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A SISAL CODE FO R  CO M PU TIN G  TH E FO U RIER TRAN SFORM  ON Sjy*

Jesus Novoa, Flor Sam nlguel and Jaim e Seguel 
Department of Mathematics, University of Puerto Rico at Mayaguez, PR 00681

Abstract
Non-abelian FFT’s appear in connection with the statistical analysis of ranked data. Fast algorithms 

for computing non-abelian FFTs that are based upon a generedization of common FFT techniques have 
been proposed. However, the presence in non-abelian FFTs of group representations makes the coding of a 
non-abelian FFT much more complex, in particular, no parallel or vector implementations can be natiurally 
derived by manipulating the non-abelian FFT mathematical formulas. In this paper, a SISAL code based 
on an almost direct translation of the mathematical expression of 2ui FFT on the symmetric group Sjf is 
presented. Especially useful features in SISAL in expressing the algorithm are ragged arrays and dynamic 
sized arrays.

1. Introduction. Throughout this work some standard concepts in algebra Euid linear algebra as well 
as some of their properties are used. Among them, perhaps the most important ones are the concepts of 
finite group and linear group representation. By a finite group we imderstand a finite set endowed with an 
operation under which the properties of clousure, associativity, existence of a unique identity and existence 
of a unique inverse for each element in the group are satisfied. A linear group representation of G  (or 
simply, a representation) is a map p defined on G and with values in a space of square matrices that satisfies 
PiOiSi) — pi9i)p{92) for all (/I, 52 in G. A representation is called reducible if there exist two representations 
Pi and p2 such that p{g) =  pi{g) 0  9 2 (9 ) for all 5 in G. Here $  denotes the direct sum of matrices. If such 
a pair of representations does not exist, then p is smd to be irreducible. A good account of the finite group 
representation theory can be found in Serre [12].

Let /  be a complex-valued function defined on a finite group G  eind let p be any complex irreducible 
representation of G. The discrete Fourier transform (DFT) of /  over G  with repect to p is the matrix

f(p) =  ^ f ( s ) p ( s ) ,  (1)
»6G

Any abelian group of order N  is isomorphic to Zff, the set of integers modulo N  endowed with addition 
modulo N . Furthermore, every irreducible representation of Zn  can be uniquely identified with an N-th  
root of unity; that is, an expression of the form where un  =  t =  and t  €  Zjf. Therefore,
formula (1) is a generalization of the better known

f i t )  =  ^ ' / ( a X t  =  0 , . . . . N - l ,  (2)
*=0

the so-called iV-point discrete Fourier transform.
Throughout this work G denotes a finite non-abelian group. Consequently, the operator defined by 

formula (1) is called non-abelian DFT of /  on G, while the one defined in (2) is called simply the abelian 
DFT o f / .

Motivated by its numerous applications a large class of fast algorithms, collectively known as fast Fourier 
transforms (FFT’s), have been designed for computing the abelian DFT of a complex function / .  Complete 
treatments of abelian FFT’s can be found in Aho et al. [Ij.

* This work was supported in part by NSF grant RII-8905080 and the Epscor II grant



The non-abeliaui DFT has only recently begun to attract attention. In works by Diaconis and Rockmore
[5] the need for efficient methods for spectral analysis in non-abelian groups appears in connection with the 
statistical analysis of ranked data. Spectral analysis in non-abelian groups is also utilized in the study of 
random walks on groups. As a consequence of these applications, the search for fast non-abelian Fourier 
transform algorithms (non-abelian FFT’s) has become an important research area for algorithm designers.

Recently, Rockmore [11] and Clausen [3] have proposed non-abelian FFT’s involving 0 (  |G| log |G|) 
arithmetic operations. These complexity bound estimates are similar to those obtained in the abelian case 
by Cooley and Tukey [4], Good [6], Winogrzui [13], Rader [10] and Bluestein [2]. These great savings in 
arithmetic operations are achieved by expressing the non-abelian DFT on G in terms of a sequence of non- 
abelian DFTs on a selected subgroup H  of G. This expression constitutes a basic splitting formula for 
a recurrence relation. The algorithm is obtained by iterating on this recurrence relation down a tower of 
subgroups of G.

Indeed, the mathematical principles behind abelian and non-abelian fast Fourier transform’s design eue 
essentially the same. In order to illustrate this assertion we show below some of the mathematical facts 
involved in obtaining the Cooley-Tukey algorithm for n =  12 and the non-abelian FFT on S3, the group of 
permutations on 3 elements.

Let /  be a complex map defined on Z 12 =  {0,..., 11}. Let us select the subgroup H  =  SZ4  =  {0 ,3 ,6 ,9}. 
Then, the classes of Z1 2 /H  are the sets H, l+ H  =  {1,4,7,10} and 2+H  =  {2 ,5 ,8 ,11}. The set JJ =  {0,1,2}, 
which is formed by taking one and only one element firom each of the sets H, 1 +  H  and 2 +  i f , is called a 
set of representatives. The restriction of /  to a +  i f  is denoted /«. Now, the 12-point abelian DFT can be 
written as

f i t )  =  M , )  =  ‘̂ ‘12 E  (3)
a£R

which is a basic splitting equation for the 12-point abelian FFT.
On the other hand, if /  is a complex map defined on G = 83 , and if 82 , the group of permutations of 

two elements is selected as a subgroup, then the classes in G /if  are the sets S2« (13)82 and (23)82. Here 
(a6) represents the permutation that interchanges the elements a and b and leaves the others alone. A set 
of representatives is i2 =  {1, (13), (23)}, where 1 stands for the identity map.

The group 83 possess three irreducible representations, two of them, the identity emd the ’’sign” repre­
sentation, are of order one. The other is a representation of order two. The values of this representation in 
seminormal Young form on the set of representatives are

= (^f !i%).
The non-abelian FFT is o b t^ ed  by means of the equations

/ w  =  (5)
agA *eB

where /„ denotes the restriction of /  to the class 082 .
The iterated use of these formulas on a tower of subgroups leads to the tree structure that characterizes 

FFT’s. However, when an irreducible representation of Sn is restricted to S n -i, the restriction can be 
expressed as the direct sum of irreducible representations of Sn-i- Theorem 1 of section 2 establishes the



relationship between the irreducible representation of 5n -i and the restriction of a representation of Sn to 
Sn-i- Furthermore, Diaconis and Rockmore [5] have shown that a represention given in Young seminormal 
form is obtained without changes in basis. Unfortunately, the mathematical similarities between abelian and 
non-abelian FFT’s are no longer valid when it comes to implementing non-abelian FFT’s on general purpose 
machines. Another difference between the abelian and non-abelian cases is the fact that while each n-th root 
of unity is just a complex number, inexpensive to generate and store, representations are square matrices of 
different sizes, very expensive to generate and store. Furthermore, in non-abelian FFT’s, some intermediate 
transforms might be stored in order to save arithmetic operations.

Generating the matrix representations of a non-abelian group is a highly complex task since only a 
few algorithms for computing the representations of the group generators are known and therefore, the 
matrix representations of the remaining elements must be computed by matrix copjugation. In this work, 
an algorithm for computing the seminormal Young representations is developed and used as a part of the 
non-abelian FFT code.

Unlike the abelian case, no standard parallel or vector versions of non-abelian FFT’s are known. Again, 
the mathematical analogies between abelian and non-abelian FFT’s cannot help in vectorizing or parallelizing 
non-abelian FFT’s. As can be easily seen from its tree, the abelian FFT possesses a very regular data flow. 
In particular, the amount of operations involved at each level of the abelian tree is always the same. This fact 
allows very natural modifications on the data flow for adapting the algorithm to vector pipeline processing 
(Korn et al.) [8] or to distributed memory multiprocessors (Pease) [9] . In the non-abelian FFT tree, 
however, the number of operations involved varies from one level to the other as the matrix representations 
change in size. Even on a fixed level, the number of operations vary &om one branch to another according 
to the different degrees of sparcity of the matrix representations involved. Therefore, the non-abelian FFT 
tree expresses neither a true potential psirallelism nor a potential vectorization. These facts have motivated 
the functioned approach to the computation of the DFT on Sjf that will be presented in the next section.

2. Program m ing an FFT on S y . The main steps involved in computing the discrete Fourier 
transform on Sn

STEP 1. Compute the seminormal Young representations of S n ,

STEP 2. Compute the DFT by the nested sequence of sums:

E />(«»)[ E  ••■tE(’(«i.)i E  (6)
« N = 1  • A r - x = l  i ii=l < € 5 k - i

If p decomposes over S t  in the form (p j S t)  =  pi ® . . .  © the equation (6) becomes 

JV JV-I k I fiN...ik{Pl) \
E  <<*<»)[ E  ■• £<<»•.) Ml- w

,„=i \  L . . aM J

As pointed out in the introduction, step 1 is by fsir more complex than step 2. The algorithm for 
generating all the matrices of the seminormal Young representation uses the fact that there exist a one to 
one correspondence between these representations and all the integer partitions of N . A partition of ^  is 
an r-tuple fi =  (p i, ...,Pr) such that N  =  N '  denote by p  ̂ the representation associated with the 
petition p. The precise form of p  ̂ can be obtained only after associating with p  a collection of tables called 
standard tables. In order to compute these tables, a diagram called the Ferre diagram, is associated with p. 
This diagram consists of N  nodes distributed over r rows. The x-th row contains pi nodes. The standard 
tables are obtained by filling the nodes in this diagram with numbers from 1 to iV, with no repetitions and



increasing &om left to right in each row and from top to bottom in each column.' For Instance, the standard 
tables for the partition n =  (2,2,1) of 5 sire j

1 4
Ti =  2 5 

3

1 3 
T2 =  2 5 

4
Ta

1 2
3 5
4

1 3 
T4 =  2 4 

5

1 2 
r s = 3  4.  

5

The standard tables associated with a partition of N  csm be ordered by the following rule: If N  appesus 
in T in the t-th row and N  appears in T* in the j-th row smd i <  j ,  then T  <  2^. If JV is in the same row in 
both tables, then the same rule is applied but with JV — 1 instead of JV.

The ajdal distance between x and y  with respect to the table Ti is defined to be

y) =  (c(*) -  c(y)) +  (r(y) -  r(a;)) (8)

For example, the axial distance between 2 and 3 in Ti is 1.

If (ik(jb + 1)) is the permutation in Sat that interchanges the positions k and t  + 1  and if T is a standard 
table associated with a psutition of JV, then {k{k +  1))T denotes the table resulting from interchanging k 
and i  +  1 in T.
Definition 1. The matrix representation of (k(k+l)) in the seminormal Young form associated with the 
partition is indexed by the standard tables and the tj-th entry, which we denote by i  +  1], is given 
by

. f, , i i f l  Ifib and jb +  1 are in the same row of Ti\
8'J > J ~  ^ if jt and ib +  1 are in the same column of Ti.

b) If ib and ib +  1 are neither in the same column nor in the same row of Ti, then

a«[ib,Jb +  l] . . .  a<j[ib,jb+l]\ /-d*(ib,ib +  l)-^  . . .  l - d * ( i , i b + l ) - 2 '̂

V 1 d*(k, fc +  1) y^Qtj,[fe,fc +  1] . . .  ajj[A:,fc+l]^

where j  > i  is such that (ib(jb +  1))2} =  Tj.

c) 0 in any other case.
La order to illustrate the above definitions juid procedures let us compute [a,-j(23)]. In Ti, 2 and 3 are 

in the same column. Hence a n (2 ,3) =  —1. In T2, 2 and 3 are neither in the same colunm nor the same row, 
and so <f^(2,3) =  —2 and (23)T3 =  T2. The calculations for T4 and Ts are the same. Hence,

0^(23) =

The following result, known as branching theorem, is useful in computing representations.
Theorem  1. Let p be an irreductible representation of Sn associated with the partition fi of n. Then p 
restricted to Sn~i splits into the direct sum of irreducible representations associated with the partitions p’ 
of n — 1 which can be obtained by deleting a single node from the diagram of /x in all permissible ways.

More information concerning representations of symmetric groups can be found in James [7].
In what follows, we give a more precise description of the proposed algortihm. We consider the compu­

tation of an FFT on 54 starting from the representations of S3 .

/ - I 0 0 0 0 \
0 1/2 3/4 0 0
0 1 - 1 /2 0 0
0 0 0 1/2 3/4

V 0 0 0 1 - 1 / 2 /



' f
Initial data: /
1. Partitions of 3: (3), (2,1) and (1,1,1).
2. Standard tables associated to these partitions:

(3) — 1 2  3

/ o n  1 3  , 1 2(2 , 1) — » 2 “ ^ ^ 3

(1 .1 .1 )
1
2
3

3. Matrix representations of Ss-

(3)
(2 , 1)

(1. 1. 1)

( 2 3 )

1

(12)

1

( f  % )  (V I) { I ;)
\ - 1 - 1

4. Pre-computed transforms on S3 : Since the index of 5s in 54 is 4, there are four transforms, namely / i ,  
f i ,  /a and f^. Their values are stored in the array:

A  A  A  A  
/  \

P3

Pin

/?(3,1) ^ (3 ,2 ) ^ (3 ,3 )  ^ (3 ,4 )

1̂11,2) 1̂11,3) P{in,A)}

where =  E .e s ,  /.(*)Pp(«)- 
Procedrire:
We first compute the partitions of 4. Then, for each partition, we compute the standard tables and matrix 
representation through the branching theorem and definition 1. For example, if /x =  (31) then, because of 
the branching theorem

P (31) i  53  =  P (2 l)  0  P{3)-  ( 1 0 )

The standard tables associted to (31) are obtsdned from the standard tables of (21) and (3) by adding a 
node with vedue 4 in the appropriated position.
Computing the matrix representation associted to (31) involves two steps:
Step 1. Compute p<»(34) through definition 1.
Step 2 . Compute Pp(Jt(i + 1 )), k =  1,2  through equation (10).
The matrix representations of the elements (t, 4) €  54 , t =  1,2 is obtained &om the above computed matrices 
through conjugation. In particular, (24) =  (23)(34)(23) and (14) =  (12)(24)(12).
Now, we use equation (7) to compute f{pjj), this amounts to computing



with fii =  1, fi2 =  (14), S 3 —  (24) and « 4  =  (34).

3. A  SISAL code. The procedure for computing the Fourier transform of a real valued function /  
over all irreducible representations of 5jv for JV >  3 can be summarized as follows:
(1) Calculate the transforms of /  restricted to S3 by means of the functions resl(/),res2 (/) and res3(/). 

The result of each of these functions is an array of real matrices.
(2) Associate a record with each partition of S3. The fields of each record contain the partition associated 

with the representation, the standard tables, the representation matrices for the elements (2 3), (1 2) 
and 1, and the array of restrictions obtained in (1).

(3) Using the function sninfo(N, / ) ,  make use of Definition 1, Theorem 1, and Equations (5) and (6) along 
with the information concerning 5m -i, to calculate for each m, 3 <  m <  JV and each partition of m, 
the tremsform of /  restricted to Sm- When execution of the loop with control variable m  terminates (
i.e., when m =  JV), the restric  field of each partition record will contain the Fourier transform of /  on 
the representation associated with the partition.
The above zJgorithm differs from those of Diaconis and Rockmore [5] in that it does not assume that 

the representations of Sjv have already been computed, but rather computes them iteratively beginning with 
representations of S3.

All of the functions of the Sisal program, too lengthy to give here, have been constructed in a very natural 
way &om the given definitions and theorems. Especially useful features of Sisal in expressing the algorithm 
axe ragged arrays, to represent the standard tables, and dynamic sized arrays, to represent collections of 
tables, partitions, and representations.

JUthough the use of aggregate structures has greatly enhanced the cljuity of and ease of coding a very 
complex algorithm (the Sisal code consists of 525 lines), it no doubt undermines efficiency. Work is currently 
under way to optimize the code for implementation on a Cray.
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ABSTRACT

We compare five solutions to the zero-one knapsack problem: D i­
vide and Conquer, Depth F irst with Bound, D ynam ic Programming, 
M em o Functions, and Branch and Bound. Our programs are written 
in Sisal and run on the CSIRAC II dataflow machine. Two of the al­
gorithms, Memo Functions and Branch and Bound, benefit from non 
deterministic extensions of Sisal, put and get. We introduce these 
extensions and compare the performance of the five algorithms using 
knapsacks of 20 and 40 objects. We measure the performance of our 
programs in Si: the number of instructions executed, Soo’ the criti­
cal path length, and x =  [Si/SooJ: the average parallelism. It turns 
out that the Branch and Bound algorithm performs best in terms of 
S i, especially for the harder test cases.



Just blow up the stack Jack 
Make a bad caU Paul 
Hit the wrong key Lee 
Set your pointers free

Just mess up the bus Gus 
Don’t need to tecurse much 

J ust listen to me

Kind of by Paul Simon 
Courtesy of the net

1 IN T R O D U C T IO N

The zero-one knapsack problem is defined as follows. Given n  objects with positive weights W,- and 
positive profits Pj, and a knapsack capacity M , determine a subset of the objects represented by a 
bit vector X  with elements x \  to such that

n n
" ^ X iW i  < M  and  ^ z ,P , -  m a x im a l
t=l X=1

We assume the objects to  be sorted by profit weight ratio, as solutions are often close to the greedy 
approximation: grab objects with a maximal profit weight ratio until the knapsack cannot be filled 
any further.

The knapsack problem gives rise to  a  search space of 2 " combinations of objects, which can 
be depicted as a binary tree, where the root represents an empty knapsack, and going from leveU 
in the tree to /eue/,+i represents either picking objecti (going left down) or not picking objecti 
(going right down). Given a partial solution (a choice for objects 1 .. i), a lower bound for the best 
total solution can be computed in linear time by adding objects with maximal profit weight ratio 
(i.e. objects i-|-l, i+ 2 , ...) until an object exceeds the knapsack capacity, while an upper bound 
can be computed by adding part of the object that exceeded the knapsack capacity, such that the 
knapsack is filled to capacity.

In this paper we compare five solutions to the zero-one knapsack problem: Divide and Con­
quer, Depth F irst with Bound, D ynam ic Programming, M em o Functions, and Branch and Bound, 
written in Sisal and run on the CSIRAC II dataflow machine. Two of these algorithms. Memo 
Functions and Branch and Bound, need non deterministic extensions of Sisal, put and get. We 
introduce these extensions. We compare the performance of the five algorithms using knapsacks of 
up to  40 objects. We measure the performance of our programs in Si: the number of instructions 
executed, Soo- the critical path length, and x  =  [5i/5ooJ: the average parallelism.

10



1.1 T H E  CSIR A C I I  DATAFLOW  M A C H IN E

The CSIRAC II dataflow computer [1], used in this study, is characterised by random allocation of 
workload at the node level as distinct from a code block or procedure level; generic node functions; 
strongly typed, variable length tokens; loop unravelling as weU as re-entrant code support using a 
single undiiferentiated colour tag combined with the ability to preserve temporal ordering of tokens 
without tag manipulation overheads, tokens on any given arc with the same colour being maintained 
in strict FIFO order; imbedded storage functions for local state information; heterogeneous streams; 
integrated input/output and error mechanisms. More recent refinements to the architecture have 
included the addition of vector and compound token types and extensions to matching functions 
for streams.

2 T H E A LG O R ITH M S

In the following programs W  denotes the array of weights, F  denotes the array of profits, M  the 
knapsack capacity, n the number of objects, i the level in the search tree, and cp the profit gathered 
at a particular point in the search tree.

2.1 D IV ID E  AN D C O N Q U ER

The Divide and Conquer solution to the knapsack problem is better seen as an executable specifi­
cation. Apart from checking whether the weight of an object exceeds the remaining capacity of the 
knapsack, the Divide and Conquer algorithm does not prune the search space. As the left-down 
and right-down searches are independent, this algorithm is highly parallel. But, as is often the case 
when there is abundant parallelism, a lot of unnecessary work is performed.

function knapdc(W,P: array[integer]; i,M,n: integer returns integer) 
if H < W[i] then 
if i<n then knap(W,P,i+l,M,n) else 0 end if 

else if i<n then
let 1 := knapdc(W,P,i+l,M-W[i],n)+P[i]; 

r := knapdc(W,P,i+l,M,n) 
in if 1 > r then 1 else r end if 
end let 

else P[i] end if 
end if 
end function

The main function initializes W , P , M  and n and caUs k n a p d c {W ,P ,l,M ,n ) .
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2.2 D E P T H  F IR S T  W IT H  BO U N D

The Depth First with Bound solution computes, in a certain point of the search space, the upper 
bound given the partial solution, and if this upper bound is less than the best solution found so 
far, the sub-tree under the partial solution is not further explored. This avoids large amounts of 
work, but causes the search to proceed depth first left to right, and consequently looses almost all 
parallelism in the algorithm. It also forces the search to go down the “greedy” path, which may not 
always be favourable. The Branch and Bound algorithm in section 2.6  deals with these problems. 
Note that, when going left down (taking objecti), tbe upperbound does not need to be recomputed 
as it does not change.

forward function knapb(W,P: array[integer]; i,cp,M,n,best: integer; returns integer)

function knap(W,P: array[integer]; i,cp,M,n: integer; returns integer) 
if (M<W[i]) then

if i<n then knapb(W,P,i+l,cp,M,n,cp) else cp end if 
else if i<n then

let 1 := knap(W,P,i+l,cp+P[i],M-W[i],n); 
r := knapb(W,P,i+l,cp,M,n,l) 

in max(l,r) 
end let 

else cp+P[i] 
end if 

end if
end function

function knapb(W,P: array[integer]; i,cp,M,n,best; integer; returns integer) 
let bound ;= 
for initial 
b := cp; cm := M; j := i 
repeat 
b,cm,j := 
if (old cm >= W[old j])
then old b + P[old j], old cm - W[old j], old j + 1 
else old b + (old cm * P[old j])/W[old j],0,n+l 
end if 

until j > n 
returns value of b 
end for
in if bound <= best then best else knap(W,P,i,cp,M,n) end if 
end let 

end function

The main, function initializes W , P , M  and n  and calls k n a p { W ,P ,l ,0 ,M ,n ) .
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2.3 D Y N A M IC  PR O G R A M M IN G

The dynamic programming solution to the knapsack problem combines solutions of sub-problems 
bottom-up, saving answers to sub-problems in a vector Vi. At stagci in the computation, Vi contains 
solutions to problems with knapsack capacity 0 to M using objects 1 to i only. An element of Vi 
can be expressed in terms of elements of vector Vi_i:

Vi[j] =  m ax(V i_ ,[j], P[{\ +  V i_ ,[j -  W[{]])

The term K - i b ]  represents the choice o f not taking objecti, the term P[i] +  V i^ i[ j — W[i]]  represents 
the choice of picking objecti.

function knapdp (W.P: arrayfinteger]; M,n: Integer returns integer) 
let FinalV := 
for initial 
i := 0; V := array.fill (O.M.O); 

repeat
i := old i + 1; Pi := Pfi]; Wi := W[i];
V ;= for vl in old V at j 

nv := if j >= Wi
then let v2 := old V[j-Wi] + Pi in max(vl,v2) end let 
else vl 
end if 

returns array of nv 
end for 

until i = n 
returns value of V 
end for 
in FinalVCM] 
end let 
end function

The main function initializes W ,  P,  M  and n and calls knapdp{W , P, M , n). The algorithm  
computes M * n  values, each value takes constant time to compute, so knapdp has an 5 i complexity 
of 0 ( M  + n). Also, this is the only algorithm with potential for vectorization.

2.4 TA G G ED  M EM O RY , LOCKS, and N O N  D E T E R M IN ISM

In a dataflow machine, asynchronous structure accessing is implemented using split-phase read and 
write operations and storage ceUs augmented with two tag bits; a presence bit P  and a defer bit D.
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READ ( cell: storage-cell returns number): 
if cell.P
then return cell.VAL 
else cell.D := True;

enqueue the READ request using cell.VAL as a pointer 
end if

WRITE ( cell: storage-cell, val: number): 
if cell.P then ERROR 
else if CELL.D

then honour ALL requests in the defer queue 
end if; 

cell.P := True; 
cell.VAL := val 
end if;

Until now we have been able to express our algorithms in standard Sisal. The implementa­
tions of the Memo Functions and Branch and Bound algorithms require non determinism and can 
therefore not be expressed in pure Sisal. We will use the side effecting operations put and get for 
this. The combination of put and get provides for light weight locks, using the presence and defer 
bits of tagged memory. Get reads a value from a storage cell and resets the presence bit, in other 
words, it reads and wipes out a value from storage. Put writes a value in a storage cell, in such 
a way that only one get can “get” it. If there are no deferred accesses, put just performs a write. 
If there are deferred accesses, put honours one request, leaves the ceU empty and the rest of the 
accesses deferred.

GET ( cell: storage-cell returns number): 
if cell.P
then cell.P := False; return cell.VAL 
else cell.D := True;

enqueue the GET request using cell.VAL as a pointer 
end if;

PUT ( cell: storage-cell, val: number ): 
if cell.P then ERROR 
else if cell.D

then honour ONE request in the defer queue 
else cell.P := True; cell.VAL := val 

end if;

The get and put functions are supported directly by the structure-read-and-reset (srr) and the 
structure store-write-read-once (srw) instructions of the CSIRAC II. These instructions have been 
used for some time in the runtime resource management library for CSIRAC II [l]. The following 
is the implementation of put and get in the intermediate code i2 [2] used in the Sisal to CSIRAC II 
compiler.
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define  get(index)->value;
begin

srr(index) -> value; 
end;

define  put(index, value)->acknowledge;
begin

srw(value index) -> pip_gate; 
pipCvalue pip_gate) -> acknowledge; 

end;

where pip stands for “pass if present” .

2.5 M EM O  FU N C T IO N S

The memo function solution to knapsack combines the divide-and-conquer and dynamic program­
ming methods. A table is maintained containing all sub-solutions. The table elements are initial­
ized to -1 to indicate that computation of the solution to the particular sub-problem has not been 
started.

function knapmCPad,W.P: array[integer]; i,M,n; integer returns integer) 
let Pos:=M*n+i; PP := get(Pad.Pos);

BP := if OldP *= -1 then PP 
else if M < W[i] then

if i<n then knapm(Pad,W,P,i+l,M,n) else 0 end if 
else if i<n then

let 1 := knapm(Pad,W,P,i+l,M-W[i],n)+P[i] ;
r ;= knapm(Pad,W,P,i+l,M,n) 

in max(l,r) 
end let 
else P[i] 
end if 

end if 
end if 

in put(Pad,Pos,BP) 
end let 
end function

The main function creates a table P ad  containing (M  -1- 1) * n elements initialized to -1. The 
semantics of put and get ensure that only one process at the time will get the value of a certain 
table element. H it is —1 the process will compute the solution to the particular sub-problem and 
put the solution back. If the element is not —1 , it has been computed, so the process puts it back 
in the table. Other processes needing this solution wiU be deferred until the solution is put back. 
As in the dynamic programming algorithm, the total amount of work is 0 { M  * n). 0 { M  * n) table
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elements are computed. As the number of non deferred processes going down from leveU  to leveli+\ 
is at most M , at most 0 { M  * n) processes can get deferred.

2.6 B R A N C H  A N D  BO U N D

The Branch and Bound algorithm exploits parallelism to implement branching, which means that 
the state space is searched breadth first. This avoids the drawbacks o f the depth first with bound 
algorithm. Notice the absence of explicit queueing in the algorithm. Sub-trees are cut by estimating 
the upperbound of a partial solution and comparing it to a shared variable GLow  containing the 
current best lower bound, maintained with puts and gets, ensuring that only one process can get 
GLow, use it and write an updated value back.

function knapbb (GLow, W, P: Vector; i, cp, M, n: integer returns integer) 
if i > n I M=0 then cp 
else
let L, U :=

for initial '/, compute lower and upper bound
cl ;= cp; cu := cp; cm := M; j := i

repeat
cl, cu, cm, j ;=

if old cm >= W[old j]
then old cl + PCold j ] ,  old cu + PCold jl,

old cm - WCold j ] , old j + 1
else old cl, old cu + ((old cm Pfold j]) / WCold jl), 

old cm, n+1 
end if 

until j > n
returns value of cl value of cu 
end for;

GL := get(GLow,l);
GB := put(GLow,l,max(GL,D); 
in
if U < GB 
then 0
else if M >= W[i]

then let 1 := knapbb(GLow, W, P, i+1, cp+PfiD, M-W[i], n); 
r := knapbb(GLow, W, P, i+1, cp, H, n) 

in if 1 > r then 1
else r end if

end let
else knap (GLow, W, P, i+1, cp, M, n) 
end if 

end if 
end let 

end if 
end function
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2.7 Make that six: FUNCTIONAL BRANCH AND BOUND

We can make the above Branch and Bound algorithm functional by going down the tree level by 
level using a forall construct, creating a set of “viable tasks” for the next level down, using the same 
lower and upperbound computation, but comparing this not to a global shared variable, but to  the 
best solution found in the previous level. A task is represented by two integers; a current profit 
and a capacity left, and a next level in the tree is therefore represented by two arrays of integers.

type Vector = array[integer];
function bstep( W, P, profits, capacities: Vector; i,n, best: integer 

returns integer,vector,vector) 
for pr in profits dot m in capacities 
Iwb, prfs, caps :=

if i > n then best, array vector [], array vector [] 
else let L, U :=

for initial '/. Greedy algorithm
cl := pr; cu := pr; cm := m; j := i 

repeat cl, cu, cm, j := 
if old cm >= WCold j]
then old cl + P[old j ] , old cu + P[old j ] , old cm - W[old j ] , old j + 1
else old cl, old cu + ((old cm * P[old j ] )  / Wfold j ] ) ,  old cm, n+1
end if 

until j > n
returns value of cl value of cu 
end for

in if U < best then best, eurray vector □  , array vector □  
else if m >= WCi]

then L, array vectorCl: pr+P[i],pr], axrayCl: m-W[i],m]
else L, array vectorCl: pr], arrayCl: m]

end if end if 
end let 

end if
returns value of greatest Iwb value of catenate prfs value of catenate caps 
end for 

end fiinction

function main (returns integer)
letn:=... ; W:= array[1: ... ]; P := array[1: ... ];

InitProfit := Array vectorClrO]; InitCap := Array vector[l:M]; 
in for initial profits := InitProfit; capacities := InitCap; i := 1 ; best := 0 

while i <= n repeat
best, profits, capacities := bstep(W,P,old profits,old capacities,old i,n, old best); 
i := old i + 1  
returns value of best 
end for 

end let
end function main
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n = 20 5i
Off Var M BB FBB DP MF DF
20 20 499 36325 47703 188329 485926 15089
20 16 432 212014 278080 163284 417389 38286
20 12 407 178552 225455 153944 378371 21781
20 8 384 142188 177388 145349 358291 103834
20 4 344 113578 141805 130394 194516 48186
40 20 819 87822 107098 307929 651997 11731
40 16 752 28089 37673 273544 584245 10027
40 12 727 28161 38007 273544 493647 9553
40 8 704 47822 64345 264949 384940 10358
40 4 64 55459 72243 264949 212993 10557

Table 1: Si for n =  20

n = 20 Soo TT

oir Var M BB FBB DP MF DF BB FBB DP MF DF
20 20 499 3412 4805 4053 823 1585 10 10 46 590 9
20 16 432 5458 15194 3517 819 5006 38 18 46 509 7
20 12 407 4123 10577 3328 819 2683 43 21 46 462 8
20 8 384 4132 9675 3154 819 11884 34 18 46 437 8
20 4 344 3900 8294 2845 821 5715 29 17 45 236 8
40 20 819 3521 5636 6528 815 992 25 19 47 800 12
40 16 752 3192 4117 6001 811 695 9 9 47 720 14
40 12 727 3320 4117 5800 811 470 8 9 47 609 20
40 8 704 3473 5317 5619 807 655 14 12 47 477 16
40 4 64 3444 5377 5305 821 661 16 13 47 259 16

Table 2 : 500 and tt for n =  20

3 EV A LU A TIO N

The knapsack problem instances are created by a C program with the following input pa­
rameters:

IT - number of candidate items
P - capacity of knapsack as percentage of total weights 
Off - minimal weight and profit of am object 
Var - varieuice in weight and profit of an object 
S - random number seed

Given these parameters, the program creates N  objects, with weights and profits randomly 
varying between Off&nd Off+Var. The arrays are sorted accordingh to highest profit to weight 
ratio. The Offa,nd P ar  parameters allow to vary the discrepancy between the objects with the
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n = 40 5i 5oo r
Off Var M BB DF BB DF BB DF
40 20 1585 85658 35859 10076 2009 9 18
40 16 1517 1086S12 15705956 22142 2505189 49 6
40 12 1440 987012 1221636 22561 223835 44 5
40 8 1391 1223943 435916 2I 8I 4 80978 56 5
40 4 1328 5528756 25377336 748OO 3663355 74 7

Table 3: 5 i ,  S^o and t t  for n =  40

highest and lowest profit weight ratio. W ith a smaU Off parameter and a large Var parameter it is 
possible to have a knapsack with “diamonds” and “bricks” at the same time.

