron spectrum can
now be simulated by calculating the Franck-Condon factors between the v, = 0 ion
level supported by the Morse potential in Eq. (1) and the v, levels supported in the
neutral surface cut at x = x,. We assume the BP surface is correct and vary R (IBr)

and R (HBr) in the ion until agreement with experiment is obtained. R (IBr) largely
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determines the location of the cut on the neutral surface which in turn determines the
peak spacings in the photoelectron spectra. The value of R(HBr) determines the
position of the minimum in the Morse potential for the ion along the y axis of Figure
5-6 and therefore determines the intensity distribution of the simulated spectra. The
best fit to both the BrHI~ and BrDI~ spectra is obtained with R (HBr) = 1.55 A and
x, =27.1A4, so R(IBr) = 3.88 A. The hydrogen stretching v, potential for ion and
neutral are shown in Figure 5-8 along with the energies of the ion v, = 0 and 1 levels
and the first few neutral v, levels. The simulated stick spectra are superimposed on
the experimental spectra in Figure 5-9.

This one-dimensional analysis provides a firmer foundation for some of the
qualitative ideas discussed in the previous section. Although the line x = x_ in Figure
5-6 passes very close to the barrier, the v, = 0 level of BrHI™ has the most overlap
with the v; = 0, 1 and 3 levels supported by the neutral potential. The wave functions
for these levels are confined to the I + HBr product valley of .we potential energy
surface and can be thought of as HBr vibrational levels perturbed by a neighboring
I atom. This is why the peaks in the spectrum corresponding to transitions to these
states are spaced by an interval only slightly less than the HBr fundamental. Note
that the v, =2 wavefunction is localized in the Br + HI valley. The anion
wavefunction has very little overlap with this state but it does appear in the
simulation as a small peak to the right of peak 3 in Figure 5-9 (top).

4.2.2 CIHI  and FHI™

The differences between the CIHI~ and BrHI~ photoelectron spectra can be
understood by considering how the potential energy curves in Figure 5-8 should differ

in the case of CIHI™ photodetachment. The product valley well in the neutral v,
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potential should be deeper because the Cl + HI reaction is more exothermic (see Table
5-2). Thus the first few v, levels supported by this potential should look much like
isniated HCI vibrational energy levels. This is confirmed by the peak spacings in
Table 5-1b, which show little or no ‘red shift’ relative to the HC] and DCI vibrational
energy levels. In addition, because of the larger difference in proton affinities between
the halide ions in CIHI™ compared to BrHI~, CIHI~ will look more like I~ clustered
to a nearly unperturbed HCl molecule. We therefore expect the minima in the v;
potentials for the anion and neutral to occur at a value of Ry, quite close to the
equilibrium value for diatomic HCl; the two minima should be much closer than the
minima in the two potentials in Figure 5-8. Hence Av, = 0 transitions to the neutral
are expected to dominate more than in BrHI~ photodetachment, in agreement with
our observations.

The absence of a v, progression in the FHI~ and FDI~ photoelectron spectra
can also be explained by considering the v, potentials for the ion and neutral. The
F + HI reaction is considerably more exothermic than either the Br + HI or the
Cl + HI reactions, and the ion should be even more asymmetric than either BrHI~or
CIHI~. Thus, we expect the v, potentials for the anion and neutral complex to look
very much like the diatomic HF potential, at least near the bottom of the wells. With
reference to Figure 5-8, in the case of FHI~ photodetachment we expect that the wells
in the ion and neutral potentials are very similar in shape and their minima
essentially coincide (at R, for diatomic HF); this results in only Av, = 0 transitions in

the photoelectron spectrum.
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4.3 Electronic structure in the XHY "~ spectra

We now consider the electronic structure revealed in the XHY™ photoelectron
spectra. Photodetachment of XHY ~ provides a direct probe of the multiple electronic
potential erzrgy surfaces in the HX + Y product valley (in the present case where
Y =1I). This is of considerable interest in light of past work on the role of
electronically excited reactant and product states in these reactions. '3 332 33

Let us first consider which neutral electronic states are accessible via
photodetachment of XHY™, a closed shell 'T* species. Based on the simple molecular
orbital picture proposed for FHF~ by Pimentel, * the two highest occupied molecular
orbitals in XHY ™ are expected to be a ¢ orbital which is a linear combination of the
two halogen 2p, and H 1s orbitals, and a doubly degenerate = orbital of the form
2p, ,(X) - A2p, (Y). Removal of an electron from the o orbital by photodetachment
results in a neutral 2T state, whereas removal of an electron from the = orbital yields
a ?I1 state. If spin-orbit interactions are neglected in the collinear X + HY reaction,
then when the ?P X atom begins interacting with the HY molecule, the lowest energy
electronic state should be the  state in which the unfilled p orbital on the X atom lies
along the XHY internuclear axis. On the other hand, the IT state, in which the
unfilled orbital lies perpendicular to this axis, should result in a repulsive interaction.
This is confirmed by DIM (diatomics-in-molecules) calculations by Duggan and Grice
for the related systems F + HF and Cl + HCI. *2

The inclusion of spin-orbit interactions results in a slightly more complicated
picture of the electronic states involved in the reaction. A correlation diagram for the
Br + HI reaction including spin-orbit effects is shown in Figure 5-10.% The Figure

can be generalized to all X + HY reactions * and draws upon the DIM calculations on
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F + H, by Tully. ® Near the interaction region, we see that reaction on the ?Z,, curve
leads from ground state reactants to ground state products with only a small barrier,
whereas reaction along the ?[1,, or 1, curve passes through a much larger barrier
resulting from an avoided crossing. Near either asymptote, the potential energy
curves are similar to the well-studied interaction between a 'S and a °P atom.* In
this region, where the spin-orbit interaction in the P atom is much larger than the
intermolecular potential, it is more appropriate to label the three curves only with Q,
the projection of the total electronic angular momentum on the internuclear axis, since
Q is a good quantum number but A (projection of the orbital angular momentum only)
is not. Thus, in the asymptotic region, Hund’s case (c) applies. The three curves are
typically labelled X(1/2), 1(3/2), and II(1/2), in order of increasing energy. The two
Q = 1/2 states are linear combinations of ’Z,, and *[1,, states, while the *I1,, state is
the only Q = 3/2 state. The same notation is appropriate for the reactant and product
valleys of collinear X + HY reactions. In the HX + Y product valley, the X(1/2) and
1(3/2) curves eventually correlate to Y(*P,,) + HX, whereas the II(1/2) curve correlates
to Y*(P,,) + HX. We therefore expect the photoelectron spectrum of XHY to show
transitions to a maximum of three low-lying electronic potential energy surfaces in the
HX + Y product valley.

This is most likely the origin of the three peaks in the FHI7V/FDI-
photoelectron spectra. The correlation diagram in Figure 5-10 shows that as HF is
brought up to an I atom, the degenerate °P,, state is split and the 2P,, state
experiences a repulsive interaction. In our spectra (Figures 5-4 and 5-5), the two
peaks X and Y separated by 0.154 eV are assigned transitions to the X(1/2) and 1(3/2)

states, respectively, which both asymptotically correlate to I(*P,,) + HF. Peak Z at the
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lowest electron energy lies 1.05 eV from Peak X. This is slightly larger than the I

atom spin-orbit splitting and is assigned to a transition to the II(1/2) state which
asymptotically correlates to I*(*P,,) + HF.

Haberland ¥ has shown that of the three potential energy curves resulting
from the interaction between a 'S and a *P atom, one curve can be determined if the
other two are known provided that the spin-orbit interaction is assumed to be
independent of internuclear distance. In the Hund's case (c) limit, one obtains

Vi(R) = 2(Vi(R) - 4), 3
where A is the spin-orbit splitting in the *P atom, R is the internuclear distance, and
V, and V;; are the potential energies of the upper two curves relative to the X(1/2)
curve. We can apply this formula to the three peaks in the FHI~ photoelectron
spectrum. In this case, A = 0.943 eV (the Iodine spin-orbit splitting) and the splitting
between peaks X and Z is V; = 1.045 eV. Equation (3) yields V, = 0.205 eV, which
should be compared to the experimental spacing of 0.154 eV between peaks X and Y.
Somewhat better agreement with experiment is obtained using the more accurate
equations from which (3) is derived * that are appropriate for the intermediate region
between the Hund’s case (¢) and (a) limits. In either case, the reasonable agreement
with experiment supports our assignment of the three peaks to three electronic states
in the I + HF product valley.

In the BrHI~ and CIHI~ photoelectron spectra, vibrational progressions from
only two electronic states are apparent. The interval between the electronic states in
the CIHI™ spectrum is equal to the I atom spin-orbit splitting, whereas the interval
in the BrHI~ spectrum is slightly less. This suggests that in the region of the product

valley probed by our experiment, the interaction between the I and HCl or HBr
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molecule is not strong enough to produce a resolvable splitting of the degenerate
I(°P;,) state. However, in both spectra, the peaks in the progression from transitions
to the lower electronic state are broader than in the excited-state progression. We
suggest that the increased width in the former peak results from the splitting of the
degenerate 1(*P,,) + HX state but the splitting is smaller than the widths of the
individual transitions. This would mean that the peak observed is an envelope of two
broad transitions, whose individual widths are probably comparable to the I1(1/2)
transition. The ground state peaks in the CIHI~ spectrum are noticeably broader
than in the BrHI~ spectrum, indicating either a larger splitting of the I atom
electronic degeneracy in the [CIHI] complex or a more repulsive interaction in the
I + HCI product valley (see next section).

In summary, as far as electronic effects are concerned, the interaction between
I and HF in the region of the neutral surface probed by photodetachment of FHI™ is
stronger than the I + HBr and I + HCI interaction probed in the BrHI~ and CIHI~
spectra. Two effects may contribute to this. The dipole moment of HF is considerably
higher than for HBr or HCI (1.82 D vs. 0.82 D, 1.08 D). ¥ In addition, the bond
length in HF is much less than in HBr or HC] (0.917 A vs. 1.414 A, 1.275 A).*® We
therefore might expect a shorter interhalogen distance in FHI™ than in BrHI~ or
CIHI". This means that subsequent to photodetachment, the spherical symmetry of
the I atom will be most strongly perturbed by the neighboring HX molecule in the case
of FHI™. The larger electronic effects seen in the FHI~ spectrum are reasonable in
light of these considerations.

A final point of interest is that the two vibrational progressions in the BrHI~

(and BrDI") spectrum have similar intensity distributions. The peak spacings in each
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progression are also similar and are slightly less than the vibrational frequency in
isolated HBr (DBr), although this difference is more noticeable in the excited state
progression. This indicates that in the geometry probed by our experiment, the
distortion of the HBr bond in the [BrHI] complex is approximately independent of the
I atom electronic state, and suggests that the ground and excited electronic potential
energy surfaces are not very different in the I + HBr product valley. It would clearly
be of great interest to probe the excited Br + HI potential energy surfaces in the
region of the barrier as this is where the largest differences among the various
surfaces are expected. This possibility is discussed below.
44 Time dependent simulation

The discussion in section 2 presents a qualitative explanation for the
structured spectrum observed in the BrHI~ photodetachment experiment. The simple
one-dimensional calculations provide Franck Condon stick spectra within a familiar
bound - bound eigenstate framework. However, an essential aspect of this experiment

| is that the neutral [BrHI] complex dissociates rapidly. Our spectra offer a good deal

of dynamical information concerning this process, largely through the peak widths.
In order to extract this information we must include at least the dissociative degree
of freedom in our simulations. As in our analysis of the BrHBr~ and IHI~ spectra,
we assume that no bending excitation in the neutral complex results from
photodetachment and we confine ourselves to a two-dimensional treatment in which
only the v, and v, stretching motions are considered.

In our treatment of BrHBr~ and IHI~ photoelectron spectra we used an
adiabatic approximation to separate the bound (v,) and dissociative (v,) degrees of

freedom, justified because of the different time scales for the two motions in a heavy-
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light-heavy system.?® While the BrHI~ and BrDI~ spectra could be simulated in the

same way, this approximation is not so straightforward for asymmetric systems. 4°
Alternatively one can exactly solve the two-dimensional problem with a coupled
channel collinear scattering calculation. '™ 4! However, we choose to use the time-
dependent wave packet propagation method which also yields an exact solution. The
time-dependent picture reveals the relationship between our experimental spectrum
and the short time dynamics of the half reaction initiated on the neutral reaction
surface in a more intuitive manner than the time-independent analyses.

The practical difference between the two approaches is this. In time-
independent treatments, each of the many scattering states over a range of energies
are solved for, and the simulated spectrum is described by the square of the overlap
of the anion wave function with each of these neutral eigenfunctions. The time-
cdependent perspective is based on the fact that the photoelectron spectrum is
equivalently expressed as the Fourier transform of a time autocorrelation function

C(t):

o(E) J exp(iEt /1) C(t) dt 4)

This complex function C(t) monitors the overlap of a moving wave packet with the
initial wave packet as a function of time:

C(t) = (6(0) 1 (1)) (5)
The initial wave packet, ¢(0), in this case is defined as the ground state vibrational
wavefunction of the anion, assuming the electronic dipole moment operator is a
constant over the range of this wave function. The motion of the wave packet

subsequently on the neutral surface is described by



141

lo(t)) = e*7/2 1(0)) (6)
where e’ /! js the time propagation operator and H is the Hamiltonian for the
upper (neutral) surface. In this way the spectrum is simulated by simply performing
the wave packet propagation and transforming the resultant autocorrelation function.
This dynamical approach to molecular spectroscopy has been applied by other workers

42, 43

to the analysis of absorption and emission, fluorescence, *

45, 46

photoelectron ** * and Raman *’ experimental spectra.

The propagation scheme implemented here is due to Kosloff and Kosloff;*®
we use the Fourier method for evaluation of the Hamiltonian and second order
differencing to approximate the propagator. An advantage of the Fourier
representation of the kinetic energy is that a relatively sparse spatial grid can be
used. Convergence has been tested in each case by doubling the density of grid points
along each dimension and halving the propagation time step. The parameters used
for each calculation are shown in respective captions.

The concepts involved in spectral analysis based on the autocorrelation function
have been described admirably elsewhere. *** The application of these concepts to
our results will be undertaken in two steps. We first discuss the features that appear
in the autocorrelation function when considering the bound v, degree of freedom alone.
We then consider the extra features that result from a two dimensional analysis which
includes the second (v,), dissociative degree of freedom.

44.1 One-dimensional time-dependent treatment of the BrHI~ spectrum

The features of the ground state progression in the BrHI~ photoelectron
spectrum have been explained in terms of eigenvalues of a one dimensional double

well potential in Section 2. In a time dependent picture the key to understanding this
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structure lies in the autocorrelation function, (¢(0)1¢(t)), and its relationship to the
motion of the wave packet. Figure 5-11 shows the modulus of the autocorrelation
function calculated for the BrHI system, using the same anion ground state wave
function and the same one dimensional cut of the neutral Br + HI LEPS surface as
was used in the time independent treatment. Figure 5-11 also shows the resulting
photoelectron spectrum obtained by the Fourier transform of the complex C(t)
function. A comparison of this simulation and the time independent one in Figure 5-9
shows that they are identical, as we should expect because the two one-dimensional
treatments are exact and equivalent.

Figure 5-11 (top) shows that the correlation between the initial wave packet,
¢(0) and the wave packet at time t, ¢(t), falls off rapidly after t = 0. This indicates
that the packet moves quickly away from the Franck Condon region, which in turn
indicates that there is considerable excitation in this v, mode. In fact the faster the
fall of 1C(t)| from unity at t = 0, the longer the vibrational progression, or the larger
the bandwidth in the photoelectron spectrum. The next feature is the recurrence, or
oscillatory, structure in the autocorrelation. A recurrence occurs when the wave
packet ¢(t) returns to the Franck Condon region. The recurrence structure in |1C(t)!
corresponds to the observation of discrete structure, rather than an unfeatured
continuum, in the photoelectron spectrum. The IC(t)! in Figure 5-11 has periodic
structure out to infinite time; this serves only to make the peaks in the photoelectron
spectrum infinitely narrow, which is to be expected for a treatment that includes only
a single bound degree of freedom. As pointed out earlier, the peaks in the BrHI~
photoelectron spectrum are not equally spaced because the reaction potential surface

cut does not have a single minimum. The motion of the wave packet in this potential
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cannot then be described as a coherent single frequency osciilation. The complex
structure shown in Figure 5-11 and the fact that the height of the first recurrence is
not unity are due to this effect which is comparable to dephasing of a wave packet
moving in an anharmonic potential well. It is important to emphasize again that this
peculiar double oscillatory feature is a result of the shape of the potential along the
bound v, coordinate, and is not related to the dissociative degree of freedom.

The finite propagation of the wave packet in time, up until t = t_,,, leads to a
finite resolution of the simulated photoelectron spectrum. In principle this is given,
in atomic units, by AE = n/ t_,.*° However, in practice, if the autocorrelation has
not fallen to zero by t_,, then its Fourier transform will show artificial high frequency
oscillations; this problem is rectified by convolution with a window function.®
Choice of a Gaussian window function is equivalent to convoluting the stick spectrum
in energy with a Gaussian energy resolution function. This operation has been
performed to the one dimensional autocorrelation Figure 5-11 (top) to yield the
simulated spectrum (bottom) so that the sticks have FWHM of 10 meV.

442 Two-dimensional analysis of the BrHI™ and BrDI~ photoelectron
spectra

Method

The extension to higher dimensions of the time dependent approach is
conceptually simple. The propagator now allows for motion of the initial wave packet
along two dimensions, namely the two stretching coordinates of the linear triatomic.
The autocorrelation is calculated in the same manner and the transformation to a
photoelectron spectrum simulation is identical to that described above. The two

dimensional treatment allows us to assign physical meaning to the peak widths. In
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the following calculations we aim to simulate the full ground X(1/2) state progression

for the photoelectron spectra of BrHI™ and BrDI-, using the published potential
energy surface. At present we neglect the effects of the nearby 1(3/2) surface,
discussed in section 3, on the X(1/2) progression in the photoelectron spectra. We
shall discuss the agreement with the experimental spectra and comment on the
interpretation of the peak widths.

The propagation is performed on the effective collinear reaction surface derived
from the BP LEPS surface. To extract the effective collinear surface from the supplied
LEPS function of all three internal coordinates, the bending angle is considered fixed
at 180°, and the zero point energy due to bending motion is included at every grid
point.® The zero point bend energy is calculated in an harmonic approximation. This
approach is in the spirit of the reduced dimensionality model of Bowman.®' It is
justified as long as little or no bending excitation is expected in the photoelectron
spectrum. This is a reasonable assumption so long as the ion is linear and the
minimum energy path on the neutral surface is collinear. The Broida and Persky
LEPS parameters are not at any time adjusted to fit the experimental spectrum. The
spatial grid used in the calculation is set up on the mass scaled coordinates, x and y
defined in the caption of Figure 5-6, so that the kinetic energy operator is
diagonalized. g, is the appropriate reduced mass for describing motion on this
surface. The anion potential surface is then the sum of the Morse potential (1) along
y and a harmonic oscillator with frequency v, along x. The equilibrium point of the
anion potential is fixed at the best fit values found from the one dimensional analysis,
namely y, = 1.55 A and x_ = 27.1 A. The initial wave packet is set equal to the ground

state eigenfunction of this anion potential. Unfortunately there is no matrix isolation
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or calculated value for the v, fundamental; this frequency would indicate the extent
of the initial wave packet along the dissociation coordinate x. However combination
bands have been seen in the matrix isolation spectra of BrHBr~ and IHI™ yielding v,
values for these ions of 164 and 121 cm™ respectively. ** The calculated FHCI™ v,
is lower than the observed v, of both FHF~ and CIHCI~. '*** Furthermore the v,
frequency should be approximately unchanged upon isotopic substitution of the
hydrogen. We therefore set v, for BrHI7BrDI~ at 100 cm™; only minor changes in
the resulting simulation occur if we double this frequency.

This initial wave packet is propagated on the upper surface for 320
femtoseconds. The calculation is checked for convergence with respect to grid size and
time step. The potential function has been ‘shelved’ at extremely high values (5 eV
above the I + HBr energy zero), otherwise a prohibitively small time step is required
for a stable propagation.® For the two dimensional simulation shown here utilizing
a 128 x 64 grid, the entire calculation took seven CPU hours on a VAX 8650. As
observed by Kosloff, '* the numerical method is particularly suitable for vectorization
on a supercomputer; the same calculation required only 3.3 CPU minutes on a Cray
X/MP 14. Considerable reduction in run time can be achieved by employing absorbing
grid boundaries which immediately allows use of a less extensive grid.*® By this
device it was possible to perform propagations to a picosecond on a €4 x 32 grid and
examine resonances to higher energy resolution; these computations required 2.5
CPU minutes total on the Cray.

Results and Discussion

The calculated autocorrelation functions for BrHI and BrDI wave packet

dynamics are shown in Figure 5-12. The oscillatory structure out to 60 fs is strongly
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reminiscent of the autocorrelation function calculated in one dimension (see Figure
5-11). However it is quite clear that the inclusion of motion along the dissociation
coordinate leads to damping of the oscillations in the autocorrelation function over this
time range. Each succeeding time that the wave packet bounces back along the HBr
coordinate to the Franck Condon region, it has progressed further along the x
coordinate and as such has diminishing overlap with ¢(0). One single recurrence in
the autocorrelation is necessary, but sufficient, to yield oscillatory structure in the
energy spectrum, as shown by Imre for the photodissociation of H,0.** If all v, states
supported by the one dimensional cut dissociated by the same direct mechanism one
would expect essentially the one dimensional result convoluted with a single Gaussian
envelope damping function to give the two dimensional autocorrelation function. The
calculated function shown in Figure 5-12(a) clearly has a more complicated form;
there is long time structure which has a qualitatively different form from the shorter
time structure. Analysis of the wave packet dynamics and the Fourier transform of
the time autocorrelation function show that the v, states have widely differing
‘lifetimes’.

Figure 5-13 explicitly shows how the initial wave packet ¢(0) evolves as a
function of time on the Br + HI surface. The modulus of ¢(t) is plotted at several
times ranging from t = 0 to t = 966.4 fs. The plots show the regions of the potential
sampled by the wave packet, the mode or mechanism of dissociation, and the
branching ratio between the arrangement and vibrational channels. The time-
dependent function ¢(t) represents the evolution of a coherent superposition of
scattering eigenfunctions y; weighted by <¢(0)| yg>. Although ¢(t) and the

photoelectron spectrum are uniquely related through Equation (4), we point out that,
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in contrast to a ‘short-pulse’ laser absorption experiment, such a superposition is not
created in our photoelectron spectroscopy experiment. Instead, each photodetachment
event results in a well-defined neutral scattering state y; with probability
| <¢(0) | we> |2, However, the plots of ¢(t) show what would occur if the initial wave
packet ¢(0) were created on the neutral potential energy surface and therefore provide
considerable insight into the dissociation dynamics of the [BrHI] complex.

The first picture (t = 0 fs) shows that the bulk of the initial wave packet’s
amplitude is in the I + HBr exit valley, although ¢(0) does have some amplitude at the
saddle point region of the potential surface and therefore will have finite overlap with
states localized in the HI valley. In the first few femtoseconds a small fraction of the
wave packet breaks away upwards into the saddle point region while the rest moves
downwards. The period of oscillation of this major component of the packet along the
y coordinate is essentially that of diatomic HBr (145, = 12.6 fs). This is the dominant
periodicity shown in the autocorrelation. The second frame shows the packet after
~1.5 Ty, where 1C(t)! goes through a minimum. As commented on for the one
dimensional autocorrelation, the anharmonicity of the potential governing this fast
oscillation along the y coordinate leads to a more complicated periodic structure. On
each of the first few occasions that the major component of the packet returus to the
‘soft’ wall, a fraction crosses the ridge between product and reactant valleys (seen in
the pictures at t = 20.1 and 40.3 fs).

Over the first 60 fs the major part of the wave packet moves barely perceptibly
along the dissociation coordinate. However at later times we see this motion becomes
more dominant; the overlap of this component of ¢(t) with ¢(0) becomes much

smaller, and thus its contribution to the shape of the autocorrelation is diminished.
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Therefore the autocorrelation at times later than 60 fs slowly loses resemblance to the
earlier pattern and that seen in the one dimensional simulation. The pictures at
longer times (e.g. at t = 201.3 and 261.7 fs) show the component of the wave packet
that exits through the product valley spreads along x and from the leading edge (at
higher x) to the tail there is an increasing number of nodes along the y direction. This
suggests that states with higher v, excitation proceed more slowly along the
dissociation coordinate. This is in accord with our simulations on BrHBr-,? and is
manifested in the narrower linewidths of the [BrHI] v, = 3 and v; = 5 peaks in the
simulated photoelectron spectrum (Figure 5-14(a), Table 5-3). Moreover notice the
series of later time pictures show some components of the wave packet that remain
localized in coordinate space for extended periods of time (e.g. at t = 201.3, 261.7 and
966.4 fs). These correspond to a weighted superposition of quasi-stationary states or
resonance states; the dominant resonance states seen have v, =4. These are
manifested in the autocorrelation at long time as oscillations modulated by a second
frequency. In the simulated photoelectron spectrum the resonances appear as a series
of closely spaced (~18 meV or ~150 cm™) peaks at 1.21 eV electron energy. However
they are not resolved individually when the simulation is convoluted with the
experimental resolution function (Figure 5-14(a)). The positions of these resonances,
which have not decayed by the end of a picosecond in this two dimensional simulation,
are listed in Table 5-3. These states can be projected out and their individual mode
of decay can be studied by time-dependent propagation as shown by Bisseling et al.**

The differing ‘lifetimes’ of each wvibrational state, and the resonance
phenomenon supported by the potential energy surface used in this simulation,

explain the complex decay of the autocorrelation function. The simulated
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photoelectron spectra for BrHI~™ and BrDI~ have been convoluted with the true

instrument resolution function (given in Ref. 3) and are shown in Figure 5-14 where
they are superimposed on the experimental spectra. It is quite clear that the
experimental spectra do not show many of the features discussed above, and the
autocorrelation functions leading to these spectra should be much simpler than that
shown in Figure 5-12. The spacing of the peaks and the qualitative trends in peak
width, namely decreasing width with greater vibrational excitation, are in good
agreement with the experimental spectra. However the discrepancy in the
magnitudes of the widths is striking, and the variation of width is much less
noticeable in the experimental spectrum as opposed to the halving of linewidth seen
between the simulated v, = 0 and v, = 3 peaks. Moreover we have shown that in a
two dimensional simulation the BP LEPS surface supports resonance states which
should give rise to sharp peaks in the spectrum, although the intensity of these peaks
is expected to be small. These are not evident in the experimental profiles. Thus, in
time-independent language, the experimental peaks all appear to be from direct
scattering states on the Br + HI surface. Lastly the origins of the simulated
photoelectron bands must be shifted to higher electron kinetic energy by
approximately 60 meV to match with the experimental ones. This shift is just larger
than the cumulative error in the reported thermochemical and spectroscopic data used
to link the energy zeros of ion and neutral.

We would like to be able to use the discrepancies between the simulated and
experimental spectra, in particular the differences in the peak widths, to learn about
the Br + HI potential energy surface. One might argue that the broad experimental

peaks result from the multiple electronic states of the neutral complex accessible via
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photodetachment. In section 3, we have argued that each peak in the progression at

higher electron kinetic energy could be split due to an electronic interaction between
the dipole of the HBr and the open shell iodine atom. In the [FHI] system where the
electronic interaction is largest and the components are resolved, some differences in
peak width are seen for the three states (see Table 5-1c). In the case of [BrHI] less
of a difference is expected in the peak shape and width among the three states and
it is probable that the splitting is in fact a fairly small part of the width, the major
part of the width being intrinsic to the transition to a dissociative state.

A similar discrepancy between the simulated and experimental peak widths
was also seen in our analysis of the BrHBr~ photoelectron spectrum when we
assumed a LEPS potential energy surface for the Br + HBr reaction.® We therefore
developed a more flexible functional form for an effective collinear Br + HBr surface
which allowed the construction of a surface with a steeper minimum energy path in
the Franck-Condon region. Simulations on this surface did reproduce the broad peak
widths observed in the BrHBr~ spectrum. A similar modification may be required for
the BP Br + HI surface; that is, the surface may not be steep enough in the I + HBr
exit valley. Another possibility is that the minimum energy path on the correct
Br + HI surface is not collinear, in which case the effective collinear approach is not
appropriate and full three-dimensional simulations are required to accurately simulate
the photoelectron spectrum. In any case, while it is somewhat risky to draw
conclusions on the possible defects of a reactive potential energy surface based on an
effective collinear analysis, this type of unalysis provides an important first step in
relating the features of the BrHI~ photoelectron spectrum to the Br + HI potential

energy surface.
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Two variations on this experiment should provide considerably more
information on the Br + HI reaction. BrHI™in its ground vibrational state has good
Franck-Condon overlap with the I + HBr product valley. This is certainly an
important region of the potential energy surface as it plays a major role in
determining how the energy released in the reaction is partitioned among product
degrees of freedom. However, we would also like to probe the reactant side of the
potential energy surface, particularly the barrier. In Figure 5-8, note that the neutral
levels with v, = 4 span both valleys of the potential energy surface. While transitions
to these levels from the v, = 0 level of BrHI™ are very weak, transitions originating
from the v, = 1 level of the ion are considerably stronger. A simulated photoelectron
spectrum assuming BrHI~ with v, = 1 is shown at the top of Figure 5-15. The
appearance of this spectrum is quite different from the simulation in Figure 5-14 and
shows intense peaks due to transitions to these higher neutral v, levels. Hence,
vibrational excitation of the ion provides an elegant means of probing the reactant
side of the Br + HI surface. In general, vibrational excitation of various modes of the
ion is akin to varying the distribution of reactant energy in a state-to-state
experiment.

The simulated spectrum at the top of Figure 5-15 is convoluted with the
experimental resolution of our photoelectron spectrometer. The spectrum at the
bottom of Figure 5-15 assumes an constant experimental resolution of 4 neV (35 cm™)
and shows correspondingly more structure. For example, the v, = 4 peak splits into
4 closely spaced peaks which are actually resonance states quasi-bound along the v,
coordinate. The appearance of these was discussed in the time dependent section

above. Thus, a spectrometer with somewhat higher resolution has the capability to
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reveal considerably more detail concerning the Br + HI potential energy surface. We

currently have such an instrument:* a threshold photodetachment spectrometer
with a resolution of 3 cm™. Recent results on IHI~ have already shown vibrational
features of the [IHI] complex that were obscured at lower resolution.** % Studies

of asymmetric systems with this instrument will be undertaken in the near future.

5. Summary

Photoelectron spectra for the asymmetric bihalide anions XHI~ and XDI~ (X
= Br, C], F) have been obtained in order to learn about the transition state region on
the neutral X + HI potential energy surfaces. In the case of BrHI~ and CIHI", the
spectra show resolved vibrational progressions assigned to the v, hydrogen stretching
mode of the neutral [XHI] complex. In all the spectra, transitions are observed not
only to the ground state reactive potential energy surface, but also to electronically
excited surfaces which correlate asymptotically to HX + I(*P,,,?P,,). The BrHI" and
BrDI~ spectra are analyzed in detail using an approximate geometry for the ion and
a model potential energy surface for the Br + HI reaction. A one-dimensional analysis
is used both to simulate the peak positions and intensities of the BrHI~ and BrDI“
spectra and to understand the appearance of the other XHI~ spectra. We have also
performed a two-dimensional quantum collinear simulation of the spectra of BrHI~
and BrDI~ via the wave packet propagation technique. The results of this time
dependent simulation provide further insight into the origin of the structure seen in
our spectra. The simulated peaks are narrower than the experimental peaks; this is
discussed in terms of properties of the model Br + HI surface and approximations in

the analysis.
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Table 5-1a: Experimental Results for Photoelectron Spectra of BrHI™ and BrDI™.
(All energies in eV)

eKE® FWHM® eKE* FWHM®  Spacing Spacing in
213 nm 213 nm 266 nm 266 nm HBr/ DBr*

BrHI~
A 1.970 (17) .175 0.783 (4) .170

0.313 (5  0.317 (0-1)
B 1.658 (13) .170 0.470 (3) .165

0.268 (18) 0.306 (1-2)
C 1.390 (10) .160 - -
A* 1.071 (7) .155 - -

0.292 (9) 0.317 (0-1)
B* 0.779 (5) .140 -

0.234 (10) 0.306 (1-2)
C* 0.545 (8) ~.120 -
BrDI-
A 1.980 (17) .185

0.240 (22) 0.228 (0-1)
B 1.740 (14) .170

0.203 (18) 0.222 (1-2)
C 1.537 (11) .160

0.193 (19) 0.216 (2-3)
D 1.344 (15) ~.160
A* 1.068 (9) .180

0.226 (15) 0.228 (0-1)
B* 0.842 (11) .170

0.192 (17) 0.22 (1-2)
C* 0.650 (13) ~.150

0.170 (20) 0.216 (2-3)
D* 0.480 (15) ~-.170
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Table 5-1a continued.

a) Electron kinetic Energies (eKE) at each peak center found by fitting peaks to
a set of Gaussians. Uncertainties, in parentheses, are approximate.

b) Uncertainties in widths are approximately 0.005 eV, except where
indicated.
c) Spacings between vibrational levels indicated in parentheses; source Ref. 39.

d) A-B spacing from 266 nm data

A - A* spacing in the BrHI™ and BrDI~ photoelectron spectra are 0.899 + 0.019 eV
and 0.912 =+ 0.020 eV respectively. The free iodine atom spin-orbit splitting is 0.943
eV.
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Table 5-1b: Experimental results for Photoelectron spectra of CIHI™ and CIDI~.
(All energies in eV)

eKE® FWHM® eKE** FWHM** Spacing Spacing in
213 nm 213nm 266 nm 266 nm HCV DCI®

CHI-
A 2.070 (17) .230 0.900 (5) 220

0.380 (6)° 0.358 (0-1)
B 1.678 (13) 220 0.520 (3) 220

0.323 (18) 0.345 (1-2)
C 1.355 (13) ~.210 - -
A¥* 1.133 (10) .185 - -

0.358 (17) 0.358 (0-1)
B* 0.775 (5) ~.180 - -
CIDI-
A 2.079 (17) .205 0.900 (5) .190

0.279 (7> 0.259 (0-1)
B 1.797 (14) .190 0.621 (4) 175

0.258 (19) 0.252 (1-2)
C 1.539 (13) ~.175
A¥* 1.148 (8) .175

0.278 (14) 0.259 (0-1)
B* 0.870 (11) 175

0.235 17) 0.252 (1-2)
C* 0.635 (13) ~.170
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Table 5-1b continued

a) Electron kinetic Energies (eKE) at each peak center found by fitting peaks to
a set of Gaussians. Uncertainties, in parentheses, are approximate.

b) Uncertainties in widths are approx. 0.005 eV, except where indicated.

c) 266 nm spectra not shown

d) Spacings between vibrational levels indicated in parentheses; source Ref. 39.
e) A-B spacing from 266 nm data

A — A* spacing in the CIHI- and CIDI~ photoelectron spectra are 0.937 = 0.020 eV
and 0.931 = 0.019 eV respectively.

Table 5-1c: Experimental Results for Photoelectron Spectra of FHI™ and FDI".

(All energies in eV)
eKE* FWHM" eKE* FWHM®  Spacing
213 nm 213 nm 266 nm 266 nm
— -
X 2.143 (19) .100
0.151 (25)
Y 1.992 (17) .130
0.894 (19)
Z 1.098 (7) 115
FDI-
X 2.143 (19) .100 0.966 (5) 070
0.154 (7¥
Y 1.992 (17) .130 0.812 (4) 110
0.894 (19)
Z 1.098 (7) .115

a) Electron kinetic Energies (eKE) at each peak center found by fitting peaks to
a set of Gaussians. Uncertainties, in parentheses, are approximate.

b) Uncertainties in widths are approximately 0.005 eV.

c) X-Y spacing from 266 nm data.
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Table 5-2: Available data for the anions and neutral reactions described in this

work.
Anion BrHI- BrDI- CIHI- CIDI- FHI- FDI-
seV)®  0.70 0.62 0.65°
vy(em™)¢ 9201 7284 1560° 1219¢ 2955¢ 2225¢
E.B.E.(eV)' 3.88 3.85 3.76 3.76 3.68 3.70

Neutral Br+HI Br+DI Cl + HI Cl + DI F + HI F + DI
Reaction

AHZ(eV)®  0.704 0.710 1.379 1.390 2.815 2.843

a) Hydrogen Bond Cleavage Enthalpy, i.e. the enthalpy change for the reaction
XH..I™ - HX + I~ at 300K, from Ref. 22. This value is used, in the absence
of any other data, for D(XH..I7) in the text.

b) Estimated. See Ref. 24 for details.

c) Fundamental frequency for the Type I hydrogen stretching vibration, measured
for ion prepared in an argon matrix. See text for discussion of choice of

frequencies.
d) Ref. 29
e) Ref. 30

) Approximate electron binding energy. This is estimated from center of 0-0
peak in photoelectron spectrum (this work)

g) Reaction exothermicity: AHj = Di(HX) - Dy(HI). Data from Ref. 36
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Table 5-3: Results of an exact quantum collinear simulation of the photoelectron
spectra of BrHI~ and BrDI~ using the BP LEPS surface with zero point

bend included.
Electron Kinetic v, assignment Width (meV)
Energy (eV)*
BrHI- 1.970 0 43
1.662 1 36
1.447 2 <4
1.429 2 <4
1.416 2 <4
1.408 2 <4
1.388 3 15
1.230 4 <4
1.211 4 <4
1.192 4 <4
1.176 4 <4
1.143 5 8
0.998 6 <4
BrDI- 1.975 0 41
1.751 1 38
1.539 2 30
1.346 4 10
1.262 5 <4
1.242 5 <4
1.227 5 <4
1.184 6 <4
1.171 6 <4
1.017 8 <4

a) Entire simulation has been shifted to higher electron energy by 0.062 (0.058)
eV for BrHI~ (BrDI") to line up with experimental bands.
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Figure Captions for Chapter 5

Figure 5-1.

Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.

The photoelectron spectra of BrHI~ and BrDI~ recorded at 213 nm.
Arrows at 2.07, 1.36 and 1.12 eV represent asymptotes for dissociation
into I (*°P,,) + HBr (v = 0), Br (*Py,) + HI (v = 0) and I (*P,,) + HBr
(v = 0) respectively.
The photoelectron spectrum of BrHI™ recorded at 266 nm.
The photoelectron spectra of CIHI™ and CIDI™ recorded at 213 nm.
The photoelectron spectra of FHI~ and FDI™ recorded at 213 nm.
The photoelectron spectrum of FDI~ recorded at 266 nm.
The effective collinear LEPS surface for the Br + HI reaction, derived
from that of Broida and Persky, plotted in mass-weighted coordinates
defined by:
X = (Mg g / )" (R; - Ren(HBI) = (PI,HB/PHBr)m Ris ~ 7.0 Ryp,
Y = Ry,

Here R, and R_,(HBr) are the position of the I atom and the HBr
center-of-mass respectively, and p,; signifies the reduced mass of
system A-B. The skew angle 0 is given by

tan 6 = (myM / mym))"?
which for this system is 8.2°, noting that M = m; + m,; + mg, . Contours
are plotted at 0.161, 0.461, 0.761, 1.061, 1.361, 1.661 and 1.961 eV with
respect to the I + HBr asymptote. The assumed anion equilibrium

geometry is marked by the intersection of the dashed vertical and



Figure 5-7.

Figure 5-8.

Figure 5-9.

Figure 5-10.

Figure 5-11.
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horizontal lines, at x, = 27.11 and y, = 1.55 A, and the saddle point is

marked with §.

Potential along hydrogen stretching coordinate (v;) in BrHI™ anion:
expected form (solid) based on ab initio potential for FHCI~ (ref. 25)
and the Morse potential (dashed) used to model this. The lowest
vibrational eigenstate of the model potential is also shown. Morse
parameters are D, = 0.283 eV and P = 3.243 A?

Anion and neutral v; potentials used in the one-dimensional analysis of
BrHI™ spectrum. Calculated eigenstates are labelled by their v,
quantum number. Each tick mark on vertical axis represents 0.2 eV.
Franck-Condon stick spectra for (top) BrHI- and (bottom) BrDI-,
simulated in one-dimensional time-independent analysis. Simulations
superimposed on the respective experimental spectra (dashed).
Simulated sticks are labelled by v; quantum numbers and for the
BrHI~ spectrum correspond to those snown on Figure 5-8.

Correlation diagram for the reaction Br + HI, assuming C_, symmetry.
The relative spacing of asymptotic levels are approximately to scale.
The region between the dotted lines is where Hund’s case (a) is
appropriate. Adapted from the correlation diagram in Ref. 12.
Absolute value of autocorrelation function, from one-dimensional
propagation, for BrHI~(top) and the simulated photoelectron spectrum
whichi results from the Fourier transform of this autocorrelation

function (bottom). Propagation carried out for 16384 time steps, with



Figure 5-12.

Figure 5-13.

Figure 5-14.

Figure 5-15.
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At = 1.0 a.u., and a 64 point spatial grid along y (=Ry.5,) between 0.79

and 3.4 A.
Absolute value of autocorrelation function, from two-dimensional
propagation, for (a) BrHI™ and (b) BrDI-. Calculation parameters

given with Figure 5-13.

Wave packet dynamics for the [BrHI] system. Equally spaced contours
of 1¢(t)| are shown at times indicated on each frame; the highest value
contours are omitted for clarity. Also shown are contours of the effective
collinear potential energy surface, shown in Figure 5-6. Figure plotted
in mass scaled coordinates (see text and Figure 5-6); the y axis has
been expanded here. Propagation performed over 10240 time steps,
with At = 1.3 a.u., and a spatial grid with 128 x 64 points along x and
y respectively. The final wave packet shown (966.4 fs) was calculated
in a separate propagation, using same grid and At, but with an
absorbing function applied at grid boundaries (see text and Ref. 53). In
this plot the contouring resolution has been increased.

Simulated photoelectron spectrum (solid) for (a) BrHI~ and (b) BrDI~
resulting from two-dimensional calculation. The simulations have been
shifted so 0-0 bands line up (see text) and convoluted with the
experimental resolution function. The experimental spectra are also
shown (dashed).

Simulated photoelectron spectrum for BrHI~ prepared in the (0,0,1)
state. Simulation has been convoluted with (top) our spectrometer’s

experimental resolution function and (bottom) with a constant energy
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resolution of 4.3 meV. Bands are labelled by their effective v; quantum
numoers. Numerical parameters for the simulation are At = 1.3 a.u,,
tnax = 960 fs, spatial grid 64 x 32 points over range x = 22 - 35 A and

y =095 -3.1A
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7. Postscript: new experimental results on BrHI™.

Since publication of this work, we have recorded new spectra of BrHI™ in our
laboratory. Our signal-to-noise has been much improved (see Chapter 2) and the
background due to stray electrons has been significantly reduced in the meantime.
Polarization studies have also been undertaken. Figure 5-16 shows our improved
spectrum for BrHI™ photodetachment at 213 nm; the 6 = 90° spectrum should be
compared with Figure 5-1. Also shown is the BrHI~ spectrum recorded with the laser
polarization parallel to the electron collection direction, ® = 0°. The peaks A*-C*, due
to the excited *I1,, state, have reduced relative intensity in the 8 = 0° spectrum. This
behavior confirms that transitions are occurring from the anion to different electronic
states in the two observed progressions. In addition the new spectra indicate we have
achieved more vibrational cooling in the free jet expansion; the tail to high electron
kinetic energy (above eKE = 2.1 eV) is less pronounced than in the earlier data

(Figure 5-1).

Figure Caption for 5.7
Figure 5-16. BrHI™ photoelectron spectrum recorded at 213 nm. (top) 6 = 0°, and

(bottom) 6 = 90°.
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Chapter 6. Spectroscopy of the Transition State: Hydrogen Abstraction

Reactions of Fluorine’

Abstract

The reactions F + CH;OH — HF + CH,0, F + C,H,OH — HF + C,H,O, and F
+ OH - HF + OCP, 'D) are studied by photoelectron spectroscopy of the negative ions
CH,OHF-, C,H;OHF~, and OHF~. In each case, photodetachment accesses the
transition state region for direct hydrogen abstraction. The photoelectron spectra
exhibit resolved vibrational structure which is sensitive to details of the potential
surface in the transition state region. To aid in the interpretation of the spectra, ab
initio equilibrium structures, harmonic frequencies, and hydrogen bond dissociation
energies are calculated for the ions CH,OHF~ and OHF~. The anharmonic hydroxyl
hydrogen stretching potential is also calculated for the twoions. Using the calculated
ion properties and the fitted ab initio reaction surfaces of Sloan et al. (J. Chem. Phys.
1981, 75, 1190), a two-dimensional dynamical simulation of the photoelectron
spectrum of OHF~ is presented and modifications to the reaction surfaces are
discussed. The spectra of the alcohol complexes are discussed in light of this
simulation, and the role of the "bath" degrees of freedom in these spectra is

considered.

Published in J. Phys. Chem. 95, 8066 (1991)
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1. Introduction

During the last several years, considerable progress has been made towards the
spectroscopic characterization of the transition state in simple chemical reactions. An
array of frequency' and time-resolved? techniques has been developed which allow
one to directly probe the transition state region of the potential energy surfaces
describing these reactions. These experiments are aimed at achieving a better
understanding of the microscopic forces which govern the dynamics of bimolecular and
unimolecular reactions.

One of the more promising approaches to this problem has been to photodetach
a stable negative ion in order to form an unstable neutral complex in the vicinity of
tke transition state for a chemical reaction. For example, in a study of a unimolecular
transition state, Lineberger and co-workers® used photoelectron spectroscopy of C,H,~
to investigate the unstable vinylidene radical, which rapidly isomerizes to acetylene.
In an experiment which serves as a precursor to the work described here, Brauman
and co-workers* examined total photodetachment cross sections in the visible and
near ultraviolet (A > 370 nm) for several ions of the form ROHF ™, thereby learning
about the relationship of the ion geometry to the potential energy surface for the
F + ROH - HF +.RO reaction.

In our laboratory, negative ion photoelectron spectroscopy®®’ and threshold
photodetachment® are used to study the transition state region of bimolecular
hydrogen exchange reactions A + HB — HA + B. By photodetaching the stable,
hydrogen-bonded AHB ™ anion, one can form an unstable [AHB] complex located near
the transition state for the bimolecular reaction. Most of our work to date has been

on triatomic systems where A and B are like®®® or unlike’ halogen atoms. The
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photoelectron spectra of the AHB~bihalide anions yield resolved vibrational structure

characteristic of the unstable [AHB] complex. This structure is very sensitive to the
nature of the A + HB potential energy surface near the transition state.

In this paper, the extension of our method to reactions involving polyatomic
reactants is described. We report studies® of the reactions F + CH,0H — HF + CH,0
and F + C;H;,OH — HF + C,H,O via photoelectron spectroscopy of CH,OHF~ and
C,H;OHF~. In both cases, the photoelectron spectra reveal resolved vibrational
features attributable to the [ROHF] transition state region (R = CH,, C,H;). We also
report a study of the related, but simpler, triatomic reaction, F + OH — HF + O, from
the photoelectron spectrum of the radical anion OHF~. The results on this last
system are novel in their own right, but they also provide a model to compare and
understand the structure manifested in the spectra of the polyatomic systems.

There is a substantial body of experimental and theoretical work in the
literature on the hydrogen abstraction reactions of fluorine. The F + CH,OH and
F + C,H,OH reactions have been the subject of both kinetics and product-state-
resolved experiments. For F + CH,OH, two channels are available:

F + HOCH, -» FH + OCH, (1)

F + HCH,OH - FH + CH,0H (2

The exothermicities for these reactions are given in Table 6-1. Both reactions (1) and
(2) are very fast at room temperature: k., =1 x 10 "% - 2 x 10 "° cm?® s 101112
There is a considerable range'® of reported branching ratios !213141516
However there is a consensus that reaction (1) accounts for more than the statistical
25% of total product at room temperature, and this fraction may be as high as 80%."®

For F + C,H;OH there are three channels available. If the fluorine attack were
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completely non-site-specific, one would expect a branching ratioin F + C,H;OH of 18%

for C,H,O formation. As with methanol, the reported branching ratios'™® indicate
that fluorine abstracts at the hydroxyl group faster than at the methyl or methylene
groups. Khatoon’s work,'*"” using isotopically labelled reactants and a mass
spectrometric detection scheme, indicates that the probability of abstraction of a
particular hydrogen by fluorine is five times more likely at the hydroxyl site than at
one of the alkyl sites, for both methanol and ethanol. This preference in both
reactions is interestir = since the CH,0 and C,H;O product channels are less exoergic
by 10 kcal/mol (see Table 6-I). As we shall see, our experimental data addresses the
dynamics of the hydroxyl hydrogen abstraction channel only.

The energy disposal in both products of reaction (1) can be measured: the HF
product by infrared chemiluminescence and the CH;O product by laser-induced
fluorescence. This has been used in a series of experiments »1515! to determine, in
detail, how the partitioning of product energy compares to results for the well-
characterized triatomic F + HX reactions (X = halogen).?® The results indicate that
for the F + CH,0H reaction, the presence of a large number of product degrees of
freedom has a small but noticeable effect on overall energy disposal, in comparison to
the F + HX reactions. The fraction of available energy appearing as HF vibrational
excitation is slightly less than in the F' + HX reactions, and about 2% of the available
energy appears as vibrational excitation of the v, mode (C-O stretch) of the CH,O
radical. The single chemiluminescence study of F + C,H;OH suggests similar behavior
for this system.?’ Thus, one expects the potential energy surfaces for both the
F + CH,OH and F + C,H;OH reactions to share important features with the F + HX

surfaces, particularly a small entrance channel barrier to reaction.
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The reaction of fluorine with hydroxyl has been less well studied. Possible

reactions of F with OH are:

F + HO-HF + OCP) (3)

F+OH -HOF*-HF+ OCP)
>HF + O('D)

4)

F + HO-HF + O('D) (5)

In (3) and (5) fluorine directly attacks the hydrogen end of the hydroxyl; (3) proceeds
on a triplet surface and is exothermic by 34 kcal/mol, while (5), which is 11 kcal/mol
endothermic, occurs on a singlet surface. This mechanism is akin to the reactions
discussed so far with the alcohols. Reaction (4) involves the radical fluorine atom
attacking the oxygen atom, the site of the unpaired electron on OH, and forming
vibrationally hot HOF (*A’). This radical-radical recombination should proceed with
no barrier. However, a spin-forbidden non-adiabatic transition is then required for
HF + OCP) production. The overall room temperature rate constant for reaction of F
+ OH by all pathways has been measured to be 4.1 x 10" cm?® 5.2

Sloan and coworkers® have measured product state distributions from the
F + OH reaction. They observed infrared chemiluminescence from product HF
vibrational levels up to v=3 when reacting F with H,0. The F + H,0 reaction is
exoergic enough to produce only HF(v = 0, 1). The observation of population in higher
HF vibrational levels was explained in terms of a secondary reaction, of F with OH
produced by the F + H,O reaction, taking place in their chamber. The product

vibrational and rotational distributions from the secondary reaction appeared to be
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statistical. On the basis of this and an ab initio calculation, which predicted a large

barrier for (3), the authors concluded that the dominant reaction pathway is via attack
of fluorine on the oxygen end of the OH molecule (4) and that HOF is a long- lived
intermediate, which decays by a non-adiabatic transition. As we shall show below, the
OHF - photoelectron spectrum is quite sensitive to the barrier for direct abstraction
(3), allowing us to test Sloan’s conclusions. This adiabatic pathway for F + OH to
yield OCP) + HF by direct abstraction is entirely analogous to the alcohol reactions.
Thus we will also use the results on the F + OH system to serve as a model for
understanding the CH,OHF~ and C,H,OHF ~ photoelectron spectra.

Our experiment starts with the negative ion analog of the reaction transition
state we wish to study. It is useful for that ion to be well-characterized. The
CH,OHF ~ anion has been fairly well-studied and was first observed by Riveros in an
ion cyclotron resonance (ICR) cell?® In this anion, F~ binds to the hydroxyl
hydrogen of CH,OH, since this hydrogen is considerably more acidic than the methyl
hydrogens. Larson and McMahon determined the CH,OHeF~ binding energy to be
29.6 kcal/mol.?® The proton affinity of CH,0~ (or the gas phase acidity of CH,OH)
ig slightly higher than that of F~ (381.2 kcal/mol versus 371.4 kcal/mol).?®* This
means that F~+ CH,OH is the lowest dissociation channel for CH,OHF~; Jasinski
et al”’ have experimentally confirmed this by infrared multiphoton dissociation of the
ion in an ICR cell. In addition, the relative proton affinities lead one to expect the
shared proton in CH,OHF ~ to lie closer to the O atom than to the F atom in the ion
equilibrium structure.

