skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Direct, Dynamic Measurement of Interfacial Area within Porous Media

Conference ·
OSTI ID:1013103

Standard models of two-phase flow in porous media have been shown to exhibit several shortcomings that might be partially overcome with a recently developed model based on thermodynamic principles (Hassanizadeh and Gray, 1990). This alternative two-phase flow model contains a set of new and non-standard parameters, including specific interfacial area. By incorporating interfacial area production, destruction, and propagation into functional relationships that describe the capillary pressure and saturation, a more physical model has been developed. Niessner and Hassanizadeh (2008) have examined this model numerically and have shown that the model captures saturation hysteresis with drainage/imbibition cycles. Several static experimental studies have been performed to examine the validity of this new thermodynamically based approach; these allow the determination of static parameters of the model. To date, no experimental studies have obtained information about the dynamic parameters required for the model. A new experimental porous flow cell has been constructed using stereolithography to study two-phase flow phenomena (Crandall et al. 2008). A novel image analysis tool was developed for an examination of the evolution of flow patterns during displacement experiments (Crandall et al. 2009). This analysis tool enables the direct quantification of interfacial area between fluids by matching known geometrical properties of the constructed flow cell with locations identified as interfaces from images of flowing fluids. Numerous images were obtained from two-phase experiments within the flow cell. The dynamic evolution of the fluid distribution and the fluid-fluid interface locations were determined by analyzing these images. In this paper, we give a brief introduction to the thermodynamically based two-phase flow model, review the properties of the stereolithography flow cell, and show how the image analysis procedure has been used to obtain dynamic parameters for the numerical model. These parameters include production/destruction of interfacial area as a function of saturation and capillary pressure. Our preliminary results for primary drainage in porous media show that the specific interfacial area increased linearly with increasing gas saturation until breakthrough of the displacing gas into the exit manifold occurred.

Research Organization:
National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). In-house Research
Sponsoring Organization:
USDOE Assistant Secretary for Fossil Energy (FE)
OSTI ID:
1013103
Report Number(s):
NETL-TPR2719; TRN: US1102405
Resource Relation:
Conference: 7th International Conference on Mutliphase Flow, ICMF 2010, Tampa, FL, USA, May 30-June 4, 2010
Country of Publication:
United States
Language:
English