We have run our programs for several knapsacks with 20 and 40 objects. The capacity of 
the knapsacks is always 80% of the total weight of the objects. Even for n =  20, the divide and 
conquer algorithm is unbearably inefficient, so we wiU not include its results in our tables. In the 
tables BB stands for Branch and Bound, FBB for functional Branch and Bound, DP for Dynamic 
Programming, MF for Memo Functions, and DF for Depth First with Bound. The winning value in 
a certain category is emphasized. For n =  20  we have used five knapsacks with an parameter of 
2 0 , and five with an parameter of 40 in table 1 and table 2, varying Var from 20  down to 4 with 
steps of 4. FBB is less efficient than BB for two reasons: the bound in FBB is not as good as in 
BB because it only takes points in the search space on a previous level into account, and FBB uses 
an expensive reduction operator: value of catenate. The case of O ff =  40 shows the dependence on 
capacity in the case of the Dynamic Programming and Memo Functions algorithms.

Notice that, in the case of n =  2 0 , the Depth First with Bound algorithm performs well in 
terms of total work, and that the Memo Functioiis algorithm exposes the most parallelism. For n 
=  40, the Functional Branch and Bound, Dynamic Programming and Memo Functions algorithms 
execute too many instructions to finish in a reasonable amount of t ime. The only algorithms that 
are efficient enough in terms of S\ are Branch and Bound and Depth First with Bound. Table 3 
shows the results for n =  40.

The trend seems to be that the harder the problem becomes, the better the Branch and 
Bound performs in terms of S i, even though it does not show too much parallelism.

4 C O N C LU SIO N

We have studied a number of algorithms solving the zero-one knapsack problem. These algorithms 
are written in Sisal and run on the CSIRAC II dataflow machine. Two of these algorithms use non 
deterministic extensions put and get, which allow for locking and updating of storage cells. One of 
these, the Branch and Bound algorithm, performs the best in terms of S i, for a number of our test
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cases. Also, the most parallel algorithm, the divide and conquer algorithm performs the worst in 
terms of .
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1. Introduction

The goal of this project is to develop a 
computer model in Sisal to simulate the movement 
of dislocations in metal-class materials undergoing 
high temperature deformation. The project 
expands previous work in simulating the 
movement of dislocations [1]. TTie new model will 
be able to handle more dislocations and eventually 
will model curved dislocation lines in three- 
dimensional space. It is hoped that this new 
model will be able to elucidate the mechanism by 
which Persistent Slip Bands (FSB’s) form. The 
decision to implement the model in Sisal was 
influenced by the Sisal Scientific Computing 
Initiative's offpr of fiee supercomputer time.

The model tracks the motion of the 
dislocations by solving a system of coupled 
ordinary differential equadons. The heart of our 
simulation then is the Runge-Kutta-Fehlberg 
integrator used to solve this system of equations. 
This process is expected to parallelize well because 
identical computations are used for each of the 
dislocations.

With the integrator recently completed and 
(Mtly preliminary results available, the main focus 
of this paper will be on our experiences with using 
Sisal to implement a preliminary project, the 
simulation of dislocation pileup formation. This 
simulation will be used to verify our results against 
previous simulations and the analytical results.

2. Theory

Hgure 1 shows our simulation of pileup 
formation, in which dislocations emitted by a 
Frank-Reed source on the left are obstructed by a 
sessile dislocation on the right

-*-0 -
obstade

As outlined in [2], the glide velocity of some 
dislocation y in a pileup of N dislocations is 
obtained by summing the tq)plied stress, the 
stresses exerted at J by the obstacle and by all the 
other dislocations in the pileup, then multiplying 
the resultant stress by a glide mobility Mg. 
Defining the x-axis parallel to the slip plane of the 
pileup the equations of motion of the dislocations 
are

(̂ y -Ĵ <)[(̂ y -■*<)"-{y j ->■<)']

ft) [(xv-*,r+G’y->’ir ]

s - i y j  ->>()[3(-*y - -* 1)" + 0 ’y - y / T ]

Figure 1. The pileup problem.

This simulation disallows climb, obviating 
equations of motion for the y-coordinates. In the 
atove equation. Mg and Me represent the glide 
and dimb mobilities, respectively. The 
summation in the equation of motion gives stress 
in units p/2n(l - v) where p. is the material's shear 
modulus and v is Poisson's ratio. The dislocation 
coordinates are in terms of b, the Burgers vector.

Below is an outline of the basic algorithm 
used in the preliminary pileup simulation:

Loop
Check Source Operation
Call RKF to calculate new 
positions

Call RHS to solve right-hand 
side of the ODEs

Check Sink Operation
Until (#_DNs_Sunk > Scuttle) or 

(count > stop)
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In the main loop we check to see if the stress on 
the source is positive, causing a new dislocation to 
be emitted. Then we solve the differential 
equations, 1̂  integrating the velocities, to 
calculate the new positions. Next, we remove any 
dislocations which have reached the sink. This 
entire process is repeated imtil a certain number of 
dislocations have reached the sink or a 
predetermined number of iterations has been 
completed. It should be noted that for the pileup 
problem no dislocations will be able to reach the 
sink because Me = 0.

3. Analysis of Sisal

3.1 How Sisal differs from traditional languages

While members of our team had extensive 
experience with other programming languages. 
Sisal was our first encounter with an applicative 
programming language. The central idea is 
function application rather than the assignment 
statement [3]. The applicative nature of Sisal 
require a slight shift in the thinking process ftom 
that used fcr traditional imperative programming 
languages. Some of the traditional practices and 
concepts no longer ^ply in Sisal. For instance, 
functions may not access global variables, 
everything must be passed in through the 
function's parameter list. Since the main 
operation is the triplication of a function on its 
parameter list all variables must go through the 
parameter list Of course, this is omsidered to be 
a good programming practice anyway, because it 
eliminates the chance for side-effects. This 
correlates with the mathematical definition of a 
function since a mathematical function does not 
rely on any hidden values and everything the 
fimction needs is passed in to it  In Sisal one must 
also abandon the traditional way of thiaking about 
variables as memory locations and start thinking 
of them as values. Again, we see that this takes 
us back to the true mathematical sense of the term 
variable, mily with the advrat of computers that 
we have equated the term variable with a storage 
location. As we now see this shift in thinking is 
<»ly required because our experience with 
traditional languages has caused us to stray away 
from true mathematical conventions.

3.2 Learning Sisal

Obviously, it was necessary for members cf 
our team to leam Sisal. Except for the differences 
mentioned above, we found that our previous 
programming experience helped to speed up the 
learning process. Sisal has a v a y  Pascal-like 
syntax, so those familiar with Pascal will have an 
even easier time learning Sisal. Our experience 
was that a person could master the basics in abmit 
a week or two. After a month a person could write 
programs using the full power of Sisal. Recent 
efforts by the developers at LLNL to expand the 
introductory documentation should further speed 
the learning process. In short, we found Sisal to 
be no more difficult to leam than the typical 
imperative language. When one considers that 
one is now writing programs which are inherently 
parallel, the ease of learning is quite impressive.

3.3 Sisal and Parallelism

As mentioned above. Sisal programs are 
capable of running in parallel. In fact, the 
compiler assumes that everything will be done in 
parallel, unless otherwise specified. Because our 
final model will require extaisive computations, 
we are, of course, interested in exploiting the 
inherently parallel nature of the problem. Sisal 
allows our team which has no previous experience 
with parallel conoputing to easily write parallel 
code. In a sense Ae parallelism is fiee b e ^ s e  it 
would require just as much or more effort to write 
our application in a traditional language.

'Wba.t about other automatic parallelizing 
compilers? Sisal's tqiplicative (almost functional) 
nature guarantees that there will be no side-effects. 
Non-functional automatic parallelizing compilers 
must be more conservative when searching fiir 
operations to be done in parallel.

With Sisal we do not have to concern 
ourselves with any of the details necessary to 
implonent the parallelism. We do not have to 
worry about enforcing mutual exclusion through 
the use of critical sections, monitors, or 
semaphores. Also, we do not have b) concern 
ourselves with synchronization since all of the 
details are taken care of by the compiler. By 
freeing us from these implmentation concerns. 
Sisal allows us to concentrate on the details of our 
application.
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3.4 Sisal is Portable

While many languages make this claim, it has 
been our experience that Sisal really lives up to 
this claim. We had a chance to test this when in 
the middle of our project the SGI machine we woe 
using developed operating system problems, 
forcing us to move to a Sun for awhile. All the 
Sisal code required to run was recompilation. 
Unfortunately, the same could not be said about 
our post processors written in C and FORTRAN. 
Even though our target platform is the Cray, 
Sisal's portability allows us to do all of our 
development and debugging on local workstations.

3.5 Peiformance

There is a popular misconception that all 
functional (and applicative) programming 
languages have poor performance. Statements like 
this are quite common, "However, the execution 
speed of functional programs on sequential 
hardware is typically several orders of magnitude 
slower than conventional programs . . . "  [4]. 
Studies have shown that Sisal is enable of 
producing code with similar performance to that 
code written in FORTRAN [5].

3.6 Problems we encountered with Sisal

Along the way we have oicountered a few 
minor problems or limitations with Sisal. Rrst, 
the lack of high coder functions in the current 
language specification made for voy a cluttered 
parameter list for our Runge-Kutta-Fehlberg 
solver. The solv^ must call another routine to 
solve the right-hand side (RHS) of the differential 
equations. Since this routine is called fircan within 
the solver, any constants or other infonnation 
needed by the ]^ S  routine must be passed through 
the solver. With high order functions one could 
just pass the function to solve the RHS into the 
solver, making fen- a cleaner parameter list and 
more general purpose solver because the name c£ 
the RHS function could be changed.

The other minor criticism is Sisal’s use of the 
FIBRE format fcH' all data input and ouqrut. Since 
the data generated by our model was to be post­
processed fcff graphical display, we had to first 
process the data out of FIBRE format and into a 
more suitable format for input into a graphics 
post-processor program. For many applications

FIBRE is fine, but we would like the ability alter 
the format if necessary.

3.7 TWINE Debugger

For the debugging process we found the 
TWINE debugger to be very useful. With Sisal the 
debugger plays a bigger role because one cannot 
just insert print statements to output intermediate 
results. The interface for TWINE is a little crude 
by today's standards, but it has oiough 
functionality to make it a valuable tool for 
debugging.

3.8 Code Examples

We found some of Sisal's uitique loop 
reductions to be very useful. The following section 
of code, from our RHS function, demonstrates an 
instance where we found the unless filter to be 
useful.

dy := for i in 1, Ne
TSigma_xy:= for j in 1, Ne

returns value of sum 
sigma_xy(X[i] - X[j], 

Y[i] - y [ j ] )  
u n l e s s  (i = j)

end for;
TSigma_xyl := TSigma_xy + sigma_xy( 

X[i] - Xo, Y[i] - Yo); 
Ydot := TSigma_xyl * Me 
returns array of Ydot 

end for;

Here we do not want to calculate the stress that a 
dislocation exerts on itself because it would lead to 
a division by zero error. This could have been 
done without the use of the unless filter, but with 
the filter it is very clear that we are omitting the 
case where i = j. It should be noted that the use of 
the filter sequentializes the inner loop; tiierefore, 
one would not want to use it fOT a loop that (me 
wishes to execute in parallel. So, this clarity is 
gained at the expense of speed.

3.9 Tips for programming in Sisal

We agree with the language's developers that 
the easiest way to write a Sisal program is to start 
fiom the mathematical foundations of the problem. 
As outlined above in Section 3.1, Sisal has close 
correspondence to mathematical equations. If cme 
wants to rewrite an existing application into Sisal 
we recommend going back to first principles.
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rather than trying to translate from the original 
language.

4 Conclusions

On the whole our experience with Sisal has 
been a positive one. Based on our experience, we 
would reconunend to other researchers to consider 
writing the computational kernel of future projects 
in Sisal. Especially if the group Im little 
experience writing parallel programs or wishes to 
be freed from implementation details. Its 
combination of parallelism, portability, and 
performance is hard to ignore.
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1 Introduction
Candis stands for “C7language analysis and display”, and is a system devel­
oped by the author for analyzing and displaying gridded numerical data. It 
has been in regular use at New Mexico Tech for a number of years, and is 
being used at a number of other institutions as well. The basic idea of Candis 
is to apply the UNIX filter paradigm to non-ASCII, gridded numerical data. 
In order to make this possible, a standardized, self-describing data format 
has been adopted. Details can be found in Raymond (1988). The advantage 
of this system is that complex applications can be constructed by piping to­
gether a number of standard Candis utilities. Its main applications have been 
the analysis and display of data from meteorological observation systems and 
the analysis of numerical model output. Both of these applications typically 
have data in the form of rectangular grids of varying dimensions.

In this paper I describe an interface between Candis and SISAL (McGraw, 
et. al, 1985). For SISAL applications that produce gridded numerical data, 
this provides a simple way to take advantage of the strengths of both systems 
-  computations are done using SISAL and the results are analyzed using 
Candis.
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2 T he C df Record in SISAL
The key to the interface between Candis and SISAL is the cdf record construct 
in SISAL, This is a SISAL record with the following structure:

type c d f .c l in e  = array[ch aracter]; 

type c d f .c l i s t  « a rra y [cd f_ c lin e ];

type cdf.param = record[pname: c d f .c l in e ;  pval: rezU.] ; 

type c d f .p l i s t  = array[cdf_param];

type cdf_dim = record[dname: cd f_ c lin e ; d s iz e :  in teg er;  
ddata: arra y [rea l]];

tjrpe c d f .d l i s t  = array [cdf .dim] ;

type c d f .f i e ld  = record[fnaune: c d f .d in e ;  nim.dims: in teg er;  
cdf.d h an d les: array[integer] ; t s i z e :  in teg er;  
fd ata: a rray[rea l]] ;

tjrpe cdf . f  l i s t  = array [c d f .f  ie ld ]  ;

type cdf = record[name: c d f .d in e ;  in stan ce: in teg er;  
comments: c d f .c l i s t ;  params: c d f .p l i s t ;  
dims: c d f .d l i s t ;  f ie ld s :  c d f . f l i s t ] ;

The cdf record is isomorphic to a subset of a Candis file. Thus, it is 
possible to translate a cdf record into a Candis file with no loss of information.

The cdf record consists of six parts, each of which will now be described. 
The name is simply an ASCII identifying string which can be used to name 
the Candis file into which the cdf record is translated. Since multiple record 
instances with the same structure are sometimes useful (e. g., records of the 
same variables at different times), the instance entry can be used as a suflix 
of the name entry for file name generation.
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The comments entry is a list of strings in which a history of the processing 
of the cdf record can be kept. This proves invaluable in data processing.

The params entry provides a way to store parameters, i. e., name-number 
pairs that are used to characterize the included data in some way.

The dims entry stores information about the vector space over which the 
gridded data are defined. Information included are the names of each dimen­
sion, the number of points defined for that dimension, and the positions of 
each point. Points need not be equally spaced, but they should be monotonic. 
Candis supports up to four dimensions.

The fields entry stores the gridded data itself. Each field is defined over 
zero or more of the defined dimensions. Information included is the name of 
each field, the dimensions over which the field is defined, and the data.

Fields are internally represented as one-dimensional arrays of reals, even 
though a field may be interpreted as having multiple dimensions. Thus, the 
multidimensional featmes of SISAL are not used, and dimensional indexing 
must be done by the user. Beginning arrays at zero as in the C language 
makes this a relatively simple chore. The best strategy for simulating multi­
dimensional fields seems to be to loop over the entire one-dimensional array, 
calculating the indices for each simulated dimension at each iteration step.

3 Input and O utput M ethods
The cleanest way to use the cdf record is to input and output records through 
the argument list of the highest level SISAL function. The cdf record is 
thus stored externally in Fibre format (Skedzielewski and Yates, 1985). The 
hardest part of this process is in constructing and interpreting the cdf record. 
In order to make this simpler, I have written ten SISAL routines:

globed, cdf create (file_nam e: cdf .d i n e ;
instance: in teg er; returns cdf)

g lo b a l cdfcomment(cdf.record: cd f; comment: c d f .c lin e ;  
returns cdf)

g lo b a l cdf param(cdf .record: cd f; pname: cdf .d i n e ;

27



p val: r e a l;  returns cdf)

g lo b a l cdf dim(cdf .record: cdf; dim.name: cdf . d i n e ;
d im .size : in teger; s t a r t .v d ,  increment: r e a l;  
returns cd f, in teger)

g lo b a l cdf idim (cdf .record: cdf; dim_name: cdf .d i n e ;  
d im .size: in teger; data: eirrayCreal]; 
returns cd f, in teger)

g lo b a l cd ffid (cd f.reco rd : cdf; fie ld .nam e: c d f .c l in e ;
num.dims: in teger; d h l, dh2, dh3, dh4: in teger;  
fd ata: a rray[rea l]; returns cdf)

g lo b a l cd fgetp ar(cd f.record : cdf; pname: c d f .c l in e ;  
returns re a l)

g lo b a l cdfgetd im (cdf.record: cdf; dname: c d f .c l in e ;  
returns in teg e r , cdf.dim )

g lo b a l cd fg etfId (cd f.reco rd : cdf; fname: c d f .c l in e ;  
returns c d f .f ie ld )

g lo b a l cd fw rite(cd f.record : cdf; returns in teg er)

Cdf create creates an empty cdf record with a specified name and instance. 
Cdfcomment and cdfparam respectively add comments and parameters to an 
old cdf record, returning a new record. Cdfdim and cdfidim return a new 
cdf record with information added about a new dimension. The first form 
assumes that dimension points are equally spaced, and therefore only the 
starting point and increment are needed. The second form accommodates 
irregular spacing by allowing the calling routine to specify each point. Both 
fxmctions also return an integer handle which is used by the cdffld function. 
Cdffld adds data for a particular field to a cdf record. The number of di­
mensions and the particular dimensions used are calling arguments, as well 
as the field name and the data itself. Cdfgetpar, cdfgetdim, and cdfgetfld
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respectively extract information about parameters, dimensions, and fields of 
existing cdf records. This aids interpretation of input files. Finally, cdfwrite 
converts a cdf record to a Candis file using calls to the C language library 
for Candis. It is the only routine that isn’t pure SISAL, and provides a way 
of bypassing Fibre.

I have also written a C program, cdffibre, to convert a Candis file into 
a cdf record in Fibre format (to the extent that this is possible), and a 
SISAL program, fibrecdf, that calls the C-based Candis library to convert a 
cdf record in Fibre format to a Candis file. Fibrecdf is just a wrapper for the 
cdfwrite function.

4 A n Exam ple
As an example of the use of the above tools, I illustrate the solution of the 
two dimensional Poisson equation, =  S , using multigrid methods in a 
SISAL program. The computational algorithm isn’t of interest here, only the 
interface part. The SISAL program accepts as its input a cdf record in Fibre 
format containing the source function S, information about the grid over 
which S  is defined, and two parameters, iters and cycles, which are needed 
by the multigrid method. The program produces another cdf record in Fibre 
format containing the initial information plus the solution to the problem. 
The input file is produced by a series of Candis filters used to define the 
source fimction and parameters. The resulting Candis file is converted to cdf 
record format by cdffibre. The results are then converted to Candis format 
with fibrecdf, and plotted using the Candis program cdfplot

The details of the process are best illustrated by examining the output 
of cdfylot. Contour maps of the source term S  and the result V* are shown 
in figures 1 and 2. On the right side of each figure is a complete history of 
the computational process. Examining figure 1, each word terminated by a 
colon represents an invoked program. Cdfnull defines the space over which 
the computation is defined — 17 points each in x and z , centered on (0, 0), 
with a grid spacing of 1 in each direction. The first call to cdfmath defines 
the field rsq, the square of the distance from the center of the domain. The 
second call defines the source function as 5  =  exp(—0.5 * rs^), while the 
third and fourth define the parameters iters and cycles (The notation is 
reverse Polish.) Ptest represents the call to the SISAL program. The rest

29



4.eo

1.60 -

-1.60 -

-4.80 -

- 8 .0 0  
- 8 .0 0  

z vs X

0 .0 0  0 .0 0  0 .0 0  0 .0 0  0 .0 0

0 .0 0  0 .0 0  0 .01  0 .0 0  0 .0 0

0 .0 0  0 .0 1 0 .01  0 .00

cdfnull:
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cdfnath: x x • z z • + rsq 
cdfnsth: rsq -.5 • exp src 
cdfmath: S Iters = 
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FigtU'e 1: Contour plot of the source term, S, of the Poisson equation. On 
the right is a history list that provides a complete record of the computation.
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Figure 2; Contour plot of the solution, i]), of the Poisson equation.
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of the history list specifies the details of the contouring and values of scalar 
paxameters.

Note that all initialization and plotting was done by canned programs. 
Only the computational program, ptest, had to be written especially for this 
problem. At worst, initialization and analysis requires the creation of simple 
shell scripts.

The working part of the ptest program (exclusive of type definitions and 
global statements) is shown below:

fu nction  p te s t(c d f_ in : cdf; returns cdf) 
l e t

X ex tract in fo  from input cdf record
d h l, dimi := cdfgetdim ( cdf_in , "x"); 
dh2, dim2 := cdfgetdim (cdf_in , "z"); 
nx d im i.d size ;  
xO d im i.ddata[0] ;
dx := d im i.ddata[1] -  xO; 
nz := dim 2.dsize; 
zO d im 2.ddata[0];
dz := dim 2.ddata[i] -  xO;
p i := record [xstart: xO; zsta irt: zO; dx: dx; dz: dz;

nx: nx; nz: n z ] ; 
src := cd fg e tf ld (c d f_in , “src" );
c y c le s  := in teg e r (c d fg e tfld (c d f_ in , " c y c le s" ).fd a ta [0 ]);  
i t e r s  := in te g e r (c d fg e tfld (c d f_ in , " iters" ).fd ataC O ]);

V, c a l l  p o isson  so lv er
f id  :* p o isso n (sr c .fd a ta , p i ,  c y c le s ,  i t e r s ) ;

incorporate the output in to  th e  cdf record  
c d fi := cdfcomment(cdf_in , " p test:" );  
cd f2 := c d f f ld (c d f i ,  " fid" , 2 , d h i, dh2, 0, 0 , f id ) ;

in
cdf2  

end l e t  
end fu nction  % p te st
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The actual solution is perfonned by the call to poisson, while the rest of 
the code deals with the interface. Note that the interface code is not very 
complex or lengthy,

5 C onclusion
A simple interface has been developed between SISAL and the Candis data 
analysis package. Experience with the interface shows that it is easy to use. 
SISAL can therefore be applied where it is strongest, i. e., in numerical 
computation. Input preparation and analysis of the output can be done 
using the Candis filter paradigm. Fibre is used as an intermediate form for 
input and output from SISAL programs. If desired (i. e., when the output 
file becomes very large, and hence inefficient to create and translate), output 
can be generated directly to Candis format from the SISAL program via a 
one line caU to cdfwrite. This option is not available on input, but numerical 
simulations usually have much larger output than input.

The Candis package and the SISAL interface are available via anonymous 
ftp from the Unidata project, unidata.ucar.edu. A number of the filters in 
Candis are specific to the atmospheric sciences, but many are applicable to 
any gridded numerical data. Comments, bug reports, and suggestions should 
be sent to the author at raymond@kestrel.nmt.edu.
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PARALLELISATION AND PERFORMANCE OF THE BURG 
ALGORITHM ON A SHARED MEMORY MULTIPROCESSOR

A i .  Cricenti and G JC Egan-

Abstract

This paper describes the implementation of a signal processing algorithm, 
specifically the Burg Algorithm, using both a high level al parallel language SISAL 
and Encore Parallel FORTRAN. The Burg Algorithm is an estimation technique 
for fitting an autoregressive model to a time series data set. This algorithm 
contains a time shift/inner product operation which is used in a number of other 
important signal processing algorithms such as convolution. The paper describes 
the results obtained using both the high level parallel language SISAL and EPF, on 
both an ENCORE Multimax multiprocessor machine, and a single processor IBM 
RS6000/530 machine.

1. Introduction

Signal Processing Algorithms are widely used and of vital importance in areas such as 
biomedical engineering, seismic data analysis, speech analysis and spectral estimation. The 
demand that signal processing algorithms place on computing system performance is 
increasing as more complicated algorithms are made to function in real time. As the 
limitations of current uniprocessor systems are being reached, many computer 
manufacturers are turning to multiprocessor configurations to obtain increased 
performance. In addition to hardware limitations, current computer languages must be 
evaluated for performance and ease of use with reference to their suitability for parallel 
machines.

The purpose of this paper is to describe the implementation of a signal processing 
algorithm, in this case the Burg Algorithm[l], using both a high level parallel language 
SISAL (Stream and Iteration in a Single Assignment Language)[2] and EPF (Encore 
Parallel FORTRAN). The Burg Algorithm is an estimation tec^ q u e for fitting an 
autoregressive model to a time series data set. This algorithm contains a time shift /  inner 
product operation which is used in a number of other important signal processing 
algorithms such as Convolution.

It is claimed that the optimising SISAL compiler (CSC) from Colorado State University 
yields performance competitive with FORTRAN [5][8]. Also the maximum concurrency of 
a SISAL program is theoretically only limited by the data dependencies. However, the 
DSC compiler on a shared memory machine, only exploits parallelism from the parallel 
loop construct.

The results obtained using an optimising SISAL compiler are compared to those obtained 
using the EPF (parallel FORTRAN) annotator. The comparison is made both on a 6 XPC 
processor (4 Mips per processor) based Encore Multimax Multiprocessor machine and a

-AX. Cricenti is a member of Faculty in the School of Electrical Engineering and a 
Researcher in the Laboratory for Concurrent Computing Systems at the Swinburne 
Institute of Technology, John Street, Hawthorn 3122, Australia, Phone:+61 3 819 8322, E- 
mail: alc@stanjoc.swin.oz.au.

G JC. Egan is Professor of Computer Systems Engineering and Director of the Laboratory 
for Concurrent Computing Systems at the Swinburne Institute of Technology, John Street, 
Hawthorn 3122, Australia, Phone:+613 819 8516, E-mail: gke@stanjDc.swin.oz.au.
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single processor IBM RS6000/530 (30 Mips) system. The performance of the IBM 
processor is representative of processors in next generation me^um cost multiprocessors.

2. Hie Burg Algorithm

The Burg Algorithm is a method of generating an autoregressive model from a set of data 
samples, that is it gives estimates for A(z) in:

There are several ways of obtaining an AR model, the Burg algorithm is based on 
minimising the forward and backward prediction errors, assuming a lattice filter structure 
as shown in figure 1.

e . ,(k)<> e (k)n

b (k)

where:

Figfire 1 Lattice filter structure

en(k) = en.i(k) + c  ̂bn.i(k-l) forward prediction error (1)
hnW = <Ti ®n-l(^) hn-i(k-l) backward prediction error (2)

and Cq are called the reflection coefficients.

The Burg Algorithm involves the choice of reflection coeffidents such that the error 
energy is minimised, when only a finite number of data samples is available.

The optimmn value of the reflection coeffidents can be easily derived[7] and is given by:
M

E  ViWViC'-i)
c . =    (3)

M

k=n

where M is the number of data samples.

The autoregressive coeffidents can then be estimated from:

” *Ti W
an(j) = + Cnan.i(n-j) for j = l..n -l (5)
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A sequential implementation of the Burg algorithm is outlined in [1] and is reproduced in 
figure 2a with individual tasks labelled Tj„(l), Tn(l), Tn„(2), Tin(2), Tasks Tj^(l)
are computations of the inner products in both the niunerator and denominator of (3) 
above. Tq(1) is the calculation of the division needed to compute Cq. This task cannot 
proceed in parallel, since it depends on the results of task T{q(1). This data dependency 
can be also be seen from the maximally parallel graph for m=5 and max=3 reproduced in 
figure 2b. T|q(2) updates the autoregressive coefficients and task Tjq(3) updates the 
forward and backward prediction errors (equations 1 and 2), the graph of figure 2b shows 
that each of the loops corresponding to tasks Tjn(l), Tjj,(2), Ti„(3) can be computed in 
parallel.

1. INITIALIZATION

F O R i= lT O m D O
e(i)=x(i)
b(i)=x(i)

2. THE MAIN LOOP

FOR n = 1 TO max DO
sl=sl+e(i)*b(i-n) Tm(l)
s2=s2+e(i)**2+b(i-n)**2

c(n)=-2.0*sl/s2 Tn(l)
IFn>lT H E N D O

FOR i= l  TO n-1 DO
a l(i)= a(i)+ c(n)*a(n-i) Tm(2 )
F O R i= lT O n -l DO

a(i)=al(i)
a(n)=c(n) Tnn(2)
F O R i= n+ lT O m D O

temp= e(i)+c(n) *b(i-n) Tm(3)
b(i-n)=b(i-n)+c(n)*e(i)
e(i)=tem p

Figure 2a Sequential Burg Algorithm form  data points and max reflection co^cien ts from 
[ 1]

T i ( 1 )

Figire 2b Maximally parallel gyaph for m = 5 and m ax-3 from [1]
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3. Language Considerations

3.1 Encore Parallel FORTRAN

The Encore ParaUel FORTRAN compiler (EPF) is the UMAX f77 implementation of 
FORTRAN with enhancements which allow parts of a program to be executed in parallel. 
These statements are PARALLEL, DO ALL, CRITICAL SECTION, BARRIER, 
LOCK WATT, LOCK SEND, and EVENT.

The EPF compiler consists of analysis and transformation tools, a parallelising compiler, 
parallel runtime libraries, and a code generator. Whilst programs can be written directly 
in EPF, EPF can also be used to convert a standard FORTRAN program into a source 
which is annotated with the parallel statements outlined above. During compilation, EPF 
first detects possible concurrent parts of the source programs, these are shown in a XST 
file. The annotator then generates the EPF program , JE file, by inserting the appropriate 
EPF statements.

The EPF annotator may require user intervention to produce the most efficient code for a 
particular program; useful speedup can be achieved by fine timing output of the 
annotator. However, for the simple code presented here, it is sufficient to rely on the 
annotator alone.

3 2  SISAL

SISAL is a functional language which has been targeted at a wide variety of systems 
including current generation multiprocessors such as the Encore Multimax and research 
dataflow machines[2][3][4]. The textual form of SISAL, m terms of control structures and 
array representations, provides a relatively easy transition for those familiar with 
imperative languages, since it has a PASCAL like syntax. The advantage of SISAL is that 
codes written in SISAL are portable to a variety of parallel architectures. SISAL also 
insulates programmers from the underlying machine architecture, and allows concurrency 
to expressed implicitly, thus removing the burden of processor synchronization and job 
scheduling.