The proton affinity of C,H,O~ (378.1 kcal/mol)*® is nearer to, but still higher

than, that of F~. Thus it would be expected that the shared proton in C,H,OHF-,
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though still closer to the O than the F atom, would be raore evenly shared than in

CH,OHF~. In agreement with this, the measured binding energy of C,H,OHF -, 31.5
keal/mol, % is higher than that of CH;OHF~. The OHF - ion has not been observed
previously, but, since the proton affinity of O~ (382.2 kcal/mol)? is comparable to that
of CH,0™, one expects binding and structure similar to that of the alcohol complexes,
namely OHesF ™,

The position of the shared proton in the anion is critical to our photoelectron
spectroscopy experiment, since the region of the A + HB potential energy surface
accessible via photodetachment is determined by the ion geometry. For example, we
have reported studies of the Br + HI, Cl + HI, and F + HI reactions by photoelectron
spectroscopy of BrHI-, CIHI-, and FHI~." The proton affinities of Br—, C1-, and F~
are at least 10 kcal/mol greater than that of I=. We therefore expect Ry < Ry, in the
XHI" anions. The ions consequently have better geometric overlap with the I + HX
product valleys on their respective neutral potential energy surfaces, and this is
indeed the region that is probed in the reported photoelectron spectra. This turns out
to be the case for all the asymmetric X + HY reactions, where X and Y are halogen
atoms.

On the other hand, photodetachment of CH,OHF-, C,H,OHF~ and OHF~
should result in considerably better overlap with the F + CH,OH, F + C,H,OH or
F + OH reactant valleys, respectively. This is arguably the most important region of
the surface since it includes the barrier along the minimum energy path. Thus the
significance of the results presented here is twofold. The photoelectron spectra of the
ROHF~and OHF ~anions represent an extension of our ’transition state spectroscopy’

method to more complex reactions. Furthermore, the spectra of all three systems
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allow us to probe a more interesting part of the potential energy surface for the

corresponding neutral reaction in comparison to the XHY ~ spectra.

In addition to the experimental results, we present ab initio calculations that
describe the equilibrium structure, harmonic frequencies and binding energies of the
CH,OHF~ and OHF~ ions. A two-dimensional dynamical simulation of the OHF~
photoelectron spectrum is then described, which is used as a starting point for
considering modifications to the F + OH reaction potential surfaces. The spectra of
the polyatomic systems are discussed, with reference to the OHF~ simulation, and

finally the role of the extra degrees of freedom is evaluated.

2. Experimental

The time-of-flight photoelectron spectrometer used in this study has been
described in detail elsewhere.® Briefly, negative ions are formed by crossing the
expansion of a pulsed molecular beam valve with a 1 keV continuous electron beam
close to the valve orifice. For production of OHF -, the gas mixture expanded through
the valve was N,0 with a trace concentration of HF. The OHF ~formation mechanism
is probably via dissociative attachment of N,O by slow secondary electrons, N,O + e~
— O~ + N,, followed by the clustering process O~ + HF + M — OHF~ + M. The best
way we found to make a stable beam of CH,OHF~ (or C,H,OHF-) was to put a few
drops of CH,0OH (or C,H,OH) into the pulsed beam valve, which hangs vertically in
the source chamber, and pass a 5% NF,/ He mixture through the valve. Dissociative
attachment to NF, produces F~, which then clusters to the alcohol. Under the same

expansion conditions, we have obtained vibrational temperatures of 150 - 300K for
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CH,CN~and rotational temperatures of less than 100K for SH ™ prepared in a similar

source.?®

The ions formed in the source chamber are extracted perpendicular to the
molecular beam and injected into a Wiley-McLaren type time-of-flight mass
spectrometer.”® Ions separate according to their masses and the ion of interest is
photodetached by the fifth harmonic of a pulsed Nd:YAG laser (213 nm, 5.825 eV).
The photoelectrons produced by this process are ejected into all solid angles and a
small fraction (10*) is collected by a detector at the end of a one meter field-free flight
tube. The flight time of the electrons is recorded and converted into center-of-mass
kinetic energy. The energy resolution function of the instrument is given in reference
5; essentially the apparatus’ electron energy resolution is 8 meV at 0.65 eV and

degrades < : 7" at higher electron kinetic energies.

3. Results & Analysis
3.1 Experimental Results

The CH,OHF ~and C,H,OHF~ photoelectron spectra are shown in Figure 6-1.
The spectra are considerably more complex than the spectra of the triatomic anions
we have previously studied. The clearest structural pattern in both spectra are the
four regularly spaced steps between 1.2 and 2.8 eV. The labelled arrows (A-D), at
2.69, 2.24, 1.85, and 1.54 eV in Figure 6-1a and 2.58, 2.18, 1.83, and 1.50 eV in
Figure 6-1b, mark the onset of each step. There are two sharper features, E at 1.15

eV, and F at 1.03 eV, in the CH;OHF ~ spectrum.
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The peaks are labelled in order of increasing internal energy of the neutral

complex. The electron kinetic energies (eKEs) are related to the internal energies of
the neutral species (E,”) by

eKE = hv - D°(ROHF") - EA(F) - AE®, - E® + E? (6)
Thus peaks with highest electron kinetic energy correspond to neutral states with
lowest internal energy. In (6), hv is the laser photon energy, 5.825 eV, EA(F) is the
electron affinity of fluorine, 3.399 eV,* and D°(ROHF-) is the bond dissociation
energy of ground state ROHF~ to form ground state ROH and F~.  For
D°(CH,OHF "), we use the experimental® bond dissociation enthalpy, AH,,,, and
correct to 0 K using a set of ab initio calculated frequencies (see below); this yields
1.244 eV. For D°(C,H;,OHF ), we use the experimental® bond enthalpy for this ion,
and the same correction to 0 K as calculated for CH,OHF -, yielding 1.327 eV. AE°,
is the exoergicity for the reaction F+ ROH — RO + HF and is given in
Table 6-1.319233343536 E© 5 the energy of the [ROHF] complex relative to
ground state RO + HF. E” is the internal energy of the precursor ion ROHF~ above
zero point. As all the anions studied here are expected to be prepared cold, this
quantity is assumed throughout to be zero.

The eKE corresponding to E” = 0 is shown by arrows against the axis at 2.60
eV (Figure 6-1a) and 2.50 eV (Figure 6-1b). These arrows indicate the electron kinetic
energy corresponding to photodetaching ground state CH,OHF~ (C,H,OHF™) and
forming ground state HF + CH,0 (C,H;0). We refer to these energies henceforth as
product asymptotes. The reactant asymptotes, indicated by arrows at 1.18 eV
(Figure 6-1a) and 1.10 eV (Figure 6-1b), correspond to ground state F + CH,0H

(C,H;OH) formation for which E,” = - AE°;. All the structure in each spectrum occurs
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at lower eKE than the product asymptote and is therefore due to states of the neutral

complex that can dissociate to HF + CH,0 (C,H;0) products. In addition, features in
the spectra at lower eKE than the reactant asymptotes correspond to states of the
complex which can also dissociate to F + CH;OH (C,H;OH) reactants.

The photoelectron spectrum of CH;ODF~ (Figure 6-2) shows a clear isotope
effect. The spectrum shows six steps more closely spaced than those in the CH;OHF -
spectrum. This isotope effect suggests that the step structure is due to a vibrational
mode of the neutral complex analogous to the v; mode seen in the triatomic bihalide
spectra;>®" that is, the light hydrogen atom is vibrating between the much heavier F
atom and RO group in the complex. The spacing between the steps in Figures 6-1a
and 6-1b is less than that between the first few vibrational levels of HF,*" and the
spacing between the second, third and fourth steps is less than the corresponding
levels of the OH stretch in CH;OH. This 'red shift’ occurs because the experiment
probes the transition state region where the reacting species are interacting
strongly;® the H atom vibrates in a shallower potential than in isolated HF or
CH,OH.

The intensity in the CH,OHF~ spectrum builds as one moves from the
HF + CH,0 product asymptote to the F + CH,OH reactant asymptote at lower electron
kinetic energy. The intensity distribution in the C,H,OHF~ spectrum is similar,
although there is relatively more signal near the HF + C,H,O asymptote. The breadth
of all the features in the photoelectron spectra is considerably larger than the
experimental resolution. Spectra recorded at 266 nm (4.66 eV, not shown) show the

right-most steps in each of the 213 nm spectra with lower electron kinetic energy and
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therefore higher resolution. Despite this higher resolution, there is no additional
structure observed; the step profiles are unchanged.

The photoelectron spectrum of OHF~ is shown in Figure 6-3. The peak
positions and widths are listed in Table 6-II. The electron kinetic energies
corresponding to the dissociation asymptotes OCP,) + HF (2.43 eV), F(*P,,) + OH(*I1,,)
(0.95 eV), and O('D) + HF (0.46 eV), are shown on Figure 6-3, as before, with arrows
against the energy axis. These energies are calculated using a relationship similar
to Equation (6), along with our best ab initio ion binding energy estimate (see below),
the exoergicity for reaction (3) in Table 6-1, and the experimental® oxygen atomic
energy level splittings. Again, all structure observed in the spectrum corresponds to
states of the neutral unstable with respect to dissociation to the lowest energy product
channel (OCP) + HF). Moreover peaks A-D correspond to neutral states which can
only dissociate to O(°P) + HF products.

The overall appearance of the OHF~ spectrum is clearly very similar to both
of the ROHF~ spectra. This is an interesting result considering the far fewer
vibrational degrees of freedom in the [OHF] complex as well as its different electronic
character (see below). However, there are several differences between the OHF ~ and
ROHF ~ spectra. The onset of structure occurs at almost 0.3 eV lower electron kinetic
energy in the OHF~ spectrum. Between the product and reactant asymptotes, the
OHF~ spectrum looks more like a set of broad peaks, in contrast to the step structure
seen in the CH,OHF~ and C,H,OHF~ spectra. The feature below the reactant
asymptote in the OHF~ spectrum (labelled E) is much more distinct than any
corresponding structure in the other spectra. Finally, the intensity in the OHF~

spectrum builds in the same way as the other spectra but, in this spectrum, there is
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even less intensity at the O + HF product asymptote than at the product asymptote

in the CH,OHF ~ spectrum.

The photoelectron spectra of OEF~, CH,OHF~ and C,H,OHF~ all show
maximum intensity near the asymptote for dissociation into reactants F + OH,
F + CH,0H and F + C,H,OH rather than the energetically lower product asymptote.
This is in sharp contrast to the asymmetric bihalide ions,” all of which show maximum
intensity at the product asymptote. We can understand the intensity distributions in
terms of the qualitative discussion of the ion geometries in the Introduction. Because
the proton affinities of O~, CH;0~, C,H;O~ are 0.47, 0.42, and 0.29 eV higher than
that of F~, the hydrogen should lie closer to the O atom than the F atom in all three
anions. We therefore expect good Franck-Condon overlap with OHeeF or ROHeeF
configurations of the neutral complex localized in the entrance valley of the reactive
potential energy surface. The overall intensity envelopes seen in the spectra are in
accord with this reasoning. In particular, the observation that the C,H,OHF~
spectrum has more intensity at the product asymptote than the CH;OHF ~ spectrum
is consistent with the higher proton affinity of CH,0~.

It is clear from this discussion that the anion geometry has a significant effect
on the photoelectron spectrum. In contrast to the bihalide ions, no spectroscopic data
exist for ROHF~and OHF~. Therefore, in order to obtain a more quantitative picture
of the anions, we have performed ab initio calculations on OHF~ and CH;OHF ~ to

determine their structure and properties.
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3.2 Ab initio calculations: method and results

Fully optimized geometries, frequencies and dissociation energies were
calculated for the hydrogen-bonded anions OHF~and CH;OHF ~ at both the Hartree-
Fock (HF) and second order Moller-Plesset (MP2) level of theory. In addition, MP4
level calculations were employed to estimate hydrogen bond dissociation energies. The
calculations reported here were performed with the Gaussian 86, Gaussian 88 *°
and CADPAC" ab initio packages available at the San Diego Supercomputing
Center. The standard 6-31++G** basis set was used throughout; the incorporation
of diffuse functions (++) is mandatory for a proper description of these anions. For
OHF -, a spin-unrestricted wave function was used to describe both the 1 ground and
%% excited states.

The results of these calculations are summarized in Table 6-III - Table 6-VII.
For the purposes of analyzing our photoelectron spectra, the most important results
are the ion equilibrium geometries, the shape of their potential surfaces along the
hydroxyl hydrogen stretching coordinate, and the ab initio estimate of their
dissociation energy into F~ and OH or CH;OH. For the last of these, an estimate of
the zero point energy correction is required, so frequencies were calculated for the
hydrogen-bonded ions and the product fragments at both the HF and MP2 level of
theory. All energies quoted (E,) include this zero point energy correction, which is
applied at the same level of theory as the calculated energy (except for the MP4
energies where the MP2 zero point energies are used). MP4 electronic energies
include all single, double, triple and quadruple excitations while maintaining a frozen
core (MP4SDTQ-FC); the MP2 energies have all electrons considered for correlation

(MP2-FULL). The calculation of the ion force field, apart from providing zero point
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energies, was also useful for (a) obtaining a reasonable form for each anion’s
vibrational normal coordinates and (b) providing an estimate for the hydrogen bond
stretching frequencies in the ions. Both of these will be used in the dynamical
calculations described helow.

The dissociation fragments of OHF~ and CH,OHF ~ that we need to consider
are F~, CH,0H, CH,0-, HF, OH and O~. Computations of fully optimized geometries
and frequencies for these fragments compare well with literature values for
calculations using similar sized basis sets. The MP2 geometries and frequencies agree
well with experimental values for CH,OH, HF, and OH, and the fluorine electron
affinity is well reproduced at the MP2 level. The oxygen electron affinity, calculated
at the same level of theory, 1.09 eV, is in poorer agreement with the experimental
value of 1.46 eV. ¥ By calculating the MP2/6-31++G** equilibrium geometry of the
Jahn-Teller distorted ground state of CH;0,”” and using scaled*® harmonic
frequencies from the HF/6-31++G** force fields for ion and neutral, a zero point
corrected adiabatic electron affinity of 1.47 eV for CH,0 is computed. This is to be
compared with the experimental value of 1.57 eV.*

Geometries & Frequencies: Our qualitative expectations for the hydrogen-bonded ion
geometries and dissociation energies are based on the proton affinity scale and have
been outlined above. We expect that the closer the proton affinity of the bases A~ and
B~ the larger the degree of sharing of the proton and the stronger the hydrogen bond
in AHB~% From comparison of the proton affinities of the methoxide, hydroxide, and
fluoride ions, we expect the hydrogen to be closer to the oxygen than fluorine in both
CH,OHF~ and OHF~. The quantitative ab initio results shown in Table 6-III and

Table 6-VI show that indeed the hydrogen sits closer to the oxygen than the fluorine
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atom for both ions. In fact, the equilibrium parameters for the two ions are very
similar; the difference in O-F separation is smaller than 0.01 A and the hydrogen
position is different by only 0.02 A. However, the ab initio calculations suggest that
OHF ~ has the hydrogen more centrally located. This is contrary to the proton affinity
argument, but CH,OH is only slightly more acidic than OH.

The equilibrium geometry for CH,OHF -, which has C, symmetry, is shown in
Figure 6-4. The F~eeH-CH,OH isomer is expected to lie considerably higher in
energy than CH,OHeeF~ The hydrogen bond is slightly bent, as found for
F(H,0),* because of a weak interaction with the other nearby hydrogen atoms.
With regard to the methanol frame, the staggered conformer is preferred to minimize
steric repulsion, but the barrier to internal rotation about the C-O bond is calculated
to be even smaller than in methanol.** The equilibrium configuration was found by
optimization of all geometric parameters; in particular, the methoxy frame was also
allowed to relax in response to the perturbation by the F~. The changes in the frame
with respect to the equilibrium CH,;OH geometry described by the same theoretical
model are modest (Table 6-III). The principal differences are a contraction in r (C-O)
by 0.03 A in CH,0OHF~ and some distortion of the bond angles around the tetrahedral
carbon center. By comparison, the change at the active center is much larger: there
is a 0.10 A lengthening of the O-H bond in the ion at the MP2 level. The framework
relaxation will be considered when discussing possible "bath" mode excitations in the
CH,OHF -~ photoelectron spectra. Previous calculations'” for this ion are in
qualitative agreement with those shown here, but the earlier treatments were limited
to small basis sets without a complete set of diffuse functions and neglected electron

correlation.
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For AHB™ species, a pertinent question to ask is whether there are two
minima on the potential energy surface, corresponding to AHeeB~ and A~eeHB, or
whether the two coalesce to form one broad, fairly flat-bottomed minimum. In the
case of the symmetric bihalide ions AHA™, this is extremely important as it
determines whether the equilibrium structure is centrosymmetric or not. For
example, calculations®**® on CIHCl- and BrHBr- show that a Hartree-Fock
description predicts a double minimum potential for these a.ions, whereas the
inclusion of other electronic configurations in the ground state wave function leads to
a significant lowering of the energy for centrosymmetric geometries compared to the
AHeeA~ geometries. Even using Mgller-Plesset Perturbation Theory to second order
(MP2) causes the double minimum potentials for the AHA™ ions to coalesce into a
single flat- bottomed minimum.* High resolution spectroscopy studies indicate these
anions do, in fact, have centrosymmetric equilibrium structures.*

For an asymmetric ion such as CH,OHF~, we might expect to find a local
minimum, CH,O™eeHF, as well as the global one described by Figure 6-4 and
Table 6-III. Figure 6-5 shows a plot of the potential energy as a function of the
position of the hydrogen atom between the O and F atoms which are assumed, along
with all other degrees of freedom, to be fixed. The plot shows that at the Hartree-
Fock level there is evidence of a plateau in the potential corresponding to the
CH,O~esHF structure, but that it disappears at the MP2 level. The MP2 correction
clearly stabilizes geometries with the hydrogen more evenly shared between F and O;
the potential shape is distinctly different. This has a large effect on the vibrational

level spacings for the ’O-H stretch’ and the shape of the ground vibrational wave
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function along this coordinate. This will, in turn, have a profound effect on the
intensity distribution seen in the photoelectron spectrum.

The calculated harmonic vibrational frequencies for the CH,OHF~ ion are
shown in Table 6-IV; «; is the O-H stretching mode which corresponds to the
potential function we have been discussing. The harmonic frequency for this mode
(2215 em™) is strongly perturbed from its value in CH;OH (MP2/6-31++G** value 3900
cm™). The F--HOR stretching mode, w,, is analogous to ®, in the bihalide ions and
OHF ~ (see below). These two stretching modes, the O-H stretch and the O-F stretch,
are the two modes most important to understanding the photoelectron spectra.

The ab initio results for the ground %1 state of the OHF -~ anion are shown in
Table 6-VI and Figure 6-4. It is clear from the similarity in the equilibrium geometry
of this ion and the OHF moiety in CH,OHF~ that the CH, group has little effect on
the hydrogen bond, except to slightly bend it. It is worth noting that, in contrast to
CH,OHF -, OHF~ is open shelled but the spin remains localized on the oxygen atom,
asin OH. The spin-orbit splitting in this state is expected to be smaller than the 139
cm™ of OH(M).*” The expectation values of the spin operator, <S?>, listed in
Table 6-VI indicate that spin contamination is not a problem in the unrestricted wave
function; a pure doublet state has <S* = 0.75.

A schematic of the molecular orbitals for OHF~ is shown in Figure 6-6. This
qualitative figure will be used later to explain the different neutral electronic states
and their relationship to anion photodetachment. The 2IT ground electronic state is
the configuration shown in Figure 6-6. There is a low-lying %Z* state, which results
on promoting a 66 electron to the 2xn orbital. This state has a single minimum at

O~eeHF; it does not correlate to ground state OH + F~. Collinear potential cuts
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along the Ry coordinate for the [T and *c* states are shown in Figure 6-7. The *I1

curve is very similar to that shown for CH,OHF ~ in Figure 6-5. Table 6-VI contains
the harmonic frequencies of the ground *I1 state. The O-H stvetching frequency, 2015
cm’, is significantly reduced from the value in free OH and is also lower than the
same mode (also w,) of CH,OHF~. The O-F stretching frequency, ®,, at 433 cm™ is
bigher than @, of CH,OHF~. These two frequencies will be used to describe the anion
wave function in the simulation below. The bending vibration has two components
for the linear ground state of OHF —, as expected for a linear molecule in a degenerate
electronic state.*

Dissociation energies: Accurate ab initio estimates of bond dissociation energies are
normally difficult to calculate. However, for dissociations that do not involve breaking
of a bonding pair of electrons, as is the case here, correlation corrections are relatively
small and ab initio methods can yield reliable energies.®® As can be seen in
Table 6-V, even the Hartree-Fock estimate for the hydrogen bond strength of
CH,OHF -, with respect to dissociation to CH,OH + F-, is in fairly close agreement
with the experimental value (DH,4 = 1.28 eV). Handy et al.* have shown that the
Mpoller-Plesset Perturbation Theory treatment is convergent and reliable for
interaction energies if bond breaking or curve crossing does not occur. Chalasin$ki®®
demonstrated that MP2 calculations with standard basis sets, when corrected for basis
set superposition error (BSSE), yield quantitative estimates of hydrogen bonding
energies. It is important to recognize that for estimating correlation corrections to the
hydrogen bond dissociation energies, the size-consistent MP methods are to be

preferred over configuration interaction (CI) methods.
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The calculated hydrogen bond dissociation energies D°,, defined earlier, are

shown in Table 6-V and Table 6-VII. OHF~ is calculated to be more stable with
respect to dissociation than CH,OHF~. As mentioned earlier, the binding strength
of CH,OHF ~ has been measured® whereas that of OHF - has not. To compare the ab
initio value for CH,OHF ~ with the experimental value, we must convert D°, to a bond
enthalpy at 298 K.* Using the MP2 harmonic frequencies of CH;OHF ~ (Table 6-IV)
and CH,OH, and assuming that the change in the average rotational energy on
dissociation is zero, we calculate AH’,o,(CH;OHF~ — F~ + CH,OH)= 1.32 eV (30.4
kcal/mol) at MP2 and 1.29 eV (29.8 kcal/mol) at MP4 compared to the experimental
value of 1.28+0.04 eV (29.6+1 kcal/mol). * It appears that the ab initio estimate is
in very good accord with the experimental data, placing confidence in the MP4 D°,
estimate, 1.48 eV (34.0 kcal/mol), for OHF -,

It should be noted that no correction is made for basis set superposition error
in these calculations. Further it appears that the correlation correction to fourth
order for the D°;, of CH,OHF ~ is more fully converged than that for OHF~. Thus it
is probable that higher order corrections will be required for the latter ion. The fact
remains that the OHF~ anion is predicted to have a stronger hydrogen bond than
CH,OHF - at every level of correlation treatment. This is shown not only in the
dissociation energy but also in the stronger perturbation to the O-H stretching
frequency, the higher F-O stretching frequency and the more central positioning of the
hydrogen between the end atoms. This result is also supported by the experimental
observation that the photoelectron band origin for OHF~ is shifted to lower electron

kinetic energy by 0.3 eV over CH,OHF~.
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3.3 Simulation of the OHF~ photoelectron specirum

In this section, we simulate the OHF~ photoelectron spectrum using our ab
initio results for OHF ~ along with the ab initio potential energy surfaces developed
for the F + OH reaction by Sloan and co-workers.?® By comparing the simulated and
experimental spectra, we can learn about deficiencies in the F + OH potential energy
surface. We have previously described a fully quantum dynamical method that will
simulate the dissociative photoelectron spectrum of a linear triatomic AHB~.” This
method, which is based on the wave packet propagation technique of Kosloff and
Kosloff,* treats dynamics along the two stretching coordinates exactly. It assumes
all nuclear motion takes place on a collinear potential energy surface.

An initial wave packet ¢(0), which, within the Franck-Condon approximation,
is the anion ground vibrational wave function, is propagated on the neutral potential

energy surface according to

o)) = e Y2 | 4(0)). ()]

iR/t

Here e is the time evolution operator and H is the Hamiltonian for the neutral

surface. The overlap of ¢(t) with ¢(0) defines the time autocorrelation function C(t):
C(t) = (¢(0) | &(t)) (8
and the Fourier transform of this complex function yields the photoelectron

spectrum:*"%®

o(E) o J exp(iEt / h) C(t) dt. (9)

=00

The simulation makes use of the collinear ab initio surfaces which have been

developed for the lowest triplet and singlet channels of the F + OH system.?® Sloan
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and coworkers evaluated energy points across the two surfaces using a multi-reference
configuration interaction (MRCI) scheme, employing the multi-reference analog of
Davidson’s correction®® to extrapolate energies to full configuration interaction (FCI).
To calculate the entire collinear surfaces the authors were constrained to use of the
relatively small 4-31G basis set. The surfaces were each fitted to a Rotated Morse
Oscillator Spline (RMOS) function.*® The authors went on to show that the barrier
height on the lowest triplet surface remained virtually unchanged when the basis set
was improved to double zeta plus polarization (DZP) quality. We shall first consider
only the lowest surface for the collinear reaction F(*P) + OH(IT) — HF('Z*) + O(P) for
our simulation. This surface has 31 electronic symmetry, and a classical barrier of 12
keal/mol at Roy = 1.08 A and Ry = 1.32 A.

Together with the neutral potential surface, we also require the wave function
for the ground vibrational state of the anion. The wave function is assumed to be
separable along the two normal coordinates, @, and Q,. To construct this vibrational
wave function, we use our MP2 values for the anion equilibrium geometry (R°;; and
R°y) and frequencies (o, and ;) for the two stretching vibrations. The following
transformation from internal coordinates (in A) to normal coordinates (in amu'?-A)
is derived from the ab initio Cartesian force constant matrix:

Q, = 2.989 (Ryp - R%p) + 2.747 (Ryy - Rop) (10)
Q; = 0.198 (Ryr - R°yp) + 1.158 (Roy - R¥op). (11)
Note that Q, = 3 (Rof - R%y) and Q; = (Rgy - Rop).

In the simulations carried out for the BrHI™ photoelectron spectrum,’ the

experimental intensity distribution was impossible to model without including

anharmonicity along the Q, coordinate for the anion. The anion potential surface was
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therefore described by the sum of a Morse potential for the v; mode and a harmonic
potential for the heavy atom v, stretching mode. For OHF -, the MP2 potential energy
cut along the R,y coordinate can be fit to a Morse function; this is shown in
Figure 6-7. The R,y coordinate is an extremely good approximation to Q; if Ry is
kept fixed, as seen in Equations (10) and (11), so the Morse potential in Figure 6-7 is
assumed to be the potential energy along the Q, coordinate. The one-dimensional fit
to this function yields ®, = 2015 cm™ (as expected from Table 6-VI) and o.x, = 350
cm™”. Aharmonic potential is constructed along Q, using the MP2 frequency (433 cm™)
from Table 6-VI. The required initial wave packet, ¢(0), is then set equal to the
ground vibrational wave function of this anion potential surface.

The simulation is performed by propagating the initial wave packet on a grid
in two dimensions, under the influence of the neutral collinear potential surface. The
propagation is continued until all flux has left the grid. Absorbing boundaries are
imposed at the edges of the grid;®! this device greatly reduces the configuration space
the grid must span, and thus, the calculation time. All computational details of the
method are contained in ref. 7 and the relevant parameters are listed in the figure
captions for each simulation. Figure 6-8 shows the simulated photoelectron spectrum
of OHF~ resulting from wave packet propagation on the °IT ab initio surface. The
result is exact within the collinear approximation.

Figure 6-9 shows the wave packet dynamics that give rise to this simulation.
The potential surface is plotted in the mass-scaled coordinates defined in ref. 7;
essentially x = 3 Ry and y = Rgy. These coordinates almost exactly parallel the
normal coordinates of the ion Q, and Q,. The first frame (Figure 6-9a) shows the

initial wave packet, corresponding to the anion wave function. The asymmetric shape
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of the wave packet derives from the pronounced anharmonicity along Q,. The wave
packet sits right over the saddle point of the reaction surface (marked in the Figure
with a cross), underlining the sensitivity of the photoelectron spectrum to features of
the surface at the saddle point and to the magnitude of the barrier height. The initial
wave packet also extends into both the reactant valley and around the reaction
’corner’ into the product valley.

The following frames of Figure 6-9 show the bifurcation of the wave packet into
both valleys; the subsequent disappearance of the wave packet out to frég‘ments is
very swift. The component of the wave packet exiting out to OC°P) + HF has a faster
rate of disappearance from the Franck-Condon region than the component travelling
down the entrance valley. The latter component, moving parallel to the x axis and out
to F + OH, shows little vibrational excitation as compared to that moving in the O(°P)
+ HF exit valley, where considerable nodal structure, corresponding to HF vibrational
excitation, is seen perpendicular to the direction of motion. In Figure 6-9d the last
component of the wave packet is seen leaving the grid; the shape of the wavepacket
is distorted here because of the absorbing boundary.

In accord with the extremely fast movement of the wave packet away from its
nascent position on the neutral potential energy surface, the autocorrelation function
shows very fast decay and evidence of only a weak recurrence. The absolute value of
the autocorrelation function, 1C(t)!, is plotted in Figure 6-10. The fast fall-time is in
strong contrast with the long-lived recurrences in the autocorrelation functions
calculated for bihalide photodetachment.”®*®® The Fourier transform of this
autocorrelation function yields a broad, but structured, simulated photoelectron

spectrum and it is this that is shown with the dashed line in Figure 6-8.
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In this simulation, the two low intensity peaks between the product and

reactant asymptotes are from transitions to states of the complex that correlate to
different product HF vibrational levels. The single, more intense feature near the
reactant asymptote is narrower than the other peaks (FWHM < 200 meV versus =300
meV). This peak is most likely due to the component of the wave packet moving out
along the entrance valley to F + OH, which, as noted above, leaves the Franck-Condon
region more slowly than that departing along the exit valley.

To confirm these ’assignments’, we have performed a one-dimensional
simulation that treats only the potential along the y, or Ry, coordinate with the mass
weighted coordinate x fixed at its value for the ion equilibrium geometry, x,. This, to
a good approximation, is the effective potential for the hydrogen stretching v, mode.’
In Figure 6-11 these one-dimensional potentials for the anion and neutral are shown
along with the first few eigenvalues and eigenfunctions supported by each potential.
The anion potential is the [T Morse potential shown in Figure 6-7, and the neutral
potential results from taking a cut through the fitted ab initio F + OH surface at
x = x,. By computing the Franck-Condon overlap between the ground state wave
function supported by the anion potential with the first few neutral wave functions,
a simulated stick spectrum, shown also in Figure 6-8, is generated.

The one-dimensional stick spectrum consists of a progression in the v, mode
of the (OHF] complex; the peak labels in Figure 6-8 correspond to the energy levels
in Figure 6-11. Peaks 0, 1 and 2 result from transitions to the O + HF product (exit)
valley, while an inspection of the one-dimensional neutral wave functions
(Figure 6-11) shows that the v; = 3 level is localized in the F + OH reactant (entrance)

valley. Peak 3 in the one-dimensional simulation lines up with the intense peak in
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the two-dimensional simulation, indicating that the latter is indeed due to a state of
the complex localized in the reactant valley. Peaks 0 and 1 apparently correspond to
the two peaks in the two-dimensioﬂal simulation between the reactant and product
asymptotes, although the one-dimensional peaks occur at slightly higher electron
kinetic energy. The comparison between the simulations suggests that peak 2 is
hidden as a shoulder in the two-dimensional simulation. In fact, the intense peak in
the two-dimensional simulation has a definite asymmetry and it can be readily
confirmed that there is an intensity contribution, corresponding to the v, = 2 stick, on
the high electron energy side of this peak. The one-dimensional treatment is
approximate in that it does not consider overlap at different values of x, and the time-
scale separation of x and ¥ is strictly only appropriate for extreme heavy-light-heavy
systems.® It is these inadequacies that are presumably responsible for the one-
dimensional sticks not coinciding with the centers of the two-dimensional peaks.
However this analysis does provide some insight into the appearance of the two-
dimensional simulation.

Let us now compare the simulated and experimental spectra (Figure 6-8). The
two-dimensional peak widths and the spacings of the product progression agree
reasonably well with experiment, and the intensity distribution is in qualitative
agreement with the experimental profilee = The overall agreement between
experimental and simulated peak widths is particularly striking as it indicates that
rapid dissociation on a collinear surface can explain the broad experimental peaks.
On energetic grounds we assign peaks A-D to states of the [OHF] complex that

dissociate to O + HF products. Based on the one- and two-dimensional simulations,
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we assign the intense experimental peak at 0.80 eV (E, Figure 6-3) as a reactant peak:

a state of the [OHF] complex that dissociates to F + OH reactants.

However, in Figure 6-8, the one- and two-dimensional simulations have been
shifted by 0.22 eV to higher electron kinetic energy so that the experimental peak E
lines up with the most intense simulated peak. An even larger shift would be
expected if the simulation had been performed on a comparable three-dimensional
potential energy surface rather than the collinear surface used here; this additional
shift will be approximately equal to the bending zero point energy near the saddle

point on the three-dimensional surface.®®

This bending zero point energy is
estimated to be = 0.05 eV.*® Thus simulations on a comparable three-dimensional
surface would need to be shifted by about 0.27 eV to higher electron kinetic energy.
The significance of this shift is discussed in the f:!lowing section.

In our analysis of the bihalide spectra,®’ we commented extensively on the role
of excited electronic states of the neutral in our photoelectron spectra, and
contributions from excited states are likely in the spectra presented here as well. For
the F + OH system, we can explicitly model the contribution of one excited state, the
'A state, to the photoelectron spectrum, because a potential energy surface is available
for this state.”® We shall defer a full discussion of the electronic structure of this and
other excited states until later, but here we show the results of performing an
identical simulation, using the RMOS 'A surface of Sloan and coworkers, to that
described above for the °[1 surface. The wave packet dynamics should be quite
different on the 'A surface, which adiabatically connects F + OH(I) to

HF('T*) + O('D). This is an endoergic process for which the barrier is expected to lie

on the O('D) + HF side of the potential energy surface, and this is borne out by the
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ab initio calculated surface. Thus, photodetachment to the A surface should result

in less overlap with the saddle point region than photodetachment to the *IT surface.

Figure 6-12 shows the contribution of the 'A simulation to the overall
photoelectron spectrum. Both the °IT and 'A simulations have been shifted to higher
electron kinetic energy by the same 0.22 eV discussed above. The electronic transition
dipole moments for transition from ion ground state to the neutral °IT and A states
have been set in the ratio 1:5 to best reproduce experiment, in the absence of any
other data. By including the 'A state, the simulation now reproduces the broad
experimental peak (F) at 0.45 eV. The overall agreement between the simulated and
experimental spectrais quite remarkable considering that all potential parameters are
the ’raw’ ab initio ones, including the energy separation between the two electronic
state progressions. This would seem to be strong evidence for the overlapping

contribution of excited states in the experimental photoelectron spectrum.

4. Discussion
4.1 OHF ~ photoelectron specirum

Let us return to consider the neutral reaction surface that dominates the
OHF - photoelectron spectrum, the °[T surface. We wish to assess how realistic this
surface is, and apply what we learn to the fluorine + alcohol reaction surfaces.
Although there is qualitative agreement between the simulated and experimental
profiles, there are some serious deficiencies. We shall discuss these discrepancies, and
some possible causes, in the hope of obtaining a more detailed picture of the neutral

potential energy surface in the transition state region.
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The three major areas in which the theoretical fit differs from the experimental

spectrum are (i) the number of peaks in the product vibrational progression and their
positions relative to the reactant peak, (ii) the large shift required for the entire
simulation, and (iii) the intensity distribution of peaks corresponding to product
states. These deviations are almost certainly due to discrepancies in the neutral
potential energy surface and/or the equilibrium properties of the anion. Because ab
initio descriptions of potential minima are known to be predicted to a higher degree
of accuracy than points on a global surface far away from minima, we shall make the
assumption in the following discussion that the anion structure and dissociation
energy have been correctly described, and that all changes need to be made to the
neutral surface. This is not likely to be completely true, but merely reflects the likely
relative error bars on the two calculations.

One obvious problem is that the reaction exoergicity on the RMOS °IT surface
is incorrect. The RMOS fit to the FCI/4-31G exoergicity is 1.198 eV as compared to
the experimental value, 1.502 eV (these figures reflect bottom of the well energies for
the diatomic molecules). Sloan et al. have shown that this problem stems mainly from
the basis set used in the ab initio calculation.?® This gross defect is certainly
contributing to the absence of any structure in the simulation at electron kinetic
energies higher than 2.0 eV (Figure 6-8). With the surface as is, it is energetically
impossible for a state to exist with an energy corresponding to the step at highest eKE
in the experimental spectrum. Clearly, in any attempt to improve the simulation by
changing the neutral potential energy surface, the exoergicity should be corrected.

The other feature of the F + OH °IT surface that calls for some adjustment is

the barrier height. A major discrepancy between the simulation on the RMOS surface
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and the experimental spectrum was that the simulated band origins had to be

displaced to higher electron kinetic energy to get the largest feature (assigned to the
reactant channel) to match the experimental peak. For the °[l surface, the saddle
point lies in the center of the Franck-Condon region, so lowering the barrier height
will shift the spectrum in the required direction. As the shift required, 0.27 eV, is
considerably larger than the expected error in the ion binding energy (< 0.15 eV), it
seems probable that the barrier on the reaction surface is indeed too high.

To show the effect of using a smaller barrier we have performed two further
simulations. We first scaled®” the RMOS surface so as to reproduce the experimental
exoergicity; this yielded a surface we shall call RMOS-A. A further round of
scaling® was performed on RMOS-A in order to approximately halve the barrier to
0.24 eV (5.5 kcal/mol). This surface we denote RMOS-B. These surfaces are not
suggested as optimized potential functions that reproduce our data, but they do
demonstrate the result of some very simple improvements over the pure ab initio
surface. The simulated photoelectron spectra calculated on each of these surfaces,
while ignoring the 'A state, are shown in Figure 6-13. The changes are significant.
The RMOS-A simulation shows three, rather than two, resolved members of the
product vibrational progression. In particular a feature corresponding to experimental
peak D now appears. However the entire simulated spectrum must still be shifted,
again to higher electron kinetic energy, to align the simulated reactant peak with the
experimental peak E; for this surface the shift is 0.23 eV, or 0.28 eV including the
zero point bend correction.

In the RMOS-B simulation (Figure 6-13b), when including the zero point bend

correction, no shift is required to line up experimental peak E with the intense peak
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in the simulation. Decreasing the barrier height has thus removed the discrepancy
between the energetics in the simulated and experimental spectra. The simulated
peaks are still quite broad, in agreement with experiment. However, only two product
peaks are discernible in the RMOS-B simulation, just as in the first simulation in
Figure 6-8. As in that simulation, the third peak in the product progression is hidden
under the intense reactant peak. Essentially, in comparison to the RMOS-A
simulation, lowering the barrier has shifted the intense reactant peak to higher
electron kinetic energy while not affecting the product peaks, thereby obscuring the
third product peak that appeared in the RMOS-A simulation.

One important feature we have not attempted to change is the location of the
saddle point on the F + OH surface. This is likely to have a major effect in a
simulation. In particular, if the barrier occurred earlier in the F + OH reactant
valley, the anion would have better overlap with states of the [OHF] complex that
dissociate to O + HF products and these states would be shifted in energy closer
toward the product asymptote.

In any case, the simulation on the RMOS-B surface has shown that a lower
barrier can eliminate the need to shift the spectrum. Considering the errors in the
calculated ion binding energy and the approximate treatment of the zero point
bending energy we conclude that a realistic barrier height for the I1 surface is in the
range 0.09 - 0.39 eV (2 - 9 kcal/mol). This result is significant as it implies that even
at room temperatures direct hydrogen abstraction may compete with the non-adiabatic
pathway suggested by Sloan et al.

Is this proposed barrier height reasonable? By comparison to other reactions

of fluorine, the original ab initio barrier, 12 kcal/mol, might be considered
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unreasonably large for an abstraction reaction of this type. In general, ab initio
reaction barriers reported are consistently too high, even with what must be
considered current state-of-the-art methods.®*’® It is very likely that problems of
incomplete basis set, and thus errors resulting from basis set superposition error, will
be manifested in the raw fitted ab initio surface used here.

The Evans-Polanyi relationship’ between reaction exoergicity and barrier
height states that the larger the exoergicity, the lower and earlier the classical barrier
is on the reaction potential surface. This postulate has been well tested for hydrogen
abstraction reactions. From this postulate, it would be expected that the reactions
studied here would occur on surfaces with barriers comparable with that for F + H,
and smaller than that for F + H,0 (see exoergicities in Table 6-I). Stevens et al.”
have estimated a 4 kcal/mol barrie. for F + H,0O; the classical barrier height for
F + H,, although subject to some controversy, is currently considered to be 1.4 - 2.5
kcal/mol.®*"° The larger exoergicity for F + OH and F + HOR would seem to indicate
that the barriers for direct abstraction for both reactions should be m the range 1 - 2
kcal/mol. The result of our simulations, while in agreement with a substantially lower
barrier than that calculated ab initio for F + OH, seem to suggest a barrier somewhat
higher than that predicted by the Evans-Polanyi relationship.

It is to be hoped that an ab initio reaction potential surface of improved quality
can be generated which will confirm the lower barrier height for the direct abstraction
process. In order to fully model the spectrum, it may be necessary to develop excited
state poteutial energy surfaces as well. The role of low-lying excited surfaces is

explored in part (c) below.



218
42 CHOHF™ and C,H,OHF~ photoelectron spectra

The above discussion and simulations on the F + OH °[1 surface serve as a
model for understanding the photoelectron spectra of the alcohol complexes. The
similarity of the OHF~ spectrum to those of the polyatomic systems encourages one
to think that the effect of the alkyl group is small, and that the ROHF~ spectra can
be largely explained by the analysis of the OHF ~ spectrum. In particular, the basic
step structure and the peak widths observed can be understood in terms of the two-
dimensional model above, the differences in intensity distributions in the three spectra
are explained by the differing position of the bridging hydrog2n ir the ion, and the
missing low election energy peak in the ROHF~ spectra (peak F in the OHF~
spectrum, Figure 6-3) is atiributable to the differing electronic structure in the
[ROHF] and [OHF] complexes (see below).

However, as pointed out above, the features :n the ROHF ™~ spectra are, in
general, broader than those in the OHF~ spectrum. One could blithely attribute this
to the presence of additional vibrational modes in the polyatomic systems. We would
like to examine this more quantitatively to ascertain which, if any, of these vibrational
modes play a major role in the appearance of the ROHF~ photnelectron spectra. We
do this by attempting to determine which of the additional modes in the polyatomic
ROH and RO fragments are excited subsequent to ROHF ~ photodetachment. These
are referred to as 'bath’ modes; in the case of CH;OHF~ photodetachment, these
include all the CH,0 vibrations and all the CH,OH vibrations except the O-H stretch.

We consider which fragment modes are excited solel: on the basis of the
differences between the geometry of the neutral complex created by photodetachment

and the equilibrium geometries of the fragments. This is a variation of the 'Franck-
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Condon picture’ which has been shown to provide a reasonable zero-order description
of fragment excitation in photodissociation experiments.”® In the classical picture of
photodetachment, the nuclear configuration of the neutral complex formed is the same
as the equilibrium geometry of the ion. The displacement of the C, H and O atoms
in the [CH,OHF'] complex from the equilibrium geometry of free CH;OH and CH,0
will then lead to vibrations in the bath modes of these species. Mapping these
displacements into changes along each of the normal coordinates of the free fragment,
we can estimate the degree of vibrational excitation in each of the fragment modes.
As a guide, we shall use the ab initio changes in bond lengths and angles in the
methoxy frame from CH,OHF~to CH,OH and CH,0.

The ab initio calculations (Table 6-III) show that the changes in geometry in
the CH,0 frame between CH,OHF ~ and CH,OH, v:aile small, are principally in the
C-0 bond length and the bond angles about the carbon atom; the ZCOH angle is not
dramatically altered. Further the calculated MP2 force field of CH,OH gives us the
normal coordinates for this molecule. By performing the transformation of the MP2
internal coordinate changes into CH,OH normal coordinates displacements, we
determine which bath modes receive excitation in this simplified photodetachment
process. The only mode appreciately excited is v, (CH; rock), whose observed
fundamental frequency is 1060 cm™. * The degree of vibrational excitation is,
however, still small; if we compute Franck-Condon factors assuming two harmonic
oscillators of the same frequency, for anion and neutral, displaced by the calculated
value, a short progression is predicted with a (v=1)/(v=0) peak intensity ratio of 14%.

The changes in geometry from CH,OHF -~ to CH,O are also small; for the CH,0

equilibrium geometry we use the UMP2/6-31++G** optimized structure calculated in
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C, symmetry, which describes the lower Jahn-Teller component (A’).*? Performing the

the internal coordinate transformation into displacements of CH,0(*A’) normal
coordinates (this time derived from the UHF/6-31++G** force field of CH,0), we
determine that no mode is significantly excited, i.e. no mode has (v=1)/v=0) intensity
ratio greater than 5%.

This 'Franck-Condon picture’ therefore predicts relatively small effects in the
CH,OHF - spectrum from the presence of additional vibrational modes. While this
treatment is quite approximate in that it is largely independent of the details of the
potential energy surface in the F + CH,OH transition state region, we point out that
the product state-resolved studies'® show that only 2% of the energy released in the
F + CH,0OH reaction appears as vibrational excitation in the v, C-O stretching mode
of CH,0. Although this was the only product vibrational mode investigated, these
results suggest that the bath modes play only a minor role in the dynamics of the F
+ CH,0H reaction.

We still are faced with the question of explaining the differences in widths in
the OHF~ and CH,OHF ~ photoelectron spectra. Our ab initio calculations indicate
that the COH angle remains strongly bent in CH,OHF~, as in CH,OH. Therefore
some of the energy released in the dissociation of the [CH,OHF] complex to HF +
CH;O (by far the more exothermic channel) is likely to end up in rotational motion of
both fragments. This rotational excitation may well provide a mechanism for adding
width to the peaks that correspond to HF + CH,0 product states.

It is also worth noting that the precursor OHF~ and CH,OHF ™ anions are
most likely characterized by a non-zero temperature and some degree of vibrational

excitation will be present. In OHF-, the O-F vibration is calculated to have the
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lowest frequency (®, = 433 em™), whereas in CH,OHF ~ there are three low frequency
modes (Table 6-IV): @y = 391 cm™ (O-F stretch), w,, = 167 cm™ (FOC bend), and
= 77 cm? (hindered rotation). Assuming the two anions are formed at the same
temperature, the excitation of the additional low frequency modes in CH;OHF ~ could

lead to broader features in the photoelectron spectrum.

4.3 Electronic effects

In the analysis of the photoelectron spectra of BrHI-, CIHI™ and FHI™, we
presented’ a full discussion of the role of multiple neutral electronic surfaces. For the
F + CH,OH and F + C,H;OH systems the situation is similar to those X + HY
systems. In the entrance valley, the three-fold spatial degeneracy of the ?P F atom
(neglecting spin-orbit interactions) is broken by the approach of ROH, and all three
resultant states may contribute to the photoelectron spectra. The states that
correspond to approach of F on the H-O axis of HOR with the unpaired electron in a
n type orbital will be much more repulsive than the ground state o type interaction.
Morokuma et al.”* have shown from ab initio work that there is a contribution from
the first electronically excited neutral state in the photoelectron spectrum of CIHC1~
that closely overlaps the band to the ground state. Experimentally we have recently
determined that transitions to excited F + H, potential energy surfaces overlap
transitions to the ground state surface in the photoelectron spectrum of FH,~" It
is reasonable to expect this to occur in the ROHF ~ spectra also.

For F + OH there are many more low lying electronic states than for X + HY,
even when ignoring spin-orbit coupling and constraining the geometry to be linear.

These can be considered either by constructing a full correlation diagram or by using
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the molecular orbitals of the anion (Figure 6-6) and depicting the various [OHF] states

formed upon removal of an electron. The latter is simpler and more useful as it
includes the selection rule for a photodetachment process, namely that only one-
electron processes are allowed. This reduces the number of neutral states to be
considered. Sloan et al. considered four potential surfaces, %1, °Z, 'A, and 11, all of
which are accessible from the *[T anion.?? We have already looked at two of these
potel.tial energy surfaces in the simulation section.

To estimate if the other states will play a role in the photoelectron spectrum
we have performed an ab initio calculation for the electronic energy of each state at
the anion geometry. Table 6-VIII shows these energies, and the electronic
configurations of each state with reference to anion molecular orbitals shown in
Figure 6-6. These energies, which should be viewed as crude estimates only, indicate
roughly where maximum intensity will occur in a photoelectron band to this state.
They do not indicate where the onset of vibrational (or continuum) structure
assignable to the respective surface would occur in the photoelectron spectrum. The
energies in Table 6-VIII are calculated using single-reference wave functions that also
suffer from spin contamination; the effects of the latter have been projected out by
the standard method available in the Gaussian 88 program.’® The above ab initio
problems were not an issue for the anion calculations presented earlier. In
comparison to the results in Table 6-VIII, the multi-reference calculation of Sloan et
al.® orders the states slightly differently: °II, 3%, 'A, 1. Further the RMOS fitted
surfaces yields a °I1 - 'A separation at the anion geometry of only 0.63 eV. Apparently

all four surfaces should be considered before assigning all of the experimental
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spectrum’s features. In addition, the inclusion of the spin-orbit interaction will result

in even more potential energy surfaces to be considered.

5. Summary

We have shown that the photoelectron experiment successfully probes the
transition state of an asymmetric triatomic hydrogen abstraction reaction, namely the
F + OH reaction. The nature of the system, where all atoms are first row and
consequently few electrons are involved, makes it amenable to a high level ab initio
potential surface characterization. We hope the results presented here will stimulate
such theoretical interest. The photoelectron spectra of CH,OHF~ and C,H,OHF~
have demonstrated the extension of our method to polyatomic reactions, and have
shown that vibrational structure at the transition state can still be resolved even
when the transition species has ten atoms. The interpretation of our spectra is
relatively simple at a qualitative level and mirrors the work on the bihalide systems.
A simulation that explicitly treats the collinear dynamics of F + OH, using a multi-
reference ab initio potential surface, has been performed and yields reasonable
agreement with the experimental result.

However a detailed understanding of the spectra is clouded by a number of
difficult theoretical questions. The simulation for the F + OH system assumes that
the transition state is collinear, and ignores the effect of the bending degree of
freedom on the dissociation dynamics and, thus, on the photoelectron spectra.
Schatz’" has reviewed the theoretical formalism of photodetachment to the transition
state of a bimolecular reaction in three dimensions. Schatz has also compared the

results of exact collinear treatments, like this one, with three-dimensional J=0
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Coupled Channel Hyperspherical (CCH) simulations for the CIHCl~™ and IHI-

photoelectron spectra. He finds good agreement in the qualitative features. For the
bihalide systems, the assumption of a collinear transition state is more reasonable
than it is here. There is considerable evidence™ that the O(°P) + HCl - OH + Cl
reaction proceeds via a bent transition state; Gordon et al.” have calculated the
saddle point geometry and find £ OHCI = 138°. The question then arises whether the
collinear ° interaction O(°P) + HF is also unstable with respect to bending, and
whether a bent transition state is preferred for this reaction also. However a major
difference between the two reactions is that O + HCl is approximately thermoneutral
whereas O + HF is endoergic by 34 kcal/mol. The similarity in the OHF-,
CH,OHF -, and C,H,OHF ~ spectra indicates that the pseudo-triatomic mode! fairly
successfully describes the polyatomic systems’ spectra. However development of
theoretical methods of treating polyatomic reaction systems is clearly desirable.
Further experiments from this laboratory will be forthcoming on transition state
spectra for tetra-atomic systems, the results of which should be able to test theoretical
methods for such systems.
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Table 6-1: Hydrogen abstraction reactions of Fluorine
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Reaction AH,, * AE°, ® koo © E,*
kcal/mol kcal/mol 10'em?? kcal/mol J
F+ H-O° -34.0 -34.0 4.1
F + H-OCH, -32.2 -32.6 7.7
F + H-OC,H, -32.0 -32.3 6.3
F + H-H -32.1 -32.1 2.5 ~
F + H-OH -17.2 -17.5 14
F + H-CH,0H 422 -42.9 1.7
F + H-CH(CH,)OH
and -43.2 -43.9 1.4f
F + H-CH,CH,0H

a)

b)

c)

d)

e)

Exothermicity, AH,4, calculated from DH,g(H-X) for CH,OH (ref. 31), C,H,OH
(ref. 32), H,0 (ref. 33), H-CH,OH and H-CH(CH,)OH (ref. 34) and D°, for OH,

H, and HF (ref. 37).

Exoergicity, AE°,, calculated by correction to AH°, using vibrational
frequencies for CH,OH and H,0 (ref. 35), CH,0 and CH,OH (ref. 36);
vibrational corrections for ethanol reactions assumed equal to those of
methanol. All molecules are assumed to be ideal gases, and both hindered and

full rotations are treated classically.
Kinetic data collected from refs. 12, 17, 22, and 72.

Estimated classical barriers from refs. 69, 70, and 72.

Products OCP) + HF.

This is the measured rate divided by the number of available chemically
equivalent hydrogen atoms for abstraction.

fi
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Table 6-II: Estimated peak centers and widths from the photoelectron spectra of
Onsets of four highest energy steps are also given. All energies in eV;
approximate uncertainties shown in parentheses.

OHF-.

