DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercia! product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

Reviews of Computing Technology:

Client-Server Technology (U)

WSRC-IM-90-83-1

September 1, 1990

Westinghouse Savannah River Company
P.O.Box 616

WSRC-IM--90-83-1

DE92 009964

Aiken, SC 29802 M AS‘I’ER

D ukse TIOT L

-,

)
L)L

SAVANNAH RIVER SITE

Reviews of Computing Technology:

Client-Server Technology (U)

by S. M. Johnson

WSRC-IM-90-83-1

September 1, 1990

Authorized Derivative Classifier

A7 Bhtre

G. F. Hayhoe

Westinghouse Savannah River Company
P.O.Box 616
Aiken, SC 29802

WSRC-IM-90-83-1 A Review of Clleni-Server Technology Rev. 0, 9/1/90
s S P

Table of Contents

llntmuction QlU‘..Q.I.I.l.l"..l'.....ll.l. 1

Client-ServerDefined 1
Types of Client-Server Applications 3
2DatabaseRequests 4 s e s e e e e e s e e et e e e e 5
Product Information, 6

3 CommunicationPipelines¢.¢cc0c00c0.. 9

IBMAPPC e 9
DECnetObjects - 10
The Berkeley (UNIX) Socket Abstraction1
4 RemoteProcedurescc00ceeeunnean 13
TheSunRPCModel 14
SRSRPCDevelopment 16
The Apollo (Hewlett-Packard) Network Computing System 17
5 Graphical UserInterface e e et e e ee. 19
XWindows 19
XasaStandard 0. 21
6 Conclusions e e e e e e e e 23

WSRC-IM-90-83-1 A Review of Cﬂont-!bnm Technology Rev.0,9/1/90
L O

0

1 | Introduction

One of the most frequently heard terms in the computer industry these days
is “client-server.” There is much misinformation available on the topic, and
competitive pressures on software vendors have led to a great deal of hype
with little in the way of supporting products. The purpose of this document is
to explain what is meant by client-server applications, why the Advanced
Technology and Architecture (ATA) section of the Information Resource Man-
agement (IRM) Department sees this emerging technology as key for com-
puter applications during the next ten years, and what ATA sees as the
existing standards and products available today. Because of the relative im-
maturity of existing client-server products, IRM is not yet guidelining any
specific client-server products, except those that are components of
guidelined data communications products (see WSRC-IM-90-81-1) or
database management systems (see WSRC-IM-90-81-2).

Client-Server Defined

The basic idea behind client-server technology is that, because users now
have intelligent workstations on their desktops, computer applications or in-
formation systems can be partitioned into two components. The client compo-
nent is software that runs on the desktop computer and handles interactions
between the application and the person using the system (the user interface).
This client software may also contain part of the application’s logic. However,
the client software must use a scervice component to complete the application.
This service component, or server, is software which runs on nnother com-
puter system and which communicates to the client via a computer network.
The notion of a server is a logical one; there may be several service tasks run-
ning on a general purpose machine. Often, the server computer is dedicated
to its service function. For example, a server may be a database management
system which accepts requests for data records from multiple clients and re-
turns the requested data to the clients or updates the database with client-
supplied data.

In general, client-server applications work in the following way (see Figure
1). The user starts the client program on his or her workstation. This soft-

Rev. 0, 9/1/90 A Review of Client-Server Technology WSRC-IM-90-83-1
m

ware interacts with the user, navigating through the program options and
getting information from the user regarding what is to be done. When the cli-
ent software needs information or processing steps which it cannot indepen-
dently satisfy, it uses the computer network to connect to a server program
on some other computer system. The client then requests the data or function
that the server satisfies. The person using the application is usually unaware
of the client-server interaction. Data which the client obtains from the server
is presented to the human user as if only the workstation were involved.

Database
Server
Software ' @
I Network
c— Client
Software
User
Interacts

Figure 1: A typical client-server application

Why would software vendors (and users) want to use this approach? After all,
it means that developers must produce more complicated applications for the
computer network, and at least two computer systems are involved in each
application. There are two basic reasons that the client-server approach is at-
tractive. First, because the user, the human operator, deals only with the cli-
ent software directly, the user can be given a powerful interface into the
application that is consistent with his or her view of the workstation. Thus,
the user must learn only one way of “dealing with the computer.”

A simple example of our current situation can make this benefit clearer.
Today, a user of the Apple Macintosh (or OS/2 Presentation Manager, NeXT,
or Sun OS) sees a consistent, state-of-the-art graphical user interface built
around windows on the screen and makes selections via a pointer or mouse. If
that same user wants to use electronic mail via ALL-IN-1 or check purchase
orders via the Procurement Cycle System (PCS), then he or she must use a
host computer terminal emulation product on the local workstation, use the

WSRC-IM-90-83-1 A Review of Cllent-Server Technology ‘Rev.0,9/1/90
m

network to connect to the appropriate host system, log in, and deal with the
host system on its terms. That is, the user must be able to navigate through
the menu options in ALL-IN-1 or PCS and know how to request functions.
Thus, the user must learn three different interfaces, the workstation’s native
interface along with the different interfaces of ALL-IN-1 and PCS.

