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ABSTRACT

A formalism for obtaining the zero-temperature structure of mono-component solids

in the grand-canonical ensemble is developed. The new methodology, grand-canonical

simulated quenching, is validated by simulating systems initially containing a vacancy and

an interstitial. As a first application, the reconstruction of a high-angle twist grain

boundary in fcc Cu is investigated.

I INTRODUCTION

One of the purposes of many computer simulations is to calculate the equilibrium

structure and properties of a system of atoms that is characterized by a given set of

thermodynamic parameters. For example, in order to calculate the stress and energy of an

N-atom system at a given volume, V, and temperature, T, one would perform a simulation

in the isochoric-isotherraal canonical (NVT) ensemble. Similarly, in order to determine the

equilibrium number of atoms in a system held at a given volume, temperature and chemical

potential, It, one would perform simulations in the isochoric-isothermal grand-canonical

(gVT) ensemble.

The variables N and g are thermodynamic conjugates as are V and the pressure, P.

Because simulations at constant volume and at constant pressure are almost equally easy to

perform, it would be reasonable to suppose that simulations at constant Ix, i.e., in the

grand-canonical ensemble (GCE), would not be significantly more difficult to perform than

simulations at constant N. This is not the case, however, because whereas V may change

in a continuous way, N is an integer, i.e., atoms must be added to and removed from a

physical system in integer numbers. For a gas or a dilute liquid this presents little problem

for simulation because the removal or addition of a single atom has relatively little effect on
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the total energy of the system. Indeed, there have been a number of grand-canonical

Monte-Carlo (GCMC) simulations of gases and dilute liquids. 1"3 As the density of the

system increases, however, due _ the presence of nearby atoms, the initial energy change

on removing or adding a single atom increases and the efficiency of GCMC simulations

decreases dramatically. In particular, attempts to insert an atom into dense systems usually

fail as there are not many voids into which the atom can go. The maximum density at

which GCMC simulations can be efficiently performed has been increased somewhat by

using cavity-biased MC.4 Nevertheless, for liquids over a wide range of density and for

solids, grand-canonical simulations are usually completely impractical.

Recently, to perform simulations in the GCE Cagin and Pettitt 5,6 have proposed

a variation of the molecular-dynamics (MD) method, in which the number of atoms is not

an integer. In their scheme, at any instant during the simulation there are N atoms which

evolve in the canonical ensemble and an additional fractional atom, the (N+l)th, which is

being added to, or removed from, the system. After this atom has been completely added

or removed, another atom insertion or deletion is attempted. They have shown that such a

scheme reproduces the statistical mechanics of the grand-canonical ensemble and have

validated it with a simulation of a dense liquid. 5,6

While an important breakthrough, there are drawbacks to this scheme. First, the

dynamical equations of motion (EOMs) place no bound on the fraction of the (N+l)th

atom. In particular the evolution of the EOMs could result in the fraction of the (N+l)th

atom becoming greater than one or less than zero. Thus, when the fraction of the atom

reaches one or zero it becomes necessary to interrupt the dynamical evolution of the system

and fix the fraction of the atom to one or zero respectively. Such an interruption of the

dynamics of the system corresponds to the application of an external force of unknown

magnitude. Second, the (N+ 1)th atom is treated in a qualitatively different way from the

other N atoms in the system. It would be more appealing, however, ff all atoms were

treated equivalently throughout the simulation and were subject to the same dynamics.

Moreover, such a scheme involving many simultaneous atom additions and removals might

have the practical advantages of both converging in fewer simulation steps and more readily

allowing collective effects involving coupled atom insertions and deletions.