Electron kinetic energy
Peak Onset* Center® Width®

A 2.46 (0.01) 2.25 (0.02) 0.35 (0.03)

B 1.95 (0.02) 1.82 (0.02) 0.31 (0.03)

C 1.51 (0.02) 1.38 (0.04) 0.30 (0.04)

D 1.16 (0.02) 1.01 (0.02) 0.30 (0.04)

E 0.80 (C.01) 0.15 (0.03)
__ F 0.45 (0.03) ~04
a) Step onsets are measured at 50% of rising edge.

b) Centers and widths are estimated by a six Gaussian fit to the photoelectron
spectrum. Because bands overlap, the estimated uncertainties are large.
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Table 6-III: Ab initio geometries and zero point energies for CH,OHF ~ and CH,0H

-CH:,OHF' CH,OH
RHF/ RMP2/ RHF/ RMP2/
I 6-31++G** 6-31++G** 6-31++G** | 6-31++G**
R, (O-H)A 1.004 1.059 0.942 0.964
R, (H-F) A 1.462 1.373
Z OHF 173.8 175.3
R, (C-0)A 1.376 1.399 1.401 1.427
£ COH 108.4 106.4 110.5 108.6
R(C-H,) A 1.092 1.095 1.081 1.085
R(C-H) A 1.094 1.099 1.087 1.091
£ OCH,, 109.4 109.3 107.1 106.2
Z H,CH, 107.5 107.6 108.6 108.9
ZHCH, 107.0 106.8 109.0 109.3
Zero Po(ix;;)Energy 1.513 1.426 1.496 1.434
e
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Table 6-IV: Harmonic frequencies (in cm™), calculated with 6-31++G** basis set, for

CH,OHF-
Mode | RHF | RMP2 | Mode | RHF | RMP2 | Mode | RHF | RMP2
o, (a) | 3133 | 3102 [ ws(a) | 1600 | 1498 | o, (a) | 3115 | 3060
o, (a) | 3106 | 3016 | o, (a) | 1253 | 1178 || o, (a) | 1610 | 1526
o, (a) | 2901 | 2215 | wy(a) | 1230 | 1132 || w,,(a) | 1282 | 1248
o, (a) | 1731 | 1649 | ,(a) | 333 391 || o,(a) | 1214 | 1189
ws(a) | 1634 | 1556 | ©,(a) | 168 167 || o) | 94 77

Table 6-V: Ab initio Energies for CH,OHF ~, including zero point energies.

E, RHF/6-31++G**// RMP2/6-31++G**// RMP4/6-31++G**//
Total Energy* RHF/6-31++G**® RMP2/6-31++G** RMP2/6-31++G**¢
a.u. eV a.u. eV a.u. eV
CH,OHF" -214.45671 | 0.000 | -215.02240 | 0.000 | -215.04730 | 0.000
equilibrium
F + HOCH,
separated -214.41611 | 1.104 | -214.97545 | 1.278 | -215.00124 | 1.253
fragments
CH,O0" + HF
separated -214.39208 | 1.758 | -214.95104 | 1.941 | -215.97621 | 1.934
fragments L 1 |
a) Zero Point energies calculated from force field evaluated at same level of

theory as energy, except MP4 where MP2 zero point energies are used.

b) Notation "a/b" means energy evaluated with theoretical model a at the
optimized geometry calculated with model b.

c) RMP4(SDTQ) frozen core energies.



Table 6-VI: Ab initio Geometry and Frequencies for OHF~
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| Method

UHF/6-31++G**

R, (O-H)*
A

1.031

R, (H-F)
A

1.400

£ OHF

Frequencies
(cm™)

379
180.0

1070, 1227
2514

=

<S>

0.756

UMP2/6-31++G**

e

1.078

1.346

180.0

433
1064, 1225
2015

0.752

a) R(O-H) in the free hydroxyl radical is 0.955 A (UHF/6-31++G**), 0.973 A
(UMP2/6-31++G**) and 0.970 A (experimental, ref. 37).

Table 6-VII: Ab initio Energies for OHF -,

including zero point energies.

E, UHF/6-31++G**// UMP2/6-31++G**/ | UMP4/6-31++G**//

Total Energy" UHF/6-31++G** UMP2/6-31++G** UMP2/6-31++G**®

a.u. eV a.u. eV a.u. eV

OHF equilibrium | -174.84998 | 0.000 | -175.21214 | 0.000 | -175.22800 | 0.000
F~ + HOCM)

separated -174.80273 | 1.286 | -175.16113 | 1.388 | -175.17375 | 1.476
fragments
O '(P) + HF

separated -174.78075 | 1.884 | -175.13652 | 2.058 | -115.15280 | 2.046
fragments

a) Zero point energies calculated from force field evaluated at same level of theory
as energy, except for MP4 where MP2 zero point energies used.

b) UMP4(SDTQ) frozen core energies.



Table 6-VIII:

a)

b)
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Possible low-lying electronic states of [OHF] accessed in the
photoelectron spectrum of OHF~

PUMP4(SDTQ-FC)/6-31G** Electronic Configuration
energy* at Anion Equilibrium (with reference to
Geometry® Figure 6-6)
a. u. eV
’n -175.033816 0.0 .. 56® 1n* 2r,! 2r.? 60’
T -175.009523 0.6 .. 50® 1n* 2r,! 2r.! 60°
mn -174.931654 2.8 .. 56 1n* 2r,* 2r 2 60!
1A -174.911790 3.3 .. 50% 1 2r,? 60°

Spin projected UMP4 energies (see ref. 76)

MP2/6-31++G** anion geometry used, see Table 6-VI
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Figure Captions for Chapter 6.

Figure 6-1.

Figure 6-2.

Figllre 6'3.

Figure 6-4.

Figllre s' 5.

Photoelectron Spectra of (top) CH,OHF~ and (bottom)
C,H,OHF~ recorded at 213 nm. Arrows against axis indicate
energies corresponding to product and reactant asymptotes (see
text). Step onsets are indicated by arrows above spectrum.
Photoelectron Spectrum of CH,ODF~ recorded at 213 nm.
Arrows as for Figure 6-1.

Photoelectron Spectrum of OHF~ recorded at 213 nm. Arrows
against the axis indicate energies corresponding to asymptotes
for formation of O(°P) + HF, F + OH, and O('D) + HF, in order
of decreasing electron kinetic energy.

Calculated geometry for CH,OHF~ (top) and OHF~ (bottom).
Bond lengths (A), and angles, are those calculated by full
geometry optimization at MP2/6-31++G**.

Potential energy profile along the hydroxyl hydrogen stretching
coordinate in CH;OHF~. Cuts are calculated fixing geometry
parameters at the MP2/6-31++G** equilibrium values and
varying Roy. To simplify calculations the F-H-O angle is treated
as linear (this increases electronic energy by 2 x 10* a.u.) and
the Ryy is fixed at the sum of MP2 equilibrium Rgy and Ryy.
CH,OHF~ potential variation shown at HF/6-31++G** level
(dashed - for absolute HF energy subtract 214.527 a.u.) and at
MP2/6-31++G** (solid - for absolute MP2 energy subtract

215.077 a.u.)



Figure 6-6.

Figure 6-7.

Figure 6-8.

Figure 6-9.
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Schematic molecular orbital diagram for OHF~.  Orbital

occupancy shown is for ?I1 ground state of anion.

Potential energy profile for *[T and X electronic states of OHF~
along hydrogen stretching coordinate at MP2/6-31++G** (solid
lines). Cuts calculated with Ry held at %1 state equilibrium
value. For absolute energies subtract 175 a.u. Dotted line shows
Morse function used to approximate OHF ~ hydrogen stretching
potential for construction of anion wavepacket.

Simulated OHF~ photoelectron spectrum from two-dimensional
wavepacket propagation on the [T RMOS surface (dashed)
superimposed on experimental spectrum (solid). Also shown is
the result of a one-dimensional simulation (sticks) described in
text. Labels above sticks refer to v, quantum numbers (see
Figure 6-11). Both simulations have been shifted by 0.22 eV to
higher electron kinetic energy (see text).

Wavepacket dynamics on the RMOS °IT potential surface.
Equally spaced contours of | ¥(t)! are superimposed on contours
of the potential energy for (a) t = 0, (b) t = 31, (¢) t =62, (d)
t = 93 femtoseconds. The potential contours drawn are for
energies 0.25, 0.75, 1.25, 1.75 and 2.25 eV above bottom of O(°P)
+ HF well, and the saddle point is marked by an X. The
propagztion is carried out in mass-scaled coordinates (defined in
ref. 7), which are also the coordinates used in the plots, on a grid

with 128 x 64 points along x and y respectively. A 10 point



Figure 6-10.

Figure 6-11.

Figure 6-12.
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absorbing strip boundary is used to absorb flux leaving grid (see

ref. 61). The initial wavepacket (see text for details) is
propagated for 7680 time steps of 1 a.u. each.

Absolute value of the time autocorrelation function calculated in
the two-dimensional propagation on the I RMOS surface .
One-dimensional potentials for v, mode in OHF~ and [OHF].
Anion potential (bottom) is the Morse potential shown in
Figure 6-7; neutral effective potential (upper) is a cut through °I1
RMOS surface at constant x =x, (see text). Calculated
eigenstates are labelled by their v, quantum numbers.
Simulated OHF~ photoelectron spectrum showing contribution
of ®T and 'A electronic surfaces. Component deriving from the
'A surface is shown by short dashed line. The sum of two states’
simulated photoelectron profiles, convoluted with the
experimental resolution function, is shown by dashed line. Each
state’s profile simulated via independent wavepacket
propagations; both have been shifted to higher electron kinetic
energy by 0.22 eV (see text). The initial wavepacket and
propagation parameters are identical in two simuations, and are

those given in caption of Figure 6-9.
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Simulated °IT band (dashed) of OHF ~ photoelectron spectrum

using the two scaled RMOS surfaces (see text), superimposed on
the experimental spectrum (solid). (Top) The RMOS-A surface
has the correct reaction exoergicity; the simulated spectrum has
been shifted to higher electron kinetic energy by 0.23 eV.
(Botto;n) The RMOS-B surface has the correct exoergicity and a
reduced barrier height of 0.29 eV. This simulated spectrum has
not been shifted. The initial wavepacket and propagation
parameters for both simulations are once again identical to those

in Figure 6-9.
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Figure 6-6
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7. Postscript: new experimental results for OHF ™

Since publication of this work, we have recorded new spectra of OHF~ in our
laboratory.! Our signal-to-noise has been much improved and the background due
to stray electrons has been significantly reduced in the meantime. This has allowed
to us to record spectra of OHF~ with the lase. peiarized parallel (6 = 0°) to the
direction of electron collection, where the signal is much lower. Figure 6-14 shows a
comparison of the OHF~ photoelectron spectrum at 6 = 90° (as data shown earlier)
and 6 = 0°. The feature at lowest electron kinetic energy (labelled F as in preceding
text) is clearly accentuated relative to all other peaks in the 6 = 0° spectra. As we
have already discussed in Chapter 1, this behavior is indicative of transitions
occurring from the anion to different electronic states, and in these transitions the
electron is probably being removed from molecular orbitals of different symmetry.
This result confirms our tentative assignment, which was based only on the wave
packet simulation analysis, that this single peak F in the photoelectron spectrum is
due to a transition to an excited electronic surface of [OHF], possibly the 'A. This is
not only rather gratifying but also demonstrates, once again, the power of measuring
the photoelectron angular distribution in assigning overlapping bands in these

complicated transition state spectra.

1. E. H. Kim, unpublished work, 1992



254
Figure caption for 6.7

Figure 6-14. OHF ~ photoelectron spectrum recorded at 213 nm. (Top) 6 = 0°, and

(Bottom) 8 = 90°.
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Chapter 7. Photoelectron Spectroscopy of FH,” : results for the F +

para-H, reaction and analysis of the *I1 electronic bands.

1. Introduction

In this chapter we describe some new results on the photoelectron spectroscopy
of FH,™ and extend our analysis of these spectra in the hope of characterizing the
transition state of the prototype F + H, reaction. This reaction, along with its D atom
isotopic variants, has been very extensively studied both experimentally and
theoretically, particularly in the description of product and angularly resolved cross
sections. It is not our purpose here to review that work; Alex Weaver has given an
excellent historical review of work on this system in her Ph. D. thesis.! Indeed our
group has already reported a number of observations on the F + H, reaction, including
previous photoelectron results,’*** which are briefly summarized here.

Our earliest results, the 266 nm photoelectron spectrum of FH, - recorded with
the laser polarized perpendicular to the direction of electron collection, showed little
detailed structure,? but allowed comparison with some theoretical results of Zhang and
Miller on F + H,.* The FH, ™ photoelectron spectrum represented an attractive target
for Zhang and Miller to simulate with their accurate J=0 three-dimensional quantum
calculation because, in contrast to the full collision experiments, the photodetachment
spectrum has only small contributions from higher angular momentum states and is
a particularly sensitive and local probe to the dynamics in the three atom interaction
region. (See Figure 7-1; the anion equilibrium geometry calculated by Nichols et. al®
is very close to the saddle point geometry on the T5a potential energy surface’).

Subsequently, Weaver et al. reported far more extensive results for FH,~, FD,™ and
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FDH - at two different laser polarizations.® The results with 6 = 0°, i.e. with the laser

polarized parallel to the direction of electron detection, showed very powerfully how
transitions from the negative ion to excited electronic states could be virtually
eliminated. The excited state bands overlap and obscure transitions to the ground
reaction surface in the 6 = 90° spectra. The FH,~ 6 = 0° spectra showed a wealth
more information than the earlier spectrum, and the isotopically substituted spectra
provided valuable clues on the origin of the observed peaks. Zhang and Miller
extended’ their scattering calculations on the T5a potential energy surface, so as to
simulate the photoelectron spectrum of FH, ™~ over the entire energy range covered in
the experiment and additionally simulated the FD,™ spectrum. In most respects, the
results agreed very satisfactorily with experiment. The experimental work up until
August 1991, and comparisons with theory, have been reviewed in detail in Weaver’s
thesis.!

The purpose of this chapter is to describe new work in our laboratory, notably
the synthesis of FH, ™ from para-H, and the photoelectron spectra of this species, and
to report improved spectra of FH,™ recorded with normal-H,. The new normal-H,
spectra are superior for two experimental reasons: (a) our signal-to-noise for electron
detection is improved by about a factor of three, and (b) we have constructed a new
pulsed nozzle source for these experiments which should allow increased cooling of the
rotations and internal modes of the FH,™ anion. Additionally, photoelectron spectra
of FH,™ (normal-H,) have been taken at a higher laser photon energy (5.82 eV, 213
nm) to complete the search for features due to excited electronic surfaces. Along with
this new experimental work, we have examined several theoretical issues, notably the

impact of nuclear spin statistics in the anion, and its effect on the photoelectron
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spectra. We will comment on the treatment of the anion in the theoretical work of
Zhang and Miller. Finally, quantitative analysis of the contribution of the
electronically excited states to the 8 = 90° spectra are presented for the first time,
including simulations of these bands. Prospects for new experiments on this

interesting system are discussed.

2. Experimental

The instrument employed in this study is the same time-of-flight photoelectron
spectrometer described in our earlier work on FH,~;?>® therefore here we will describe
only modifications to the experimental apparatus and the particular details of the
experiments carried out. FH,™ ions are made in the source region by clustering of
F~, produced from dissociative electron attachment to NF,, with H,. This is achieved
by crossing a 1 keV electron beam with a pulsed free jet expansion of reagent gases.
The reagent gases, in the ratio 8% NF,, 32% H, and 60% N, , are allowed to mix
thoroughly in a stainless steel cylinder before use; at run time the stagnation pressure
of the mixed gases behind the pulsed valve is 80 psig.

Ions are made from both normal and para hydrogen. Recall that normal
hydrogen is a 3:1 mixture of ortho and para hydrogen. The normal-H, used in these
experiments was obtained commercially and is 99.99% purity. Para-H, was prepared
by the U. C. Berkeley Department of Chemistry Low Temperature Laboratory. It was
stored in standard aluminum gas cylinders, so as to reduce the para - ortho inter-
conversion, and to reduce any isotopic exchange processes of impurities. The
concentration of the para-H, on preparation is 99.7%. It has been observed that the

half life for conversion of para-H, to normal-H, when stored in this way is on the
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order of three to four weeks.>® In these experiments the para-H, was used within

a few days of preparation to make a gas mixture suitable for the photoelectron
experiment. The NF,/para hydrogen/ nitrogen gas mixture was only temporarily (few
hours) held in the stainless steel cylinder for premixing of the gases prior to use. The
stainless steel surfaces of this vessel were certainly poisoned, as far as their properties
for catalysis of para - ortho hydrogen conversion, because of prior use of the mixing
cylinder with other gas mixtures. It is not known, therefore, how much para - ortho
conversion occurred at this stage, but clearly at least 50% para-H, remained, else it
would seem unlikely for us to observe any differences in the photoelectron spectra of
FH,~ made from normal-H, and para-H,.

The ion source has been modified from previous experiments to incorporate a
new higher intensity pulsed valve, which is also more stable in its operation. The 213
nm spectra reported here, as well as previously published spectra, were recorded with
the original pulsed valve, a General Valve Series 9, which is of a spring/ solenoid
design. The new source incorporated a piezo-electric valve, of the design of Proch and
Trickl. This valve accomplishes larger gas throughput in a shorter pulse, and has
better shot-to-shot reproducibility. Superior cooling of the H, is expected with this
valve. The electron beam crosses the free jet at 90°. The position the two intersect
is controlled by deflection of the electron beam. It is found that there is a strong
variation in the temperature of the ions formed in the source depending on how far
from the orifice the electron beam interacts with the jet. The ions appear to be
created colder, i.e. the photoelectron spectrum is less congested and better resolved,
if the electron beam intersects the jet some 25 mm from the orifice. This is

considerably further away from the nozzle orifice than we normally operate the source,
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but the characteristics of hydrogen cooling in a free jet expansion are somewhat
unusual. The degree of cooling of the FH,™ ions was similarly improved when
nitrogen was included in the expansion.

The negative ions are extracted, mass selected and photodetached in the usual
way.!' Spectra réport,ed here were recorded with laser wavelengths of 213 nm (5.82
eV) as well as 266 nm (4.66 eV). The pulsed laser light is plane polarized; as before
we can adjust the angle 8 between the electric vector of the laser radiation and the
direction of electron detection by rotation of a half-wave plate. The second major
change to our apparatus has been the upgrade of the electron detector. The electrons
photodetached by the laser are detected at the end of a 1 meter flight tube, and their
energy is analyzed by time-of-flight. For this detector we now use a pair of 75 mm
diameter microchannel plates, rather than a pair of 40 mm plates.!* This increases
the electron collection efficiency by a factor of 3.5, with a similar improvement in the
signal-to-noise. There is a slight loss in electron energy resolution; typically the
instrumental resolution is 12 meV at 0.65 eV, and, as before, degrades for higher

electron energies as E**,

3. Results

Photoelectron spectra were recorded for the FH,~ ion at both parallel and
perpendicular polarizations of the laser. Both normal and para hydrogen was used
to make the ions. The spectra are presented in Figure 7-2. The form of the two
normal-H, spectra are very similar to those reported earlier,'? except there is a
noticeable improvement in signal-to-noise in the @ = 90° spectrum. The detailed

structure in peaks A, A’ and B in the 8 = 0° is a little different from that observed

l’(
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earlier; peak C is also a little better resolved in the new 6 = 0° spectrum.”” We

believe these differences are due to differences in source temperature. This will be
examined in more detail below. The striking feature in Figure 7-2, however, is the
pronounced differences between the spectra recorded with para hydrogen and those
with normal hydrogen, particularly between 0.85 and 1.1 eV in the 6 = 0° spectra.
Peak positions are listed in Table 7-1. There appears to be an extra peak (A") at 0.97
eV electron kinetic energy that, because of its unimpressive nature in the normal-H,
spectra, was not previously thought significant. However, it is the dominant peak in
the para-H, spectra. It appears that the peaks A and B do also appear in the para-H,
spectra but as shoulders to the central peak A’.

The two peaks observed in all four spectra at 1.26 and 1.21 eV are due to a two
photon process and correspond to the photoelectron spectrum of F~; the first photon

dissociates FH,~ to F~ + H,, the second photon detaches F~?

Table 7-1: Peak positions (electron kinetic energies) in the 6= 0° 266 nm

photoelectron spectra of FH, ™.
peak position / eV*
FH,~ from A A’ B C D
normal-H, 1.000 0.972 0.941 0.815 0.54
para-H, 0.996 0.970 0.942 0.81 0.51

a) Peak positions in Table 7-1 and the spectra shown in Figure 7-2 have been
corrected for the small space charge shift (< 5 meV) in the electron kinetic
energies. Uncertainties in peak positions are 0.005 eV, except for peaks C and
D where the uncertainty is approx. 0.015 eV.

(2"

The peak labelling scheme of Refs. 1, 3 and 4 is also used here to prevent

confusion.
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The 213 nm photoelectron spectra of FH,~, where the ion has been synthesized

only from normal-H,, are shown in Figure 7-3. The photon energy is 1.17 eV higher.
The spectra are essentially identical to their respective 266 nm counterparts, except
for the 1.17 eV shift to higher electron kinetic energy (eKE) and the diminished
spectral resolution. The polarization dependence of the signal is the same. The
important result is that no additional bands are observed for FH,~ photodetachment

that are not present in the 266 nm spectra.

4. Analysis and Discussion.
4.1 Nuclear spin statistics in the anion and its effect on the photoelectron
spectrum.

The results for the photoelectron spectra of FH,™ from para-H, are somewhat
surprising. As we will show, the differences in the FH,™ spectra with the ion
prepared from normal and para hydrogen are due to differences in the nuclear spin
statistics in the anion. The nuclear spin states of hydrogen, ortho and para, are
carried through to the anion FH,~. The two forms of FH,~ (para and ortho), which
we will loosely call para-FH,™ and ortho-FH, ™, overlap two distinct sets of scattering
states in the neutral, namely the states whose scattering wavefunction is symmetric
to exchange of the H atoms (para states) and those that are antisymmetric (ortho).
For example, scattering states that are symmetric with respect to hydrogen
permutation are those that correlate to F + H, (J = even).

Let us examine the anion in more detail. The restriction on the anion
rovibrational wavefunction imposed by the nuclear spin symmetry appears in the

bending / hindered rotor mode. This is well known for molecules of type A,B
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belonging to the C_, point group, such as N,0."® The nature of the bending energy

levels of FH, ™ is shown in Figure 7-4. Free rotation of H, correlates into the bending
states of the linear* triatomic ion as shown in the Figure. This correlation diagram
derives from work by Henderson and Ewing on Ar-O, and Ar-N, complexes.”* In the
free rotor limit, as for free H,, the para form exists only in even J states, where J is
the internal rotor quantum number, and the ortho form of the triatomic only in odd
J states. The nuclear spins are not scrambled in the clustering collision of F~ with
H, to form the weak van der Waals complex, as the H-H bond is not broken. The
correlation diagram shows that, in the limit of strong anisotropy in the angular
potential, i.e. a large barrier to internal rotation of H, in the complex, the energy
levels become identical to those of a degenerate harmonic oscillator. However, there
is a doubling of each state due to the two equivalent positions of the H nuclei. For
each state there is a pair of wavefunctions: one is symmetric and the other
antisymmetric with respect to H permutation. In the rigid bender limit, the two
ground state levels are degenerate but have wavefunctions of opposite permutation
symmetry. In either limit, the relative proportions of symmetric to antisymmetric
states reflects the ratio of para to ortho hydrogen used in the clustering process.
Therefore para-H, will form only even symmetry states of FH,™ shown in Fig. 7-4;

normal-H, will form 1:3 symmetric to antisymmetric states.

" The equilibrium structure of FH,~ is assumed to be linear on the basis of ab

initio calculations of Simons®. A linear structure is consistent with the

electrostatic forces of a charge interacting with the H, quadrupole moment.
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We shall assume the barrier to internal rotation is large,*® that the bend can

be approximately treated as a degenerate harmonic oscillator, and that the splitting
between the two ground state wave functions (a, s symmetry) is negligible in the
following discussion. This maybe a poor approximation if the bend is very strongly
coupled to the van der Waals stretching mode. In that case, Figure 7-4 gives us some
idea of the states formed in the intermediaie anisotropy regime.

In Zhang and Miller’s calculation,”® in order to compute the Franck Condon
overlap of the anion with the F + H, scattering states, these authors assumed the
degenerate harmonic oscillator limit for the bend and used the geometry (R; Hy, =
2.138 A; Ry = 0.796 A) and harmonic frequencies (o, = 302 cm™, @, = 693 cm™ and
©, = 3816 cm™) from earlier results of Nichols et al.®* However, Zhang chose the anion
ground state wavefunction toc be symmetric with respect to nuclear exchange,’
therefore the Frank Condon overlaps are computed with only the even set of
scattering states. In fact Zhang’s calculation employs a separation of the scattering
matrix by the nuclear inversion symmetry,' only one block, the para block, is being

used in the Franck-Condon calculation. Thus, the appropriate comparison with

4 Our ab initio calculations on FH, ~suggest that the barrier to internal rotation

of H, is about 3000 cm. The barrier is relatively large compared to the H,
rotational constant, 60 cm”. The calculations compare the energy at the
MP2/6-31++G** optimized linear geometry, which is close to Nichols’ CCSD
geometry,® and the energy for the rotated configuration (C,,) with RF,H2 and
R, ;; held constant. The calculated barrier is approximately invariant to the
level of correlation correction to the energy. RHF, RMP2 and RMP4(SDQ) all

give about the same barrier to internal rotation.
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experiment is with the para-FH,~ spectrum, and not with the normal-FH,™

spectrum as previously done.**

Figure 7-5(a) shows the correct comparison of
Zhang’s 3D simulation of the FH,™ photoelectron spectrum with our para-FH,~
results. The comparison is noticeably poorer with the para experimental spectrum
than with the normal spectrum, and thﬁs agreement between theory and experiment
is not nearly as good as had been previously been thought the case.**

The normal-FH,~ spectrum, in contrast, contains transitions that are 75% due
to antisymmetric states. Therefore to simulate this photoelectron spectrnm a
computation of the anion overlap with ortho scattering wavefunctions should be made
and then added to the para simulation shown in Figure 7-5(a) in the correct ratio.
Very recently, Manolopoulos has carried out exactly this calculation. Using a three-
dimensional scattering code'® that employs a methodology similar to that of
Schatz,! he has repeated (and reproduced) Zhang’s result for para-FH,™~, and has
gone onto compute the ortho scattering states and their Franck Condon overlap with
the antisymmetrized anion wave function. Together these simulations yield the
theoretical photoelectron spectrum of normal-FH,~ shown in Figure 7-5(b),'® where
it is compared to the experimental normal-FH,™ spectrum. Taken together, the
agreement of the para-FH,™ and normal-FH,~ simulations on the T5a surface with
our respective experimental spectra is quite disappointing.

However, there is one further effect of the nuclear spin statistics relevant to
the anion formed in our experiment we should consider. It relates to the populations
of excited anion bending states, and hence the appearance of hot bands in our spectra.
Let us consider the distribution of :he H, rotational states that we expect in the free

jet. Para-H, has approximately 53% J=0 and 47% J=2 at room temperature, compared
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to 10%, 67%, and 11% J= 0, 1, 2 for normal-H, respectively. Because relaxation of the

rotational energy in H, may only occur by AJ = 2 inelastic collisions, normal-H, is not
cooled well by a free jet expansion, however para-H, is cooled much more effectively.
Typical rotational distributions for pure H, in collimated continuous molecular beams
have been given by Pollard et al. as a function of P,d, the stagnation pressure-
aperture diameter product.”® These distributions are measured by the rotationally
resolved photoelectron spectra of H,. In our work with pulsed valves, the calculated
P,d would be of the order of 2500 Torremm. However, the molecular beam is not
skimmed in our apparatus and the effective nozzle diameter of the pulsed valve may
be somewhat less than the physical orifice size. It seems reasonable, therefore, to
assume a lower effective P,d for the pulsed expansion. In the P,d ~ 100 Torremm
regime, which may be considered a worst case limit, the rotational distribution of H,
may be estimated from the work of Pollard as 18% J=0, 75% J=1 and 7% J=2 for
normal-H, and 70% J=0, 30% J=2 for para-H,.

If we assume that the J, M state distribution in ti= iree H, is mapped onto the
anion quantum state distribution, i.e there is no further cuoling in the expansion after
clustering, then we may use the above H, rotational distributions and the correlation
diagram Fig. 7-4 to yield a conservative estimute of the bend state population in the
FH,™ complexes formed. Even if additicuai cooling doas take place after clustering,
the nuclear interchange symmetry restrictions still restrict scrambling of states with
opposite permutation symmetry.

Therefore, FH,™ made from normal-H, may have a large number of excited
anion states populated, maybe as high as 50% v,=1 if the M states are statistically

distributed among the v,, @ states (see Figure 7-4). This possibility suggests that the
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normal-FH,™ photoelectron spectrum may have major contributions from anion hot
bands. In the para-FH,~ spectra, we suspect the contribution due to hot bands is
smaller but may still be significant; hot bands in this case are derived only from H,
J=2 states (<30%).

42 New work on the F + H, reaction using the 5SEC surface.

Truhlar and coworkers have proposed another surface for the F + H, reaction,
the 5SEC, that improves the description of the entrance channel and saddle point.
The saddle point is earlier and lower than on the T5a surface and the bending
potential is also flatter in the saddle point region.?® The product valleys for the two
surfaces are essentially the same.

Kress and Hayes have recently performed three-dimensional scattering
calculations for F + H, and made a correspondence between peaks and thresholds in
their calculated cumulative reaction probability (CRP) with expected Franck Condon
factors from the anion.®’ These calculations were performed on both the T5a and
5SEC surfaces, and the results on the former were in good agreement with Zhang’s
Franck Condon simulation.! This would seem to support using the CRP to predict the
photoelectron spectrum. Kress’s CRP results for the 5SEC surface are qualitatively
different from the results on the T5a. The authors show that the resonance structure
in the cumulative reaction probability calculated for the two surfaces is very different.
In the same way as Zhang’s calculations comment only on the F + para-H, reaction,
Kress’ cumulative reaction probability is an even permutation sum (i.e. H, ( j = even)
only). Thus the energies and appearances of dynamical features in this calculation

should also only be compared with our para-FH,™ spectra.
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Interestingly, Kress predicts a trapped state resonance, labelled in their paper

’a’, between the features that are assigned to the peaks A and B of our photoelectron
spectra. Could this indeed be the dominant feature in the para-FH,~ photoelectron
spectrum we have called A’? The spacing between A, a, and B in their calculation
are 15 and 28 meV, which compare favorably with the spacings in Table 7-1. The fact
that peak A’ is relatively diminished in our normal-FH,~ photoelectron spectrum is
also consistent with the 5SEC assignment of this middle peak to a trapped-state
resonance, a, in contrast to A and B being quantized-bottleneck states.* However,
preliminary calculations of the Franck Condon factors from the ion (wave function
symmetric with respect to H permutation, i.e. para) with each of these states does not
support peak ’a’ having large intensity in the photoelectron spectrum.'®

Full simulations for both para and normal-FH,™ will be shortly available and
will allow a more quantitative discussion of the merits of this potential surface.'® %
Clearly there is a great deal more work to be done before we can fully interpret the

photoelectron spectra of FH,™ and its isotopic variants!

There is some variation in the terminology used to describe reactive resonances
in the literature. We have typically used the term resonance only for states
that are trapped, or quasi-bound, along the reaction coordinate. These are
what Kress calls "trapped-state” resonances. The other type of peaks observed
in our photoelectron spectra, which we call "direct scattering” states, are called
"entrance channel" or "in-channel" resonances by some authors and "quantized

bottlenecks" by Kress.
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4.3 Electronic effects

The approach of an F atom with a ground state H, molecule may occur on three
potential energy surfaces, 1°A’, 2A” and 2?A” in the most general symmetry of collision,
C,; the upper ?A” and 2%A’ surfaces become degenerate in C_, (collinear approach) so
that there are two surfaces T and °I1. Figure 7-6 shows the highest occupied
molecular orbitals for the anion, where the C_, point group is appropriate.
Photodetachment of an electron from the filled 1n and 4o orbitals leads to the 2T and
*[1 states, respectively, in the neutral. Only the lowest surface, the 2%, where the
fluorine atom approaches with the p orbital containing the unpaired electron along the
H, bond, adiabatically leads to reaction. The introduction of spin orbit coupling in the
F atom splits the degeneracy of the upper *I1 surfaces in C_, and the correct state
labels are %%,,, *1,, and 1,,. The *P,, - °P,, splitting in the fluorine atom is 0.0501
eV.2 A correlation diagram is shown in Figure 7-7(a).

A number of theoretical studies were made in the 1970’s on the role of the two
excited surfaces in F + H, collisions. Initially Truhlar and Muckerman considered
how much the calculated reaction rate constant should be reduced because only one
of the three orientations of fluorine approach would lead to reaction at thermal

energies.?

Blais and Truhlar constructed semi-empiriczl valence bond surfaces for
the 2T and ?I1 states, but did not use the upper state surface in their classical
calculations.?® The effects of spin orbit term in the Hamiltonian and non-adiabatic
coupling between surfaces were next treated theoretically to assess the contribution
of F(*P,,) on the reactive cross section. Two early ab initio studies were made on the

potential variation along the collinear F to H, center of mass coordinate, Ry, » for

both %X and ’I1 states.**” Spin-orbit coupling was included semi-empirically into
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one of these calculations,?® and both studies calculated the non-adiabatic coupling

strengths between the surfaces. Tully applied the diatomics-in-molecules (DIM)
method to construct potential curves for all three states, as a function of R Hy» iD both
collinear and side-on geometries.”® In this work the spin-orbit interaction was
included, and non-adiabatic coupling strengths were once again evaluated. Faist and
Muckerman reformulated the DIM method and constructed a complete semi-
quantitative correlation diagram for reaction between several states of the fragment
atoms and diatoms.?*

Both Tully and Muckerman demonstrated that the F(°P,,) + H, may contribute
significantly to the overall reaction rate constant, via non-adiabatic interactions, even
at thermal temperatures.?®?® Quantum calculations by Zimmerman et al. and LePetit
et al. extended this work and showed varying result: for the behavior of the multi-

surface system.2*®!

The main problem in these authors’ assessment of the
importance of the ?IT surfaces to the reaction dynamics was the barely semi-
quantitative knowledge of the shapes of these potential energy surfaces and their
separation from the ground state. The non-adiabatic couplings are strongly dependent
on the energy separations as a function of nuclear coordinates. Most theoretical effort
subsequently concentrated on dramatically improving the quality of the *Z,, surface
so as to reproduce newer experimental results, while assuming that the upper
surfaces were not significant in the reaction. A recent study, using low energy
scattering of magnetically analyzed F atoms with D,, reports experimentally
determined potentials for all three states.®* However, only the long range part of

each potential is characterized in these experiments. To our knowledge only Wright

and coworkers have considered the upper state surface at short range recently.®
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Our photoelectron results may finally address some of the questions about the shape

of the excited state surfaces and their separations from the ground state surface in the
latter’s transition state region.

Presumably the reason for the absence of theoretical work on the upper state
surfaces was because experimental work provided little data in this area.
Experiments either did not explicitly look at the reaction of F(*P,,) + H,, or found, in
contrast to some of the theoretical predictions,?®* it to be insignificant compared to
the reaction of ground state fluorine atoms. Neumark et al. concluded that FCP,,)
was unreactive in their cross beam studies of F + H, , HD and D,.* This implies
that non-adiabatic effects in the entrance channel are not large enough, at least at the
collision energies employed in their study (0.68 - 3.42 kcal/mol),** to make this
pathway competitive with the electronically adiabatic ground state reaction. Hepburn
et al. made a crossed molecular beam study of a related system, F + HBr, and
although they observed a significant exit channel non-adiabatic process forming
Br*(*P,,) product from ground state F(P,,) + HBr rather than from F(*P ), they
concluded again that F(*P,,) was unreactive compared to F(*P,,).%*

What do our photoelectron spectra tell us about these excited state surfaces?
The 213 nm results (Figure 7-3) show no additional electronic bands within 2 eV of
the ?Z band except those seen in the 266 nm spectrum appearing at polarization
6=90°. Muckerman’s semi-quantitative correlation diagram predicts that only the two
’[1 states are expected within 6 eV of the ground state. Hence we may confidently
assume that the allowed transitions from the anicn to the ?I1; states are those in the
266 nm spectrum between eKE = 0.5 and 0.9 eV. Now it has been shown that, by

setting the polarization of the laser parallel to the electron collection direction, the
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contribution of the T states may be all but eliminated.® This spectrum may then be

used as a reference spectrum for the ®T band, and we may subtract this spectrum,
appropriately scaled, from the spectrum collected with the perpendicular laser
polarization geometry. Let us assume that feature A (at highest . E) in the normal-
FH,™ spectrum has no contribution from the excited electronic states, and so this peak
is a marker of the contribution of the 2Z,, surface to the photoelectron spectrum for
the scaling procedure in the subtraction.

Figure 7-8 shows the subtracted result which we will assume represents the
spectrum of transitions from the anion to the *[,, ,, states only. The two photon F~
peaks at 1.21 and 1.26 eV appear with relatively large intensity in the difference plot
because the F(*Py, ,,) « F~ transitions also have electron angular distributions
peaked at 8 = 90°. The noise in the region 0.9 - 1.1 eV we assume is due to slight
differences in tke T band shape due to incomplete signal averaging, which is
amplified in the subtraction process. The structure we are interested in lies between
0.5 and 0.9 eV. The band rises fairly sharply at eKE = 0.9 eV, peaks at approximately
0.8 eV and has a full width half maximum (FWHM) of ca. 0.3 eV. We note that the
band is quite asymmetrical.

As described above, potential energy curves have been calculated for the 2I1
state. We may therefore attempt to simulate this photoelectron band using these
potentials. Twully calculated V,, as a function of Rgy, with Ry, fixed at the equilibrium
distance in H, for both spin orbit components. Blais and Truhlar, ignoring the spin
orbit interaction, calculated a valence-bond potential energy surface for the 11 state
and show a potential map as a function of R,.a'Hz and R, for C_,. Subsequent collinear

dynamical calcu'~tions have used a modified form of the Blais-Truhlar surface or DIM
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surfaces. The V|, potentials are essentially non-reactive as they correlate to high

lying, repulsive, states of HF (see Fig. 7-7a). They may be approximated by the

separable function

Vi = VioundRu-d) + VopRe ) @
where V4 is the bound 'Z; potential curve of H, , modelled by, say, a Morse function,
and V,,, is the repulsive interaction of the F atom with H, in a Il configuration. The

repulsive potential can be modelled by an exponential curve fit to each of Tully’s *I1

DIM curves,?®

Vip = Asp €xp(-PByp Rm,z)
(2)
Ve = Ap exp(-Bip Rep) + A
where A = 0.0501 eV, the spin orbit splitting in fluorine,” and V is in units of eV and
RF'Hz in A,

To simulate the photoelectron band we need to calculate the overlap of the
anion ground state wavefunction with the scattering states supported by each *IT
surface. If we assume that electronic and nuclear motions are uncoupled, i.e. ignore
non-adiabatic effects, a relatively simple quantum mechanical calculation using the
potential function given by Eqn. 1 will yield the scattering states for each spin-orbit
surface; a fully coupled collinear calculation would resemble the formalism used by
LePetit.*? A wavepacket propagation in the time domain is formally equivalent to a
time-independent calculation of scattering states, and so, as before,® we adopt this
methodology to perform the simulation of the [T band. The contribution of the *I1

states, and the model we are using to describe it, is very similar to the contribution
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of the F + HO — HF + O(D) reaction to OHF~ spectrum.” In the Franck-Condon

region the V, potentials are fairly repulsive, compared to the *T potential, so the
wavepacket moves quickly out of this region, and only a short propagation time is
necessary. The simulated bands due to the *1,, and *I1,, are shown in Fig. 7-8. In
the simulation we have assumed Simon’s best ab initio geometry, a coupled cluster
CCSD(T) optimized structure (Rpy, = 2.075 A, R,y = 0.770 A), and his MCSCF
harmonic frequencies for the anion.® For V;;, the Morse parameters for V,_, are
derived from the constants in Huber and Herzberg.®®

The first simulation assumes By, = 5.53 A, A, = 3022 eV, B,, = 5.60 A and
A, = 2950 eV in Eqn. 2; these parameters give the best fit to the curves shown in
Figure 2 of Tully’s paper.?® Each has similar shape and the shape reproduces the
experimental band shape in that it rises fairly rapidly at lower scattering energies
(high eKE) and has a longer tail at low eKE. However, it is immediately apparent
that V,,, is not repulsive enough to reproduce the FWHM of the band. The FWHM
in the simulation, for each *I1 component, is only 0.065 eV. Further, the onset of the
band (the high eKE edge) is very close to the F + H, asymptote, and in comparison to
the experimental band is at too high electron kinetic energy. The collision energy
scale, i.e. the energy, E?, above F + H, (v=0), of the calculation is anchored to the

electron energy scale by the formula®

eKE (eV) = 0999 - E© (eV) @)
which assumes a value for the dissociation energy of FH,~ of 0.260 eV.?
The second simulation uses a V,,, that mimics the much more repulsive Blais-
Truhlar potential;*® here we have considered just one Il surface and found A = 68.2

eV and B = 2.40 A by comparison to the contour plot, Figure 2, of Ref. 30. This
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simulated band’s onset is at much lower eKE (0.75 eV) and the band has a much

wider FWHM, 0.41 eV, than the simulations of the DIM-like potentials. This is
clearly at the opposite extreme; the surface is now too repulsive at the anion
geometrical configuration. The third simulation shown is a compromise "fit". It has
simulated bands due to both *M, and 1), surfaces, V,,, has the same form as in
Tully’s plot, but has the correct slope and potential energy at the Franck-Condon, i.e.
anion, F to H, separation. The V,,, curves for this fit potential are shown in Figure
7-7(b) along with the ground state potential. The vertical energy differences from the
%% » to the 2I1,, and *I,, surfaces at the anion geometry are 0.18 eV and 0.21 eV,
using the T5a potential’ for the T and the above "fitted" for *[1. In comparison,
Simons’ @b initio calculation suggested 0.25 eV for the 2Z-*I1 splitting at this
geometry,® whereas Tully’s DIM curves suggest 0.01 eV and 0.06 eV separation from
the %L, to the I1,, and *I1,, respectively.”® Wright gives the *Z-’I1 separation at the
lower’s saddle point geometry is ca. 0.78 eV.*®* The simulated bands in Figure 7-8(c)
are separated by 0.03 eV at the band maximum and the band FWHM for the *1,, and
1,, are 0.23 and 0.21 eV respectively. The sum of the two simulated bands
approximately reproduces the whole unresolved band in our expezrimental spectrum.

All simulations show a small bump at lowest eKE’s in both spin orbit
components. The bump is due to overlap with states correlating to H, (v=1); there
is overlap to these vibrationally excited states because the anion has a slightly
elongated H-H bond, and the valleys in the V; surfaces have R set at equilibrium
H,. The intensity of this band depends on two factors, the degree of H-H elongation
in the anion and on the anharmonicity assumed along the H-H stretch in the anion.

It seems reasonable to expect o,x, for this mode to be at least as large in the anion
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as it is for free H,, which we have assumed in the simulation, and it is most likely
larger (which would yield more intensity in the v=1 bump). This may account for
some of the signal extending out to low eKE’s in the experimental difference plot.

The important result here is that the IT surfaces rise more steeply in the
interaction region than predicted by the diatomics-in-molecules (DIM) approach, and
we have determined a more realistic form for the potentials. It may now be possible
to estimate, with somewhat more certainty, the non-adiabatic coupling between the
three surfaces in the entrance valley, and once again assess the reactivity of F(P,,)
with H,.

5. Summary

In this work we have shown that there are pronounced differences in the
ground state photoelectron band of FH,~ when synthesized from norr~al and para
hydrogen. This has been rationalized in terms of the nuclear spin restrictions on the
anion wavefunction. Three dimensional quantum scattering results employing the
T5a surface are compared to the experimental spectra. There are likewise strong
differences in the theoretical Franck Condon overlaps to ortho and para parity states.
It should be restated that the previous comparisons of quantum scattering calculations
(which used only the pare symmetry states) with the normal-FH,™ spectrum were
erroneous. When we make the correct comparison, the agreement between the theory
and experiment is not as good as we originally had thought. The same considerations
should be taken into account for the published comparison of the three-dimensional
Franck Condon overlaps and the experimental spectrum for normal-FD,”* New

simulations for the photoelectron spectrum of normal-FD, (1:2 para: ortho), as well
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as a calculation on FDH™, where there have been none to date, would be useful in

determining where the discrepancies between theory and experiment lie.

Quantitative consideration of the excited state bands, assigned to the *[1,, and
’[1,, states, has been made here, and collinear simulations have allowed the
determination of the shape of these potential curves along the R 1, coordinate in the
interaction region. We hope this will stimulate some ab initio work on characterizing
these surfaces, and their non-adiabatic coupling to the ground state surface.

There is clearly much still to learn about the F + H, reaction, and our
photoelectron experiments have brought a new dimension into the fitting of the
potential surfaces, both in the transition state region for the ground reaction surface
and in the inner regions of the upper non-reactive surfaces. Further experiments to
extract even more detail are possible. Zero electron kinetic energy (ZEKE)
photodetachment spectra, with an attainable resolution of 5 c¢m™?, would be
particularly useful for this transition state system. As the feature A in the normal-
FH,™ spectrum is quite narrow, a more concrete assignment of the FH,™ internal
states giving rise to the peaks in this region should be possible in a ZEKE spectrum.

One of the most serious limitations in deriving hard information about the
neutral potential energy surfaces from our photoelectron spectra is the absence of high
quality data on the anion precursor, notably the cluster dissociation energy, the
equilibrium structure and the anion vibrational levels. Ab initio calculations are used
extensively in the place of high resolution spectroscopic data. However, various
‘consequence’, or ’action’, spectroscopies could be applied on a mass-selected ion beam
to perform, for example, vibrational spectroscopy. One final experimental approach,

that is being pursued in our laboratory, is to attempt photoelectron spectroscopy of
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selectively-prepared vibrationally excited negative ions. This idea has already been
outlined in Chapter 1. In Chapter 5 we saw that the photoelectron spectra of AHB~
ions in the v, = 1 quantum state reveals very different information about the neutral
reaction surface. For FH,~, pumping one quantum in the H, stretching mode, e.g. via
a stimulated Raman process,*® would allow overlap with a very different part of the
%% reaction surface. Although a quantum of vibrational energy in the H, stretch
exceeds the calculated ion dissociation energy, the vibrational predissociation lifetime
may be longer than the time for the excited molecule to interact with the

photodetachment photon.
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Figure Captions for Chapter 7

Figure 7-1.

Figure 7-2.

Figure 7-3.

Figure 7-4.

Plot of F + H, —» HF + H ground state reaction surface with the FH,~
ground vibrational state wavefunction shown shaded. The contours for
the neutral potential surface are determined from the T5a potential
function of ref. 7. The saddle point (Rpy, = 1.953 A Ry, =0.762 A) is
marked with a cross. The anion wavefunction assumes the ab initio
CCSD(T) equilibrium geometry (Rg, = 2.075 AandR;; =0.770 A) and
MCSCF harmonic frequencies of Nichols et al. (ref. 6); the ellipse
represents the 90% probability limits of the wavefunction. The axes for
the plot are massed scaled Jacobi coordinates: x = (upy, / qu)"" Rep,
and y = Ry . The skew angle for FH, is 46°.

Photoelectron spectra of FH,™ at 266 nm. (Top) Ions made from
normal-H, (3:1 ortho/ para), and (Bottom) ions made from para-H,.
Spectra recorded at two polarizations of the photodetachment laser:
(Left) parallel [6 = 0°] and (Right) perpendicular [6 = 90°] to direction
of electron collection.

Photoelectron spectra of FH, ™, made from normal-H,, at 213 nm. (Top)
polarization parallel (8 = 0°) and (Bottom) perpendicular (6 = 90°) to
direction of electron collection.

Correlation diagram for bend/ hindered rotor energy levels of FH,~.
Labels J and M correspond to the free rotor total angular momentum
and its projection on the body fixed axis; v, and ¢ are the vibrational
quantum number and the vibrational angular momentum for the

degenerate linear bend. The solid lines indicate vibrational states that



Figure 7-5.

Figure 7-6.

Figure 7-7.
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are symmetric with respect to H nuclei permutation, the dashed lines

for antisymmetric states. Figure adapted from that for Ar..O, from Ref.
14.

(a) Three dimensional simulation (thin line) of FH,™ photoelectron
spectrum, considering only symmetric permutation states, of Zhang and
Miller (Ref. 4) compared to 6 = 0° FH,~ (para-H,) experimental spectra
(solid line). (b) Three dimensional simulation (thin line) of FH,~
photoelectron spectrum, considering both symmetric and antisymmetric
permutation states, of Manolopoulos (Ref. 18) compared to the 8 = 0°
FH,™(normal-H,) experimental spectrum. The simulation is a weighted
sum of transitions to ortho and para states. Both calculations assume
the same anion and neutral parameters.

Highest molecular orbitals for FH,~, showing the 30, the 1x and the 40,
all of which are fully occupied in the anion. Detachment (removal) of
an electron from the 46 accesses the T reaction surface of F + H,,
whereas detachment from the 1n accesses the upper *I1 surfaces. The
molecular orbitals are the optimized MP2/6-31++G** orbitals evaluated
at the computed equilibrium structure for the FH,™ ion at the same
level of theory.

(a) Electronic correlation diagram for F + H,. (b) The variation of
potential energy for the three lowest lying electronic states of FH, as a
function of the F to H, distance. Lowest curve (®Z,,) is calculated from
the T5a surface (Ref. 7), upper *I1,, ,,, surfaces are those calculated to

best fit difference spectrum Figure 7-8 (see text).



284
Figure 7-8. (a) Difference plot of the 266 nm normal-H, spectra. Here the 6 = 0°

spectrum has been scaled and subtracted from the 6 = 90° spectrum to
yield the band due to transitions from the anion to the ?[1,, and *1,,
FH, states. (b)-(d) Collinear simulations of the *IT bands described in
text. Parameters in V,, used for simulations are chosen to (b)
approximate DIM curves of Ref. 28, (c) approximate Blais-Truhlar
surface, Ref. 25 and 30, and (d) yield a fit to photoelectron band (a). In
simulations (b) and (d) transitions to both spin orbit components of the
’I1 state have been considered, and are assumed to have equal
transition probability (dashed and dot-dashed lines). The sum of the

two sub-bands are shown by the solid line.
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Figure 7-1
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Appendix A. Propensities in photoelectron angular distributions for

linear molecular anions
The following table indicates whether the intensity in the photoelectron bands
of the following negative ions favors a sin0 (intensity peaked around 6,_,, = 0°, B < 0)

or cos®0 (6,,, = 90°, B > 0) distribution.

Linear negative ions listed by molecular point group.

Ion Anion MO 0 max Neutral electronic
Electronic removed state
State
C..
FH,~ g+ 5] 0 ). (@M
x 90 ACIT)
BrHI- 3+ c 0 XCzH !
n 90 ACIT)
OHF- i c 90 X¢Cm)
T 0 a('a)
CN- Iz+ o 0 X2z
n 90 ACI)
NCS- I3+ 7 90 X
NCO- g+ n 90 X
NO- 8y n 90 X(31I)
n 90 a(*IT)

1

At 213 nm the X state intensity is approx. same at both 6 = 0° and 6 = 90°.
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Ion Anion MO 0 ax Neutral electronic
Electronic removed state
State
D.,
IHI- ' o, 0 X(z,")*
m, 90 ACTL)
X(‘"’Zg')
0, i, . 90 a(’a)
b(’Zg*)

N.B. All transitions in D_, that remove a &, electron are forbidden in ZEKE.

2

213 nm; at 266 nm the absolute counts are higher for 6=90° to the ground 2T * state

than at 6 = 0°.
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Appendix B. Calibration and Background Subroutines for
experimental code TENURE.
1. Introduction

These subroutines represent the’ part of the data acquisition code, TENURE,
which deal with energy scale caiibféﬁon and the fitting and subtraction of background
spectra. The TENURE program is used to control data acquisition on the Neumark
group photoelectron spectrometer. The calib2.pas routine is a completely revised
version of the calibration routine found, along with the remainder of the TENURE

source code, in the thesis of Dr. R. B. Metz. Fourier transformation and Wiener

filtering is implemented in the subroutines ftshort.pas and fourl.pas to smooth

background spectra. Subtraction of the smoothed background is performed by the
scale.pas subroutine. The source is written entirely in PASCAL and is suitable for
compilation in the Borland Turbo Pascal 3.0 environment.

The use of, and principles behind, these two procedures are described in
Chapter 2. Calibration is invoked with the <ALT>-C combination from within the
TENURE program. The user is prompted for the detachment laser wavelength he or
she wishes to calibrate. The time-of-flight, uncertainty and ion beam energy
information is entered for each calibration line. A linear or quadratic fit to these
calibration points is performed; the fitting parameters and indicators of the fit quality
are output. The user is then asked whether he/ she accepts the fit. If so the entered
calibrant informatién is saved to disk and the fitted parameters become the current
ones used for time-of-flight to electron kinetic energy conversion in the main program.

The fitting of a background spectrum with the Fourier/ Wiener filtering
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routines is activated by the <ALT>-F combination. The time-of-flight dataset

currently active is fast Fourier transformed and saved to disk (FOURTR.DAT). The
user then selects a Lorentzian filter function for the Wiener filtering by entering a
half-width in number of channels: typically 15 gives good filtering. If this filter
results in too much smoothing of the background, the Lorentzian filter width should
be increased. After multiplication by the filter the Fourier dataset is back
transformed into time-of-flight; the filtered dataset may then be stored at this point.
The subsequent scaling and subtraction of the now smoothed background spectrum
from one (or many) time-of-flight photoelectron dataset(s) is achieved with the <ALT>-

N combination.