4. Parallel Implementation

4.1 EPF

The simplest parallel implementation of the Burg algorithm is obtained by coding the 
sequential algorithm in FORTRAN and then using the Encore Parallel FORTRAN 
compiler (EPF) to produce the parallel code suitable for the Encore Multimax  ̂
Multiprocessor. This process requires that the programmer knows very little about the 
underlying architecture of the machine, thus code may be generated very easily. This 
method is also attractive since it allows existing software, written in FORTRAN, to be 
implemented on paraUel machines without any translation. There are two main 
disadvantages of this method. Hrstly the optimum speedup is usually not obtained, since 
the original program may be sequential in nature. Secondly the annotated code produced 
by the EPF compiler is machine dependent.

The annotator has identified that all loops, in figure 2a, except the outer loop can be 
parallelised. Thus the annotator can successfully identify the parallel loops. The 
mmdmally parallel graph suggests that tasks T|j,(2), Tn„(2) and TjQ(3) could be 
performed at the same time; unfortunately EPF can only slice loops, and since the outer 
loop is sequential, due to task Tq(1), EPF cannot make these tasks parallel.
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42  SISAL

The second implementation of the algorithm is in SISAL. The "disadvantage” here is that 
existing codes need to be re-expressed in the SISAL language, to expose the possible 
parallelism. The SISAL implementation of the Burg Algorithm as presented in [1], was 
directly transliterated from the FORTRAN version, excepting the loop which updates the 
autoregressive coefficients shown in figure 3a, which was transformed into a parallel 
format to ease the coding.

%calculate auto regressive coefllcients

a:= fork in l,o Id n  
returns array of

if k = old n then c 
else old a[k] -<-c*old a[old n-k] 
end if 

end for;

Figure 3a Implementation of the calculation of the autoreg^ssive coefficients in SISAL.

The loop which updates the forward and backward errors was also changed, figure 3b. 
The original FORTRAN loop has been split into two loops. This was done so that the 
indexes of b change in manner which is suitable for the parallel/or loop. 

e:=
for I in old n+l,m  
returns array of

olde[l]+c*oldb[l-old  n] 
end for; 

b:=
for j  in l,m  - old n 
returns array of

old bQ] +c*old elj+old n] 
end for;

Figure 3b Implementation of the updating of the forward and backward errors, in SISAL.

SISAL expresses concurrency naturally, therefore it is not possible to write a sequential 
loops in the parallel form. In order to achieve usefril speedup, it is necessary to reorganise 
the computation, and rethink the algorithm in a parallel manner.
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5. Results

The SISAL and FORTRAN versions of the program were run on both an Encore 
Multimax and IBM RS6000/530 system using the standard f77 FORTRAN compiler, the 
EPF compiler, where appropriate, and the optimising SISAL compiler (OSC vl2.7).

For comparison purposes the number of data points was set to m =10000 and the model 
size to max=100. This model size was chosen so as to obtain run times which could be 
measured accurately.
The run times obtained for both the FORTRAN and SISAL implementations of the 
algorithm on the Encore Multimax multiprocessor with six XPC processors are 
summarised in table 1.

Note that Speedup =  ̂ EfSdency =
^nprocs °

Processors Time fs) Speedup Efficiency
1 29.6 1.00 1.00
2 17.2 1.72 0.86
3 12.7 233 0.78
4 9.7 3.05 0.76
5 82 3.61 0.72
6 7.8 3.79 0.63

Encore Parallel FORTRAN

Processors Time fs) Speedup Efficiency
1 31.02 1.00 1.00
2 15.49 2.00 1.00
3 13.46 230 0.77
4 11.03 2.81 0.70
5 9.43 329 0.66
6 832 3.73 0.62

SISAL

Table 1 Experimental results on the Encore Multimax

As can be seen from the run times, speedup is achieved with the EPF compiler without 
significant programming effort. The EPF compiler converts DO LOOPS to parallel code. 
However, in some cases the annotator is fairly conservative, and further speedup may be 
obtained, in some instances, by manually annotating programs. In this study no manual 
annotation was perfonned as the speedup obtained for this simple code was satisfactory.

As can be seen, from the results, the FORTRAN and SISAL implementations achieve 
similar speedup, but the FORTRAN implementation has a lower run time for the single 
processor run, refer to table 1 and figine 4a.
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It should be noted that initially no speedup was achieved with the SISAL implementation 
of the Burg Algorithm. Speedup was achieved by forcing the SISAL compiler to slice all 
for loops, by setting the -h pragma to 500; the cost estimator in SISAL had deemed the 
low complexity loops not worth slicing. The value of 500 was arrived at by trial and error. 
As this pragma is applied globally in the current version of the SISAL compiler there may 
be a risk of over parallelisation of some loops [6].

Speedup for the SISAL implementation is dependant on the size of the model, as can be 
seen bom  the graph shown in figme 5. Speedup increases as the number of data points 
increases, this is because for larger amounts of data, the processors spend relatively more 
time on useful computation, than on overheads computation.

The droop in the speedup curve, of figure 5, for six processors is due to other processes 
competing for the limited machine resources.

^  35•oa>a>ta, o zn
25

53 4 61 2

---m----- 1024

---o--- 2048

4096

---X-- 8192

---A--- 16384

----- «----- 32768

---■--- 65536

Processors

Figure 5 Speedup vj number of data points.

Speedup for the SISAL implementation increases beyond sue processors as can be seen 
from the speedup curve shown in figure 6. These results were obtained on a slower 20 
AFC processor Encore Muitimax. Only 16 processors were used so that interference from 
other users was minimised.
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The graph shows the effect of Amdahl’s law that forces the tail of the speedup curve to 
flatten. This limitation is due to the sequential part of the algorithm but good speedup is 
still achieved. The parallel FORTRAN (EPF) compiler was not available on this system.

9

3-

1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16

Processors

Figure 6 Speedup vs processors

The run times for a single processor (RS6000) machine are summarised in table 2. These 
times are for a model size of m =10000 and max=100. The time for the SISAL 
implementation is comparable with the FORTRAN^ implementation.

User + System (s)
SISAL 1.05

FORTRAN 4.96
FORTRAN-0 0.97

Table 2 Tunes for the IBM RS6000/530 (m =10000, max=100)

The results for the DBM RS6000/530 and Cray Y-MP are shown in table 3 for 
comparison with the results from [1], these results were obtained by tailoring the 
algorithm to the architecture of the target machine. The parameters for this study were 
m =16384 data points and model size max=10.

Machine HEP iPSC/2 MPP X-MP/48 RS6000 Y-MP
Execution 
Time (s)

1679 0.24 0.5522 0.016887 0.19 0.009
(Ip)

Times from [1]
Table 3 Comparison of Burg Algorithm execution time (m =16384, max=10).

Note the times for the Y-MP and RS6000 are for SISAL implementations.

6. Conclusions

The Biu-g filter was implemented both in FORTRAN and SISAL. Significant speedup is 
achieved with the SISAL implementation, suggesting that SISAL may ̂  a useful language 
for signal processing algorithms. SISAL is useful since it allows parallelism to be 
e^ressed without considering processor synchronization and the underlying machine 
architecture. FORTRAN annotators such as the EPF annotator are useful in that speedup 
is obtained for little effort, and existing FORTRAN implementations of some simple 
algorithms need not be recoded, this is desirable since several distal signal processing 
FORTRAN programs already exist. Run times on modem single processor machines such 
as the IBM RS6000/530, are comparable to some existing parallel architecture machines, 
and give an indication of possible computation speeds of future generation 
multiprocessors.

XLF RS6000 FORTRAN Compiler
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Abstract

The File Design Problem is a NP-complete problem norm ally 
encormtered in  the design of databases. The goal is to find an  assignment 
of database records to files th a t minimizes the average number of files 
examined over aU single attribute queries. This paper describes a  solution 
to the File Design Problem using Genetic Algorithms written in  SISAL. 
Using the portability and architecture independence inherent in  SISAL a 
Genetic Algorithm model is defined th a t provides increased performance 
without the sacrifice of convergence. A hetiristic based mating operator 
essential to the  solution to the problem is described. Selection and 
replacement operators useful for multimodal fimction optimization are 
used to search for multiple solutions. Results with various test cases are 
shown. Performance of the algorithm is shown for different platforms.

1. Introduction

The File Design Problem is a NP-complete problem, the number of 
possible solutions increases exponentially as the problem size increases 
linearly. Its applicability to database design in a homogeneous distributed 
system is known. Better solutions to the problem wiU enhance the overall 
performance of such systems.

The problem is defined as follows: Given a set of N  records, 
characterized by a single attribute A which takes h different values { a i, a£, 
..., a^}- There are ni records corresponding to attribute ai, i.e., n i  + U2 + ... 
+ nh = N . Find an assignment of the records to K  files of size b such tha t the 
average number of files (AiVF) examined over all possible single attribute
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queries is mirdmized. In other words, a configuration must be found such 
th a t in the average, requests for the records with the same attribute can be 
satisfied by reading from as few files as possible. The assumption is made 
th a t queries for any attribute are equally likely. The constants K ,b ,N ,  and 
h are all positive integers, moreover K  * b = N . An example w ith four 
solutions is shown in table 1.

Table 1: Possible solutions for 12 records, 2 files of size 6, and 
A = {a, b, c, d}, na = 7, nb = 2, nc = 2, and n<i = 1.

F ile l File 2 fex(a) fexQ)) fex(c) fex(d) A N F
a a a a a a a b b c c d 2 1 1 1 1.25
a a a b c c a a a a b d 2 2 1 1 1.50
a a  a a b  c a a a b c d 2 2 2 1 1.75
a a a b b d a a a a c c 2 1 1 1 1.25

h
^ fe x (a i)

The AN F  for a solution is given by the form ula ^ w h e r e  f  ex(ai)

returns the number of files containing a t least one record with attribute ai. 
From table 1, the second solution has a value of 2 for f  ex(b) since both files 
contain a record with attribute b. The first and last solutions in  the table 
are examples of optimal solutions for this problem. Even though the A N F  
values are the same, the last solution is better because i t  has a more 
balanced configuration. If requests for the attributes are distributed 
uniformly, file 1 and file 2 will be accessed 25% and 100% respectively in  the 
first solution, and 50% and 75% respectively with the last solution. This 
idea is incorporated when evaluating solutions generated by a Genetic 
Algorithm.

Genetic Algorithms (GAs) are general purpose search procedures 
introduced by Holland [9] in  the 70's. They are based on the principle of 
natural selection and genetic recombination. l ik e  in  nature, GAs use the 
mechanics of evolution to improve a set of initial solutions called a 
population  using recombination and m utation of the "genetic material". 
This work follows loosely the steady-state GA model. In this model, new 
solutions called offspring  are created using solutions from the current
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poptilation. Each offspring is then inserted sequentially in the population 
by selecting smother solution to die. This model allows the best solutions to 
survive between generations.

GAs have been successfully appUed to the Traveling Salesman Problem 
[16], Scheduling [14], and the Bin Packing Problem [4] to mention a few. In 
some cases better results were obtained when the m ating operator was 
designed to capture the essential information in the problem. The mating 
operator for the File Design Problem is based on "first fit" and "best fit" 
heuristics, such heuristics group records with the same attribute together. 
The multimodal search space in the problem is explored in  many directions 
by using selection and replacement operators [1] th a t encourages m ating 
and replacement between solutions from the same extrema.

There are basically three parallel GA models [6] exhibiting different 
degrees of parallelism; fine grain, distributed, and direct. In a fine grain 
model [2,7,13], each solution in the population is mapped to a processor 
with genetic operators applied between nearest neighbors. In a  distributed 
model [12,15], processors are assigned subpopulations, which converge 
locally and exchange genetic m aterial among them. Direct models [8] 
exploit the parallelism inherent in the GA operators and the GA structure 
while having the same properties of a sequential GA. Our SISAL GA 
follows the direct model while having the localize convergence exhibited in 
the other models.

SISAL [11] is a functional language th a t provides the tools to implement 
a parallel GA application portable to different multi-processor platforms. 
The parallelism a t the GA top level and in the operators is easily exploited. 
Performance is increased while m aintaining the necessary computation 
for solving the problem. The best solution was found in all test cases with a 
speedup of at least 2.2 with four workers.

The paper is organized as follows. Section 2 gives an overview of the GA 
for this problem. Section 3 describes the genetic operators specific for the 
File Design Problem. Section 4 defines the experimental setup. Section 5 
contain the results and conclusions.
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2. The Genetic Algoiithm  Model

The SISAL GA was designed to capture the parallelism in the model 
while m aintaining the search to mxiltiple solutions. In  th is  model 
m ultimodality is exploited by encouraging m ating and replacem ent 
between solutions from the same extrema. Performance is improved by 
creating the offspring in parallel. The offspring are then inserted into the 
population sequentially to preserve replacement between members of the 
same extrema.

The solutions in  the in itial population are created in  parallel by 
assigning records to files a t random. Each file is divided into b slots 
corresponding to its size. The slots are uniquely niimbered with a  value 
between 1 and N. Each record is assigned a slot number corresponding to a 
position in  a file. The constraints of the problem are easily m aintained 
without the need for coimters for each of the files. The fitness, a  measure of 
how good is a  solution, is then calculated for each member of the 
population.

The algorithm is executed for a  fixed number of generations. Each 
generation consists of creating all the offspring and inserting them  into the 
population. Three steps are involved to create two offspring: select the 
parents, apply the mating operator to the parents, and calculate the fitness 
to the offspring. Mutation is applied by the mating operator as part of the 
mating process. Each offspring is inserted sequentially in  the population by 
selecting an existing solution to die.

Solution from Group of CF candidates Most similar solution
the nonulation selected randomlv from group to Parent 1

001101010011
001110000111 100001111001 001101010011

(P aren t 1) 000011111001 (P aren t 2)

Figure 2. Selecting the mate from a set of solutions.

To create the offspring each solution in the population is allow to mate a t 
least once in  every generation. I t ’s mating partner is selected in the 
following manner: form a  group of CF (arowding factor constant) solutions
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chosen a t random from the population, and pick the most sim ilar for 
mating. Similsirity between two solutions is measured as the niunber of 
records assigned to the same file. An example is shown in figure 2 using 
the data from table 1. Assuming th a t each digit indicates the file where a 
record is located, the first solution is selected to mate with parent 1 because 
it has 8 records assign to the same file. This selection operator encourages 
mating between solutions w ithin the same extrema. After selection, 
mating produces two offspring and the ir fitness are computed. The 
number of offspring created can be up to two times the munber of solutions 
in the population. All of them are created in parallel with a given m ating 
and mutation probability.

Step 1: Form CF groups with OS candidates selected a t random from 
the population.

Group 1 .Group 2 Grpupjg.
001101010011 000011111001 001111000101
001110001011 100001111001 101001010011

Step 2: Select most similar solution to the offspring from each group 
and compare their fitness values.
001110001011 000011111001 001111000101

fitness: 0 . 4  6 0 . 7 5  0 . 6 7

Step 3: Replace the solution with lower fitness with the offspring. 
001110001011 i s  r e p la c e d  by 001110000111

Figure 3: Inserting offspring 001110000111 in the population using 
a value of CF = 3 and CS = 2.

The offspring are inserted one a t a time in the population by deleting the 
worst solution fi:om a set of most similar solutions. For each offspring CF 
groups containing C S  (crowding sub-population constant) random ly 
selected solutions from the population are formed. From each of these 
groups the most similar solution to the offspring is selected, forming a  set 
of CF solutions. From this set, the solution with lowest fitness is replaced 
by the offspring in  the population. After an offspring is inserted in  the 
population it  becomes a candidate for replacement. Some offspring wiU be 
replaced during the same generation. An example of this operator is shown
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in figure 3 using the configuration from table 1. As in  selection the 
replacement operator is bias toward solutions within the same extrema. 
Convergence is improved by eliminating solutions with lower fitness.

3. Genetic Operators
In this section the encoding and genetic operators for the File Design 

Problem are described. They were designed to preserve the constraints of 
the problem and make them easier to implement using SISAL arrays.

3.1 Gene Encoding

A gene represents a valid solution to the problem. It consist of an array 
of N  alleles corresponding to each of the records in the problem. Each allele 
may assume a value between 0 and K  - 1 inclusive, indicating the file 
containing the record. A valid encoding is a digit number base K  where 
all digits appear exactly b times. An example is shown in figure 4.

r e c o r d  number: 1 2 3 4 5 6 7 8 9 10 11 12
r e c o r d  a t t r i b u t e : a a a a a a a b b c c d

g en e 1: 0 0 0 0 1 1 1 1 2 2 2 2
g en e 2: 0 0 1 1 2 2 2 0 0 1 1 2

Figure 4. GA encoding for 12 records in 3 files of size 4.

3.2 Mating O perator

The mating operator for the File Design Problem creates two offspring 
and was designed w ith two ideas in  mind. F irst, the characteristics 
expressed in  both paren ts will be expressed in  the offspring, thus 
preserving the schemata in  both solutions. Second, fitness shotdd be 
improved when combining two similar solutions. "Best fit" and "first fit" 
heuristics are used for this. Incorporating these features in  the m ating 
operator improves convergence between solutions from the same extrema. 
When two solutions from different extrema mate, offspring from other 
extrema can be created. This way the operator is not restricted to small 
areas in  the search space.
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The firs t step in  the m ating  operator is to tran sfe r  sim ilar 
characteristics from the paren ts to the offspring. This is done by 
transferring the records assigned to the same file in  both parents to the 
same file in the offspring. Those records not assigned are counted for each 
attribute and sorted in  decreasing order. One offspring is created using a 
best fit method based on the contents of files. Unassigned records will be 
located into files where records w ith the same attribute reside. The second 
offspring is created using a  first fit method based on the empty space in  the 
files. Unassigned records will be located where file space is available for 
records with the same attribute. Using the configuration in  figure 4 an 
example is shown in  figure 6.

Offspring inherits similar alleles from parents:
Record A t t r i b u t e :  a a a a a a a b b c c d  

P a r en t  1 : 0 0 1 2 2 2 0 1 0 1 2 1  
P a r e n t  2: 0 1 0 1 2 2 1 2 0 0 1 2  

O f f s p r i n g :  0 - - - 2 2 - - 0 - - -  
U n a ss ig n e d  r e c o r d s  by a t t r i b u t e :  a : 4 ,  b : l ,  c : 2 ,  d : l

Assignment of records in sorted order to both
o f f s p r i n g :

O f f s p r i n g  1 O f f s p r in g  2
B e s t  F i t  Method F i r s t  F i t  Method

a :4  0 2 2 0 2 2 0 - 0  --------  0 1 1 1 2 2 1 - 0  ---------
c : 2  0 2 2 0 2 2 0 - 0 1 1 -  0 1 1 1 2 2 1 - 0 0 0 -
b : l  0 2 2 0 2 2 0 1 0 1 1 -  0 1 1 1 2 2 1 2 0 0 0 -
d: l  0 2 2 0 2 2 0 1 0 1 1 1  0 1 1 1 2 2 1 2 0 0 0 2

Figure 5. Mating operator for the Pile Design Problem

Given the parents in  figure 5, the offspring inherits only four alleles; 3 
records with attribute a and 1 record with attribute b.  Using the best fit 
method the other 4 records with attribute a are assigned to file 2 and file 0 
because those files contain records with the same attribute. Using the first 
fit method the 4 records are assigned to file 1 because tha t file is the most 
empty. The other records are assigned in  a similar maimer.
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Mutation is applied with a fixed probability for each allele. When an 
allele is selected for m utation another position in the gene is selected a t 
random and the two values are interchange. Such m utations may 
introduce a new configuration in succeeding generations.

3.3 Fitness Function

The fitness function captures three im portant characteristics of an 
optimal solution: low A2VF, records with the same attribute are grouped 
together, and records with the same attribute are spread equally among the 
minimum number of files needed to store them. The last two points are 
captured in a grouping term  (GT) and balancing term  (BT) respectively. 
The two terms are contradictory in the sense th a t B T  w ants to group 
records together, while G T  wants to spread records equally across files. 
Because it induces lower A N F  values the B T  value is given higher weight 
when calculating fitness.

The ANF  value is given by the formula:

h /
ANF  = Y^fex(aii) h,

1=1 /
where fex(a.i) retxims the number of files w ith attribu te ai. From this 
formula, we compute an upper and lower boimd to the problem. The lower 
boimd represents a configuration where the records for all attributes are 
assigned to the least number of files needed to contain them. An upper 
boxmd is given when the records for all attributes are spread in  as many 
files as possible. The lower and upper bound are called m in ja n f  and 
m axjan f respectively and are given below:

h i  h i
m i n a n f  = ]^ [’n i / 6 l / a  <  ANF  ^  m ax_anf = ^ m in f n i , ATI h.

1=1 / 1=1 /
The GT  value is computed by adding for all files and all attributes the 

squared value of the fraction of records for each attribute. The higher the 
number of records of the same attribute in a  file the higher the GT  value. 
The formula for the GT value is given below:

52



h K

GT = X S ( '» » -< a i .j ) /“ i f .
i=lj=l

where attriaij) returns the number of records of attribute ai in file j.

The B T  value is computed by adding for all files the absolute value of the 
difference between the number of records for each attribute and a balance 
configuration for the attribute. Only files containing records for the given 
attribute are included in  the summation. The formula for this term  is 
given below;

h K
B T  = 2 ^ [ |a ttr(a j, j) -  n j/fn i/ftH j, whenaftrCaj, j) 5* 0. 

i=lj=l

Here fn i/6 ] returns the number of files needed to store the records of 
a ttribu te  ai. Values of B T  closest to zero represent more balanced 
configurations.

The three terms AVF, BT, and GT  are used to define the fitness value for 
a solution. Since higher positive values are used to indicate a better 
solution the term s are normalized to return  values between 0.0 and 1.0. A 
percentage of each term  is then added to form the fiboal fitness value as 
indicated by the following formula:

fitness = 0.70 * ^  + 0.25 *  + 0.05 * .h max_anf-mn_anf l.O+fiT

The fitness value for any solution is a number between 0.0 and 1.0. 
Solutions where the fitness value is 1.0 represent configurations where the 
m in ja n f  value is achievable and the records for any attribute is less than 
the file size. Having the property of fitting records with the same attribute 
in one file eliminates the conflict between B T  and GT  while obtaining a 
maximum value of h for GT.

4. Experimental Data

To evaluate the behavior of the algorithm six test cases where created 
having different properties. Test cases with solutions achieving the
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m in ja n f  lower boxmd, other cases having the number of records for some 
attributes exceeding the file size, and multiple attributes per file were 
mixed to create the different configurations. For all cases 100 records were 
used. Table 6 sxunmarizes all configurations created.

Table 6: Configuration for all test cases

Case number of file number of number of records per attribute m l n _ a n f

num files si5:e at-.t-.ribuf-es nl n2 n3 1x4 nS ... nh exist
1 5 20 10 7, 2, 3, 1, 5, 17, 18, 13, 15, 19 Yes
2 10 10 10 7, 2, 3, 1, 5, 17, 18, 13, 15, 19 Yes
3 5 20 10 7, 4, 3, 8, 6, 11, 18, 15, 10, 18 No
4 10 10 10 7, 4, 3, 8, 6, 11, 18, 15, 10, 18 No
5 5 20 21 7, 4, 3, 8, 6, 1, 8, 5, 10, 8, 1/ Yes

2, 4, 9, 5, 1, 6, 2, 3, 3, 4
6 5 20 15 7,

5,
4,
6,

9,
7,

7,
5

7, 4, 9, 5, 9, 7, 9, No

To evaluate the performance of the implementation 3 different platforms 
were used: the SGI Iris 4D, Cray Y-MP, and Cray C90. The execution time 
fi:om one to four workers was collected for the algorithm using case 1 in 
table 6. The GA parameters used for each rxm are:

Population size -100 
Number of generations - 50 

Mating probability - 0.95 
Mutation probability -0.01 

CF for selection - 4 
CF for replacement - 3 
CS for replacement - 5 

This parameters were chosen after a trial and error period. They represent 
a good set of choices for the test data shown in table 6.

5. Results and Condusions

The results obtained for the test data in  table 6 were very good. In all 
cases mxiltiple optimal solutions were fotmd to the problem. In four pf the 
six test cases a t least one optimal solution was foimd prior to generation 6. 
More generations were needed for the cases where m in ja n f  did not exist
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and the number of records for some attributes were high. In those cases, 
the solutions were competing between themselves for a  very low 
improvement in  fitness. Table 7 shows solutions for all test cases and the 
generation num ber on which they were obtained. Each solution is 
represented by the assignment to all records with the same attribu te 
separated by commas. 

Table 7: GA solution to test cases with number of generations needed

Case Generations 
number  needed  Solution found

1 3 4 4 4 4 4 4 ,  1 1 ,  3 3 3 ,  0 ,  2 2 2 2 2 ,  3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ,
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ,  4 4 4 4 4 4 4 4 4 4 4 4 4 ,  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ,
000000 0 0 0 0 0 0 0 0 0 0 0 0 0

2 4 9 9 9 9 9 9 ,  7 7 ,  1 1 1 ,  6, 8 8 8 8 8 ,  3 3 3 3 3 3 3 3 1 1 3 3 1 1 1 1 1 ,
2 2 2 2 2 2 2 2 2 2 7 7 7 7 7 7 7 7 ,  5 5 5 5 5 5 5 5 5 5 9 9 9 ,  4 4 4 4 4 4 4 4 4 4 8 8 8 8 8 ,
0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6

3 25  2 2 2 2 2 2 ,  0 0 0 0 ,  2 2 2 ,  4 4 4 4 4 4 4 4 ,  3 3 3 3 3 3 ,  4 4 4 4 4 4 4 4 4 4 4 ,
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 ,  3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 ,  2 2 2 2 2 2 2 2 2 2 ,
111111111111111111

4 15  8 8 8 8 8 8 ,  9 9 9 9 ,  88 8 ,  5 5 5 5 5 5 5 5 ,  9 9 9 9 9 9 ,  2 2 2 2 2 2 2 2 2 2 7 ,
0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 ,  1 1 1 1 1 1 1 1 1 1 5 5 6 6 7 ,  3 3 3 3 3 3 3 3 3 3 ,
4 444444 4 4 4 7 7 7 7 7 7 7 7

5 5 0 0 0 0 0 0 ,  3 3 3 3 ,  2 2 2 ,  3 3 3 3 3 3 3 3 ,  2 2 2 2 2 2 ,  0 ,  0 0 0 0 0 0 0 0 ,
m i l ,  2 2 2 2 2 2 2 2 2 2 ,  4 4 4 4 4 4 4 4 ,  2 ,  4 4 ,  4 4 4 4 ,  1 1 1 1 1 1 1 1 1 ,
3 3 3 3 3 ,  4 ,  m i l l ,  4 4 ,  33 3 ,  44 4 ,  0000

6 5 0 0 0 0 0 0 ,  2 2 2 2 ,  2 2 2 2 2 2 2 2 2 ,  4 4 4 4 4 4 4 ,  2 2 2 2 2 2 2 ,  3 3 3 3 ,
3 3 3 3 3 3 3 3 3 ,  4 4 4 4 4 ,  0 0 0 0 4 0 0 0 0 ,  3 3 3 3 3 3 3 ,  1 1 1 1 1 1 1 1 1 ,
m i l ,  1 1 1 1 1 1 ,  4 4 4 4 4 4 4 ,  00000

A speedup between 2.2 and 2.9 was achieved with four workers in the 
three different platforms. Figure 8 summarizes the performance firom one 
to four workers in  the different platforms.

P la t f o r m 1 Worker 2 Workers 3 Workers 4 Workers
y-MP C90 1 2 .9 7 9 9 8 .6748 6 .4425 5 . 4  930
Y-MP 1 8 .6 1 0 6 10 .4642 8 .9 1 5 3 6 .3 6 4 8
SGI I r i s 2 5 .8 9 0 0 16 .5300 13 .4200 1 1 .9 0 0 0

Figure 8: GA execution time in seconds for 50 generations. 

The results obtained with this GA model are encouraging. Exploiting 
the multimodality inherent in  the File Design Problem resulted in a more 
balanced search over the entire space. Creating genetic operators th a t
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enhance the search globally as well as locally were very important for this 
problem. Developing the GA from the problem’s point of view provided 
positive results for this problem. The Convergence to optimal solutions was 
achieve in  all cases while improving the performance using SISAL. 
Im provem ent in  performance can be achieve by parallelizing the 
replacement operator and retain its property of replacing solutions within 
the same extrema.
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IM PLEM ENTING EFT’S IN  SISAL*
Dorothy Bollman, Flor Sanmiguel, and Jaime Seguel 
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Abstract. Tensor notation is a powerful tool for improvising fast Fourier transform (FFT) algorithms 
in a functional language. In this work we apply this idea to the development of FFT’s in the functional 
language Sisal. As an example, we develop a high performance Sisal implementation of a variant of Pease’s 
FFT on a Cray Y-MP.

1. Introduction. Although the utility of tensor notation for FFT algorithms has long been rec­
ognized [3], it has been only recently [4], [8], [9], that this notation has gained wide spread acceptemce by 
FFT practitioners. Tensor notation aids not only in algorithm expression and comprehension, but also in 
algorithm development and is an ideal tool for developing parallel-vector algorithms for functional programs. 
In this work we describe work in progress that exploits this idea to develop a family of high |>erformcUice 
FFT’s in the functional language Sisal. As an example, we present a high performance Sisal implementation 
of a variant of the radix 4 Pease [6] algorithm.

In this section, we establish definitions and notation. In Section 2, we review a well-known family of 
FFT’s that are variants of the original Cooley-Tukey [l] algorithm and discuss their implementations in 
Sisal. In Sections 3 and 4 we compare Sisal implementations of variants of the radix 4 Kom-Lambiote and 
Pesise algorithms. The Pease variant outperforms Kom-Lambiote as well as Cann’s [l] implementation of 
Stockham’s algorithm.

The n-point DFT of a complex sequence x ~  x(k) of period n is the complex sequence of period n 
determined by the set of equations

n—1
y(j) =  0 < J < n -  1, (1)

fc=0

where =  e“2»r»/n  ̂_  yC^i. In matrix notation, the DFT is given by

y =  FnX, Fn =  0 < t,y < n -  1. (2)

Thus the DFT of a vector of length n can be computed in time O(n^). However in 1965, Cooley and Tukey
[3] showed that the DFT can be computed in time 0 (n  logn). Subsequently, variations of the Cooley-Tukey 
algorithm, which vary in vector size and data flow, have appeared in the literature. These algorithms together 
with the original Cooley-Tukey algorithm are generically known as fast Fourier tremsforms (FFT’s). In the 
next section we shall describe a family of FFT’s in terms of their tensor formulations.

The tensor product of an m X m matrix A = (o,y), i , j  = 0, ...,m  — 1, by an n X n matrix B  is the 
mn X mn matrix defined by

A®  B =  (oijB). (3)

If z is a vector of length mn and if we partition x into m blocks of length n, X q, X i , . . . ,  X m -i, then

(I„ ® B )x  =  (B X o ,B X i,.. . ,B X „ .i) . (4)

Thus, the computation of (!„  ® B)x can be thought of as the parallel application of B  to the m vectors 
Xo, X̂ u • • •) X^m-i- On the other hand, it is easily shown that

{B ® Im)x =  (6o,oA^o +  . . .  +  b o ^ n - lX n -U  • • • > b n - l ,o X o  -|- . . .  +  6 n - l ,n - l .X „ - l) )  (5)

where B =  0 <  i , j  < n — 1, and X q, X i , . . .  ,Xn~i represents a partitioning of x into n blocks
of length m. In view of (5), B ® Im has been termed a vector operation. Although these parallel/vector

* This work was supported by NSF grant RII-8905080, the Computational Mathematics Group of Puerto 
Rico EPSCoR n  grant, and the NSF Cornell NSI Army Research Office grant.
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interpretations of the operations [Im 0  B)x and [B 0  Im)x are convenient for conceptional purposes, the 
actual machine vectorization/parallelizations depend on their use in programs and decisions made by the 
compiler.