In this paper, we present the first steps in a methodology that overcomes the above

limitations. In particular, we develop a formalism for determining the zero-temperature

structure of mono-component solids in the grand-canonical ensemble. In a canonical-
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ensemble simulation the fundamental object of the simulation is an atom, which has a time-

dependent position and momentum. Here, the fundamental object of the simulation is a

site, which has a time-dependent position and momentum, and to which an atom may be

attached. (A site may be considered to be merely a mathematical point in space and is to a

certain extent analogous to a Bravais-lattice site.) By choosing a suitable number of sites at

the be_nning of a simulation, a grand-canonical simulation can be performed with a fixed

number of sites but variable number of atoms. In the spirit of Cagin and Petdtt 5'6, a site is

allowed to be empty or occupied by one atom or any fraction in between, thereby allowing

the construction of an effective Lagrangian for the position and occupancy of the sites. The

equations of motion derived from this La_,angian can then used in a quenching simulation,

which may be considered to be the GCE analog of lattice statics. At each "time" step in the

quench, energy is removed from the kinetic degrees of freedom of the system until an

energy minimum is reached. We show that each site in the zero-temperature structures

obtained using this algorithm is either occupied by exactly one atom or is completely

empty. We shall refer to the scheme that generates these zero-temperature structures as

grand-canonical simulated quenching (GCSQ).

The rest of this paper is organized as follows. In the next Section we develop a

La£_anNan for simulations of solids in the grand-canonical ensemble. In Section 12Iwe

derive equations of motion from this Lagrangian and investigate their zero-temperature

solutions. The methodolo_myis validated in Section IV by using GCSQ to obtain the zero-

temperature structure of systems initially containing point defects. We then investigate, in

Section V, the structure of a high-angle twist grain boundary on the (110) plane of Cu (as

represented by a Lennard-Jones potential) using GCSQ. Section VI contains a brief

discussion and an outlook.

II FORMALISM FOR SIMULATIONS IN THE GRAND-CANONICAL

ENSEMBLE

The thermodynamic description of a system subject to a Kxed It, V, and T is Nven

by the grand-canonical ensemble. 7 Just as the internal energy, E, is the natural heat

function in the NVT ensemble, and the enthalpy, H = E + PV, is the natural heat function

in the NPT ensemble, the natural heat function, L, in the grand-canonical ([.tVT) ensemble

is

L = E- I.tY . (2.1)
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Because it was first introduced by Hill 7, L is known as the Hill energy.

In this paper, we confine our attention to mono-component systems, for which the

chemical potential is equal to the Gibbs free energy per atom which, at zero temperature and

pressure, is just the internal energy per particle. Thus, for a zero-temperature perfect

crystal L vanishes. By contrast, for an inhomogeneous system at zero temperature L>0.

Let us write down the Hill energy for a system of atoms in the (lxV_ ensemble

interacting via a pair potential, U(rij), with rij = I r i - rj I. (While here we consider a pair

potential for notational simplicity, the argument is quite general.) Equation 2.1 then
becomes

1N N

L- _ i_l__j=_lU(rij)__ - laN . (2.2)

In order to perform simulations in the grand-canonical ensemble, in principle all one now

has to do is to allow atom additions and deletions. However, as discussed in the

Introduction, while such simulations are practical for gases and dilute liquids, they are

impractical for dense fluids and solids.

To develop a formalism for the simulation of solids in the GCE, we make two

dep .a-!Xuresfrom canonical-ensemble simulation schemes for systems interacting via

continuous potentials.

(i) We consider a solid of mobile atoms as being formed from M mobile sites, which may

or may not be occupied. These sites may be considered to be merely mathematical points in

space, to which atoms can be attached. Thus, rather than describing a solid as an N-atom

system with atom i described by the six position and momentum coordinates (ri, Pi), the

solid will be described as a system of M sites (M>N), the ith site being described by its

position, r i, its momentum Pi and by the number of atoms at the site (the 'occupancy' of

the site).