How much easier for the user if the interface for all applications were the
same. In onr example above, the Macintosh user would have a Macintosh pro-
gram which would serve as a client into electronic mail. This client software
would have the same look and feel of any other Macintosh program but would
communicate mail messages with a host “mail server,” which in turn would
deliver the mail to other “clients.” Our user would get purchasing data much
the same way. From the Macintosh client interface, he or she would fill out a
form requesting purchase order data. The client software on the Macintosh
would communicate this request to a server process on the IBM mainframe
(where PCS data is kept) and return the requested data. The client software
on the Macintosh would display the data on the user’s screen. The user would
learn only one interface, the one native to the workstation. The interface
would become so familiar that necessary actions would often seem intuitive.

There is a second reason that client-server applications are becoming attrac-
tive. Since the user has a powerful desktop computer dedicated to his or her
use, the client portion of the application can utilize this power, and only the
server portion of the application needs to use a resource shared with others.
Because of this dedicated desktop power, the user interface can be more pow-
erful and more responsive than an interface tied to a remote host system.
Every application includes some functions that can be accomplished indepen-
dently on the desktop. For example, if there were an application in which
data stored in the database were a function of user input data, then the calcu-
lations to obtain this derived data could be accomplished on the workstation
and thus keep some work off the shared service computer.

Types of Client-Server Applications

There are many variations on client-server computing. Generally, though, cli-
ent-server functions can be categorized into four types:

o database requests

e communication pipelines

¢ remote procedures

o graphical user interface
Each of these is explained below. In the sections that follow, the various com-

mercial products which implement these types of client-servers are also de-
scribed. |

WSRC-IM-90-83-1 A Review of Cllent-Server Technology Rev.0,9/1/90
L. -]

‘2 Database Requests

A database server manages a computerized database and responds to re-
quests from clients to update the database or return data from the database
to the client. Sometimes, the database server runs on a dedicated machine, in-
deed may use specialized hardware optimized for database access. Often, how-
ever, the server is a process which runs on a general purpose computer
system. The server must be designed to respond to requests from multiple cli-
ents simultaneously. Client computers can be varied; all that is required is
that the client computer properly encode a request for data and be able to
communicate this request across the network to the server. In this case, we
say that the client computer shares common communications and data access
protocols with the server. Thus, for example, the database server could be a

_ process (and associated database management system) on an IBM mainframe
or departmental VAX/VMS system, while the clients could be 0S/2, UNIX,
Macintosh, or MS-DOS systems. The protocol or language for building client-
server database applications is called SQL (Structured Query Language).

SQL is an English-like query language that provides communications syntax
between the “front-end” application on the client and the “back-end” database
on the server. SQL is a vital application layer protocol for extending client-
server applications beyond a single vendor’s platform.

Both the American National Standards Institute (ANSI) and the Interna-
tional Organization for Standardization (ISO) are involved in developing SQL
as a standard for database connectivity between various hardware platforms.
SQL was developed by IBM at its San Jose, CA, research center in 1976.
While all SQL products conform to the ANSI standard, the addition of vendor-
specific features, or so-called extensions, could mitigate the promise of porta-
bility and interoperability. However, a group of SQL vendors have formed the
Open Access Group, which they hope will be a forum for agreement on SQL
implementation.

Many vendors sell database products advertised as SQL-compliant. All of
these products are designed around the same SQL standard, but to add flexi-
bility ard enhance performance, each vendor has added extensions to its prod-
ucts. A customer choosing to take advantage of the extensions will lose
portability across vendor platforms. A user deciding not to use the extensions
will sacrifice performance and flexibility. Unless portability is worth giving

.Y S
5

Rev. 0, 9/1/90 A Review of Cllent-$ srver Technology ' WSRC-IM-90-83-1 " B
S S T S

up performance and fiexibility, customers will certainly want to use the exten-
sions provided in the various vendors’ implementations. Standard or bare-
bones SQL provides commands for basic query, data manipulation, and
configuration of relational databases. The extensions are commands that let
the user take advantage of such special features of the server as advanced se-
curity or triggers. Some of the standard commands might have additional pa-
rameters beyond what is found in standard SQL. An example would be
adding index creation information to a CREATE TABLE command, so that both
the table and the index could be created in one command. With standard
SQL, this procedure would require two commands: a CREATE TABLE instruction
followed by a CREATE INDEX instruction.

