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SIMULATED QUENCHING IN THE GRAND-CANONICAL ENSEMBLE

S. R. Phillpot and J. M. Rickman*
Materials Science Division
Argonne National Laboratory
Argonne, IL 60439

ABSTRACT

A formalism for obtaining the zero-temperature structure of mono-component solids
in the grand-canonical ensemble is developed. The new methodology, grand-canonical
simulated quenching, is validated by simulating systems initially containing a vacancy and
an interstitial. As a first application, the reconstruction of a high-angle twist grain
boundary in fec Cu is investigated.

I INTRODUCTION

One of the purposes of many computer simulations is to calculate the equilibrium
structure and properties of a system of atoms that is characterized by a given set of
thermodynamic parameters. For example, in order to calculate the stress and energy of an
N-atom system at a given volume, V, and temperature, T, one would perform a simulation
in the isochoric-isothermal canonical (NVT) ensemble. Similarly, in order to determine the
equilibrium number of atoms in a system held at a given volume, temperature and chemical
potential, i, one would perform simulations in the isochoric-isothermal grand-canonical
(LVT) ensemble.

The variables N and [ are thermodynamic conjugates as are V and the pressure, P.
Because simulations at constant volume and at constant pressure are almost equally easy to
perform, it would be reasonable to suppose that simulations at constant [, i.e., in the
grand-canonical ensemble (GCE), would not be significantly more difficult to perform than
simulations at constant N. This is not the case, however, because whereas V may change
in a continuous way, N is an integer; i.e., atoms must be added to and removed from a
physical system in integer numbers. For a gas or a dilute liquid this presents little problem
for simulation because the removal or addition of a single atom has relatively little effect on

1




the total energy of the system. Indeed, there have been a number of grand-canonical
Monte-Carlo (GCMC) simulaticns of gases and dilute liquic{s.l‘3 As the density of the
system increases, however, due wo the presence of nearby atoms, the initial energy change
on removing or adding a single atom increases and the efficiency of GCMC simulations
decreases dramatically. In particular, attempts to insert an atom into dense systems usually
fail as there are not many voids into which the atom can go. The maximum density at
which GCMC simulations can be efficiently performed has been increased somewhat by
using cavity-biased MC.4 Nevertheless, for liquids over a wide range of density and for
solids, grand-canonical simulations are usually completely impractical.

Recently, to perform simulations in the GCE Cagin and Pettitt 56 have proposed
a variation of the molecular-dynamics (MD) method, in which the number of atoms is not
an integer. In their scheme, at any instant during the simulation there are N atoms which
evolve in the canonical ensemble and an additional fractional atom, the (N+1)th, which is
being added to, or removed from, the system. After this atom has been completely added
or removed, another atom insertion or deletion is attempted. They have shown that such a
scheme reproduces the statistical mechanics of the grand-cancnical ensemble and have
validated it with a simulation of a dense liquid.s’6

While an important breakthrough, there are drawbacks to this scheme. First, the
dynamical equations of motion (EOMs) place no bound on the fraction of the (N+1)th
atom. In particular the evolution of the EOMs could result in the fraction of the (N+1)th
atom becoming greater than one or less than zero. Thus, when the fracton of the atom
reaches one or zero it becomes necessary to interrupt the dynamical evolution of the system
and fix the fraction of the atom to one or zero respectively. Such an interruption of the
dynamics of the system corresponds to the application of an external force of unknown
magnitude. Second, the (N+1)th atom is treated in a qualitatively different way from the
other N atoms in the system. It would be more appealing, however, if all atoms were
treated equivalently throughout the simulation and were subject to the same dynamics.
Moreover, such a scheme involving many simultaneous atom additions and removals might
have the practical advantages of both converging in fewer simulation steps and more readily
allowing collective effects involving coupled atom insertions and deletons.