(i.i) The occupancy of the each site is taken to be a time-dependent non-integer quantity; the
occupancy of the ith site is x i where 0 < xi <_1.
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By choosing an appropriate number of sites at the beginning of the simulation (i)

will allow us to perform simulations wit'_ a fixed number of sites but a variable number of

atoms. By allowing the occupancy of any site to be a fractional variable, changes in

occupancy may be made continuously with resultanfly small incremental changes in the

ener_-_yof the system. Moreover, since it is a continuous variable, equations of motion for

xi may be derived. The price that must be paid for this is, of course, that the occupancy of

any site is not necessarily an integer at all simulation steps. However, as will be shown

below, the above assumptions lead to zero-temperature structures in which there are no

fractionally occupied sites: at the end of a converged simulation, each site is either occupied

by exactly one atom or is empty.

The number of atoms in the solid, N, which is less than or equal to the number of

sites in the system, M, is given by:

M

N = _ xi . (2.3)
i=1

Here and in the follovAng, the time variation of most of time-dependent quantities is not

explicitly displayed. The grand-canonical heat function, L, by analogy with Eq. 2.2 is

1M M M

L= _ E E xi xj i_lXi (2.4)- i=1 j=.l U(rij) - la
j_l

While it is possible to perform Monte-Carlo simulations using the heat function in

Eq. 2.4, here we shall construct a Hamiltonian incorporating the potential energy function

in Eq. 2.4 and appropriate kinetic energy terms, thereby allowing us to generate equations

of motion for the positions, momenta and occupancies of the sites. Such dynamical

simulation are more convenient for this initial study because they allow us to easily test the

correctness of the algorithm by monitoring "energy" conservation.

First, however, we recall that in postulating fractional occupancy of sites, the

constraint 0 _<xi ___1V i was assumed. In general, it is not easy to handle such non-
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holonomic constraints. However, in this case the constraint is easily imposed by simply

making a change of variable from x to B, where

I
xi = _ (cos ei +I) . (2.5)

Here, although 8i is unbounded, Eq. 2.5 incorporates the constraint 0 <_xi <_.1. The choice

of change of variables in Eq. 2.5 is not unique but is motivated by close analogies, outlined

in the Appendix, between this model and the lattice-gas, Ising-spin and Heisenberg-spin

models.

A kinetic energ3, can be assigned to the sites, here all assumed to have mass m, and

is given by:

1 M.2

Tr =_m i=E1r i . (2.6)

To generate dynamics for the occupancy of the sites we write a _dnetic energy' function:

1 M 2

TO = 2 Q 1S"1_.= i , (2.7)

where Q is a fictional 'mass' parameter, with dimensions such that To has units of energy.

The magnitude of Q may be chosen so as to optimize the convergence of the simulation.

The total ener_, function for the system of M sites is, then,

E=I M{92 1 M 2 1 M M
- =_1 _1 (cos Oi+l)(cosOj+ 1)U(rij)2 Qi_l i +_mtr i +8i ji=l

.1#1
1 M

- _ I.t i_l(COS 0i + 1) , (2.8)

and the associated Hamiltonian is given by

................................................................................................... ...........................................................................................................................................iiii .........nil....................................................................................................
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1 M 2 1M 2 1MM

H - 2Q i_lTI i + 2mi?lP i + 8 i_l j=_l(C°Se i +l)(cos ej +1) U(rij )

1 M

- glx i=£1(cos ei + 1) , (2.9)

where rq is the conjugate momentum to 0i and Pi is the conjugate momentum to r i . Since

this Hamiltonian is not explicitly time dependent, H is a conserved quantity.

The Lagran_an, L, may be derived fronl the above Hamiltonian in the usual way:

M. 2 1 M 3.2 1M_/...= Q y_e i + _ m Y_ _ r lot- 8 _ (cos 0i + 1) (cos 0j + 1) U(rij)
i=l i=l 0t=1 i=l j=l.

M _ .'. ,.1

+'_ l'tiY_(c°s" =1 0i + 1).. (2.10)

In Eq. 2.10 the Cartesian components, riot, of the vectors ri are explicitly shown.