An important aspect of FFT implementations is data communication, which is manifested in the tensor 
formulations by permutation matrices, or stride permutations. A stride permutation P{mn, n) acting on a 
vector of length mn is defined by

P{rnn, n )x =  ((xq, Xn> • • •, ̂ (m—l)n)> (®1> ̂ n+ lt • • •» 3<(m—l)n+l)) • • • (^n— li ®2n—1» • • • i ®mn—l))i (®)

where x ~  (xq, sji, . . . ,  ®mn—i)-
A useful property of stride permutations is the so called Commutation Theorem:

P{mn, n){A ® B) =  (B 0  A)P{mn, n), (7)

where A and B  are m x m and n X n, respectively.

2. A  family o f FF T ’s. We define

= d iag {l,u )„ ,u j„ ...,U r7^ )  (8)

and ^

2T* =  (9)
<=0

IV 1x61*6
(£>;*)♦• =  diag(l,wU , . . . ,  (10)

and where ® respresents direct sum, i.e., is a matrix whose nonzero elements consist of { D y y ,  t =  
0 ,1 , . . . ,  r  — 1, along the main diagonal In what follows we denote T^i-i simply by 2”' .

An FFT for computing FnX can be described in terms of a factorization of the matrix F„. The FFT’s
discussed here, the proofs of which can be found in, e.g., [8], all follow from the following identity:

Fr, =  (Fr 0 0  F,)P{sr, r). (11)

The original Cooley-Tukey algorithm in tensor notation is:

k
F,. =  ®  / r < - x ) ( / r » -  ®  3 ^ ' ) } i« ( r * ') ,  (1 2 )

«=1

where R{r'°) represents the digit-reversal permutation. Note the succint way in which the tensor notation 
bares the idea of the algorithm. In view of the above definitions, formula (12) says that in order to compute
the FFT of a vector x of length r*’, we perform a digit-reversal permuation on x. Then for each stage
i =  1 , . . .  ,k, apply the “twiddle” factor T”’ to each of r*'“* blocks of length r*, followed by r*"* applications 
of the “butterfly” operations Fr 0  J r . - i  to each resulting block.

One of the problems with implementing the Cooley-Tukey algorithm on parallel/vector machines is that 
vector lengths become small and/or that overparallelzation takes place for small values of t. More suitable 
algorithms for parallel/vector machines are the “parallel” algorithm

0 ^ ’r ) P ( r ^ r * '- l ) ( ^ ’•• 0  J ,* -O P (r^ r)} i^ (r '= ), (14)
t=X

originally developed by Pease [6] and its “vector” variant

F r .  =  { f [ { F r  0  / .* - i ) (T ^ ‘ 0  / , .- .) P (r " ,r ) } iZ (r * ) ,  (13)
»=i
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first described by Kom-Lambiote (5].
Each of the above algorithms is given in its “decimation in time” form, i.e., the “combine phase” is

applied to the result of digit-reversal permuting the input vector. In the “decimation in frequency” (DF)
versions digit-reversal is applied to the output of the combine phase. The DF forms are easDy obtained 
from the DT forms by taking the transpose of each side of the given formula and making use of following 
properties:

=  (15)

where A* denotes the transpose of A and

P*{mn, n) =  P~^(mn, n) =  P{mn, m). (16)

Cooley-Tukey DF (Gentleman-Sande):
k

F r .  =  i? (r ^ ){ ] ] [ ( /r .- i  ® r * “ ‘^‘) ( / , . - x  ® f ;  ®  / , . - . ) } •  (17)
^=l

Pease DF:
k

Fr. =  iZ(r*){n^(»'*.»-'''')(7"'“ *̂ ' ® Ir i- i)P {r^ r){Ir .- . ® ^;)/>(r^ r*'"')}. (18)
»=i

Kom-Lambiote DF: ^

F r. =  R { r '^ ) { f [  P(^ r̂''-l)( ”̂''■•̂ * ® J,.-x)(Pr ® (19)
»=i

The above tensor formulas completely functionalize the given algorithms. One only has to program the 
functions, R{r'°)x, {I, ® B)x, [B ® 7 ,)i, (T”/* ® I,)x, (/, ® T”’l ‘)x, FrX, P {n ,n /s)x , and Dx, where D 
is a diagonal matrix, to obtain the entire family of algorithms. However, the resulting algorithms are not 
necessarily optimeil. In the first plau:e, replacing B hy Fr ia B  ® I, or I, ® B  does not take advantage of 
the symmetries in Fr. Also, the compiler might not fuse loops across functions optimally. In particular, for 
implementations on a Cray, special care must be taken in fusing a power of 2 stride permutation in order 
to avoid memory bank conflicts. Nevertheless, the tensor notation provides a powerful tool for deriving the 
necessary functions for programming optimal FFT’s.

S. A  Sisal program  for the radix 4 DF Kom-Lam biote algorithm . We now turn to the problem 
of developing Sisal programs for FFT algorithms defined by their tensor representations. We shall present 
only key functions and we shall do this in terms of a psuedo code rather than detailed, less readable, Sisal 
code. In particular, we shall represent complex vectors by the data type array [complex]. “Complex” is not 
actually a data type in Sisal 1.8. In our programs we implement complex arrays by pairs of real arrays.

All of the FFT’s of the previous section involve a separate ordering phase, i.e., application of digit- 
reversal either before or after the combine phase. The Stockham algorithm [2], which has received consider­
able attention by implementers of FFT’s on Crays, avoids the ordering phase by distributing digit-reversal 
throughout the combine phase. Cann [l] has developed, in an imperative style, a Sissd implementation of the 
radix 4 Stockham algorithm which he claims outperforms, on a Cray Y-MP, the FFT of the signal processing 
library provided by Cray Research, Inc..

The virtue of the Stockham algorithm is that it avoids the cost of digit- reversal. However, in some 
applications of the FFT, such as convolution, it is desirable to separate the combine and ordering phases. 
In this section m d the next we compare functional versions of the DF Kom-Lambiote and the DF Pease 
algorithms and their implementations on a Cray Y-MP. In order to reduce the number of serial steps and 
the number of flops, as well as the number of memory stores and fetches, which is important for a Cray, we 
consider the case r =  4.

Let us first examine the DF version of the Kom-Lambiote algorithm which is traditionally regarded as 
a vector algorithm. For r =  4, (19) becomes

F̂ . = R(4>‘) { f l  P(4^ 4''-^)(r"‘"'^‘ ® /4-x)(F’4 ® A*-*)} (20)
t=i
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The implementation of this algorithm clearly requires a sequential loop of length k followed by an application 
of digit-reversal. Our goal is to simplify the structure of each serial step by combining each application of 
P(4*,4*“ )̂ with the twiddle factor T* ® / 41-1 and the butterfly operation F4 0  / 4/k-i in such a way as 
to eliminate power of 2 strides. To this end, let Vi be the diagonal of T* 0  Zji-i. Then for any vector y 
of length n and any i,

P(4^4''-^)(^^‘■■■̂‘ 0  /4 .-0(^’4 ® =  P(4*,4''-^)(Vi O (P4 0  / 4*-x))y (21)

where o denotes component-wise vector multiplication. Now we would like to fuse P(4*,4*'~^) with the loop 
for {Vi o (P4 0  / 4fc-i))y. However, this necessitates a scatter operation, which is not readily implementable 
in Sisal 1.8. Consequently, we take advantage of the ability of Sisal’s forall expression to return multiple 
values. We compute, not (Vi o (P4 0  / 4k-t)) as a single vector, but rather the four block components 
Yo,Ei^i o y i ,P i ,2 o Y2 , and Ei ŝ o F3, where Vi =  (/, and (P4 0  / 4fc-i)y =  ( i o , 52 . 13)-
Now F(4^, 4*“ )̂ can be applied by interleaving the four blocks Yq, jF«,i o Yi, Ei,2  o Y2 , and £<,3 o Y3 ). If we 
precompute all values of Ei^i, P,-,2. then each serial step of our Kom-Lambiote variant will consist of an 
invocation of the function B  followed by an interleave. The function B is defined by the following pseudo 
Sisal code:

function B(k:integer;Wl,W2,W3:airay[complex];x:array[complex]
returns array [complex],array [complex] ,array [complex] ,array [complex])

let
ekl := exp(4, k — 1);
vector1,
vector2 ,
vectors,
vector4 := for j in 0,ekl-l

compl,comp2,comp3,comp4 :=
/4(i[y], x(j +  ekl, i[y +  2* eklj, x[j +  3 ♦ ekl], W  l[y], W  2[y], W  3[j‘]) 

returns array o f  compl 
array o f  comp2 
array o f  comp3 
array o f  comp4 

end for
in
array _setl(vector 1,0 ), 
array-setl(vector2 ,0), 
array J5etl(vector3 ,0 ), 
array-setl(vector4,0) 

end let 
end function

Here /4  is an optimized function which computes the component-wise product of a vector of the form 
(1, tui, tU2) t ŝ) hy the Fourier transform of a vector x of length 4. The function interle ave can be implemented 
by a loop of length and stride 1 as follows:

function interleave(length:integer;xl,x2,x3pc4:array[complex] returns array[complex]) 
array-setl(for i in 0 ,length-l

returns value o f  catenate array[0:xl[i],x2[i],x3[i],x4[i]J 
end for,0) 

end function

Now f f t  can be implemented as follows

function fft(k:integer;index:array[integer];El,E2,E3:array[array[complex]]pc:array[complex] 
retTims array [complex])
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let
efcl := cxp(4, k — 1); 
n := 4 * efcl; 
z :=

for initial
t  : =  1;

y : = x
while t < =  fc repeat

y  := interleave(ekl, B{k, El\oldi], E 2 \oldi], EZ\oldi], oldy)); 
i  := oldi +  1 ; 

returns value o f y 
end for

in
permute{z, n, index) 

end let 
end function

3. A  Sisal program for the radix 4 DF Pease algorithm. Although the implementation of P(4^, 4^~ )̂ 
in terms of interleave eliminates power of 2 strides, it does not come without cost, namely, it must be invoked 
at each serial step. In the case of the Pease algorithm, the cost of performing the first two stride permutations 
in

fc
P4.  =  i^ ( 4 ' ' ) { ^ ^ ( 4 ^ 4 ^ - ' ) ( 2 ^ * ■ ’^‘ ® /4 .- I )P ( 4 ^ 4 ) ( /4 .- ^  ® P 4 )P (4 * ,4 * -^ )}  (22 )

«=i
can be transferred to the precomputation of the twiddle factors. To see this, define Vi as before and observe 
that for any vector y

P(4^4*'-^)(^^‘■‘■'* ®  J 4 . - i ) P ( 4 * = , 4 ) ( / 4 * - i  ®  P 4 ) P ( 4 * , 4 * ' - ^ ) y  (23)
=  P(4*',4*'-")Vi oP(4*',4''-")P(4*,4)(/4*-x ® P r)P (4* ,4*-^ )y  
=  P ( 4 S 4 '= - ^ ) V i  o  ( / 4. .X  0  P 4) P ( 4̂ 4' ' - ^ ) y

In this case, we define P(4*,4*~^)V< =  ( /, £ i,i, Pi,2i -£<,3) and we precompute all values of £ i ,i ,£ i ,2,-Si.s- 
Now each serial step can be performed by a simple invocation of the following function

function B(k:integer;Wl,W2,W3:array[complex];x:array[complexJ returns array[complexj) 
let
efcl := exp(4, fc — 1); 

in
aray-8etl( 
for j in 0,ekl-l
quad := /4(x[j], x[j +  efcl], x[j +  2* efcl], x[j +  3 * efcl], W l[j],W 2\j\, W 3];]) 

returns value o f  catenate quad 
end for,0) 

end let 
end function

The / f t  function in this case is the same as the one given for the Kom- Lambiote variant except that 
interleave is omitted. The savings obtained by the elimination of the interleave operation is considerable. 
For example, execution time on the Cray Y-MP for n =  4® using all 8 processors is only 55% that of the 
Kom-Lambiote variant.

Each of the above algorithms is valid only for vector lengths that are powers of 4, i.e., even powers of 2. 
When n =  2* where fc is odd, Fn{x) can be computed making use of the following formula which is obtained 
from (11) by transposing each side and taking n =  rs where r =  2 and s =  2*" :̂

P„ =  P (2 \  2*'-^)(/2 ® P2*-i)P^ (P2 ® /2*-0 (24)
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The Sisal code for implementing (24) is straightforward. We compute F„(x) by computing 2^ (F2 ® Izi‘- t)x  
in two hzdves in a way similar to the computation of the B function for the Kom-Lambiote variant. Then 
an “even” FFT is applied to the two halves and the two results are interleaved.

Tables 1 and 2 compare mnning times on the NERSC CRAY Y-MP for our Sisal implementation of the 
Pease variant (PFFT) with those of Cann’s (CFFT) after having changed the single precision real arithmetic 
of CFFT to double precision as used in PFFT. PFFT was compiled with the option -maxconcur while CFFT 
was compiled with the options recommended by Cann, i.e., -hybrid -concur -vector.

Table 1. Execution times in seconds for PFFT, n =  2*“.

k 1 CPU 4 CPU’s 8 CPU’s
16 0.042011 0.012496 0.006037
17 0.087329 0.024462 0.013726
18 0.175957 0.046390 0.024890
19 0.377403 0.099038 0.058168
20 0.825157 0.201309 0.107798

Table 2. Execution times in seconds for CFFT, n =  2*“.

k 1 CPU 4 CPU’s 8 CPU’s
16 0.034853 0.014313 0.013358
17 0.061205 0.023366 0.018410
18 0.123053 0.046848 0.038326
19 0.259286 0.094445 0.071659
20 0.523968 0.204599 0.159223

The above times do not include initialization, which for CFFT includes the computation of a table of 
sines and cosines and which for PFFT includes the computation of a table of roots of unity as well as the 
computation of a table of indices used for digit-reversal. Times for PFFT do, however, include the digit- 
reversal permutation, which constitute, no matter the number of processors, about 11% of the above mnning 
times.

The next two tables campare MFLOP rates for PFFT and CFFT.

Table 3. MFLOP rates for PFFT, n =  2*“.

k 1 CPU 4 CPU’s 8 CPU’s
16 106 356 738
17 109 391 697
18 114 432 805
19 114 431 735
20 108 443 961

Table 4. MFLOP rates for CFFT, n =  2*.

k 1 CPU 4 CPU’s 8 CPU’s
16 112 272 292
17 127 334 424
18 145 381 465
19 137 377 498
20 153 392 504
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In general, the performance of PFFT in comparison to CFFT will be best for n =  2  ̂ when k is even, 
as can be expected from (24).

The simple loop structure of PFFT is obtained in large part by trading code for the memory space needed 
to store, in a redundant way, vaudous roots of unity. For example, forn =  2*, A: even, the precomputed tables 
in each of the programs requires the computation and storage of \kn  complex numbers. Computation of 
these tables is from three to ten times slower than computation of the table in CFFT. On the other hand, 
using a highly efBcient algorithm [7], the computation of the table of digit-reversjil indices is very fast, e.g., 
.001 seconds for n =  4? and eight processors. But in any case, the time for initialization is insignificant if 
the program is used to compute a large number of FFT’s of the same size.

The same ideas used in PFFT could be applied to obtain fast programs for Fn where n =  and r is 
any positive integer. This would require some slight changes in the precomputation of the twiddle factors 
as well cis an optimal function for the computation of Fr for a given r. PFFT could also be modified, at the 
cost of additional loop structure, to reduce the amount of memory needed to store the precomputed powers 
of w.

C onclusions. We have presented a mathematical framework for functionalizing and optimizing FFT 
algorithms. Starting with an FFT algorithm expressed in tensor notation, one can use the laws of tensor 
algebra to obtain tensor formulas that take into account a given architecture and are easily translated into 
Sisal. Work is in progress to develop Sisal implementations for other FFT algorithms using this same 
methodology. An interesting problem is to investigate the possibility of developing a high performance 
“universal” FFT Sisal program, in the sense that given an FFT algorithm A in terms of a tensor formula, 
the program optimally computes Fn{x) according to A.
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Abstract
This paper presents a signal processing application and its implementation in the 

SISAL programming environment. It shows that a signal processing application can 
be effectively coded in SISAL and can be analyzed to investigate the fusibility of its 
parallel implementation using the SISAL tools. We also present the implementation of 
Fast Fourier Transform (FFT) which is a kernel of many signal processing applications 
on the Sequent Symmetry systems. It is shown that exploiting fonction call parallelism 
can be more effective than the parallel loop slicing for some applications.

1 Introduction

Most signal processing applications are highly computation-intensive, and in many cases, 
real-time performance is needed. While the algorithms for solving such applications are 
well known and understood, their execution is still one or two orders of magnitude slower 
than what is needed for real-time processing.

A significant speed-up in the evaluation of such algorithms can be obtained by their 
implementation in a multiprocessor system. However, the implementation in a multipro­
cessor system is much more complex than in a single-processor system. The complexity of 
programming in multiprocessor systems is mainly due to the fact that a programmer has 
to specify parallelism explicitly to exploit the parallelism of the given algorithm. Moreover, 
even if it is possible for the compiler to extract paralelism out of the sequential program 
and to generate an appropriate code for a parallel machine, the extent of parallehzation is 
limited because o f the complexity in anal)^zing the sequential program.

In a pure functional programming language, parallelism is implicitly expressed. Since a 
program written in a piue functional language is side-effect-free, the order of each statement 
in the program is not as significant as in an imperative language. Each statement can be 
executed in any order as long as its inputs are already defined. Therefore, for a compiler, it 
is very easy to extract parallelism out of the program written in a functional programming 
language.

•This work is supported in part by the National Sdenoe Foundation under grant No. CCR-9013965.
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Figure 1: The overall programming process

SISAL (Streams and Iterations in a Single Assignment Language)!?] is the functional 
language which we chose for parallel implementation of our application. SISAL has been 
proved very effective in developing applications for implementation in multiprocessor 
systems. An optimizing compiler for SISAL has been developed for various shared memory 
multiprocessor systems[3,4]. It has also been shown that the performance of the SISAL 
programs is comparable to (or better than) that of Fortran programs]?].

In this paper, we present a signal processing application and its parallel implementation 
in the SISAL programming environment. The overall programming process is shown in 
Figure 1. In the first phase (the upper block), we analjrze the selected algorithm to 
verify that the algorithm is suitable for parallel implementation. In this phase, we mainly 
observe the potential parallelism of the algorithm. Its main purpose is to see whether 
the application (or the algorithm) has enough parallelism to exploit when implemented 
in a multiprocessor system, and determine the origin of the parallelism. If the potential 
parallelism is not enough, the algorithm is redesigned (or optimized). In the next phase 
(the lower block in Hgure 1), we implement the algorithm on a target machine. In our case, 
we implemented the FFT, which is the kernel of our signal processing application, on the 
Sequent Symmetry shared memory multiprocessor system.

The FFT algorithm we selected is based on double recursion. This recursion is the main 
source of parallelism of the algorithm. The loop-slicing technique of most parallelizing com­
pilers including the one we use(OSC) cannot speedup this type  of algorithm. Therefore,
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we implemented the parallel function call mechanism in the run-time system of the target 
machine, and the recursive function call was replaced by parallel function call in the trans­
lated C-code. We observed that, for the recursive FFT algorithm, the parallel function call 
outperformed loop-slicing. This result convinced us that, for a certain type of applicatioirs, 
especially writh recursive function calls, parallel function call is a very effective way of 
exploiting parallelism.

In the subsequent sections, we describe the application and the relevant algorithms, 
and then we present the analysis of the application using SISAL tools. In Section 4, we  
describe the implementation details and the performance measures of the recursive FFT on 
the Sequent Symmetry using the parallel function call.

2 Description of the Application

The real-time analysis of sonar signals for the mapping of the ocean floor or the detection 
of submerged targets has been found to be similar to the modeling of wave propagation in 
the troposphere using the parabolic equation[5]. The split-step algorithm which is based on 
the following two equations is used to compute «(x, z), the power gains (or losses) at (x,z), 
where x is the horizontal range and z is the vertical range from the source {e.g., an antenna). 
Forward and backward Fourier transforms are denoted F  and F~^ respectively.

U(x,p) =  F[tt(a:,z)] 

u{x -\-6 x ,z) =  ^-1 p^g-<(p'«r/2i)]

where:

p  =  k sin 6

6  =  The angle from the horizontal

k = w\//ie(a,0)
e(a, 0) =  The permittivity just above the earth's surface

a =  Radius of the earth

The split-step algorithm is applied along the horizontal range. Therefore, the depen­
dence between each step of computation is as follows: the label (F or F “ )̂ on the arrow 
shows the Fourier transform involved at each step.

u(0, r) (/(0,p) u(6 x ,z)  U{6 x,p) u{2Sx,z)

To begin calculations, we have to find the initial value(s), U{0,p). 17(0, p) is obtained by 
the following equations:

U(0,p) =  Ue{0,p) +  Uo{0,p)

Ue{0,p)  =  2 F c [ f { z ) c o s p e z ] c o s p z A - 2 i F , [ f { z ) s i a p e z ] s i n p z A

Uo{0,p)  =  2F , [ f { z ) s iD .peZ]cOSpZA-2 iFc[ f { z )cOSPeZ]s inpZA.

f ( z )  = F^H^’dCp)]
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Where Fd{p) is the antenna pattern and Fc and F,  are cosine and sine transforms.
The application kernel shown above can be described in algorithmic form as follows:

Algorithm splitstep 
Input

Fdip) : Sampled values which represent the antenna pattern. 
n : Number of steps over the horizontal range.

6 x : Incremental value for each range step. 
k : w\/ti€{a,Q) as described above. 

n' : Refractive index.
Omax ' Maximum angle for which the antenna pattern is sampled. 
rip : Number of sampled points.

Output
u{x, z ) : The power gains (or losses) at (x^>

Begin
1. Find the initial condition U(0, p) from Fd{p).
2 . u(0 , z) *- inverse^t (t/(0,p).

4. X 0 ,j  *— 1
5. While j  <  n Repeat 

5-1. C2(p) ^
5-2. u(x +  6x, z) *— Cl inverse^ {U{x,p)ci{p))
5-3. U(x -k 6 x,p) *- fft (u(x +  Sx,z)
5-4. X <— X +  6x, j  <— j + 1

End

The initial function U(0, p) is obtained by proper modeling of the source, i.e. the antenna. 
The equations which are needed to compute U(0, p) are shown in the previous section, and 
a detailed description of source modeling can be fotmd in [5].

The FFT algorithm is recursively expressed as follows[6,9]:

Algorithm
Input

/ :  array of N  complex numbers, where N  is the power of 2.
Output

F : array of N  complex numbers which is the fourier transform of / .
Begin

1. Let /* be the array of even components of / .
Let f°  be the array of odd components of / .

2. Find = f f t i f ‘ ) and F<> =fft(f<>).
3. Let Wbee^’̂ */ .̂

For I- =  0 , ,  N/2,  let I* =  F® +  W* F .̂
For i  =  0 , . . . ,  N/2,  let Uk =  F^ -  W'‘F^.

4. For k =  0 , . .  . , 2 / N ,  let Fk =  Lk and Fk+ff/2  =  Uk- In other words, F  is the 
concatenation of L  and U.
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End

The split Jtep  algorithm performs 0{n) Fourier transforms. The FFT itself has a time 
complexity 0{n  log n) when it is executed sequentially. Therefore the splitstep algorithm 
takes 0(m n log n) to complete its computation on a sequential machine, where m is the 
number of steps and n is the number of sampled points. The Split^tep algorithm is based 
on iterating over each horizontal range step. In other words, each step is dependent on 
the result of the previous step. Therefore, the parallelism of the splitMep algorithm can 
be achieved only by the potential parallelism of the Fourier transform at each step. Thus 
even if we increase the problem size with the number of range steps, parallelism does not 
increase. In other words, speed-up with a large munber of processors can be obtained only 
if we have enough sampled points for the Fourier transform. Therefore, as per Amdahl's 
law[\\, the execution time of the algorithm is dominated by the iteration over each range step 
which is the sequential part of the algorithm. Assuming an infinite number of processors, 
the splitjstep algorithm takes 0(m  log n) time.

3 Analysis of the Application using SISAL Tools

As we have already discussed in Section 1, several steps are involved in developing an 
application in a parallel programming environment. First of all, we have to select (or 
design) an algorithm which is suitable for parallel implementation. The selected algorithm 
is then coded in a target language. The next step is to debug and optimize the program using 
parallel programming tools. These steps are, indeed, the same needed when developing 
an application on a sequential machine. However, the appropriateness of the algorithm 
for parafiel execution is mainly determined by the potential parallelism of the algorithm. 
If the algorithm itself does not have any parallelism, we cannot expect any speedup even 
with an infinite number of processing elements. In this section, we present the performance 
measures of the algorithm which are obtained using the SISAL tools.

We use the following tools to run the SISAL program of the application and observe the 
performance meastues of the program (see also Figure 1).

1. OSC (Optimizing SISAL Compiler): OSC generates a C-code out of the SISAL 
program with intensive optimization^ 3]. We apply OSC to produce optimized 
IF1[11] in analyzing our sigiral processing application.

2. DI (Debugger and Interpreter) : DI is used to verify the functionality of the 
program,and to observe the potential parallelism and its simulated execution 
time.

The general procedure of developing an application using these tools can be summarized 
as follows.

1. Design an algorithm.
2. Implement the algorithm in SISAL.
3. Compile the SISAL program into an IFl graph.
4. Run the IFl graph by using DI and observe the potential parallelism.
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Figure 2: Potential parallelism of split^tep

The potential parallelism obtained by the simulation of 16 sampled points over 16 range 
steps is shown in Figure 2. As we discussed in the earlier section, the split^tep executes 
the loop body sequentially over each range step. Thus, as can be seen in Figure 2, there 
is little parallelism during the execution of the whole program. However, if we carefully 
look at the graph there are 2n repeated patterns, where n is the number of range steps over 
which we apply the split^tep algorithm. The detailed view of the parallelism is shown 
in Figure 3. Parallel execution of the program, indeed, can reduce the interval between 
steps, since there is potential parallelism at each step, depending on the number of sampled 
points for which the Fourier transform is performed. The potential parallelism of FFT is 
shown in Figure 4. The first grapb shows the maximum potential parallelism with an 
infinite number of processors and the second part shows the clipped parallelism with 32 
processors.

We ran the splitstep program for various data sizes, 64 x 32, 64 x 64, 128 x 32 and 
128 X 64, where m x n  means m sample points over n split-steps. The number of processors 
for which we simulated ranges from 1 to 256. The speedup is shown in Table 1 and Figure 5.

This simulation results confirm that a speedup can be obtained by employing a large 
number of processors only if we have enough sampled points. The fact that the num­
ber of steps over the horizontal range carmot increase the potential parallelism is rather 
disappointing. However, we can still benefit by employing multiple processors, if there 
are a large number of sampled points compared to the number of available processors. 
For example, as can be seen in Figure 5, we can achieve a nearly linear speedup up to 32 
processors when we have 128 sampled points in the ideal case.
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Figure 3: Potential parallelism of split^tep (magnified view of the first three steps)

64 x32 6 4 x 6 4 128 X 32 128x64
4 3.7 3.7 3.8 3.8
8 7.0 7.0 72 72

16 123 123 133 133
32 202 202 22.8 22.8
64 31.6 31.6 36.6 36.6

128 36.6 36.6 533 532
256 36.7 36.7 61.3 612

Table 1: Speedup of split^tep
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Figtire 4: Potential parallelism of FFT
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Figure 5: Speedup olsplit^tep

4 Implementation of Recursive FFT on the Sequent S)onmetry

In the above sections, we have discovered that the potential paralleUsm of the split^tep 
algorithm mainly comes from the recursive-FFT. We also observed that the speedup of the 
split^tep algorithm can be achieved solely by the speedup achieved by the FFT. Based on 
this observation, in this section, we explore the parallel implementation of the recursive 
FFT on a real parallel machine.

The target machine we chose to run our SISAL implementation of the recursive FFT is the 
Sequent Symmetry Model 81 shared-memory multiprocessor. This multiprocessor consists 
of 26 16Mhz Intel 80386 processors with Intel 80387 and Weitek WTL 3167 floating-point 
co-processors. Each microprocessor has a 64KB cache and is connected to other processors 
by a bus. The multiprocessor runs the Djmix V3.12 operating system, a multiprocessor 
version of UN1X.[8]

For our SISAL implementation, we use OSC (Optimizing SISAL Compiler) to generate 
a portable C-code [4,10]. OSC mainly targets shared-memory systems, and it performs a 
certain level of parallelization. However, for our application, where the potential paral­
lelism is mainly obtained by the double recursion, the parallelization of the OSC does not 
give us a reasonable speedup, since OSC performs loop slidng for parallel execution of the 
user program. Therefore, we introduced a parallel function call mechanism to the original 
OSC run-time system.

4.1 Overview of the OSC Run-time System for Parallel Execution
The run-time system which supports the parallel execution of a SISAL program provides 
the following major functions:
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1. General-purpose dynamic storage management.
2. Interfaces with the operating systems for process management.
3. Input/output and command line processing.

In this section, we mainly describe how OSC supports the parallel execution of SISAL 
programs.

The OSC run-time model defines its own activation record for each concurrent task(similar 
to a process control block in a traditional operating system) and each task is executed by one 
of the worker processes. On each processor, the -worker process is running concurrently 
waiting for the job to do. There can be a global ready queue for all the worker processes, 
or each worker process can have its own ready queue from which it dispatches the next 
task to do. Upon encoxmtering the code segment^ which is to be executed in parallel, an 
activation record is created for the task corresponding to the code segment, and then placed 
in the global ready queue.^ After placing a child task into the ready queue, the parent task 
pursues its execution. When the results are needed, the parent task should wait for the 
child task. While waiting for its child task, the parent task is suspended, and the worker 
which was executing the parent task looks for if there is any other task to execute. In this 
way, the utilization of each worker process is increased and, in some cases, we can prevent 
a deadlock.

Note that there is no single centralized scheduler in the OSC run-time model. Each 
idling worker process keeps attempting to dispatch a task, and also any worker process can 
activate a new concurrent task during its execution of a task.

The general scheme of the parallel run-time model is briefly described as follows:

- In the beginning, create n worker processes on n processors. Only worker 0 
continues the execution of the SISAL program while others are waiting for a 
task to execute.

- Upon encoimtering the codeffunction) that should be executed in parallel, the 
current task builds the activation record for a new subtask, and puts it in the 
ready queue, and then continues its execution.

- When the result of the function (which was spawned as a subtask) is needed 
repeat the following:

1. If the child task has been completed, return to the parent task.
2. If the child task is not completed, yet, suspends itself and check if there is 

any other tasks to execute.
- When the execution of the program is completed, shut down the run time system  

and produce resultsfif requested). Note that worker 0 is the only process which 
can start the shutdown procedure for the normal exit of the program.

A loop body is transformed into a C function by the C-code generator of the OSC. 
Further the m  slices of the same loop body are created with different index arguments 
(Figure 6). A worker, after the initiation of m  slices, immediately enters the waiting loop 
and suspends the current task to execute other tasks if any.

* Indeed, the cxxle segment is converted into a C function by the OSC when it is to be executed in parallel.
^Alternatively, if we use a separate queue for each worker process, the job is placed into the proper queue 

according to the allocation policy. Hereafter, for simplicity, we assume there is a global ready queue.
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i = 91400

Figure 6: An example of loop slidng

4.2 Exploiting Function Call Parallelism 

The Primitives

As mentioned earlier, OSC does not provide a general partitioning scheme in various 
levels of resolution. Therefore, our application, in which the parallelism is contained in the 
double recursion, cannot benefit from the parallelization of the current OSC implementa­
tion. Hence, we implemented a more general way of exploiting coarse grain parallelism by 
introducing parallel function call.