These extensions all take advantage of features that improve the server and
make it different from and supposedly more powerful than its competitors. Ig-
noring the extensions often means giving up the features that make a particu-
lar product strong. The user who does so is left with a mediocre product, no
matter which one is chosen.

Most programmers will not write SQL statements directly but will use tools
which automatically generate SQL statements. These tools will take the form
of Fourth Generation Languages (4GLs) or Computer Aided Software Engi-
neering (CASE) software.

The current generation of client-server SQL database products allows a work-
rtation and a database server to share in the data manipulation chores in

arying degrees. Another phase of the client-server database evolution con-)
sists of distributed databases that allow a single front-end program to query L
‘a back-end database, which in turn queries other engines on other machines.
In such databases, data is stored in multiple servers on different types of com-
puters, and users have transparent access from their local applications. Sev- ;
eral manufacturers have released papers describing how this process would
work, but few actual products exist.

Product Information

There are a number of SQL database products on the market for machines
ranging from microcomputer-based servers to large mainframe systems.
Interoperability of these products is dependent on the extensions they make
to SQL and the network transport protocols they support. Micro-based SQL
database servers commonly support IBM’s NETBICS protocol or Novell’s IPX
protocol. These protocols were developed for IBM PCs and are only recently
being supported on larger machines. Minicomputer servers are more likely to
support TCP/IP than one of the PC protocols. TCP/IP is becoming the com-
mon link between different server products from micros to mainframes.

WSRC-IM-90-83-1 A Review of Client-Server Technology Rev. 0, 9/1/90

The following table lists some of the SQL databases with the most relevance
to the SRS computing environment and the operating systems and protocols
they support: ‘

SQL Database P_roc‘iucfs' .

Protocols Cperating Other
Supported Systems
Supported
DB2 SNA | IBM MVS Official SAA
: TCP/IP database
(June component
1990)
Oracle TCP/IP | IBM MVS, Supports
DECnet, UNIX, VAX wide range
IPX/SPX, VMS, DOS, of systems
Named 0S/2, Mac
Pipes (O]
OS/2 EE 1.2 APPC 0S/2Com- | Official SAA
Database Manager | NETBIOS munications | database
Manager component
Netware SQL IPX/SPX Advanced Industry
TCP/IP Netware 2.1X | leader for
osl PC LANs
‘Announced but not yet available . -

This technology is relatively new. Vendors are striving to develop products
with features that differentiate them trom their competitors. Interoperability
of these products with each other is not assured, 2nd indeed, today, one can
almost count on these products not interoperating with each other. Standards
development and product shake-out will improve this situation in the future,
but it will be a slow process. ATA will closely track developments in this area.

WSRC-IM-90-83-1 A Review of Cllent-Server Technology Rev. 0, 9/1/90
e e R .

3 Communication Pipelines

Remote procedure calls depend on ‘the establishment of a fixed set of proce-
dures that can be executed on a remote system by the clients. Often, an appli-
cation will require the cooperation of two computer systems where the
interaction is viewed as a conversation in which data is passed between the
two systems. This process is commonly referred to as task-to-task communica-
tions. Communications protocols allow the establishment of two unidirec-
tional data “pipelines.” Each systen: uses one of these pipelines to write

~ messages to the other system and reads messages from the other system from
its pipeline. In this way, a programmer can build an application by writing co-
operative codes that execute on two different systems at the same time.

IBM APPC

Advanced Program-to-Program Communication (APPC)is an IBM architec-
ture which enables programs on networked computers to exchange informa-
tion. APPC is designed for program-to-program, peer-to-peer communication
between both similar and dissimilar IBM machines. APPC is part of IBM’s
Systems Neiwork Architecture (SNA) as a particular type of Logical Unit
(LU), LU6.2, supr.rted by Physical Unit PU2.1. It is the key component of
IBM's Systems Applications Architecture (SAA). APPC’s pipelines are the
mechanism for achieving cooperative processing in the context of SAA.

LUs communicate over logical connections called sessions. When a program
wishes to communicate with another program, it asks the LU for temporary,
exclusive use of a session. Many programs may take turns using a single ses-
sion; thus, they are said to share a session serially, or to time-slice the ses-
sion. Each time-slice is called a conversation. The advantage of this approach
is that many conversations may be allocated and deallocated without estab-
lishing and tearing down multiple sessions, a time-consuming procedure. A
session is typically a long-term connection, while a conversation is usually
much shorter.

Conversations may be basic or mapped. Basic conversations allow transaction
programs to transfer data with only a 2 byte length prefix and are typically

L S S A
9

Rev. 0, 9/1/90 : A Review of Client-Server Technology WSRC:IM-90-83-1
m

used by SNA-defined service programs. They are more flexible than mapped
conversations but are more difficult to use. Mapped conversations put data
into a standard format for transmission and allow transformations called
maps to be performed on the datu. They are higher level than basic conversa-
tions and are generally used for user program-to-program communication.