In this paper, we present the first steps in a methodology that overcomes the above
limitations. In particular, we develop a formalism for determining the zero-temperature
structure of mono-component solids in the grand-canonical ensemble. In a canonical-
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ensemble simulation the fundamental object of the simulation is an atom, which has a time-
dependent position and momentum. Here, the fundamental object of the simulation is a
site, which has a time-dependent position and momentum, and to which an atom may be
attached. (A site may be considered to be merely a mathematical point in space and is to a
certain extent analogous to a Bravais-lattice site.) By choosing a suitable number of sites at
the beginning of a simulation, a grand-canonical simulation can be performed with a fixed
number of sites but variable number of atoms. In the spirit of Cagin and Pettitt>6, a site is
allowed to be empty or occupied by one atom or any fraction in between, thereby allowing
the construction of an effective Lagrangian for the position and occupancy of the sites. The
equations of motion derived from this Lagrangian can then used in a quenching simulation,
which may be considered to be the GCE analog of lattice statics. At each "time" step in the
quench, energy is removed from the kinetic degrees of freedom of the system until an
energy minimum is reached. We show that each site in the zero-temperature structures
obtained using this algorithm is either occupied by exactly one atom or is completely
empty. We shall refer to the scheme that generates these zero-temperature structures as
grand-canonical simulated quenching (GCSQ).

The rest of this paper is organized as follows. In the next Section we develop a
Lagrangian for simulations of solids in the grand-canonical ensemble. In Section III we
derive equations of motion from this Lagrangian and investigate their zero-temperature
solutions. The methodology is validated in Section IV by using GCSQ to obtain the zero-
temperature structure of systems initially containing point defects. We then investigate, in
Section V, the structure of a high-angle twist grain boundary on the (110) plane of Cu (as
represented by a Lennard-Jones potential) using GCSQ. Section VI contains a brief
discussion and an outlook.

II FORMALISM FOR SIMULATIONS IN THE GRAND-CANCNICAL
ENSEMBLE

The thermodynamic description of a system subject to a fixed y, V, and T is given
by the grand-canonical ensemble.” Just as the internal energy, E, is the natural heat
function in the NVT ensemble, and the enthalpy, H = E + PV, is the natural heat function
in the NPT ensemble, the natural heat function, L, in the grand-canonical (4VT) ensemble
is

L:E-HN . (21)




Because it was first introduced by Hill7, L is known as the Hill energy.

In this paper, we confine our attention to mono-component systems, for which the
chemical potential is equal to the Gibbs free energy per atom which, at zero temperature and
pressure, is just the internal energy per particle. Thus, for a zero-temperature perfect
crystal L vanishes. By contrast, for an inhomogeneous system at zero temperature L>0.

Let us write down the Hill energy for a system of atoms in the (WVT) ensemble
interacting via a pair potential, U(rjj), with rjj = I'rj - rjl. (While here we consider a pair
potential for notational simplicity, the argument is quite general.) Equation 2.1 then
becomes

™2
ki z

1
5.2 x UG - uN . 2.2)
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)

[

In order to perform simulations in the grand-canonical ensemble, in principle all one now
has to do is to allow atom additions and deletions. However, as discussed in the
Introduction, while such simulations are practical for gases and dilute liquids, they are
impractical for dense fluids and solids.

To develop a formalism for the simulation of solids in the GCE, we make two
departures from canonical-ensemble simulation schemes for systems interacting via
continuous potentials.

(i) We consider a solid of mobile atoms as being formed from M mobile sites, which may
or may not be occupied. These sites may be considered to be merely mathematical points in
space, to which atoms can be attached. Thus, rather than describing a solid as an N-atom
system with atom i described by the six position and momentum coordinates (rj, p;), the
solid will be described as a system of M sites (M>N), the ith site being described by its
positon, rj, its momentum pj and by the number of atoms at the site (the 'occupancy’ of
the site).

(i) The occupancy of the each site is taken to be a time-dependent non-integer quantity; the
occupancy of the ith siteis xj where 0 < x; <1.
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By choosing an appropriate number of sites at the beginning of the simulation (i)
will allow us to perform simulations witi a fixed number of sites but a variable number of
atoms. By allowing the occupancy of any site to be a fractional variable, changes in
occupancy may be made continuously with resultantly small incremental changes in the
energy of the system. Moreover, since it is a continuous variable, equations of motion for
xj may be derived. The price that must be paid for this is, of course, that the occupancy of
any site is not necessarily an integer at all simulation steps. However, as will be shown
below, the above assumptions lead to zero-temperature structures in which there are no
fractionally occupied sites: at the end of a converged simulation, each site is either occupied
by exactly one atom or is empty.