The following two primitives are used to invoke a function in parallel.

1. ParallelCall: Build a new task fora function invocation and rettuns a pointer 
to a new task.

2. Paralleljoin: Wait until the invoked function is completed.

Here is an example of parallel execution of two functions in the user program.

tl = ParallelCall (fl, argl, arg2, ...); 
t2 = ParallelCall (f2, argl, arg2, ...);

Paralleljoin(tl);
Paralleljoin(t2);

In the above example, functions f  1 and f  2 are called in parallel. The caller continues 
its execution until it reaches Paralleljoin () . The Paralleljoin () should be called 
before the result of the corresponding function call is needed. The caUer itself, while waiting 
for the called function to be done, tries to execute another task if any.

Modification to output of the OSC

We still use OSC to generate a C-code from a SISAL program. After generating a C-code, 
we have to reorder the program statements to exploit the parallel function call. Consider 
the following code segment:
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rl = fl (...) 
xl = ... rl

r2 = f2 (...) 
x2 = ___ r2

If function f  1 and f  2 are independent and can be called in parallel, the above code 
should be reordered as follows:

rl = f1 (...) 
r2 = f2 (...)

xl = ... rl ...
x2 = .... r2 ...

Further, using ParallelCall and Paralleljoin, the final code would look Hke:

tl = ParallelCall (fl,...,rl) 
t2 = ParallelCall (f2,...,r2)

Paralleljoin (tl) 
xl = ... rl ...
Paralleljoin (t2) 
x2 = .... r2 ...

As can be seen in the above example, to fully exploit the function call parallelism, we 
have to provide a mechanism to re-order the statements of the target language. However 
in a real implementation, the re-ordering is implicitly done in the partitioning step. The 
code generator will produce the correct parallel code according to the partitioned data-flow 
graph. In the example above, if the partitioning is done properly, the lines calling f  1 and 
f  2 should be in different partitions. The code generator can therefore produce the correct 
code to execute these two partitions in parallel.

4.3 Performance Measures on the Sequent Symmetry

speedup

The execution time of the recursive FFT is shown in Table 2. In this table, we also 
showed the result obtained by the parallelization of the original OSC, i.e., loop slicing. As 
shown in the table, for our recursive FFT, parallel function call is much more effective than
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Figure 7: Speedup of the recursive FFT on the Sequent S5anm etiy

loop slicing. The corresponding speedup is also shown in Table 3 and in Figure 7. 

Comparison with other sequential machines

We have run the same program on the following platforms:

1. HP: HP9000-425t with 25Mhz 68040 and a proprietaiy floating-point co-processor 
running HPUX.

2. SU N 4: Stm Sparc system 4000 running SUN OS.
3. SU N 3: Sun3/100 with M68881 floating point processor.

The execution time is shown in Table 4.
To compare the general performance of each machine, we also presented the execution 

results of the Whetstone and the Dhrystone in Table 5 and Table 6. The Whetstone is used to test 
the floating-point performance while the Dhrystone is used to test mainly the performance 
of general system calls.

Comments on the results

As shown in the results, parallel function call is very effective way of exploiting paral­
lelism incurred by recursion. However, there is a big gap between the speedup we obtained 
on the Sequent Symmetry and the ideal parallelism observed by the simulation. We can 
siunmarize the possible causes of the gap as follows:

1. The simulated execution exploits the fine-grained parallelism at the IFl instruc­
tion level while we exploit the coarser grain parallelism at the user-defined 
function level.

2. Synchronization bottleneck: With a large number of processors, we encormter 
a noticeable sjmchronization overhead. In our case, with the centralized task
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LoopSlidng Parallel Function CaU
#PE 4096pts 16384pts 32768pts 4096pts 16384pts 32768pts

1 7.16 39.58 96.69 6.81 38.07 93.11
2 6.30 3531 88.91 3.44 19.04 4635
4 5.96 3336 82.93 230 936 26.74
6 5.85 32.73 81.15 136 836 16.63
8 6.02 33.21 81.15 1.52 7.90 14.77

10 6.44 33.05 80.81 1.46 734 1236
12 6.68 34.12 8135 120 4.97 10.84
14 7.00 3432 82.84 1.20 533 1137
16 6.81 41.78 87.08 1.09 5.18 11.65
18 7.81 38.46 85.61 1.04 4.74 12.34
20 8.62 39.80 89.44 1.04 5.80 12.20
22 8.33 36.62 87.95 0.98 5.69 9.39
24 10.75 38.46 91.99 1.47 4.75 11.12
26 10.91 50.16 102.79 1.71 4.66 12.23

Table 2: Execution time of recursive FFT on the Sequent Symmetiy

LoopSlidn S Parallel Ftmction CaU
#PE 4096pts 16384pts 32768pts 4096pts 16384pts 32768pts

1 1.00 1.00 1.00 1.00 1.00 1.00
2 1.14 1.12 1.09 1.98 2.00 2.01
4 130 1.18 1.17 2.72 4.11 3.48
6 132 131 1.19 4.37 435 5.60
8 1.19 1.19 1.19 4.48 4.82 630

10 1.11 1.20 130 4.66 536 7.41
12 1.07 1.16 1.19 5.68 7.66 839
14 1.02 1.15 1.17 5.68 738 8.05
16 1.05 0.95 1.11 635 735 7.99
18 0.92 1.03 1.13 635 8.03 7.55
20 0.83 0.99 1.08 6.55 636 7.63
22 0.86 1.08 1.10 6.95 6.69 9.92
24 0.67 1.03 1.05 4.63 8.01 8.37
26 0.66 0.79 0.94 3.98 8.17 7.61

Table 3: Speedup of recursive FFT on the Sequent S5onmetiy

#Pts Symmetiy(lPE) HP SUN4 SUN 3
4096 6.81 1.92 0.90 19.48

16384 38.07 1037 436 92.38
32768 93.11 17.87 7.38 185.04

Table 4: Execution time of FFT on the various sequential machines
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SymmetiydPE) HP SUN4 SUN 3
535 2.05 0.91 23.88

Table 5: Hme to spend to perform 10 Million Whetstone instructions.

Symmetiy(lPE) HP SUN4 SUN 3
5263 25000 33333 3448

Table 6: Number of Dhrystone instructions executed per second

queue, the mutual exclusion on the task queue causes even much more over­
head.

3. Storage Management Overhead : Our FFT uses a fairly large amount o f storage 
space and each instance of FFT call has its own copy of input. Therefore, the 
dyiramic creation and release of such storage space costs a lot.

We can reduce the overhead by several ways:

1. Decentralized task scheduling - especially for distributed-memory multiproces­
sors.

2. Optimizing ParallelCall: Many of the run-time optimizations can be embedded 
in the implementation o f ParallelCall. For example, an efficient allocation scheme 
including load balancing and cache coherency can greatly reduce the overhead 
incurred by the parallel function calls.

3. To employ a scheme to share the same storage space for each instance of the 
parallel function call - especially for shared-memory multiprocessors.

5 Concluding Remarks

In this paper, we showed how the SISAL programming environment can be utilized to 
implement a signal processing application in a multiprocessor s3rstem. We also presented 
that the parallel function call is a very efficient way of exploiting coarse grain parallelism. 
Especially, for our recursive FFT implementation, we could achieve much better speedup 
with parallel function call than with loop-slidng (the current parallelization scheme of 
OSC). Indeed, for som e applications, loop-slidng does an adequate job of parallelizing a 
program. Therefore, it would be important to have some elegant partitioning scheme to 
determine which kind of parallelism should eventually be exploited. Our next step w ill be 
to explore automatic partitioning schemes.

For more general and useful parallel programming m odels, we w ill consider the fol­
lowing areas for future research:

1. Implementation on a distributed memory system.
2. Implementation of an effident run-time system.
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3. Implementation of an automatic partitioning scheme for various grain size.
4. Implementation of a comprehensive parallel programming environment which 

includes compiler, debugger and profiler in a graphical user interface.
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1. MOTIVATION

SISAL is a functional programming language useful for creating programs that 
can be easily exploited for parallelism, run on a wide range of platforms (Cray, Iris, 
IBM RS/6000, etc.), and run at serial speeds competitive with FORTRAN ^ e f.l) . In 
order to take advantage of SISAL's s p ^  and parallelism, however, it is necessary to 
extensively rewrite existing FORTRAN code or create new code in SISAL. 
Translating from a language such as FORTRAN to SISAL is not particularly easy, 
since SISAL's data is comprised of semantically immutable values. Therefore, it was 
decided to test the performance of a combination of a FORTRAN driver and a SISAL 
subroutine. Consequently, extensive rewriting of the original FORTRAN code is not 
necessary and the program performance can be expected to increase due to SISAL's 
decided advantages (Ref.2). Since documentation of a FORTRAN/SISAL interface is 
not widespread and the corresponding performance is not well understood, what data 
should be examined to evaluate the resulting performance is itself an area of 
investigation. However, the experience and information acquired concerning the 
functional and Von Neumann language interface should prove to be didactic, at worst. 
The present paper attempts to identify the approach needed to translate code and create 
the interface, while detailing the communication between a FORTRAN driver and a 
SISAL subroutine. Also, the performance gain or loss will be reviewed.

2. APPROACH

2.1 Introduction to FORTRAN Code

To develop the desired procedures and code interface, the FORTRAN program 
chosen is a 2-D flow code, called CN4DFC, that computes several variables, such as

* This research is supported, in part, by an NSF REU Internship and, in part, by CRAY Research, Inc. 
Superconq)uter time was provided by the Ohio Superconq>uter Center and Lawroice Livermore 
National Laboratory.
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voiticity, stream function and pressure, for flow around an airfoil. The subroutine 
OPG, which solves for the stream function, was chosen to be converted to SISAL, 
because it solves an elliptical partial differential equation using a direct method and, 
hence, accounts for a majority of the program 'work'. According to the Cray 
performance utility Flowtrace, the subroutine OPG accoimts for 63% of the total 
workload of the program. Using Amdahl's law, this should realize a q>eed-up factor of 
at most 2.2 for 8-processor execution. While it is true that the subroutine OPG 
manipulates a large array of (461x129) data points, this is not the reason for its large 
workload; the large number of times the subroutine is called is the reason that it does 
the majority of the work. This was recognized to be a possible burden to the 
performance since mixed-language interfaces are deemed 'expensive' (Refs.3 and 4).

The program, CN4DFC, computes stream function (variable name pjz), 
vorticity (omega), and surface pressure coefficient (f^  for a flow around a cambered 
airfoil. The subroutine, OPG, solves for psi. Basic^y, it takes the source term of a 
matrix equation and does the following operations on it:

(1) conversion to block Gaussian elimination plane(BGE),
(2) forward elimination,
(3) back substitution,
(4) insertion of boundary conditions,
(5) conversion back to computational plane.

The computational plane is converted to the BGE plane in order to create a tightly 
banded tri-diagonal matrix. This aids in enhancing the performance of the subroutine.

The OPG subroutine also updates the vorticity array, OMEGA, near the airfoil 
surface.

2.2 Specifics of Translation to SISAL

Attempt was made to retain the original program specifics, such as using the 
same variable names, array indexing techniques, and program structure. However, 
certain Von Neumann intrinsic techniques had to be removed or altered. The step of 
passing temporary work arrays to the subroutine had to be removed; SISAL deals with 
semantically constant variables; use of temporary arrays would have required 
sequential FOR LOOPS in order to reference 'old' values - this would have degraded 
performance. Also, the technique of updating array index variables after each section 
of code had to be changed. Again, variables in SISAL are kept semantically intact; the 
indices had to be computed based upon FOR LOOP variables and hand calculations.

A large amount of data altering is present in this routine; separate variables are
necessary to store the current contents of the variable 'psi', after each of the above five 
operations. To make the OPG subroutine more flexible and to maximize concurrency 
and contiguous array concatenation, steps (4) and (5) above were combined. This

84



eliminated the need for a separate array for boundary condition results and the resulting 
sequential FOR LOOP to update non-sequential values in the psi array.

The most difficult part of the program was working around SISAL’s basic 
notion of semantically intact arrays. Thus, some program alteration had to be done to 
accommodate this fact and build arrays contiguously. The modifications are listed 
below.

(1) The back substitution results were flipped both vertically and horizontally to 
work around the fact that SISAL does not yet support 'reverse concatenation' 
type of packaging for the results.

The back-substitution results were placed directly into arrays after computation of each 
value. Because of the need for back-substitution, it was necessary to place the new 
values in the following new order: each column of data was flipped upside down, and 
also the order of the columns was reversed. It should be noted that only the inversion 
of the column order was warranted, since the back-substitution propagates from the end 
to the beginning. The flipping of each individual column was optional, but was in fact 
implemented so as to ease the translation process from FORTRAN to SISAL; the 
original FORTRAN program computed the data in the same 'upside-down' manner.

(2) Creation of the BGE-results array in a new order to allow for proper 
concatenation.

Because of the changes described in (1) above, the required transformation back to the 
computational plane had to be modified in the SISAL source code since the BGE array 
now held data in a manner different from that originally used in the FORTRAN code.

(3) Filling in points at 'infinity' explicitly with zero to allow for a contiguous array.

In FORTAN, the points that are recognized to be infinitely far away from the airfoil 
are left unaffected and filled in later with the prescribed boundary values. In SISAL, 
however, these 'holes' could not be ignored. They had to be set to zero (arbitrarily) 
and later filled with the proper boundary values.

(4) Extended use of the parameter NCIEVN to remove any possibility of creating 
an array with redundant data.

When the data was flipped back to the computational plane in the original FORTRAN 
code, the program would overwrite one single column at the middle of the plane. This 
is due to the fact that the BGE transformation required two equal sized portions of data 
to fill in the upper and lower half of the BGE plane. Only if the number of horizontal 
mesh cells of data was odd (NC1EVN=TRUE) in the computational plane, the 
FORTRAN program would make a copy of the middle column and give it to both the 
upper and lower BGE halves, making them have an equal number of colunms. When
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this data was written back to the computational plane, this redundant column was 
written twice - once for each half of the BGE plane. Concatenation of the data in the 
SISAL subroutine caused an extra column to be placed in the center of the plane, rather 
than that column being overwritten, as was the case in FORTRAN. Therefore, the 
parameter NCIEVN was tested within the SISAL subroutine to prevent this error.

These changes reflect the amoimt of effort put forth to eliminate any data 
copying and to preserve array building.

2.3 FORTRAN/SISAL Interface

The translation from FORTRAN to SISAL involved some minor changes within 
the calling program, CN4DFC, to accommodate the interface. These included:

(1) Configuring, starting and stopping of the SISAL run-time system,
(2) Alteration of the argument calling list to include array and result descriptors,
(3) Creating an integer variable NCIEVEN to overcome the inability of SISAL to

accept Boolean values from an interface.

Since Boolean values cannot be passed to SISAL through a mixed language 
interface, a new variable entitled NCIEVEN was created in the calling routine, 
CN4DFC, to replace the Boolean value NCIEVN.

Array descriptors were obviously necessary for all non-scalar argumrats and 
results. To conserve memory, the psi and omega results were returned back into their 
original array memory locations. Identical data descriptors were used to describe the 
argument and result arrays of psi and omega. If non-matching data descriptors were 
used for array and result descriptors, then errors resulted because it is not possible to 
send and return different parts of the same array. The SISAL subroutines SSTART and 
SSTOP were called only once, rather than for each call of OPG, to eliminate overhead. 
This change also corrected another error. If SSTART and SSTOP were repeatedly 
called, then the S.INFO file, which holds diagnostic and performance data, would 
become very large and result in an error because of its size.

The initialization process for the SISAL run-time-system requires that a certain 
amount of memory be allocated for the SISAL program. This number of bytes turned 
out to be difficult to estimate. It was not obvious as to how much 'work-space' would 
be needed and whether the PSI, OMEGA and FCP arrays would be 'owned' by 
FORTRAN and not needed to be copied by SISAL. Hence, a 'binomial-estimate' was 
generally used, starting at a maximum of 20 megabytes, followed by trial and error, to 
arrive at the final memory size. It was also observed that the larger the number of 
processors requested, the more the memory used. For example, if  8 processors were 
called for, it was impossible to allocate 20mB on the Cray for the SISAL RTS. 
However, if  the number of processors was reduced to 6 or even 7, the code would run 
with no error regarding memory. This leads the authors to believe that the amount of
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private memory for each processor multiplied by the total number of processors yielded 
an excessive allocation request for memory.

2.4 Debugging the SISAL Code

During the debugging process, aside from concerns of syntax, the maximum 
number of errors were located using the -bounds option with the Ohio Supercomputer 
(OSC) compiler. This option informs the user where and what type of out-of-bounds 
array access occurred. Another useful tool was the DEBUG function callable from 
w itl^  any SISAL code. This subroutine prints out its argument's value, name, and 
type. With the -glue option, OSC wiU leave the debug commands in place rather than 
moving them for better code efficiency. Because of the limitations of FIBRE, a 
separate FORTRAN subroutine would have had to be written and interfaced to output 
data for error checking if DEBUG were not available.

3. RESULTS

3.1 Validation of SISAL Code

The SISAL subroutine proved to yield the same results as the original 
FORTRAN subroutine. Tests were run on a smaller grid (63x21) for three cases:

(a) FORTRAN program on one processor,
(b) SISAL/FORTRAN program on one processor, and
(c) SISAL/FORTRAN program on multi-processors.

The raw data files were compared for accuracy. The SISAL multi-processor results 
and the SISAL uni-processor results were identical, leading to the conclusion that there 
were no data dependencies that were not expressed explicitly via the sequential FOR 
LOOP in the SISAL subroutine. The SISAL runs and the FORTRAN runs had some 
differences, as shown in Tables 1-3. These differences were not a consequence of 
programmer error, but rather small precision errors resulting from different run-time 
sequences of arithmetic operations between the SISAL and FORTRAN programs. 
After significant checking, the error was traced to the variable dgamma. This variable 
was computed to be O.OeO from a sum of numbers of equal magnitude but opposite sign 
in the FORTRAN program, while the SISAL program, resulted in a value of le-11 for 
this variable, because of a different sequence of additions. This error is minimal, 
considering that the original values were of the order of 10e3, and the program was 
executed in single precision on the Cray. Because of the structure of the program, the 
error was transported to each time step and sometimes magnified slightly. Even though 
the error is unacceptable for aerospace engineers, the program was found to correctly 
compute the solution to the problem being solved. The error could be reduced or 
eliminated by using double precision to compute dgamma, but that was not considered 
necessary for the present purpose.
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3.2 Performance

The performance of the SISAL/FORTRAN program was compared with that of 
previous runs of the FORTRAN program for 100 time steps, for Re=45000, and At=5e-
4. SISAL can be executed with any number of processors (limited by die hardware) as 
specified by the user. After some initial test runs, six processors were chosen, to 
optimize parallelization overhead and unnecessary gathering of processors. Because of 
the degradation in speed caused by the insertion of the interface, the results were not as 
good as eiqpected (see Table 4). Runs on the small (63x21) grid reveal a general decrease 
in performance for both the FORTRAN and SISAL/FORTRAN programs, due to the 
higho: ratio of overhead/workload, since there were not significantly many floating-point 
operations being performed. The difference in performance is viewed as a result of a 
specific feature absent from SISAL thus far that does not allow it to perform in a busy 
environment.

Autotasldng, available on the Cray supercomputers, is able to use a variable 
number of processors for a section of code based upon both the workload of the system 
and the amount of work in the loop. User-given hints about the loop specifics, such as 
iteration counts, can aid the compiler in determining this number. The limited 
experience of the authors suggests that SISAL cannot be coaxed into using anything but 
the number of processors indicated on the command line for SISAL programs, or the 
SSTART parameter for mixed programs with FORTRAN or C drivers. Thus, there is 
unnecessary overhead incurred when the code attempts to use 8 processors on a loop 
which can effectively use only four processors. It would be desirable if the SISAL 
language would incorporate a more effective run-time system or have compile time 
options, whereas the user could specify the number of processors to use for different 
loops.

Also deemed necessary for the novice user are performance tools. It was difficult 
for the authors to obtain the wall-clock timings and flopcounts of the SISAL code. The - 
fflopinfo option of OSC proved to yield contrary results when different numbers of 
processors were requested. This option was little documented, and the reason for die 
results was unknown. The only timing function of SISAL is the -time option of OSC. 
This, however, only returns CPU time and not wall-clock time.

4. CONCLUSION

The present SISAL/FORTRAN interfacing effort did not yield the performance 
results expected, but it did provide an opportunity for gaining experience and knowledge. 
The present paper can be used as a reference for information or help on interfacing the 
two languages. A performance increase is expected by 'inlining' all surrounding code 
which is included in the time-marching step iteration process. This will remove the cost 
of the interface by making at most 2 calls to a non-FORTRAN subroutine (an 
initialization call and all other time-stepping calls).
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Table 1: Parentage Difference in Solution Function PSI

Time Step Maximum
Difference

Average
Difference

1 0.00 0.00

2 0.00 0.00

3 1.955e-2 6.068e-5

4 1.047e-3 2.006e-4

5 4.026e-4 5.63e-5

Table 2: Percentage Difference in Source Function OMEGA

Time Step Maximum
Difference

Average
Difference

1 0.00 0.00

2 5.717e-14 4.32e-17

3 2.24e-2 3.235e-5

4 2.98e-2 1.35e-4

5 2.426e-2 2.62e-4

Table 3: Percentage Difference in Surface Pressure Coefficient FCP

Time Step Maximum
Difference

Average
Difference

1 1.3380 0.49049

2 0.00 0.00

3 1.014e-2 1.61e4

4 2.78e-2 4.421e^

5 2.15e-13 5.295e-15
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Table 4: Pafoimance of CN4DFC Code with SISAL and FORTRAN Versions of
CFG Routine.

FORTRAN code SISAL code

CPU Time (seconds) 709.835 2439.745

Wall-CIock Time (seconds) 239.441 422.433

MFLOP/CPU Time 99.85 29.01

MFLOPAVaU-Clock Time 295.00 167.22
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1. Introduction

Project ADAM  ̂ is based on research work in the area of parallel computers. ADAM 
architecture can be described as von Neumann/dataflow hybrid or coarse-grain dataflow 
architecture. The project encompasses development and analysis of a novel parallel 
architecture and corresponding tools. A register-level simulator allows quick changes of 
design parameters and a detailed monitoring of machine behavior. Programmability of 
architecture can be proved only by running existing programs written in high-level 
languages. Therefore, research results are obtained with an architecture simulator and 
code-generators for high-level languages.

The detailed simulator called Metamachine was implemented and a processing element 
was realized in hardware. Software environments, new languages for parallel processors 
and a code-generator for applicative language Sisal have been programmed by members 
of ADAM project. The project involved seven people over a period of five years. The 
research work resulted in various software tools and a number of experiments that 
verified the performance and illuminated the problems of ADAM architecture.

This paper presents one part of ADAM project. It describes the code-generator that uses 
IF2 intermediate form to generate assembler code for Metamachine. IF2 is generated by 
optimizing SISAL compiler system (OSC) [FeoCannOldeh90]. The author assumes that 
the reader has a knowledge of Sisal and its syntax [McGrSkedz85]. IFl [SkedzGlau84] 
and IF2 [WelSkeYaRan86] graphs are hierarchic acyclic dataflow graphs that are stored 
in text files.

 ̂ADAM is the abbrevation of Advanced DAtaflow Machine
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2. Architecture and Simulator

Main goal of ADAM architecture is to achieve a programmable and scalable parallel 
machine. A programmable parallel machine need to remove the burden of knowledge 
about distribution of work and data from the programmer and the code-generator. The 
scalability means that high access latency caused by increased distance between data and 
accessing instructions needs to be tolerated. These requirements lead to following 
characteristics of ADAM architecture:

- dynamic load distribution

- distributed shared memory or global address space

- split-transactions and synchronization with present- and wait-bits.

- fast context-switch

ADAM simulator is called Metamachine[Maquelin93]. It is used as target machine for 
code-generators. Until now, code can be generated from high-level languages MFL 
[Murer92] and Sisal [Mitrov90] [Mitrov92]. Metamachine is a detailed simulator that 
models all aspects of ADAM machine. The simulation detail is at the level of register- 
transfer operations. The dinration of a single instruction is not predictable because of the 
complexity of simulation. Any best cycle-time for an operation can be delayed by the 
locked resource. The delays can be generated by busy internal buses or cache misses. 
Figure 1 shows intemal structure of one processing element of Metamachine.

Command-Bus
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Q

Frame
Memory

SequencerObject
Manager

Token &Context 
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I
(Main ^  

Memory J

Data-Bus

oX-o  . 3
ZCD
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Figure 1: Intemal stmcture of one processing element
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One processing element consists of several asynchronous units. However, they may 
influence each other because they share buses internally. An overloaded unit may hinder 
the work of the others. Processing elements are connected with two configurable network 
topologies. Data network exchanges computation data and token network exchanges 
work between processing elements.

Figure 1 defines two types of memories inside a processing element. Frame memory is 
sim ilar to a cache and is used for holding frames. A frame is attached to every initiated 
task. In ADAM machine, the tasks are called codeblocks. A codeblock has the size of a 
function or the body of a loop. It consists of a sequence of instructions. The instructions 
reference frame-content directly. The frame has a constant size of 32 words. Every frame 
word has a present- and a valid-bit. An instruction suspends its execution when it reads 
from a frame-register with cleared present-bit The suspension of an instruction leads to 
the suspension of running codeblock. Frames hold only scalar values and build the 
synchronization space of Metamachine. Main memory holds structured data or more 
precisely the objects. Their contents are accessed with split-transactions using object- 
reference and an index. Figure 2 displays the accesses to frame and main memory.

Reading and writing to frame:

[4] := ADD([3], [2]) % reads scalar values from frame registers (FR) three and two and
writes into FR four

Reading from the main memory:

[10] := LD([12], [1]) % reads object reference from FR 12 and the index from FR one;
the request is send and the result will be written in FR ten.

Figure 2: Accessing main and frame memory

The same instruction accesses local and remote main-memory. The object-reference 
specifies the exact location of the indexed element The location is defined by the 
processing element where the object has been allocated or by the type of object The 
objects can be either local, replicated or interleaved. Figure 3 shows the differences 
between objects.
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Location of content is ...

local ...on same processor wHctc the allocation instruction is issued

replicated .. .on evtrf processor

interleaved for elemrat with index i on a machine with p  processors: 

...on the processor (i modp)

Advantage Disadvantage

local enhances data locality when 

reader/writer on same processor

produces request bottleneck when accessed 

by many active readers

replicated high locality for read operations generation in parallel too slow, uses much 

memory

interleaved removes request bottlenecks low locality, not optimal implementation

Figure 3: Differences between various object classes

High data locality means that network traffic decreases. With low data locality, the 
network bandwidth decreases the computation rate of the parallel machine. Data locality 
is enhanced when using local type while writing into objects. It can lead to severe request 
bottlenecks if the reading parallel tasks are not processed on the same processor. Every 
store- and load-access to objects is synchronized. The processor that hosts the local object 
and the reading codeblocks will be blocked until requests are processed.

Interleaved objects were introduced because of the request bottlenecks. With interleaved 
objects, the requests are distributed in the same way in which the content is distributed. 
Every request is sent to the processor where the content element is located. Interleaved 
objects cause high network-traffic and require a well-balanced network and sequencer 
performance but remove request bottleneck.

Replicated objects are slower to generate and consume a lot of memory. Their advantage 
is excellent data locality for read accesses. Their usage generates request bottlenecks if 
several parallel tasks create replicated objects. In such case, object managers of the 
parallel machine will be overloaded, and will block other parts of the machine. Replicated 
objects can be used for all objects that are created in sequential part and that are read in 
the parallel part of the program. Execution code of the program is loaded in Metamachine 
as replicated object. An evaluation of various object classes is given in [MurerFaerb92].
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The instructions of Metamachine are either of synchronous or of asynchronous type. 
Synchronous instructions read from and write to frame-registers. Asynchronous 
instructions read from frame-registers and clear the present-bit of the result frame- 
register. They initiate a request that will write back into the frame-register with the 
cleared present-bit. The instruction is terminated without waiting for the request to 
complete. This means that the instructions that follow an asynchronous instruction can be 
executed as long as they do not need results from that instruction. The split-transactions 
and call instructions are of the asynchronous type.

There are two types of call instructions and both are non-blocking. Every call must be 
synchronized, otherwise there is no guarantee that called codeblocks will be executed at 
all. CALL instruction is used for initiating codeblocks that represent Sisal functions. 
PCALL instruction starts a number of parallel codeblocks. Parallel codeblocks have 
identical code and vary only in a counter parameter. A parallel codeblock represents a 
slice of a parallel loop.

An adequate dynamic load-distribution (DLD) mechaiusm for a scalable parallel machine 
must fulfill the following requirements:

a) have a distributed mechanism

b) distribute the work evenly and quickly

c) throttle the parallelism.

d) have high execution locality

A scalable parallel machine requires a distributed DLD mechanism. Any central 
monitoring of workload would decrease the scalability. The even distribution of workload 
is important for irregular loop and recursive parallelism. This can be done only with 
dynamic load-distribution because workload is known only at run-time. Throttling of 
parallelism is necessary so that resources of the machine are used efficiently. Execution 
locality means that the caller and the called codeblock execute on the same processor. 
Thus, they exchange arguments and results without network access. The effect of ADAM 
DLD is that execution locality increases only after the work has been distributed. The 
workload consists of tokens. A token represents a codeblock that has been called but that 
was not yet assigned to a processor. A processor that has too little work fetches a token 
from token network and expands it locally. The token expansion assigns a frame to 
codeblock and sets it to ready state. A processing element should have at least two ready 
codeblocks so that it can do context-switch when the running codeblock suspends its 
execution. A detailed explanation of DLD mechanism is given in [Maquelin90].
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The realistic simulation is important for code-generation research because many problems 
occiu- just because of the resource bottlenecks. Most problems and solutions of code­
generation for Metamachine will be valid for hardware implementation of ADAM 
architecture. The details of the simulator are explained in Ph.D. thesis of O. Maquelin 
[Maquelin93].

3. Code Generator

The implemented code generator is called ITH, an IF to HLA translator. It reads 
hierarchical acyclic dataflow graphs and generates a list of codeblocks. The main goal of 
ITH is to generate efficient code from programs written in Sisal. Good programmability 
of a machine means that the programmer is not punished for using high level abstractions 
and that he need not know the structure of the machine. The existing OSC code­
generators for conventional parallel machines already achieve this goal because of 
memory and update-in-place analysis of OSC [Cann92]. Therefore, ITH uses most 
optimizations from OSC backend. Another goal is to generate adequate code regardless 
the scale of the machine. This comprises that parameters of OSC and ITH should not be 
varied by the programmer and that the knowledge about machine size should not be used 
in code-generation. Certainly, the knowledge about the number of processors would 
produce a better code for single-user parallel machines running simple programs. The 
losses when this knowledge is dismissed wiU be discussed and measured. Figure 5 
displays the way ITH is attached to OSC.

HLASisal-Source

Parameters;
slice threshold: 700
number of proc.: 100000 s.costs

Figure 5: OSC & ITH

OSC parameters that are important for ITH are the slice threshold and the number of 
processors. Both are used by the partitioner pass "ifZpart" to decide which product-form 
loop should be run in parallel. Because the execution models of OSC and ITH are
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different, the number of processors must be assumed to be large. Metamachine needs 
several ready tasks so that it can efficiently hide latency. The parameters are set to values 
given in figure 5. Another option of OSC specifies what functions or graphs should be 
inline expanded. OSC cannot do inter-graph analysis. Therefore, best code is generated 
when all graphs or functions are inlined. Only recursive functions cannot be inlined,

ADAM code-generator reads IF2 files. An earlier version was based on IFl as input. IFl 
is clear and well documented. This approach has been dismissed because of the 
optimizations that lead to IF2 graphs. The update-in-place analysis and memory 
preallocation were main reasons why we changed from IFl to IF2. The lack of IF2 
documentation was compensated by the availability of ADAM graph browser 
[MitroMurer91]. This graphical tool is integrated in ITH. Figure 6 displays a graph 
generated by the graph browser. Manually added descriptions explain naming 
conventions used for IF2 graphs.