DECnet Objects

A DECnet object is a DECnet application layer process with which the user
can connect over a logical link to perform general-purpose network services.
DECnet objects are accessed by name or number at the time the connection is
~ made. Once a connection is made to an object, a reliable bidirectional data
stream can be opened between the two machines. This data stream can main-
tain record boundaries or be an unformatted bit stream, depending on user re-
quirements. ‘

DECnet provides the capability of sending out-of-band data between the two
connected processes. Out-of-band data is data outside the normal data path
and is typically used for control functions. DECnet task-to-task communica-
tions are supported on IBM PCs, IBM mainframes, Sun and DEC UNIX, as
well as DEC VAX systems.

The ALL-IN-1 system at SRS contains a client-server application, VideoText
(VTX), which features DECnet objects (see Figure 2).

Server

Remote
Server

Figure 2: SRS VideoText system

10

L T e R WYHOW O Wi ST ;8CINOCTY KOV, v, ¥/ 1/

VideoText is a type of bulletin board service that gives users access to fre-
quently changing data of general interest, such as daily weather reports.
VideoText maintains a single database of ASCTI “pages” on a VAX/VMS sys-
tem which may be accessed by VideoText clients anywhere on the network.
On the same system with the database is a server process which reads the
database file and delivers VideoText pages to VideoText clients on request.
VideoText clients, called Terminal Control Programs (TCPs), make requests
for VideoText pages via DECnet objects. The pages requested are sent to the
TCP which displays them on users’ screens. Another process serves as an up-
date server. The VideoText page daiabase is remotely updated by clients
which communicate with the VideoText update server. The update server
writes new and changed pages into the database.

- The Berkeley (UNIX) Socket Abstraction

Both Sun RPC and NCS use .xtended versions of the Berkeley UNIX socket
abstraction for :.pplication-to-application communication.

Version 4.2 of the Berkeley UNIX kernel introduced the concept of sockets as
an interprocess communications mechanism. A socket is an erdpoint of com- -
munication referred to by a descriptor. A descriptor is treated programmati-
cally just like a file. Two processes can each create a socket, and then connect
those two endpoints to produce a reliable byte stream. Once connected, the de-
scriptors for the sockets can be read or written by priocesses. The transpar-
ency of sockets allows connection of the output of om*‘ process to the input of
anothzr process. In the case of remote procedure m 4, | t{hese processes may re-
side on different machines. A socket system call creatés the socket and re-
turns a descriptor. Each socket has a type that defines its communications
semantics; these include properties such as reliability, ordering, and preven-
tion of message duplication.

Each socket has a communications protocol associated with it. This protocol
provides the semantics required by the socket type. Applications may request
a specific yrotocol when creating a socket or may allow the system to select a
protocol that is appropriate for the type of socket being created.

While sockets were developed specifically for the Berkeley versions of UNIX,
the concept has been used in other, unrelated environments. Apple has imple-
mented sockets as an interface to their AppleTalk network protocol suite.

APPC, DECnet objects, and sockets are the most significant communications
pipelines available today. DECnet objects and APPC are important because
they are the cornerstones of their respective corporate architecture initia-
tives. Sockets are important because they are generally available for use with
TCP/IP implementations, and TCP/IP is the de facto standard for multi-ven-
dor network communications protocols. APPC and DECnet will continue to be
important communications pipeline architectures for some time because of

1

Rev. 0, 9/1/90 A Review of Client-Server Technology WSRC-IM-90-83-1
_“

their large bases of installed systems. They will both be available on several
platforms other than their native ones, but neither will ever be truly “open.”
Sockets are a much more open solution but will eventually be supplanted by
an OSI (Open Systems Interconnect—the open network protocol suite soon to
be required by the Federal Government) mechanism, as will APPC and
DECnet objects.

12

WSRC-IM-90-83-1 A Review of Cllent-Server Technology Rev. 0, 9/1/90

4 Remote Procedures

Client-server interactions can be established /0 let client software call for the
execution of procedures; you can think of these as remote subroutine calls
which run on a server system. The client must follow the appropriate calling
syntax required by the procedure, use network facilities to initiate the remote
procedure, and receive the results of the procedure. For example, a super-
computer has a procedure for inverting large matrices. Since the calculation
time on a personal workstation could be very long, the workstation software
uses standardized remote procedure-calling protocols, passes the input ma-
trix to the supercomputer server, and receives the inverted matrix back from
the server. As before, no restriction requires the client and server computers
to be the same type of system. One server can service many different clients if
they all share common communications and access protocols.

One complication in client-server interactions must be considered if clients
have a different computer architecture than servers. Data representations (es-
pecially floating point numbers) vary among the various computer manufac-
turers. Thus, if a client passes data to a server or receives data from a aerver, -
the client-server access protocol must specify data representation require-
ments or conventions.