III EQUATIONS OF MOTION AND THEIR ZERO-TEMPERATURE SOLUTION

The Euler-Lagange equations may be used to derive the equations of motion for 0i

and r i from Eq. 2.10. They are:

-. 1 M u
Qe i=_ sine i 2 (cosej+I)U(rij)-_-sine i (3 la)

j=l ' "
j¢-i

I _ aU(rij)
m'riot =- g (cos ei + 1) (cos ej + 1)ar i-ot . (3.1b)i=1.

Conventional canonical-ensemble molecular dynamics may be recovered from Eqs. 3.1 a

and 3.1b by setting cos 0 i =1 (sin 0 i = 0), and hence xi = 1 for all i.

............................................................................................................................................................... _ .........................................lirl............
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Consider a calculation of the zero-temperature equilibrium structure of a system

whose evolution is described by Eqs. 3.1a and 3.lb. To do this we must find stationary

solutions with r i ---0and_)i=0. There are two stationary solutions to Eq. 3.1a. They are:

sin 0i = 0 , (3.2)

and

1 M

I.t _j= =1"_'(cos 0j +1) U(rij) , sin 0 i ¢ 0 . (3.3)

The first solution (Eq. 3.2) leads to two different physical situations. For cos 0 i =

+1 the ith site is occupied (xi=l). For cos 0i = -1 the ith site is unoccupied (xi=0). Notice

that these solutions are independent of j, i.e., the system may contain a mixture of occupied

and unoccupied sites. If all of the sites are unoccupied then there are no atoms in the

system. Trivially, this is an energy minimum with L---0. There is a second solution with

L---O,which corresponds to a perfect crystal. Depending on the initial choice of the number

of sites this will have only some, or all of the sites occupied.

Analysis of the second stationary solution is only a little more complicated. Recall

that the zero-temperature chemical potential is simply the zero-temperature perfect-crystal

cohesive energy per atom, U0. However, the right-hand side of Eq. 3.3 is the energy of

atom i. Thus, the only solution to Eq. 3.3 is if jth site is occupied by exactly one atom or is

empty such that all the occupied sited form a perfect-crystaI lattice.

The stationary solution of Eq. 3.1b must simultaneously be obtained. For xi ---0or

xj --0 Eq. 3.1b vanishes. For xi = 1 and xj=l, Eq. 3.1b yields:

M _U(rij )

j._.l = 0 , (3.4)aria

OCC.

i.e., the net force on each occupied site due to the other occupied sites is zero, which is the

usual equilibrium constraint on atom positions.

................................................................................ _ ................................................................. T_..................................._N......................IIlI..........F
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In summary, the above analysis shows that the zero-temperature stationary solution

to the equations of motion consists of N of the M sites being occupied by exactly one atom,

the remaining M-N sites being completely empty, and the force on each occupied site due to

its occupied neighbors being zero. Importantly, in the stationary state, there are no sites

occupied by only a fraction of an atom.

In Sec IV we shall validate the above methodology by performing grand-canonical

simulated quenches on a perfect crystal and a perfect crystal containing a single vacancy

and a single interstitial.

IV VALIDATION OF THE GCSQ METHOD: THE PERFECT CRYSTAL AND TIlE

CRYSTAL WITH POINT DEFECTS

In all of our simulations the atoms interact via a Lennard-Jones W.,renfial

parameterized to copper (e---0.167eV,_= 2.315A), shifted smoothly to zero and cut off8,9

between the fourth and fifth neighbor shells at 2.33_. The mass of the atoms is 63.5 ainu.