The number of atoms in the solid, N, which is less than or equal to the number of
sites in the system, M, is given by:

N= 5 x : (2.3)

Here and in the following, the time variation of most of time-dependent quantities is not
explicitly displayed. The grand-canonical heat function, L, by analogy with Eq. 2.2 is

M

M
2 2 X xju@) - M .ZIXi : (2.4)
1=

L=

N —

i=1j
J

M=

i3

While it is possible to perform Monte-Carlo simulations using the heat functon in
Eq. 2.4, here we shall construct a Hamiltonian incorporating the potential energy function
in Eq. 2.4 and appropriate kinetic energy terms, thereby allowing us to generate equations
of motion for the positdons, momenta and occupancies of the sites. Such dynamical
simulation are more convenient for this initial study because they allow us to easily test the
correctness of the algorithm by monitoring "energy" conservation.

First, however, we recall that in postulating fractional occupancy of sites, the
constraint 0 € xj; <1V iwas assumed. In general, it is not easy to handle such non-




holonomic constraints. However, in this case the constraint is easily imposed by simply
making a change of variable from x to 6, where

Xj = % (cos 6] +1) . (2.5)
Here, although 6; is unbounded, Eq. 2.5 incorporates the constraint O < x; < 1. The choice
of change of variables in Eq. 2.5 is not unique but is motivated by close analogies, outlined

in the Appendix, between this model and the lattice-gas, Ising-spin and Heisenberg-spin
models.

A Kinetic energy can be assigned to the sites, here all assumed to have mass m, and
is given by:

m

[
- e
[l )

(2.6)

N —

Tr=
1

To generate dynamics for the occupancy of the sites we write a kinetic energy' function:

z

Te=3Q 367 , 2.7

M%)

1

where Q is a fictional 'mass’ parameter, with dimensions such that Tg has units of energy.

The magnitude of Q may be chosen so as to optimize the convergence of the simulation.

The total energy function for the svstem of M sites is, then,

E=l Q%62+ myi2 +13 3 (cos 6 +1) (cos 6 + 1) Ut
2 Q201 Fam 2y t j=21 cos B+ 1) (cos 65+ 1) Ulry)
11

M
; cos 6; + 1) , (2.8)

NI'—‘

and the associated Hamiltonian is given by




g Mo, (M, 1 MM
=E1§1ni + Ei:lpl + _S—i:l j=1(_cos 6; + 1) (cos Gj +1)U(rij)
J#i
1 M
-5 H l=1(c:os 8j+1) , (2.9)

where 7t is the conjugate momentum to 6; and p; is the conjugate momentum torj . Since

this Hamiltonian is not explicitly time dependent, H is a conserved quantity.

The Lagrangian, L, may be derived fror: the above Hamiltonian in the usual way:

L lngéz 1 ]%4 %r2 12 z (cos 8; + 1) (cos 8 + 1) U(r;)

_1 2 1 1 . . "
J
. M o
+3H Z(COS B+ 1) . (2.10)

In Eq. 2.10 the Cartesian components, Tjq, of the vectors rj are explicitly shown

m EQUATIONS OF MOTION AND THEIR ZERO-TEMPERATURE SOLUTION

The Euler-Lagrange equations may be used to derive the equations of motion for 6;

and rj from Eq. 2.10. They are:

1 M B
Qei=z sin 6} Z (cos 6; +1) U(rjj) -5 sin , (3.1a)
J:
)i
. M
Mg = - % 2 (cos 8; + 1) (cos 9_]+1)———(—JZ . (3.1b)

Conventional canonical-ensemble molecular dynamics may be recovered from Egs. 3.1a
and 3.1b by setting cos 8 =1 (sin 6; = 0), and hence x; = 1 for all i.




Consider a calculation of the zero-temperature equilibrium structure of a system
whose evolution is described by Egs. 3.1a and 3.1b. To do this we must find stationary
solutions with T; =0 and 6; =0. There are two stationary solutions to Eq. 3.1a. They are:

sin@;=0 , (3.2
and

1 M .
p=3 jg'l(cos ej +1) U(rij) , sinB;#0 . (3.3)

The first solution (Eq. 3.2} leads to two different physical situations. For cos 6; =
+1 the ith site is occupied (xj=1). For cos 6; = -1 the ith site is unoccupied (x;=0). Notice
that these solutions are independent of j, i.e., the system may contain a mixture of occupied
and unoccupied sites. If all of the sites are unoccupied then there are no atoms in the
system. Trivially, this is an energy minimum with L=0. There is a second solution with
L=0, which corresponds to a perfect crystal. Depending on the initial choice of the number
of sites this will have only some, or all of the sites occupied.