2. Source Listing
calib2.pas

(*Define some statistical routines from Numerical Recipes*)

(* These are for Linear Regression *)
FUNCTION gammln(xx: real): real;

CONST
stp = 2.50662827465;
half = 0.5;
one = 1.0;
fpf = 5.5;
VAR

X, tmp, ser: double;

i: integer;

cof: ARRAY [1..6] OF double;
BEGIN

cof[l] := 76.18009173;
cof(2] := -86.50532033;
cof[3] := 24.01409822;
coff4] := -1.,231739516;
cof[5] := 0.120858003e-2;
cof (6] := -0.536382e-5;
X = XXx-one;
tmp := x+fpf;
tmp := (x+half)*ln{(tmp)-tmp;
ser := one;
FOR j := 1 to 6 DO BEGIN

X = x+one;

ser := ser+cof([j)/x
END;
gammln := sngl (tmp+ln{stp*ser))
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PROCEDURE gcf (a,x: real; VAR gammcf,gln: real);
LABEL 1;
CONST
itmax=100;
eps=3.0e-7;
VAR
n: integer;
gold, g, fac,bl,bl0,anf,ana,,an,al,al: real;

BEGIN

gln := gammln(a);

gold := 0.0;

a0 := 1.0;

al := x;

b0 := 0.0;

bl := 1.0;

fac := 1.0;

FOR n := 1 to itmax DO BEGIN
an := 1.0*n;
ana := an-a;
a0 := (al+aO*ana)*fac;
b0 := (bl+b0O*ana) *fac;
anf := an*fac;
al := x*aO+anf*al;

bl := x*bO+anf*bl;
IF (al <> 0.0) THEN BEGIN
fac := 1.0/al;

g := bl*fac;
IF (abs{(g-gold)/g) < eps) THEN GOTO 1;
gold := g
END
END;
writeln('pause in GCF - a too large, itmax too small’); readln;
1: gammcf := exp(-x+a*ln(x)=-gln)*g
END;
PROCEDURE gser(a,x: real; VAR gamser,gln: real);
LABEL 1:;
CONST
itmax=100;
eps=3,0e-7;
VAR

n: integer;
sum,del, ap: real;
BEGIN
gln := gammln{a);
IF (x <= 0.0) THEN BEGIN
IF (x < 0.0) THEN BEGIN
writeln(’'pause in GSER - x less than 0’); readln

END; '
amser := 0.0
END ELSE BEGIN
ap := a;
sum := 1.0/a;
del := sum;

FOR n := 1 to itmax DO BEGIN
ap := ap+1.0;
del := del*x/ap:

sum := sum+del;
IF (abs(del) < abs(sum)*eps) THEN GOTO 1
END;
writeln(’'pause in GSER - a too large, itmax too small’); readln;
1: gamser := sum*exp(-x+a*ln(x)-gln)
END
END;

FUNCTION gammg(a,x: real): real;
VAR

gamser,gln: real;
BEGIN
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IF ((x < 0.0) OR (a <= 0.0)) THEN BEGIN
writeln(’'pause in GAMMQ - invalid arguments’); readln
END;
IF (x < a+1.0) THEN BEGIN
gser (a, X, gamser,gln);
gammq := 1l,0-gamser
END ELSE BEGIN
gcf (a,%x,gamser,gln);
gammq := gamser
END
END;

PROCEDURE fit(x,y: glndata; ndata: integer; sig: glndata; mwt: integer;
VAR a,b,siga,sigb,chi2,q: real):
(* LINEAR REGRESSION FIT - Numerical Recipes *)

(* Programs using routine FIT must define the type

TYPE

glndata = ARRAY [l..ndata] OF real;
in the main routine. *)
VAR

i: integer;

wt,t,sy, sxoss, sx,st2,ss,sigdat: real;
BEGIN

sx := 0.0;

sy := 0.0;

st2 := 0.0;

b := 0.0;

IF (mwt <> 0)THEN BEGIN

ss := 0.0;

FOR i := 1 to ndata DO BEGIN
wt := 1.0/sqr(sig(i));
SS := SS+wt;
SX = sx+x[i]*wt;
sy := sy+y[i)*w=
END

END ELSE BEGIN
FOR i := 1 to ndata DO BEGIN
sX = sx+x[i);
sy := sy+y[i]
END;
ss := ndata
END;
SXOSSs := SX/ss;
IF (mwt <> O)THEN BEGIN
FOR i := 1 to ndata DO BEGIN
t = (x[i)-sxoss)/sigii);
St2 := St2+t*t;
b := b+t*y[il/sig[i)
END
END ELSE BEGIN
FOR i := 1 to ndata DO BEGIN
t := x[i]-sxoss;
ST2 = St2+t*t;
b := b+t*y[i]
END
END;
b := b/st2;
a := (sy-sx*bj/ss;
siga := sqrt((1.0+sx*sx/(ss*st2))/ss);
sigb := sqrt(l1.0/st2);
chi2 := 0.0;
IF (mwt = 0)THEN BEGIN
FOR i := 1 to ndata DO BEGIN
chi2 := chi2+sqgr(y[i)-a-b*x[i])
END;
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q :=1.0;
sigdat := sqrc(chi2/(ndata-2));
siga := siga*sigdat;

sigb := sigb*sigdat
END ELSE BEGIN
FOR i := 1 to ndata DO BEGIN
chi2 := chi2+sqr((yli)l-a-b*x(i))/siglil])
END;
q := gammqg(0.5* (ndata-2),0.5*chi2)

(* The next three are for Generalized Least Squares fitting *)

PROCEDURE gaussj(VAR a: glcovar; n,np: integer;
VAR b: glnpbymp; m,mp: integer);
(* Programs using GAUSSJ must define the types
TYPE
glnpbynp = ARRAY [1l..np,1l..np] OF real;
glnpbymp = ARRAY [1l..np,l..mp] OF real;
glnp = ARRAY [l..np] OF integer;
in the main routine. *)
VAR
big,dum,pivinv: real;
i,icol,irow,j, k,1,11: integer;
indxc, indxr, ipiv: glnp;
BEGIN
FOR j := 1 to n DO BEGIN
ipiv([j] := 0
END;
FOR i := 1 to n DO BEGIN
big : 0;
FOR j
IF (ipiv(3) <> 1) THEN BEGIN

1 to n DO BEGIN

0.
i
FOR k := 1 to n DO BEGIN
IF (ipiv(k] = 0) THEN BEGIN
IF (abs(al{j,k]) >= big) THEN BEGIN
big := abs(alj,k]):
irow := j;
icol := k
END
END ELSE IF (ipiv[k] > 1) THEN BEGIN
writeln('pause 1 in GAUSSJ - singular matrix’); readln
END
END
END
END;
ipiviicol] := ipiv{icoll)+l;
IF (irow <> icol) THEN BEGIN
FOR 1 := 1 to n DO BEGIN
dum := afirow,1l};
alirow,1l) := alicol,l]);
alicol,l] := dum
END;
FOR 1 := 1 to m DO BEGIN
dum := blirow,1]:
blirow,1l) := blicol,1l};
blicel,l] := dum

END
END;
indxr(i] := irow;
indxc(i] := icol;
IF (alicol,icol] = 0.0) THEN BEGIN
. Dwriteln('pause 2 in GAUSSJ - singular matrix’); readln
ND;
pivinv := 1.0/alicol,icol];
alicol,icol) := 1.0;

FOR 1 := 1 to n DO BEGIN
alicol,l] := alicol,l)*pivinv



END;

FOR 1 := 1 to m DO BEGIN
bl{icol,1l] := blicol,1l])*pivinv

END;

FOR 11 := 1 to n DO BEGIN
IF (11 <> icol) THEN BEGIN
dum := alll,icol];
alll,icol])] := 0.0;
FOR 1 := to n DO BEGIN
alll,l} := a[ll,ll-alicol,l]*dum
END;
FOR 1 := 1 to m DO BEGIN
b{11l,1} := b[ll,1l]-bl{icol,1l]*dum
END
END
END
END;
FOR 1 := n DOWNTC 1 DO BEGIN
IF (indxr(l] <> indxc(l]) THEN BEGIN
FOR k := 1 to n DO BEGIN

dum := alk,indxr(1l]]);
alk,indxr{l})] := alk,indxc(1l]]:
alk,indxc{l]] := dum
END
END
END

END;

PROCEDURE covsrt (VAR covar: glcovar; ncvm: integer; ma:

lista: gllista; mfit: integer);

(* Programs using routine COVSRT must define the types
TYPE

glcovar = ARRAY [l..ncvm,l..ncvm] OF real;

gllista = ARRAY [l..mfit]) OF integer;
in the calling program. *)
VAR

jei: integer;

swap: real;
BEGIN

FOR J :

FOR

[

= 1 to ma-1 DO BEGIN
i := j+1 to ma DO BEGIN
covar(i, j} := 0.0
END
END;
FOR i := 1 to mfit-1 DO BEGIN
FOR j := i+l to mfit DO BEGIN
IF (listalj) > lista{i)) THEN BEGIN
covar[lista{j},lista[i]] := covarli, j)
END ELSE BEGIN
covar[lista[i),lista(j)]) := covarl(i,j]
END
END
END;
swap := covar(l,1];
FOR j := 1 to ma DO BEGIN
covar(l,j] := covar(j,jl:
covar(j,j] := 0.0
END;
covar[lista(l],listal(l)] := swap:
FOR j := 2 to mfit DO BEGIN
covar {lista(j),1lista(j]}} := covar(l,j)
END;
FOR j := 2 to ma DO BEGIN
FOR i := 1 to j-1 DO BEGIN
covar(i, j)] := covarlj,i)
END
END
END;

integer;
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(* The supplied function that generates polynomial basis functions
for Generalized least squares fit *)

procedure funcs(x: real;VAR afunc: glmma; ma : integer);
BEGIN

afunc(l] := 1; afunc(2] := x; afunc(3] := sqr(x);
END;

PROCEDURE 1fit(x,y,sig: glndata; ndata: integer; VAR a: glmma; mma: integer;
lista: gllista; mfit: integer; VAR covar: glcovar;
ncvm: integer; VAR chisq: real):;

(* Programs using routine LFIT must define the types
TYPE
glndata = ARRAY [l..ndata)] OF real;
glmma = ARRAY (l..mma) OF real;
gllista ARRAY [1..mma] OF integer;
glcovar ARRAY [l..ncvm,l..ncvm) OF real;
glnpbymp = ARRAY (l..ncvm,1..1] OF real;
in the main routine. *)
VAR
k.kk,j,ihit,i: integer:;
ym,wt, sum,sig2i: real;
beta: glnpbymp;
afunc: glmma;
BEGIN
kk := mfit+1;
FOR j := 1 to mma DO BEGIN
ihit := 0;
FOR k := 1 to mfit DO BEGIN
IF (listalk] = j) THEN ihit := ihit+l

[}

END;

IF (ihit = 0) THEN BEGIN
lista{kk] := J;
kk := kk+1

END ELSE IF (ihit > 1) THEN BEGIN
writeln(‘pause in routine LFIT');
writeln(’improper permutation in LISTA’); readln
END
END;
IF (kk <> {(mma+l)) THEN BEGIN
writeln(’'pause in routine LFIT’);
writeln(’improper permutation in LISTA’); readln
END;
FOR j := 1 to mfit DO BEGIN
FOR k := 1 to mfit DO BEGIN
covar(j,k] := 0.0
END;
beta(j,1] := 0.0
END;
FOR i := 1 to ndata DO BEGIN
funcs(x{i],afunc,mma);
ym = y[il;
IF (mfit < mma) THEN BEGIN

FOR j := (mfit+1l) to mma DO BEGIN
ym := ym—allista[j]])*afunc(listalj]]
END
END;
sig2i := 1.0/sqr(sigli)):
FOR j := 1 to mfit DO BEGIN
wt := afunc(lista(j]l)*sig2i;
FOR k := 1 to j DO BEGIN
covar|[j,k] := covar[j,k)+wt*afunc(listalk]]
END;
beta{j,1] := betal(j,1l)+ym*wt
END
END;

IF (mfit > 1) THEN BEGIN
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FOR j := 2 to mfit DO BEGIN
FOR k := 1 to j-1 DO BEGIN
covar [k, j] := covar(j, k]
END
END
END;
gaussj(covar,mfit, ncvm,beta,1,1);
FOR j := 1 to mfit DO BEGIN

a(lista(j)] := betalj,1]
END;
chisq := 0.0;
FOR i := 1 to ndata DO BEGIN

funcs(x{i),afunc,mma);
sum := 0.0;
FOR j := 1 to mma DO BEGIN

sum := sum+a[j]*afunc(j]
END;
chisq := chisqg+sqr{(y(i)~-sum)/sig(i}])
END;
covsrt (covar,ncvm, mma, lista, mfit)
END;

('k KRAKKR AR A AR AN A NA AR R K AR KRN KRR ARKRKRRRRRNARARRRR AR Kk k *)

(* Now for main calibration routine *)
(* S. E. Bradforth 1988; revised 5/91, and 8/92 *)

procedure calib;

VAR

ques:string(l];

wavelength:integer;

wavestr: string(3]:

ndata,ndataold,mwt, i, count:integer;

cm,tt,temp, tempsig, tempFloat, temptime,tempspace, rmserr:real;

a,b,c,chi2,q,siga,sigb,sigc: real;

X,y,e,float,t,sig,sqg,m, sp,Ecalc: glndata;

j: text;

(* The following variables are for the generalized least squares routine ¥*)

covar: glcovar; (* Covariance matrix *)

aa: glmma; (* Vector of paramters solved for *)

listaa: gllista; (* List of parameters to vary *)

ma, mfit, ncvm: integer; (* number of parameters, number to fit and
dimension size of covariance matrix *)

BEGIN
writeln(’Least Squares Fitting of Energy vs. TOF dataset’);
writeln(’'All times should be from Time-of-flight display screen’);
gotoxy(1l,4);
Wavelength:=213; (*Default*)
write (‘Laser wavelength you wish to calibrate (213,266,299,355 nm available)
? ’,Wavelength);
gotoxy(73,4);
readln(Wavelength);
gotoxy(1l,6);
writeln(’ ’:7,'Mass’,’ *:3,’Energy (eV)’,’ *:3,'Time (ns)’,’ *:4,'error
(ns)’,’ *:4,'Float (V)’,’ ’:2,'Shift {(meV)’);
wavestr:=’ '
str (wavelength,wavestr);
If Exist(’calib.’+ wavestr) = FALSE THEN
BEGIN
writeln(’Not available’);
Delay(1000);
END ELSE
BEGIN
assign(j,’calib.’+ wavestr); reset(j);
read(j, ndata);



writeln;
FOR i:= 1 To ndata DO
BEGIN
read(j,T(i),E(i]),sig(i},M[i]),Float[i]);
gotoxy (8, 7+1); write(M[i):5:1);
gotoxy (17, 7+1i); write(E[i]:7:5);
gotoxy (30, 7+i); write(T[i]:6:1);
gotoxy (41, 7+1i); write(sig[i]l:6:1);
gotoxy (58, 7+i); write(Float[i):6:1);
spli]:=0.0;
IF (M[i) = 26.0) OR (M[i]) = 30.0) THEN
BEGIN
gotoxy (70, 7+i); write(0.0:4:1);
END;
writeln;
END;
Close(]):
writeln;
writeln(’Set Error Bar = 1000 to ignore data point’);
gotoxy (1, 7+ndata+3);
write ('EDIT - Return for no change, Typover for new value. Do not use
cursor keys!’);

(* Edit line by line the elements, T[i], Sig{i] and Float[i] *)
REPEAT
FOR i:= 1 to ndata DO
BEGIN

(* Time element first x*)

temptime:=0;

gotoxy (30, 7+1i);

readln (temptime);

IF (temptime<>0) AND (temptime<>-1) THEN BEGIN

T[i):=temptime;

END;

IF temptime=-1 THEN

BEGIN
IF sig{i}=1000 THEN sig[i):=2.5 ELSE sig[i]:=1000;
gotoxy (41, 7+i); write(sig(i]:6:1);

END;

gotoxy (30, 7+1i); write(T[i]:6:1);

(* Sigma element next *)
tempsig:=0;
gotoxy (41, 7+1);
readln(tempsiqg);
IF (tempsig <> 0) AND (tempsig < 1001) THEN sig[i]:=tempsig;
gotoxy (41, 7+1i); write(sig(i):6:1);

(* Float element last; Float is defined as the float voltage plus one

half the extraction voltage of the ion beam when running the

calibrant line photoelectron spectrum*)
tempFloat:=0;
gotoxy (58, 7+1i) ;
readln (tempFloat);
IF (tempFloat > 0) AND (tempFloat < 2500) THEN Float{i}:= tempFloat:;
gotoxy (58, 7+1i); write(Float(i]:6:1);

(* IF calibrant is CN- or NO- allow a space charge correction to the
expected electron energy *)

IF (M[i] = 26.0) OR (M[i] = 30.0) THEN

BEGIN

tempspace := 0.0;

gotoxy (70, 7+1i); readln(tempspace);

IF (tempspace > 0 ) AND (tempspace < 100.0) THEN
spli) :=tempspace/1000.0;

gotoxy (70, 7+1i); write(sp([i)*1000:4:1);

END;

END; {(* next data point *)
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gotoxy(l, 7+ndata+4);
write('All correct ? n');
gotoxy(15,WhereY);
read(ques);
UNTIL (ques='y’) OR (ques='Y’);

writeln;
count :=0;
FOR i:= 1 To ndata DO
BEGIN
IF sig[i]<>1000 THEN
BEGIN
count:=count+1;
cm:=Float [i)*5.485802e-04;

(* sp{i] is the space charge correction to the expected eKE *)
X([count] :=1.0/(sqrt(E[{i]+sp(i)-cm/M(i]));
Y{count]:=T[i]:
sglcount] :=sig[i];

END;
END;
ndataold:=ndata;
ndata:=count.;

(* Now fit the X-Y data to a linear or quadratic model *)

IF ndata<3 THEN
BEGIN
writeln('Too few datapoints, need at least three to do a linear
regression.’);
Delay (2000},
END ELSE
BEGIN
writeln;
write(’Choose (L)inear or (Q)uadratic fit (L/Q) ? : *);
readln(ques);
IF (ques=’'Q’) OR (ques=‘qg’) THEN

BEGIN :

writeln{’Quadratic calibration fit; Generalized linear least squares’);
writeln;

write(’Vary Quadratic compression factor (gamma) ? (Y/N) : ’);

rtest2:='";
readln(rtest2);
IF (rtest2 = 'y’) OR (rtest2 = 'Y’) THEN
BEGIN
ma:=3;
mfit:=3;
listaa([3]:=3;
END ELSE
BEGIN
REPEAT
write('Enter value to fix gamma at during fit; gamma = ’);
c:=0.0;
readln(c);
UNTIL (c < 200.0) AND (c > -200.0);

aa{3):=c;
ma:=3;
mfit:=2;
listaa(3]:=0;
END;
listaa{l]l:=1; listaal(2):=2;
ncvm:=3;

(* AA is returned with the values of a, b, and c¢; the fitted parameters
COVAR has the 3x3 covariance matrix, and chisg is the chi squared for
the Quadratic Least Squares fit *)

lfit(x,y,sig,ndata,aa,ma,listaa, mfit,covar,ncvm,chi2);
writeln;

writeln(’Quadratic least squares fit, using uncertainties as supplied’);
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siga:=sqgrt(covar[l,1]);
sigb:=sqrt{covar(2,2});
sigc:=sqrt(covar(3,31);

a:=aalll;

b:=aal2];

c:=aal3];

q:= gammq(0.5* (ndata-mfit), 0.5*chi2);
writeln(’ ’:5,'a= ’,a:13:6," ':6,'uncert.
writeln({’ ’:5,'b= *,b:13:6,’ ’':6,'uncert.
writeln(’ ':5,'c= ’,c:13:6,’ ':6,'uncert.
writeln(’ ’',’chisg= ’',chi2:13:6,' ':6,'for
writeln(’Goodness of fit (Q) = ’,q:8:4);

*,siga:9:6);
' ,sigb:9:6);
',8igc:9:6);
' ,ndata,’ datapoints’);

writeln;
writeln('TO
writeln('l
", {sigb*5.93094e-02):6:2);
writeln(‘gamma = ',c:6:2,’ eV.ns +/-', sigc:6:2);
{Fit is to curve of the form t = tzero + b sqrt(1/E-DELTAE) + gamma/(E-DELTAE) )

r,2:6:2,’” ns +/~ ',siga:6
c

:2);
', (b*5,93094e-02):6:2,’ cm +/-

END ELSE (* End of quadratic calibration fit *)

BEGIN
mwt:=1; (* Use the uncertainties in sig vector for the linear fit *)
fit(x,y,ndata,sg,mwt,a,b,siga,sigb,chi2, q);
(* set the quadratic factor to zero, as not fitted for here! *)
c:= 0.0; sigc:=0.0;
writeln;
writeln(’Linear least squares fit using uncertainties as supplied’);
writeln(’ ’':5,%a= ’,a:13:6,' ':6,'uncert.= ’,siga:9:6);
writeln(’ :5,’b= ?,b:13:6,' ’':6,'uncert.= ’,sigb:9:6);
writeln(’ ’,’chisq= ’',chi2:13:6,’ ’:6,'for ’',ndata,’ datapoints’);
writeln(’/Goodness of fit (Q) = ’,q:8:4);
writeln;
writeln(’TO ',a:6:2,’ ns +/- !',siga:6:2);
writeln(’1l r, (b*5,93094e-02):6:2,' cm +/- ', (sigb*5.93094e-02):6:2);
{Fit is to line of the form t = tzero + K sqrt(1/E-DELTAE)}
END; (* ques = 'L’ ¥*)

[

writeln;
writeln(’The following makes permanent any changes you made to the
calibrant file’);
writeln(’and passes these fitted calibration parameters through to main
program’) ;
write(’Use these calibration parameters 2?2 f);
rtest2:='";
readln(rtest2);
IF (rtest2 = 'y’') OR (rtest2 = 'Y’) THEN
BEGIN
Param(10] .Value:= a; {(New TO}
Param(11].Value:=(b*5.93094e-04)*100.0; {New length 1}
Param[13]).Value:=c; {New quadratic compression factor}
PulseDelay := Param[10]).Value + 40.0;
PulseSlope 284.3174 * Sgr(Param(ll].Value);

[

(* Write back to calibrant file *)

assign(j,’calib.’+ wavestr);

rewrite (j);

writeln(j,ndataold);

FOR i:= 1 To ndataold DO

BEGIN

writeln(j,T(i):6:1,’ *:3,E[i):7:5,* ":3,sig[i}:6:1,’

r:3,M[i):5:1," ":3,Float(i):6:1);

END;

Close (J);

(* Now Check on fit *)

writeln(‘With these parameters, the fit is as follows:’);
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writeln(’’);

writeln(’ Mass’,’ ':4,'Exact ‘,’ r,'Calib. *,* Deviation’,’
Ignored’) ;

writeln(’ ’:9,'Energy Energy’);

rmserr:=0.0;

FOR i:= 1 To ndataold DO
BEGIN
IF (ques='Q’) OR (ques=’'qg’) THEN
{* As calibration numbers are from tof display,
they have not been corrected by 40.0 ns, Thus do not use PulseDelay
but Param(10].Value directly for TO here *)
BEGIN
cm:=Float [i]*5.485802e-04;
tt:=(T[i]-Param(10].Value);
temp:= (PulseSlope + 2*tt*c +
sqrt (PulseSlope* (PulseSlope+4*c*tt)) ) / (2*sqr(tt));
Ecalc[i):= temp + em/M[i];
END ELSE
BEGIN
cm:=Float {i]*5.485802e-04;
Ecalc(i):=PulseSlope/sqgr(T[i]-Param(10].Value) + cm/M[i];
END;

IF sig[i}<> 1000 THEN
BEGIN
writeln(M(i):6:1,’ 7:3,E[i)+sp[i):5:3,’ ’:5,Ecalc[i]:5:3,’
f:4,E[li)+sp[il-Ecalc[i):6:3);
rmserr:=rmserr + sqr(E[il+spli]l-Ecalc(i]);
END
ELSE BEGIN
writeln(M{i):6:1,’ ":3,E[i)+sp[i]):5:3,’ *:5,Ecalc({i}:5:3,°
":4,E[i]+sp[i]-Ecalc(i):6:3," ':7, *x*xxr),;
END;

END; (* FOR *)

rmserr:=sqrt (rmserr/ndata);

writeln(’');

writeln (’Root Mean Square Deviation = ’,rmserr:6:4,’ eV‘);
writeln("');

write(’<Press Any Key to continue>’);

WHILE NOT KeyPressed do

END; (*'If reest2 = y *)
end; {else part of if ndata<3 }
END; (* ELSE file exists *)
END;

ftshort.pas

(*Fourier transfomation on time of flight spectrum, expects <1024 point
datafile*)
procedure ftfit (var totdata : rmbuf);

const
nn=1024;
nn2=2048;
nn3=512;
nn4=513;

var
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i,ii : integer;
data : gldarray:
avg : real;
olddir : Bufstring;
TYPE
BufString = String(50]};
parray = arrayl(l..nnd) of real;

Procedure WriteFilea(writedata : rmbuf);
(* write data file. *)

var
FileVar : text;
i : integer;
FileName,0ldDir : bufstring;
NewFormat : boolean;

begin
write (" Name of output file (data\noise\NAME.dat) : ’);
readln(FileName);
CheckDir (FileName) ;
Assign(FileVar,FileName);
Rewrite (FileVar);
writeln(FileVar,’'A’);
writeln(filevar,round(Param(4].Value));
writeln(filevar,round(Param(3].Value));
writeln(filevar,round(Param{2].Value));
writeln(filevar,’1’); (*Marker to indicate smoothed file*)}
writeln(filevar,round(Param([5].Value));
writeln(filevar,round(Param(10].Value));
writeln(filevar,round(Param{ll).Value));
for i:= 1 to round(Param(3).Value) do
begin

writeln(FileVar,writedata{i):0:1);

end;
Close (FileVar):
Writeln (' ');
Writeln(i,’ Data Points written’);

end; { procedure }

Procedure WriteFour;
VAR
FileVar :text [$800];
i : integer;
BEGIN
assign (FileVar,’'FOURTR.DAT’);
rewrite(FileVar);
For i:=1 to nn2 do
Writeln(FileVar,datalil):
Close(FileVar);
END;

PROCEDURE ReadFour:
VAR

FileVar : text([$800);

i: integer:;
BEGIN

assign (FileVar,'FOURTR.DAT');

reset {FileVar);

For i:=1 to nn2 do

Readln(FileVar,data({i]);

Close(FileVar) .
END;

Procedure Fourierl;

var
i,Thecase,ii,io,cutl,cuto : integer;
Noise, freq,a: real:
Filter: parray;
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BEGIN
(* Wiener Filtering - see Numerical Recipes by Press et al..*)
Writeln(’ Wiener Filter : Smooth Lorentzian Filter’);
a:=15;
Write ('FWHM/2 of Lorentzian (default=15) ? ’);
Readln(a):
FOR ii:= 1 to nn3+1 DO
Filter(ii):=1.0/(l+sqr(int(ii~1))/sqr(a)):

For ii:=1 to nn3+l do

BEGIN
i:=2%ii;
data(i-1]) :=data(i-1)*filter(ii):
data(i):=data({i)*filter(ii):

END;
For ii:=nn3+2 te nn do
BEGIN

1:=2%1ii;

data{i-1]:=datali-1]}*filter[nn-1ii+2];
data{i]):=data{i)*filter[nn-1ii+2]};
END;
end; {procedure}

(*Main procedure*)
BEGIN
Olddir:=Directory:
Directory:=’\turbo\data\noise\’;
Writeln(’Fourier Transformation of a ’,round(Param([3].Value),’ point time of
flight spectrum’);
Writeln;
Write(’Is the transformed spectrum already stored as FOURTR.DAT ? (l=yes) ’);
Readln(i);
IF i <> 1 THEN
BEGIN
For ii:=1 to round(Param([3].Value)=-10 do
BEGIN
data[2*ii-1]:=totdata(ii);
data[2*ii]:=0;
END;
avg:=0.0;
For ii:= round(Param{3].Value)=-9 to round(Param(3).Value) do (*extrapolate
the last ten points out to nn*)
BEGIN
data[2*ii-1):=totdata(ii};
data[2*ii]):=0;
avg:=avg+totdata{iil;
END;
avg:=avg/10.0;
For ii:=2*round(Param(3).Value)+l to nn2 do
data(ii) :=avg; {pad end with average of last ten points}
FOUR1 (data,nn,1l); {transform into frequency space}

WriteFour; { store the frequency spectrum}

END {if})
ELSE BEGIN

ReadFour; (*Read fourier transform file*)
END;

FOURIER1;

FOUR1 (data,nn,-1); {Inverse Transform)}

writeln;

For ii:=1 to round(Param(3].Value) do
BEGIN

totdata(ii] :=data(ii*2-11/nn;

END;
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(* Set first two points to min and max of input data for comparison¥)
totdata[l]:=maxval;
totdata[2]:=0;

LastFile:='FTFIT’+ LastFile;
Write (' Save the smoothed spectrum ? (l=yes, default = no) ’);
i:=0; {default}
Readln (i) ;
IF i=1 THEN
WriteFilea (totdata);
(*in any case the smoothed spectrum is passed back to main routine for display*)
Directory:=01dDir; {(reset to old directory}
Param(1l].Value:=1; (* Set number of Scans to 1 to mark the fact that this is sub
file*)
END;

fourl.pas

PROCEDURE fourl (VAR data: gldarray; nn,isign: integer):;
(* Programs using routine FOUR1l must define type
TYPE
gldarray = ARRAY [1l..nn2] OF real;
in the calling routine, where nn2=nn+nn. *)
VAR
ii,jj,n,mmax,m, j,istep,i: integer;
wtemp, wr, wpr,wpi,wi, theta: real;
tempr, tempi: real;

BEGIN
n = 2*nn;
j o= 1;
FOR.ii := 1 to nn DO BEGIN

i = 2*ii-1;

IF (j » i) THEN BEGIN
tempr dataljl:
tempi datalj+1);
data(j] := data(i};
data[j+1l] := datal[i+l]:
data(i] := tempr;
datal[i+l] := tempi

END;

m := n DIV 2;

WHILE ({m >= 2) AND (j > m)) DO BEGIN

j o= j-m;

m :=m DIV 2
END;
] 1= j+m

J
END;
mmax := 2;

WHILE (n > mmax) DO BEGIN
istep := 2*mmax;

theta 6.28318530717959/ (isign*mmax) ;
wpr := =2.,0*sqr(sin(0.5*theta));

wpi := sin(theta);

wr := 1.0;

wi := 0.0;

FOR ii := 1 to (mmax DIV 2) DO BEGIN

m = 2*ii-1;
FOR jj := 0 to ({n-m) DIV istep) DO BEGIN
i :=m+ jj*istep:;

3 i+mmax;

tempr := wr*data{jl-wi*data(j+1]);
tempi := wr*datalj+l]+wi*data{j);
data{j) := datali]-tempr;
data{j+1l] := data(i+l]-tempi;
data[i]) := data[i}l+tempr;
data[i+l) := data[i+l)+tempi

END;



wtemp := wr;
WY = Wr*wpr-wi*wpi+wr;
wi := wi*wpr+wtemp*wpi+wi
END;
mmax := istep
END
END;
scale.pas
procedure scale;
type
BufString = string[50];
var

FileVar : text;

FileName : bufstring;

i : integer;

NumOfScans, PointsPerScan,TimePerPoint,r : real;
teststr : BufString;

ErrFlag,NewFormat : boolean;

con : real;

olddir : BufString;

BEGIN
ErrFlag:=FALSE; (*Initialize flag*)
IF round(Param[3].Value) > ((MAXSIZE-10)/2) THEN
BEGIN
ErrFlag:=TRUE;
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writeln (#7+'Dataset too many points for subtraction, must be <= 1200 pts’);

Delay (1500);
END;

IF (InitSub=FALSE) AND (ErrFlag = FALSE) THEN
BEGIN
For i:= 1 to round(Param([3].Value) do
BackData(i] :=Data{il}:
olddir:=Directory;
Directory:=’\turbo\data\noise\’;
write('Filename (Default is datal\noisel) : ’);
readln(FileName);
CheckDir (FileName);
IF Exist (FileName)=FALSE THEN
BEGIN
Writeln(’'File does not exist’):
Delay (500) ;
ErrFlag:=TRUE;
END;
If Exist (FileName)=TRUE THEN
BEGIN
Assign(FileVar,FileName);
Reset (FileVar);
Readln(FileVar, teststr);
IF (teststr(l]) = ‘A’) then NewFormat := TRUE
else NewFormat := FALSE;
IF NOT NewFormat then Reset (FileVar);
Readln(FileVar,TimePerPoint);
IF (TimePerPoint = Param[4].Value) then
BEGIN
Readln(FileVar, PointsPerScan);
if PointsPerScan < Param(3].Value then Param(3].Value
PointsPerScan;
Readln(FileVar, r):;
Readln(FileVar,NumOfScans):;
Param(1l].Value := Param(l]).Value + NumOfScans;
Readln(FileVar,r);



IF NewFormat then
BEGIN
Readln(FileVar, r);
Readln(FileVar,r);
END:;
for i:= 1 to round(Param[3).Value) do
BEGIN
Readln(FileVar, r);
BackData[round (Param[3].Value)+i):= r;
END;
Close(FileVarij:
Writeln(’Data Read’);
END
else
BEGIN
Writeln(#7 + ' Time per Point is Wrong : Cannot Add Data Set’):
Close(FileVar);
Delay (500);
ErrFlag:=TRUE;
END; {This ends the Time per point IF !}
END; (*if Exist FileName*)
Directory:=0lddir; ({reset directory to what it was on entry}
END
ELSE writeln(’Using Original datasets for the raw spectrum and background
Fit’);

{now if InitSub was set or not}
IF ErrFlag=FALSE THEN
BEGIN
Write(’Scale by #Scans of data/#Scans of Background = 7 ’);
Readln{(con);
for i:=1 to 10 do

begin
Data(i]:=0;
end;
for i:= 11 to round(Param(3).Value) do
Data(i) := BackData[i] - con * BackDatalround(Param[3].Value)+i];
IF InitSub=FALSE THEN
LastFile := 'SUB ' + LastFile;
InitSub:= TRUE; (* Now true because full file read, and plot filename
set*)
Writeln (" )
Writeln ('’ Subtraction Done’);
Delay (500);
END;

END; {procedure}
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Appendix C. Time Dependent Wave packet Propagation Codes

1. Introduction

Codes have been developed to calculate the time-dependent dynamics of a wave
packet in both one- and two-dimensional space. The resulting wave packet dynamics
is used to compute the autocorrelation function and, in turn, the simulated
photoelectron spectrum. The number of dimensions corresponds to the number of
independent coordinates explicitly represented by the wave packet. A wave packet
propagation is merely a solution of the discretized time-dependent Schrodinger
Equation. Assuming a two-dimensional space, this is written

(00,
{ ~——
o

= Ho(i,,i,) 1)
where ¢°(i,, i,) is the n-th wave packet in time and is a complex function expressed
in space at each grid point (i,, i,). The method we adopt for solviag (1} aud the
relevant references are detailed in Chapter 4. Here we coizentrate on how to use the
code, and how the code is constructed.

The Hamiltonian is time independent and, as usual, made up of a kinetic and
potential energy term. The kinetic energy is evaluated by the Fourier method {zee
Chapter 4) - this is generalizable into N-dimensions. In one-dimension, the potential
energy can be a bound or repulsive function of the single coordinate, x. In two
dimensions, the potential, V( x, y ), may be bound (i.e. possess a well) or be of a more
general form, e.g. unbound or containing a saddle point. The propagation codes can
handle any potential function. It is useful for the potential to be an analytic function
of the coordinates.
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We will be concentrating on potential energy surfaces for direct bimolecular

reactions, i.e. those with no wells and a single saddle point, for the neutral in the
following discussion. For reaction surfaces, simple analytic forms, such as the
London-Eyring-Polanyi-Sato (LEPS) function, are very often used. More recently ab
initio surfaces have been computed for light atom reactions (e.g. H+ H,, F + H,, O +
HF, O + Hcl, and Cl + Hcl); these are usually only evaluated at a set of points. In
some cases analytic functions have been fit to the points, or a spline interpolation for
the full surface has been given. In principle, as our method of solution of Equation (1)
1 >quires the potential only at a set of gridpoints, it is conceivable that the potential
could be evaluated at each point on the grid by ab initio methods.

The two-dimensional code (prop2d22) grew out of the one-dimensional code
(propi0), but the two-dimensional code is a lot more flexible in terms of potentials
ellowed for the anion and neutral and the controls the user may implement. The
hesic usage of the codes is very similar. The one-dimensional code is useful mainly
for preliminary calculations and for instructional use. Other more efficient techniques
are available to solve the Schrodinger equation in one dimension on a grid for bound
or purely repulsive potentials. Actually, the wave packet propagation does prove
useful (and efficient) for an intermediate cace where the dynamics involves a region
of the upper state potential that can trap the wave packet and another region where
the wave packet moves to dissociation. An example of this is a wave packet that is
launched fairly high up on a Morse or Lennard-Jones potential (see Figure 4-1(iii)).
One important use of the one-dimensional code is to examine the form of the
autocorrelation function that derives from motion in just one dimension when

comparing to a full two-dimensional propagation (see Chapter 5).
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2. One-dimensional Propagation Code - prop10

The executable code, propl0, is compiled by using the UNIX make utility and
the makefile makepropl0. The code depends on four files of FORTRAN source,
kosloff7.f, lepsl.f, anionmorsewfl.f and wave2.f. If any of the source files to propl0
are modified, the prop10 program should be recompiled; to do so use the make utility
as follows:

make -f makeprop10
The code can be compiled and run on a Sun SPARCstation as the numerical demand
is small enough that this machine is fast enough to cope with a reasonable length
propagation; a 400 femtosecond propagation (4 a.u. time steps, 4096 steps) on a 64
point spatial grid consumes only 14 CPU seconds on a SPARCstation ELC.

The code is used as follows. An input deck (called koss.dat) is constructed
that controls not only the way the code proceeds but also contains all physical
information such as the potential parameters. The input deck is not free format, but
comments may be left to the right of the input line to assist the user in making

changes to a template file. A typical input deck is shown below:

0,0,0 Control parameters: save lower/ upper pot./ wavepacket
1.0 Reduced mass (in amu)

8192.00,2.00 Total propagation time and time step (in a.u.)
0.0,6.0,64 Xminr Xmx and number of grid points in X

1 LOWER {(anion} potential type

3.0,1000.0,0.0,0.0 Parameters (e.g. X,, ®, and @x,) for LOWER potential

1 UPPER (neutral) potential type

4.0,1000.0,0.0,0.0 Parameters (e.g. X,, ®, and @,x,) for UPPER potential
0.00 Dephasing constant gamma (0 = automatic window chosen)
0.00,2.00 Min. and Max. energies (eV) in Fourier trans. spectrum
16,2048 No. of time steps to save self overlap and full wavepacket

This is the only input to the program; no entry is expected from the keyboard. Most

lines of the input deck are self explanatory. Line 1 sets the parameters (0 = no, 1 =
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yes) that control whether the potential evaluated either for the lower or upper

surfaces is to be saved to disk (in files called potlA.out and potlB.out) and whether
the wave packet, or the wave packet and its derivatives, are to be saved to disk (in
files called wavepkt.out and wave.drw). Wave packets, with our without
derivatives, are saved at intervals determined by the second number in the final line
of the input deck. The wave packet derivatives are useful only for debugging; if
derivatives are selected, ¢(k, , k, ), the momentum space representation of the wave
packet, and the result of the operators T, V, and H acting on the wave packet (T¢, V¢
and H¢) are saved into the files as well as the wave packet. This consumes disk space
fairly rapidly, so save only a few wave packets! The wave.drw file, which is
unformatted binary, can be read into a 1D wave packet graphing program draw3. If
the control parameter for wave packet derivative storage is set to a value of -1, then
no information on the wave packets or its derivatives are saved to disk.

Total propagation times and the time step are entered on line 3 in atomic
units. Atomic time units are the natural unit for a propagation; 1 femtosecond is
approximately 41 a.t.u. The time step is chosen by consideration of criterion (25) in
Chapter 4; if a too large time step is selected, the program will terminate with a
message indicating that the propagation would be unstable. Next the grid range and
grid size is determined on line 4. Remember that the range in coordinate space and
the grid size determines the grid spacing Ax, which in turn determines the maximum
kinetic energy that is possible on the grid (and therefore the largest energy
eigenvalue). The selection of these parameters is the trickiest part of the whole
operation. However, some very simple guidelines should ensure success: (i) The

number of grid points must be a power of two, and should be at least 32 and never
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need exceed 256; usually 64 is adequate. Using a higher number of points than

required will force the time step to be very small. (ii) Choose a range of coordinates
that covers all the important parts of the anion and neutral potential surfaces -
physical intuition is all that is required here. For example, if there is a big change
in geometry between anion and neutral then one knows that there will be high
amplitude motion involving large kinetic energies. (iii) Start the calculation going and
look at the value output for the maximum kinetic energy that the program calculates
from your Ax. Ifit is reasonable then continue; if it is huge, then you can reduce the
number of grid points and achieve a much faster propagation. If it is smaller than
physically desirable, you need to reduce the grid range or increase the number of grid
points.

The next few lines contain information on the lower and upper potentials.
Information on the lower (anion) potential is required to compute an initial wave
packet for the propagation; the ground state wave function for a harmonic potential
or a Morse potential is constructed analytically for this purpose. For each potential
the first control line indicates the potential type; this choice determines the form of
the input expected on the following line(s). The potential types the program accepts
are the following (the number indicates the potential type parameter to be entered on
the control line):

(0) Morse function (data required on next line is R, in A, D, in eV, p in A? and

V,, the potential offset constant, in eV ).

(1) Harmonic/ Morse function (data required on next line is R, in A, o, and o x,

in cm™ and V, in eV).
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(2) LEPS potential function cut (data required on next six lines: line 1 - V,,

line 2 - masses of atoms A, B, and C in a.m.u., lines 3 - 5 contain the data D,

ineV,Bin A%, R, and the Sato parameter for each fragment AB, BC and AC

respectively and finally line 6 - the value of R, for which the 1D cut will be
made).

(3) read potential from potB.in file (data required on next line V, only).
Once information on both potentials has been entered, the final three lines of the
input deck supply the windowing function parameter y (defined in Equation (29) of
Chapter 4), the range of energies to be written to the output file absspec.out (which
contains the final simulated energy spectrum o(E)), and the step intervals for the
program to calculate the autocorrelation At,,,, and to save the wave packet. If yis
chosen to be zero, the program calculates a default (conservative) window function
that eliminates any spurious ringing in the energy spectrum.

The output is generated as follows: a summary of the input parameters, the
potential function and the grid as well as the consistency checks on the norm and the
average energy of the wave packet during the course of the propagation are sent to
the file out.dat as well as to the screen. The norm should stay close to unity and the
energy should remain constant. If the norm starts increasing wildly, this means the
time step is too large, or perhaps the potential needs shelving (see Section 3.3.1 of
Chapter 4). The autocorrelation is written to a file auto.dat (real part, imaginary
part and modulus of C(t)) and the final energy spectrum to absspec.out suitable for
plotting with a simple X-Y plotting package. The wave packet output has already
been described. Some simple checks that can be performed on the calculation to make

sure that everything proceeded smoothly are graphing the wave packet file with the
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draw3 program, plotting the autocorrelation and checking for smooth behavior and
convergence checking by repeating the calculation with a reduced time step and grid

spacing.



321
3. Two-dimensional Propagation code - prop2d22

The executable code, prop2d22, can be compiled by using the UNIX make
utility and the makefile makeprop2d22 (make -f makeprop2d22). If using the San
Diego Cray Y/MP a convenient script file called prop2d that takes care of retrieving
the source from the DataTree, as well as compiling and executing the code is
available. To retrieve this execute the commands

dti get time/prop2d

prop2d
on logging in. The prop2d script can also be used subsequently as a convenient
interface for executing the code.

The two-dimensional propagation code depends on three files of FORTRAN
source, koss2d22.f, potread2.f and graphicsy.f and the NAG numerical library and
local graphical libraries. The dimensioning of arrays that determine grid size are
controlled by an include file, param.inc. This file contains a single line dimension
statement and should be edited prior to compiling the code to match the grid size that
the user has specified in his/ her input deck. The graphicsy.f file is machine
dependent; all graphics routines have been bundled into this source file; the file
shown here uses the Computer Associates DISSPLA graphics library with a
GKS/NCAR graphics interface available on the San Diego Supercomputer Center’s
Cray Y/MP. The prop2d22 code is generally run on this supercomputer as it makes
heavy use of a vectorized two-dimensional fast Fourier transform routine. However
it is possible to use the code on a fast scalar workstation, and one envisages that it

could be readily be ported to a RISC based scalar machine with suitable libraries
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installed. If the NAG library routine used for the two-dimensional FFTs is not

available, the code may be compiled with an extra source file (twodfft.f) however the
speed will be significantly reduced. To do this, the koss2d22.f code should be edited
(as indicated in comments in the code) to remove reference to the NAG routine. The
twodfft.f file contains subroutines based on code in Section 12.11 of Numerical Recipes
- The Art of Scientific Computing by W. H. Press, B. P. Flannery, S. A. Teukolsky and
W. T. Vetterling, Cambridge University Press, Cambridge (1989).

Typical run times are 20 Cray CPU seconds for a 320 femtosecond propagation
(1.3 a.u. time steps, 10240 steps) on a 64 x 32 point spatial grid. Memory
requirements are modest; for such a typical job 350 kwords (2.8 Mbytes) are required.
Propagations of 2 psecs on a 128 x 64 grid are the largest jobs that have been
attempted. These large jobs yield excellent energy resolution, and the limitation at
this point is less a question of CPU time but more expected errors accumulating in the
phase of the wave packet (see Chapter 4).

The two-dimensional code is used in a very similar way to the one-dimensional
code, however this code can treat a completely general wave packet propagation on a
bimolecular reaction surface, suitable for two-coordinate photodissociation or
photodetachment to a continuum. The quantum dynamics is exact, in contrast to the
2D adiabatic approaches employed by Metz (Ph. D. thesis, U.C. Berkeley (1991)),
which are strictly applicable only in limiting heavy-light-heavy cases. However,
because the calculation treats the two coordinates generally (fully coupled), it is
computationally more demanding for a given dimensionality. At present we have not

extended this method to three-dimensions, although other authors have achieved such
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three-dimensional wave packet calculations, and the code presented here should be

easily generalizable. (See chapter 4, section 4 for references).

The code is used as follows. An input deck (called koss2d.dat) is constructed,
in a very similar way to the one-dimensional code. Once again, no input from the
keyboard is required. This file controls the way the code proceeds and contains all
physical information such as the masses of the atoms and potential parameters. The
input deck is not free format, but comments may be left to the right of the input line,
or at the end of the file, to assist the user in making changes to a template file. The
reader is directed to remarks in Section 2 above concerning the meaning of many of

the input lines which are common to both codes. A typical input deck is shown below:

0,0,-1,0,0 Line 1
78.918,1.00728,126.9045 Line 2

512.00,1.0000 Line 3
22.00,35.00,64,0,9500,3.10,32 ' Line 4

2 Line 5

1,1,0,0 Line 6
3.88,100.00,0.000,0.00 Line 7
1.55,1276.30,178.10,0.00 Line 8

2,1 Line 9

3.%920 Line 10
3.920,1.810,1.414,0.186 Line 11
3.196,1.751,1.609,0.055 Line 12
1.834,1.876,2.469,0.220 Line 13

0.00 Line 14

2.293 Line 15

1,128 Line 16

# Line 1: {Flags) SavePotA, SavePotB, SaveWavepackets,ReadInitialwavepacket,
# Restart

# All flags except SaveWavepackets can be 0 (NO) or 1 (yes)

# SaveWavepackets can be -1 (NONE)

# 0 {only wavepackets saved)

# or 1 (wavepackets and k-space wavepacket saved)
# Line 2: (Mass) Atom A, Atom B, Atom C (all in amu.)

# Order is important A + BC -> AB + C

# Line 3: (Time) Total propagation time, time step (both in atomic units)

# time step is usually around 1.0 a.u. and this should be varied to assure
# numerical convergence.

# Line 4: (Grid) Xmin, Xmax, NXpts, Ymin, Ymax,NYpts (in mass scaled coords.)
# Range of x and y should be supplied in mass scaled coordinates

# (amu~0.5 . Angs), and Nxpts and Nypts should be the same as

# nlpts and n2pts, respectively, in the param.inc include file.

# Both nXpts and n¥Ypts should be powers of twec.
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# Line S: (Flag) Absorbing boundaries:

# 0 (No)

# 1 (Yes, supplied on extra following line, see source)
# 2 (Yes, use defaults, no extra line required)

# Next section varies depending on choice of potential

# (see comments in subroutine Potread for details)

# Line 6: (Lower) Potential type (see comments at top of Main code for
# potential types)

# Line 7: (Lower) Potential data along one dimension (parallel to x)

# Line 8: (Lower) Potential data along other dimension (parallel to y)
# Line 9: (Upper) Potential type

# Line 10-13 (Upper) Potential data (non seperable LEPS potential)

# Line 14: (Real) Damping Constant (0.0 = default)

# This determines how much damping takes place before taking Fourier

# Transform of autocorrelation function to produce photoelectron spectrum

# Usually set to 0.0, where program calculates optimal value.

# Line 15: (Real) Origin in spectrum that corresponds to zero of

# upper potential suface (This is just an offset)

# Line 16: (Steps) How many steps between saving overlap, wavepackets

# This sample input deck performs a 512 step propagation on a mass weighted
# grid 64x32 in size with absorbing boundaries. The time step and grid size
# is set up so that the calculation converges correctly and the numerical

# propagation is stable.

This template file has a set of detailed comments describing the purpose of each entry
and line. This should be used in consultation with the comments below and in the
header to the main code. Criteria related to the grid and time step are common to
those described for 1D propagations. All lines marked "(flags)" should contain only
integers; further nXpts, nYpts, both step intervals indicating when to save the overlap
and the wave packet, and the flags indicating potential type should be integers. All
remaining entries should be real numbers.

Let us describe the input parameters that are new. The purpose of the extra
flags ReadInitialwavepacket and Restart are fairly self-explanatory. If either flag
value is set to one, the program attempts to read the a wave packet from the
wave.dump file either for use as the ¢ = 0 wave packet or to continue the propagation
from a previous propagation. Note ReadlInitialwavepacket and Restart cannot both

be one. See comments in subroutine initB source for more information on this
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advanced option. The mass of the three atoms is required to determine the
appropriate reduced masses for the mass-scaied Jacobi coordinate grid. (See Chapter
4, section 3.1 for definitions). The range of x and y are expected in this mass-scaled
coordinate system, however the equilibrium geometry data in the potential parameter
input is expected in the relevant internal coordinates without mass-scaling.

The absorbing boundary information required in line 5 is again fairly self-
explanatory. Use of the default boundaries for a dissociative systern is recommended
for initial calculations; for bound problems the absorbing boundaries should be turned
off. Refer to section 3.3.2 of chapter 4 for details on absorbing boundaries.

Most of the potential types are common to the 1D code and have been described
above. Notice that for the lower potential, four integers are expected on Line 6: two
to describe the potential type in each spatial direction and two to describe the
quantum state of the initial wave function. If 0, 0 is chosen for the latter pair then
the ground state wave function is computed for the potential type requ’:.:d. Note
that the potential can be Morse oscillator along only one spatial direction; that
direction must be along the y coordinate. The upper potential requires only two (but
it must have two) integers describing the potential type. In addition to harmonic/
Morse (0 and 1), LEPS (2) and read-from-file (3), two new potential types have been
added, and the LEPS potential extended. The LEPS function data is input exactly as
before except the mass data has already been entered in Line 2 and no cut R,¢ is
relevant or required. The other integer flag on the potential type line allows the zero-
point bend correction to be added to the LEPS potential energy at each point (0 = no
correction, 1 = ZPB correction). The zero-point bend correction was suggested in the

reduced dimensionality work of Prof. J. M. Bowman (Emory Univ.). The new
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functions available are (4) user-defined subroutine upotfn (compiled into code) and (5)

rotated-Morse-oscillator spline (RMOS) function. (4) is useful for specific potentials,
e.g. Lennard-Jones, quartic anharmonic oscillator or elaborate reaction potentials
such as the T5a and 5SEC surfaces (of Truhlar and coworkers) for the F + H, reaction.
The RMOS potential type is very useful for fitting ab initio reaction surfaces;
references for this potential type appear in Chapter 6.

If either a potential or an initial wave functien is read from disk, this must be
constructed in a rectangular array of the same size as the propagation grid with the
same grid points. The imposition of a shelving criterion to the potential energy helps
reduce computation time by allowing a larger propagation time step (see section 3.3.1
in Chapter 4). This is hard-coded in the source for all potential types. To modify the
shelf value the user must edit the code and recompile. See section 4 below.

Completing the description of input parameters, Line 15 is a constant offset for
calculation of the origin in the final photoelectron simulation. Unlike the 1D code,
this code transforms the simulation from the neutral internal energy scale to a true
electron kinetic energy scale by use of formula (2) in Chapter 4. A, of formula (2), is
the offset supplied on this line.