3.0
i r ^ I 2.0 sin 5.0

Times

graph output port 

-------------  literal edge
Times Call

Times Times

Times

output port #1 

input port #1

I

node

simple edge

Plus

I
Plus

I
input port #2 

 graph input port

Figure 6: The naming conventions in an IF2 graph

IF2 parser is the same for ITH and the graph browser. It is written in object-oriented way 
using PI Object Modula-2. The class hierarchies for hierarchical acyclic dataflow graphs 
are given in figure 7.
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nputPort

sourcePort
sourceElem
portTvpe

Node

nodeld

DompoundNode

graphList

Element

inPorts
outPorts

Connection

number
next

3raph

nextGraph

DutputPort

referenceCount

BASE
lineReference
nameReference

;onstantPort

valueReference

CompoundNodeGraph

parentGraph
ownerNode

Figure 7: Class hierarchy for IF2 and IFl graphs

3.1 S equentialization

Dataflow graph defines partial order of its nodes. The set of correct total orderings of 
nodes is defined by data dependencies between nodes. Sequentialization of a dataflow 
graph selects one of several possible total orderings. The simplest ordering of dataflow 
nodes is depth-first. Figure 8 shows the appropriate algorithm when using definitions 
from figure 7.
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PROCEDURE Walk (nd: Element);
VAR

•p; InputPort;
BEGIN

p := ndinPorts;
WHILEpoNILDO

IF p.sourcdElemoNIL THEN 
Walk(p.sourc^lem);
AppendlnSequence (p.sourceElem); p := pjiext

END;
END;

END Walk

PROCEDURE WalkGraph (gn Graph);
BEGIN Walk(gr);
END WalkGraph

Figure 8: Depth-first ordering assuming sorted input-ports of a node

Main advantage of depth-first ordering is that it uses the resoiurces efficiently. The life of 
temporaries that hold edge values is short. This is very important for machines with small 
number of registers like ADAM architecmre. The performance of depth-first ordered 
graphs may be inferior because of missing parallelism. Therefore, we define three 
prerequisites for an adequate ordering of nodes, or more precisely of the instructions:

a) group call instructions and execute them together

b) delay instructions that depend on results from split-transactions

c) keep depth-first ordering if possible

Most important condition is that aU data-independent call instruction execute without any 
synchronizing instmctions between them. A call instruction represents either a function 
call or starts the computation of parallel loops. The reordering of nodes achieves speedup 
mostly through additional parallelism obtained with clustering of call-instructions.

A split-transaction sends a request and clears present-bit of result frame-register. The 
following instruction suspends its execution when it reads from frame-register with 
cleared present-bit. This leads to a context-switch and latency of the request can be 
hidden by executing another ready codeblock. Although a context-switch is fast, it stUl 
decreases the program performance. It is better when consuming instruction executes late 
so that the request can return results before they are needed. Such strategy also groups 
split-transactions so that a context-switch allows several requests to complete. The 
number of context-switches decreases when nodes are reordered. The clustering of calls 
has a higher priority than elimination of context switches.
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3.2 Defining Object Types

ADAM architecture supports three different types of objects: local, interleaved and 
replicated. The code-generator decides which object is appropriate to allocate. The access 
to three different object classes is transparent. The access instruction is the same 
regardless the type of objects. Chapter 2 and figure 3 gave a brief description of the 
differences between object types. Various strategies presented in this chapter have the 
goal to remove the request bottlenecks by either increasing the data-localiiy or spreading 
the requests on the machine.

Objects are used for representing structured data. All records and arrays of Sisal programs 
are implemented with objects. The arrays of Sisal are dynamic in bounds and size. The 
ITH implementation allocates two objects for one dynamic array. The first object is array 
descriptor and the second is array content. The descriptor is a record that holds the 
reference to array content and the information about the size and bounds of the array. 
This is a mechanism similar to the one that is used in OSC. The problem of this model is 
that it is not reflected in IF2 graphs. Therefore, code-generators must accomplish 
optimizations like loop invariant removal and constant folding of descriptor records. This 
optimizations are already realized in first pass of OSC backend.

Replicated objects produce excellent data locality. The creation or modification of 
replicated objects is fast when object managers are idle. This is the case in sequential 
parts of programs. If replicated objects are modified in the parallel execution parts than 
their usage will collapse the machine. With analysis of the scope of a node, it is possible 
to determine if a node is executed in a sequential or a parallel path of the program. Of 
course, only those objects that will be read in parallel are allocated as replicated objects. 
A node is processed in a parallel part of program if it is nested either in a splittable 
parallel loop or in a reciursive function. Depending on the code structure, parameter 
objects of PCALL instructions and the descriptors of arrays can be allocated as replicated 
or local objects. Most other allocation instructions generate local objects. Parameters and 
arguments between codeblocks are allocated as local objects too.

The implementation of interleaved object is simple. In a machine with p  processors, the 
element with index i is on the processor (i mod p). The interleaved objects decrease the 
data locality but distribute the requests. To be effective, interleaved objects need to have a 
homogeneous access structure and an appropriate size. This means that all elements of an 
interleaved structure should be accessed equally often and that all processors should

102



receive requests. Only in such case, the requests will be distributed across the machine. 
An array content that is accessed in parallel is allocated as interleaved object The main 
problem with parallel tasks is the request bottleneck. In ADAM machine, data cannot be 
placed on the same processors where the consuming codeblock is executed. The only way 
to remove the bottleneck is to distribute data on all processors.

The request bottleneck does not only reduce the scalar performance but also hinders the 
load distribution. If more codeblocks must wait on their data, than more codeblocks will 
be expanded on every processor. This diminishes the amount of parallel work and 
increases the resource usage.

Figure 9 shows results when varying object types of array contents. The used program is 
a two-dimensional cellular automaton computing a grid of 256x256 cells. Sisal source is 
available from the ftp server of Lawrence Livermore National Laboratories. The suitable 
size of grid leads to an optimal distribution of requests when allocating array content as 
interleaved objects. The allocation of array descriptors as replicated objects improved the 
best results by 10% for 256 processors.

inner array outer array 128 processors 

(cycles)

256 processors 

(cycles)

local local 482360 268978

local interleaved 449982 305108

interleaved interleaved 351093 206178

local replicated 479297 319811

interleaved replicated 344350 206583

Figure 9: Varying object type for a two-dimensional problem

The measurings in figure 10 evaluate various allocation strategies for matrix 
multiplication of two 64x64 rectangular matrices. The main difference from previous 
example is that the interleaved objects are not spread evenly on a 128 processor machine 
but only on the lower 64 processing elements. This the defficiency of interleaved objects.
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inn^ array outer array 32 processors 

(cycles)

64 processors 

(cycles)

128 processors 

(cycles)

local interleaved 1697095 871374 619834

interleaved interleaved 1699264 899466 650533

Figure 10: Varying object type for the matrix multiplication program

3.3 Partitioning

As shown in figure 5, the partitioning pass of OSC reads a costs-file and assigns the 
execution costs to IF2 nodes and graphs. The cost analysis is used to decide whether a 
product-form loop should be executed in parallel or not. ITH reads IF2 file and evaluates 
the costs as given by OSC partitioner. This is a very simple method as the costs of IF2 
graph do not correspond directly to the costs of the generated codeblock. For example, 
some nodes vary their execution costs depending on the source and destination nodes. 
Additionally, losses made by swapping the variables between the frame- and main- 
memory are not presented in costs of IF2 graphs.

Execution costs, as defined in IF2 file, are used to calculate the number and the size of 
parallel codeblocks. A sliceable forall loop is transformed into a parallel call and a 
parallel codeblock. The parallel call instruction issues a specific number of parallel 
codeblocks. Every parallel codeblock works on at least one loop-iteration. The number of 
iterations in the parallel codeblock is the slice size or the granularity of parallel work.

ITH code-generator uses two parameters to define the granularity of parallel codeblocks. 
One parameter defines the constant communication-costs attached to a parallel 
codeblock. The other parameter defines the wanted proportion between initialization- and 
execution-costs. The initialization costs are losses that are generated by a parallel 
codeblocks. Figure 11 shows an abstraction of the cost formula. The losses are the sum 
of the constant costs and the costs of input-parameter access. A constant proportion factor 
defines the minimum ratio between execution and communication costs in a parallel 
codeblock. Default ITH proportion factor is set to 90%, i.e., the losses should be at most 
10% of execution costs.
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losses := nrOflnputs’'‘buildCosts + constCosts; 

onelterExecCosts := Costs(bodyGraph) + Costs(resultGraph) 

sliceSize := (constantRatio*losses)/oneIterExecCosts;

Figure 11: Formulas for calculating granularity of parallel codeblocks

Three-dimensional cellular automaton is used to measure the effect of varying 
granularity. The call structure of this program is given in figure 12. We vary the 
granularity by changing the partitioning parameters of ETH. As it has been written before, 
these parameters cannot be changed by the programmer. They are changed here only to 
demonstrate the effects of variable granularity. Partitioning two uses default parameters.

Partitioning 1: PCALL(40) -> PCALL(40) -> PCALL( 5)

PCALLC21);

Partitioning 2: PCALL(40) -> PCALL(40) -> PCALL(8)

PCALL(42);

Partitioning 3: PCALL(40) -> PCALL(40) -> PCALL(14)

PCALL(42);

Partitioning 4: PCALL( 40) -> PCALL( 40) -> PCALL(20)

PCALL(42);

Figure 12: Call structure for the 3-dimensional cellular automaton on (40x40x40)

Partitioning two generates 14482 parallel codeblocks. Minimum number of codeblocks is 
9661 and the finest partitioning generates 33682 codeblocks. Note that all nested loops 
are parallelized by ITH if OSC makes them sliceable. Figure 13 shows the total execution 
time with variable granularity and number of processors. Granularity two is the best 
compromise if we decide to deny the knowledge of the machine scale to ITH. The given 
execution time is the number of processors multiplied by the effective execution time in 
cycles. The graph for 256 processors has highest total execution time because of the 
decrease in speedup.
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Figure 13: The effects of variable granularity

3.3 Banishment of Variables

Every codeblock owns a frame where it keeps scalar values. The frame has a fixed size of 
32 registers. The situation in which the amount of active temporaries exceeds the number 
of available frame-registers requires a swapping mechanism between main-memory and 
frame. The swapping of frame-registers decreases the performance of a codeblock 
because of additional instructions. A more severe performance degradation occurs 
through additional synchronization through swap operations. A variable that must be 
saved into the main-memory can be the result of a split-transaction. The swap of such 
variable can cause an additional context-switch. An adequate banishment algorithm must 
m inim ize  the number of swapping and synchronizing instructions.

Register and identifier assignment of ITH assumes an unbounded frame size when 
assigning registers to edges and nodes. The variables that are used for synchronization 
are marked with a weight The variables that synchronize call instructions have a higher 
weight than those that represent results of split-transactions.

First, all variables are compacted into the legal register space. The variables with highest 
weight and access-frequency are reallocated first. If the number of needed registers 
exceeds the available number, then some variables need to be banished to the main-
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memory. The variables with smallest weight and smallest access-frequency will be 
banished first. The access-frequency is calculated as follows:

access_frequency := number_of_accesses /  life_time

The life-time of a variable is the distance between the first and the last instructions that 
reference the variable. Every access to a banished variable is preceded by a load or is 
followed by a write operation to the banishment object. Banishment pass removes all 
unnecessary reads and writes. In addition, the remaining write-instructions are delayed. 
Figure 14 shows banishment characteristics for two Sisal programs. Data is given for the 
largest codeblocks in the generated object-code.

# statements of 

the codeblock

# banished 

variables

# deleted  

read&writes

# delayed  

writes

FitCubic 771 35 66 30

RICAKD 305 40 37 43

Figure 14: Banishment specifications for two Sisal programs

4. Conclusion

The implemented code-generator compiles complex Sisal-programs and generates 
efficient code. Dynamic arrays pose additional problems as they increase the network 
traffic. The additional access to descriptor-object is prefetched outside the loop body but 
need to be done at the start of parallel codeblocks. The parallel access to array descriptors 
degrades the performance of dynamic arrays when compared to code that uses static 
arrays. Because some problems can be only modeled by dynamic arrays they cannot be 
replaced by static arrays. Other optimizations that will reduce the access on array 
descriptors need to be investigated. The dataflow graphs are still an important 
intermediate form although the execution model is based rather on blocks of instructions 
than on single parallel instmctions as in pure dataflow. The dataflow graphs enable better 
scalar optimization and instmction ordering.
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Program Partitioning for NUMA M ultiprocessor Computer Systems

Richard Wolski 
John Feo 

Com puter Research Group 
Lawrence Livermore N ational Laboratory 

Livermore, CA 94550

A b s tr a c t:  An important part of parallel programming is program partitioning and 
scheduling. Partitioning is the separation of program operations into sequential tasks, 
and scheduling is the assignm ent of tasks to the processors of a computer system. To be ef­
fective, automatic methods reqmre an accurate representation of the model of computation 
and the target architecture. Current partitioning methods assum e the macro-dataflow 
model of computation and the homogeneous/two-level architectural model. The former is 
typically represented as a directed, acyclic graph of computation nodes and communica­
tion edges. The edges map directly to communication channels, but not read/write memo­
ries. Consequently, current methods optimize assum ing the presence of communication 
channels, and not the complex memory system s of NUMA architectures— t̂hey fail to opti­
mize for a critical component of these architectures. In th is paper, we extend the conven­
tional graph representation of the macro-dataflow model to enable mapping heuristics to 
work with a NUMA architectural model. We describe two such heuristics. Simulated 
execution tim es of programs show that our model and heuristics generate higher quality 
program mappings than current methods.
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1.0 Introduction

An im portant part o f parallel programm ing is program partition ing and scheduling. 

Partitioning is the separation of program operations into sequential tasks, and scheduling is  the 

assignment of tasks to the processors of a target architecture. Together, partitioning and schedul­

ing constitute the m apping problem . Program mapping can either be done m anually by the pro­

grammer, or automatically by the language compiler and runtime system. If the compiler and 

nm tim e system are responsible for mapping, they require an accurate representation of both the 

program to be mapped (a model of computation), and the desired target architecture (an architec­

tural model). Current partitioning methods assume the macro-dataflow model of computation and 

the homogeneous!two-level architectural model. The former is  t3q)ically represented as a directed, 

acyclic graph of computation nodes and communication edges. The edges map directly to com­

munication channels, but not read/write memories. Consequently, current methods optimize as­

suming the presence of communication channels, and not the complex memory system s of NUMA 

architectures— t̂hey fail to optimize for a critical component of these architectures [1],

Much of the research in the area of program partitioning and scheduling has centered around 

the macro-dataflow model of computation [21, 20, 11, 13, 6]. This model is best described in terms of 

its  conventional representation, a directed acyclic graph. The DAG’s nodes correspond to 

computations and the edges to communication between computations. Each node in the graph has 

one or more input edges representing the operands necessary for the computation to execute, and 

one or more output edges representing the computed results. The data dependencies enforce opera­

tion precedence. The order of execution is  constrained only by the program’s data dependencies, 

and computations and communications may be overlapped. Independent nodes m ay execute in  

parallel, and there is no notion of control flow. The model can support recursion and program 

looping by implied dependencies [22]. Nodes are assumed to be strict; that is, a  node cannot begin 

execution until all of its inputs have arrived, and no output is available until all of its  outputs are 

available. The model supports fine-, medium-, and coarse-grain parallelism. Overall, the utility  

of the macro-data flow computational model is high; however, since the edges do not map directly 

to read/write memories, it  is  difficult to design mapping heuristics that optim ize for today’s 

hierarchical memory system s.

The macro-dataflow model specifies what to execute, but not how it  is  to be executed. The latter 

requires the graph to be mapped to the resources of a target architecture. To estimate the cost of 

different mappings reqmres a description of this architecture. Due the lim itations of the directed, 

acyclic graph representation of the macro-dataflow model, m ost of the previous research in  

partitioning and scheduling assum es a homogeneous! two-level model in which
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• the target architecture is composed of a homogeneous set of processors,

• there are two levels of interprocess communication Gocal and remote), and

• communication between processors can occur in parallel.

If the computational model is medium- or coarse-grained, the cost of each node is the sum of the 

cost of its constituent instructions. Instructions within the same operation, as well as operations 

executing on the same processor, are assumed to communicate without delay (i.e., zero local com­

munications). Remote communication (communication between operations executing on sepa­

rate processors) is typically represented by a single cost function,

( v o lu m e  o f  d a ta  /  c o m m u n ic a t io n  r a te )  + s ta r t - u p  c o s t

where communication rate  and start-up cost are constants. Additionally, the model assum es that 

the communication of results from a producer to multiple consumers can occur in parallel.

The hom ogeneous/two-level model does not accurately describe existing parallel computer 

system s. In particular, it  does not capture the hierarchy of extant memories. Today parallel 

com puter system s con sist o f “conventional” sequential processing u n its  link ed  by a 

communication system  (shared bus, memory switch, or communication network) Few of these  

system s are true homogeneous/two-level machines. Most cache-coherent machines, such as the 

Sequent 81000, SGI Iris 430, or Multimax Encore, support at least three levels of storage: registers, 

cache, and central memory. Further, since communication between computations on the same 

processor may use any one of the three levels of storage, local communication costs cannot be 

norm alized to zero. Other system s support an even richer diversity of m em ories and 

communication facilities. For example, on the BBN TC2000, two operations executing on 

different processors m ay communicate using one of four mechanisms: remote-write/local-read, 

local-w rite/rem ote-read, interleaved-w rite/interleaved-read, and MACH m essages. Two 

computations executing on the sam e processor m ay communicate using three additional 

mechanisms: registers, cache, and private memory. We anticipate future architectures will be 

even more complex. For example, CEDAR [12] is organized as a  tree of processing elem ents 

giving rise to Oog P) commimication levels (where P  is the number of processing elements). The 

DASH system [7] imposes 5 different read latencies and 4 different write latencies depending on 

the level o f the memory hierarchy used. Consequently, the two/level model does not adequately 

depict current or future systems.

The assumption that data can be “sent” in parallel to multiple consumers is also not realistic. 

Consumers can not simultaneously read the same memory location. A  producer can not transmit
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two different results simultaneously, nor can it send a single result to multiple consumers unless 

the hardw£u*e supports broadcast.

Previous research [21, 20, 1 4 ,1 3 ,1 1 ,9 ,1 7 , 16, 24] uses the DAG program representation and the 

homogeneous/two-level architecture model. Sarkar [21, 20], Kim and Browne [11], and Yang and 

G erasoulis [24] statically  partition programs into a set of non-strict sequential partitions 

assuming an infinite number of processors, and then schedule the resulting partitions on a given 

target machine according to some scheduling heuristic. While these system s share a common 

approach (static partitioning followed by static scheduling), they use different heuristics to 

construct partitions and schedule those partitions to processors. All three system s assum e zero- 

delay local communication costs, concurrent communication of results, and a single remote 

communication cost function. Sarkar, however, decomposes remote communications into three 

sequential phases: write, communicate, and read.

Kmatrachue [14, 13] considers scheduling before partitioning. He builds a static schedule 

directly from macro-dataflow nodes. He then considers nodes that are scheduled on the same 

processor £md are contiguous in tim e as forming the partitions of the program. Nodes are first 

scheduled on the processors, and then partitioned into sequential tasks according to the schedule. 

Hwang and Xu [9] formulate the mapping problem as a mathematical optimization problem. They 

use simulated annealing to statically determine a near optimal schedule for hypercube architec­

tures. They do not propose a partitioning scheme. Adopting a more graph-theoretic approach, 

McCreary and Gill [17, 16] propose graph-parsing as a way of separating nodes into partitions. 

They statically parse the macro-dataflow DAG into fragments, some of which may be executed in  

parallel. Again, w hile th ese  approaches vary widely, they all use the macro-dataflow  

computational model and the homogeneous/two-level architecture model to estim ate the cost of 

execution.

In this paper, we extend the conventional graph representation of the macro-dataflow model to 

enable mapping heuristics to work with a NUMA architectural model. We describe two such 

heuristics. Simulated execution tim es of programs show that our model and heuristics generate 

higher quality program m appings than current methods. Section two presents the new  

architectural model and illustrates its  potential. Section three describes two simple partitioning 

algorithms based on this model. In section four, we compare program mappings generated using  

our new techniques with those generated by previously developed systems. In section five, we 

present our conclusions and discuss future directions.
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2.0 Memory Node Model

In th is section, we extend the directed, acyclic graph representation o f the macro-dataflow 

model. To capture the behavior of read/write memories, we divide each communication into three 

phases. First, nodes write their outputs into some form of storage. Second, an interm ediate 

communication facility may transfer the data to storage accessible by the receiver. Finally, the 

receiver reads its  inputs from where they have been stored. To represent the write-communicate- 

read sequence, we include two memory nodes along each program edge, thereby separating the 

three phases [Figure la ]. I f  the sender and receiver communicate via shared memory, then the 

communicate phase is non-existent, and we merge the two nodes [Figure lb]. The inclusion of 

memory nodes perm its mapping heuristics to consider the different types of m emories and 

communication options supported by NUMA architectures, thereby generating improved program 

m appings.

write communicate read

memory node 

(a)

o write read

(b)

Figure 1 -  Write, Communicate, Read

The architectural model specifies a write, communicate, and read cost for each type of memory 

and communication channel. The delay associated with a program edge depends on the memoiy 

and communication channel chosen, and the am ount of data commimicated. For example, 

consider two operations scheduled on the same processor of a BBN TC2000. Assume that the data 

commtinicated between these operations is small enough to fit within a single register. If a 

register is used, the communication costs two cycles [Figure 2a]. I f  cache is  used instead of a 

register, the cost is  6 cycles [Figure 2b]. Lastly, i f  we use local private memory, the delay is 

approximately 16 <ycles [Figure 2c]. Observe that Figure 2 shows three different costs for the same
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local communication. The actual communication could vary by a factor of 8. The assumption  

made by current system s that local communications is zero or some fixed constant cost is not 

accurate.

M emory nodes also param eterize com m unication betw een processors i f  m ultip le  

communication facilities are supported. For example, the TC2000 supports three sheired m em oiy 

mechanisms: local, remote, and interleaved. The respective access tim es of the three memories 

are: 8, 37, and 37. Thus, a  local write/remote read or remote write/local read takes 45 cycles, and a

1 Cycle

o 3 Cycles

1 Cycle

O
(a)

(b)

3 Cycles

Legend

private

o 8 Cycles 8 Cycles

(c)

Figure 2 — Three local communication costs

write/read of interleaved memory takes 74 cycles [Figure 3].

Consider the three examples shown in figure 3. Both the local-write/remote-read and remote- 

write/local-read m echanism s imply an overall communication cost of 45 clock cycles. The 

overall cost for the interleaved case in 74 cycles. To understand the utility of the memory node 

model, assume that the two nodes shown in the examples are part of a larger program, and that the 

sender, but not the receiver, is on the critical path for the program. That is, the critical-path 

includes the sender and its left-hand output edge. Since computation nodes are strict with respect to 

their outputs, the overall delay through the sender includes the sum of its  write costs. Thus part of
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8 Clock Cycles

37 Clock Cycles

(a)

37 Clock Cycles

8 Clock Cycles

(b)

37 Clock Cycles

37 Clock Cycles
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Figure 3 — Three remote communication costs

the delay along the critical path includes the cost associated with writing all of the sender's outputs. 

Since the receiver is not on the critical path, it is best to give the sender the smaller access time 

(thereby m inim izing the path through the sender) and have the receiver incur a longer, non- 

critical delay. Thus, the best choice of communications is  illustrated by the first graph— l̂ocal 

write/remote read. Current system s that use a only a single communication cost fianction fail to 

consider all the available choices.

Another important feature of the memory node representation is that it correctly captures data 

sharing relationships. Quite often, the results of a computation m ust be sent to multiple remote 

receivers. In the models used by current system s, each communication is represented by a 

separate edge [Figure 4al. If the same value is being sent to multiple consumers, the producer will 

m ost likely write it to memory only once. We depict the edge-sharing relationship as fan-out from 

the memory node [Figure 4b], and not fan-out from the computation node. Current system s may 

charge the producer three writes, while the true delay is only one write. Moreover, i f  it  is 

advantageous for the producing computation to write its  results into two separate memories, the 

different delays are captured by the memory node model, but not by the conventional DAG.
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Previous Work: 
Sender has 3 Outputs

Memory Node Model: 
Sender has 1 Output

(a) (b)

Figure 4 -  Single producer and multiple consumers

Memory and communication system s have characteristics other than access latency which 

can affect program execution cost. For example, some types of memory may not support parallel 

accesses due to contention Gilock shared memory), while another memory type might perform well 

in the face of contention (interleaved memory), but at a higher cost. Since current system s do not 

consider memory, they neither model nor evaluate the different options. Our model identifies the 

true point of contention, and permits mapping heuristics to schedule memory accesses.

3.0 Partitioning Heuristics Based on the M emoiy Node Model

To test the utility of memory node graphs, we implemented a prototype partitioning system, and 

developed several simple partitioning algorithms based on the model. In this section, we outline 

the structure of our prototype, and describe the memory node based partitioning algorithms.

3.1 APrototype

Our prototype partitions IF l [22] program graphs. IF l is the intermediate form of the parallel 

programming language Sisal [18, 5], is  a high-performance functional language for numerical 

and scientific computation developed at Lawrence Livermore National Laboratory and Colorado 

State University. An IF l program consists of one or more directed acyclic graphs made up of
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simple nodes, compound nodes, graph nodes, edges, and types. Nodes denote operations, edges 

transmit data between nodes, and types describe the transmitted data. Simple nodes represent 

operations such as addition, division, and array and stream m anipulation. Compound nodes 

encapsulate one or more subgraphs to define structured expressions such as conditionals and loop 

expressions. IF l is well suited to parallel program representation due to its graphical nature and 

applicative semantics.

3J2 Architecture Description

The param eters associated with a particular target architecture are specified using  the 

architecture description facility. To estimate the execution time of a program on a particular 

architecture, each computation node and communication edge in the program m ust be assigned an 

individual execution cost. The architecture description file lists the execution tim e of each IF l 

node type on the given architecture, and, for each possible memory type, lists a  read cost, a write 

cost, a flag indicating i f  the memory may be shared, and the degree to which the mem oiy may be 

accessed in parallel. In addition, the file defines the communication cost between every possible 

pair of memory types, and the default, or preferred, communication mode.

Prior to partitioning, we assum e that the IF l program is annotated with communication 

volume estim ates. Estim ates may be derived by trace techniques [20], user annotations, and 

compiler analysis [3, 19, 2]. Initially, the partitioning system calculates the delay (number of 

cycles) through each computation node, calculates the size (number of bjd»s) of each memory node, 

and assigns a memory type (bjrtes per cycles) to each memory node.

3.3 PartitiomiigAlgoiithins

The prototjrpe system  includes two sim ple partitioning algorithms: a heavy-edge-first 

algorithm (HEF) inspired by Sarkar's work [21, 20], and a critical-path algorithm (CP) similar to 

DSC proposed by Gerasoulis and Yang [24, 6]. However, the prototype algorithm s use the 

information provided by the memory node model when making partitioning decisions. As a 

result, they differ quite substantially from previous algorithms even though they have the same 

basic orientations.

General Characteristics

Both algorithms use the estim ated critical path of the overall program as a performance 

metric. That is, each partitioning decision is  evaluated based upon its effect on overall graph 

critical path. Both algorithms attempt to improve program critical path by assigning the best
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Figure 5a -  Independent nodes

memory type to each memory node in the program. We term the assignment of a memory type to a 

particular memory node the "coloring” of that node with a given type. For example, a memory 

node m ight be "colored private" to indicate that it should be assigned to memory that is private to a 

processor. Also, both HEF and CP are iterative improvement algorithms. That is, the memory 

nodes in  the graph are each assigned an initial coloring and then the algorithms attem pt to alter 

the node colorings during each iteration. HEF and CP avoid backtracking in that once the  

coloring of a particular memory node is accepted, that node will not be recolored.

Linearization

Using HEF or CP, two computation nodes that communicate via a fused memory node which is  

colored with a private memory type are assigned to the same partition. O therwise, the  

computations are assumed to be part of separate partitions. When a fused memory node between 

members of separate partitions is colored private, the partitions are merged. The ordering of 

independent computations that have been assigned to the same partition can effect the overall 

program’s critical path.

Consider the graph fragm ent shown in figure 5a. In the figure, computation node 1 and 

computation node 2 are independent. The sum of the read delay, execution time, and write delay 

for computation node 1 is shown as 15 cycles. Similarly, the sum of the read, write and execution 

delays for computation node 2 is depicted as 10 cycles. Assume that the longest path from graph
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Figure 5b -  Node 1 before node 2

source to sink through node 1 is 100 cycles, and that the similar path length through node 2 is 120 

cycles (depicted by the heavy arrows in the figure). I f node 1 and node 2 are assigned to the same 

partition, the partitioner is free to choose their relative ordering. That is, either node 1 may be 

scheduled to execute before node 2, or vice versa, and the overall program will execute correctly. 

Figure 5b shows the configuration that results when node 1 is chosen to execute before node 2. 

Notice that the distance through node 1 does not change, but node 2 is delayed by node I's read, 

execute and write delays (the path length through node 2 is extended by 15 cycles to 135). 

Alternatively, figure 5c shows the configuration with node 2 scheduled before node 1. If node 2 

comes first, then node 1 is artificially delayed by node 2, while node 2's path length remains 

unchanged. Notice, however, that the resulting path length through node 1 is  shorter than that 

through node 2. If the program's overall critical path runs through node 2, then the configuration 

shown in figure 5b increases the critical path, but the shown in 5c does not.

The problem of determining the optimal sequence of nodes within a partition is NP-complete 

[20]. Since the ordering of computations within partitions is  important, the partitioner needs to 

employ some heuristic to linearize potentially parallel computations. Yang and (Jerasoulis refer 

to this process of linearization as scheduling, [6] whereas Sarkar terms it  node sequence mapping 

[20], and the literature is rife with different techniques [8, 4, 13, 15 ,24, 20] None of these heuristics 

seem to make the ordering decisions based on the overall graph critical path (which is the 

performance metric used by HEF and CP). We, therefore, propose an alternative heuristic that
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Figure 5c — Node 2 before node 1

uses the path length estimate through each node to form the orderings within partitions. When two 

partitions are to be merged, each partition is treated as a  pre-sorted list of computations. The goal 

of the heuristic is to form a single sorted list of computations that does not violate program 

precedence, but which m inim izes overall graph critical path. E ssentially , the algorithm  

constitutes a single iteration of merge sort augmented to recognize program precedence. The 

heads of each of the two partitions is are compared. If program precedence dictates an ordering 

between the two, the partition head that m ust go first is removed from its partition, and added to the 

end of the new partition. Otherwise (the two partition heads are independent), the algorithm  

calculates the distance through each head for both possible relative orderings. The configuration 

that yields the shortest maximum path length through either node is chosen. For example, i f  the 

two nodes shown in figure 5a are the head nodes of the partitions being merged, the algorithm  

calculates the distances shown in figures 5b and 5c. Since the configuration shown in figure 5c 

yields the shortest maximum length (120 cycles), that configuration would be chosen. When all 

nodes in both partitions have been moved into the new partition, the algorithm terminates. The 

complexity of our algorithm is 0 (N ) where N  is the number of computation nodes in both input 

partitions.
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HEF

The heavy-edge-first (HEF) algorithm attempts to reduce program critical path by assigning  

the edges carrying the largest volumes of data (the heaviest edges) to the fastest memories. AH 

memory nodes are initially colored with a default memory or communication t3rpe and sorted 

according to volume. Each node (considered one at a time in the order specified by the sort) is  

speculatively colored with every other possible memory type. After each coloring, the graph's 

critical path is calculated, and the coloring that yields the shortest critical path is accepted. The 

algorithm term inates when all nodes have been examined and assigned a memory color.