Remote Procedure Call (RPC) from Sun Microsystems (upon which Sun'’s pop-
ular Network File System [NFS]is built) and Apollo/Hewlett-Packard’s Net-
work Computing System (NCS) are the only widely supported RPC
mechanisms available today. Both have been licensed and implemented on a
wide variety of platforms. Both of these products originated in UNIX environ-
ments; therefore, their greatest use is in UNIX shops. However, both proto-
cols have been licensed by both DEC and IBM for use in their proprietary
operating system environments. Sun and Apollo would each like their ap-
proach to be the de facto standard for remote procedure calls. At this time, it
is not clear which method will become the standard; NCS has a richer set of
features, but Sun RPC is more widely used. The choices made by the Open
Software Foundation and the IEEE POSIX (1003) committee will heip deter-
mine the eventual standard.

13

Rev. 0, 9/1/90 AReview of Clent-Server Tochnology . WSRC-IM-90-83-1

- The Sun RPC Model

The Sun RPC protocol utilizes the Berkeley socket model previously de-
scribed. Although Sun RPC is based on the socket model, it does not require
the programmer to be familiar with the details of socket operations. High-
level library functions are available for establishing and maintaining connec-
tions and for performing many other common functions.

It is necessary to define a number of terms to describe RPC. A server is a ma-
chine on which some number of network services are implemented. The ma-
chine need not be dedicated to providing remote services. It may be a general
purpose computer which also provides remote services, or it may be a work-
station. Services are collections of one or more remote programs. A remote
program implements one or more remote procedures. Network clients are
pieces of software that initiate remote procedure calls to services. Clients and
servers do not necessarily reside on different machines; the same machine
may implement client and server processes for different applications.

The remote procedure call model is similar to the local procedure call model
used every day by COBOL and FORTRAN programmers. In the local case,
the caller places arguments to a procedure in some well-specified place. It
then transfers control to the procedurc and eventually gains back control. At
that point, the results of the procedure are extracted from the well-specified
location, and the caller resumes execution.

The remote call is *milar, except that one thread of control winds through
two processes—the caller’s and the server’s. The caller sends a call message
to the server process and waits for a reply message. The call message con-
tains the procedure parameters and other information. The reply message
contains the results. Once the reply message is received, the results are ex-
tracted, and the caller’s execution is resumed. This flow of control is illus-
trated in Figure 3 on the following page.

14

WSRC-IM-90-83-1 A Review of Client-Server Technology Rev. 0, 9/1/90
_m

[
client service |
program process |
callrpc() |
Machine " function Machine
A B
| execute
| request
| call
! | service service
: : executes
| return
| answer
| request
| completed
|
i return :
reply L
program |
continues]
|
v

Figure 3: RPC fiow of control

On the server side, a process is dormant awaiting the arrival of a call mes-
sage. When one arrives, the server process extracts the procedure’s parame-
ters, computes the results, sends a reply message, and then awaits the next
call message. In this model, only one process is active at any given time. The
RPC protocol does not explicitly support multi-threading of caller or server
processes.

The RPC architecture is designed so that clients send a call message and wait
for servers to reply that the call succeeded. This design implies that clients do
not compute while servers are processing a call. Such an approach is ineffi-
cient if the client does not want or need an acknowledgment for every mes-
sage sent. A batching mechanism allows buffering of RPC calls when no data
is returned. '

Sun RPC uses the User Datagram Protocol (TJDP) of the TCP/IP protocol
suite by default. UDP does not guarantee reliable, in-order delivery of data. If
guaranteed and reliable data transport is required, TCP can be used as the
transport protocol. The TCP protocol ensures that the RPC data is transfered

15

Rev. 0, 9/1/90 A Review of Cllent-Server Technology WSRC-IM-90-83-1
A S S

in order and without error. Use of TCP for transport does require that the
user program at the socket level. RPC is only implemented on top of the
TCP/IP protocols, even though RPC could be implemented using datagram
and reliable duplex byte stream features of other protocol suites.

On Sun systems, RPC programs are written using the RPCGEN utility,
which is a compiler implementing the RPC language, which is similar to C.
The RPCGEN compiler produces C source code which includes stub versions
of client routines, a server skeleton, and external data representation (XDR)
filters. The client stubs interface with the RPC library and effectively hide
the network from their callers. The server stub similarly hides the network
from the server procedures that are to be linked with remote clients. The de-
veloper writes server procedures—in any language—and links them with the
server skeleton. To use a remote program, a programmer writes an ordinary
main program that makes local procedure calls to the client stubs produced
by RPCGEN. Linking this program to the RPCGEN-generated stubs pro-
dures an executable program.