Analysis of the second stationary solution is only a little more complicated. Recall
that the zero-temperature chemical potential is simply the zero-temperature perfect-crystal
cohesive energy per atom, Upy. However, the right-hand side of Eq. 3.3 is the energy of
atomi. Thus, the only solution to Eq. 3.3 is if jth site is occupied by exactly one atom or is
empty such that all the occupied sited form a perfect-crystal lattice.

The stationary solution of Eq. 3.1b must simultaneously be obtained. For x; =0 or
X =0 Eq. 3.1b vanishes. Forxj =1 and xj=1, Eq. 3.1b yields:

M U ;)
DY =
l:_l arla
JA

OcCcC.

0 , (3.4)

i.e., the net force on each occupied site due to the other occupied sites is zero, which is the
usual equilibrium constraint on atom positions.




In summary, the above analysis shows that the zero-temperature stationary solution
to the equations of motion consists of N of the M sites being occupied by exactly one atom,
the remaining M-N sites being completely empty, and the force on each occupied site due to
its occupied neighbors being zero. Importantly, in the stationary state, there are no sites
occupied by only a fraction of an atom.

In Sec IV we shall validate the above methodology by performing grand-canonical
simulated quenches on a perfect crystal and a perfect crystal containing a single vacancy
and a single interstitial.

v VALIDATION OF THE GCSQ METHOD: THE PERFECT CRYSTAL AND THE
CRYSTAL WITH POINT DEFECTS

In all of our simulations the atoms interact via a Lennard-Jones potential
parameterized to copper (€=0.167¢V,0= 2.315A), shifted smoothly to zero and cut off8:9
between the fourth and fifth neighbor shells at 2.336. The mass of the atoms is 63.5 amu.
For this potential and these parameters the zero-temperature lattice constant, a, has the value
a =3.616A, and the cohesive energy per atom, U, has the value Ug =-1.0378 eV. Recall
that the zero-temperature chemical potential is equal to the cohesive energy, i.e., L =-
1.0378 eV. The melting temperature for this potential is approximately 1200K. The
fictional mass, Q, associated with the occupancy degrees of freedom was chosen to be 262
amu A2, The effects of changing this this rather arbitrary value of Q were not investigated,
but should only effect the rate at which the simulation converges. In all the simulations the
'‘ime' step was sufficiently small that in trial simulations in the pVE ensemble, the Hill
energy for a system evolving with three-dimensionally periodic border conditons was
constant to six significant figures over simulations of a few thousand time steps. (In none
of our simulations do the dynamics correspond to any real-time evolution of the system but
are merely a technique for determining the zero-temperature structure.) In each of the
simulations described below, the grand-canonical simulated quench to zero temperature
was performed by removing a small fraction (0.125%) of the kinetic energy in the real-
space and occupancy-space degrees of freedom at every time step. As an alternative
method of energy removal one could add a phenomenological damping force to the
equations of motion (Eqgs. 3.1a and 3.1b). However, because we are only interested in the
final zero-temperature equilibrium state the exact method of removing energy from the
system is unimportant.




IV.1 THE PERFECT CRYSTAL

The most basic test of the GCSQ scheme is to investigate the stability of the zero-
temperature perfect crystal. As an initial condition, we considered 108 sites arranged as an
fcc lattice, such that if each site were occupied by exactly one atom, a zero-temperature
perfect crystal would be formed. Each site was initially assigned a random real-space
velocity, such that the initial temperature of the sites was Tjpi;. Each site was also assigned
an inidal occupancy of less than unity, chosen randomly from a sample with a mean of xjpit
and a standard deviation of Gjpj; = 0.05. For the range of initial temperatures investigated,
OK <Tjnit <300K, and for xjnj; < 0.5, after a quench of 5000 time steps the total number
of atoms on the sites was found to be zero: each site was empty and L=0. For the same
range of initial temperatures, but for xin;; >0.5, a similar quench produced a perfect
crystal of 108 occupied sites, again with L=0. These results are entirely consistent with the
analytic results of the previous section.