The program, if run so as to produce graphical output (this is carried out by
keywords on the prop2d22 command line or via the prop2d script), will generate all
of the important computed information in graphical form. Graphical output is possible
to any device the graphics software supports; typically this is to a Textronix 4013
emulator or to a graphics metafile. The latter may be converted into many other
formats such as X11 bitmap or PostScript. The graphics capability of the code makes

error checking and general use particularly easy. The values of the wave packet norm
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and energy (which are conserved only if there is no flux absorbed by absorbing
boundaries) is displayed along with the contour plots of the wave packet. On these
plots, contours of the upper potential surface are also shown. Plots are displayed at
time intervals specified by wave packet step interval on the last line of the input deck.
Viewing eight or so wave packets as a function of time is usually sufficient to interpret
the wave packet dynamics.

Inadequacies in the choice of grid range and absorbing boundary are manifest
in this moving image of the wave packet dynamics. To check the performance of the
grid in the momentum domain (i.e. whether the full range of momenta in the wave
packet fits on the Fourier space grid), the SaveWavepackets flag may be set to 1, and
¢(k, ,k, ) will also be graphed as well as saved to the wavepkt.out file. The use of
graphics is extremely important in giving the user a feel for the calculation he or she
is attempting, and suggesting possible remedies if problems with the propagation
arise.

Output to files out.dat and auto.dat is as for the 1D code. The potlA.out and
potlB.out files containing the lower and upper potentials, and the wavepkt.out file
containing the wave packet, are now two dimensional arrays of potential/ wave packet
values; the wavepkt.out file gets very large, very quickly. The file absspec.out is
in the same format as for the 1D code but gives the spectrum as a function of the
electron kinetic energy rather than of the neutral internal energy. There is no
wave.drw file. Finally there is a dump file (wave.dump) written for the final wave

packet of the propagation for restarting purposes.
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4. How the propl0 and prop2d22 programs work

This section is really only intended for users who wish to make changes to the
codes. The methodology behind both codes is described in Chapter 4 of this thesis and
the simple use of each code is described in sections 2 and 3 above. Both codes have
very similar layout and the names of subroutines and functions are in may cases
identical. The basic organization is as follows (subroutine names given in italics).

The main routine initializes the graphics device (if applicable) and calls
subroutine const which defines some fundamental constants and then reads the input
deck (file koss.dat or koss2d.dat). The necessary input is described in detail in
section 2 and 3 above. This subroutine establishes the parameters for the
propagation, converting them into atomic units where appropriate, and (if applicable)
the absori:ing function. The potential parameters are read, and the lower and upper
potentials are stored in the potential array xypot in subroutine potread. All the
necessary conversion of coordinates for the 2D code are performed by statement
functions like AMStoRab. Potread calls one of an assortment of subroutines to
evaluate the potential depending on the potential type - lepstore (for LEPS potentials),
upotfn (for user defired potentials) and rmos (for the RMOS spline functions) are the
starting subroutines for calculation of each of these non-separable potentials.

For the upper state potential, where the propagation will proceed, the potread
subroutine imposes a shelf on the highest numeric value the potential may take. The
purpose of this is described in Chapter 4, section 3.3.1. This shelf value is hard-wired
in the code for each potential type. If the value is unsuitable for the user’s
application, he/ she should change the value in this routine and recompile the code.

One way to estimate an appropriate value for the potential shelf is to consider the
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classical turning points for motion on the upper surface, and the energy at the turning

point. One classical turning point is x;,,,,, the center of the initial wave packet, and
the energy is given approximately by the <H> evaluated by the program at t=0. This
energy must be considerably less than the chosen shelf value. Errors from choosing
a value for the shelf that is too low will be obvious when the wave packet propagation
is graphed; parts of the wave packet will spill into regions of configuration space that
they should not be in! If in doubt raise the value of the potential shelf, and reduce
the time step as necessary, and check for convergence.

Returning to the main routine, the input data is written to the output stream
and to the file out.dat. The maximum kinetic znergy supported by the grid is
calculated and the program aborts if it finds the chosen timae step is too large to
maintain a stable propagation. The potentials are saved (potl/save) to disk, if the user
has so requested, and the wave packet disk file(s) are initialized (initpkt). In the 2D
code, if the NAG 2D-FFT routine is used, it is initialized now. The initial wave packet
is now set up by a call to initB.

InitB determines if there is to be a restarted propagation or if the wave packet
is to be read from disk (readwave) or calculated. If the latter, the routine determines
whether an analytic form for the initial wave packet exists (i.e. if the lower surface
is harmonic or Morse), or whether a initial wave packet must be calculated
numerically (relax). The 1D code is much more primitive in this subroutine - it will
not read from the disk or restart a propagation, and it allows only an analytic initial
wave packet. For calculation of the analytic initial wave packet, initWF or morsewf
is called. In the 2D code, these two routines will calculate a v = 1 wave function as

well as v = 0, allowing some experimentation with "hot-band" photoelectron spectra.
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InitB finally propagates the initial wave packet for its first time step, to calculate ¢°,

with second order Runge-Kutta. The initial wave packet, ¢*, along with ¢ are passed
back to the main routine where the initial packet is saved to disk (pktsav). The norm
and average energy of the initial wave packet on the upper surface is evaluated (chk,
chknrm, chken).

Finally we enter the main loop; the propagation now begins! This is the loop
that gives the iterative solution of the time-dependent Schrodinger equation by second
order differencing (SOD). In each pass through the loop, psi2 (or psi2ab, if absorbing
boundaries are being used) is called. This routine contains the SOD formula. If
absorbing boundaries are being used, it is at this point where the wave packet is
multiplied by the absorbing function. In each operation of the SOD formula, H¢ must
be calculated. This is also required each time the average energy is calculated
(chken). The operation of H on ¢ is performed in the routines Hpsi, KEmat and
PEmat; this is the core of the Fourier method.

KEmat evaluates the operation of the kinetic energy operator on the wave
packet. It does this by performing a pair of discrete fast Fourier transforms on the
data array. For the 2D code we use either cO6fuf, the vectorized NAG library routine,
or twodfft, the (slow) Numerical Recipes routine. In the 1D code the Numerical
Recipes FFT routine is employed. Between the two FFTs, the wave packet (now
represented in k space) is multiplied by (k,? + k,?), or just k,* in one dimension. The
KEmat routine is where both prop10 and prop2d22 spend most of their CPU time. In
contrast, PEmat performs a simple multiplication of the wave packet by the potential

at each grid point; each is already stored in memory.
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Inside the main loop the self overlap 6f the wave packet with the initial wave
packet is computed (ovlp) and stored at regular intervals; the overlap is calculated by
Simpson’s rule (2simpint, ztrapint). At more infrequent, but still regular, intervals the
wave packet is checked for norm and average energy, and stored and graphed. These
regular intervals are determined by the last two parameters set in the input deck.
After the main propagation loop is complete some tidying up is done: the
autocorrelation function is saved to disk, the energy spectrum is calculated by a one-
dimensional FFT of the autocorrelation function and saved (savabs), and files and

graphics devices are closed up.

4.1 Source Code Listing
4.1.1 One-dimensional Code - prop10
makepropl0

FFLAGS=-cg89 -03 -dalign =-w
proplO: kosloff7.o0 wave2.o lepsl.o anionmorsewfl.o

£f77 -cg89 -03 ~dalign kosloff7.0 wave2.o lepsl.o anionmorsewfl.o -o
propl0

kosloff7.f

C Version PROP10

C This is a ONE dimensional wavepacket propagation Code.

C Code based on routines of S.Y. Lee. Singapore.

C Adapted for photoelectron spectra of negative ions by S.E. Bradforth 2/26/89
C Address: Dept. of Chemistry,

C Neumark Research Group,

c University of California,

C Berkeley, CA 94720

C E-mail: neumark@violet.berkeley.edu OR neumark@viclet.bitnet

C INPUT: koss.dat input deck (can be prepared by accompanying

c program or by following comments in supplied
c example)

C OUTPUT: out.dat summary of input parameters and details of

c wavepacket propagation

c auto.dat autocorrelation function (real, imaginary and
c modulus) as a function of time

c auto.pic autocorrelation function (suitable for x-y plot)
c modulus only as a function of time, damped by
C window function {gamma)

c absspec.out Fourier transform of autocorrelation function,



QOOO0O0000 0000000 O00000000

OO0O0O0O000000 OO0

[eXeXe]

the absorption/photoelectron spectrum

wavepkt .out real, imaginary and absolute value of wavepacket

as a function of time
(can include wavepacket derivatives)

potlA.out lower potential
potlB.out upper potential
wave.out formatted direct access wavepacket output

suitable for reading by
wave 1D tektronix plotting program

It is helpful to be able to graph wavepacket evolution in time, for
checking usefulness of run and that all criteria for successful propagation
have been satisfied. The file wave.out can be

plotted with the "draw3" (seperate) program.

The files potlA.out and potlB.out, (the lower and upper

potential energy surfaces), are provided for for graphing and checking.

Potential types included are:

0: Morse (input Re, De and Be)

1: Harmonic/Anharmonic (input Re, We, Wexe)
(if wexe .ne. O then uses Morse)

2: Leps (upper surface only)

3: Potential read form file

other potentials may be added by modifying subroutine potread

There is no provision for absorbing boundaries in this code,
Also restarting from arbritary time point is not coded for.

Notes for this version:
8/11/92 Input xmin, xmax range in Angstroms.
Include shelf for potentials in potread.
Include conversion constants common block.
Remove Time step printout except every npktsav steps.
Coie does not stop to query for whether potentials are to be saved or
Whether to save derivatives in wavepkt.out,
Instead this now comes from input deck as in 2D code.
1989 Change format for input of potentials.
All potentials stored as arrays. 5/10/89

Note all quantities in main routine are in Atomic units,
conversions performed in I/0 routines {const(), savabs, pktsav, savovlp}
Note all variables beginning with z are complex

implicit double precision (A-H,0-Y)
implicit complex*16 (z)
double precision lde, lre, lb

parameter
dimension
dimension
dimension
dimension

(npts=1024, nFFT=8192)

zpsiAO (npts)
ZpsiBO(npts), zpsiBl (npts), zpsiB2 (npts)
zovlp (nFFT)

omega (nFFT), Eprsq(nFFT)

common/convert/harev,evwn, a0, amu, emu, harwn,amass, atu

common/const0/ zero,zeye, pi,c, twopi,sqrtpi,pisgqg

common/constl/ xmas, hb

common/const2/x0A, xomegh, vOA, xwexeh, dea, xalphaa, x0B,
xomegB, xwexeB, deB, xalphaB, vOB

common/const3/tmax, ntmax,delt, iderflag

common/const4/xmin, xmax, nXpts, dx, npacket

common/const 6/gamm

common/const7/ Espmin,Espmax,domega, novsav,npktsav

COMMON/LEPS/LDE(3) ,LRE (3),LB(3),AM(3),DELTA(3),RCA

900 format (2x,’xmas =', f6.3 ,2x, 'hb =',£f4.,1)
910 format (2%, ‘x0A =',f6.2,2x, 'xomegA =',£9.2,2x, 'Vv0A =',6£6.3)
915 format (2x, 'x0A =',f6.2,2x, ‘xomeghA =',£9.2,2x, 'vOA =',f6.3,/,
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2 2x,'wexehA =',£9.2,2x,’alphaA =',£9.3,2x,'DeA =',£9.3)

920 format (2x, 'x0B =',f6.2,2x, "xomegB =’,£9.2,2x, ‘vOB =',£6.3)
925 format (2x, 'xOB =',f6.2,2x, ’"xomegB =',f9.2,2x, 'vOB =',£6.3,/,

3 2x,"'wexeB =',£9.2,2x,"alphaB =’,£9.3,2x,'DeB =',£9.3)

927 format (2x, 'vOB =',£6.3,2x%,'kB =',e13.6)
930 format (2x, ‘tmax =’,f10.2,2x, ’‘ntmax =’,i5,2x, 'delt =',£10.6)
940 format (2x, ‘xmin =’,£9.2,2x, 'xmax =',£9.2,2x, 'nXpts =',15,2x,

1 ‘dx =', el3.6)

950 format (2x,’gamm =',el3.6)
960 format (2x,’Espmin=', f13.6,2x,’Espmax=',f13.6)
966 format (2x,’novsav=', 1i3,2x,’npktsav=’,1i4)

[eReNe]

c

write (6, *)

write(6,*)'WELCOME TO THE 1D WAVEPACKET PROPAGATION CODE’
read the needed data and also define some useful constants.

write (6, *)’'Reading input deck for job from koss.dat’

write (6,*)

open (1, file= ’koss.dat’)
read in some control parameters for the run:
Do I save lower and upper potential surfaces
and DO I save wavepacket only, or wavepacket and derivs, or none
read(l,*)isavpotA, isavpotB, isavde

call const ()
close (1)
Change novsav and npktsav to be useful values.....
novsav=2*ntmax/nFFT
if (novsav .lt. 1) novsav=l
npktsav=ntmax/16
if (npktsav .lt., 1) npktsav=l
then domega in circular frequency a.u. (ie hartrees) is
domega=2.0d00*pi/ (ntmax*delt)

open (2, file= ’‘out.dat’)
write(2,900) xmas/amu, hb
if (xwexeA .eq. 0.0d00) then
write(2,910) x0A*a0,xomegA*harwn, vOA*harev
else
write(2,915)x0A*a0, xomegA*harwn,vOA*harev,
xwexeA*harwn, xalphaA/a0,deA*harev
endif
if (xwexeB .eq. 0.0d00) then
write(2,920) x0B*a0, xomegB*harwn, vOB*harev
else
write(2,925)x0B*a0, xomegB*harwn,vOB*harev,
xwexeB*harwn, xalphaB/a0,deB*harev
endif
write(2,930) tmax*atu,ntmax,delt*atu
write(2,940) xmin*a0O,xmax*a0,nXpts,dx*al
write(2,950) gamm
write(2,960)Espmin*harev,Espmax*harev
write(2,966)novsav, npktsav
write(2,970)domega*harwn
Write a few parameters to screen
write(6,*)‘Time parameters (fsecs), energy resolution (cm-1) :/
write(6,930)tmax*atu, ntmax,delt*atu
write(6,970)domega*harwn

970 format (2x, 'domega =',£10.1," cm-1')

o000

criteria of succesful propagation given in Kosloff, J. Comput. Phys. 52,
(1983); essentially the max kinetic energy representable on a grid with
spacing dx is given (in au) by pi*pi/(2*xmas*dx*dx) and the stability
criterion is {delt*( (pi*pi)/(2*xmas*dx*dx) + V ) <= 1.0}

sqkmax=4.9348d00/ (xmas*dx*dx)
write(6,912)sgkmax*27.2116
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912 format (2x,'Maximum kinetic energy that can be represented is ’,
4 £6.3,' eV’)

write (6,913) sqgkmax*delt
913 format (2x,’ Stability at best, assuming zero potential, is ’,f£6.3)
if ( sqgkmax*delt .gt. 1.0d00) then
write (6, *)
write (6, x) ! *x*xx*x*xxTH]S PROPAGATION WILL BE UNSTABLE****%xkxkwx’
write (6, *)

stop
endif
Cc
C Save the lower and upper state potential if required
c
if (isavpotA .eq. 1 ) then
write(6, *) 'Lower potential saved in potlA.out in eV’
call potlsave(l)
endif
if (isavpotB .eq. 1) then
write (6, *)'Upper potential saved in potlB.out in eV’
call potlsave(2)
endif
c
¢ initialise wavepacket file if isavde set
if (isavde .ne. -1} call initpktsav(isavde)
c
c Notes
c =====
c
¢ will save autocorrelation function (overlap between t=0 zpsi and
¢ t=novlp*novsav*delt zpsi) at intervals determined by novsav
c and will Save the wavepacket in its entirety every npktsav point in time
c
ti=0.0d00
c
¢ Clear the overlap array
c
do 5 it=1,nFFT
zovlp({it)=zero
5 continue
c
¢ Generate the wavefunction on the ground state surface that determines the
¢ 1initial wavepacket. Generate 2zpsiBl by second order Runge kutta. This
c step is required to evaluate the time derivative in 2nd order differencing
c later on.
c
call initB(ti,zpsiB0,zpsiBl)
c
c Store the t=0 wavepacket for future use to calculate autocorrelation.
c
do 10 ix=1l,nxpts
zpsiA0(ix)=2zpsiBO (ix)
10 continue
novlp=1
call ovlp(zpsiAQ, zpsiB0, zovlp(novlp))
npacket=0
c

c save the zero wavepacket and derivatives to disk
if (isavde.ne.-1l) call pktsav(zpsiBO,ti,npacket,0)

if (isavde) 778,778,777
777 iderflag=1
778 call chk(2,ti, 2zpsiB0,rsnorm, Have)
write(6,877)'Norm of initial wavefn is ’,rsnorm
write(2,877)'Norm of initial wavefn is ’,rsnorm
write(6,878)'Energy (on upper surface) <H> =’,Have/rsnorm,

! ' ,Have*harwn/rsnorm,’ cm-1'
write(2,878)'Energy <H> =’,Have/rsnorm,’ ’,
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& Have*harwn/rsnorm,’ cm-1'
877 format(a, £f12.6)
878 format(a, £f10.5,a,£10.2,a)
write(6, *)
iderflag=0
npacket=npacket+l

Start the propagation...........c.eu..
Perform this by second order dlfferenc1ng (Kosloff)

O0000

de 100 it=1,ntmax
check to see if we need to store overlap and/or write wavepacket to disk
if (mod(it,novsav) .eq. 0) then
novlp=novlp+l
call ovlp(zpsiA0, zpsiBl, zovlp(novlp))
endif
if (mod(it,npktsav) .eq. 0) then

if (isavde) 781,780,779
779 iderflag=1
780 npacket=npacket+1l

call pktsav(zpsiBl,ti,npacket,0)
781 call chk(2,ti,zpsiBl, rsnorm,Have)
ti=it*delt
965 format (a,i6,a,£8.3)
write(6,965)"'Timestep *, it, ', t = ', ti*atu
write{2,965)'Timestep ‘, it, ', t = ', ti*atu
write(2,877)'Norm of wavefunction is ’, rsnorm
write(6,877)’Norm of wavefunction is ’,rsnorm
if (rsnorm .gt. 2.0d400) then
write (6, *)'Exceeded reasonable norm - terminating...’
stop
endif
write (6, 878)’Energy <H> =',Have/rsnorm,
Have*harwn/rsnorm, cm-1‘

write (2,878)'Energy <H> =!,Have/rsnorm, ! r,
Have*harwn/rsnorm,’ cm-1'

0

write(6,*)
iderflag=0
endif
¢ determine the new wavefunction zpsiB2 from zpsiB0 and zpsiBl
call psi2(2,ti,zpsiB0, zpsiBl, zpsiB2)
C now we have zpsiB2 prepare for next step of propagation

call vcopy(nXpts,zpsiBl, zpsiB0)
call vcopy(nXpts,zpsiB2, zpsiBl)

c
€ now round propagation loop again.....
c
100 continue
close (2)
C Implicitly closes up the wavepacket file... (?)
c close(9)
c Wavepacket (and derivs) stored on disk for inspection and graphing,
c Now store Overlap for inspection of Autocorrelation function
call savovlp(zovlp,novlp)
c forward fourier transform for absorption (photoelectron) spectrum here
c Include a dephasing constant gamm to give finite width to peaks or to
c simulate experimental resolution.
C Include C(-t) at tail end of array zovlp (in wrap around order) forcing
c C(-t)=C(t) so that absorption spectrum is real..

do 872 iFT=1,nFFT/2+1
ti=(iFT~1) *delt*novsav
zovlp (iFT)=zovlp (iFT) *exp (-gamm*ti**2)
872 continue
do 560 iFT=nFFT/2+2,nFFT
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JET=nFFT-iFT+2
zovlp (iFT)=dconjg(zovlp(jFT))
560 continue
write(6,*)'Performing final fast Fourier Transform’
call FFT(zovlp,nFFT,1)

c At the moment are using a two sided C(t) and checking I{w) to be real

domega=2.0d0*pi/ (nFFT*delt*novsav)
absmax=0.0
jFT=0
do 120 iFT=1,nFFT
v1=(iFT-1) *domega
if (vl .ge. Espmin .and. vl .le. Espmax) then
jFt=3FT+1
omega { jJFT)=v1l
Eprsq(jFT)=dreal (zovlp (iFT))
if (Eprsq(jFT).1t.0.0) Eprsq(jFT)=0.0d0
if (Eprsq(3jFT).gt. absmax) absmax=Eprsq(jFT)
endif
120 continue
ninit=1
nfin=3jFT
¢ Save spectrum{omega is in circular wavenumbers)
call savabs(omega,Eprsq,ninit,nfin,absmax)

C tenens All Done it iiiiineeenans
c
stop
end
c
c
c AKX K ARFF A AKRKRAT AN KK KR KAk dkk*

subroutine const ()
LA R RS RS R ERE RS RS R R R RERE

***read the needed data and alsoc define some useful constants.

a0

implicit double precision (A-H,0-Y)

implicit complex*16 (2z)

parameter (npts=1024,nFFT=8192)
common/convert/harev,evwn, a0, amu, emu, harwn,amass, atu
common/const0/ zero,zeye, pi,c, twopi,sqrtpi,pisq
common/constl/ xmas, hb
common/const3/tmax,ntmax,delt, iderflag
common/const4/xmin, xmax, nXpts, dx, npacket
common/const6/gamm
common/const7/ Espmin,Espmax,domega, novsav,npktsav

C set conversion factors
harev = 27.211608d0
evwn = 8065.479d0
a0 = 0.52917706d0
amu = 1822.882d0
emu = 9.109534d-31
harwn = harev*evwn
amass = 1.66056d-27
atu=0,024199d0

C set const0
zero=dcmplx (0.0d00,0.0d00)
zeye=dcmplx (0.0d00,1.0400)
pi= dacos(-1.0d00)
twopi= 2*pi
sgrtpi= dsqrt(pi)
pisg=pi*pi
€=2.99792458d10
hb=1.0d0
speed of light in cm/s and hbar in atomic units

a0
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C set constl (expect mass in amu )
read(l,*) xmas
Xmas=xmas*amu

C set const3 (expect in a.u.)
read(l,*) tmax,delt
ntmax=tmax/delt

C set const4 (expect in angstroms)
read(l,*) xmin,xmax,nXpts
xmin=xmin/a0
xmax=xmax/a0
dx= (xmax-xmin) /nXpts

call potread{)

C set consté6
C set dephasing constant gamma (in atu**-2)
C If user enters zero then use optimal window function
C See Numerical recipes...
read(l, *)
if (gamm .eq. 0.0) gamm=5.0000/tmax/tmax
c
C set const?
c min and max energies of output spectrum (expected to be in eV.)
read(l,*) Espmin, Espmax
Espmin=Espmin/harev
Espmax=Espmax/harev
c converted to circular frequency in a.u. (this is equiv. to hartrees)
c
C set up counting variables
c
¢ save autocorrelation function (overlap between t=0 zpsi and
¢ t=novlp*novsav*delt zpsi) at intervals determined by novsav and
c Save the wavepacket in its entirety every npktsav point in time
¢ These are ignored right now......... ‘
read(1l, *) novsav,npktsav
if ( (2*ntmax/novsav) .gt. nFFT) then
write(6,*)’Too many overlap points - alter novsav’
stop
endif
c
return
end
c
c

C*i*tiik****i*****t**i!it*i********ﬁ**********l********

subroutine potread()
C**ttt*t**t*ti*t**t*******t********i******t*****tt*****
implicit double precision (A-H,O0-Y)
implicit complex*l6 (z)
double precision lde,lre,lb
parameter {(npts=1024)
common/convert/harev, evwn, a0, amu, emu, harwn, amass, atu
common/const0/ zero,zeye, pi,c, twopi,sqrtpi,pisqg
common/constl/ xmas, hb
common/const2/x0A, xomegh, VOA, xwexeA,dea, xalphaA, xOB,
xomegB, xwexeB, deB, xalphaB, vOB
common/const4/xmin, xmax, nXpts,dx, npacket
COMMON/LEPS/LDE(3),LRE(3),LB(3),AM(3),DELTA(3),RCA
common/pot/zpot (npts, 2)
common/pottyp/ipottypA

This routine reads in potential parameters for both surfaces and then
stores potential at each grid point to save further computation.

Read anion potential first

O 0o 00

set the potential by reading potential type



read(l, *) ipottypA

if {((ipottypA .gt. 3) .or. (ipottypA .lt. 0)) then
write(6,*)'Problem with potential type in input deck’
stop

endif

C For each type read relevant parameters:
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C (expect x0 in Angs, omega, and wexe in cm-1 and Vo, De in eV, alpha in Angs-1)

if (ipottypA .eq. 0) then
read (1, *) xOA, deA, xalphaA, v0A
C convert to au
x0A=x0A/a0
deA=deA/harev
xalphaA=xalphaA*a0
xwexeA=xalphalA**2/(2.0*xmas)
xomegA=dsqrt (4.0*xwexeA*deA)
vOA=vOA/harev
call morse(l,x0A, deA, xalphah, v0A)

endif

if (ipottypA .eq. 1) then
read (1, *)x0A, xomegA, xwexed, v02
C convert to au
x0A=x0A/a0
xomegA=xomegA/harwn
xwexeA=xwexeA/harwn
vOA=v0A/harev

C If Morse, convert potential parameters to reciprocal bohr and hartrees...

if (xwexeA .ne. 0.0d00) then
xalphaA=dsqrt (2.0d00*xmas*xwexed)
deA=xomegA**2/ (4.0d00*xwexeA)
ipottypA=0
call morse(l,x0A,deA, xalphaA,vO0A)
else
call harmonic(l, xmas,x0A, xomegA, vOA)
endif
endif

if (ipottypA .eq. 2) then
write(6, *) 'Leps not supported for anion’
stop

endif

if (ipottypA .eq. 3) then
read (1, *)vOA
vOA=vOA/harev
open(7,file="pot.in’)
do 821 ix=1,nxpts
read(7, *) pot
zpot (ix,1)=pot+v0A
821 continue
endif

C Now read neutral (B) potential

read(1l, *) ipottypB

if ((ipottypB .gt. 3) .or. (ipottypB .lt. 0)) then
write (6, *)'Problem with potential type in input deck’
stop

endif

if (ipottypB .eqg. 0) then
read(1l, *) x0B,deB, xalphaB, vOB
x0B=x0B/a0
deB=deB/harev
xalphaB=xalphaB*a0
xwexeB=xalphaB**2/(2.0*xmas)
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xomegB=dsqrt (4.0*xwexeB*deB)

vOB=vOB/harev

call morse(2,x0B,deB, xalphaB, vOB)
endif

if (ipottypB .eq. 1) then
read (1, *)x0OB, xomegB, xwexeB, VOB
x0B=x0B/a0
xomegB=xomegB/harwn
xwexeB=xwexeB/harwn
vOB=v0B/harev
if (xwexeB .ne. 0.0d400) then
xalphaB=dsqrt (2.0d00*xmas*xwexeB)
deB=xomegB**2/ (4.0d00*xwexeB)
ipottypB=0 .
call morse(2,x0B,deB,XalphaB, vOB)
else
call harmonic(2, xmas, x0B, xomegB, vOB)
endif
endif

if (ipottypB .eq. 2) then
C Read in three atom masses in amu of atom A,B,C repectively
read(1l,*) vOB
vOB=vOB/harev
READ (1,*) AM(1),AM(2),AM(3)

For each pair of atoms input the parameters De, Beta, Re, Sato
where De (in eV); Beta (in Angs. -1); Re (in Angs.)
In the order atoml-atom2 (A-B), atom2-atom3 (B-C) and then atoml-atom3 (A-C)
DO 2050 1=1,3
IF (I.EQ.3) THEN
J=1
ELSE
J=I+1
ENDIF
READ (1,*) LDE(I),LB(I),LRE(I),DELTA(I)
C convert to kJ/mol and nm-1, nm
lde(i)=1de(i)*96.485
1b(i)=1b (i) *10.0
lre(i)=1re(i)/10.0
2050 CONTINUE
C Now input the value of Rac that you want 1D cut at {(in Angstroms)
READ (1, *) RCA
rca=rca/10.0
C potential routine hardwired to expect kJ/mol and nm,nm=-1 !
call lepstore (v0OB)
endif

[eEe XS]

if (ipottypB .eq. 3) then
read(1l,*)vOB
vOB=v0OB/harev
open(7,file='potB.in’)
do 822 ix=1,nxpts
read (7, *) pot
zpot (ix, 2)=pot+v0B
822 continue
endif
C Now zpot array contains A and B potentials at nXpts on grid
return
end

AEIXAKAAXA AKX RAIRNR AR AKX RA KRN N RANKRARNRRRARN RN AN kKR

subroutine initB(ti,zpsiB0, zpsiB1l)
LA RS EEE R SRR EEEEREEREREEE R EIER X R R R R I SRR IE P

(9}

initialize the wavefunction arrays and then evolve this wavepacket
using second order runge-kutta.

00000



implicit double precision (A-H,0-Y)

implicit complex*16 (z)

parameter (npts=1024)

dimension 2psiB0(1),2zpsiB1(1)

dimension zpsiBI(npts), zHpsiBI(npts), zHpsiBO (npts)
common/convert/harev, evwn, a0, amu, emu, harwn, amass,atu
common/const0/ zero,zeye, pi,c, twopi,sqrtpi,pisq
common/constl/ xmas, hb
common/const2/x0A, xomegA, vOA, XxwexeA, dea, xalphaA, x0B,

xomegB, xwexeB, deB, xalphaB, vOB

common/const3/tmax,ntmax,delt, iderflag
common/const4/xmin, xmax, nXpts, dx, npacket
common/pottyp/ipottypA

place the initial wavepacket on surface A discretize it.

If using a fully flexible potential, ie from a file, then need the
initial (ground) wavefunction of the ground state surface supplied
explicitly: use anionwf subroutine that reads 1ld wavefunction from file
in the format produced by the FCF program of Ellison.

[eXeNeXe Xt N el

if (ipottypA .eq. 3) then
call anionwf (1,zpsiB0)
else
if (ipottypA.eq. 1) then
C else if using Harmonic/Morse potential then call respective routine
C that produces ground state wavefunction
call initWF (zpsiBO)
else
sall morsewf (zpsiBO)
endif
endif
C Check the norm and energy of the stationery state on the lower potential
call chk(l,ti,zpsiB0, rsnorm, Have)
write (6, *)
write(6,877)'Norm of initial wavefn is ’,rsnorm
write(6,878)'Energy {(on lower surface) <H> =',Have/rsnorm,
' *,Have*harwn/rsnorm,’ cm-1/
write (6, *)
877 format (a, £12.6)
878 format(a,£f10.5,a,£10.2,a)
c
c evolve this wavefunctions for time delt/2 on the surface
call Hpsi(2,ti,zpsiB0, zHpsiB0O)
do 20 ix=1, nXpts
zpsiBI(ix) = zpsiBO(ix) =~ zeye *(delt/2.00d00)*zHpsiBO(ix)/hb
20 continue

c Second order Runge Kutta using the intermediate derivative.
call Hpsi(2,ti,zpsiBI,zHpsiBI)
do 30 ix = 1, nXpts

zpsiBl (ix)=zpsiBO(ix) - zeye*delt*zHpsiBI(ix)/hb
30 continue
c
return
end
c
c AKKEKKKE KRN KRKARAARRKARAKRA KKK RK KT KR Tk Kk "k ok kkk Kk
subroutine initWF (zpsiA0)
c I EE SRS SRS SRR RS RESRERE RS SRS RRERRRSEREEEEREE]
c
c initialize wavefunction on lower surface A
c

implicit double precision (A-H,0-Y)
implicit complex*16 (z)
dimension zpsiA0(1)
common/const0/ zero,zeye, pi,c, twopl,sqrtpi,pisq
common/constl/ xmas, hb
common/const2/x0A, xomegA, vOA, xwexeA, dea, xalphah, x0B,
xomegB, xwexeB, deB, xalphaB, vOB

340
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common/const4/xmin, xmax, nXpts, dx, npacket
c
C Initial wavefn on surface is ground harmonic oscillator
C Only does the ground state wavefunction (lowest quantum
C state); for higher vibrational wavefunctions see the 2d code

if (xomegA .eq. 0.0d00) then

write(6,*)'No initial wavepacket as no omega available’
stop

endif

xt=x0A
pt=0.0d00

zat=dcmplx (0.0400, xmas*xomegA/2.0d00)
gt=-(hb/4.0d00) *dlog (2*dimag{zat)/ (pi*hb))

zgt=demplx (0.0d00, gt)

c

c write(2,910) xt,pt,zat,gt
910 format (5(1lx,el3.6))
c

do 10 ix=1, nXpts
Xi=xmin + (ix=-1)*dx
zarg=zat* (xi-xt)*(xi-xt) + pt*(xi-xt) + zgt
zpsiAO(ix)= exp(zeye*zarg/hb)

10 continue
c
return
end
c

Cc KRKRA KR AR I KR AR ARR KA KR ARRKR KRR RREIRNRARKR RN AR RARNRR RN A AR A Xk ok kok kk ok

subroutine psi2(ipot,ti,zpsiAO, zpsiAl,zpsiA2)
KKK KRRKRAA KA AKRTIRRN AR AR RARRKRKARRA RN AR KA AR AR A KRR KRR R RN ARk kX okkk & kok

evaluate the new wavefunction zpsi2 from the old ones zpsi0O and zpsi2

0000

implicit double precision (A-H,O0O-Y)

implicit complex*16 (z)

parameter (npts=1024)

dimension zpsidA0(1l),zpsiAl(l),zpsiA2(1),zHpsiAl (npts)
common/const0/ zero,zeye, pi, c,twopi,sqrtpi,pisq
common/constl/ xmas, hb
common/const3/tmax, ntmax,delt, iderflag
common/const4/xmin, xmax, nXpts, dx, npacket

00

compute H*zpsil (*):
call Hpsil(ipot,ti,zpsiAl, zHpsiAl)
do 10 ix = 1, nXpts
zpsiA2 (ix)=zpsiA0(ix) - 2.0*zeye*delt*zHpsiAl(ix)/hb
10 continue

return
end
c IR R E R T R E R R R R R R R R R R R R R R R R R RS R R R SRR S

subroutine Hpsi(ipot,ti,zpsiA,zHpsiA)

ARARKAARE A A ARAEN KRR XNKARRKNKAN KRR A AR AKX AKX ARRARARRNANK KK

c
c
c
¢ compute H * psi = { KE + PE } * psi(x)
C
implicit double precision (A-H,0-Y)
implicit complex*16 (z)
parameter (npts=1024)
dimension zpsiA(l), zHpsiA(l)
dimension zpsiPE (npts),zpsiKE (npts)
common/const0/ zero, zeye, pi, c,twopi,sqrtpi,pisqg
common/constl/ xmas, hb
common/const3/tmax,ntmax,delt, iderflag
common/const4/xmin, xmax, nXpts, dx, npacket
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call KEmat (zpsiA,zpsiKE, ti)
call PEmat (ipot, zpsiA, zpsiPE)

c
do 10 ix = 1, nXpts .
zHpsiA(ix)=zpsiPE (ix) + 2zpsiKE (ix)
10 continue
c

if (iderflag .eq. 1) then
c write(9,*)*This is the second derivative.....’
npacket=npacket+1l
call pktsav(zpsike,ti,npacket,-1)
c write(9, *)’This is the Vpsi..... ’
npacket=npacket+1l
call pktsav(zpsipe,ti,npacket,=-2)
c write (9, *)'This is the Hpsi..... 4
npacket=npacket+l
call pktsav(zHpsiA, ti,npacket,~-3)
endif

return
end

AR AR R AR AR AR RAAR AR RRRAAARARAARATRRARRRRRNTAR NN R XA

subroutine KEmat (zpsiX, zpsiK,t)
AR RS SRR RS R R RARRRR RS RS R R RS RN R X3

00

computes (-hb**2)/(2*xmas)) *(d/dx)**2[zpsiX] = zpsiK
note zpsix(l)<-> zpsi(x0), zpsi(nXpts) <-> zpsix(xf), etc.
uses forward and backward FFT to evaluate 2nd derivative

O00000

implicit double precision (A-H,0-Y)
implicit complex*l6 (z)
dimension zpsiX{1l),zpsiK(1)

common/const0/ zero,zeye, pi,c,twopi,sqrtpi,pisq
common/constl/ xmas, hb
common/const3/tmax,ntmax,delt, iderflag
common/const4/xmin, xmax, nXpts, dx, npacket

backward fourier transform : zpsiX(x) => zpsiK(k)

o000

isign=-1

do 10 ix=1, nXpts
zpsiK{ix)=zpsiX (ix)

call rFT(zpsiK,nXpts,isign)

if (iderflag .eq. 1) then
npacket=npacket+1l

call pktsav(zpsik,t,npacket,~4)
endif

—
o

c
c compute the second derivative in the momentum domain.
L=nXpts/2
do 20 k=0, nXpts-1
if (k .le. L) then
ZpsiK(k+1l)= -k*k*zpsiK(k+1)/nXpts
else
ZpsiK (k+1)=~(nXpts-Kk) * (nXpts-k) *zpsiK(k+1l) /nXpts
endif
20 continue
c
c
¢ forward transform : zpsiK(k) => zpsix(x)
isign=1
call FFT(zpsiK,.nXpts,isign)
c
c scale results
xL= xmax—-xmin
cl= -0.5d00*hb*hb/xmas
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c2= 4*pisq/(xL*xL)

c = cl*c2

do 30 ix=1,nXpts
zpsiK(ix)= c*zpsiK(ix)

30 continue
c
return
end
c
c LA EE AR RS RS R R R RIS R EE RS EEEERERE R R 2

subroutine PEmat (ipot, zpsiX, zpsiP)
LR R E R R ISR S E RS RS E SRR R R R R RS

calculate zpot (x)*zpsiX=zpsiP
note zpsiX(l) <-> zpsiX(x0), zpsiX(nxpts) <=> zpsiX(xf), etc.

00000

implicit double precision (A-H,0-Y)

implicit complex*16 (z)

dimension zpsiX(1l),zpsiP (1)

parameter (npts=1024)
common/constd4/xmin, xmax, nXpts,dx, npacket
common/pot/zpot (npts, 2)

do 10 ix=1,nXpts
zpsiP (ix)=zpot (ix, ipot) *zpsiX (ix)
10 continue

return
end
[o] HEARRKARR KA RN R RRNRAN R AR RN AR RRART RN AR RRRRRFARAR RNk ARk dok

subroutine harmonic (ipot, xmas, x0, xomeg, v0)
c LA R AR 2 S R S R R R R R R R R R R R E R R R R R

implicit double precision (A-H,0-Y)

implicit complex*16 (z) ’

parameter (npts=1024)
common/convert/harev,evwn, a0, amu, emu, harwn, amass, atu
common/const4/xmin, xmax, nXpts, dx, npacket
common/pot/zpot (npts, 2)

C Establish shelf for maximum value of potential so as to minimize
C unnecessary reduction of the time step.
shelf=2.0/harev
write(6,*)’Establishing shelf in harmonic potential’,ipot
write(6,*)’so that full range of potential energy is '
write(6,99)'no greater than ’,shelf*harev,’ eV’
99 format (a, £5.1,a)
write(6,*)

do 120 ix=1,nXpts
xi=xmin + (ix~-1)*dx
zpot (ix, ipot)= 0.50d00*xmas* (xomeg* (xi-x0))**2 + vO
if (real(zpot(ix,ipot))-v0.gt.shelf) zpot(ix, ipot)=shelf+v0
120 continue
return
end
c
c EREXA KRN K AT R AN RRRR A ARARRE AR RRTIRRNRNRAR AR KRR KRR KRR KKKk

subroutine morse(ipot,x0,de,xalpha, v0)
fod lttttittﬂtt&t'ltltlltt*ttittttilﬂkt!***tl*tt*t*tt*ittﬁ

implicit double precision (A-H,O0-Y)

implicit complex*16 (z)

parameter (npts=1024)
common/convert/harev,evwn, a0, amu, emu, harwn,amass, atu
common/const4/xmin, xmax, nXpts, dx, npacket
common/pot/zpot (npts, 2)

C Establish shelf for maximum value of potential so as to minimize
C unnecessary reduction of the time step.
shelf=2.0/harev
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write(6,*)’Establish.ng shelf in Morse potential’,ipot
write(6,*)’so that full range of potential energy '
write(6,99)’is no greater than ’,shelf*harev,’ eV’

99 format(a, £f5.1,a)
write (6, *)

do 120 ix=1,nXpts
xi=xmin + (ix-1)*dx
zpot (ix, ipot)= de* (1.0d00-dexp (-xalpha* (xi-x0)))**2 + vO
if (real (zpot (ix,ipot))=-v0.gt.shelf) zpot(ix,ipot)=shelf+v0
120 continue
return
end
c
c KRR KK KK dkk Rk ks ek ko ok k ok ok ok vk kR ok ok gk ke ko N

subroutine potlsave (ipot)
c AR KRRAAR R AN AN KRR ANERNA RN AR R RN kR

c
implicit double precision (A-H,O0-~Y)
implicit complex*l6 (z)
parameter (npts=1024)
common/constd/xmin, xmax, nXpts, dx, npacket
common/pot/zpot (npts, 2)
c
if (ipot .eq.l) open(3,file='potlA.ocut’)
if (ipot. eq.2) open(3,file='potlB.out’)
do 10 ix=1,nXpts
xi=0.529177* (xmin+ (ix-1) *dx)
a=dreal (zpot (ix,ipot))*27.2116d00
write(3,930)xi,a
930 format (2x,£8.3,2x,£20.10)
10 continue
close (3)
return
end
c
c
c LAE R SRR R RS R E RS R S R R R TR E R R RN R
subroutine Vcopy(n, zA, zB)
c KRR KE AR AR A KA AR RKRRKRRRRRRKR TR AR Rk ARk kR
c
c copy a vector of length N from zA to 2zB
c
implicit complex*16(z)
dimension zA(l), zB(l)
c
do 10 ix=1,N
zB(ix)= zA(ix)
10 continue
c
return
end
c
c A A RS EE SRR E R RS RS R RS REEERER R RS R R K]
subroutine FFT(x,n,isign)
(o] REXKAKANTERARNANRRARNARKRARAN AR AR AR AR N K kK
2 AR A SRS R ER R R R R R RS R R R R R R R SR RER AR RRRERRRR RN NSRS
¢ * The fft computes the discrete fast Fourier transform of a *
c * sequence of n terms. *
¢ * The forward FFT computes *
c * y{(j)= sum (from k=0 to n-1) x(k)*exp(2*pi*i*j*k/n) *
¢ * the backward FFT computes *
c * y(j)= sum (from k=0 to n-1) x(k)*exp(-2*pi*i*j*k/n) *
c * »
c * x is a complex array of length n. *
¢ * n is a power of 2. n<=16384 *
¢ * isign is the direction of the transform. If isign >= 0 then*
c * the fft is forward , otherwise backward. *
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* *®

* Ref. Cooley, Lewis, Welch. The FFT and its applications *
* IEEE Trans. on Education, vol. E-12 #1; p. 29 *

KARRRE A KRR AR A AN RKNT A ARA KA AR AX AR AR ERRARRAAXRA RN TR IN RN Rk Nk kh kb ok

00000

implicit double precision (A-H,0-Y)
complex*16 s,v,w,x(n),cstore(l16384)
data ntbl/0/

The roots of unity exp(pi*i*k/j) for j=1,2,4,..,n/2 and k=0,1,2,..,3-1
are computed once and stored in a table.
This table is used in subsequent calls of fft with parameter n<=ntbl

0O0000

if (n .gt. ntbl) then
ntbl=n
pi=3.141592653589794d00
j=1
icnt=0
10 s=pi*(0,1)/]
do 20 k=0, 3j-1
ient=icnt+1
20 cstore (icnt) =exp (s*k)
j=3+3
if (j .1t. n) goto 10
endif

******Bit Ieversalt**rt**i*ﬂ

the x(j) are permuted in such a way that each new place number j is
the bit reverse of the original placenumber.

aO00000

j=1
do 30 1i=1,n
if (i .le. 3j) then
v=x(J)
X{(j)=x(i)
X(i)=v
endif
m=n/2
25 continue
if (j .gt. m) then
j=Jj-m
m=m/2
if (m .ge. 1) go to 25
else
j=3+m
endif
30 continue
c
c ****tttttﬂ!tMatrix multiplicatiOnt****i*****i**'k
c
¢ the roots of unity and the x(3j) are multiplied
c
j=1
icnt=0
20 3i=3+3
do 50 k=1,
icnt=icnt+l
w=cstore {icnt)
if (isign .lt. 0) w=dconjg(w)
do 50 i=k,n,jj
v=w*x (i+j)
x(i+3)=x(i)~v
50 x{(i)=x{i)+v
3=33
if (j .1t. n) goto 40
return
end
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AR RS SRR R RS SES Rl R iR R R R R RS R R R

subroutine chk(ipot,ti, zpsiA, rnorm, Hav)
AR EARK AR AN ARARANRNRRKRAR KA RRARKAKA R AR AR AR AR KRk kok®

Check that norm and energy are conserved
implicit double precision (A-H,0-Y)
implicit complex*16 (z)
dimension zpsiA(1l)

call chknrm(zpsiA, rnorm)

call chken(ipot,ti, zpsiA, Hav)
return
end

Hhh KR AR Rk kK KU gk R ok b ok ok ok Wk dk sk ek W s ok sk Rk d o R K R ok ko

subroutine chknrm(zpsi, rnorm)
LA X RS E RS R R R R E RS R R EE R RS RS2SRRSR RS RS E R R X

Check that the norm is conserved during numerical integration of TDSE.
implicit complex*16 (z)
implicit double precision (A-H,0-Y)
parameter (npts=1024)
dimension zpsi(l),psisq(npts)
common/const4/xmin, xmax, nXpts, dx, npacket

do 10 ix=1,nXpts
rpsi=dreal (zpsi (ix))
aipsi=dimag(zpsi(ix))
psisq{ix)=rpsi*rpsi+aipsi*aipsi
continue

call simpint(nXpts,psisq,dx, rnorm)

return
end

KA A KK AR AR K AARRRARRRRERRA KRR KRR NRAN AN XA AR AR TN kK ke k

subroutine chken(ipot,ti,zpsil, Hav)
KRR RKREARNRA A A RARANR AR AT AR AR KRR KRN RA KRR RARTRRN AR

check that energy is conserved during numerical intergration of the TDSE
implicit double precision (A-H,0-Y)
implicit complex*16 (z)
parameter (npts=1024)
dimension zpsiA(l),zHpsiA(npts),psiHpsi (npts)
common/constd4/xmin, xmax, nXpts, dx, npacket

call Hpsi(ipot,ti,zpsiA, zHpsiA)
do 10 ix=1,nXpts

psiHpsi (ix)=dreal (dconjg(zpsiA(ix)) *zHpsiA{ix))
continue

call simpint(nXpts,psiHpsi,dx,Hav)

return
end

AAEAKRAAXAKXKRAXRANARNARKARAARNARRRRRARNRAA AR AR RN AN KRN

subroutine simpint(nx,fl,dx,fint)
AHAEAEARXRRAARXIA KRR RN ARRNRARNA R AR ARNRE AR AN RNRARAANRARRRARAN RN

Simpson Rule integrator. This subprog im calls the trapezoidal
integrator twice. Because of cancellat.on of errors the result is
accurate to the the order of (1/nx**4)

Rule valid only when nx odd. Hence for even nx the last piece of area
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under fl(nx-1) and f2(nx) is added by trapezoidal rule.