RPC is one of the building blocks of Sun’s Network File System (NFS) which
has been ported to many different environments. RPC and NF'S are currently
available on many flavors of UNIX, VAX VMS, and IBM MVS operating sys-
tems. It is also available for the PC-DOS environment (PC-NFS). Neither
RPC or NFS is currently available for the Macintosh operating system. How-
ever, it is available for A/UX, Apple’s version of UNIX.

SRS RPC Development

The Scientific Computations Section in SRL has developed an application
which uses RPC as both a control executive and data transfer agent for a reac-
tor simulation model. The application, Nuclear Plant Analyzer, uses a simula-
tion code (TRAC) developed at Los Alamoe National Laboratory. This code
has been modified by adding less than 100 lines of code which allows it to be
controlled by an executive running on another machine. The control executive
is a SunView or XView (X Windows) client running on a Sun or Macintosh
UNIX workstation, while the simulator runs on the Cray XMP. Results of the
simulation are translated and sent back to the controlling workstation by pro-
cesses cooperating via RPC. The control code for the Nuclear Plant Analyzer
is written in a general style that could be easily adapted to other simulator
codes. This is an excellent example of how an application can be “distributed”
with only a small amount of code development.

16

WC-IM-?O-&-\ A Review of Client-Server Technolcgy Rev.0, 9/1/90

%
ok

The Apollo (Hewlett-Packard)
Network Computing System

Apollo’s Network Computing System (NCS) product includes three major com-
ponents: a remote procedure call (RPC) facility designed for portability and
network independence, a compiler that converts high-level interface descrip-
tions of remote procedures into portable C-language source code, and a set of
software tools that let applications determine at runtime which computers

~ can provide the services they require.

NCS is an open system written in C (source licenses are available from
Apollo) and based on standard protocols. To ensure network independence,
NCS uses the low-level datagram services available in most networking proto-
cols. Apollo implements NCS over UDP and their proprietary Domain DDS
protocol.

The NCS RPC uses the Berkeley socket abstraction for interprocess communi-
cation. Apollo extends the socket model with a user-mode subroutine library
to compensate for different network protocols and operating systems. The
RPC portion of NCS is very similar to that of Sun. It offers the same func-
tional ability to execute subroutines on other machines; the chief differences
are in implementation philosophy.

The NCS RPC runtime environment does its own error handling to ensure in-
dependence of network protocols. This environment also handles byte order
conversion and differences in floating point representation. The Apollo philos-
ophy, in contrast to Sun’s RPC, is that it is better to handle these issues than
to rely on the possibly different mechanisms provided by higher-level net-

work protocols. Apollo’s motivation for taking this approach was to make it
easier to implement NCS with different transport protocols (TCP/IP and Do-

- main DDS).

NCS programs are written using the Network Interface Description Lan-
guage (NIDL) which supports C and Pascal syntax. The NIDL compiler pro-
duces C source code, which is then compiled on the target machine. The
NIDL compiler is a pre-compiler which allows the programmer to operate at a
higher level for dealing with remote procedures. The NIDL compiler is very
similar to Sun’s RPCGEN utility.

The NIDL compiler supports three types of binding between the program and
its remote procedures: explicit binding, implicit binding, and automatic bind-
ing. In explicit binding, the NIDL specification states exactly which host to
use, and this host is always used when the application is run. In implicit bind-
ing, the client establishes the binding as a variable before making any remote
procedure calls. The application can query the location broker (explained
below) and establish the binding between local and remote routines. The local

17

Rev. 0, 9/1/90 A Review ot Client-Server Technoiogy WSRC-iM-90-83-1
R S

machine does not need to know which remote machine will execute the proce-
dure or even where the location broker is. Explicit and implicit binding are
also supported by the Sun RPC protocol.

Procedures that need to access different hosts at different times are handled
through automatic binding. Each time the procedure is invoked, the local rou-
tine makes a call to find the network address of the object to be accessed and
then makes the proper binding.

To eliminate the need for any network information within a routine, NCS can
match available services to clients’ needs through the location broker. The lo-
cation broker listens on the network for services to register their capabilities.
At runtime, client routines query the broker to determine which hosts to use
for particular RPC calls. This is an object-oriented approach, since RPC calls
are treated as operations on objects, not as calls to particular machines or
server processes. No network information needs to be included in the source
code.

Hewlett-Packard, IBM, DEC, and others have jointly proposed a version of
NCS called DECORUM to the Open Systems Foundation (OSF) as the stan-
dard RPC mechanism for their operating system, OSF/1. Because OSF is
widely supported, the choices it makes will essentially be de facto standards.

No work b.as been done with NCS at SRS to date.