IV.2 THE OCTAHEDRAL INTERSTITIAL

A structure containing an octahedral interstitial was formed by adding to a perfect
crystal of 108 atomns an atom at the center of one of the cubic conventional unit cells. On
quenching with constant number of atoms (109), the system relaxed to form the dumbbell,
or [100] split, structure. 10

This relaxed structure was used as an input into the GCSQ scheme. The total
number of sites in the system was 109, each initially at the position of one of the atoms in
the relaxed structure. Initially each site had an occupancy a little less than one; thus the
initial total number of atoms was somewhat less than 109. Figure 1 shows the number of
atoms in the system and the Hill energy as a function of the number of simulation steps.
We see that the final state has exactly 108 atoms and L=0; i.e., it is a perfect crystal.

Notice that during the simulation the total number of atoms on the sites decreases
below 108. This is a kinetic effect and presumably more easily allows the expulsion of the
interstitial atom. An analysis of the trajectories of the system obtained in several different
simulation runs shows that the final 108-atom equilibrium structure can be obtained by
different paths. In some cases the atom initially at the octahedral site is expelled during the
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course of the simulation while, in others, a neighboring atom is expelled and the interstitial
atom moves into the void left by it.

IV.3 THE MONOVACANCY

A 107-atom system consisting of a perfect crystal with a single vacancy was relaxed
at zero temperature in the canonical ensemble. As a simple test of the stability of a
monovacancy, GCSQ was performed on this relaxed system with 108 sites. 107 of these
sites were placed at the relaxed atuom positons and given occupancies close to 1; the 108th
site was placed at the position of the vacancy and given an occupancy close to 0. As
expected, GCSQ resulted in the occupancy of the vacant site increasing to one, thereby
forming a perfect crystal of 108 atoms.

Of course, this is a rather easy test to pass as the system is biased by placing an
atom at the vacant site. In a more general inhomogeneous solid (for example, one
containing a grain boundary, dislocation or a free surface) one would not know where the
addition or removal of an atom might lower the energy of the system. To consider such a
complicated system, it is necessary to have an algorithmic way of choosing the number and
location of additional sites. The Voronoi construction provides such a procedure.9 The
Voronoi (or Wigner-Seitz) construction for an N atom system consists of generating N
space-filling cells, all points in the interior of a given cell being closer to the atom at the
center of the cell than to any other atom. The edges of the cells are thus lines equidistant
from two atoms; the vertices of the cells are points equidistant from three or more atoms.
Thus, the vertices of the Voronoi cells are the centers of the largest unoccupied regions in
the system and make a natural choice for the location of addidonal sites. Of course, in the
equilibrated system most, if not all, of these sites will be unoccupied.

For a perfect fcc crystal there are three times as many distinct Voronoi vertices as
there are atoms; thus, for a perfect crystal of 108 atoms there are 324 vertices. Each vertex
is at an octahedral or a tetrahedral interstitial site. For a 108-atom system with a
monovacancy (i.e. a total of 107 atoms) there are 317 distinct Voronoi vertices. We
performed a simulation for a system consisting of 107+317 = 424 sites. Each of the 107
sites from the relaxed monovacancy structure was assigned Xjpji= 0.9020.05. Each of the
317 sites generated from the Voronoi construction was assigned Xin;;=0.0001. After
GCSQ, 316 of the 317 sites generated from the Voronoi construction had occupancy zero;
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the other site had an occupancy of one. Thus the final number of atoms in the 324 site
system was 108 and the system had L=0: i.e., a perfect crystal was formed.

v ZERO-TEMPERATURE STRUCTURE OF A HIGH-ANGLE GRAIN
BOUNDARY

To illustrate the utility of this new methodology for investigating the zero-
temperature structure of a structurally more complex inhomogeneous system we consider a
high-angle twist grain boundary (GB) on a low-index plane of fcc Cu. As an initial model
geometry we choose a point-defect free GB derived from the coincident-site-lattice (CSL).
The (110) 6=31.59° (£27) GB studied here is obtained by rotating one perfect semi-crystal
relative to another by an angle of 31.59° about the (110) plane normal. It has a rectangular
planar repeat unit with an area which is =27 that of the corresponding primitive planar
unit cell (Z=1) on the (110) plane in a perfect single crystal. The system is oriented with
the planar normals along the z-axis and, consequently, the x-y plane is parallel to the GB
plane. Because of the presence of the interface, there is no periodicity in the z-direction.
However, in the x-y-plane, the structure is periodic.