Reference 'Numerical recipes’ Press, Flannery, Teukolsky, Vetterling
Cambridge University Press, Cambridge (1986)

parameter (nypts=1024)
implicit double precision (A-H,0-Y)
dimension £l (nypts),f2(nypts)

define:

dxl=dx
dx2=2.0d00*dx
ixn=0

if (nx .gt. nypts) then
write(6,*) ' simpint : nx .gt. nxpts = ‘, nypts
endif

if ((mod{(nx,2) .eq. 0)) then
nxl=nx-1
nx2=0.50d00*nx1+1
fint=0.50d00*dx* (£l (nx-1) + f1l(nx))
else
nxl=nx
nx2=0.50d00*nx1+1
fint=0.0d00
endif

copy the odd elements of farray into £2

do 10 ix=1l,nxl1,2
ixn=ixn+1
f2 (ixn)=£1(ix)

Now integrate fl, f2 in two pieces.

call trapint(nxi,fl,dxl,fintl)
call trapint(nx2,£2,dx2,£fint2)
fint=£fint+(4.0d00*fintl - fint2)/3.0d00

return
end

C KRR AR KK AR KA A A AR KA AR KRR R AR AR KR AR X AR XA AR A R KR AR R KX

subroutine trapint(npts, f,dx, fint)

C XEA XK KR AR A KA A AR KA ARAARAKRRN AR R AR K A RRRIFA A AT A A AR KK k&

implicit double precision (A-H,0-Y)
dimension f (npts)

c trapeziodal rule integrator for f(l)-f(npts) <-> f(x0)-£f(xf)

100

00

0000

fint=0.

do 100 i=2,npts-1
fint=fint+£f (1)

continue
fint=fint+(f(1)+£f(npts))/2.0d400
fint=fint*dx

return

end

KEAKXNAKARR KA AN XX KRR AANRAKRXNRKKRAAN AR AKX EANRARRAR RN AKXk Xk K

subroutine ovlp(zpsil,zpsi2, zovp)

(LES R SRR ER R EERR RS Rl R SRRl ERERRRRRRRRRRERRERER]

finding the overlap integral

implicit double precision (A=-H,0-Y)



implicit complex*16 (z)

parameter (npts=1024)

dimension zpsil(1l),zpsi2(1l),zprod{(npts)
common/const4/xmin, xmax,nXpts,dx, npacket

c
do 10 ix=1,nXpts
zprod (ix)=dconjg(zpsil (ix)) *zpsi2 (ix)
10 continue
c .
call zsimpint (nXpts,zprod, dx, zovp)
c
return
end
c
(] Wk ok WA K vk sk ok ok A %k Ik e s K ok ke ok sk sk o % ok ok ok I ok e ok ok ok 3k ok ok s g ok ok ok ok e ok
subroutine zsimpint (nx,z£fl,dx,zint)
c AR ER R R SRS RSS2 RRRRERERRE R 31
c
c complex simpsons rule integrator
c
implicit double precision (A-H,0O-Y)
implicit complex*16 (z)
parameter (nypts=1024)
dimension z£1l (nypts), z£2(nypts)
c
c define :
dxl=dx
dx2=dx*2.
ixn=0.
c
if (nx .gt. nypts) then
write(6,*) ' zsimpint : nx .gt. nypts = ', nypts
endif
c
if ((mod(nx,2) .eq. 0)) then
nxl=nx-1
nx2=0.50d00*nx1+1
zint=0,50d00*dx* (z£1(nx-1) + zfl(nx))
else
nxl=nx
nx2=0.50d00*nx1+1
2int=0.0d00
endif
c

¢ copy the odd elements of zfl array into zf2
do 10 ix=1,nx1,2
ixn=ixn+1

0 z£f2 (ixn)=2z£1 (ix)

Q00

Now integrate zfl, zf2 in two pieces.

call ztrapint(nxl,zfl,dxl,zintl)
call ztrapint(nx2,z£2,dx2,zint2)
zint=zint+(4.0d00*zintl - zint2)/3.0d00

return
end

c ERA KA I AANRAN AN AN A F AN AN AR AN ANNNAR AN AN RN ARNRA AR KN KK kok

subroutine ztrapint(npts,zf,dx,zint)
c KAKANATXARARARARRR RN RAN R ARNR XA AN RANAARANANN R KRR AR Rk kK

implicit double precision (A-H,0-Y)
implicit complex*16 (z)
dimension zf (npts)
common/const0/ zero,zeye, pi,c, twopi,sqrtpi,pisq
c trapeziodal rule integrator for f£(l)-f(npts) <-> f(x0)-f(xf)
zint=zero

348



do 100 i=2,npts-1
zint=zint+z£ (1)
100 continue

c
zint=zint+(z£f(1)+zf (npts))/2.0d00
zint=zint*dx
return
end
c
(e} AARKEARE AR KRR RRAR A RN R RN AKRRRAR AR RN AR R R AR A KRR AR KA RART R AR KR kk kK

subroutine savabs(arrayl,array2,ninit,nfin, absmax)

c I R R R R R R R R R R R R R R R R R R R R RS RN EZ R EEESSSS R ZRSRR R R R EES]
c
c save arrays
c
implicit double precision (A-H,0-Y)
implicit complex*16 (z)
dimension arrayl(l),array2(1l)
common/const0/ zero,zeye,pi,c,twoPl,sqrtpi,pisq
c
900 format (2(2x,£20.10))
c

write(6,*)’Writing absorption spectrum to absspec.out’
open {(file='absspec.out’, unit=8)
write(8,900)0.0,0.0
do 120 iw=ninit,nfin
c convert omega from a.u. to eV.
write(8,900)arrayi (iw)*27.2116,array2(iw)/absmax
120 continue

c
close (8)
c
return
end

c ERAKA KRN A AR KA AR RARAR R AKX RKE KRR ARRN R ARRKAKAAARRARKRARRRAR KRR xRk k ok k&

subroutine savovlp(zsav, novlp)
AKKREREAN KKK ARRARRKRANRRRR R RN KA AR AR RN RAARR KRR A ARTR R AR RN Ak kX

000

save overlap (autocorrelation function)
implicit double precision {(A-H,O0-Y)
implicit complex*16 (z)
dimension zsav(l)
common/const3/tmax, ntmax,delt, iderflag
common/const7/ Espmin, Espmax,domega,novsav, npktsav
common/const6/gamm

900 format (£9.2,1x,f9.3,1x,f18.15,1x,£f18.15,1x,£18.15)
901 format (£9.3,2x,£18.15)
open{file='auto.dat’, unit=8)
open(file='avto.pic’, unit=7)
do 100 it=1,novlp
ti=novsav* (it-1) *delt
tfs=£i*2.4199d-2
re=dreal (zsav(it))
ai=dimag(zsav{it))
amod=dsqgrt (re*re+ai*ai)
write(8,900) ti,tfs,re,ai, amod
write(7,901) tfs,amod*exp(~gamm*tix**2)

100 continue
close (8)
close (7)
return
end

wave2.f
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c o dok T gk KK K A Kk kK ok sk Rk Kk Rk T K ok kT vk ok R ok ok ok vtk ok sk ke sk vk ok Wk ok ok ok ok ok b ok ok

subroutine pktsav(zpsi,time,npkt, itype)
R AR R R R R R R E R R R R R R E R R R R R R R R R R B R R R R R R SRS RZSR2ARRERERS R &N
Save the wavepacket at several shots in time in the same file
implicit double precision (A-H,0-Y)
implicit complex*16 (z)
character char*1l
character charl*4
dimension zpsi(1l)
common/convert/harev, evwn, a0, amu, emu, harwn, amass, atu
common/const4/xmin, xmax, nXpts, dx, npacket
.C Append the new packet to the file
open(9, file='wavepkt.out’, fileopt='eof’)

a0

c
c And add extra record to the open random access file
c
900 format (£7.3,2x,£16.10,2x,£16.10,2x,£16.10)
901 format (1024 (£16.10,2x))
910 format (1x,13,3x,£7.1,3x%,£7.3,2x,a4)
tfs=time*atu
if (itype .eq. -1) char='T’
if (itype .eq. -2) char='V’
if (itype .eq. -3) char='H’
if (itype .eq. —4) char='k’
if (itype .eq. 0) char=' '
charl=char//'psi’
write(9,910)npkt,time,tfs,charl
do 100 ix=1,nXpts
xi=xmin+ (ix~1) *dx
xiA=xi*a0
re=dreal (zpsi (1x))
ai=dimag(zpsi (ix))
amod=dsqrt (re*re+ai*ai)
write(9,900)xiA,re,ai,amod
100 continue
write (7,901, rec=npkt+2) (abs(zpsi(i)},i=1,nXpts)
c Close the sequential file so it is backed up
close (9)
return
end
c I X E E R RS R SR ERSEEEER SR SRS RRR R R R R SRR R R R R R R R R R R R RS

subroutine initpktsav (isavde)
c*******ti***t****t***t***t**k**ﬁ*ti*****t******i*t*****t********
implicit double precision (A-H,0-Y)
common/convert/harev,evwn, al,amu, emu, harwn,amass,atu
common/const3/tmax, ntmax,delt, iderflag
common/const4/xmin, xmax, nXpts, dx, npacket
common/const7/ Espmin, Espmax,domega, novsav,npktsav
integer*4 irec

irec=nXpts*18+1
size=float (irec* (isavde*4+1) *ntmax/npktsav)
if (size .gt. 100000.0) then
write(6,*)’Too many wavepackets to save - thats 1 meg of storage!’
endif
istat=system(’alias rm rm’)
istat=system(’'rm -f wave.drw’)
istat=system(’rm -f wavepkt.out'’)
write(6,*)’This version backs up the wavepacket file, and creates a
wave.drw file’
write(6,*)’**** 1 HAVE Removed old wave.drw and wavepkt.,out ***#*s
open(7, file='wave.drw’,access='direct’, form='formatted’,recl=irec)
tlastpkt=int (ntmax/npktsav) *npktsav*delt
write(7,900,rec=1) isavde, irec, xmin*a0, xmax*aO, nXpts, 0.0,
& tlastpkt*atu, ntmax/npktsav+l
900 format (i1,2x,14,2x,£f6.3,2x,£6.3,2x,14,2x,£6.3,2x,£12.3,2x%,13)
return
end
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lepsl.f

C Create a LEPS potential for a triatomic system,

C See Smith p. 44

C Indices:

C 1l = ab

c 2 = bc

C 3 = ca

o}

C Variables:

(o} R(1l) = ab distance (nm)

C Delta{l) = (1/S(1)) - 1, where S is Sato Parameter
Cc De(l) = dissoc limit of ab (kJ/mol)

c Re (1) = equilibrium ab bond length (nm)

Cc B(1) = width of potential for ab (nm -1)

o M(1) = mass of atom a (amu)

Cc

C Functions:

c V(R(1), R(2), R(3)) = LEPS potential (kJ/mol)
C Q(1,R(1)) = Q for ab and Rab

c AJ(1,R{1)) = J for ab and Rab

o VM(1,R(1l)) = Morse potential for ab and Rab
o VaM(1l,R(1)) = anti-Morse potential for ab and Rab
C

C ————— o s . e T B B e A e e S D S e St A T S S B T ™ SV A e W T B

FUNCTION VM(I,R)

IMPLICIT DOUBLE PRECISION(A-H,0-2)
DOUBLE PRECISION LDE,LRE,LB
parameter (npts=1024)

COMMON/LEPS/LDE (3) ,LRE(3),LB(3),AM(3),DELTA(3) ,RCA
X = -LB(I)*(R - LRE(I))

VM = LDE(I) * (DEXP(2.0*X) - 2.0*DEXP (X))

RETURN

END

FUNCTION VAM{I,R)

IMPLICIT DOUBL: PRECISION(A-H,0-2)

DOUBLE PRECISICn LDE,LRE,LB

parameter (npts=1024)
COMMON/LEPS/LDE(3),LRE(3),LB(3),AM(3),DELTA(3),RCA

X = ~LB(I}*(R - LRE(I))

VAM = LDE(I) * (DEXP(2.0*X) + 2.0*DEXP(X))/2.0
RETURN

END

FUNCTION Q(I,R)

IMPLICIT DOUBLE PRECISION(A-H,0-2)

DOUBLE PRECISION LDE,LRE,LB

parameter (npts=1024)

COMMON/LEPS/LDE(3) ,LRE(3),LB(3),AM(3) ,DELTA(3),RCA

Q = ((1.0 + DELTA(I))*VM(I,R) + (1.0 - DELTA(I)) * VAM(I,R))/2.0
RETURN
END

FUNCTION AJ(I,R)

IMPLICIT DOUBLE PRECISION (A-H,0-2)

DOUBLE PRECISION LDE,LRE,LB

parameter (npts=1024)

COMMON/LEPS/LDE(3) ,LRE(3),LB(3),AM(3),DELTA(3),RCA



AJ = ({1 + DELTA(I))*VM(I,R) - (1 - DELTA(I)) * VAM(I,R})/2.0

RETURN
END

FUNCTION JSIGN(I,K)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
IF (I .EQ. K) THEN
JSIGN=1
ELSE
JSIGN=-~1
ENDIF
RETURN
END

c ——— -

FUNCTION ALV (RAB, RBC)

IMPLICIT DOUBLE PRECISION(A-H,0-2)

DOUBLE PRECISION LDE,LRE,LB

parameter (npts=1024)
COMMON/LEPS/LDE(3),LRE(3),LB(3),AM(3),DELTA(3),RCA

DIMENSION R(3),T(3)
DOUBLE PRECISION JSUM

R(1)
R(2)
R(3)
QSUM

RAB
RBC
RAB+RBC
0.0

po10I =1,3

T(I)=1.0D0/(1.0DO+DELTA(I))

QSUM = QSUM + Q(I,R(I))*T(I)
10 CONTINUE

JSUM = 0.0
DO 20 I = 3,1
DO 30 K = 1,1
JSUM = JSUM +
30 CONTINUE
20 CONTINUE
ALV = QSUM - DSQRT (JSUM)
RETURN
END

’

faey

C Asymmetric stretch potential
C

FUNCTION POTEN (DR)

IMPLICIT DOUBLE PRECISION(A-H,0-2)

DOUBLE PRECISION LDE,LRE,LB

parameter (npts=1024)

COMMON/LEPS/LDE (3),LRE(3),LB(3),AM(3),DELTA(3),RCA

X = DR*0.052917706
C Convert from bohrs to nanometers
CIn this case Rac is distance between two heavy atoms
RAB = X
RBC = RCA - X
POTEN = ALV (RAB,RBC)/2625.504
C Convert from KJ/mol to hartrees
RETURN
END

CHtttttttttttttrttttttttttttttttdttttttttrstttrretttttttttts

subroutine lepstore (v0)

CH+ttttttttttttttttttrtttttttttibttbbt bbbt bbbttt bbb bbb

C

AJ(I,R(I)) * JSIGN(I,K) * T(I) * AJ(K,R(K))

* T(K)
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the Leps potential in an array for later use...

implicit double precision (A-H,0-Y)

implicit complex*16 (z)

parameter (npts=1024)

double precision lde,lre,lb
common/const4/xmin, xmax, nXpts, dx, npacket
COMMON/LEPS/LDE (3) ,LRE(3),LB(3),AM(3),DELTA(3),RCA
common/pot/zpot (npts, 2)

blish shelf for maximum value of potential so as to minimize
cessary reduction of the time step.

LEPS set this at the three atom dissociation limit (0.0 eV)
shelf=0.0/harev

write(6,*)’Establishing shelf in LEPS potential’
write(6,*)’so that full range of potential energy is '’
write(6,*)'no greater than from bottom of exothermic’
write(6,*)’channel valley to three atom dissociation’

do 120 ix=1,nXpts
Xi=xmin + (ix-1)*dx
zpot (ix,2)=poten(xi)+v0
if (real(zpot(ix,2))-v0 .gt. shelf) zpot(ix,2)=shelf+v0
continue
return
end

anionmorsewfl1.f

OO0O00O0000n

Qoo

C Read
C Lets

900

903
905

910

Anionwf stolen from READFCF8

Read the wavefuction off the fort.4 file of a

FCF program job (code of Ellison et al,)

This can actually pull off any wavefunction (excited vibrational
states) from the wavefunction calculated for the LOWER potential
using that program. To use this feature change ILEVEL from 1 in
calling routine

This routine is mandatory if the user uses a general potential
from a file for the LOWER potential in the wavepacket calculation

SUBROUTINE ANIONWF (ILEVEL, ZPSI)

IMPLICIT DOUBLE PRECISION (A-H,0-Y)

Implicit Complex*16 (z)

DIMENSION NEN(2),PCOEFS(2,6),XKOUT(75)
DIMENSION V(75,2),NPOT(2),E(2,50),VJ(2,70,50)
DIMENSION ZPSI (1)
common/const4/xmin, xmax, nXpts, dx, npacket

data from file fort.4
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allow the fort.4 file to have data about upper surface for compatibility

OPEN(4,FILE='fort.4")

READ (4,900) NOSC
FORMAT (I3)

IF (NOSC.EQ.1) THEN

READ (4,903) NEN(1),N
ELSE

READ (4, 905) NEN(1),NEN(2),N
ENDIF
FORMAT (213)
FORMAT (313)
NKNOT = N + 4

READ (4,910) (XKOUT(I),I=1,NKNOT)
FORMAT (13 (6F12.6,/))



READ (4,915) NPOT(1l), (PCOEFS(1,1I),I=1,6)
915 FORMAT(I12,6F12.6)
READ (4,920) (V(I,1),I=1,NKNOT)
920 FORMAT((6F12.7))
READ (4,925) (E(1,J),J=1,NEN(1))
925 FORMAT (20F12.7)
IF (NOSC.EQ.1) GO TO 10
READ (4,915) NPOT(2), (PCOEFS(2,1I),I=1,6)
READ (4,920) (V(I,2),I=1,NKNOT)
READ (4,925) (E(2,J),J=1,NEN(2))
10 DO 20 I=1,NEN(1)
READ (4,920) (VJ(1,dJ,1),J=1,N)
20 CONTINUE
IF(NOSC.EQ.1) GO TO 40
DO 30 I=1,NEN(2)
READ (4,920) (vJ(2,J,1),Jd=1,N)
30 CONTINUE
CLOSE (4)
XH = XKOUT (2) - XKOUT(1)
if ((xmin*0.529177 - xkout(l)) .gt. 0.0005) then
write(6,*)’xmin= *,0.528177*dx
write(6,*)’ first knot at ’,xkout (1)
write(6,*)’first points dont match - Stopping’
stop
endif
if ((xh-0.529177*dx) .gt. 0.0005) then
write(6,*)’dx= ’,0.529177*dx
write(6,*)"knot spacing= ’,xh
write(6,*)'Grid sizes dont match - Stopping’
stop
endif
if (nknot .ne. nxpts) then
write(6,*) 'nXpts= ’,nxpts
write(6, *) 'nknots= ’,nknots
write(6,*)'Dont match - Stopping’
endif
40 PRINT(999)
999 FORMAT (* DONE READING')

This has stored all needed and uneeded data .....

c
c
c Calculate wavefunction from spline coefficients
o Want the ground state wavefunction, I=1:
I=ILEVEL
ZPSI(1)=VJ(1,1,I) + VJ(1,2,1)/4
ZPSI(N)=VJ(1,N,I) + VJ(1,N-1,I)/4
DO 100 J=2,N-1
ZPSI(J)=VJ(1,J-1,I)/4 + VvJ(1,J,I) + VJ(1,J+1,1I)/4
100 CONTINUE

[eNeXe]

Get the correct sign for wavefunction (+ at beginning)

J=0

105 J=J+1
IF (real (ZPSI(J)) .GT.0) GO TO 110
IF (real (2PSI(J}) .EQ.0) GO TO 105
DO 106 J=1,N
vJ(l,J,1)=-vJ(1,J,1)

106 ZPSI (J)==-2ZPSI(J)

110 CONTINUE

return
end
ARAKAXKAKEAKR AKX ARAAAR AR AKR AT HNARNTAKRRRAAAARAR R AKX ARKRTAXRRRAANKNKR Ak kR

subroutine morsewf (zpsi)
LA RS R R RS R ER R E R R R R R R E R R BT RS R EE R LR EE X
Calculate the ground Wavefn for anharmonic oscillator
Wavefn has following form ( see J. Res. N.B.S. A 65, 451 (1961))
psi{x) = norm * [K * expval(x)]~(0,5*(K~1)) * exp(-0.5*K * expval (x))

(2]

OO0
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where : expval(x) = exp(-beta*x)
norm = sqrt ( beta/gamma(k-1) )

This routine will only calculate lowest wavefunction of a
Morse potential, for higher states (i.e. v=1 !) see the 2d code

a0 0o

This method of calculating the wavefunctions of a Morse oscillator
fails when the anharmonicity is very small (i.e. in the limit

of a harmonic oscillator) because the gamma function blows up.
This limit is reached for mildly anharmonic oscillators

€.g9. NCO~ where we=2149 cm-1 and wexe=12.5 cm-1.

In this case it is only a small approximation to use the H.O.
wavefunction for the anion ground vibrational wavefunction

O0O0O0000

implicit double precision (a-h,o-y)
implicit complex*16 (z)
dimension zpsi (1)
common/const0/ zero, zeye, pi,c, twopi,sqrtpi,pisq
common/const4/xmin, xmax, nXpts, dx, npacket
common/const2/x0A, xomegA, vOA, xwexeA, dea, xalphaa, x0B,
xomegB, xwexeB, deB, xalphaB, vOB

C Form K = we/wexe and calculate gamma function of (k-1)
AK = xomegA/xwexeA

C evaluate the gamma fn.
arg=AK-1.0
APOLY=1+1/(12.0*arg)+1/(288*arg*arg) - 139/(51840*arg**3)
gak=dsqrt (twopi/arg) * (arg**arg) *dexp (~arg) *APOLY
Anorm=dsqrt (xalphaA/gak)

C write (6, *)AK,arg,APOLY, gak, Anorm

do 300 i=1,nxpts
r=xmin+ (i=-1) *dx
x=r-x0A
expval=dexp (~-xalphaA*x)

355

zpsi (i)=dcmplx (Anorm * (AK*expval) ** ((AK-1)/2) *dexp (-AK*expval/2),0.0)

o write(4,899)zpsi (i)
899 format (e22.16,2x,e22.16)
300 continue

return

end

4.12 Two-dimensional Code - prop2d22

makeprop2d22

prop2d22: koss2d22.o potread2.o graphicsy.o

segldr -o prop2d22 -L /usr/local/lib =-lsci,nagld,diss,gksncar koss2d22.o

potread2.o graphicsy.o

koss2d22.0: param.inc
potread2.o0: param.inc
graphicsy.o: param.inc

param.inc

parameter (nlpts=64,n2pts=32)
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koss2d22.f

VERSION koss2d2l.f

This code has been tested to run under VAX/VMS Fortran, VAX/UNIX Fortran
STARDENT GS2000/Stellix FORTRAN, SUN SPARC/UNIX/FORTRAN, Cray UNICOS Fortran,
and SUN/UNIX Fortran. In most respects the code is generic FORTRAN !

The code has been written to take maximum advantage of CRAY vector
processors, and so may not run as opti .lly on a scalar machine as it could
before vectorization! This code achieves greater than a 60 MegaFlops rating
on a Cray X/MP

This is a two~dimensional wavepacket propagation Code.

This code is set up to solve specifically the photoelectron/photodissociation
spectrum of a linear triatomic assuming collinear dynamics. It allows for the
inclusions of the zero point bending motion adiabatically for LEPS potentials.
However the code can be easily modified to solve any two dimensional coupled
guantum dynamics problem.

Code performs EXACT fully quantum mechanical calculation in 2D.

Original sections of the 1D code are from Dr. S. Y. Lee, Singapore
Adapted for photoelectron spectra of negative ions by S.E. Bradforth 2/26/89
Address: Dept. of Chemistry,
Neumark Research Group,
University of California,
Berkeley, CA 94720
E-mail: neumark@violet.berkeley.edu OR neumark@violet.bitnet

Calculates photoelectron spectrum of triatomic system for completely
general case where lower surface is bound (of any potential form) and
upper surface is bourd or repulsive of any form.

INPUT: koss2d.dat input deck (can be prepared by accompanying
program or by following comments in supplied
example)

OUTPUT: out.dat summary of input parameters and details of
wavepacket propagation

auto.dat autocorrelation function (real, imaginary and

modulus) as a function of time

absspec.out Fourier transform of autocorrelation function,
the absorption/photoelectron spectrum

wavepkt .out absolute value of wavepacket as a function of time
(can include wavepacket derivatives)

potlA.out lower and upper potentials
potlB.out
wave.dump dump of wavepacket at last propagation step (for

restarting purposes)

It is extremely helpful to be able to graph wavepacket evolution in time, for
checking usefulness of run and that all criteria for successful propagation
have been satisfied, and for presentation. The files wavepkt.out,

along with potlA.out and potlB.out, (the lower and upper

potential energy surfaces), are provided for this purpose.

The file graphics.f contains all the machine specific graphical
routines. Usually the command line is used to indicate if the
program should produce graphical output.

See the comments at top of the header to grag iics.f

Note: In comments within code that follows "lower", "A", and "anion" surface,
as well as "upper", "B", and "neutral" surface are used interchangeably

[eXeXeXeXeXeXeXeXeXeXeXe ke e NeXeXeXeXe ke Xe Ko ke XeXeXe e e Xe XeXe e ke XeEeRe ke Ne Ke X KeNe KXo e Xe e Re e XeXe Ne Ne e Xe Re Ko Nl o Xe Ne R e Na N g
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Algorithm assumes no separation of variables or symmetry
so general coupled potentials, or reaction surfaces are allowed
for either anion or neutral.

Note flexibility of potential is determined by subroutine potdef, at the
present allows: (Number refers to potential type requested in input deck)

SHO or Morse (expressed with we and wexe)

Morse {(expressed with De and Be)

LEPS (only for neutral) with/without, z.p. bend correction

general supplied 2d potentials from a file (on ms grid)

general functional form for 2d potential supllied in function
upotfn within this code

Rotated Morse Oscillator Spline function

D WA~ O

w

Revised to perform symmetric/asymmetric systems; to include absorbing
boundary conditions and to start with a excited initial wavepacket.

Will restart from any point and allows any form of starting wavepacket.
Time dependent relaxation algorithm to find ground wavefunction of lower
surface added 1990

Code can use the Mark 13 NAG library for extremely efficient vectorised

2D FFT routine (10x faster). This routine also increases program speed {20%)
on scalar machines. The NAG version is strongly recommended!

THE PROGRAM SPENDS OVER 75% OF ITS CPU TIME INSIDE the 2D FFT

RCUTINE SO IT IS ADVISABLE TO USE A VERY EFFICIENT ROUTINE, LIKE

THE NAG ROUTINE cO6fuf. IF SUCH A LIBRARY ROUTINE IS NOT

AVAILABLE USE MUST BE MADE OF twodfft (from Numerical Recipes).

Note all quantities in main routine are in Atomic units,
conversions performed in I/0 routines.

Note all variables beginning with z are complex

PROGRAM PROP2D

implicit real*8 (A-H,O-Y)

implicit complex*16 (z)

real*8 lde,lre,lb

character arg*70

include "param.inc"

parameter (nFFT=8192)

dimension zpsiAO(nlpts,n2pts),zpsiB0(nlpts,n2pts)
dimension zpsiBl(nlpts,n2pts),zpsiB2(nlpts,n2pts)
dimension zovlp (nFFT),omega (nFFT),Eprsq (nFFT)

common/convert/harev, evwn,a0, amu, emu, harwn, amass, atu
common/const0/ zero,zeye, pi,c, twopi,sqrtpi,pisq
common/constl/ xmas,ymas,redmas, hb
common/const2xA/x0A, xomegA, vOA, xwexel, xdea, xalphaA
common/const2xB/x0B, xomegB, xwexeB, xdeB, xalphaB, vOB
common/const2yA/y0A, yomegh, fcupA, ywexeA, ydeA, yalphaA
common/const2yB/yOB, yomegB, ywexeb, ydeB, yalphaB, fcupB
common/const3/tmax,ntmax,delt,iderflag
common/const4/xmin, xmax, nXpts, dx, ymin, ymax, nY¥Ypts, dy, npacket
common/const6/gamm
common/const7/ Espmin,domega, novsav,npktsav

workspace defined in fftwork common block is required for NAG routine only
common/fftwork/trigm(2*nlpts),trign(2*n2pts)
COMMON/LEPS/LDE{3),LRE(3),LB(3),DELTA(3)
common/mass/AM1, AM2, AM3, AMab, AMcxab, AJAccb
common/flags/isavpotA, isavpotB, isavde, ireadwav, irestart, iabs
common/absparam/xabs, yaovs,cxabs, cyabs
common/wdraw/iwdrw,arg

Check for argument on command line for graphics options

call argchk(igragh, iwdrw,arg)
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C nlpts and n2pts define the grid size and are defined as constants

C within program. They should be powers of two.

C They can be changed by replacing every parameter statement within code or
C by using an include file if allowed in user’s version of FORTRAN

C Initialize........

C Check that nlpts is larger or equal to n2pts else problems

C with array construction......

if (nlpts .lt. n2pts) then

write(6,*)’'nipts .lt. n2pts - Change source code!!!’
stop
endif

C Start reading the needed input data and also define some useful constants.
open (1, file= 'koss2d.dat’)
call const (nFFT)
close (1)
if (iwdrw.eq.l) call inidrw{()

C Program arrays set so nxpts=nlpts >= nypts=n2pts -- Program checks for this.
if ((nxpts.ne.nlpts).or.{nypts.ne.n2pts)) then
write(6,*)'Illegal nxpts or nypts - check and remedy !’

stop
endif
C novsav should be a factor of the total number of time steps ntmax and should
C be such that 2*ntmax/novsav =< nFFT
C Change novsav and npktsav to be useful values.....
c novsav=2*ntmax/nFFT
if (novsav .lt. 1) novsav=l
if (2*ntmax/novsav .gt. nFFT) then
write(6,*) ’'novsav is too large - Exiting’
stop
endif
if (mod(ntmax,novsav).ne.0) then
write (6, *)’ntmax=',ntmax
write(6,*)’'novsav is not a factor of ntmax - Please fix’
stop
endif
c if (isavde .eq. 1) then
c if ((npktobe .lt. 2) .or. (npktobe .gt. 6)) npktsav=ntmax/4
c else
c if ((npktobe .lt. 4) .or. (npktobe .gt. 30)) npktsav=ntmax/8
c endif

if (npktsav .lt. 1) npktsav=l
if (isavde .eq. -1) then
npktobe=0
lwrite(G,')'There will be ' ,npktobe,’ wavepackets stored’
else
npktobe=ntmax/npktsav+(l*(l-irestart))
write (6,*)’There will be ' ,npktobe*(isavde+l),
S ' wavepackets stored’
endif

c Calculate Delta Omega (domega) in a.u.
domega=2.0*pi/ (ntmax*delt)
C
C Start writing to output record file
open (2, file= ’‘out.dat’)
write (2,899) AMab/amu,AMcxab/sqrt (amu), AJAcob*amu
write (2,900) xmas/amu,ymas/amu, redmas/amu,hb
if (xwexeA .eq. 0.0) then
write(2,910) x0A*a0,xomegA*harwn, vOA*harev
else
write(2,915)x0A*a0, xomegA*harwn, vOA*harev,
xwexeA*harwn,xalphaA/a0, xdeA*harev
endif
if (ywexeA .eq. 0.0) then
write(2,911) yOA*a0,yomegA*harwn, fcupA*harev/a0/al



c
c

c
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else
write(2,.916)y0A*a0, yomegA*harwn, fcupA*harev/a0/a0,
ywexeA*harwn,yalphaA/a0, ydeA*harev
endif

if (xwexeB ,eq. 0.0) then
write(2,920) xOB*a0,xomegB*harwn, vOB*harev
else
write(2,925)x0B*a0, xomegB*harwn,vOB*harev,
xwexeB*harwn,xalphaB/a0, xdeB*harev
endif
if (ywexeB .eq. 0.0) then
write(2,921) y0OB*a0,yomegB*harwn, fcupB*harev/a0/a0
else
write(2,926)y0B*a0, yomegB*harwn, fcupB*harev/a0/a0,
ywexeB*harwn,yalphaB/a0,ydeB*harev
endif
write(2,930) tmax*atu,ntmax,delt*atu
write(2,940) xmin*a0,xmax*a0,nXpts,dx*a0
write(2,945) ymin*a0,ymax*a0,nYpts,dy*a0
if {iabs .ne. 0) then
write(2,942) xabs*al, yabs*a0,cxabs, cyabs
endif
write(2,950) gamm
write(2,960)Espmin*harev
write(2,966)novsav, npktsav
write(2,970)domega*harwn

Write a few parameters to screen
write(6,*) ' Time parameters (fsecs), energy resolution :’
write(6,930)tmax*atu, ntmax,delt*atu
write(6,970)domega*harwn

899 format (2x,’AMab =',£9.3,2x,'AMc,ab =',£9.3,2x%,'Jacobian =',£9.4)
900 format (2x,"xmas =', £9.3,2x,‘ymas =', £9.3,2x,'redmas =',

~ el2.3,2x, 'hb =',£4.1)

910 format (2x, ’'x0A =’,f£6.2,2x, ’'xomegA =',£9.2,2x, 'vOA =',£6.3)
911 format (2x, 'yOA =’,f6.2,2x, 'yomeghA =',£9.2,2x,'fcupA =',£6.3)
915 format (2x, ’'x0A =',f6.2,2x, 'xomegA =',£9.2,2x, 'vOA =',f6.3,/,

-~ 2%, ' xwexeA =',£9.2,2x,'xalphahA =’,£9.3,2%,'xDeA =',£9.3)

916 format (2x, 'yOA =',£6.2,2x, 'yomegA =',£9.2,2x,’fcupA =',£6.3

e/12%," ywexeA =',£9.2,2x,’yalphaA =, £9.3,2x,'yDeA =',£9.3)

920 format (2x, 'xO0B =',f6.2,2x, ‘xomegB =',£9.2,2x, ‘vOB =’,£6.3)
921 format (2x, 'y0OB =’,f6.2,2x, ’'yomegB =',£9.2,2x,’'fcupB =',£6.3)
925 format (2x, 'xO0B =',f6.2,2x, 'xomegB =',£9.2,2x, 'vOB =',£6.3,/,

~ 2x,'xwexeB =',£9.2,2x,'xalphaB =',£9.3,2x,'xDeB =',£9.3)

926 format (2x, 'yOB =',f6.2,2x, 'yomegB =',£9.2,2x,'fcupB =',£6.3,

~ /,2x,'ywexeB =’,£9.2,2x,’yalphaB =',£9.3,2x,'yDeB =’,£9.3)

930 format (2x, ‘tmax =',£10.2,2x, 'numax =',1i5,2x, 'delt =',£20.6)
940 format (2x, ‘xmin =',£9.2,2x, ‘xmax =',£9.2,2x, 'nXpts =',i5,2x,

fdx =, £9.3)

942 format (2x, ’'xabs =',£9.2,2x,’yabs =',£9.2,2x'cxabs =',e9.3,

2x%x,'cyabs =',e9.3)

945 format (2x, 'ymin =',£5.1,2%x, 'ymax =',£5.1,2x, 'n¥Ypts =',i5,2x,

*dy =', £9.3)

950 format (2x,’'gamm =’,el3.6)

960 format (2x,’Espmin=’, f13,6)

966 format (2x, ‘novsav=’, 1i3,2x,’'npktsav=’,i4)
970 format (2x, 'domega =',£7.1,’ cm=1’)

O0OO000O0000

Now start numerical work

Method described in Bradforth, Weaver, Arnold, Metz and Neumark J. Chem. Phys.
92, 7205 (1990) and refs. therein.

Criteria of succesful propagation given in Kosloff, J. Comput. Phys. 52, 35
(1983); essentially the maximum kinetic energy representable on a grid with
spacing dx (dy) is given (in au) by pi*pi/(2*redmas*dx*dx) and the stability
criterion is {delt*( suml{(pi*pi)/(2*redmas*dxI*dxI))} + V ) <= 1.0}

We do not actually calculate potential range, but by careful use of shelfs on
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C potential values, the maximum kinetic enrgy should dictate the convergence
C criterion
c

sqgkmax=4.9348*(1.0/ (redmas*dx*dx) + 1.0/ (redmas*dy*dy))
write(6,912) sgkmax*harev
write(2,912)sqgkmax*harev
write(6,*)’KE along x : ’,134.28/ (redmas*dx*dx),’ eV’
write(6,*)'KE along y : ‘,134.28/ (redmas*dy*dy),’ eV’

912 format (2x, ‘Maximum kinetic energy that can be represented is ’,
4 £9.4,' eV’)

write (6,913) sgkmax*delt

write(2,913)sgkmax*delt
913 format (2x,’Stability at best, assuming zero potential, is ’,£6.3)
c

C make crude check on whether propagation will be stable
c

if (sqgkmax*delt .gt. 1.0) then

write(6, *)
write (6, *) ' *****x**TH]S PROPAGATION WILL BE UNSTABLE****xx#¥xxxx¢
write(6,*)
stop
endif
C Save the lower/upper state potential surfaces
C
if (isavpotA .eq. 1 ) then
write(6,*)’Potential saved in potlA.out in eV’
call potlsave(l)
endif
if (isavpotB .eq. 1 ) then
write(6,*)’Potential saved in potlB.out in eV’
call potlsave(2)
endif
¢ initialise wavepacket file if wavepackets are to stored

if (isavde .ne. -1) call initpkt()

will store autocorrelation function (overlap between t=0 zpsi and
t=novlp*novsav*delt zpsi) at intervals determined by novsav

and will write the wavepacket to disk in its entirety every npktsav
point in time if required.

000000

Initialise ti = 0 but routine initB may change this...
ti=0.0

Initialize the 2D FFT routine in NAG library - needs to set up trig table in

KEmat for more efficient further calls....

INCIUDE if using NAG library, twodfft routine does not need to be initialized
call KEmat (zpsiBO,zpsiBl,ti, 1)

o000

Generate the wavefunction on the ground state surface that determines the
initial wavepacket. Generate zpsiBl by second order Runge kutta. This
step is required to evaluate the time derivative in 2nd order differencing
later on.

00000

call initB(ti,zpsiAO, zpsiBC, zpsiBl)
tinit=ti
tfs=ti*atu
write(6,*)
write(6,*)’**** Wavepacket propagation on neutral surface *»«**/
write (6, *)
write(6,*)’Starting at t=‘,tfs
write(2,*)’Starting at t=’,tfs
novlip=1
call ovlp{(zpsiAO, zpsiBO, zovlp(novlp))
npacket=0
¢ if required save the first wavepacket and derivatives to disk
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if ((irestart .ne. 1).and. (isavde .ne. -1)) then
call pktsav(zpsiBO,ti,npacket,0)

endif

if (isavde) 778,778,777
if (irestart.ne.l) iderflag=1l
call chk(2,ti, zpsiB0, rsnorm, Have)
write(6, *)’Norm of wavefn is ’,rsnorm
write (2, *)‘Norm of wavefn is ’,rsnorm
write(6, *)'Energy Hav =',

% Have/rsnorm,’ ' ,Have*harwn/rsnorm,’ cm-1'
write(2, *) 'Energy Hav =',Have/rsnorm,’ ’,

& Have*harwn/rsnorm,’ cm-1'
iderflag=0

irst Drawing to screen if graphics required
if (iwdrw.eq.l) then
call iniplt(arg,2)
call wavdrw(zpsiBO,tfs, rsnorm, Have)
endif

ok gk o Kk MAIN LOOP dodkok ok kW ok kK
Start the propagation......... ...
Perform this by second order dlfferenc1nq (Kosloff algorithm)

do 100 it=1,ntmax
ti=ti+delt
tfs=ti*atu
format (1x,'Time step ‘,i6,’, t = ',£10.4)
check to see if we need to store overlap and/or write wavepacket to disk
if (mod(it,novsav) .eq. 0) then
novlp=novlp+l
call ovlp(zpsiAO,zpsiBl, zovlp(novlp))
endif
if (mod{it,npktsav) .eq. 0) then
if (isavde) 781,780,779
iderflag=1
npacket=npacket+1
call pktsav(zpsiBl,ti,npacket,Q)
call chk(2,ti, zpsiBl, rsnorm, Have)
if (iwdrw .eq. 1) call wavdrw(zpsiBl,tfs,rsnorm,Have)
write(2,965)it,tfs
if (iwdrw.ne.l) write(6,965)it,tfs
if (iwdrw.ne.l) vrite(6,*)’'Norm of wavefn is ’,rsnorm
write(2,*)'Norm of wavefn is ’',rsnorm
if (rsnorm .gt. 2.0) then
write(6,*)’Exceeded reasonable norm - terminating...’

stop

endif

if (iwdrw.ne.l) write(6,*)'Energy Hav ='’,Have/rsnorm,
@ ’ ' ,Have*harwn/rsnorm,’ cm-1’

write(2,*)’'Energy Hav =',Have/rsnorm,’ r,
~ Have*harwn/rsnorm,’ cm-1'/

iderflag=0

endif

determine the new wavefunction zpsiB2 from zpsiB0O and zpsiBl
if (iabs .ne. 0) then
call psi2ab(2,ti,zpsiB0, zpsiBl, zpsiB2)
else
call psi2(2,ti,zpsiB0, zpsiBl, zpsiB2)
endif
now we have zpsiB2 prepare for next step of propagation

call vcopy(nXpts,nYpts,zpsiBl,zgsiBO)
call vcopy(nXpts,n¥Ypts,zpsiB2, zpsiBl)

now round propagation loop again.....

continue
KR KK KK XK END OF‘ M_AIN Loop (AR EEEEEERERERSE R
closes up the wavepacket file, autccorrelation and output files

361

won



362

close{9)
close(2)
call wavedump (zpsiBO,ti)

Wavepacket (and derivs) stored on disk for inspection and graphing,
rite the autocorrelation to disk
If this is a restarted job append autocorrelation to auto.dat

OO0 00

otherwise just write the autocorrelation directly
if (irestart .eq. 0) then
open{4,file='auto.dat’)
tfs=tinit*2.4199%e-2
write (4,956) tinit,tfs,real(zovlp(l)),dimag(zovlip(l)},
# abs(zovlp (1))
956 format (£f10.4,1x,f10.6,1x,£18.15,1x,£18.15,1x,£18.15)

do 8888 i=1,novlp~l
ti=i*delt*novsav+tinit
tfs=ti*2.4199%-2
write(4,956)ti,tfs,real{zovlp(i+l)),dimag(zovlip(i+l)),
abs (zovlp(i+l))
8888 continue
close (4)

else

Tidy up files if did a restart:
need to append autocorrelation to auto.dat file
read in old auto.dat file

open (4,file='auto.dat’)

(e XeNe]

#*x*x*x SUN VERSION DOES NOT LIKE THIS WAY OF APPENDING DATA
USE FILEOPT=EOF INSTEAD, then close file and reopen for a read..
find end-of-file indicator in previously stored sequential file auto.dat

[eNeXQ]

do 989 iloop=1,16777215
read (4, *,end=987)
989 continue
C move back before end~of-file indicator and record total no. of records on file
987 nsavpts=iloop-1
backspace (4)

C Start appending autocorrelation from this restarted run
C It only makes sense to append runs that have same time increments of
C autocorrelation saved (ie same novsav and same delt etc.)
C The program does not check for this!
do 8788 i=1,novlp-1
ti=i*delt*novsav+tinit
tfs=ti*2.419%e-2
write(4,956)ti,tfs,real(zovlp(i+l)),dimag(zovlip(i+l}),
abs (zovlp(i+l))
8788 continue
C Now read back the whole file in zovlp array, so I can then take full FFT
C If nsavpts+novlp-1l > nFFT/2 + 1 then have to read in every other point
rewind(4)
nskip=int (2* (nsavpts+novlp-3) /nFFT) +1
nend = int((nsavpts+novlp-2)/nskip)+1
do 345 i=1,nend
read(4,*)ti,tfs, tmpr,tmpi, tjunk
zovlp(i)=cmplx (tmpr, tmpi)
if ((nskip.ne.l).or.(i.eq.nend)) then
do 346 j=1,nskip-l
read (4, *)ti,tfs,tmpr, tmpi, tjunk

346 continue
endif
345 continue

novsav=novsav*nskip
C Correct gamm value so I make use of improved resolution due to longer run
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new maximum time is tmax = ti read in last line of auto.dat file
tmax=ti
Close up appended file
close (4)
endif

calculate absorption spectrum now that we have complete autocorrelation
function (ie. from t=0) in memory
if using default value of gamma (0.0) then set to optimal value
This value is somewhat conservative (to eliminate ringing on baseline)
Higher resolution can be pulled out of a given run by reducing gamma
if (gamm .eq.0.0) gamm=5/tmax/tmax
call savabs(zovlp,nFFT,gamm, omega,Eprsq, jFT)
if (igraph.eq.l) then
if (iwdrw .eq.0) call iniplt2(arg)
call absdrw(omega,Eprsq, jFT)
endif
if (igraph.eq.l) call pltfin

ceeees All Done C e s er et

stop
end

LA A EEEEEREEREER SRS R R RS S]]

subroutine const (nFFT)
g % vk R o sk gk v e T vk ok v o gk ok S %k Kk %k gk W

***read the needed data and alsoc define some useful constants.

implicit real*8 (A-H,0-Y)

implicit complex*16 (z)

include "param.inc"
common/convert/harev, evwn, a0, amu, emu, harwn, amass, atu
common/constQ/ zero,zeye, pi,c, twopi,sqrtpi,pisq
common/constl/ xmas,ymas, redmas, hb

common/const3/tmax, ntmax,delt,iderflag
common/const4/xmin, xmax, nXpts,dx,ymin, ymax, nYpts, dy, npacket
common/const6/gamm

common/const7/ Espmin,domega,novsav, npktsav
common/mass/AM1, AM2, AM3, AMab, AMcxab, AJAcob
common/flags/isavpotA, isavpotB, isavde,ireadwav, irestart, iabs
common/absparam/xabs, yabs,cxabs, cyabs
common/absvec/fabsx (nlpts), fabsy(n2pts)

set conversion factors
harev = 27,211608
evwn = 8065.479
a0 = 0.52917706
amu = 1822.882
emu = 9,109534e-31
harwn = harev*evwn
amass = 1.66056e-27
atu=0.024199
set constO
zero=cmplx(0.0,0.0)
zeye=cmplx(0.0,1.0)
pi= acos(-1.0)
twopi= 2*pi
sgrtpi= sqrt{pi)
pisg=pi*pi
c=2.99792458e10

Take instructions to save potentials wavepackets and derivatives from input
deck. Also see whether to read initial wavepacket from wave.dump and whether
job is a restart. These are stored as flags.

read(l,*)isavpotA, isavpotB, isavde, ireadwav, irestart
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set constl (expect masses in amu., in order A + BC -> AB + C EXOthermic )

convert to atomic units
read (1, *)AM1, AM2, AM3
AM1=AMI1 *amu
AM2=AM2*amu
AM3=AM3*amu

Calculate total mass, and two reaction reduced masses
AMtot =AMl +AM2+AM3
AMcxab=sqrt (AM3* (AM2+AM1) /AMtot)
AMab= (AM1 *AM2) / (AM1 +AM2)

Calculate Jacobian Q1,Q3 --> x,y

if (AMl .eq. AM3) then
AJAcob=2 .0/ (AMcxab*sqrt (AMab) )

else
AJAcob=1.0/ (AMcxab*sqrt (AMab) )
endif

set hbar equal to one (atomic units)
hb=1.0

Define X coordinate to be approx R(AC)
and to run parralel to the line for dissociation into AB + C
Y coordinate is the asymmetric bound coordinate R (AB)

For anion evaluate G matrix elements for coordinates Q1 and Q3:
this stuff is specific to HLE type molecules and can be ignored
if more general input is used.
Q1 and Q3 need not necessarily be parallel to x and y.
Elements depend on symmetry of ion (and what we use for Q1 and Q3)
If using normal coordinates supplied explicitly elsewhere code ignores
Xmas and ymas
if (AMl .eq. AM3) then
symmetric
xmas=1.0/(1.0/AM1l + 1.0/AM3) .
ymas=1.0/(1.0/AM1 + 1.0/AM3 +4,0/AM2)
else
asymmetric
assumed that anion resembles (AB)C- and that v3 vibration is essentially A-B
Xmas=AM3* (AM2+AM1) /AMtot
ymas=AMab
endif

To work with grid in mass weighted coordinates, mass in TD Schrodinger
equation is unity '
redmas=1.0

set const3 (expect in a.u.)
read(l, *) tmax,delt
ntmax=tmax/delt

set const4 (converted to a.u.)
These are the range of X,y on the working (mass weighted) grid
in {(amu) ~ 0.5 * Aangs}
read(l,*) xmin,xmax,nXpts,ymin, ymax,n¥Ypts
xmin=xmin*sqrt (AMab) /a0
xmax=xmax*sqrt (AMab) /a0
ymin=ymin*sqrt (AMab) /a0
ymax=ymax*sqrt (AMab) /a0
dx=(xmax—xmin) /nXpts
dy=(ymax—~ymin) /nYpts

program allows ABSORBING BOUNDARIES (see Bisseling et al. JCP 83, 993 (1985))
set absorbing grid parameters

read(1l, *) iabs
if (iabs .eq. 0) goto 930
if (iabs .eq. 2 ) then
Use default absorbing parameters:
write(€,*)'Using default ABSORBING BOUNDARIES ..’
xabs=xmax-10*dx
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yabs=ymax-10*dy
C These are empirically derived best parameters : Try as first guess!
cxabs=(delt/1.3)*0.0005/dx/dx
cyabs=(delt/1.3)*0.0005/dy/dy
else if (iabs .eq. 1) then
write (6, *)'Using supplied ABSORBING BOUNDARIES ..’
read(1l, *) xabs, yabs, cxabs, cyabs
xabs=xabs*sqrt (AMab) /a0
yabs=yabs*sqrt (AMab) /a0
cxabs=cxabs/dx/dx
cyabs=cyabs/dy/dy
endif
C Calculate the absorbing vaues across the grid and store them (faster to store
C than to recalculate every time).
C This calculates the absorbing boundary function
do 433 ix=1,nxpts
x=xmin+ (ix-1) *dx
if (x .le. xabs) then
fabsx (ix)=1,00000000
else
fabsx (ix) =exp (-cxabs* (x~-xabs) * (x-xabs) )
endif
433 continue
do 434 iy=1,nypts
y=ymin+ (iy-1) *dy
if (y .le. yabs) then
fabsy(iy)=1.000000000
else
fabsy(iy)=exp(-cyabs* (y-yabs) * (y—~yabs))
endif
434 continue

C Read in and calculate both potentials (store in memory)
930 call potread()

C set consté
C dephasing constant gamma (in atu**-2)
read (1,*) gamm

C Default value of gamma (this is chosen to give optimal spectrum - best window
C function - see Numerical Recipes FFT chapter for details) is set in main
C routine if gamma is set to zero here (default)
C N.B. gamma can also be used to simulate a constant lifetime depletion of
C the wavefunction as a function of time (eg. fluorescence, curve crossing)
c
C set const?
C Espmin is the threshold energy for photoelectron spectrum
C (expected to be in eV and coverted to a.u.)
C This just defines the spectral origin with refence to potential zero.
read(l,*) Espmin
Espmin=Espmin/harev
if (Espmin .le. 0.0) then
write(6,*)’'This is not a valid threshold energy’,
@ ' for photoelectron spectrum’
write(6,*) 'Espmin must be > 0.0 or no P.E.S. !!’f
stop
endif
C
C set up counting variables
c
c save autocorrelation function {(cverlap between t=0 zpsi and
c t=novlp*novsav*delt zpsi) at intervals determined by novsav and
c Save the wavepacket in its entirety every npktsav point in time

read (1, *)novsav, npktsav

if ( (2*ntmax/novsav) .gt. nFFT) then
write(6,*)’Too many overlap points to store - alter novsav’
stop
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endif
return
end

AAKKRKKRRAKR KA KRARK KA AR AN RAAN AN AR AR RN R AR AR R R AKX

subroutine initB(ti,zpsiAQ, zpsiB0,zpsiBl)
IR R EE R EZ R SR EEZEER RS2SR REZR RS RESRERSREREER SRS

initialize the wavefunction arrays and then evolve this wavepacket
using second order runge-kutta.

implicit real*8 (A-H,0-Y)

implicit complex*1l6 (z)

character arg*70

include "param.inc"

dimension zpsiAO(nlpts,1l),zpsiB0(nlpts,1l),2zpsiBl (nlpts,1)

dimension zpsiBI(nlpts,n2pts),zHpsiBI(nlpts,n2pts)

dimension zHpsiBO{nlpts,n2pts)
common/convert/harev, evwn, a0, amu, emu, harwn, amass,atu
common/const0/ zero,zeye, pi, c,twopi,sqrtpi,pisq
common/constl/ xmas,ymas,redmas, hb
common/const2xA/x0A, xomegA, v0A, xwexed, xdea, xalphaA
common/const2xB/x0B, xomegB, xwexeB, xdeB, xalphaB, vOB
common/const2yA/y0A, yomegA, fcupA, ywexel, ydea, yalphaA
common/const2yB/yOB, yomegB, ywexeb, ydeB, yalphaB, fcupB
common/const3/tmax, ntmax,delt, iderflag
common/const4/xmin, xmax, nXpts, dx, ymin, ymax,n¥pts,dy, npacket
common/flags/isavpotd, isavpotB, isavde, ireadwav, irestart, iabs
common/mass/AM1, AM2, AM3, AMab, AMcxab, AJAcob
common/analytic/ianal
common/aniongno/ivibx, iviby, irotcoor
common/wdraw/iwdrw,arg

Calculate anion and neutral wavefunctions on discrete grid.