For this potential and these parameters the zero-temperature lattice constant, a, has the value

a = 3.616/_, and the cohesive energy per atom, U0, has the value U0 = -1.0378 eV. Recall

that the zero-temperature chemical potential is equal to the cohesive energy, i.e., l.t=-

1.0378 eV. The melting temperature for this potential is approximately 1200K. The

fictional mass, Q, associated with the occupancy degrees of freedom was chosen to be 262

ainu/_2. The effects of chanNng this this rather arbitrary value of Q were not investigated,

but should only effect the rate at which the simulation converges. In all the simulations the

'time' step was sufficiently small that in trial simulations in the p.VE ensemble, the Hill

energy for a system evolving with three-dimensionally periodic border conditions was

constant to six significant figures over simulations of a few thousand time steps, fin none

of our simulations do the dynamics correspond to any real-time evolution of the system but

are merely a technique for determining the zero-temperature structure.) In each of the

simulations described below, the grand-canonical simulated quench to zero temperature

was performed by removing a small fraction (0.125%) of the kinetic energy in the real-

space and occupancy-space degrees of freedom at every time step. As an alternative

method of energy removal one could add a phenomenolo_cal damping force to the

equations of motion (Eqs. 3. I a and 3.1 b). However, because we are only interested in the

final zero-temperature equilibrium state the exact method of removing energy from the

system is unimportant.

9
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IV.1 THE PERFECT CRYSTAL

The most basic test of the GCSQ scheme is to investigate the stability of the zero-

temperature perfect crystal. As an initial condition, we considered 108 sites arranged as an

fcc lattice, such that if each site were occupied by exactly one atom, a zero-temperature

perfect crystal would be formed. Each site was initially assigned a random real-space

velocity, such that the initial temperature of the sites was Tinit. Each site was also assigned

an initial occupancy of less than unity, chosen randomly from a sample with a mean of Xinit

and a standard deviation of 6init = 0.05. For the range of initial temperatures investigated,

OK <Tinit <300K, and for Xinit < 0.5, after a quench of 5000 time steps the total number

of atoms on the sites was found to be zero: each site was empty and L---0. For the same

range of initial temperatures, but for xinit >0.5, a similar quench produced a perfect

crystal of 108 occupied sites, again with L---0. These results are entirely consistent with the

analytic results of the previous section.

IV.2 THE OCTAHEDRAL INTERSTITIAL

A structure containing an octahedral interstitial was formed by adding to a perfect

crystal of 108 atoms an atom at the center of one of the cubic conventional unit cells. On

quenching with constant number of atoms (109), the system relaxed to form the dumbbell,

or [100] split, structure. 10

This relaxed structure was used as an input into the GCSQ scheme. The total

number of sites in the system was 109, each initially at the position of one of the atoms in

the relaxed structure. Initially each site had an occupancy a line less than one; thus the

initial total number of atoms was somewhat less than 109. Figure 1 shows the number of

atoms in the system and the Hill energy as a function of the number of simulation steps.

We see that the final state has exactly 108 atoms and L=0; i.e., it is a perfect crystal.

Notice that during the simulation the total number of atoms on the sites decreases

below 108. This is a kinetic effect and presumably more easily allows the expulsion of the

interstitial atom. An analysis of the trajectories of the system obtained in several different

simulation runs shows that the final 108-atom equilibrium structure can be obtained by

different paths. In some cases the atom initially at the octahedral site is expelled during the

10
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course of the simulation while, in others, a neighboring atom is expelled and the interstitial

atom moves into the void left by it.

IV.3 THE MONOVACANCY

A 107-atom system consisting of a perfect crystal with a single vacancy was relaxed

at zero temperature in the canonical ensemble. As a simple test of the stability of a

monovacancy, GCSQ was performed on this relaxed system with 108 sites. 107 of these

sites were placed at the relaxed atom positions and given occupancies close to 1; the 108th

site was placed at the position of the vacancy and given an occupancy close to 0. As

expected, GCSQ resulted in the occupancy of the vacant site increasing to one, thereby

forming a perfect crystal of 108 atoms.