The zero-temperature structure and energy of this grain boundary have previously
been determined in the canonical ensemble by iterative energy minimization ("lattice
statics") using a Region I-Region II scheme to simulate an isolated grain boundary. In this
scheme, the computational cell is periodic in the x-y plane, but the GB region is embedded
in the z-direction between two rigid block of atoms.!1-13 The simulation was performed
under zero-stress in the z directdon. A substantial volume expansion at the grain boundary
was observed and the grain boundary energy was found to be 1052 mJ m-2. 14 For future
reference, this GB structure will be denoted the V-structure (for volume-relaxed structure).

A similar Region I -Region II scheme was used for the GCSQ. As an initial
structure we chose the unrelaxed grain boundary with no volume expansion. Since this
boundary has a higher atomic density than that of the V-structure, it is expected that atoms
will be removed from, rather than added to, the system when the numbcr of atoms is
allowed to vary. Therefore, the initial sites were arranged to be coincident with the
locations of the unrelaxed atoms. No additional sites were added. Further, because we
expect any reconstruction to take place very close to the grain boundary, initially all sites
except those in the two planes adjacent to the GB were given an occupancy close to unity.
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Atoms in the two pianes adjacent to the interface were assigned occupancies with a mean of
Xinit and a standard deviation of Gjpj; = 0.05. The lowest-energy configuration (designated
here as the N-structure), obtained for x;p;;=0.63, had energy 1019 mJ m-2 which is 33 mJ
m-2 less than the of the V-structure. The ‘temporal’ evolution of the total number of atoms
in the system and the Hill energy during the course of this simulation are shown in Fig. 2.
Of the 54 (2 x 27) atoms in the two planes adjacent to the grain boundary, 16 were
removed during the GCSQ. Lattice-statics simulations at zero stress in the z direction for
this N-structure resulted in a small volume contraction and a further reduction of the GB
energy to 992 mJ m-2 (the NV-structure) which is 60 mJ m-2 (or 6 percent) less than that
of the V-structure.

GCSQ was also performed in which the occupancy of the sites in the two planes of
atoms either side of the volume-unrelaxed GB structure were set to Xjpj; < 1. In other
simulations, extra sites were added at each of the vertices of the Voronoi cells near the GB.
In no case, for a variety of values of xjpj;, was a configuration obtained with energy lower
than that of the system described above.

We now briefly compare the V-structure with the NV-structure. A measure of the
density of a system containing a grain boundary is the volume excess per unit area, §V/A,
of a system containing an interface over a perfect crystal with an equal number of atoms.
For the V-structure 6V/A = O.l79a,14 for the NV-structure 8V/A=0.149a; i.e., the NV-
structure is substantially more dense in the interface region than the V-structure. That there
are also significant qualitative differences in the NV- and V-structures at the atomic level is
illustrated in Fig. 3, which shows edge-on views of the two grain boundaries. For clarity,
each individual atomic plane is denoted by a different symbol. In this projection, the V-
structure is symmetric about z=0 (the GB-plane) but has no atoms at the GB plane. Itis
clear that the NV-structure is qualitatively different from the V-structure in that there is a
plane of atoms (denoted by crosses) at the GB-plane. The small asymmetry in this
structure arises from the dynamics o the simulation: the absolute (lower) energy minimum
is probably symmetric.

VI DISCUSSION AND OUTLOOK

In this paper we have developed the method of grand-canonical simulated
quenching. The methodology was validated at zero temperature by considering simple
point-defected systems. Its general utility for calculating the structure of inhomogeneous
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systems was illustrated by considering the reconstruction of a point-defect free high-angle
twist grain boundary.

It remains an important open questicn as to whether the Lagrangian derived in Sec.
II and its associated equations of motion (Egs. 3.1) reproduce the grand-canonical
ensemble at non-zero temperatures. The answer to that question does not, however, affect
the validity of GCSQ for the investigation of zero-temperature properties. At zero
temperature, the only requirement for a valid scheme is that the number and positions of
atoms in a solid be allowed to change such that the grand-canonical heat functon is
minimized. The scheme described in this paper fulfills this criterion.