Check to see whether anion wavefunction is to be calculated

analytically or numerically using the potential surface xypot(ix,iy,1)

or whether to read in the initial wavefunction on the current mass-sculed
grid

ti=0.0
rtJacobian=sqrt (AJAcob) .
if ((irestart.eq.l) .and.(ireadwav.eq.1l)) then
write(6,*)’cannot read anion wavefunction as well as’,
‘starting neutral wavepacket from disk’
write(6,*)'Exiting....’
endif

)

if (ireadwav.ne.l) then

if (ianal.eg.l) then
Analytic solution available
if (ywexeA .eq. 0.0) then
Harmonic Oscillator separable in mass scaled coordinates after transformation
of coordinates
call initWF (zpsiAQ,tstart)
else
Potential separable in mass scaled coordinates:
Morse Oscillator along y and harmonic along x
call morsewf (zpsiAQO,tstart)
endif
Normalise
do 47 iy=1,nypts
do 48 ix=1,nxpts
zpsiBAO (ix, iy)=rtJacobian*zpsiAO(ix,iy)
continue
continue

/



else
C No analytic solution for wavefunction available, calculate numerically.
if ((ivibx.ne.0).or.(iviby.ne.0)) then
write(6,*)'A Numerical Solution for the anion wavefn. is’
, 'necessary for the potential you have input’
write(6,*)’This program will only calculate the lowest’
.’ eigenfunction numerically - use another algorithm!’
stop
endif
write (6, *)
write(6,*)’'This anion potential requires numerical’
~ .’ evaluation cf the initial wavefunction’
write (6, *)
write(6,*)’ **x*x***x Doing relaxation algorithm **x**xs
write(2,*)’ ***x¥%*x*x*x Doing relaxation algorithm ****x*/
call relax(zpsiAO,delt,ntmax)
endif
else

C Do a readwave: get anion wavefunction from disk (ie as solved for by
C another program.) The wavefunction must be on same grid as used here.
c
write(6,*)'* Doing readwave for anion......'
write(2,*)’~ Doing readwave for anion......'
call readwave (zpsiAO,ti,irestart)
endif

C Now have anion wavefunction calculated check norm,
C and energy if we know anion potential (ie. not a readwave)
iderflag=0
call chk(1,0.0,2psiAQ, rsnorm, Have)
if ((rsnorm.l1t.0.99).or.(rsnorm.gt.1.01)) then
write (6, *)'Anion wavefunction being renormalised’
, ', originally ’,rsnorm

write(2, *) ‘Anion wavefunction being renormalised’
~ , ', originally ’,rsnorm

do 705 iy=1,nypts

do 704 ix=1,nxpts

z2psiA0 (ix,1y)=zpsiA0(ix,iy) /sqrt (rsnorm}

~

704 continue
705 continue
else

write(6,*)’Anion norm = ’,rsnorm
write(2,*)’Anion norm = ’,rsnorm
endif
write(6,*)’Anion <H> ,Have*harwn/rsnorm,’ cm-1'
write(2,*)’Anion <H> = ’,Have*harwn/rsnorm,’ cm-1'

]
~
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C If the readwave flag is set to -1 in fact SAVE the anion wavepacket to file

C ’wave.anion’
if (ireadwav.eq.-l)then
call wavedump(zpsiAQ,-1.0)
write(6, =)' **Anion wavefunction saved to wave.anion**’
endif
C Plot Anion wavepacket on anion potential
if (iwdrw.eq.l) then
call iniplt(arg,l)
call wavdrw(zpsiAO,ti, rsnorm,Have)
endif

kkkrkkx kA x kX v Ak *kxx Xk x *NPUTRAL WAVEFUNCTION#* %%k kkxxkhkxkkk kk kkk k k sk k ke k Xk k &

if it is the anion wavefunction just copy it, if instead we are
doing a restart then do a readwave for zpsiBO

O0O00

if (irestart.eq.0) then
¢ Copy the anion WF to the t=0 wavepacket
call Vcopy({nxpts,nypts, zpsiAQ,zpsiB0)
ti=0.0

Decide where neutral initial wavepacket for propagation should come from;
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else
Do a readwave for the neutral wavepacket, and get the start time for
the propagation
call readwave(zpsiB0,ti,irestart)
write(6,*)’* Start time = ‘,ti,’ a.u. ‘,ti*2.4177e-2,
~ ’ fsl
endif

o0

C The neutral wavefunction is correctly normalised and ready for propagation

¢ Evolve neutral wavefunction for time delt/2 on the surface

call Hpsi(2,ti,zpsiB0, zHpsiB0)

do 22 iy=1,nYpts

do 20 ix=1, nXpts
zpsiBI (ix,iy) = zpsiBO(ix,iy) -

~ zeye *(delt/2.00)*2HpsiBO(ix,iy)/hb
20 continue
22 continue

¢ Second order Runge Kutta using the intermediate derivative.
call Hpsi(2,ti,zpsiBI, zHpsiBI)
do 32 iy=1,nYpts
do 30 ix = 1, nXpts
zpsiBl(ix,iy)=zpsiB0{ix,iy) -

& zeye*delt*zHpsiBI(ix,iy)/hb
30 continue
32 continue
c
return
end
c
o] LA Z R R R E RS R EEEEEEE R R TR T R ERE R R TR R R R R R R R R R g

subroutine initWF (zpsiA,tinit)
KAAKI KA AKR KN RKRENNRRARARAR AR KA RXTRAN KA KRR A R kX RN

initialize wavefunction on lower surface A

0000

implicit real*8 (A-H,0-Y)

implicit complex*16 (z)

include "param.inc”
common/convert/harev,evwn,al, amu, emu, harwn, amass, atu
common/const0/ zero,zeye, pi,c, twopi,sqrtpi,pisq
common/constl/ xmas,ymas,redmas, hb
common/const2xA/x0A, xomeghA, VOA, xwexeh, xdea, xalphal
common/const2xB/x0B, xomegB, xwexeB, xdeB, xalphaB, vOB
common/const2yA/y0A, yomegA, fcupA, ywex:.A, ydeA, yalphaA
common/const2yB/y0B, yomegB, ywexeb, ydeB, yalphaB, fcupB
common/anionqno/ivibx, iviby, irotcoor
common/const4/xmin, xmax, nXpts, dx, ymin, ymax, nYpts, dy, npacket
common/mass/AM1, AM2, AM3, AMab, AMcxab, AJAcob
common/transf/T(2,2)

dimension zpsiA(nlpts, 1)

Initial wavefn on surface is ground harmonic oscillator, approximation for
non harmonic potentials ..... Note that the wavefunctions are determined
on the mass weighted coordinate grids aad sc a conversion is required

from the normal modes of the anion to the mass weighted coordinates

define statement functions

OO0OcO00n

AmstoRab (xx,yy)= yy/sqrt (AMab)

AmstoRbc(xx,yy)=-yy*sqrt (AMab) /AM2 + xx/AMcxab

AmstoQl (xx, yy)=xx/AMcxab

AmstoQ3 (xx, yy)=AmstoRab (xx, yy)

AmstoSl (xx, yy)=AmstoRab (xx, yy) +AmstoRbc (xx, yy)

AmstoS3 (xx, yy)=AmstoRab {xx, Yy) —AmstoRbc (xx, yy)

AmstoNCl (xx,yy, rabeq, rbceq)=T (1, 1) * (AmstoRab (xx, yy) -rabeq)
+T(1,2) = (AmstoRbc (xx, YY) ~rbceq)

AmstoNC3 (xx,yy, rabeq, rbceq) =T (2, 1) * (AmstoRab (xx, yy) -rabeq)

~



~  +T(2,2)*(AmstoRbc (xx, yy) ~rbceq)

if (xomegA .eq. 0.0) then

write(6,*)' No initial wavepacket as no xomega available’
stop

endif

if (yomegA .eq. 0.0) then

write(6,*)’ No initial wavepacket as no yomega available’
stop

endif

if (ivibx.gt.l) then

write(6,*)’ Illegal SHO x vibrational quantum number’

stop

endif

if (iviby.gt.l) then

write(6,*)’ Illegal SHO y vibrational quantum number’

stop

endif

C perform conversion of coordinates : ***user supplied normal coordinates
if (irotcoor .eq. 1) then
write (6, *)’Rotated Wavepacket’
do 13 iy=1,nY¥Ypts
yi=ymin + (iy-1)*dy
do 14 ix=1,nXpts
Xi=xmin + {(ix-1)*dx
x=AmstoNC1 (xi,yi,x0A,y0A)
y=AmstoNC3 (xi, yi, x0A,y0A)
temp=gauss (x, 0.0, xomegA, amu, ivibx)
zpsiA(ix,iy)=temp*gauss(y, 0.0, yomegA,amu, iviby)
14 continue
13 continue

else

C perform conversion of coordinates : ***symmetric
if (AM1 .eq. AM3) then
do 23 iy=1,n¥Ypts
yi=ymin + (iy-1)*dy
do 24 ix=1,nXpts
Xi=xmin + (ix-1) *dx
x=AmstoS1 (xi,yi)
y=AmstoS3 (xi,yi)
temp=gauss (x, x0A, xomegA, xmas, ivibx)
zpsiA(ix,iy)=temp*gauss(y, y0A, yomegh, ymas, iviby)
24 continue
23 continue

else

C pexform conversion of coordinates : ****Asymmetric
do 230 iy=1,nY¥pts
yi=ymin + (iy-1)*dy
do 240 ix=1,nXpts
xi=xmin + (ix-1)*dx
x=AmstoQl (xi, yi)
y=AmstoQ3 (xi,yi)
temp=gauss (x, XOA, xomegA, xmas, ivibx)
zpsiA(ix, iy)=temp*gauss(y, y0A,6 yomega, ymas, iviby)
240 continue
230 continue
endif
endif
tinit=0.0
return
end

C * AR AR AR R KA AKX A R XA R A AN NI XNNR R AR R R RR AN AR AR Ik Kk
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function gauss(oi,o0A,omega,omas, ivibo)
C I XX E R EEE SR XA RE R 22 AR RERES R AR R 2R R R
implicit real*8 (A-H,0-Y)
implicit complex*16 (z)
common/const0/ zero,zeye, pi,c, twopi,sgrtpi,pisgqg
common/constl/ xmas,ymas, redmas, hb

¢ gaussl includes the normalisation factor of 1/sqrt(2)

if (ivibo.eg.l1) then

gaussl=sqgrt (2*omega*omas/hb) * (ci-c0A)
else

gaussl=1.0

endif
Anorm=sgrt (sqrt (omas*omega/ (pi*hb)))
arg=-{(oi-o0A)* (0i-o0A)*omas*omega/ (2.0*hb)
gauss= exp(arg) *Anorm*gaussl

return

end

oo

AR AT AR RRE AR R T RN RRNARRRA AR RARRN RN AR AR AR RN AR AR RN AR AT AR kA Rk

subroutine psi2(ipot,ti,zpsiA0, zpsiAl, zpsiA2)

AR RN AR R R AR T RN A RN R ENTAA RN R AR ARRR RN AR AR IR R R AR AR KRR RN RNk kR

evaluate the new wavefunction zpsi2 from the old ones zpsi0 and zpsi2

0000

implicit real*8 (A-H,0-Y)

implicit complex*l6 (2)

include "“param,inc"®

dimension zpsiAO(nlpts,1l),zpsiAl(nlpts,l)

dimension 2zpsiA2(nlpts,l),zHpsiAl {nlpts,n2pts)
common/const0/ zero,zeye, pi, c¢,twopi,sqrtpi,pisq
common/constl/ xmas,ymas,redmas, hb
common/const3/tmax, ntmax,delt, iderflag
common/const4/xmin, xmax, nXpts, dx, ymin, ymax, nYpts, dy, npacket

0

compute H*zpsil(l,1):
¢all Hpsi(ipot,ti,zpsiAl, zHpsiAl)
do 10 iy = 1,nYpts
do 20 ix=1,nXpts
ZzpsiA2(ix,iy)=zpsiAO(ix,iy) = 2.0*zeye*delt*zHpsiAl (ix,iy)/hb
29 continue

10 continue
c
return
end

[) AT KT AR AN AR KRN RN AXNRA AR ARR AR R RRRANRRNRRN AR R RAR AN ARk ok ok kW&

subroutine psi2ab(ipot,ti, zpsiAOQ, zpsiAl, zpsiA2)
HAERERAERTATRE RN T AN ARAANRARRERNAARRARNKRRA TR AR RR AR RN RN kkw

evaluate the new wavefunction zpsi2 from the old ones zpsiO and zpsi2

GG 00

implicit real*8 (A-H,O-Y)
implicit complex*16 (2)
include "param.inc"
dimension zpsiAO(nlpts,l),zpsiAl(nlpts,1)
dimension zpsiA2(nlpts,1l),2HpsiAl (nlpts,n2pts)
common/const0/ zero,zeye, pi, c,twopi,sqrtpi,pisq
common/constl/ xmas,ymas,redmas, hb
common/const3/tmax, ntmax,delt, iderflag
common/const4/xmin, xmax, nXpts, dx, ymin, ymax,n¥pts,dy, npacket
common/absvec/fabsx{nlpts), fabsy(n2pts)
c
c compute H*zpsil(l,1):
call Hpsi(ipot,ti,zpsiAl, zHpsiAl)
do 10 iy = 1, nYpts
do 20 ix=1, nXpts
zpsiA2(ix,iy)=zpsiAO(ix,iy) - 2.0*zeye*delt*zHpsiAl(ix, iy)/hb
zpsiA2(ix,iy)=2zpsiA2{ix,iy) *fabsx (ix)*fabsy(iy)




20 continue
10 continue
c
return
end
c I E R E R EEEEXEZEE RS R AR E NSRS R R R R RS SRR RS R SRR 81

subroutine Hpsi(ipot,ti, zpsiA, zHpsiA)

[ 2R XS EEE SRS AR S R R AR RS RS RRRER R

compute H * psi = { KE + PE } * psi(x)

00000

implicit real*8 (A-H,0-Y)

implicit complex*16 (z)

include "param.inc"

dimension zpsiA(nlpts,1), zHpsiA(nlpts,1)

dimension zpsiPE(nlpts,n2pts), zpsiKE (nlpts,n2pts)
common/const0/ zero,zeye, pi, c,twopi,sqgrtpi,pisq
common/constl/ xmas,ymas, redmas, hb
common/const3/tmax, ntmax,delt, iderflag
common/const4/xmin, xmax, nXpts, dx,ymin, ymax,nYpts,dy, npacket

call KEmat (zpsiA,zpsiKE,ti,0)
call PEmat (ipot, zpsiA, zpsiPE)

do 10 iy = 1,nypts
do 20 ix=1,nXpts
zHpsiA (ix, iy)=zpsiPE(ix, iy) + zpsiKE(ix,iy)
20 continue
10 continue

This section necessary if you wish to save T*psi, V*psi and H*psi in
the wavepkt.out file for viewing. Note if you do this you will need
to change the viewing program also.....
if (iderflag .eq. 1) then
npacket=npacket+1
call pktsav(zpsike,ti, npacket,-1)
npacket=npacket+1
call pktsav(zpsipe,ti, npacket, -2)
npacket=npacket+1l
call pktsav(zHpsiA,ti, npacket,-3)
endif

0OO0O0000O000O0ON

return
end

LA ARARE R EERRRRREEEREERRRR R R SRR R R RRRERRRRES R

subroutine KEmat (zpsiXY, zpsiKXKY,t, initze)

AR B ERS R SR AR RS RERRERRERRREEER SRRl RRE S

00

computes (~hb**2)/(2*redmas)) * (del) **2[zpsiXY] = zpsiKXKY
note zpsixy(l,1)<-> zpsi(x0,y0), zpsi(nXpts,nYpts) <-> zpsix(xf,yf), etc.
uses forward and backward two dimensional PFT to evaluate 2nd derivative

000000

implicit real*8 (A-H,O-Y)

implicit complex*16 (z)

include "param.inc"

common/const0/ zero, zeye, pi,c,twopi,sqrtpi,pisq
common/constl/ xmas,ymas, redmas, hb

common/const3/tmax, ntmax,delt, iderflag
common/const4/xmin, xmax, nXpts, dx, ymin, ymax,n¥Ypts, dy, npacket
dimension zpsiXY(nxpts,n¥pts), zpsiKXKY (nxpts,nYpts), nparms(2)

C These extra initial statements are required for NAG version
common/ffrwork/trigm(2*nlpts), trign(2*n2pts)
dimension x(nlpts,n2pts),y(nlpts,n2pts),work(2*nlpts*n2pts)
external c06fuf,cO06gcf

C The NAG version of KEmat is the default. This routine is much more
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efficient, particularly on a vector machine, and can give significant savings
in speed. The routine also allows non-powers of 2 as sizes for spatial grid.
The c06fuf routine in the NAG 13 library requires the complex matrix

to be set up in two matrices, the real and imaginary parts, x and y.

Hence semi-redundancy of the array zpsiKXKY in this modified routine.

However if this routine is not available, then the twodfft routine supplied
can serve as a replacement. To implement this version all the NAG using
parts of this routine should be commented out, and the lower part should be
reinstated.

OO0 O0O0O000

C S. E. Bradforth/ Cray-NAG version/ September 1989

c ONLY FOR NAG VERSION
C check for the initializing call to set up TRIG workspaces..
if (initze .eq. 1) then
ifail=0
do 178 iy=1,nypts
do 179 ix=1,nxpts
xX(ix,iy)=real (zpsiXY (ix, iy))
y(ix,iy)=dimag(zpsiXY(ix,iy))

179 continue
178 continue
write(6,*)’Initializing 2DFFT....°
call cO6fuf (nxpts,nypts,x,y,’Initial’,trigm,
& trign,work,ifail)

if (ifail .ne. 0) then
write(6,*) *‘IFAIL <> 0 on initialization of 2D FFT'
stop
endif
return
endif
c
¢ backward fourier transform : zpsiXY(x,y) => zpsiKXKY (kx, ky)
¢
ifail=0
do 1788 iy=1,nypts
do 1789 ix=1l,nxpts
X (ix,iy)=real (zpsiXY (ix,iy))
y(ix,iy)=dimag(zpsiXY(ix,iy))
1789 continue
1788 continue
call cO6fuf(nxpts,nypts,x,y,’'Subsequent’,trigm,

& trign,work,ifail)
c
if (ifail .ne. 0) then
write(6,*)’IFAIL <> 0 in KEmat(l) - investigate ...’
stop
endif
C only transfer the real, imaginary psi(k) matrices to complex matrix
C if the user needs to see the psi(k) - otherwise skip this stage until after

C reverse transform to x space .
if (iderflag .eq. 1) then
npacket=npacket+l
do 189 iy=1,nypts
do 188 ix=1,nxpts
zpsiKXKY (ix, iy)=cmplx(x(ix, iy),y{ix,iy))

188 continue
189 continue
call pktsav{(zpsikxky,t,npacket,-4)
endif
c
¢ compute the second derivative in the momentum domain.
LX=nXpts/2
LY=nYpts/2

XL2= (xmax=-xmin) * (xmax-xmin)
yL2=(ymax-ymin) * (ymax-ymin)
nptsg=nXpts*nY¥Ypts
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do 20 ky=0,nYpts-1
if (ky .le .LY) then
do 22 kx=0,nXpts-1
if (kx .le. LX) then

X (kx+1,ky+1l)= - (kx*kx/xL2+ky*ky/yL2)*
* x (kx+1, ky+1)
y (kx+1,ky+1)= —(kx*kx/xL2+ky*ky/yL2)*
* y (kx+1,ky+1)
else

X (kx+1, ky+1)==( (nXpts-kx) * (nXpts-kx) /xL2 +
! ky*ky/yL2) *x (kx+1,ky+1)
y (kx+1, ky+1)=~( (nXpts-kx) * (nXpts-kx)/xL2 +
ky*ky/yL2) *y (kx+1,ky+1)

endif
22 continue
else
do 23 kx=0,nXpts-1
if (kx .le. LX) then
x (kx+1, ky+1)==(kx*kx/xL2 + (nYpts-—-ky)*
! (nYpts=-ky) /yL2) *x (kx+1,ky+1)
y (kx+1, ky+1)=-(kx*kx/xL2 + (nYpts-ky)*
! (nYpts-ky)/yL2)*y (kx+1,ky+1)
else
x (kx+1,Kky+1)==((nXpts-kx) * (nXpts—kx) /xL2 +
! {(nYpts—ky) * (nYpts~ky) /yL2) *x (kx+1,ky+1)
y (kx+1l,ky+1l)==((nXpts—-kx) * (nXpts—kx)/xL2 +
! (nYpts=-ky) * (nYpts—-ky) /yL2) *y (kx+1,ky+1)

endif
23 continue
endif
20 continue
c
c
c forward transform : zpsiKXKY(kx,ky) => zpsixy(x,y)
C using NAG routine, zpsiKXKY is represented by x (real part) and y (imag part);
C to do forward transform perform complex conjugate operation {c06gcf} before
C and after the call to cO6fuf
call cO6gcf(y,nptsq,ifail)
call cO6fuf (nxpts,nypts,x,y, ' Subsequent’,trigm,
S trign,work,ifail)
if (ifail .ne. 0) then
write(6,*)' IFAIL <> 0 in KEmat(2) - investigate ...’
stop
endif
call cOeégcf(y,nptsq,ifail)
c

c scale results & return them to complex array zpsiKXKY
cl= -0.5*hb*hb/redmas
c2= 4*pisqg
cprod = cl*c2
do 31 iy=1l,n¥pts
do 30 ix=1,nXpts
z2psiKXKY(ix, iy)= cmplx(cprod*x(ix,iy),cprod*y(ix,iy))

30 continue

31 continue

c

C **x**x tyodfft version (SLOWEST but does not require library)
c Starts here....

c

¢ Perform backward fourier transform : zpsiXY({x,y) => zpsiKXKY (kx,ky)
c

c isign=-1

c do 10 iy=1, nY¥Ypts

c do 12 ix=1, nXpts

c zpsiKXKY (ix,iy)=zpsiXY¥(ix,1iy)

cl2 continue
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continue

nparms{1l)=nxpts
nparms(2) =nypts
call twodfft (zpsiKXKY,nparms, 2, isign)
if (iderflag .eq. 1) then
npacket=npacket+1l

call pktsav(zpsikxky,t,npacket,-4)
endif

compute the second derivative in the momentum domain.
LX=nXpts/2
LY=nYpts/2
xL2= (xmax-xmin) * (xmax-xmin)
yL2=(ymax-ymin) * (ymax-ymin)
nptsg=nXpts*nY¥Ypts

do 20 ky=0,n¥pts-1
if (ky .le .LY) then
do 22 kx=0,nXpts=-1
if (kx .le. LX) then

zpsiKXKY (kx+1, ky+1)= - (kx*kx/xL2+ky*Ky/yL2)*
* zpsiKXKY (kx+1,ky+1)
else
zpsiKXKY (kx+1, ky+1) == ( (nXpts—-kx) * (nXpts—-kx) /xL2 +
! ky*ky/yL2) *zpsiKXKY (kx+1, ky+1)
endif
continue
else

do 23 kx=0,nXpts-1
if (kx .le. LX) then
zpsiKXKY (kx+1, ky+1)==(kx*kx/xL2 + (nYpts-ky)*
! (nYpts-ky)/yL2) *zpsiKXKY (kx+1, ky+1)
else
zpsiKXKY (kx+1, ky+1)=-( (nXpts-kx) * (nXpts—kx) /xL2 +
! (nYpts-ky) *(nYpts—ky)/yL2) *zpsiKXKY (kx+1, ky+1)

endif

23 continue

endif
c20 continue
c
c
c forward transform : zpsiKXKY(kx,ky) => zpsixy(x,y)
c isign=1
c call twodfft (zpsiKXKY, nparms,2,isign)
c
c scale results
c cl= -0.5*hb*hb/redmas
c c2= 4*pisqg/nptsq
c cprod = cl*c2
c do 31 iy=1,nY¥pts
c do 30 ix=1,nXpts
c zpsiKXKY (ix,1y)= cprod*zpsiKXKY (ix,iy)
c30 continue
c31 continue -
c

return

end
c
c ARXKEAX AT XTI A AKX AXRAARARRRAANARRNRAKN R XRRARRRR AR AKX

O0000

subroutine PEmat {ipot, zpsiXY, zpsiP)

AXEXXAXA AR AAXNAAA AR TN AR RARNRNERNARRERRNRNKR KRR R K KKK

calculate xypot({x,y)*zpsiXY=zpsiP
note zpsiXY(1l,1) <-> zpsiXY(x0,y0), zpsiXY(nxpts,nypts) <-> zpsiXY (x£f,yf)

implicit real*8 (A-H,O0-Y)
implicit complex*16 (z)
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include "param.inc"
common/constd4/xmin, xmax,nXpts, dx, ymin, ymax, nYpts, dy, npacket
common/pot/xypot (nlpts, n2pts, 2)

dimension zpsiXY(nxpts,nypts),zpsiP (nxpts,nypts)

do 20 iy=1,n¥Ypts
do 10 ix=1,nXpts
zpsiP (ix, iy)=xypot (ix, iy, ivot) *zpsiXY(ix,iy)
continue
continue
return
end
I ZEZ 22 REEEREESEZEEERRERESRRERS RSl SE

subroutine Vcopy (NX,NY, zA, zB)

L EE RS SE RS RSRR Rl RER 2]

copy a matrix of size NX by NY from zA to zB

*
*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

implicit complex*16(z)
dimension zA(NX,NY), zB(NX,NY)

do 20 iy=1,NY
do 10 ix=1,NX
zB(ix,iy)= zA(ix,iy)
continue
continue

return
end

(AR RS SRS RERERRESS SRR sR R RER S

subroutine FFT(x,n, isign)
A E 2SR EEEESEEEERSRZREEEREEERSRESRS 2 R R
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The fft computes the discrete ld fast Fourier transform of a*
sequeace of n terms. *
The forward FFT computes *

y(j)= sum (from k=0 to n-1) x(k)*exp(2*pi*i*j*k/n) *
the backward FFT computes
y(j)= sum (from k=0 to n-1) x(k)*exp(-2*pi*i*j*k/n) *

x

»*

x is a complex array of length n. *
n is a power of 2. n<=16384 *
isign is the direction of the transform. If isign >= 0 then*
the fft is forward , otherwise backward. *

*

Ref. Cooley, Lewis, Welch. The FFT and its applications *
IEEE Trans. on Education, vol. E-12 #1; p. 29 *

AR S A R R SRR R R R RS R RS RERR RS E SRR R X222 RRERERRRRRRR R &2

implicit real*8 (A-H,0-Y)
complex*16 s,v,w,x{n),cstore(16384)
data ntbl/0/

The roots of unity exp(pi*i*k/3j) for j=1,2,4,..,n/2 and k=0,1,2,..

are computed once and stored in a table.

This table is used in subsequent calls of fft with parameter n<=ntbl

if (n .gt. ntbl) then
ntbl=n
pi=3.14159265358979
3=1
icnt=0
s=pi*(0,1)/]
do 20 k=0, j-1
icnt=icnt+1
cstore (icnt) =exp(s*k)
J=3+]
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if (3 .1t. n) goto 10

endif
c
c *itt**Bit reversal**tﬂtt*i**
c
c the x(j) are permuted in such a way that each new place number j is
¢ the bit reverse of the original placenumber.
i=1
do 30 i=1l,n
if (i .le. j) then
v=x(j)
x{Jj)=x(i)
x(i)=v
endif
m=n/2
25 continue
if (3 .gt. m) then
j=3i-m
m=m/2
if (m .ge. 1) go to 25
else
j=3+m
endif
30 continue
c

c ****tt****t*Matrix multiplicationt*i*i**'k*t*k**t
c
c the roots of unity and the x{(j) are multiplied
c
j=1
icnt=0
40 Jji=3+3
do 50 k=1,3j
icnt=icnt+l
w=cstore (icnt)
if (isign .lt. 0) w=conjg{w)
do 50 i=k,n,jj
v=wrx (i+3)
X(i+3)=x(i)-v
50 x(i)=x(i)+v
J=33
if (3 .1lt. n) goto 40
return
end

0

ARXKRXKRAAAR AR RERKRAAAKRAANKNARKNKRAKRKRRARRKR NN AR R KA Xk Rk k
subroutine chk(ipot,ti,zpsiA, rnorm, Hav)

I EE R E R ERE R R SRS RS EE R R R RS ER RS ERREREREEEE]

0

O000n

Second Order Differencing scheme).

implicit real*8 (A-H,O0-Y)
implicit complex*16 (z)
include "param.inc"
dimension zpsiA(nlpts,1l)

call chknrm{zpsiA, rnorm)

call chken(ipot,ti, zpsihA, Hav)
return
end

[o] AXXEAKXAAXKXX KA ERARARERKRRRRARNKRRXIRARRARAKRKARARRRRA AR AR KRA AR XK AR XK K

subroutine chknrm(zpsi, rnorm)
(o] I B R R E SRR R RS RS R R R EEEEES SRS R R RER R R R RS RRERERSREN]

a0

implicit complex*16 (z)

Check that norm and energy are conserved (this is a property of

Check that the norm is conserved during numerical integration of TDSE.
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implicit real*8 (A-H,0-Y)

include "param.inc"

dimension zpsi(nlpts,l),psisq(nlpts,n2pts)
common/constd4/xmin, xmax, nXx*s,dx, ymin, ymax, nYpts, dy, npacket

do 20 iy=1l,nY¥Ypts
do 10 ix=1,nXpts
psisq(ix,iy)=real (conjg(zpsi(ix,iy))*zpsi(ix,iy))
continue
continue

call twodint (nXpts,nYpts,psisqg,dx,dy, rnorm)
return
end

KERRAK K AKX KXARARKAA KRR RARAR KRR RRRAARRRKRNARRA KA KAk k ok ko

subroutine chken(ipot,ti, zpsiA, Hav)
IR R EE YRS ERE R SRR E SRS RS SRR SRR EEESEEREEREEESES R R R

check that energy is conserved during numerical intergration of the TDSE

implicit real*8 (A-H,0-Y)

implicit complex*16 (z)

include "param.inc"

dimension zpsiA(nlpts, 1), zHpsiA(nlpts,n2pts)

dimension psiHpsi (nlpts,n2pts)
common/constd4d/xmin, xmax,nXpts,dx, ymin, ymax, nYpts, dy, npacket

call Hpsi(ipot,ti,zpsiA, zHpsiA)
do 20 iy=1,n¥Ypts
do 10 ix=1,nXpts
psiHpsi (ix, iy)=real (conjg(zpsiA(ix, iy)) *zHpsiA(ix,iy))
continue
continue

call twodint (nXpts,nYpts,psilpsi,dx,dy,Hav)
return
end

LA R E SR R Z RS AR R EREEEERRS RS RR RZE RS REARZER SR 2]

subroutine simpint(nx,fl,dx, fint) .
R E R AR R X E SRR R R R AR R RS R R RERRERRERE R RERERRRE]

Simpson Rule integrator. This subprogram calls the trapezoidal
integrator twice. Because of cancellation of errors the result is
accurate to the the order of (l/nx**4)

Rule valid only when nx odd. Hence for even nx the last piece of area
under fl(nx-1) and f2(nx) is added by trapezoidal rule.

Reference ’'Numerical recipes’ Press, Flannery, Teukolsky, Vetterling
Cambridge University Press, Cambridge (1986)

implicit real*8 (A-H,0-Y)
include "param.inc"
dimension fl(nx), f2(nlpts)

define:
dxl=dx
dx2=2.0*dx
ixn=0

if (nx .gt. nlpts) then
write(6,*) ' simpint : nx .gt. nlpts = ', nlpts
endif

if ((mod(nx,2) .eq. 0)) then
nxl=nx-1
nx2=0.50*nx1+1
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fint=0.50*dx* (f1(nx-1) + £l(nx))
else
nxl=nx
nx2=0.50*nx1+1
fint=0.0
endif
c
¢ copy the odd elements of farray into f2
do 10 ix=1,nx1,2
ixn=ixn+l
10 £2 (ixn)=£1(ix)

c
c Now integrate fl, £2 in two pieces.
Cc

call trapint(nxl, fl,dxl,£fintl)

call trapint(nx2,£2,dx2,£fint2)
fint=fint+(4.0*fintl - £fint2)/3.0

c
return
end
c
c
c AAKRKKAAKEARAKEKRAKE AT R RARRRRA AR ARRARARKRRAKARANAARARRA AR KK

subroutine trapint (nfpts, f,dx,fint)
o] Khk Ao kA KK WA KKK KKK KW KK KA KNk kR ok kok ok ok ok k kK ko ko ko kR Rk

c
implicit real*8 (A-H,0-Y)
dimension f(nfpts)

c trapeziodal rule integrator for f£(l)-f(nfpts) <-> £(x0)-f (xf)
fint=0.

c

do 100 i=2,nfpts-1
fint=fint+f (i)
100 continue

c
fint=fint+(£(1)+f(nfpts))/2.0
fint=fint*dx
c
return
end
c
c AAXKX K AKX XK XRKAKRAR KRR AL AR RN AKX RARRAARAN KRR ARAR R KRR KR *K K
subroutine ovlp(zpsil,zpsi2, zovp)
c LR SRS RS R R RS R E R E X R R R R RS R R R S A R R R RN
c
¢ finding the overlap integral
c
implicit real*s3 (A-H,O-Y)
implicit complex*16 (z)
include "param.inc"
dimension zpsil(nlpts,1l),zpsi2(nlpts, 1)
dimension zprod(nlpts,n2pts)
common/constd/xmin, xmax,nXpts,dx, ymin, ymax, n¥pts, dy, npacket
c
do 20 iy=1,n¥Ypts
do 10 ix=1,nXpts
zprod (ix, iy)=conjg(zpsil{ix, iy)) *zpsi2(ix, iy)
10 continue
20 continue
c
call ztwodint (nXpts,n¥Ypts, zprod, dx,dy, zovp)
return
end
c

c LA R RS RS R SR R R R R R R R R R R E R R R R R R R R R R R R

subroutine zsimpint (nx,zfl,dx,zint)
c EXAKAKKKK AKX AEAKAAX XA AR AKA AKX KRAKRKRRARK R AN KR KRk oxd ok k*
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c complex simpsons rule integrator
c
implicit real*8 (A-H,0-Y)
implicit complex*16 (z)
include "“param.inc"
dimension zfl (nx},zf2(nlpts)
c
c define
dxl=dx
dx2=dx*2.
ixn=0.
c
if (nx .gt. nlpts) then
write(6,*) ' zsimpint : nx .gt. nlpts = ’, nlpts
endif
c
if ((mod{(nx,2) .eq. 0)) then
nxl=nx-1
nx2=0.50*nx1+1
zint=0.50*dx* (zf1l (nx~1) + zfl(nx))
else
nxl=nx
nx2=0.,50*nx1+1
zint=0.0
endif
c

c copy the odd elements of zfl array into zf2
do 10 ix=1,nx1,2
ixn=ixn+l

10 zf2 (ixn)=zf1(ix)

c
c Now integrate zfl, zf2 in two pieces.
c

call ztrapint(nxl,z£fl,axl,zintl)
call ztrapint (nx2,z£2,4x2,zint2)
zint=zint+(4.0*zintl - zint2)/3.0

return
end

c AR A A R KKK AR AR A AR KRR R AR AR RR KA KRR KRR AR AR AR A R A ARk ok k hkk &

subroutine ztrapint (nfpts,zf,dx,zint)
c **t****ti**i**t*t****h*t*t******ﬁ*t****titi**t*****

implicit real*8 (A-H,0-Y)

implicit complex*1l6 (z)

dimension zf(nfpts)

common/const0/ zero,zeye, pi,c, twopi,sqrtpi,pisqg

¢ trapeziodal rule integrator for f(l)-f(nfpts) <-> f(x0)-f(xf)
zint=zero

do 100 i=2,nfpts-1
zint=zint+z£f (i)
100 continue
c
zint=zint+(zf(1)+zf(nfpts))/2.0
zint=zint*dx
return
end

c *tii"ﬁ*ﬂ**'t‘*Iﬁ*k**t!k****t*ﬁ***t't'****k**!*ﬂit**ﬁt**i*****t

subroutine savabs(zovlp,nFT,gamm, omega,Eprsq, JFT)
c ***t**‘l*ttt**t**t**ttttttit**kt*it**k*ii*l***it*******t****tt

implicit real*8 (A-H,0-Y)

implicit complex*16 (z)

parameter (nFFT=8192)

dimension zovlp(nFFT),omega (nFFT),Eprsq(nFFT)
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common/convert/harev, evwn, a0, amu, emu, harwn, amass, atu
common/const0/ zero,zeye,pi,c¢,twopi,sqgrtpi,pisqg
common/const3/tmax, ntmax,delt, iderflag
common/const7/ Espmin,domega,novsav,npktsav

forward fourier transform for absorption (photoelectron) spectrum here
Include a dephasing constant gamm to give finite width to peaks or to
simulate experimental resolution.

Include C(~t) at tail end of array zovlp (in wrap around order) forcing
C(-t)=C(t) so that absorption spectrum is real...

0oO000

do 872 iFT=1,nFT/2+1
zovlp (iFT)=zovlp (iFT) *exp (-gamm* ( (1FT—1) *delt*novsav) **2)
872 continue
do 560 iFT=nFT/2+2,nFT
JFT=nFT-iFT+2
zovlp (iFT)=conjg(zovlp (JFT))
560 continue
call FFT(zovlp,nFT,1)

At the moment making C(t) hermitean and then I(w) is real

even if have done restart and skipped every other point in reading
autocorrelation back into zovlp, domega should be calculated correctly
as novsav has been updated. This is important otherwise spectrum
will be energy scaled incorrectly..
domega=2.00*pi/ (nFFT*delt*novsav)
open (file='absspec.out’, unit=8)
JFT=0
absmax=0.0
do 120 iFT=1,nFT
iFTl=nFT-iFT+1
v1=(iFT1-1) *domega
eke=Espmin - vl
if (eke .ge. 0.0) then
jFt=3jFT+1
¢ convert vl from a.u. to eV,
omega ( jFT) =eke*harev
Eprsq(jFT)=real(zovlp(iFT1l))
if (Eprsq(jFT) .gt. absmax) absmax=Eprsq(jFT)
if (Eprsq(jFT) .lt. 0.0) Eprsq(jFT)=0.0
endif
120 continue

O0O0O0000

write(8,900)0.0,0.0
do 121 iw=1, jFT
c convert omega from a.u. to eV.
Eprsq(iw)=Eprsqg(iw)/absmax
write(8,900) omega (iw),Eprsq{iw)
900 format (2x,£10.4,2x,£20.10)

121 continue
close (8)
return
end

C

c (B R RS EEEEREREE RS SRR SRR R NS R R E R A E R R R E R E R R EREEEEE EEE X
subroutine pktsav{zpsi,time,npkt, itype)

c I EE R RS R RS EEE R R S R R R R R R R R R R R R R R EEEEEEE N R R EER EEEE T

c Save the wavepacket at several shots in time in the same file
implicit real*8 (A-H,O0-Y)
implicit complex*16 (z)
include "param.inc"
dimension zpsi(nlpts,1),zpsiun(nlpts,n2pts)
common/convert/harev, evwn, a0, amu, emu, harwn, amass, atu
common/const4/xmin, xmax, nXpts,dx, ymin, ymax, nYpts, dy, npacket
common/flags/isavpotA, isavpotB, isavde, ireadwav, irestart, iabs

C Append the new packet to the file



¢ And add extra record to the open file

c
900 format (£16.10)
tfs=time*atu
if (itype .eq. -4) then
call unwrap(zpsi,zpsiun,nxpts, nypts)
endif
do 200 iy=1, nY¥pts
yi=ymin+ (iy-1)*dy
do 100 ix=1,nXpts
xi=xmin+ (ix—-1) *dx
if (itype .eq. -4) then
write(9,900)abs (zpsiun(ix,iy))

else
write (9,900)abs (zpsi(ix,iy))
endif
100 continue
200 continue
return

end

[ EALES R R LSRR R RRERRRERRRERREll ittt il il n Rl

subroutine initpkt()
c*tt*tt**t**t*!i***i*i*it******t***t*i*****t**t*********w********
implicit real*8 (A-H,0-Y)
integer irec
common/convert/harev,evwn, a0, amu,emu,ha ~.-, amass,atu
common/const3/tmax,ntmax,delt, iderflag
common/const4/xmin, xmax, nXpts, dx, ymin, ymax, n¥Ypts,dy, npacket
common/const7/ Espmin, domega,novsav, npktsav
common/flags/isavpotA, isavpotB, isavde, ireadwav, irestart, iabs
common/mass/AM1, AM2, AM3, AMab, AMcxab, AJAcob

irec=nXpts*nYpts*17
isize=irec* (isavde+l) *ntmax/npktsav
if (isize .gt. 4000000) then
write (6, *)’'Too many wavepackets to save - that is ’/,
1 isize,’ characters’
endif

if (irestart .eq. 1 ) then
C Correct the initial data at top of file and reposition file pointer
C so I can start appending new information on file
C SUN DOES NOT LIKE THIS WAY OF APPENDING DATA
C USE FILEOPT=EOF INSTEAD
open{9, file='wavepkt.out’,status='old’)
read(9,900) idesav, irec, xmn, xmx, i junk, ymn, ymx, ijunk,
+ tbegin,tinit,npktold
backspace (9)
if (idesav .ne. isavde) then
write(6,*)'Wavepacket saving flag imcompatible with’,
# ! previous run: please fix’
close(9)
stop
endif
tlastpkt=tinit+int (ntmax/npktsav) *npktsav*delt
npktfin=npktold+ntmax/npktsav
write (9,900) isavde, irec, xmn, xmx, nXpts, ymn, ymx,
= nYpts, tbegin,tlastpkt, npktfin
do 9677 i=1,16777215
read(9, *,end=9676)

9677 continue

9676 backspace (9)

C backspace over end-of-file marker and start appending here
else

open(9, file='wavepkt.out’)

tlastpkt=int (ntmax/npktsav) *npktsav*delt
xan=xmin*a0/sgrt (AMab)
xmx=xmax*a0/sqrt (AMab)
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ymn=ymin*a0/sqrt (AMab)
ymx=ymax*a0/sqrt (AMab)
write(9,900) isavde, irec,xmn,xmx,nXg ,ymn,ymx,nYpts,0.0,
! tlastpkt,ntmax/npktsav+l
900 format (il,2x,1i6,2x,£9.3,2x,£9.3,2x%,14,2x,£2.3,2x,£9.3, 2%, 14, 2x,
4 £6.3,2x,£12.3,2x,13)
endif
return
end

c*tﬁti"ttt'*lﬁi!It'!tiitiiiiiﬂtt'l"it.!‘i.tiittttttk!ﬂﬁ*tt*ﬂt

subroutine unwrap(zpsi, zpsiun,nx,ny)
ci*tﬁttiitﬁtittttttttt*!ttttt'i'ttttt!ttﬁIi.ttﬁ*titttii'i't'iﬁ*

C Unwrap the psi(k) wavefunction from FFT wrap round order...
implicit real*8 (a-h,o-y)
implicit complex*16 ({(z)
dimension zpsi(nx,ny),zpsiun(nx,ny)

LX=nX/2
LY=nY/2
do 20 ky=0,nY-i
if (ky .le .LY) then
do 22 kx=0,nX-1
if (kx .le. LX) then
zpsiun{kx+LX, ky+LY) =zpsi (kx+1l,ky+1)
else
zpsiun({kx-LX, ky+LY)=zpsi (kx+1l, ky+1)
endif
22 continue
else
do 23 kx=0,nX~-1
if (kx .le. LX) then
zpsiun (kx+LX, ky-LY)=2zpsi (kx+1, ky+1)
else
zpsiun (kx=-LX, ky-LY)=2psi (kx+1, ky+1)
endif
23 continue
endif
20 continue
return
end
cttlit'l'tli’ttttltttittli'ttwt'tlﬂli!'l't*tt"'*'*!i*i!tttﬁ!'*

subroutine wavedump (zpsid,time)
ct*ilt!!!wlt't'ﬂttt*!.t!tttttttt't*ﬁttitﬁi!tl'li*ittl**ii*ii*rt
c
¢ dumps the current wavepacket to its own file
C for restart purposes...
implicit real*8 (a-h,o-y)
implicit compiex*16 (2)
include "param.inc®
dimension zpsid(nlpts,l)
common/const4/xmin, xmax, nXpts,dx, ymin, ymax, nYpts, dy, npacket

C If time is a negative value assume that this is anion wave function
C and save to "wave.anion" otherwise to wave.dump
if (time.lt.0.0) then
open(3,file='wave.anion’, form=’' formatted’)
time=0.0
else
open(3,file='wave.dump’, form='formatted’)
endif
write(3,909) nxpts,nypts,xmin, xmax, ymin, ymax,time
909 format(2x,14,2x,14,4(2%x,£10.4),£14.5)
do 20 iy=1,nypts
do 10 ix=1,nxpts
write(3,111) zpsid(ix,iy)
10 continue
20 continue
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111 format (e22.16,2%x,e22.16)
close(3)
return
end

c (2 2R ZEZE S22 22222 R2R2RR RS RRRRRRS R0 RRRRRRRR RN D)
subroutine morsewf (zpsi,tinit)

c (A R R R R R R R S R R SRR SRS RR SRR 2222222 222 RE 2]

C Calculate the product ground Wavefn for harmonic (X) and

C an anharmonic oscillator along Y

C Wavefn for Y has following form ( see J. Res. N.B.S. A 65, 451 (1961))
C psily) = norm * [K * expvall(y))~(0.5*(K-1)) * exp(-0.5*K * expval(y))
C where : expval(y) = exp(-alpha®y)

c norm = sqgrt (alpha/gamma(k-1))

implicit real*8 (a-h,o-y}

implicit complex*16 (2z)

include "param.inc"
common/convert/harev,evwn, a0, amu, emu,harwn, amass, atu
common/const0/ zero, zeye, pi,c, twopi,sqrtpi,pisq
common/constl/ xmas,ymas,redmas, hb
common/const2xA/x0A, xomegA, vOA, xwexeA, xdea, xalphaA
common/const 2xB/x0B, xomegB, xwexeB, xdeB, xalphaB, vOB
common/const2yA/y0A, yomegA, fcupA, ywexeA, ydeA, yalphaA
common/const2yB/y0B, yomegB, ywexeb, ydeB, yalphaB, fcupB
common/aniongno/ivibx, iviby, irotcoor
common/mass/AM1, AM2, AM3, AMab, AMcxab, AJAcob
common/const4/xmin, xmax, nXpts, dx,ymin, ymax,nYpts, dy, npacket
common/transf/T(2,2)

dimension zpsi(nxpts,nypts)

C define statement functions
AmstoRab (xx,yy)= yy/sqrt (AMab)
AmstoRbc (xx,yy)=-yy*sqrt (AMab) /AM2 + xx/AMcxab
AmstoQl (xx, yy)=xx/AMcxab
AmstoQ3 (xx, yy) =AmstoRab (xx, yy)
AmstoSl (xx,yy)=AmstoRab (xx, yy) +AmstoRbc (xx, yy)
AmstoS3 (xx, yy)=AmstoRab (xx, yy) ~AmstoRbc (xx, yy)
AmstoNCl1 (xx,yy,rabeq, rbceq)=T(1,1) * (AmstoRab (xx, yy) -rabeq)
~ +T(1,2)*(AmstoRbc (xx,yy) -rbceq)
AmstoNC3 (xx,yy, rabeq, rbceq)=T (2, 1) * (AmstoRab (xx,yy) ~rabeq)
~  +T(2,2)* (AmstoRbc (xx, yy) -rbceq)

C calculate stuff for Morse coordinate...
C This should be included as a function at a later date...(7/11/89)
C Form K = we/wexe and calculate gamma function of (k-1)

AK = yomegA/ywexeA
arg=AK-1.0
APOLY=1+1/(12.0*arg!+1/{288*arg*arg) - 139/(51840*arg**3)
gak=sqrt(twopi/arg: * (arg**arg) *exp(-arg) *APOLY
Anorm=sqrt (yalphak/gak)
write(6,*)’Initial Wavepacket is anharmonic along y’
if ((iviby.gt.l) .or. (iviby.1lt.0)) then
write(6,*)’'Illegal anion gquantum number in y’
stop
endif

if (AMl.eq.AM3) then .
write(6,*)’Makes no sense to have an (asymmetric) Morse’,
1 ’ potential along the Q3 coordinate for a symmetric system’
sto
else P
do 23 iy=1,nY¥Ypts
yi=ymin + (iy-1)=dy
do 24 ix=1,nXpts
ri=xmin + (ix-1)*dx
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C perform conversion of coordinates

if (irotcoor.eq.l) then
x=AmstoNC1l (xi,yi, x0A, yOA)
y=AmstoNC3 (xi,yi, x0A, yOa)
temp=gauss (%, 0.0, xomegA, amu, ivibx)

else
y=AmstoQ3 (»i,yi)-y0A
x=AmstoQl (xi, yi)
temp=gauss (x, xOA, xomegA, xmas, ivibx)

endii

expvalwaxi (~yalphaA*y)

zpsi fin Ly)=temp” Anorm* (AK*expval) **

1 1 {AK=1)/2) *exp (-AK*expval/2)

C Set up to check for v=1 Morse wavefunction using recurrence
C relationship - higher values - refer to above reference...
if (iviby .eq. 1) then )
zpsi(ix,iy)=zpsi(ix,iy)*sqrt (AK-3.0)*
(AK*expval=-AK+2.0)/ (AK*expval)

endif
24 continue
23 continue
endif
tinit=0.0
return
end

I EEEEEERER SRR Rl RRRER AR RlREREREREEES]

subroutine readwave (zpsi,time,irestart)
(122 22X RE R 2R REER R RRRS R XX R R SRR X R2R
This is designed to either read in anion wavefunction calculated elsewhere
or to capture the last wavepacket from a previous run so
if a less ambitious job finishes, and user wishes to
restart, then user can load in this last position.
Note that the full wavepacket is normally only dumped at end of the job
This can be altered if user worried that computer may crash over period of job

oNeXeNeXe el o N @

implicit real*s (A-H,0-Y)

implicit complex*16 (z)
common/const4/xmin, xmax, nXpts, dx, ymin, ymax, nYpts, dy, npacket
common/const2yA/y0A, yomegA, fcupA, ywexel, ydeA, yalphaA
dimension zpsi (nxpts,nypts)

open{3, file=’'wave.dump’,form=’'formatted’)
read (3, 209) nx, ny, xmn, xmx, ymn, ymx, t ime
909 format (2x,1i4,2x,14,4(2x,£10.4),£14.5)

C Check the wave.dump file for compatibility

if ((nx.ne.nxpts).or.(ny.ne.nypts)) then
write(6,*)’* Incompatible read wavepacket,’,
! 'nxpts/nypts in wave.dump’
stop
endif
if ((abs{xmn-xmin) .gt. 0.001) .or.
! (abs (xmax-xmx) .gt. 0.001)) then
write(6,*)’* Incompatible read wavepacket,’,
! *xmin/xmax in wave.dump’
write (6, *) xmn, xmin, xmx, xmax
stop
endif
if ((abs{ymn-ymin).gt.0.001).or.
! (abs (ymx~-ymax) .gt.0.001)) then
write(6,*)’* Incompatible read wavepacket,’,
‘ymin/ymax in wave.dump’
write (6, *)ymn,ymin, ymx, ymax
stop
endif
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C File oK for job, continue

if (irestart.ne.l) then
C if not restarting then wavefunction should be real
do 10 iy=1,nypts
do 20 ix=1,nxpts
read(3, *)aps
zpsi(ix, iy)=cmplx(aps,0.0)

20 continue
10 continue
else

C if restarting the wavefunction is complex & already normalised
do 100 iy=1,nypts
do 200 ix=1,nxpts
read(3,111) zpsi (ix,iy)

111 format (e22.16,2x%x,€22.16)
200 continue
100 continue
endif
close (3)
return
end

C HAKRE RN XK AR AR R RARRKA A AN KRARKAARRRAKRARRA AR Kk ko ok koo koo ek ok

subroutine twodint (nXpts,n¥Ypts, £f,dx,dy,xyint)
C Wk g ok % e T Tk s W K R Wk R Y de ok Ak kR Kk kgt Kk W kT Ik ke ok ok Wk ke ke kg Rk ok ek
implicit real*8 (A-H,0-Y)
include "param.inc"
dimension ff(nxpts,nypts),temp(n2pts), ffcol (nlpts)

C for every y value ‘calculate the 1-d integral over x
C note limits of intlkgration are independent of y
do 12 j=1,nY¥pts '
do 13 i=1,nXpts
ffcol(i)=£f£(i, J)

13 continue
call simpint (nxpts, ffcol,dx,temp(J))
12 continue

C Now calculate the integral over all y values
call simpint(nYpts,temp,dy, xyint)

return
end

C B A SRR R E RS SE R R R SRS S R R R R RRERRRRRRRRRRERRREER R RRERER]
subroutine ztwodint (nXpts,n¥Ypts,z£ff,dx,dy,zxyint)
C KAREAXAR AR A AAKRARARAARARRNKNEARARARRRRKRRA RN AR RARN AR ARk ko hokhk
implicit real*8 (A-H,O-Y)
include "param.inc"
implicit complex*16 (z)
dimension zff (nxpts,nypt~),ztemp(n2pts),zffcol(nlpts)

for every y value calculate the 1-d integral over x
note limits of integration are independent of y
do 12 j=1,n¥pts
do 13 i=1,nXpts
zffcol (1)=2£f£ (1, )
13 continue
call zsimpint (nxpzs, zffcol,dx, ztemp(]))
12 continue

aon

C Now calculate the integral over all y values
call zsimpint (nYpts,ztemp,dy, zxyint)
return
end
C LA R R SRS R R R REREREREREER R R ERRER SRR RE RRERRRRRRRR RS
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subroutine relax(zpsiAO,delt,ntmax)
C de e g K W W Tk W T sk ok ok R ke R W o o Wk ko R Sk ok 20 de sk ok ok ok sk ok ok ok ok T W ok ok ok ok ok ok ko o ok ok e ok ok

implicit real*8(a-h,o-y)

implicit integer(i-n)

implicit complex*16(z)

include "“param.inc"

dimension zpsiA0(nlpts,1),zpsiAl{nlpts,n2pts)

dimension zpsiAl(nlpts,n2pts), zHpsiAI(nlpts,n2pts)

dimension zHpsiAO(nlpts,n2pts)
common/convert/harev,evwn, a0, amu, emu,harwn,amass, atu
common/const0/ zero, zeye, pi,c, twopi,sqrtpi,pisq
common/const2xA/x0A, xomeghA, vOA, xwexeA, xdea, xalphaA
common/const2xB/x0B, xomegB, xwexeB, xdeB, xalphaB, vOB
common/constl/ xmas, ymas,redmas, hb
common/const4/xmin, xmax, nXpts, dx,ymin, ymax,nYpts,dy, npacket
common/mass/AM1, AM2, AM3, AMab, AMcxab, AJAcob

This method of finding the lowest eigenstate of a bound potential surface
is described in R. Kosloff and H. Tal-Ezer, Chem. Phys. Lett. 127, 223 (1986)
It uses propagation of the initial guess wavefunction in IMAGINARY time to
let the wavefunction relax to the lowest eigenfunction of the Hamiltonian.

The advantage of the method is it uses nearly all the same routines as the
time dependent propagation method used in this program for the neutral
surface. However this wavefunction is everywhere real, unlike neutral psi.
Generate initial guess:

If the potential is morse/harmonic such that analytic solutions were not
implemented or the potential had linear coupling then uncoupled SHO x SHO
centered at x0A, yOA with frequencies xomegA and xomegB will suffice as good
initial guesses to the ground state wavefunction.

If the potential was read in or is a user supplied functional the form,

user is required to give the same information to generate an initial guess.

Produce this initial guess
call initWF{zpsiAQ,tinit)
Normalise
rtJacobian=sqrt (AJAcob)
do 47 iy=1,nypts
do 48 ix=1,nxpts
zpsiAO0(ix, iy)=rtJacobian*zpsiA0 (ix,iy)
48 continue
47 continue
call chk(l,ti,zpsiAQ, rsnorm,Have)
write(6,*)’'Norm of inital guess anion WF = ’,rsnorm
write(6,*)’<H> of inital guess anion WF = ',
Have*harwn/rsnorm,’ cm-1'

O O 000000 0000 0000

~

C for the anion imaginary time propagation need delt and tmax,
C at present use the same as for the neutral propagation

C evolve the initial guess for time delt/2 on the anion surface
call Hpsi(l,ti,zpsiA0, zHpsiAD)
do 22 iy=1,nY¥Ypts
do 20 ix=1, nXpts
zpsiAI (ix, iy)=zpsiAO(ix,iy)~(delt/2.)*zHpsiAO (ix,iy) /hb
20 continue
22 continue

¢ Second order Runge Kutta using the intermediate derivative.
call Hpsi(l,ti,zpsiAI, zHpsiAlIl)
do 32 iy=1,n¥pts
do 30 ix = 1, nXpts
zpsiAl(ix, iy)=zpsiA0(ix,iy)~-delt*zHpsiAI(ix,iy)/hb
30 continue
32 continue

call Vcopy(nxpts,nypts, zpsiAl, zpsiAO0)
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C Now perform First Order Differencing in imaginary time for ntmax steps
do 1000 it=1,ntmax
ti=ti+delt
call Hpsi(l,ti,zpsiA0Q, zHpsiAQ)
do 100 iy=1,nY¥pts
do 200 ix=1,nXpts
zpsiAl{ix, iy)=2zpsiAO(ix,iy)-delt*zHpsiAC (ix,iy)/hb
zpsiAl (ix, iy)=cmplx (real (zpsiAl (ix, iy)),0.0)
200 continue
100 continue
call Vcopy{nXpts,nYpts,zpsiAl, zpsiA0)
if (mod(it,500).eq.0) then
C Check the norm, and nearly always renormalise psi
C before continuing relaxation
C even ground state component will relax at rate exp(-E.t)
C where E is the energy in a.u. above the absolute energy zero.

call chknrm(zpsiAO,rsnorm)
rtrsnorm=sgrt (rsnorm)
if ((rsnorm.lt.0.5).or. (rsnorm.gt.2.00)) then
do 456 iy=1,n¥Ypts
do 457 ix=1, nxpts
zpsiAO (ix, iy)=2psiA0 (ix, iy)/rtrsnorm

457 continue
456 continue
endif
endif

if (mod(it, (ntmax/4)).eq.0) then
call chk(l,ti,zpsiA0, rsnorm, Have)
write(6,*)'Time step =', it,’ <H> = ',
Have*harwn/rsnorm,’ cm-1’
endif
1000 continue

C Hopefully have converged ground state wavefunction
C Renormalisation will be carried out in initB
write(6,*)ntmax,’ propagation in imaginary time to find’
write({6,*)’lowest eigenstate of anion potential completed’
write (6, *)
return
end

potread2.f

C********t***tii*ti**ﬁ**ﬂk*i*ti*****i****i*tt*ttﬁ******

subroutine potread()
c*****i*ttﬁ*t*tiit!t**iw****t****i*!it*****i****ii*ttt*
C This contains all routines to read and generate potential function
C the full potential for upper and lower surfaces is stored in array Xxypot
C This set of subroutines and functions is long and tedious but extremely
C flexible. Some code cleaning could be done to avoid repetition cf long
passages
C of code, but in the interests of vectorizing loops additional calls to
subroutines and
C functions have been avoided. Note statement functions are standard FORTRAN
and will
C vectorize unlike regular function calls.
c Many potential types have been added. (thanks to R. B. Metz and J. M. Bowman).

c S. E. Bradforth 1/1/81

implicit real*8 (A-H,0-Y)

implicit complex*16 (z)

include “param.inc"
common/convert/harev, evwn, a0, amu, emu, harwn, amass, atu
common/const0/ zero,zeye, pi,c, twopi,sqrtpi,pisq
common/constl/ xmas,ymas,redmas, hb
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common/const2xA/x0A, xomegA, VOA, xwexeA, xdea, xalphad
common/const2xB/x0B, xomegB, xwexeB, xdeB, xalphaB, vOB
common/const2yA/y0A, yomegA, fcupA, ywexeA, ydeA, yalphaa
common/const2yB/y0OB, yomegB, ywexeb, ydeB, yalphaB, fcupB
common/const4/xmin, xmax, nXpts,dx, ymin, ymax, nYpts, dy,npacket
common/flags/isavpotA, isavpotB, isavde, ireadwav, irestart, iabs
common/pot/xypot (nlpts, n2pts, 2)
common/aniongno/ivibx, iviby, irotcoor
common/mass/AM1, AM2, AM3, AMab, AMcxab, AJAcob
common/analytic/ianal

common/transf/T(2,2)

C This routine reads in potential parameters for both surfaces and then
C stores potential at each grid point to save further computation.