Of course, this is a rather easy test to pass as the system is biased by placing an

atom at the vacant site. In a more general inhomogeneous solid (for example, one

containing a grain boundary, dislocation or a free surface) one would not know where the

addition or removal of an atom might lower the energy of the system. To consider such a

complicated system, it is necessary to have an algorithmic way of choosing the number and

location of _dditional sites. The Voronoi construction provides such a procedure. 9 The

Voronoi (or Wigner-Seitz) construction for an N atom system consists of generating N

space-tilting ceils, all points in the interior of a given ceil being closer to the atom at the

center of the ceil than to any other atom. The edges of the cells are thus lines equidistant

from two atoms; the vertices of the cells are points equidistant from three or more atoms.

Thus, the vertices of the Voronoi ceils are the centers of the largest unoccupied regions in

the system and make a natural choice fer the location of additional sites. Of course, in the

equilibrated system most, if not all, of these sites will be unoccupied.

For a perfect fcc crystal there are three times as man 5'distinct Voronoi vertices as

there are atoms; thus, for a perfect crystal of 108 atoms there are 324 vertices. Each vertex

is at an octahedral or a tetrahedral interstitial site. For a 108-atom system with a

monovacancy (i.e. a total of 107 atoms) there are 317 distinct Voronoi vertices. We

performed a simulation for a system consisting of 107+317 = 424 sites. Each of the 107

sites from the relaxed monovacancy structure was assigned Xinit= 0.90-&'-0.05. Each of the

317 sites generated from the Voronoi construction was assigned Xinit----0.0001.After

GCSQ, 316 of the 317 sites generated from the Voronoi construction had occupancy zero;

11
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the other site had an occupancy of one. Thus the final number of atoms in the 324 site

system was 108 and the system had L---O:i.e., a perfect crystal was formed.

V ZERO-TEMPERAq25RE STRUCTURE OF A HIGH-A.NGLE GRAIN

BOUNDARY

To illustrate the utility of this new methodology for investigating the zero-

temperature structure of a structurally more complex inhomogeneous system we consider a

high-angle twist grain boundary (GB) on a low-index plane of fcc Cu. As an initial model

geometry we choose a point-defect free GB derived from the coincident-site-lattice (CSL).

The (110) 0=31.59 ° (Y_27)GB studied here is obtained by rotating one perfect semi-crystal

relative to another by an angle of 31.59 ° about the (110) plane normal. It has a rectangular

planar repeat unit with an area which is Z,=27 that of the corresponding primitive planar

unit cell (Z,=I) on the (110) plane in a perfect single crystal. The system is oriented with

the planar normals along the z-axis and, consequently, the x-y plane is parallel to the GB

plane. Because of the presence of the interface, there is no periodicity in the z-direction.

However, in the x-y-plane, the structure is periodic.

The zero-temperature smacture and energ3' of this grain boundary have previously

been determined in the canonical ensemble by iterative energ3, minimization ("lattice

statics") using a ReNon I-ReNon 17scheme to simulate an isolated =-n'ainboundary. In this

scheme, the computational cell is periodic in the x-y plane, but the GB region is embedded

in the z-direction between two rigid block of atoms. 11-13 The simulation was performed

under zero-stress in the z direction. A substantial volume expansion at the grain boundary

was observed and the grain boundary energy was found to be 1052 m.l m -2. 14 For future

reference, this GB structure will be denoted the V-structure (for volume-relaxed structure).

A similar Re_o-ionI -ReNon II scheme was used for the GCSQ. As an initial

structure we chose the unrelaxed gain boundary with no volume expansion. Since this

boundary has a higher atomic density than that of the V-structure, it is expected that atoms

will be removed from, rather than added to, the system when the number of atoms is

allowed to vary. Therefore, the initial sites were arranged to be coincident with the

locations of the unrelaxed atoms. No additional sites were added. Further, because we

expect any reconstruction to take place very close to the grain boundary, initially all sites

except those in the two planes adjacent to the GB were given an occupancy close to unity.