.
1 2]

WSRC-IM-90-83-1 "A Review of Clleni-Server Technology Rev. 0, 9/1/90

5 Graphical User Interface

One particular style of client-server application allows application developers
to build applications where the program logic, data access capabilities, and
user interface are under the control of a host computer system, but the user
interface may be presented on any of several kinds of desktop computer. In
this case, the relationship of client and server computer is reversed from the
normal viewpoint. The desktop computer provides a “display server” for the
host-based application client. The major advantage of this approach is that
the control of the graphics display (the screen) and the interaction of the user
with input devices (keyboard, mouse, etc.) is dependent on the actual hard-
‘ware. If each desktop has a graphics server capability which will take generic
commands across the network from other systems, then the host application
can be used with a wide variety of devices without requiring display device de-
pendence in the application code. It is important to note that this is funda-
rmentally different from the way in which most proprietary graphical user
interfaces, such as Presentation Manager, are iraplemented. Presentation
Manager and the Macintosh operating system tightly couple the program
handling the user interface to the desktop machine.

X Windows

The predominant example of this technology is the X Window System, or X, a
network-transparent window system developed at MIT in 1984. Since then,
several versions have been developed, the most recent of which is X Version
11.4 (X11). X11 has been adopted as an industry-standard windowing system.
X is supported by a consortium of industry leaders such as DEC, Hewlett-
Packard, Sun, IBM, and AT&T that have united to direct, contribute to, and
fund the continuing development of X. Almost all workstation vendors have
accepted the X Window System as a standard interface for their workstation
hardware. In addition to the system software development directed by the
consortium, many independent developers are producing application software
for use with X.

The X Window System architecture is divided into two distinct parts (see Fig-
ure 4).

19

Rev. 0, 9/1/90 A Review of Clent-Server Technology WSRC-IM-90-83-1

Application
Mail
Pseudo TTY Application
Temminal Window
Emulation Manager X Toolkt
X Library X Ubrary X Library
Network X Notwork_Protocol __________
': X Server i
Device Library !

e 3
g Keyboard Screen i

Figure 4: The X Window System architecture

Display servers provide display capabilities and keep track of user input. Cli-
ents are application programs that perform specific tasks. This division
within the X architecture allows the clients and display server either to work
together on the same system or to be separated over a network. For axample,
a relatively low-powered PC or workstation (an Apple Macintosh or IBM
PS/2) might be used as a display server to interact with clients running on a
more powerful system (the Cray XMP/EA). Even though the client program is
actually running on the more powerful system, all user input and displayed
output occur on the PC or workstation server and are communicated across
the network using the X protocol.

It is important to remember that with X, the notions of client and server are
the reverse of those used in most client-server configurations. The server is at
the desktop, “serving” the display to clients who may reside on the same ma-
chine or across the network.

The X display server is a program that keeps track of all input coming from
input devices, such as the keyboard and mouse, and input from any clients
that are running. As the display server receives information from a client, it
updates the appropriate window on the display. The display server may run
on the same computer as a client or on an entirely different machine.

X allows a user to run many clients simultaneously. For example, the user
can run a database producing a pie-chart, display a menu of options, and run

WSRC-IM-90-83-1 A Review of Cllent-Server Technology Rev.0,9/1/90
“

a text-editing session. While these programs may display their results and
take input from a single display server, they may each run on a different com-
puter on the network. It is important to note that the same programs may
not look and act the same on different servers since there is no standard user
interface, because users can customize X clients differently on each server,
and because the display hardware on each server may be different.

A window manager is a client that allows the user to specify the sizes and po-
sitions of windows on the display. With window managers, the user can move
and resize windows, rearrange the order of windows in the window stack, cre-
ate additional windows, and convert wirdows into icons. Individual vendors
are creating their own window managesrs—for example, DECWindows from
DEC features Session Manager. :

X as a Standard

X Windows is often touted as the standard for user interfaces. That state-
ment is true as far as it goes. The X network protocol has become a de facto
industry standard for Graphical User Interfaces (GUI) at the workstation
and departmental computing level. At the PC level (IBM, Apple, NeXT), how-
ever, proprietary interfaces dominate. The standards issue for workstation in-
terfaces is a murky one because X Windows alone does not completely define
the user interface. In fact, X is purposely designed not to constrain the actual
look and feel of the interface. A GUI standard built on top of X Windows re-
quires two other parts: the programming toolkit used to develop client appli-
cations and the window manager. At least two competing organizations are
trying to promote their products as de facto GUI standards based on X Win-
dows: the Open Software Foundation Motif intorface (OSF/Motif) and Open
Look . Both of these products are based on X Windows and will interoperate
to a certain degree.

At present, it appears that OSF/Motif will be the dominant X-based GUI. The
major workstation vendors (except for SUN) are members of OSF and sup-
port OSF/Motif. DEC, IBM and HP/Apollo are expected to offer OSF/Motif as
the standard GUI for their workstations within the next two years. IBM re-
cently announced the RISC System/6000 series machines with OSF/Motif as
a standard interface. Motif implements the “look and feel” of IBM’s Presenta-
tion Manager (PM) window GUI. PM is a key component of IBM’s Systems
Application Architecture.