C Define functions as statement functions

harmonic (xx,xmas, x0,xomeg)= 0.50*xmas* (xomeg* (xx~x0)) **2
dmorse (xx, X0, de, xalpha) =de* (1.0~-exp (~xalpha* (xx~x0))) **2
AmstoRab (xx,yy)= yy/sqrt (AMab)

AmstoRbc (xx,yy)=-yy*sqrt (AMab) /AM2 + xx/AMcxab
AmstoQl (xx, yy)=xx/AMcxab

AmstoQ3 (xx, yy) =AmstoRab (xx, yy)

AmstoS1 (xx, yy)=AmstoRab (xx, yy) +AmstoRbc (xx, yy)

AmstoS3 (xx, yy)=AmstoRab (xx, yy) -AmstoRbc (xx, yy)

AmstoNC1l (xx,yy, rabeq, rbceq) =T (1, 1) * (AmstoRab (xx, yy) ~rabeq)
~ +T(1,2)*(AmstoRbc (xx, yy)-rbceq)

AmstoNC3 (xx, yy, rabeq, rbceq) =T (2, 1) * (AmstoRab (xx, yy) -rabeq)
~ +T(2,2)* (AmstoRbc (xx, yy)-rbceq)

C Read anion potential first

C set the potential by reading potential type

read(l, *) ipottypA, ipottypAy, ivibx, iviby

if ((ipottypA .gt. 4) .or. (ipottypA .lt. -1)) then
write(6, *)’'Problem with potential Ax type in input deck’
stop

endif

if ((ipottypAy .gt. 4) .or. (ipottypAy.lt. 0)) then
write(6,*) ‘Problem with potential Ay type in input deck’

stop

endif

write(6,*)’zetting up 2d potentials in memory........ !
C set the flag descr.»ing the potential as having analytic solutions or not

ianali=0
C check for a seperable potential or one with linear coupling

if ((ipottypA.eqg.l).or. (ipottypA.eq.0).or. (ipottypA.eqg.-1))then

C proceed to calculate potential
C For each type read relevant parameters:
C (expect x0 in Angs, omega, wexe and v0 in cm-1 and De in eV, alpha in Angs-1)
C x coordinate (Ql like) first, where reduced mass is xmas
C If ipottypA=-1 then expect potential parameters like those above, but
C the coordinates along which the axes for potential and wavefunction are
C defined are now not X,y or S§1,53 but NC1,NC3 defined in statement function
C above. This allows use of ab initio normal coordinates.
C Mass is assumed to be included in the transfromation coefficients,
C IE a reduced mass of 1 amu will be assumed for both NCl And NC3
C x0A and y0A should be the equilibrium values of Rab and Rbc rather than
C of r(ac) and R(ab)

if (ipottypA.eqg.=-1) then
irotcoor=1
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C rotated coordinates include mass in them, so reduced mass for each oscillator
C is 1 amu.
xmasA=amu
ymasA=amu
C Read in the transformation matrix
read(1,*)T(1,1),T(1,2)
read(1l,*)T{2,1),T(2,2)
else
xXmasA=xmas
ymasA=ymas
endif

if (ipottypA .eq. 0) then
read (1, *) x0A, xdeA, xalphaA, vOA
xdeA=xdeA/harev
xalphaA=xalphalA*al
xwexeA=xalphaA**2/(2.0*xmasA)
xomegA=sqrt (4 .0*xwexeA*xdeA)
endif

if ((ipottypA.eq.l) .or. (ipottypA.eq.-1)) then
read(l, *)x0A, xomegA, xwexeA, vOA
xomegA=xomegA/harwn
XwexeA=xwexeA/harwn
C If Morse, convert potential parameters to reciprocal bohr and hartrees...
if (xwexeA .ne. 0.0) then
xalphalA=sqrt (2.0*xmasA*xwexed)
xdeA=xomegA**2/ (4.0*xwexeA)
ipottypA=0
endif
endif
X0A=x0A/al
vO0A=vOA/harwn

C y coordinate (Bound Q3 like), where reduced mass is ymasA..
C Expect the coupling constant in units of eV/(angs)**2
if (ipottypAy .eg. 0) then
read(1l, *)yOA, yded, yalphaA, fcupA
C convert to au
ydeA=ydeA/harev
yalphaA=yalphaA*al
ywexeA=yalphaA**2/(2.0*ymasA)
yomegA=sqrt (4 .0*ywexeA*ydeA)
endif

if (ipottypAy .eq. 1) then
read (1, *)yOA, yomegA, ywexeA, fcupA
C convert to au
yomegA=yomegA/harwn
ywexeA=ywexeA/harwn
C If Morse, convert potential parameters to reciprocal bohr and hartrees...
if (ywexeA .ne. 0.0) then
yalphaA=sqrt (2.0*ymasA*ywexeA)
ydeA=yomegA**2/ (4 .0*ywexeA)
ipottypAy=0
endif
endif
yOA=y0A/a0
fcupA=fcupA*al*al/harev
C If seperable potential (linear coupling is zero), and potential is anharmonic
C along y, if at all, only, then this program can yield analytic wavefunctions
if ((fcupA.eq.0.0).and.
- ((ipottypA.eq.l).or. (ipottypA.eq.-1))) ianal=1
C establish shelf as usual
shelf=2.0/harev
if (irotcoor.eq.l) then
rrbceq=y0A
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rrabeq=x0A
do 446 iy=1,nYpts
yi=(iy-1) *dy+ymin
do 445 ix=1,nXpts
xi=(ix-1) *dx+xmin
C convert from mass scaled coordinates to normal modes
x=AmstoNC1 (xi,yi, rrabeq, rrbceq)
y=AmstoNC3(xi,yi, rrabeq, rrbceq)
if (ipottypA.eq.0) tmpx=dmorse(x,0.0,xdeA,xalphal)
if (ipottypA.eq.-1) tmpx=harmonic(x,xmash,0.0,xomegA)
if (ipottypAy.eq.0) tmpy=dmorse(y,0.0,ydeA,yalphad)
if (ipottypAy.eq.l) tmpy=harmonic(y,ymasA,0.0, yomega)
xypot (ix, iy, 1) =tmpy+tmpx+fcupA*x*y+v0A
if (xypot(ix,iy,1)-vOA.gt.shelf) xypot(ix,iy,1l)=shelf+v0A
445 continue
446 continue
else
if (AM1 .eq. AM3) then
do 146 iy=1l,n¥Ypts
yi={(iy-1) *dy+ymin
do 145 ix=1,nXpts
xi=(ix-1) *dx+xmin
C convert from mass scaled coordinates to normal modes of symmetric anion
x=AmstoS1 (xi,yi)
y=AmstoS3 (xi,yi)
if (ipottypA.eq.0) tmpx=dmorse (x,x0A, xdeA,xalphal)
if (ipottypA.eq.l) tmpx=harmonic(x, xmasA, x0A, xomegA)
if (ipottypAy.eq.0) tmpy=dmorse(y,yOA,ydeA,yalphad)
if (ipottypAy.eq.l) tmpy=harmonic(y,ymasA,y0A, yomegA)
xypot (ix, iy, 1) =tmpy+tmpx+fcupA*x*y+v0A
if (xypot(ix,iy,1l)-vOA.gt.shelf) xypot(ix,iy,1l)=shelf+v0A
145 continue
146 continue
else
do 1426 iy=1,nY¥Ypts
yi=(iy=-1) *dy+ymin
do 1425 ix=1,nXpts
xi=(ix—-1) *dx+xmin
C convert from mass scaled coordinates to approx normal modes
C of Asymmetric anion
x=AmstoQl (xi,yi)
y=AmstoQ3 (xi,yi)
if (ipottypA.eq.0) tmpx=dmorse (x,x0A,xdeA, xalphald)
if (ipottypA.eqg.l) tmpx=harmonic(x,xmasA, x0A, xomegA)
if {(ipottypAy.eq.0) tmpy=dmorse(y,yOA, ydeA,yalphad)
if (ipottypAy.eq.l) tmpy=harmonic(y,ymasA,yOA,yomegA)
xypot (ix, iy, 1)=tmpy+tmpx+fcupA*x*y+v0A
if (xypot(ix,iy,1)-vOA.gt.shelf) xypot{ix,iy,1l)=shelf+v0A
1425 continue
1426 continue
endif
endif
endif

C non separable potentials
if (ipottypA .eq. 2) then
write (6, *)’Leps not supported for anion’
stop
endif

if (ipottypA .eq. 3) then

read(1l,*)v0A
This potential will require numerical solution of first eigenfn, if no
wavefunction is read in form disk
Thus ask for a guess in terms of minimum position and frequency along
the x,y axes (which will NOT be the normal coordinates)
This will be used by the subroutine relax.

if (ireadwav.ne.l) then

read(1l, *)x0A, xomegA

O0O000
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read (1, *)yOA, yomegA
xomegA=xomegA/harwn
yomegA=yomegA/harwn
x0A=x0A/a0
y0OA=y0A/al
endif
C establish shelf as usual, this is necessary as anion wavefn. will need to be
C found numerically for this potential surface
shelf=2.0/harev
vOA=vOA/harwn
open(7,file='pot.in’)
do 822 iy=1,n¥Ypts
do 821 ix=1,nxpts
read (7, *)tmp
xypot (ix, iy, 1)=tmp+v0A

821 continue
822 continue
endif
C User defined function as 2d anion potential surface
C As set up V is a function of the primitive internal ccordinates Rab and Rbc
C Note user must recognise that Rab and Rbc are not interchangeable
C for asymmetric propagation

if (ipottypA .eq. 4) then
read(1l, *)vOA
This potential will require numerical solution of first eigenfn, if no
wavefunction is read in form disk
Thus ask for a guess in terms of minimum position and frequency along
the x,y axes (which will NOT be the normal coordinates)
This will be used by the subroutine relax.
if (ireadwav.ne.l) then
read (1, *)x0A, xomegA
read (1, *)yOA, yomegA
xomegA=xomegA/harwn
yomegA=yomegA/harwn
x0A=x0A/al
yOA=y0A/al
endif

eNeNeNeKel

C establish shelf as usual, this is necessary as anion wavefn. will need to be
C found numerically for this potential surface
shelf=2.0/harev
shelfl=-0.2
vOA=vOA/harwn
do 924 iy=1,n¥pts
ay=(iy-1) *dy+ymin
do 923 ix=1,nxpts
ax= (ix-1) *dx+xmin
axx=AmstoRab(ax, ay)
ayy=AmstoRbc (ax, ay)
xypot (ix, iy, 1) =upotfn(axx,ayy)+vOA
if (xypot (ix,iy,1)-v0A.gt.shelf) xypot(ix,iy,1l)=shelf+v0A
if (xypot(ix,iy,1)-v0A.lt.shelfl)xypot(ix,iy,1)=shelfl+vOA
923 continue
924 continue
endif

C Now read neutral (B) potential

read(1l, *) ipottypB, ipottypBy

if ((ipottypB .gt. 5) .or. (ipottypB .lt. 0)) then
write(6, *)’Problem with potential Bx type in input deck’
stop

endif

if ((ipottypBy .gt. 1) .or. (ipottypBy .lt. 0)) then
write(6, *)'Problem with potential By type in input deck’
stop



C as for anion potential construct pot. from seperable parts if appropriate

endif

if ((ipottypB .eq. 1) .or. (ipottypB .eq. 0)) then

if (ipottypB .eq. 0) then
read (1, *) x0B, xdeB, xalphaB, vOB
xdeB=xdeB/harev
xalphaB=xalphaB*a0
xwexeB=XalphaB**2/(2.0*xmas)
xomegB=sqgrt (4.0*xwexeB*xdeB)
endif

if (ipottypB .eq. 1) then
read (1, *) x0B, xomegB, xwexeB, vOB
xomegB=xomegB/harwn
xwexeB=xwexeB/harwn
if (xwexeB .ne. 0.0) then
XalphaB=sqrt (2.0*xmas*xwexeB)
xdeB=xomegB**2/ (4.0*xwexeB)
ipottypB=0
endif
endif
x0B=x0B/a0
vOB=v0B/harwn

C vy coordinate, where reduced mass is ymas

if (ipottypBy .eq. 0) then
read(l, *) yOB, ydeB,yalphaB, fcupB

C convert to au

ydeB=ydeB/harev

yalphaB=yalphaB*a0

ywexeB=yalphaB**2/(2.0*ymas)

yomegB=sqrt (4.0*ywexeB*ydeB)
endif

if (ipottypBy .eq. 1) then
read (1, *)yOB, yomegB, ywexeB, fcupB

C convert to au

C Note

C convert from mass scaled to normal coordinates of symmetric neutral

147
148

yomegB=yomegB/harwn
ywexeB=ywexeB/harwn
if (ywexeB .ne. 0.0) then
yalphaB=sqrt (2.0*ymas*ywexeB)
ydeB=yomegB**2/(4.0*ywexeB)
ipottypBy=0
endif
endif
y0B=y0B/a0
fcupB=fcupB*al0*al/harev

include shelf here for B potential, partic. for Morse, (6eV)

shelf=6.0/harev

if (AM1 .egq. AM3) then
do 148 iy=1,nYpts
yi=(iy-1)*dy+ymin
do 147 ix=1,nXpts

Xi=(ix-1)*dx+xmin

x=AmstoS1l(xi,yi)
y=AmstoS3(xi,yi)

if (ipottypB.eq.0)
if (ipottypB.eq.1l)
if (ipottypBy.eg.0)
if (ipottypBy.eq.l)
xypot {ix, iy, 2)=tmpy
if (xypot(ix,iy,2)-
continue
continue
else
do 1480 iy=1,nYpts

tmpx=dmorse (x, x0B, xdeB, xalphaB)
tmpx=harmonic (x, xmas, X0B, xomegB)
tmpy=dmorse {y, yOB, ydeB, yalphaB)
tmpy=harmonic(y, ymas,yO0B, yomegB)
+tmpx+fcupB*x*y+v0B

vOB .gt. shelf) xypot(ix,iy,2)=shelf+v0OB

392
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yi=(iy-1) *dy+ymin
do 1470 ix=1,nXpts
xi=(ix~-1)*dx+xmin
C convert from mass scaled to normal coordinates of Asymmetric neutral
x=AmstoQ1 (xi,yi)
y=AmstoQ3(xi.yi)
if (ipottypB.eq.0) tmpx=dmorse (x,x0B,xdeB, xalphaB)
if (ipottypB.eq.l) tmpx=harmonic (x,xmas,x0B, xomegB)
if (ipottypBy.eq.0) tmpy=dmorse (y,yOB,ydeB,yalphaB)
if (ipottypBy.eq.l) tmpy=harmonic(y,ymas,y0B,yomegB)
xypot (ix, iy, 2) =tmpy+tmpx+fcupB*x*y+v0OB
if (xypot(ix,iy,2)-vOB .gt. shelf) xypot(ix,iy,2)=shelf+v0B
1470 continue
1480 continue
endif
endif

C NON SEPARABLE POTENTIALS

C Extended LEPS potential surface, with or without, zero point bend correction.
C Note the value of ipottypBy denotes whether to include zero point bend
if (ipottypB .eq. 2) call iepstore(ipottypBy)

C Potential from file potB.in
if (ipottypB .eq. 3) then
write(6, *)'Reading the file potB.in’
C Note include shelf here for B potential, at 2eV relative when vOB added
shelf=2.0/harev
read (1, *)vOB
v0B=v0OB/harwn
open(7,file='potB.in’)
do 824 iy=1,nYpts
do 823 ix=1,nxpts
read (7, *)tmp
xypot {ix,iy,2)=tmp+v0B
if (xypot(ix,iy,2)-vOB.gt.shelf) xypot(ix,iy,2)=shelf+v0B
823 continue
824 continue
endif

C User defined function as 2d potential surface
C As set up, V is a function of the primitive internal ccordinates Rab and Rbc
C Note user must recognise that Rab and Rbc are not interchangeable
C for asymmetric propagation
if (ipottypB .eq. 4) then
read (1, *)vOB
C establish shelf as usual
shelf=2.0/harev
vOB=v0B/harwn
do 724 iy=1,nY¥Ypts
ay={iy-1) *dy+ymin
do 723 ix=1l,nxpts
ax=(ix—-1)*dx + xmin
axx=AmstoRab (ax, ay)
ayy=AmstoRbc (ax,ay)
xypot (ix, iy, 2)=upotfn{axx,ayy)+v0B
if (xypot(ix,iy,2)-v0B.gt.shelf) xypot (ix,iy.2)=shelf+v0B
723 continue
724 continue
endif

C Rotated Morse Oscillator Spline Potential
if (ipottypB.eg.5) call rmos()

C Now xypot array contains A and B potentials at nXpts,nYpts on grid
return

end
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C LEPS ROUTINES

c*********t*********t************t**t***************************************

Create a LEPS potential for a triatomic system.

See Smith p. 44

Indices:
1
2
3

ab
bc
ca

[ ]

Variables:
R(l) = ab distance (nm)
Delta(l) = (1/S(1)) - 1, where S is Sato Parameter
De(l) = dissoc limit of ab (kJ/mol)
Re (1) equilibrium ab bond length (nm)
B(1l) width of potential for ab (nm =-1)
M(1) mass of atom a (amu)

Functions:
V(R(1l), R(2), R{3)) = LEPS potential (kJ/mol)
Q(1,R(1)) = Q for ab and Rab
AJ(1,R(1l)) = J for ab and Rab
VM(1,R(1l)) = Morse potential for ab and Rab
VaM(1l,R(1l)) = anti-Morse potential for ab and Rab

OO0 CHOO0O0O0O000000000000

L Z 2 R R R R R R R R R R R R R SRR R RS R R R R E R SRR R R R R RRRRRREREES]

FUNCTION VM(I,R)

IMPLICIT REAL*8(A-H,0-2)

REAL*8 LDE,LRE,LB
COMMON/LEPS/LDE(3),LRE (3),LB(3),DELTA(3)
X = =LB(I)*(R - LRE(I))

VM = LDE(I) * (EXP(2.0*X) - 2.0*EXP(X))
RETURN

END

FUNCTION VAM(I,R)

IMPLICIT REAL*8(A-H,0-~2)

REAL*8 LDE,LRE,LB .
COMMON/LEPS/LDE (3) ,LRE (3),LB(3),DELTA(3)

X = -LB(I)*(R - LRE(I))

VAM = LDE(I) * (EXP(2.0*X) + 2.0*EXP(X))/2.0
RETURN

END

FUNCTION Q(I,R)

IMPLICIT REAL*8(A-H,0-2)

REAL*8 LDE,LRE,LB
CCMMON/LEPS/LDE(3) ,LRE (3),LB(3),DELTA(3)

Q =((1.0 + DELTA(I))*VM(I,R) + (1.0 - DELTA(I)) ~ VAM(I,R))/2.0C
RETURN
END

FUNCTION AJ(I,R)

IMPLICIT REAL*8(A-H,0-2)

REAL*8 LDE,LRE,LB

COMMCN/LEPS/LDE(3) ,LRE(3),LB(3),DELTA(3)

AJ =((1 + DELTA(I))*VM(I,R) - (1 - DELTA(I)) * VAM(I,R))/2.0
RETURN
END

FUNCTION JSIGN(I,K)
IMPLICIT REAL*8 (A-H,0-2)
IF (I .EQ. K) THEN
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JSIGN=1
ELSE
JSIGN=-1
ENDIF
RETURN
END

C —— - ——— —— —— -

FUNCTION ALV (RAB,RBC,RAC)

IMPLICIT REAL*8(A-H,0-2)

REAL*8 LDE,LRE,LB
COMMON/LEPS/LDE(3) ,LRE (3),LB(3),DELTA(3)
DIMENSION R(3),T(3)

REAL*8 JSUM

R(1)
R(2)
R(3)
QSUM

RAB
RBC
RAC
0.0

DO 10 I =1
T(I)=1.0/(
QSUM = QSU

10 CONTINUE

3
1.0+DELTA (I))
M+ Q(I,R(I))*T(I)

JSUM = 0.0
DO 20 I = 3, 1
DO 30 K =
JSUM =
30 CONTINUE
20 CONTINUE
ALV = QSUM - SQRT(JSUM)
RETURN
END

1l,-
1,1
JéUM+AJ(I,R(I))*JSIGN(I,K)*T(I)*AJ(K,R(K))*T(K)

Asymmetric stretch potential

FUNCTION potlep(ibend, x,y)
IMPLICIT REAL*8(A-H,0-2)
REAL*8 LDE,LRE,LB
common/convert/harev,evwn,al,amu, emu, harwn,amass,atu
COMMON/LEPS/LDE (3) ,LRE(3),LB(3),DELTA(3)

C x,y in au; RAB etc in nm

RAB=x*a0/10.0
RBC=y*a0/10.0
RAC=RAB+RBC
C Convert from bohrs to nanometers
C evaluate bending correction if required
bn=0.0
C Convert from KJ/mol to hartrees
potlepl = ALV (RAB,RBC,RAC)/2625.504
if (ibend .eq. 1) then
C bndh requires RAB RBC in au so use X,y and supplies correction in hartrees

bn=bndh (x,y)
endif
potlep = potlepl+bn
RETURN
END

(AR ARAEEERRERARERLEEEEREES AR RERERSRERERRREREREEREEEEEE]

subroutine lepstore (ibend)
c**'k**t***ttk*****t**!***’k**ﬁ*****wfkiﬂ*t*wt******lkk**tt**
c
C

implicit real*8 (A-H,0-Y)

implicit complex*16 (2z)
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include "param.inc"”

real*8 lde,lre,lb
common/convert/harev,evwn, a0, amu,emu, harwn,amass,atv
common/const0/ zero,zeye, pi,c, twopi,sqrtpi,pisq
common/const4/xmin, xmax, nXpts, dx,ymin, ymax,nYpts, dy, npacket
COMMON/LEPS/LDE(3) ,LRE(3),LB(3),DELTA(3)
common/pot/xypot (nlpts, n2pts, 2)
common/mass/AM1, AM2, AM3, AMab, AMcxab, AJAcob

C define Statement functions
AmstoRab (xx,yy)= yy/s3rt (AMab)
AmstoRbe (xx, yy) =-yy*sqrt (AMab) /AM2 + xx/AMcxab
AmstoQl (xx, yy) =xx/AMcxab
AmstoQ3 (xx, yy)=AmstoRab (xx, yy)
AmstoSl (xx,yy)=AmstoRab (xx, yy) +AmstoRbc (xx, YY)
AmstoS3 (xx, yy)=AmstoRab (xx, yy) -AmstoRbc (xx, yy)

read(1l,*) vOB
v0B=v0B/hareV

C For each pai. of atoms input the parameters De, Beta, Re, Sato
C where De (in eV); Beta (in A:gs. =1); Re (in Angs.)
C In the order atoml-atom2 (A-B), atom2-atom3 (B-C) and then atoml-atom3 (A-C)
DO 2050 I=1,3
IF (I1.EQ.3) THEN
J=1
ELSE
J=I+1
ENDIF
READ(1,*) LDE(I),LB(I),LRE(I),DELTA(I)
C convert to kJ/mol and nm-1, nm
lde(i)=lde (i) *96.485
ib(i)=1b(i)*10.0
lre(i)=lre(i)/10.0
2050 CONTINUE

C determine shelf level where potl is cut offf to avoid high walls and thus
C increase time step..... (shelf in hartrees)
C 0.30*de (HBr) above three atom dissociation...

shelf=0.3*lde(1)/2625.504
C potential routine hardwired to expect kJ/mol and nm, nm-1 !

if (ibend .eq. 1) write(6,*)’Evaluating bending correction’
do 148 iy=1l,nYpts
yi=(iy=-1)*dy+ymin
do 147 ix=1,nXpts
xi= (ix~1) *dx+xmin
C convert from mass scaled coordinates to internal coordinates of neutral
C We are assuming linearity for this potential call, ie rac=rab+rbc
x=AmstoRab (xi,yi)
y=AmstoRbc (xi, yi)
xypot (ix,iy,2)=potlep(ibend, x,y)+vOB
if (xypot(ix,iy,2)-v0B.gt.shelf) xypot(ix,iy,2)=shelf+v0B
147 continue
148 continue
return
end

LA A RS SREREEE RS R R NARSRERRS R RS SRRRRRRRRRd RN

function poten3d(Rab, Rbc, Rac)

MARARAANKEIRNANAN RS RARAT AR R AR NARTNN AR NRARR R AN

This is 3d call to leps potl that does not make assumption that Rac=Rab+Rbc
Used by bndh correction term to potential to include zero-point bend
Rab etc are supplied in au...
implicit real*8 (a-h,o0-2)
common/convert/harev, evwn, a0, amu, emu, harwn, amass, atu

o000 O O
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R1l=Rab*al0/1C.0

R2=Rbc*a0/10.0

R3=Rac*a0/10.0

poten3d=ALV (R1,R2,R3)/2625.504
return

end

[of AARAR R R R KA AR R RRRAR AR R A RN R AN RR N AR

FUNCTION BNDH (RAB, RBC)

[ ARXRARKARARRERRR KRN RAR KRR AR XAk kb kkok

Cc

C...PROGRAM TO CALCULATE THE BENDING EIGENVALUE FOR AN ABC TRIATOMIC
C...IN THE HARMONIC APPROXIMATION. WRITTEN BY J.M. BOWMAN

C

C...THE BEND ENERGY BNDH IS CALCULATED IN THE HARMONIC APPROXIMATION
C...GIVEN BY: BNDH = HBAR*OMEGA*(1.0+NB) (IN ATOMIC UNITS). THIS
C...I8 SPECIFIC FOR A TRIATOM WITH A LINEAR MINIMUM, I.E., BEND IS DOUELY
C...DEGENERATE. FOR A DISCUSSION OF THIS AND A TEST OF THE METHOD SEE
c...J.M. BOWMAN, CHEM. PHYS. LETT. 124 (1986) 263.

c

C... RAC=RAB+RBC FOR LINEAR GEOM. and lengths are in au.

C...GAMMA IS ABC BOND ANGLE.

C...ASSUME THAT POTENTIAL IS CALCULATED IN AU

C

IMPLICIT REAL*8 (A-H,0-2)

REAL*8 NB
common/mass/AM1, AM2, AM3, AMab, AMcxab, AJAcob
DATA H/0.01/

DATA PI1/3.14159265/

DATA NB/0.0/

..CALCULATE THE G-MATRIX ELEMENT
G=1.0/(AM1*RAB**2)+1.0/ (AM3*RBC**2)+(1.0/RAB+1.0/RBC) **2/AM2

C.
c
c
C...CALCULATE THE SECOND DERIVATIVE OF THE POTENTIAL WRT GAMMA USING
C...FIRST DERIVATIVE OF POT WRT RAC HOLDING RAB AND RBC FIXED.
C...CALCULATED IN DPESDR AND FINITE DIFFERENCE APPROX AND CHAIN RULE.
c

GAM1=PI+H

RAC=SQRT (RAB**2+RBC**2~2.0*RAB*RBC*COS (GAM1))

NOW GET THE FIRST DERIVATIVE OF THE POTENTIAL WRT RAC

CALL DPESDR (DEDR, RAB, RBC, RAC)
WRITE (7,100) RR,DEDR,H,H3,H43
DPG1=DEDR*SIN (GAM1) *RAB*RBC/RAC
FGAM=DPG1/H
IF (FGAM.LT.0.0D0) GO TO 10
OMEGB=SQRT (G*FGAM)
BNDH=OMEGB* (1.0+NB)
C This is a check for ClHCl : should get 509cm-1 at barrier on BCMR surface..
if ((int(10*RAB) .eq. 27) .and. (int(10*RBC) .eq. 27) )then
write(6,*)RAB,’ ',RBC,’ ’,omegb
endif
RETURN
10 BNDH=0.0
RETURN
END

0O 000

c AR R A AT PRARNANT AR RRAAAARNANRNNRAAARRARA RN KN

subroutine dpesdr (DERIV,RAB,RBC, RAC)

C ARAXAAAARARANARNRTARN IR ARENRNK A KRR AN RNTRTRR AR KN kW

C Find numerical first derivative of pot surface wrt Rac
implicit real*8 (A-H,0-Y)
DATA H/1.0D-3/
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el=poten3d (RAB, RBC, RAC-h)
e2=poten3d (RAB, RBC,RAC+h)
deriv=(e2-el)/h/2.0
return
end

End of LEPS stuff

LA 2L E SRR RS RRR RS2 22 R 2R 2Rt s R s R N2

function upotfn(x,y)

ek M K W o Te %k v Wk ok Y ok W ok e e wk o W ok sk ok ok ke ok sk % 3k e % ok o Tk U ok ok ok o T ok e ok Tk ok o ke dk ok ok ok ok ok %k %
implicit real*8 (a-h,o-z)
implicit integer (i-n)
common/convert/harev, evwn, a0, amu, emu, harwn, amass, atu
common/mass/AM1, AM2, AM3, AMab, AMcxab, AJAcob
real*8 upotfn, koh, kof

This should contain a general user supplied function
Here is a an example:

Potential for FHO- assuming n.c along oh and of

Transformation calculated from the ab initio cartesian force constant
matrix. The normal coordinates are transformed into internal coordinates
and then inverted without any normalisation. Then the Q’s calculated
contain all mass information.

rtoQl (rhf, roh, rhfeq, roheq)=3.0* (rhf-rhfeq) +2.75 *(roh-roheq)
rtoQ3(rhf, roh, rhfeq, roheq)=0.199* (rhf-rhfeq) +1.159* (roh-roheq)

rroheqg=1.0781/a0

rrhfeqg=1.3456/a0

koh=amu* (2015.0/harwn) **2

kof=amu* (433.0/harwn) **2

upot £n=0.5* (koh* (rtoQ3(x,y, rrhfeq, rroheq)) **2
~ +kof* (rtoQl (x,y, rrhfeqg, rroheq)) **2)

Here is another example:

This is the potential function for BrHBr- anion

as fitted from Ikuta et al. MP2 ab initio potential surface
al= distance of hydrogen from midpoint of two bromines
aR=distance between two bromines

al=al* (x-y)/2

aR=al0* (x+y)-3.48947

upotfn=-0.126848 + 0.0473282*al**2+0.378163*al**4
-0.0583723*al**6-.392061*al**2*aR
+0.0937135*aR**2-0.00197339*aR

return
end

HEARK AT XA A XNA AR RN RARRNARRRRRRRRARERRARAR R A RN A RRARA RN KRR XA IR kok K

subroutine rmos ()

KRN REA KRR RN XA AR RARRRATARNRRKRARNRARNARKAAARARARAAKR AR KR RARANA KRR AR KRR KKk
implicit real*8(a-h,o-y)
implicit integer(i-n)
implicit complex*16(z)
include "param.inc"
real*8 le(30),1e2(30),b(30),b2(30),d(30),d2(30),phi(30)
real*8 curPhi,curl,curle,curD,curB
common/convert/harev,evwn,al,amu, emu, harwn,amass, atu
common/const0/ zero, zeye, pi,c, twopi,sqrtpi,pisq
common/constd4/xmin, xmax, nXpts,dx, ymin, ymax,nYpts,dy, npacket
common/pot/xypot (nlpts,n2pts,2)
common/mass/AM1, AM2, AM3, AMab, AMcxab, AJAcob

Define statement functions
AmstoRab {xx,yy)= yy/sqrt (AMab)
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AmstoRbc (xx, yy)=-yy*sqrt (AMab) /AM2 + xx/AMcxab

Rotated Morse Oscillator Spline Potential (RMOS):
See for example Wagner et al. JCP 74, 4960 (1981) or
Schatz Rev. Mod. Phys. 61, 669 (1989)

S. E. Bradforth, August 1990

Read in the RMOS parameters: expect distances and beta in a.u.
De is in eV. There will be ncut defined Morse curves and natural spline
interpolation between them

o000 0000

read (1,*)vOB
vOB=v0OB/harwn
read (1, *)rabsw, rbcsw,Vab
Vab is the dissociation energy of A-B and should be positive
and in units of eV, This sets the absolute enerqgy before adding vOB and
thus sets energies with respect to bottom of the well AB
In usual circumstances then v0B should be set to zero for this potential type
shelf set 0.3*Vab above three atom dissociation

[eXeXeXeXe]

Vab=Vab/harev
shelf=0.,3*Vab+Vab
read(1l, *)ncut
deo 10 i=1l,ncut
read(1l,*)phi(i),d(i),le(i),b(i)
C set phi in radians
phi(i)=phi (i) *acos(-1.0)/180.0
d(i)=d(i)/harev
10 continue
pyl=1.0e37
pyn=pyl
call splin(phi,d, ncut,pyl,pyn,d2)
call splin(phi,le,ncut,pyl,pyn,le2)
call splin(phi,b, ncut,pyl,pyn,b2)
C Now calculate the potential on the mass weighted grid points
do 20 iy=1,nypts
yi=(iy-1) *dy+ymin
do 30 ix=1,nxpts
xi=(ix=1) *dx+xmin
rab=AmstoRab (xi,yi)
rbc=AmstoRbc (xi, yi)
curl=sqrt ( (rab-~rabsw)**2 + (rbc-rbcsw)**2 )
curPhi=atan( (rbcsw-rbc) / (rabsw-rab))
if ((rab.lt.rabsw).and. (rbc.lt.rbcsw)) then
call splint{phi,d,d2,ncut,curPhi,curD)
call splint(phi,le,le2,ncut,curPhi,curle)
call splint(phi,b,b2,ncut, curPhi,curB)
xypot (ix, iy, 2)=curD*( (l-exp( curB * (curl-curle) ))*=*2-1)
~ + Vab
if (xypot(ix,iy,2).gt.shelf) xypot (ix,iy,2)=shelf
xypot (ix, iy, 2)=xypot (ix, iy,2) + vOB
else
xypot (ix, iy, 2)=shelf+vOB
endif
30 continue
20 continue
return
end

C (R AR E R AR SRS EERESEERERERRRRSREE RSl RRREREEERRRR SRR REREREEE]

subroutine splin(x,y,n,ypl,ypn,y2)
C AEXKKAAIATKXKAAKAARAKRAAARNR AR AR XRARR NN AXNRRARTARRNRAARARTRRRKE R KKK KR **®
C Numerical Recipes (Flannery et al)

implicit real*8(a-h,o0-2)

implicit integer(i-n)

PARAMETER (NMAX=100)

DIMENSION X (N),Y(N),bY2(N), U (NMAX)

IF (YP1.GT..99E30) THEN

Y2(1)=0.



U(1)=0.

ELSE
Y2(1)=-0.5
U(L)=(3./(X(2)=X(1)))*({Y(2)=Y(1))/(X(2)=X{1))~YP1)
ENDIF

DO 11 I=2,N-1
SIG=(X(I)-X{I-1))/(X(I+1)-X(I-1))
P=SIG*Y2(I-1)+2.
Y2(I)=(SIG-1.)/P
U(D)=(6.*((Y(I+1)=Y(I))/(X(I+1)=X(I))=(Y(I)=-Y(I-1))
* /(XA{I)=X(I-1))) /(X(I+1)~X(I-1))=SIG*U(I-1))/P
11 CONTINUE
IF (YPN.GT..99E30) THEN
QON=0.
UN=0.
ELSE
QN=0.5
UN=(3,/ (X{(N)=-X(N=1)))* (YPN= (Y (N) =Y (N=1) } / (X (N) =X (N-1)))
ENDIF
Y2 (N)=(UN—-QN*U{N-1))/ (QN*Y2 (N-1)+1.)
DO 12 K=N-1,1,-1
Y2 (K) =Y2 (K) *Y2 (K+1) +U (K)
12 CONTINUE

return
end

KEARRRARAAAA R RN KR AR KRR RRARA KRN KR AN R AR AR AR AN KR AR KRR Nk kok k& kX

subroutine splint (xa,ya,y2a,n,X,Y)
RAK A ANR AR RN TR RN RN AKX RRA KRR AR AR AR RRRNKR AR RARRAKRAARRNRRK AR AR k& owk
Numerical Recipes (Flannery et al)
implicit real*8(a-h,o-z)
implicit integer(i=-n)
DIMENSION XA (N),YA(N),Y2A(N)
KLO=1
KHI=N
1 IF (KHI-KLO.GT.1l) THEN
K= (KHI+KLO) /2
IF (XA (K) .GT.X) THEN
KHI=K
ELSE
KLO=K
ENDIF
GOTO 1
ENDIF
H=XA(KHI) -XA (KLO)
IF (H.EQ.0.) PAUSE ’‘Bad XA '
A= (XA (KHI)~X) /H
B= (X-XA(KLO) ) /H
Y=A*YA (KLO) +B*YA (KHI) +
* ({A**3-R) *Y2A (KLO) + (B**3-B) *Y2A(KHI)) * (H**2) /6.

(¢}

[eXe!

return
end
c KRAXXRKRKEREA XA XA ARAARKRK AR AR TR NNARK AN ®

subroutine potlsave (ipot)
LB AR R AR R AR R EERE R R R R EREEEEEE R R R R

(o]

implicit real*8 (A-H,0-Y)

implicit complex*16 (z)

include "param.inc"
common/convert/harev, evwn, a0, amu, emu, harwn, amass, atu
common/const4/xmin, xmax, nXpts,dx,ymin,ymax, nYpts, dy, npacket
common/pot/xypot {(nlpts, n2pts, 2)
common/mass/AM1, AM2,AM3, AMab, AMcxab, AJAcob

if (ipot .eq. 1) open(l,file='potlA.out’)
if (ipot .eq. 2) open{(l,file='potlB.out’)
do 20 iy=1,nYpts



do 10 ix=1,nXpts
xi=(xmin+ (ix-1) *dx)*a0/sqrt (AMab)
yi=(ymin+(iy-1)*dy)*a0/sqrt (AMab)
a=xypot (ix, iy, ipot) *harev
write(1l,930)xi,yi,a

930 format (£9.3,2x,£9.3,2x%,£15.6)
10 continue
20 continue
close(l)
return
end
graphicsy.f

This file suitable for compilation on computer system that has DISSPLA, and
GKS/NCAR graphics library, e.g. San Diego Cray YMP

Include automatic real time graphics (7/10/90)

Will graph the absolute wavepacket as a function of time on
top of the upper potential surface, and finally plot the
simulated photoelectron spectrum.

USE graph or wave keywords on the command line when invoking program.

If require wavepackets drawn first command line argument should
be "wave". If require only spectrum to be plotted then first
command line argument should be "“graph".

No command line arguments give no graphics!

Second argument determines graphical plot device.
Options are Computer Graphics Metafile (cgm), default or
tektronix 4014 terminal (tek).

LZ LR 2RSSR EER SRR RS ERRR R R R R RSt RS RR NSRS

subroutine argchk (igraph, iwdrw,arg)

IE SR RS R SRR SRR RSRR SRR RRRRERR Rt Rt RR R RRREED]
If require spectrum to be plotted then first
command line argument should be "graph".

No command line arguments give no graphics!
implicit integer(i-n)
implicit real*8(a-h,o-z)
character arg*70

OO0 QOO0 OO000000

nargs=iargc{)
if (nargs .gt. 0) then
call getarg(l,arq)
if (arg .eq. ‘graph’) igraph=1l
if (arg .eq. ’'wave’) then
igraph=1
iwdrw=1
endif
if (nargs .gt. 1) then
call getarg(2,arq)
else
arg="cgm’
endif
endif
return
end

AKX ARKXRKK KKK AKX KRXARNKRAARXTARXKARAKRKRINRNRAARAKRANAAAKRKAKRKRRK KKK Kk AN

subroutine wavdrw(zdat,t,rsnorm,Have)

AKEAKRKXKKAEKAKERLEAXRXTKARTKRKKRRNR KRR ARAAXNKRKRRXAKKRA AR RN KKK KK kN R R X * ko

(@}

REAL TIME GRAPHICS USING DISSPLA
THIS ADDITION REQUIRES DISSPLA 10.0 OR RIGHER AND GKSNCAR

OO0 0
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C LIBRARY AS ON SDSC Y/MP RUNNING UNICOS
c

implicit real (a=h,o0-2z)

implicit integer (i-n)

include "param.inc"

complex zdat (nlpts,n2pts)

CHARACTER*60 HEADER,HEADER1,HEADER2

CHARACTER*60 HYAX, HXAX

dimension absdat(nlpts,n2pts)
common/convert/harev, evwn, a0, amu, emu, harwn, amass, atu
COMMON/mycon/ipotfl

COMMON WORK (18000)

common/draw/HEADER

common/drawc/HXAX

common/drawb/HYAX
common/drawa/TLABHI, TAXHI, XAXIS, YAXIS
common/drawl/XsC, YSC, IMS, ZINCR, ZPLANE, 210, ZHI
common/draw2/pincr,pplane,potlo,pothi, ILABEL, THEIGHT
common/potmin/pmin, pmax,pot (nlpts, n2pts)
common/const4/xmin, xmax, nXpts,dx, ymin, ymax, nYpts, dy, npacket
common/mass/AM1, AM2, AM3, AMab, AMcxab, AJAcob

do 123 iy=1,n2pts
do 123 ix=1l,nlpts
absdat (ix, iy)=abs (zdat (ix, iy))
123 continue
iHav=int (Have*harwn/rsnorm)
XMINA=xmin*aO/sqrt (AMab)
XMAXA=xmax*al/sqrt (AMab)
YMINA=ymin*a0O/sqrt (AMab)
YMAXA=ymax*a0/sqrt (AMab)
ENCODE (24,13, HEADER]) t
13 FORMAT (' wavepacket t=’',£f6.1,’ fs.$')
ENCODE (43, 67, HEADER2) rsnorm, iHav
67 FORMAT(’ !psit!= ' ,£5.3,10x,'<(H)> = ’,i7," cm-1$')
IF (IMS .EQ. 1) THEN
RATIO=(YMINA-YMAXA) / (XMINA-XMAXA)
YAXIS=RATIO*XAXIS
ENDIF
CALL AREA2D (XAXIS, YAXIS)
CALL HEIGHT (TLABHI)
CALL HEADIN (HEADER, 100,1.3, 3)
CALL HEADIN (HEADER1,100,1.1,3)
CALL HEADIN (HEADER2,100,0.9,3)
CALL HEIGHT (TAXHI)
¢ Setup graph with origin at XMIN,YMIN and ticks at every XSC and YSC
CALL GRAF (XMINA, XSC, XMAXA, YMINA, YSC, YMAXA)

C SET CONTUR PARAMETERS
CALL BCOMON (18000)

if (pplane.eq.0) then
CALL ZBASE (PMIN)

else

CALL ZBASE (PPLANE)
endif

ipotfl=0

if (PINCR .eq. 0.0) then

CALL CONMAK(POT, nlpts,n2pts,’'SCALE')
else

CALL CONMAK(POT,nlpts,n2pts,pincr)
endif

CALL CONLIN (O, "MYCON’,’'NOLABELS’,1,10)
CALL CONMIN(6.0)

CALL CONANG (90.)

CALL HEIGHT (THEIGHT)

CALL CONTUR (1,'LABELS’,'DRAW’)
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C now plot the wavefunction ****kxkkxkkxx

CALL CONMIN(6.0)
CALL CONANG (90.)
CALL RESET(’'CONLIN’)
ipotfl=1
call reset(’zbase’)
if (zplane .ne. 0) then

call zbase(zplane)
endif
IF (ZINCR .eq. 0.0) THEN

CALL CONMAK (absdat,nlpts,n2pts,’SCALE’)
ELSE
CALL CONMAK (absdat,nlpts,n2pts, ZINCR)
ENDIF
CALL CONLIN (O0,’MYCON’,’NOLABELS’,2,10)
CALL HEIGHT (THEIGHT)
CALL CONTUR (1, 'LABELS’,’'DRAW’)
CALL ENDPL(0)
c CALL FLUSH(6)

RETURN
END

C XK AR KA A AR R A AR KA AN KA AN KA KRR ARAKRKRARA RN KA IR A AR KRRk Nk kR h hh kK

subroutine iniplt(arg,itime)
c e gk vk % ok o R %k ok T e ok v 3 v sk W ok sk W R K s ok W ok e ok e ke ok ke ke ok T ok kR ok sk sk ok g ok ke ok ok ok ke

implicit real (a=h,o-y)

implicit integer(i-n)

implicit complex(z)

character arg*70

include "param.inc"
common/convert/harev,evwn, a0, amu, emu, harwn, amass, atu
COMMON WORK (18000)

common/draw/HEADER

common/drawc/HXAX

common/drawb/HYAX
common/drawa/TLABHI, TAXHI , XAXIS, YAXIS
common/pot/xypot (nlpts,n2pts, 2)
common/potmin/pmin, pmax,pot (nlpts,n2pts)

if (itime .eq. 1) then
C Initialise device
if (arg.eq.’tek’)then
call tk4014(960,1)
else
if (arg.eq.’cgm’) then
call opngks
else
write (6, *)’arg=',arg,’'-Not valid graphics device., Exiting...’
stop
endif
endif
C SET AXIS PARAMETERS AND ALPHABETS

CALL RESET (’ALL’)
C SCRAP SUMMARY MESSAGES BUT DIRECT ERROR MESSAGES TO SCREEN
CALL SETDEV(6,0)
CALL PAGE (16.,14.)
CALL INTAXS
CALL BASALF ('L/CST’)
CALL MIXALF (’STAND')
CALL HEIGHT (TLABHI)
CALL YNAME (HYAX,100)
CALL XNAME (HXAX,100)
CALL YAXANG(O0.)
C Do some work on the potential array
endif
pmin=9.9%e36



pmax=-9.9e36
DO 100 J=1,n2pts
DO 50 I=1,nlpts
if (xypot{i,j,itime) .lt. pmin) pmin=xypot (i, j,itime)
if (xypot(i,j,itime) .gt. pmax) pmax=xypot(i,j,itime)
50 CONTINUE
DO 60 I=1,nlpts
pot (I,J)=xypot (i, j,itime) *harev
60 CONTINUE
100 CONTINUE

C Note currently being lazy here, should use an equivalence and save

C memory for the extra potential array; however this loop is vectorized!
RETURN
END

C XAk A AR kA R A A A AR A AN RN AR A RAT RN RE A AN AN N IR RRR KA RRANR KRR IR IR R AKX

subroutine inidrw{()

C LR EEE R AR LR R R AR RS R R R E RS R R R R R R R R R R R R R R R R R R EEEE R RN R
implicit real(a-h,o-z)
implicit integer(i-n)
CHARACTER*60 HEADER, HYAX, HXAX
common/draw/HEADER
common/drawc/HXAX
common/drawb/HYAX
common/drawa/TLABHI, TAXHI, XAXIS, YAXIS
common/drawl/XSC, YSC, IMS, ZINCR, ZPLANE, ZLO, ZHI
common/draw2/pincr,pplane,potlo,pothi, ILABEL, THEIGHT

C Read in parameters for plot from file

The remaining refer to optional labelling of both sets of contours
ILABEL - label all contours (l=yes)
THEIGHT - contour label height (in.)

C Parameters are HEADER - Title for system

c TLABHI ~ title label height (inches)

o HXAX - X axis label

c HYAX ~ y axis label

o} TAXHI ~ axes label height (in.)

C XAXIS - x axis length on plot (in.)

C YAXIS -y axis length on plot (in.)

c XsC - x axlis tick mark spacing

o Ysc - y axis tick mark spacing

c IMS - scale axes to be equal magnitude
c (overrides YAXIS value if set)

C The following four parameters refer to psi (wavepacket)

c 2INCR - contouring interval (0 automatic)
C ZPLANE - base contour level for contour generation
o ZL0 - lowest contour level to plot

c ZHI - highest contour level to plot

C The following four parameters refer to potential function

c PINCR - contouring interval (0 automatic)
C PPLANE - base contour level for contour generation
C POTLO - lowest contour level to plot

c POTHI - highest contour level to plot

c

C

c

OPEN(19,FILE='par.dat’,STATUS='0OLD")
READ (19, 124) HEADER
124 FORMAT (A60)
READ (19, *) TLABHI
READ (19, 9) HXAX
READ (19, 9) HYAX
9 format (a60)
READ (19, *) TAXHI
READ (19, *) XAXIS, YAXIS
READ (19, *) XSC, YSC, IMS
READ (19, *) ZINCR, ZPLANE, ZLO, ZHI
READ (19, *)pincr,pplane,potlo,pothi
READ (19, *) ILABEL, THEIGHT
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CLOSE (19)

WRITE (6, *) 'Read Drawing Parameters from file "par.dat"’
RETURN

END

C REA A A AR AR KRR KA AR KR KRR AR KRR AR A KRR AR AR AR AR AR R AR kA Ak A kkokk

SUBROUTINE MYCON (RARAY, IARAY)

c LB R ERES SRR RS R R R R R AR RRER SRR EXERS S
implicit real{a-h,o0-2z)
implicit integer(i-n)
COMMON/mycon/ipotfl
common/drawl/XSC, YSC, IMS, ZINCR, ZPLANE, ZLO, ZHI
common/draw2/pincr,pplane,potlo,pothi, ILABEL, THEIGHT
DIMENSION RARAY (1), IARAY (1)

C this routine determines levels that contour is plotted at.
C See DISSPLA documentation for more details

if (ipotfl .eq. 0) then
call dash
else
call reset(’dash’)
endif

IF (ipotfl .eq. 1) then
if ((RARAY (1) .GT. ZHI) .or.(RARAY(1l) .LT. ZLO)) then
IARAY (2)=0
IARAY (3) =0
IARAY (9) =0
else
IF (ILABEL .EQ. 1) THEN
RARAY (2)=1.0
IARAY (2)=1
ELSE
IARAY (2) =0
ENDIF
IARAY (1)=1
endif
ENDIF

IF (ipotfl .eg. 0) then
if ((RARAY(l) .GT.pothi) .or.(RARAY(l) .LT. potlo)) then
IARAY (2)=0
IARAY (3)=0
IARAY (9)=0
else
IF (ILABEL .EQ. 1) THEN
RARAY (2)=1.0
IARAY (2)=1
ELSE
IARAY (2)=0
ENDIF
IARAY (1)=1
endif
ENDIF

RETURN
END

C***t****ﬁ'*x*itt***tt*t*****Rt****'ﬂi*******‘kr****

subroutine absdrw(omega,Eprsq, jFT)
c (A AR ESERE R R RS ER RS R RS R R R R R R EEE R R R R R

C Draw the absorption spectrum after the run complete

C On the tek or cgm device that may or may not of have been opened
C for wavepakcets earlier!

c

implicit real (A-H,0-2)
implicit integer(i-n)




parameter (nFFT=8192)

dimension Eprsq(nFFT),omega (nFFT)
common/convert/harev, evwn, a0, amu, emu, harwn, amass, atu
common/const?7/ Espmin,domega, novsav, npktsav

C upper point on P.E. spectrum plotted is Espmin (in eV)

Espev=Espmin*harev

C use simple plot x-y primitive from DISSPLA

call HEIGHT(0.20)

call AREA2D(12.0,10.0)

call XNAME (’ (E)lectron (E)nergy / (eV)$’,100)

call YNAME ('’ (I)ntensity$’,100)

call HEADIN(’ (S)imulated (P)hotoelectron (S)pectrum$’,100,1.1,1)
call graf(0.0,0.2,EspeV,0.0,0.2,1.0)

call curve(omega,Eprsq, jFT, 0)

call endpl (0)

return

end

C AR AR AR AR AR A AR KRR A AR KA R RN R RN AR AR R AR KKK KRR K o kokdokeok %

subroutine iniplt2{argqg)

C *h AR A AR AR KA R KR E KRR AR A A RN AR AN AR A KRR RRA KKK AR KRR Kok &

implicit real (A-H,0-2)
implicit integer(i-n)
character arg*70

C Initialise device

O

[eXe]

if (arg.eq.’tek’)then
call tk4014(960,1)
else
if (arg.eq.’cgm’) then
call opngks
else
write(6,*)’Not valid graphics device. Exiting...’
stop
endif
endif
SET ALPHABETS

CALL RESET ('ALL’)
SCRAP SUMMARY MESSAGES BUT DIRECT ERROR MESSAGES TO SCREEN
CALL SETDEV(6,0)
CALL PAGE (l6.,14.)
CALL INTAXS
CALL BASALF ('L/CST’)
CALL MIXALF ('STAND’)
CALL COMPLX
return
end
LA R R EREEE RS R R R e R R R R R R R ]

subroutine pltfin
Kdkk kK Tk Kk KK KKKk KK KK KK kKKK Ak Rk Kk Rk KKk kok Kok ok okk ok k kow ok ok
Close up plotting device

call DONEPL ()

recurn

end
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