CP

The other partitioning algorithm included in the prototype system attem pts to reduce execution 

time by focusing on those memory nodes along a graph's critical path. All memory nodes in a 

program graph are first colored with a default memory type. Each iteration of the algorithm  

chooses an edge on the graph's critical path and attempts to reduce the path length through the 

memory node(s) associated with th at edge. As in HEF, the memory nodes are speculatively  

colored with each of the k possible memoiy types, and the coloring that yields the shortest resulting 

critical path is accepted. Once a coloring is  accepted, however, the graph's critical path is  

recomputed since it  may have changed as a  result of the coloring. Therefore, each iteration  

chooses memory nodes from the critical path that results from the coloring performed on the 

previous iteration. The algorithm term inates when no colorings along a graph's critical path 

result in a path length reduction.

Neighborhoods

The naive implementation of CP only attempts to color those memory nodes that are directly on 

the critical path. For example, consider the graph fragments shown in figure 6a. The heavy arrow 

indicates that the program's critical path traverses both computation nodes in each fragment, and 

the numbers denote the communication volumes associated with their associated memory nodes. 

A naive implementation of CP might choose the memoiy node between the two computation nodes 

(as it is directly on the critical path) and assign it a faster memory type  (figure 6b). By assigning 

the critical memory node to a faster memory, the overall path length is reduced by 90 cycles.

In figure 6c, the critical path length is reduced by 270 cycles. Notice that it  is only the cost of the 

read for the 30 bjd« memoiy node which is included in the critical path length calculation. That is, 

in the graph fi-agment on the right, the memory node with size 30 causes a read delay of 300 cycles. 

The corresponding 300 cycle write delay is  not included in the critical path length since the
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producing computation is not part of the critical path. When the memory node is colored, the read 

cost becomes 30 yielding a net reduction of 270 cycles.

20 30

(a)

Critical path reduced by 90 cycles

(b)

Legend

■ 1 cycle/byte

10 cycles/byte

Critical path reduced by 270 cycles

(c)

Figure 6 -  The effect of neighborhood search in CP

In general, then, the path length through any memory node may be reduced by a coloring of the 

node itself, and/or some set of its  neighboring memory nodes. We define the neighborhood  of a  

memory node to be the region of the graph in which memory colorings are considered when the 

path length through that memoiy node is to be reduced. CP is parameterized by a neighborhood size 

which defines the extent to which non-critical nodes are examined. We plan to study ways in 

which the appropriate neighborhood size can be determined for each node, as opposed to having a 

single size for the duration of the algorithm.
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CPIHEF

As we mentioned in cur discussion of the complexity associated with CP, not all memoiy nodes 

in a program graph m ay be considered during the algorithm. If the neighborhood is  small, for 

example, good candidates for coloring may be missed. One possible strategy to improve upon CP, 

then, is to apply HEF to those memory nodes which remain uncolored after CP completes. The 

complexity of the combined algorithms remains 0(N^2) since we run them  in sequence. Notice, 

however, that the reverse ordering (namely HEF followed by CP) will not 3ueld an improvement. 

The chief difference is  that HEF considers all nodes in the graph before terminating, while CP 

concentrates on the "important" ones at the expense of others. Therefore, we can only use HEF to 

clean-up what CP has missed and not vice versa.

4.0 Results
To test the validity of the memory node model, we conducted a series of studies using the 

prototype system. We first wanted to investigate the improvement, i f  any, that the memory node 

model by itself provides over previous architecture models. To do so, we implemented DSC [24, 6), 

both in its original form and with memoiy nodes, and compare the partitions generated by each. 

Secondly, we wanted to investigate the performance of HEF and CP, as they are algorithms that 

make partitioning decisions using the information presented by the memory node model. We 

compare the performance of HEF, CP and DSC (both with and without memory nodes) on the same 

set o f graphs to gauge their relative effectiveness. Next, we wanted to indeed verify that our 

algorithms could exploit diverse memory system s. Since previous work exclusively assum es a 

two-level architecture model, we are unable to compare CP and HEF to a previous system for an 

architecture with more than a two-level communication hierarchy. We, therefore, simply present 

our results. Finally, we wanted to investigate the effect of our linearization algorithm, the 

modified merge sort We have implemented a version of HEF that uses Sarkar's node sequencing 

algorithm [20], and we compare its performance to HEF using our technique.

Test Cases

We generated all of our results from a set of 100 randomly generated IF l program graphs. 

Each graph has a single source and sink node but is otherwise composed of 100 primitive IF l 

nodes. Although a ll graphs are directed and acyclic according I F l  sem antics, their  

interconnections are random. In our tests, every computation node has a random fan-in of 

between 1 and 3 inputs, but an arbitraiy number of outputs. Each graph edge is annotated with a 

random communication volume of between 1 and 100 units. Similarly, each computation node is
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assigned a random execution tim e of between 1 and 100 cycles. We assum e a homogeneous 

processor topology so execution tim es may be assigned before partitioning. Also, all tests were 

conducted assum ing a NUMA machine architecture in which communication is  facilitated via  

shared address spaces. As shared addresses are used for communication in our studies, all 

memory nodes are initially fused. We also do not consider the effect of m em oiy node sharing. 

That is, each memory node has a fan-out of exactly 1.

For each partitioning algorithm, we use, as a measure of performance, the mean percentage 

improvement in critical path length resulting from partitioning over the 100 te s t  graphs. We 

initially assum e each graph is  unpartitioned (or equivalently, each computation has been 

assigned to its own partition) and that all commimication uses a default shared memory t3rpe. As 

in previous work, we assum e an infin ite number of processors during partition ing, so 

computations are not sequentialized in the unpartitioned "base case." We calculate the critical 

path length of the base case for each graph and use that as a measure of the graph's unpartitioned 

execution tim e. We then partition each graph using a particular partitioning algorithm, and 

calculate the critical path length of the resulting partitioned graph. The percentage improvement 

is defined as

base case critical path length • partitioned critical path length  ̂ ^
/Ol.7TlJ)iOuS7iX^TtZ  ^  T XUUbase case critical path length

We use the mean percentage improvement over all 100 test graphs as an overall performance 

measure for each partitioning algorithm.

DSC and Memory Nodes

In the experiment using DSC, we wanted to isolate and investigate the utility  of the memory 

node model by itself. To do so, we compare DSC as it is described by its authors, with a version than 

has been modified to use the memory node graph representation. Since DSC assum es a two-level 

architecture model, we specify only two types of memory in the architecture description for this 

experiment: local private memory, and global shared memory. All computations w ithin a given 

partition are assumed to communicate via local private memory and all communication between 

partitions use global shared memory. To reflect program behavior on an actual machine, we 

assign the read and write costs for both memory types according to those specified for the BBN  

TC2000 [10]. Each read or write of local memory causes a delay of 8 clock cycles per unit of data 

(assuming the data is  not cached). While the TC2000 supports several shared memory facilities, 

we emulate the behavior of interleaved shared memory since it  m ost nearly supports parallel
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access. The delay associated with each interleaved memory read or write is  37 clock cycles per 

unit of data.

Since DSC assum es a local communication cost of zero, we were concerned that it might not 

perform w ell for an architecture where the local communication cost is  not negligible. 

Furthermore, the DSC algorithm does not adjust internal cost estim ates during partitioning to 

keep its  overall complexity low. Since we were interested in the effect of memory nodes (and not 

simply the effect o f assum ing a non-zero local cost) we needed a way to incorporate non-zero local 

communication costs once at the beginning of the algorithm. To do so, we decided to include the 

cost of all local accesses in the execution cost of each computation node, and then use the difference 

between local and shared communication cost as the cost of non-local communication. That way, 

when an edge is zeroed, the correct local communication delay is considered as part of the overall 

execution cost. For example, consider the graph fragments shown in figure 7a. In the fragment on 

the left, the overall communication delay between the computation nodes is  74 cycles per unit, and 

the overall path length is 99 cycles. If the partitioning algorithm assigns the computations to the 

same partition, then the communication can use local private memory (as depicted in the graph 

fragment on the right). The communication delay between computations scheduled within the 

same partition is 16 cycles per unit, and the path length is 41 cycles. If the local memory access cost 

is folded into the execution cost of each computation, the difference between local and remote 

communication cost m ay be used to represent the cost of remote cx>mmunication. For example, in 

the right-hand graph fragment of figure 7b, the cost of each computation node includes a local 

access cost. The cost of the remote communication is 74 -1 6  = 58 cycles. Notice that the overall path 

length is still 99 cycles. When the communication edge is subsequently zeroed by DSC, the path 

length becomes 41 cycles. Therefore, even though the edge is zeroed, the path length includes the 

cost of local communication.
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Figure 7 -  DSC augmented with non-zero cost

To implement the memory node version of DSC, we changed the algorithm to consider the read 

and write delays associated with each computation. That is, we factored the true read and write 

delays into the path length estimates. For example, i f  a computation has a private output and a  

shared output, the overall delay through the computation would include the cost of writing the 

shared and private memory nodes corresponding to the outputs. We did not increase the  

complexity of the algorithm, however, by traversing the graph to adjust all cost estim ates after 

every memory node coloring. The estim ates, therefore, become more and more inaccurate as 

partitioning progresses.
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Algorithm
% Improvement

Actual Predicted

DSC 0.0% 76.2%

DSC with Non-zero Costs 18.9 % 62.2 %

DSC with Memory Nodes 21.5 % 28.4 %

Table 1 -  Performance of DSC

Table 1 shows the mean percentage improvement for all three versions of DSC.

The tab les shows two performance figures for each algorithm . The actual percentage  

improvement reflects the reduction in critical path that resulted from partitioning. That is, it  is 

taken from the critical path length of each partitioned graph. However, DSC m aintains its  ovra 

estim ate o f critical path (called the graph's "dominant sequence") during partitioning. The 

predicted percentage improvement reflects DSC’s internal estimate of critical path length.

We refer to the ratio between remote communication cost and local commimication cost as the 

granularity  of the communication system. In our example, we assume that the granularity of the 

target communication hardware is 37:8 or approximately 4.6:1. As we have mentioned, DSC over­

estim ates the granularity by assuming a zero local communication cost. For architectures where 

the granularity is  coarser, however, we expect DSC to perform much better. Further, the 

performance of DSC with non-zero cost and the performance o f true DSC should converge as 

communication granularity increases. Figure 8 plots the percentage improvement for DSC, DSC 

with non-zero local cost (denoted DSC-NZ in the figure), and DSC with m em oiy nodes, over 

successively coarser granularities. We fix the local cost at 5 clock cycles, and vaiy  the remote cost 

from 5 to 1000 cycles along the abscissa.

As predicted, the performance of DSC with non-zero cost converges to that of true DSC as 

granularity increases. Notice that DSC with memory nodes is able to achieve better improvement 

across the spectrum of granularities. As granularity increases, the penalty for misjudging local 

communication cost decreases. The degree to which a node’s starting tim e is under-estimated 

increases, however. Since DSC with memory nodes captures both the local communication cost 

and true delays due to computation strictness, it performs better across the spectrum of 

granu larities.
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DSC Over a Spectrum  of G ranularities
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Algorithm % Improvement

HEF 30.0%

CP 32.1%

CP/HEF 33.8%

Table 2 — Performance of HEF, CP, and CP/HEF

HEF, CP, CPIHEF

Table 2 shows the mean percentage improvements for HEF, CP (with a neighborhood of six 

nodes), and CP/HEF.

Since CP and HEF both work with the true graph critical path lengths, there is no difference 

between the predicted and actual improvements. The cost of maintaining the correct critical path 

estim ates during partitioning, however, is added algorithmic complexity. Compared to DSC 

which has a low complexity of 0 (N  * log N), these algorithms are able to achieve approximately 

10% better improvements in 0(N'^2) time. Figure 9 compares the performance of the DSC 

algorithms with that of HEF, CP, and CP/HEF over a spectrum of granularities. Again, we fix the 

local cost at 5 cycles and vary the remote cost between 5 and 1000 cycles.
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DSC, HEF, CP, CP/HEF Over a Spectrum  o f G ranularities
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Figure 9

Conclusions for the Two-level Architecture Model

From our experiments with DSC, we conclude that the m em oiy node model is appropriate for 

system s that support simple two-level communication hierarchies. The memory node version of
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Algorithm HEF

Default Memory Type Improvement

Interleaved Shared (Type 1) 57.9%

Local Write/Remote Read (Type 2) 32.8%

Remote Write/Local Read (Type 3) 43.2 %

Table 3 — Performance of HEF with different memory types

DSC demonstrates better performance even for coarse granularity system s where the cost of local 

commimication effectively can be considered zero. Still better improvement's are possible at the 

expense of increased algorithmic complexity as demonstrated by the performance of HEF and CP. 

As 0(N'^2) algorithms, however, both CP and HEF may be applied to large program graphs as their 

complexity is not overwhelmingly high. We therefore conclude that the memory node model, and 

partitioning algorithms that take advantage of the model, constitute an advance over prerious 

work.

M ulti-level Com munication Architectures

Having verified that the memory node model and our partitioning algorithms work well for 

two-level architectures, we next wanted to investigate their utility for multi-level systems. As we 

were imable to find previous work which addresses m ulti-level communication, we present our 

results without comparison.

Table 3 details the m ean percentage improvement of HEF for three different default memory 

types. Kecall that HEF is  an iterative improvement algorithm so it  assumes all m em oiy nodes are 

initially colored with a default memory type. As the amount of improvement depends on the 

initigd critical path length, we show how HEF improves path length for each possible default type.

Merge Sort versus Sarkar's Sequencing Algorithm

We also wanted to evaluate the performance of the algorithm we propose (based on merge sort) 

to sequence computations within each partition. To do so, we implemented a version of HEF that 

uses Sarkar's BuildSequence algorithm [20] in place of our merging algorithm. Table 4 shows 

the performance o f HEF using Sarkar’s algorithm  compared to HEF using the merge sort 

technique for the two-level architecture case.
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Improvements

HEF with Sarkar's
Algorithm HEF with Merge Sort

30.2 % 30.0 %

Table 4 — Performnace of BuildSequence vs. Mei^eSort

While Sarkar's algorithm improves the performance of HEF slightly, the resulting algorithmic 

complexity is  0(N'^2 * log N) (as opposed to 0(N'^2) for HEF with Merge Sort). Since the overall 

improvement is less than 1%, we conclude that the merge sort based algorithm is viable, especially 

in light its lower complexity.

5.0 Conclusions and Future Work

Partitioning and scheduling techniques m ust improve so that parallel programs can take 

advantage of increasingly complex computer architectures. Previous work has relied alm ost 

exclusively on a two-level communication architecture model in  which local communication 

implies no program execution delay. While such simplifying assumptions work well for specific 

architecture types, they do not adequately reflect the rich communication hierarchies present in 

many of today's machines. As a more general alternative, we propose the memory node paradigm  

which can capture the characteristics of complex system s as well as the simpler two-level 

architectures. To test  the utility  of the memory node model, we have developed two simple 

partitioning algorithms: HEF and CP. Although inspired by previous work, HEF and CP attempt 

to use the information presented by the memory node representation at the cost of some additional 

algorithmic complexity. While more computationally expensive than DSC [24] with its 0 (N  * Log 

N) complexity, HEF and CP (each with 0(N'^2) complexity) are less complex than Sarkar's 0(N^2  

* log N) algorithm [20]. As part of HEF and CP, we propose an 0(N ) scheduling algorithm, based 

on merge sort, to order computations within each partition.

We tested the validity of the memory node model in three ways. First, we compared two 

versions of DSC that use the standard two-level model with a version of DSC that uses memory 

nodes. The memory node version jdelded partitioned programs with shorter critical paths over a 

spectrum of architecture granularities. Secondly, we compared all three DSC versions to HEF and
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CP. Again, the algorithms that used memory nodes performed best. Lastly, we examined the 

performance of the memory node model for a m ulti-level architectizre. Since previous work 

cannot represent the various levels in the communication hierarchy, we presented our results 

without comparison. The results for the m ulti-level architecture show that our algorithms (using 

the memory node model) can realize good partitioning performance by considering the various 

levels in the communication hierarchy. We also wanted to consider the performance of the 

merge-sort-based scheduling algorithm used in HEF and CP. To do so, we compared a version of 

HEF that uses Sarkar's 0 (N  * log N) sequencing algorithm with regular HEF and noticed no 

appreciable difference. Since the merge-sort-based algorithm is  less complex, we conclude that it 

is viable.

As part of our future work, we plan to investigate how m em oiy and communication 

characteristics other than simple access delay may be considered during partitioning. Resource 

contention, for example, is a major source of execution delay that does not seem to be adequately 

accounted for in the current models. We also plan to study different partitioning algorithms that 

use the memory node model. In particular, we want to consider how the memory node model might 

be useful to a  task duplication heuristic such as the one proposed by Kruatrachue in [14].
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M em ory Machines*

Santosh S. Pande, Dharma P. Agrawal and Jon Mauney 
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Abstract
In order to effectively use the power o f newer massively parallel multicomputers, exploitation 
of functional parallelism in a program with automatic data and code distribution, is a ne­
cessity. Functional paradigm offers a relative ease of generating an intermediate form that 
abstracts the D A G  parallelism in the program, in an interprocedural framework.

Using the Sisal intermediate form IF-2, a new task-based methodology has been outlined to 
effectively map functional parallelism on distributed memory multicomputers. A new compile 
time method that investigates the trade-off between the schedule length and the number of 
required processors, partitions the IF-2. The partition is appropriately scaled at run time to 
match the available processors, to avoid recompilation.

The run time system is designed around an arbitrator processor and several worker pro­
cessors. The arbitrator processor manages the control thread of the Sisal program and is also 
responsible for the housekeeping jobs like task assignment to the workers and ownership res­
olution of the task variables. Each of the workers await tasks to be assigned by the arbitrator 
and use the ownership information maintained at the arbitrator to obtain the live definition 
of a variable.

Many implementation issues related to supporting call by value and virtual address mech­
anism are addressed. Benchmark results are presented to demonstrate the viability of the 
approach.

*This research was supported by the U. S. Army Research OfBce under grant no. DAAL03-91-G-0031
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1 Introduction

1.1 Distributed Memory Machines
Some of the reasons for the popularity of distributed memory machines are:

• They are highly scalable. These machines currently come in a variety of architectures 
like mesh, hypercube and ring, in which more processors could be easily added if the 
computing demands increase.

• With larger number of processors, there is virtually no performance degradation. One 
of the problems with the shared memory systems is that the memory bandwidths may 
not match the increase in number of processors. In fact, the overall system performance 
might degrade, due to the increased memory contention.

• For large parallel applications like Fluid Flow, Weather Modeling, and Image Process­
ing in which the problem domains are perfectly decomposable, the achievable speedups 
are almost linear in the distributed memory systems. This is primarily due to fast ac­
cesses to the local data maintained in private memory of each processor.

• Distributed memory machines are relatively cheap as they do not require any special­
ized hardware for memory arbitration, and processor-memory interconnection. They 
offer more Mflops per doUar value.

• With the advent of new techniques like wormhole routing, and resulting very high 
interprocessor communication speeds, the newer Mflop ratings offered by distributed 
memory machines are comparable to the shared memory systems, e.g. Intel Touchstone
iPSC/860.

• Fine grained parallelism could be profitable mapped on the newer systems like the Intel 
Paragon due to a very low communication/computation ratio.

However, programming distributed memory systems still remains very complex. The lack 
of proper software support is the main concern of many programmers.

Tn this paper, we present a methodology to compile Sisal on distributed memory machines. 
Section 2 surveys the different program partitioning techniques proposed in the literature. 
Section 3 illustrates our compile time partitioning method through an example. Section 4 
addresses the code generation and the temporary management issues for distributed memory 
machines. Section 5 discusses the run time system. Section 6 discusses the mode of execution 
of Sisal using our methodology, and section 7 concludes the paper.

2 Program  Partitioning Issues
Compiling programs on a distributed memory machine could be visualized as a resource 
allocation problem [10]. In particular, the problem of program partitioning on distributed

140



memory multiprocessors, has been attempted by many researchers, and the approaches could 
be mainly classified as:

1. Data Driven Code Partitioning, and,

2. Code Based Data Allocation.

In data driven approaches, the program data is partitioned for different processors, and the 
code is generated so that the generated data references are locally available. This results 
in lesser communication on distributed memory machines, which is a costly operation. The 
code based approaches, on the other hand, carry out the partitioning so that each processor 
approximately gets an equal share of the program code. The resulting data references, are 
then examined, and data is allocated to different processors to reduce communication. The 
goals of locality of data and load balanced code could be conflicting, and for certain types 
of codes impossible to achieve simultaneously [12].

The approach adopted by Kennedy et al. [6] falls under the data driven scheme. They 
define language extensions to Fortran with functions for managing data distribution in non­
shared address spaces. The new language is called Fortran D - D  standing for data distribu­
tion. They define compile time data domains to map the aggregate (mainly array) slices to 
local memory. The user is responsible for specifying such a data layout. The compiler then 
supports a virtual address mechanism to correctly map the global references to local ones. 
The code generation phase ascertains that the references in the computation are correctly 
mapped to the local memory. For example, by using the decomposition functions, the user 
could write following matrix mtdtiplication program:

PROGRAM MULT
REAL A(256,256), 8(256 ,256), 0(256,256)
READ *, N
DECOMPOSITION V(256,256)
DISTRIBUTE V(BLOCK_CYCLIC)
ALIGN A,B,C with V 

DO 10 1=1,N 
10 READ * , (A ( I ,J ) ,  J = 1,N)

DO 20 J=1,N 
20 READ * , ( B ( I ,J ) ,  J = 1,N)

DO 30 1=1,N
DO 30 J=1,N

0 ( 1 , J )  = 0 . 0  
DO 30 K=1,N

30 C (I,J) = 0 ( 1 ,J) + A(I,J)*B(K,J)
DO 40 1=1,N 

40 PRINT * , ( 0 ( 1 , J ) ,  J=1,N)
STOP
END
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In the above example, the function, DECOMPOSITION defines a virtual array V. Another 
function DISTRIBUTE defines the virtual mapping of elements of V on the processors. In 
this example, the above distribution implies that, processor 1 owns all the elements in rows 
1 to (N/P) and columns 1 to (N/P), processor 2 owns the all the elements in rows 1 to 
(N/P) and columns (N/P+1) to (2N/P) and so on. The ALIGN function defines a mapping 
between the indexing of the real array and its corresponding virtual array. In this case, the 
mapping is idempotent i.e. V(I,J) means A(I,J), B(I,J) and C(I,J). The compiler uses these 
functions to examine the references and their ownerships and generates correct code to get 
the values from other processors, if needed. The code generation is driven by the owner 
computes rule with a careful application of determining the ownerships using distributed 
variables and reductions resulting from the preceding dependence analysis phase.

Pingali et al. [12] also use data driven code partitioning approach by using user specified 
data mapping at compile time. A compile time ownership analysis is carried out and the 
code is produced by employing the concept of evaluators and participators. The compile 
time data mapping mostly defines the ownership information required for the correct code 
generation. The compile time unresolved ownerships could be obtained using run time 
ownership resolution. Consider the following piece of code in which the user specifies variable 
‘a’ to reside on processor PI, and variables ‘b’, and ‘c’ to be on P2 and P3 respectively:

a :P l ,  b:P2, c;P3;
SI: a := 5;
S2: b := 7;
S3: c := a+b;

In compiling SI, it is known that PI is the sole participator and evaluator, and for 82, P2 
is the sole participator and evaluator. However, for compiling S3, the definitions of both a 
and b are needed, that make PI, P2, and P3 participators (P3 supplies the definition of ‘+ ’ 
operator). P3 is the sole evaluator for S3. This results in the foUoAving code to be generated:

PI: P2: P3:
a := 5; b := 7; t l  := r e c e iv e ( a ,P l ) ;
send(a, P 3 ); send(b, P3); t2  := r e c e iv e (b ,P 2 );

t3  := t l  + t2;

In a more recent work, a new loop transformation called access normalization is proposed 
that restructures the index sets of the loop to exploit both the locality and the block transfers 
of loop data[9j.

The ongoing project C* [14] rely on user partitioning of data aggregates on SPMD ma­
chines like CM-5, and fall under scheme one. For example, the data-parallel program can 
look like:

domain vector  { r e a l  a, b, msuc; } x[iOO];

[domain vector] . •{
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i f  (a > b) then max = a; 
e l s e  nuix = b;

}
The type vector defines a domain containing two real values named a and b. By declaring 
x[100], 100 instances of the variable pair are created one pair per processing element. The 
selection statement activates every processing element whose instance has domain type vec­
tor. Every processing element evaluates the statement a > b. The universal program counter 
enters ‘then’ clause and those PEs for which the statement is true, perform the assignment 
max =  a. Then the universal program counter enters ‘else’ clause and those PEs for which 
the expression is false, perform max = b.

Koelbel et al. [8] carry out a semi-automatic data mapping in their Blaze project and use 
many optimizations to reduce message passing overhead.

Amongst the code based data allocation approaches, the most notable is due to Mansour 
et al. [3] that stresses, obtaining a load balanced code, and mapping data on the processors, 
to minimize the communication. The problem domain is decomposed into subdomains at 
compile time, and the partition is judged on the basis of an objective function that determines 
the locality of references. Other approaches have come from the efforts in porting the shared 
memory partitioning techniques to the distributed memory machines.

Some researchers have also attempted combining both the above approaches. For special 
cases of DO loops with constant dependence distances, Ramanujan et al. [13] have devised a 
novel scheme that attempts to achieve a communication free partition of a loop, if it exists. 
For example, consider the following DO loop:

fo r  i  = 2 to  N 
fo r  j = 2 to  N

A [ i , j ]  = j ]+ B [i ,  j -1 ]

In the above loops, for defining each element of A[iJ], two elements of array B are needed. 
It can be easily seen that if both array A, and B are divided, along their anti-diagonals, 
communication free partition of the loops is achieved. On the other hand, for the loop 
below, no such partition can be found.

fo r  i  = 2 to  N 
f o r  j = 2 to  N

A [ i , j ]  = B [ i - 2 , j ]  + B [ i - l , j - l ]  + B [ i - l , j - 2 ]

Gajski et al. [4] address the loop partitioning problem on a distributed-shared memory 
system. A given loop partition is evaluated on the basis of the amount of parallelism, and the 
memory access and synchronization overheads. The memory access overheads are modeled 
on the basis of whether it is a local access (for read only variables), a local synchronized 
access (for read/write variables), or a network synchronized access (for non-local variables). 
A heuristic algorithm is used to reduce the number of loop partitions examined to determine 
the best one.
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The above semi-automatic approaches save a lot of effort on the compiler’s part. However, 
these approaches might not always yield a good program partition due to following reasons:

• Data driven code partitioning approaches rely heavily on the user judgement in cor­
rectly partitioning the data.

• Many approaches treat the data distribution as static for the complete scope of the 
program and do not allow remapping of the data. Also, even if the user partitioning 
of the data is optimal at compile time, it may not be so at run time, due to compile 
time unknowns.

• Almost all of the data driven approaches tend to use the regularity of the computational 
structure to generate data and code partition. For example, the nearest neighbor 
communication in Jacobi, or communication in four dimensions in 2-D SOR are used 
to drive the code generator by many compilers. The type of data distribution supported 
is thus, block, cyclic, and block cyclic. These distributions are not sufficient to allow 
locality for more general irregular computational structures.

• Data driven code generation over-emphasizes the locality issue. The resulting code 
partition, may be non-optimal, for example, due to an unbalanced code if the prepro­
cessing dependence analysis stage does not properly discover the distributed variables. 
Dependence analysis is extremely tough and imprecise in an imperative framework 
leaving these approaches questionable.

• Strictly code driven approaches also suffer from the communication overhead, that 
would nullify all the benefits of parallelism.

• Approaches that tend to combine both the schemes, are too specific to constructs like 
DOALL, and also demand a special structure of the loop. In a general program, such 
approaches may not be viable, since many of the conditions are not satisfied at compile 
time.

2.1 DAG Parallelism And Functional Paradigm
One of the major limitations of all the above approaches is that they deal primarily with 
the loop based parallelism. To exploit the high degree of parallelism available in newer 
massively parallel distributed memory machines, the compiler must be capable of using 
more general DAG pajallelism present in the program. However, extracting DAG parallelism 
demands extensive interprocedural dependence analysis. Such an analysis is very hard in 
the imperative framework due to the presence of aliases, side-effects, and common blocks 
. The functional paradigm offers a more clean and neat model of DAG parallelism. One 
of the arguments against the functional programming is the lack of efficiency. However, 
the recent success in very efficient compilation of functional languages have led them to 
outperform conventional languages like Fortran in terms of many efficiency issues like speed 
and code-size [1].
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A few research efforts have attempted the issue of DAG parallelism for imperative lan­
guages. Girkar [5] has specified HTG (Hierarchical Task Graph) as the intermediate repre­
sentation for DAG parallelism. He has also developed a method to remove the redundant 
dataflow dependences and proved that in general the minimization problem for task depen­
dences is NP-complete. Sarkar [15] uses a compile time cost model to analyze the trade-off 
between ts«k overhead and task granularity. However, the issue of mapping tasks on dis­
tributed memory machines as a trade-off between the schedule length and the number of 
required processors remains unaddressed. We believe that it is very important to address 
this issue in order to fuUy use the power of the distributed memory machines that have large 
number of processors. This issue along with the efficient task management mechanism on a 
distributed memory machine form the subject of this paper. To demonstrate this approach, 
Sisal (Streams And Iterations In A Single Assignment Language) has been selected, due 
to its clean semantics and an elegant functional representation in its intermediate form. A 
task model based on dataflow graph representation of Sisal programs is used. The dataflow 
graphs are mapped to different processors, and a partition is generated at compile time, 
which is then suitably scaled to the available number of processors at run time.

3 Com pile T im e Partitioner
The partitioning problem for a general DAG (Directed Acyclic Graph) of task representation 
of a program, is known to be strong NP-hard thereby ruling out the possibility of a pseudo­
polynomial algorithm. Several variants of a new heuristic algorithm have been developed for 
partitioning Sisal dataflow graphs on iPSC/860 (Refer to [2] for details about Sisal).

3.1 Task Representation Of Sisal
Sisal uses IF-2, a dataflow intermediate form for its internal representation of programs. IF-2 
mainly consists of nodes that represent computation and edges that carry the data values. 
Each of the nodes has a set of input edges that carry input arguments, and a set of output 
edges to carry output arguments. IF-2 consists of three types of nodes:

• Simple Nodes, that define a variety of dataflow operations,

• Graph Nodes, that define scoping rules for the dataflow values passed from one node 
to another, and

• Compound Nodes, that consist of subgraphs. The semantics of a given compound node 
defines the manner in which its different subgraphs interact.