GCSQ need not be significantly more memory or CPU intensive than canonical-
ensemble molecular-dynamics (MD) simulations. In MD the system is characterized by the
6N atomic positions and momenta. In GCSQ the system is characterized by the 8M
degrees of freedom, 6M of which are associated with the positions and momenta of the
sites and 2M associated with the site occupancies and their conjugate momenta. Thus,
rather than having to integmate 3N equations, it is now necessary to integrate 4M equations
of motion. However, since in most simulations M need not be much larger than N the
computational penalty for allowing site occupancies to change can be quite small.
Moreover, as can be seen from Figures 1 and 2 runs of less than 10,000 steps are sufficient
to result in equilibration. This is to be compared with grand-canonical Monte-Carlo
simulations which, for even moderately dense liquids, very long runs are required because
most of the attempted atom insertions and deletions are not accepte:cl.15 Also the

simulations of liquids by Cagin and Pettitt required runs of hundreds of thousands of
5,6
steps. =2

In the grain-boundary study we noted that the final state depends quite strongly on
the initial conditions. This, of course, arises because during a quench the system can easily
become trapped in a metastable minimum. Recently, Press and Teukolsky have developed
a methodology for performing simulated annealing with continuous (rather than discrete)
variables.1® We anticipate that simulated annealing of this type might resolve this problem
and allow the absolute energy minimum to be reached more easily.

Finally, a further important extension of the GCSQ method will be to mult-
component systems, which will enable the investigation of questions in areas of interfacial
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chemistry such as dissimilar materials interfaces, epitaxy and segregation to grain-
boundaries.
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APPENDIX A: RELATION TO LATTICE GAS AND SPIN MODELS

In this brief Appenai: we highlight some of the similarities between the model
discused here and more familiar lattce-gas and spin models.

To see the analogy between Eq. 2.4 and the lattice-gas (LG) model consider the
case in which U(rj)is a nearest-neighbor potential. If the positions of the sites are periodic

in space and fixed in time, then:

U(ru) U(r ) = U (j a nearest neighbor of i)
=0  (otherwise) . (A.1)

If the occupancy of any site is required to be an integer, }; which can take the values 0 and
1 only then Eq. 2.4 may be rewritten as:

- M M
L= 3U § ?lﬂj -uigﬁi , (A.2)

where Y indicates a restricted sum over the nearest neighbors of i. Equation A.2 is the
lattice gas model 7,

As is well-known, / the LG model may be transformed to the equivalent magnetic problem
by making the transformation:

=2+s® , (A3)

where S(iz )is the z component of the spin on the ith site and make take the values of '*_%

For the magnetic problem the Hamiltonian may be written as

(z) 1

5! kg <s(") L

L= onz 2(5(1) L
i=1 j=1
_]#l

) . (A.4)
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This may be rearranged (and variables changed) to obtain the Ising model:

MM M
1
L=31% % S(iz)s(f) - H .§S(iz) - Ep . (AS)
i=1 j=1 i=1
J#i
whcreJ=U0,H=-l—JZZ-pandE0=%No(_%-Z_- p).

The reason for the change of variables in Eq. 2.5 is now clear: a Heisenberg-type spin
model can be produced from an Ising-type model by making S(iz 2 into a continuous

variable by defining:
z) 1
S(i ) = 3 C0s 0 ; (A.6)
i.e.,
1
lj =% (cos 8; + 1) , (A7)

which is Eq. 2.5.
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Fig.1

Fig. 2

Fig. 3

FIGURE CAPTIONS

Number of atoms (N) and Hill energy per site (/M) as a function
of the number of 'time’ steps for a 109 site system initially
containing an octahedral interstitial. Notice that in the course of
the simulation the number of atoms dips below the 108 atoms in
the final perfect -crystal configuration. The Hill energy rapidly
converges to the perfect crystal value of L=0.

Number of atoms (N) and Hill energy per site (L/M) as a function
of the number of time steps for a 648 site system initially
containing a (110) 8=31.59° (£27) grain boundary. The non-zero
final value of the Hill energy of this N-structure corresponds to a
grain boundary energy of 1019 mJ m-2.

Edge-on view of two relaxed structures of the (110) 6=31.59°
(£27) grain boundary. For clarity each atomic plane is denoted by
a different symbol.

(1) Grain boundary relaxed in the canonical ensemble under zero
stress in the z-direction (the V-structure). The energy of this
structure is 1052 mJ m-2.

(ii) Grain boundary structure generated using GCSQ and then
relaxed in the canonical ensemble under constant stress in the z-
direction (the NV-structure). The energy of this structure is 992
mJ m-2.
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