X Windows server-only implementations are available for the DOS and Mac-
intosh environments. The DOS implementation allows the DOS machine to
act as an X server only, while the Macintosh version allows concurrent opera-
tion of the Macintosh operating system and X Windows. X client applications
can share screen space with Macintosh windows and have the look and feel of
Macintosh operating system windows, or they can maintain a separate “vir-
tual” screen with a different look-and-feel (for example, Motif). Because DOS

2]

Rev. 0, 9/1/90 A Review of Cllent-Server Technology WSRC-IM-90-83-1
“

and the Macintosh operating system are not true multitasking operating sys-
tems, client applications must run on different machines. It is important to
note that X demands a large amount of memory which it allocates dynami-
cally. Problems may arise when physical memory limits are reached because
DOS and the Macintosh operating system do not support virtual memory.
Memory limit and allocation problems with X are not fundamental limita-
tions, however. X version 11, Release 4 (released January 1990) will address
some of the memory allocation issues for all machines. Meanwhile, Macin-
tosh System 7.0 will soon provide virtual memory for the Macintosh, and
08/2-based X servers will soon be available,

A new class of terminal input device, the X Windows terminal, has also been
created. An X terminal is a device that supports a bit-mapped display, key-
board, and mouse. It has no disk and has only a rudimentry operating sys-
tem typically contained in ROM. It allows enough user interaction to make a
connection to a remote computer and start an X client application. Once an
initial connection has been made, most user interaction will occur directly
with client applications located on computers across the network. As more
and more applications require bit-mapped display devices, X terminals will
probably take the place of the VT'100 alphanumeric terminal as the universal
user display device. Both DEC and IBM as well as several smaller vendors
offer an X terminal. These devices require a LAN interface (Ethernet or
Token Ring) and cost more than an alphanumeric terminal but about the
same as a low-end personal computer. X terminals will be subject to the same
memory limits as current personal computers but will probably perform X
functions better than personal computers in the same price range running X
Windows server software.

g
A WSRC-IM-90-83-1 A Review of Client-Server Technology Rev. 0,9/1/90

O A

6 Conclusions

The SRS computing environment consists of a variety of platforms running
both vendor and locally developed codes. Data often resides in different

places on different hardware architectures and operating systems. It is desir-
able to provide better quality assurance for this data and better utilize our di-
verse computing resources. ATA expects that client-server applications will
accomplish this goal by providing a relatively uniform user interface across
hardware platforms and famhtatmg efficient sharing of computing resources .
over LANSs. To do this will require intermachine communications of all of the
four types discussed here.

It is inevitable that client-server applications will proliferate as the trend to-
wards multi-machine computing environments continues. It is also clear that
large sites like SRS will have machines from two or more vendors which they
will want to mtemperabe smoothly and efficiently. The first step towards this
interoperation is the aelectmn of appropriate standards for support of the cli-
ent-server model.

At this point, no dominant standards have yet emerged in the four areas dis-
cussed. Various standards committees and the marketplace itself are working
to determine true standards in these areas. The functions provided by
database requests, communications pipelines, remote procedure calls, and
graphical user interfaces do overlap, and it is reasonable to assume that re-
mote procedure calls may absorb the communications pipeline function as a
subset of their capabilities.

SQL is certainly the standard for database access, but since most vendors
offer supersets of SQL functions, the standard is a weak one. Work to update
the SQI. standard to approach the level of function commonly provided by
database products is already in progress.

Communications pipelines can be supported by Sun RPC, Apollo NCS,
DECnet objects, or IBM APPC. DECnet objects and APPC will dominate sites
with large single-vendor commitments to DEC or IBM. Multi-vendor and
UNIX sites will settle on one of the remote procedure call methods. Sun RPC
is currently implemented on more platforms (primarily in support of NFS),
but NCS has a richer set of features and is gaining momentum. IBM’s choice
for connectivity with their RISC-based UNIX workstations will also have a

e]
2

| Rev.0,9/1/90 A Review of Clieni-Server Technology WSRC-IM-90-83-1
T —

bearing on the RPC standards. APPC will probably coexist with other ap-
proaches in mixed environments.

X Windows will be the standard upon which GUIs are based; Motif will domi-
nate at the workstation level, but proprietary interfaces will remain on the
desktop (Macintosh, PM, NeXTStep, etc). X will be able to coexist with propri-
etary GUIs because X Windows server software is available for those plat-
forms already.

ATA vrill continue to track client-server technology and standards. As those
standards mature and products that implement them are developed, ATA
will evaluate the products, conduct technology pilot programs using the prod-
ucts, and issue guidelines for those products that enhance the SRS computing
architecture.

DATE
" FILMED

- Mlat]aa