12
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Atoms in the two planes adjacent to the interface were assigned occupancies with a mean of

Xinit and a standard deviation of Cqnit = 0.05. The lowest-energ3' configuration (desi_ated

here as the N-structure), obtained for Xinit=0.63, had energy 1019 rnJ m -2 which is 33 mJ

m "2 less than the of the V-structure. The 'temporal' evolution of the total number of atoms

in the system and the I--Iillenergy during the course of this simulation are shown in Fig. 2.

Of the 54 (2 x 27) atoms in the two planes adjacent to the grain boundary, 16 were

removed during the GCSQ. Lattice-statics simulations at zero stress in the z direction for

this N-structure resulted in a small volume contraction and a further reduction of the GB

energy to 992 mJ m"2 (the NV-structure) which is 60 mJ m -2 (or 6 percent) less than that

of the V-structure.

GCSQ was also performed in which the occupancy of the sites in the two planes of

atoms either side of the volume-unrelaxed GB structure were set to Xinit < 1. In other

simulations, extra sites were added at each of the vertices of the Voronoi cells near the GB.

In no case, for a variety of values of Xinit, was a configuration obtained with energy lower

than that of the system described above.

We now briefly compare the V-structure with the NW-smacture. A measure of the

density of a system containing a gain boundary is the volume excess per unit area, 8V/A,

of a system containing an interface over a perfect crystal with an equal number of atoms.

For the V-structure 8V/A = 0.179a, 14 for the NW-structure 8V/A=0.149a; i.e., the NW-

structure is substantially more dense in the interface reNon than the V-structure. That there

are also significant qualitative differences in the NV- and V-structures at the atomic level is

illustrated in Fig. 3, which shows edge-on views of the two gain boundaries. For clarity,

each individual atomic plane is denoted by a different symbol. In this projection, the V-

structure is symmetric about z=0 (the GB-plane) but has no atoms at the GB plane. It is

clear that the NV-structure is qualitatively different from the V-smacrure in that there is a

plane of atoms (denoted by crosses) at the GB-plane. The small asymmetry in this

structure arises from the dynamics ¢, the simulation: the absolute (lower) energy minimum

is probably symmetric.

VI DISCUSSION AND OUTLOOK

In this paper we have developed the method of grand-canonical simulated

quenching. The methodology was validated at zero temperature by considering simple

point-defected systems. Its general utility for calculating the structure of inhomogeneous

13
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systems was illustrated by considering the reconstruction of a point-defect free high-angle

twist grain boundary.

It remains an important open question as to whether the Lagrangian derived in Sec.

II and its associated equations of motion (Eqs. 3.1) reproduce the grand-canonical

ensemble at non-zero temperatures. The answer to that question does not, however, affect

the validity of GCSQ for the investigation of zero-temperature properties. At zero

temperature, the only requirement for a valid scheme is that the number and positions of

atoms in a solid be allowed to change such that the grand-canonical heat function is

minimized. The scheme described in this paper fulfills this criterion.

GCSQ need not be significantly more memory or CPU intensive than canonical-

ensemble molecular-dynamics (MD) simulations. In MD the system is characterized by the

6N atomic positions and momenta. In GCSQ the system is characterized by the 8M

degrees of freedom, 6M of which are associated with the positions and momenta of the

sites and 2M associated with the site occupancies and their conjugate momenta. Thus,

rather than having to integrate 3N equations, it is now necessary to integ'mte 4M equations

of motion. However, since in most simulations M need not be much larger than N the

computational penalty for allowing site occupancies to change can be quite small.

Moreover, as can be seen from Figm'es 1 and 2 runs of less than 10,000 steps are sufficient

to result in equilibration. This is to be compared with grand-canonical Monte-Carlo

simulations which, for even moderately dense liquids, very long runs are required because

most of the attempted atom insertions and deletions are not accepted. 15 Also the

simulations of liquids by Cag]n and Pettitt required runs of hundreds of thousands of

steps. 5,6

In the grain-boundary study we noted that the final state depends quite strongly on

the initial conditions. This, of course, arises because during a quench the system can easily

become trapped in a metastable minimum. Recently, Press and Teukolsky have developed

a methodology for performing simulated annealing with continuous (rather than discrete)

variables.16 We anticipate that simulated annealing of this type might resolve this problem

and allow the absolute energy minimum to be reached more easily.

Finally, a further important extension of the GCSQ method will be to multi-

component systems, which will enable the investigation of questions in areas of interracial

14
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chemistry such as dissimilar materials interfaces, epitaxy and segregation to grain-

boundaries.
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APPENDIX A: RELATION TO LATTICE GAS AND SPIN MODELS

In this brief Appendlz: we highlight some of the similarities between the model

discused here and more familiar lattice-gas and spin models.

To see the analogy between Eq. 2.4 and the lattice-gas (LG) model consider the

case in which U(rij) is a nearest-neighbor potential. If the positions of the sites axe periodic

in space and fixed in time, then:

t3

U(rij) = U(r_) = U0 (j a nearest neighbor of i)

= 0 (otherwise) . (A. 1)

If the occupancy of any site is required to be an integer, li, which can take the values 0 and

1 only then Eq. 2.4 may be rewritten as:

1 M M

L= _U 0i=Z1 _' 1ilj - _ i__Zlli , (A.2)

where 57 indicates a restricted sum over the nearest neighbors of i. Equation A.2 is the

lattice gas model 7.

As is well-known, 7 the LG model may be transformed to the equivalent magnetic problem

by making the transformation:

1 s(Z) (A.3)li =2+ i

S(_.)is7 the z component of the spin on the ith site and make take the values of'_.
where

For the ma_etic problem the Hamiltonian may be written as

1 M M 1 _z)+l M (_)+1L = _ U0 i_l j_l (s(z)+ _) (S _) - bt _ (S _) . (1.4)• i=l

16
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This may be rearranged (and variables changed) to obtain the Ising model:

M
1 M Ms(Z)s(Z) . n (z)

L - 2 J i=_lj__2"1 i j i=_lS i - E0 , (A.5)

w_°_o_=_0,_=_z-__n__0=1_0(-_-_)
The reason for the change of variables in Eq. 2.5 is now clear: a Heisenberg-type spin

model can be produced from an Ising-type model by making S_'_!into a continuous

/%

variable by defining:

s(z = 1) _cos0i ; (A.6)

i°_.l

1i = + (cos 0 i + 1) , (A.7)

which is Eq. 2.5.
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FIGURE CAPTIONS

Fig. 1 Number of atoms (N) and Hill energy per site (I2M) as a function

of the number of 'time' steps for a 109 site system initially

containing an octahedral interstitial. Notice that in the course of

the simulation the number of atoms dips below the 108 atoms in

the final perfect-crystal configuration. The Hill energy rapidly

converges to the perfect crystal value of L-----0.

Fig. 2 Number of atoms (N) and Hill energy per site _) as a function

of the number of time steps for a 648 site system initially

containing a (110) 0=31.59 ° (227) grain boundary. The non-zero

final value of the Hill energy of this N-structure corresponds to a

_'ain boundary energy of 1019 mJ m -2.

Fig. 3 Edge-on view of two relaxed structures of the (110) 0=31.59 °

(227) grain boundary. For clarity each atomic plane is denoted by

a different symbol.

(i) Grain boundary relaxed in the canonical ensemble under zero

stress in the z-direction (the V-structure). The energy of this

structure is 1052 mJ m-2.

(ii) Grain boundary structure generated using GCSQ and then
relaxed in the canonical ensemble under constant stress in the z-

direction (the NV-structure). The ener_ of this structure is 992

mJ m "2.
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