Our scheme uses the dataflow parallelism present in IF-2 graphs. We illustrate it by 
quoting an example given in IF-1 reference manual [16]. Figure 2 gives its IF-2 representation, 
of the following Sisal program:
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IF-2 FROM IF20P PHASE

EF-2 COST 
FILE

COST ASSIGNMENT

TIMING ASSIGNMENT

THRESHOLD SCHEDVUNG

DEPENDENCE ANALYSIS

RUNTIME PROC. MERGING

IF-2 TO IF2GEN 

Figure 1: Threshold Partitioner

import g ( I ,  J : in teger  returns integer)  
function  f(A , B, C, D : in teger  returns in teger)  

l e t  X, Y :=
i f  A+B < C+D then  

A, B 
e ls e  

C, D 
end i f  

in  g(X, Y) 
end l e t  

end ftm ction '/, f

The Select is a Compound Node of IF-2, that consists of three subgraphs for implementing 
if...then...else condition. Depending on the result at the output port of the subgraph 0, either 
of the subgraphs 1 or 2 are evaluated. The Simple Nodes 1, 2, 3, and 4 in Select Subgraph 0 
and Call Node 1 represent tasks and the edges connecting them represent task precedences. 
The outermost graph represents a scope boundary of function f in the example. Our scheme 
first schedules the Select Subgraph 0 and computes the two ‘Plus’ nodes in parallel if such 
partitioning is found beneficial by the partitioner at the compile time and then evaluates 
the ‘Less’ and ‘Inf on one of the processors that computes the preceding ‘Plus’. When the 
results of the Subgraph 0 are available, one of the Subgraphs 1 or 2 is scheduled.
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Figure 2: IF-2 Representation Of Exanaple Program

The decision whether it is beneficial to parallelize the two ‘Plus’ nodes and which processor 
is to execute ‘Less’ and ‘In f is taken by using the computation costs of these operations and 
the communication costs of their operands by performing a compile time analysis.

3.2 Partitioning Strategy
First, the preprocessor phase of the partitioner carries out a dependence analysis, iden­
tifies actual dependencies and scope imports of values using the Sisal intermediate form, 
and performs cost assignment based on iPSC/860 timings (Refer to Figure 1) [11]. These 
cost assignment correctly identify the relative tradeoff between the communication and the 
computation that mainly dictate data vs. code partitioning issues [7].

The partitioning phase works partially at compile time and partially at run time. At 
compile time, the partitioner computes partition margin as the difference between the 
earliest and the latest possible schedule times of each task. The tasks are assumed to be 
strict, i.e. a task becomes ready to run only when all of its predecessor tasks have completed. 
A threshold value is then globally selected within the minimum and the maximum partition 
margins of all the tasks, and an attempt is made to map a task on a predecessor task’s 
processor. A merit function is used to carry out the allocation if more than one tasks 
compete for the same processor. One of the two minimization schemes can be selected by 
the user:

• Scheme A: Compiling for minimum program completion time- Suitable for large sys-
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tems.

• Scheme B: Compiling for minimum number of processors- Smtable for small systems.

The threshold is varied between the minimum and the maximum values of the partition 
margins of aU the tasks, and the best threshold value that satisfies given option is found, 
and is used to generate the partition. In addition, four options are offered to keep compilation 
time under user control by changing the manner in which the threshold is varied :

• Adaptive Partitioning : Number of thresholds chosen to keep the compilation time 
almost constant,

• Fixed Step Partitioning : Fixed number of thresholds chosen specified by the user,

• Fixed Delta Partitioning : Fixed increment of a threshold is chosen specified by the 
user, and

• Discrete Threshold Partitioning : Threshold values are chosen as found on each of the 
input edges of a task.

Refer to the example in Figure 3. It shows a task graph created from the following code 
fraction:

functlC argl, arg2, arg3, arg4, arg5, a rg 6 ); 
funct2(eirg4, eu:g7); 
funct3(eu:g5, eargS); 
funct4(arg6, su:g9);
funct5(eu:g7, e^rgS, axgS, eurglO, aorgll, axgl2);
fimcteCsurglO, su:gl3) ;
funct7(eu:gl3, surgll, aorgl4);
funct8(Eo:gl2, surglS) ;
funct9(ea:gl4, eu:gl5) ;

Let the execution costs of each of the nodes of the task graph in Figure 3 be as follows:

c ( l )  = 100, c(2) = 35, c(3) = 75,
c(4) = 5, c(5) = 150, c(6) = 83,
c(7) = 22, c(8) = 25, c(9) = 80.

Let the communication costs of each of the edges be:

c ' ( l , 2 )  = 50, c » ( l ,3 )  = 20, c ' ( l , 4 )  = 15,
c» (2 ,5 )  = 17, c» (3 ,5 )  = 30, c» (4 ,5 )  = 90,
c» (5 ,6 )  = 28, c» (5 ,7 )  = 25, c ' ( 5 ,8 )  = 66,
c ' ( 6 ,7 )  = 14, c» (7 ,9 )  = 87, c» (8 ,9 )  = 80.
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Figure 3: Example Task Graph

The earliest possible schedule time of task 2 is 100 (right after the completion of task 1), 
and its latest possible schedule time is 150, if communication due to edge (1,2) is taken 
into account. Only the task precedence relations, and the ready to run condition mentioned 
earlier are taken into account, to find out the earliest and latest schedule times of each task. 
For example, the earliest and latest possible schedule times for task 5 will be determined 
on the basis of timings of each of the tasks 2, 3, and 4, and the communication cost along 
the edges (2,5), (3,5) and (4,5). If a task is to be executed on one of its predecessor task’s 
processor, the communication overhead along the corresponding edge is saved.

In this manner the earliest and the latest possible schedule times of each of the tasks are 
found. The corresponding partition-margins(pm) are found as follows:

pm(l) = 0, pm(2) = 50, pm(3) = 20,
pm(4) -  15, pm(5) = 30, pm(6) = 58, emd,
pm(7) = 72, pm(8) = 30, pm(9) = 157.

Thus, the threshold is varied between 0 and 157, in the manner described in each of the
above schemes.

Suppose a threshold value 50 is being used. First task 1 is scheduled on PI. When task 1 
completes, each of the tasks 2, 3, and 4 are ready to run at time t=100. The tasks 2, 3, and 
4 compete for PI, to avoid communication. This tie is broken using a merit function, that 
basically gives a measure of the task delay, and the processor completion delay. The merit 
functions (mf) of task t on processor p is found as follows:
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Figure 4: Discrete Threshold Scheme: Schedule Length Results

mf(t,p) =  Task delay of t on p - Processor completion delay of p due to t.
The merit functions for 2, 3, and 4 are:

n f (2 ,P l )  = 0 -  35 = -35 ,
m f(3,P l) = 0 -  75 = -75 , and
inf(4,Pl) = 0 - 5  = -5.

Since, the merit function of 4 is the highest, task 4 is allocated to PL Next, the tasks 2 and 
3 are allowed to be allocated to new processors, and the resulting task delays are examined. 
In this case, both the task delays of 50 and 20 are below the threshold, permitting such an 
allocation. Next, the task 5 could be allocated to either of the PI, P2, or P3. However, 
allocating task 5 on processor P2, results in the least schedule delay (the difference between 
the actual schedule time and the earliest possible schedule time). For task 5, the schedule 
time is 202, the earliest schedule time is 195, giving a schedule delay of 7, which is below 
the threshold. The processor assignment is carried out in this manner for all the thresholds, 
and the best value is chosen to satisfy the given goal in Schemes A or B.

Figures 4 and 5 give the results of the partitioning schemes for many numerical packages 
in terms of the schedule length and the average processor utilization found using a compile 
time cost analysis.

The second phase of the partitioner is carried out at run time. It remaps the tasks, 
producing a partition for a smaller number of processors than used at compile time. This 
phase merges the task lists of the earliest completing processors (determined according to 
compile time partition) allowing the program to scale to the processors actually available at
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Figure 5: Discrete Threshold Scheme: Processor Utilization Results

run time. Figure 6 shows the variation of program completion time (schedule length) with 
the number of processors found for fewer available processors. It can be easily seen that this 
scheme produces a partition, that is almost linearly scalable with the number of processors.

4 Code G eneration Technique
The code generation phase provides the support for call by value semantics on distributed 
memory machines, and a virtual addressing scheme for mapping global references to local 
addresses. The initialized global variables, and literals are replicated on all the processors. A 
processor called arbitrator manages control thread of the Sisal program, the task allocation 
and housekeeping jobs. Each of the other processors called worker is responsible for executing 
the assigned tasks.

4.1 Temporary Management
The run time management supports the call by value semantics through matching names. On 
distributed memory machines, this approach could improve temporary management, since 
the temporary physical space is now local than shared global. One of the possibilities isj that 
the temporaries are allocated to each of the function arguments through a pool of local names 
maintained for each of the workers individually, rather than through a global name space.
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Figure 6: Discrete Threshold Scheme: Variation of Completion Time With Processors for 
Gauss-Jordan Method

Each of the global reference, then uniquely maps to a local name. This translation could 
be done at compile time itself, since the worker binding of a task and thus the ownership 
of each of its arguments is known. However, there are two specific drawbacks of the above 
scheme:

• Run time task merging is allowed to scale the code to fewer available number of workers. 
This implies that the worker bindings of tasks, and their owned variables could change 
at run time and compile time translations may not work.

• Task migrations are allowed at run time, again leading to the above problem.

Thus, to alleviate these two problems, a mechanism is required at run time that maintains 
a global-local translation (a local symbol table). The following two issues could visualized 
with a strictly local symbol table scheme:

• Modifications in the ownership of a given variable have to be reflected in all the non­
local copies, e.g. redefinition of a variable on another worker.

• Due to the task migrations, the ownerships could change. The above coherency problem 
again arises.

Thus, the ownership analysis based on a local symbol table cannot be carried out, unless 
consistency is maintained among the copies with all the workers. This problem is similar to
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that of the cache coherency. Thus, with every change in any of the local symbol tables, a 
global update has to be carried out. This solution is very inefficient. A simple solution is 
proposed, by carrjdng out a virtual address translation at each of the workers. The global 
temporary reference by name is the same as the local one. An address mapping of this name 
is maintained in the local symbol table. Thus, the local symbol table gives us a global name- 
locaJ address translation.

The code generator is modified to support call by value semantics for non-local definitions. 
The ownership information for each of the function’s input arguments is maintained in a 
central symbol table at an arbitrator, and is passed to the worker through an appropriate 
input AR. If this variable is owned by a worker, it is looked up in the local symbol table to 
get its appropriate physical address. If not, then the ownership information is found using 
input AR, and the proper value is obtained from its owner. Once such a mapping is done by 
the utility routine, the function then executes, and creates its set of output arguments with 
proper reference counts. The output argument names and their physical addresses are then 
entered in the local symbol table. The'function after completing the execution, returns an 
appropriate output AR that describes the ownership information of its output arguments, 
as needed by the arbitrator to update the central symbol table. Thus, in an abstract sense, 
a generic function can be designed, that executes like this on each of the workers:

doexecuteCf, inscrgs, outeurgs) 
begin

get_my_in8u:gs(inargs); 
e x e c ( f ,  ineirgs, outeurgs) ; 
send_my_outeu:gs(outargs) ; 

end

The only problem with the above scheme is that compile time space allocation cannot be 
performed, for any temporary, since at run time, it would not be known a priori, as to which 
temporary is physically going to reside where. Thus, the physical space is allocated, for each 
of the task’s input/output arguments at the run time. This gives us some run time overhead 
coupled with the local address translation. Alternatively, the space could be allocated, at 
compile time to the input/output arguments of the assigned tasks, on the respective workers. 
For the migrated tasks, a run time space allocation could be carried out. Another simple 
solution is to keep global name space the same as the local, and allocate space at compile 
time itseK for all the globals on all the workers. This avoids the local address translation, too. 
This simplistic solution is inefficient, since a lot of space is wasted on each of the workers. 
However, in space-time trade-off we opt for time and allocate the space at compile time.

5 R un T im e Support
A central symbol and task table is supported, to be maintained by the arbitrator, to perform 
the ownership assignments of the task input arguments, to decide about the assignment of the 
ready to run tasks by using dependencies, and to perform the task migrations to balance the
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compile time discrepancies (Refer to Figure 7). On startup, the host loads all the processors 
with a copy of the program and sends an ‘init’ message to all the processors. The processor 
zero acting as arbitrator, initializes the central symbol table, carries out the merge of the task 
lists to match the available workers, creates appropriate worker bindings for the respective 
tasks, and initializes the task dependency list. It then, spawns two processes:

• Task Manager: This is responsible for various housekeeping jobs like updating symbol 
table, task dependences, assigning and migrating tasks.

• Message Manager: This is responsible for managing the interface to the workers. Its 
job is to send input ARs, receive output ARs, and inform the Task Manager of various 
activities.

The Task Manager is divided into two logical modules. The UpdateSymTab manages the 
ownerships, and the DispatchTask manages task lists. These two modules interact using an 
interrupt driven handler invoked by the Message Manager.

Each of the processors other than processor zero acting worker also spawns two processes:

• Task Thread : This is responsible for executing tasks.

• Message Manager : This is responsible for receiving input ARs, sending the output 
ARs, and getting and sending values of nonlocal and local variables.
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6.1.2 Array And Stream Manipulating Nodes

The stream referencing is non-strict, to allow pipeline parallelism. In other words, both the 
producer and the consumer tasks of the streams could be scheduled together. The streams 
are segmented using an optimization [7] to obtain maximum computation/communication 
overlap. Similarly, within a loop non-strict array production and consumption is allowed so 
that the generator subgraph of the loop could feed the values to the loop body in a non- 
strict manner. Also the array values generated in the loop body could be used by the result 
subgraph in a non-strict manner. This allows the vertical parallelism in a loop to be used.

6.1.3 Record And Union Manipulating Nodes

The three operations: create, replace, and extract result in different actions. The create 
operation creates a record or a union and sends an output descriptor to the arbitrator to 
indicate that the corresponding worker holds the live definition. Similarly replace operation 
updates a given field of the record or union and notifies the arbitrator of a changed ownership 
of the given data object. Extract operation simply retrieves a given field of the record or 
union and saves it in a temporary notifying its ownership to the arbitrator. The consumer 
then obtains the ownership information of this temporary through the arbitrator and gets 
the correct definition.

6.1.4 G ather/Scatter Nodes

These nodes occur in the generator or in the result subgraph of the loop. Similar to streams, 
we allow a non-strict execution of these nodes to allow a partial overlap of the values needed 
and generated by the loop body. The amount of segmentation is found using the optimization 
described in [7].

6.1.5 At Nodes

The At nodes denote operations like eiUocating array space, filling it with a given element, 
managing the underlying buffer for different data objects and many different memory related 
operations. They are assigned to the worker where the data object’s live definition is to be 
maintained. For example, at the time of creation of a given array the AddLAT or AddHAT 
will be assigned to a worker that is the first owner of the created array. At a subsequent 
point in program execution, if another AT node wants to modify the data object, it will first 
get the the data object’s live definition and after performing the modifications, proclaim the 
new ownership to the arbitrator.

6.2 Compound Graphs
Compound nodes of the IF-2 demand a special attention since they decide the control flow 
of the Sisal program. As noted earlier, the control decisions are made at the arbitrator. 
Appropriate sub-graphs of the compound nodes return the necessary variable values to the
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The arbitrator after carrying out above initializations, dispatches appropriate tasks to the 
workers through its Message Manager. The assignment of tasks is decided by the compile 
time worker bindings in conjunction with the merge performed to match the available number 
of workers. In addition to this, the Task Manager runs an algorithm that tries to migrate 
the tasks at run time to achieve the load balance. The Task Manager, then waits for the 
output ARs to arrive from the completed tasks, and updates the symbol table ownerships 
and ready to run task list. Finally, when all the tasks are completed, the Task Manger sends 
a kill message to all the workers and then kills itself.

On the worker side, following events occur. Each Task Thread waits for an input AR to 
arrive through its Message Manager. It then uses the ownership information in the input 
AR to find out the definitions of its input arguments, and sends messages to the respective 
workers to get non-local values. The local symbol table is used to get the addresses of locally 
available variables. The task is then executed, and the ownerships of the output values are 
reported in the output AR to the arbitrator, and also entered in local symbol table. When 
the worker receives a ‘kill’ message from the arbitrator, the thread terminates.

6 IF-2 graph execution
The arbitrator after initializing the task and symbol tables starts the execution of SisalMain() 
that starts the Sisal control thread. As it proceeds the execution of the different types of 
IF-2 nodes takes place as under:

6.1 Sim ple A nd A t N odes
Whenever the control thread executing at the arbitrator encounters a Simple or At node, 
it finds the worker binding of that node and dispatches an appropriate descriptor to that 
worker. The control thread then waits for the completion of the execution of the node before 
attempting to schedule its successors Once a node is scheduled on a worker, the worker 
is responsible to get the input arguments of the node using the ownerships in the input 
descriptor. The ownerships of the output arguments are sent in the output descriptor.

6.1.1 Arithmetic and Boolean Nodes

Input arguments are obtained from that worker where the live definitions reside and the 
results are saved in local variables after performing the operation. The output values are 
sent in the output descriptor only if the control thread at the arbitrator has demanded it; 
otherwise just an ownership descriptor is returned for ownership update.

 ̂A node is ready for execution only if all of its predecessors have completed their execution.
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arbitrator which then evaluates a condition to determine the flow of control. We examine 
different compound nodes one by one:

• Select: First the arbitrator control thread schedules the ‘Selector’ subgraph of the ‘Se­
lect’ compound node. It dispatches the Simple and the AT nodes contained within this 
subgraph and once the result of ‘Inf node is available at the arbitrator, it determines 
the appropriate ‘Alternative’ subgraph to be evaluated and schedules it.

• Tagcase: The arbitrator examines the tagcase variable for a match with a tag of one 
of the subgraphs and schedules that subgraph.

• Forall: The ForaU compound node is evaluated in a non-strict manner to allow partial 
overlap between the ‘Generator’, ‘Body’ and the ‘Result’ subgraphs. The ‘Generator’s 
supplies a chunk of values to the nodes in ‘Body’ subgraph that consume them and 
produce a chunk of results to be supplied to the ‘Result’ subgraph. The chunk size 
is decided by the rate of the production and consumption of the values in respective 
subgraphs and the message passing delay. For details of this technique, please refer to
[7].

• LoopA: The arbitrator first schedules the ‘Initialization’ subgraph and distributes its 
Simple and AT nodes. After the evaluation is complete, the arbitrator schedules ‘Body’ 
and ‘Result’ subgraphs together in a non-strict manner to evaluate the first instance 
of the loop. When the results from the first instance are available it schedules the 
‘Test’ subgraph for checking the loop exit condition. If the exit condition is false, the 
arbitrator schedules the ‘Body’ subgraph for the next instance and so on. Whenever 
the exit condition is true, the arbitrator completes the execution of the loop.

• LoopB: It executes in a manner similar to LoopA, except that the ‘Test’ subgraph is 
scheduled earlier than ‘Body’ and ‘Residt’ subgraphs.

7 Conclusion
We have presented a methodology for compiling Sisal on a distributed memory machine using 
the functional parallelism. The efiiciency of this type of approach will be largely determined 
by the communication costs on the target machine and the task overheads resulting due to 
call by value semantics. However, with the advent of the newer systems like the Intel Paragon 
that have a very low communication/computation ratio, we expect that this approach will 
become viable.
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A bstract

SISAL is a purely functional language which supports arrays. The dijffiiculty 
with supporting purely functional arrays is that a prohibitive amount of copying can 
be necessary. SISAL uses a sophisticated compile-time analysis to alleviate some 
copying associated with array operations. This compile-time analysis is discussed 
and some problems with it are exposed. The alternative to curing copying, is to 
prevent it. To this end we propose a linear ADT, inspired by Wadler’s monads 
work. Our linear ADT may be incorporated into Haskell and other functional 
languages. It allows efficient functional assignment on arrays. In addition it allows 
efficient divide and conquer style algorithms to be expressed using array partitioning 
and concatenation. The latter is particularly useful for expressing parallel array 
algorithms.

1 Introduction; the copying problem

SISAL is an applicative language designed for scientific processing, and in particular it 
supports arrays. It is a pure language which does not permit side-effects: there is no 
destructive assignment in SISAL. This paper assumes the reader is familiar with SISAL
[14] and functioned programming [2].

SISAL supports several functions on arrays. Functions such as indexing, and size and 
boimds enquiry present no problems. However other functions such as replace (e.g. 
a[i:3]), array add (e.g. array.addh (a,e)) and concatenate (e.g. a Mb) can result 
in lots of copying. The copying eirises because each of these functions must construct a 
new array. For example a [1:3] creates a new array the same as a except element i  has 
the value 3. A straightforward implementation will copy the array a and initialise element 
a[i] to 3. In an imperative language such as Fortran, a programmer would either modify
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the array using assignment, or the array woxild be explicitly copied, and element i  in the 
copied array would be initialised to 3.

Notice that the problem is copying and not excess storage use (especially if  an implemen­
tation performs reference counting). Consider the the evaluation of an expression such as 
a [ i  : 3 ] : an array will be allocated to hold the expressions result, the values of a ■will be 
copied into the new array and element i  of the new array will be initialised to 3. If the 
expression a [ i : 3 ]  occurs in a context where it contains the last reference to  a, then once 
the expression has been e'valuated the storage for a can be freed. Thus only during the 
e'valuation of a [1:3]  are both the arrays, a and its copy, resident in store.

Array copjdng as described can make dreistic changes to the efficiency of an algorithm. 
For example insertion sort, an O(n^) algorithm, becomes cin O(n^) algorithm, if  array 
replace is used. This copjdng problem effectively discourages the use of replace, array add 
and concatenate operations, which makes many algorithms hard to express.

Note, there have been some proposals which aim to circumvent the copying problems 
associated with functional arrays by pro'viding sophisticated implementations of arrays. 
These implementations use special representations for arrays, such that arrays do not 
need to be copied in their entirety. Unfortimately these implementations negate some 
desirable properties of axrays: namely constant time access to elements and a compact 
representation ia  contiguous storage. Bloss reports on some experimentation ■with one of 
these implementation techniques (trailing) in [3].

2 A  cure: co m p ile -tim e analysis

A lot of research has gone into de^vising compile-time analyses which recognise when 
replace operations may be implemented using destructive assignment [3, 5, 7, 9]. Effec­
tively aU these analyses perform some form of reference counting at compile-time. This 
enables the compiler to determine that some arrays become completely dereferenced after 
a replace operation and hence the replace operation may be correctly implemented by 
modifying the original array. For example if  it can be determined that in all contexts 
after the e^valuation of the expression a [1:3]  the array a becomes completely derefer­
enced; then the replace operation may be implemented by simply modifying the array a 
using destructive assignment (in imperative programming terms a [ i ]  := 3). Crucially, 
no copying is required. Of course such analyses are only approximate and cannot detect 
all expressions where replace may be implemented by destructive updating.

The array add function presents further difficulties since, imlike the replace operation, 
its result is larger than its argument array. Cann [5] has shown how some iterated array 
adds may be bounded using an analysis CciUed build-in-place analysis. This means that 
storage may be allocated once ia a single block, resulting in no copying.

Rather than defining array algorithms ia terms of replace, array partition and concatenate 
may be used to define di-vide and conquer style algorithms. This is particularly useful
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for defining parallel eilgorithms. Array concatenate usually copies its two arguments into 
a new array. Sometimes when concatenate is used in conjimction with array partition 
operations, cop3ring is unnecessary. Gopinath has developed an analysis to determine 
when this optim isation is permissible [7].

3 P ro b lem s w ith  co m p ile -tim e an alysis

The basic problem with using compile time analysis to optimise replace and other opera­
tions is that the operationail behaviour of programs is no longer evident firom their text. 
It is hard to write efficient programs for compilers which perform sophisticated optimi­
sations unless the optimisations are very easy for the progrEimmer to recognise^. Writing 
portable efficient prograons becomes practically impossible: since different compilers wiU 
perform different optimisations. Generally programs exhibit a loss of operationail clar­
ity and it becomes hard to reaison about programs’ efficiency. In addition compile-time 
analysis does not work well with separate compilation because such analyses are global.

In the OSC manual [6] in the section on “Warnings, hints and Recommendations” , the 
advice given to the SISAL prograimmer wanting to write efficient programs is: “As a 
generail rule, write FORTRAN style SISAL to get the best optimised performance”! The 
OSC compiler does provide information on copying. However this information is difficult 
for the programmer to use, in order to improve a program’s efficiency.

Furthermore all the above problems are compounded by higher order languages. Anal­
yses become more expensive, more complex, more difficult to report and harder for the 
programmer to understand.

4 T h e  a ltern ative: p reven tion  o f  im p lic it cop yin g

Recently two alternatives to using compile-time cinalyses to optimise implicit copying in 
programs have been suggested: linear type systems [8, 13, 16, 18] and linear abstract 
data types [15]. Both these approaches enforce Linear manipulation of arrays; thereby 
guaranteeing that arrays eire never shared. This allows replace operations to always be 
implemented by destructive updates. To copy a value (they cannot be shared) an explicit 
copy operation must be used.

4.1 Line£u: ty p e  sy stem s

Linear type system s support lineair types. A value having linear type is enforced, by 
the type system , not to be shared. Thus if  arrays axe made linear types then replace

^Recently on the net, people have enquired about what storage optimisations the OSC compiler 
performs and how these cein be recognised.
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operations on airrays may be implemented by destructive updating. Rather than detecting 
via a compile-time analysis that arrays axe not shared, a linear type system enforces this.

In [16] Wadler presents a type system which supports lineax and shared types. There 
is a natural restriction that although lineax types may reference shared types, shared 
types may not reference linecir types. This ensures lineax types are not shared indirectly 
via shared types. Wadler’s system heis been implemented by W aieling [18]. Two more 
sophisticated systems axe proposed in [8, 13].

4.2 M o n ad s a n d  lin e a r  A D T s

In [15] Wadler has proposed usiag monads to structure functional programs. Monads can 
also be used to achieve linearity; that is to support the linear manipulation of axrays. 
This guarantees that axrays axe unshared. These monad operations may be encapsulated 
into an A D T, which may be implemented using destructive updating. We wiU C e d l  such 
ADTs lineax. The main advantage of this approach is that no extension of a conventional 
functional language is required; only a special implementation of the ADT is required. 
Hudak is investigating the general implementation of linear ADTs [10]. The next section 
describes our own research with a linem  ADT.

5 A  linear A D T

This section describes our own ideas for a lineax abstract data type. The ADT described 
has been inspired by Wadler’s ideas on monads [15, 17]. The linecir ADT allows replace 
operations to  be implemented using destructive assignment. It also prevents copying when 
divide and conquer programs are written which utilise array peirtitioning and concatena­
tion. In order to discuss these approaches a Haskell like lazy functional language will be 
used [11, 12].

A speciad AD T is used to manipulate arrays efficiently. The ADT aiUows replace operations 
to be implemented by destructive assignment. This is possible because the ADT prevents 
axrays from being shared. This AD T does not replace Haskell’s axrays rather it provides 
an efficient alternative way of manipulating them. The AD T is not limited to Hciskell, the 
only requirements axe a higher order functional language with at least a Hindley/Milner 
style type system; laziness is not required.

Essentially the idea is this: by only allowing axrays to be manipulated indirectly, via eirray 
transformation functions, the sharing of axrays is prevented. In fact our transformation 
functions on arrays will be very conservative; they will prevent the copying, sharing and 
discarding of arrays’ structure. However, the contents of axrays may be changed. This is 
similar to work on semantics where commands axe often modelled as store transformers, 
functions from one store to another store, and of course the store is never copied! We call 
array transformation functions transformers. Rather than dealing just with array trans­
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formers we deal with general transformers. Transformers are a limited form of function, 
which can only be combined (composed) linearly. Their implementation is shown below:

> d ata  T a b  = Trans (a  ->  b)

This states that the hidden representation of transformers is a record, named “Trans”, 
with a single function component. Notice how polymorphism is required for the treins- 
former type, T, to be fully general.

The rest of this section describes primitive operations on transformers (T: the linear 
abstract data type). Note that all operations on the linear ADT preserve the structure 
of axrays.

Transformers may be linejirly combined using #. The # function is reverse function com­
position. Its implementation is shown below:

> i n f i x l  9 #
> (# ) :: T a b -> T b c ->  T a c
> (# ) (T f )  (T g) = T (g . f )

This operation is used to build linear sequences of transformations, rather like in an 
imperative language, is used to build linear sequences of commands. The # function is 
associative. An expression such a s t l  # t2  # t3  may be read as apply transformer t l ,  
then apply transformer t2  and then apply transformer t3 .

An identity transformer t i d  exists. It is the identity element of # and its implementation 
is:

> t i d  :: T a a
> t id  = T ( \x  ->  x)

A  note on arrays: in this paper vectors will be used; these are an instance of Haskell 
arrays:

> typ e  Vec a = Array In t a

For example a vector of In t would have tjrpe Vec In t. The operations used on vectors 
are indexing, for example v ! 3 yields element 3 of v, and bounds enquiry, for example 
bounds V would yield (1 ,1 0 0 ) for vector indexed from 1 to 100.

The replace operation is called a ss ig n : this is like SISAL’s replace, and it is a restricted 
form of Haiskell’s / / .  The operation given an index and a value produces a transforma­
tion on vectors. The transformation maps one vector to another with the appropriate 
modification.
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> a s s ig n  :: In t -> a -> T (Vec a) (Vec a)

How do transformers interface with the non-linear conventional world? Two operations 
are provided: tap  for applying transformers to conventional types and read for reading 
‘intermediate’ values. Both operations must perform some evaluation and copying to  
ensure transformers do not introduce observable side-effects.

The tap  function applies a transformer to a value. However since a transformer may  
destructively update (modify) a value, the value must be unshared. Otherwise, if the value 
was shared, other parts of the program might ‘see’ the value change when transformers 
were applied to it. To achieve this the value is completely evaluated and copied. Sharing 
may stiU be present if  the value is a function. Hence function types are disallowed; this 
is achieved by restricting a to be an equality type, that is a ground type:

> tap  :: Eq a => T a b -> a -> b

A real implementation should provide a special input facility for reading arrays directly 
from a file etc. without having to copy them. This is discussed in the Further research 
section.

The read operation has the following type:

> read :: (a  -> b) -> (b ->  T a c) -> T a c

It allows the reading of a value which is to be subsequently transformed. Typically read  
is used to read an element o f an array. For example, the read value may be used by an 
a s s ig n  operation, or the value may be used used to control a transformer (for example 
swap and t i f  in the next section).

The read operation may be described thus:

tap  (read f g )  a =  tap  (g ( f a ) )  a

Similar to tap  the read function f  of read f  g has its result fully evaluated and copied, in  
case it is altered by subsequent transformations. Generally this will be efficient since the 
result of the read function will be an atom to be assigned by an a s s ig n  transformation. 
Reading of sub-arrays is inefficient and requires further research.

There is a straightforward transformer, which given two transformers produces a pair 
transformer. Peiir transformers may be applied in parallel.

> pp :: T a b ->  T c d ->  T ( a ,c )  (b ,d )
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The zuz function is like a conabined zip and unzip. It takes a trcinsformer, which maps 
a vector o f pairs to a vector of peiirs, and it produces an isomorphic transformer, which 
maps a pair of vectors to a pair of vectors. The resulting transformer only works on pairs 
of equal length arrays.

> zuz :: T (Vec (a ,b ) )  (Vec ( c ,d ) )  -> T (Vec a,Vec b) (Vec c , Vec d)

Note that efficient implementation of zuz is possible, see [19]. (Essentially this operations 
corresponds to a regulcur communication operation in a data parallel language.)

In order to write divide and conquer operations on arrays the following operations will be 
required: h a lv e , ca t and i s u n it .  The h a lve  transformer halves an array as equally as 
possible:

> h a lve  :: T (Vec a) (Vec a,V ec a)

The ca t function is used to concatenate arrays:

> cat :: T (Vec a) (Vec b,Vec b) -> T (Vec a) (Vec b)

Given a halving like transformation, the ca t function produces a transformation which 
concatenates the result of the hcilving transformation, thus: cat h a lve  =  t id .

Note, the h a lve  and ca t operations are good for expressing parallel progrcims using arrays, 
because they express simple data partitioning. This is especially useful for distributed 
implementations which must move data between processors.

The i s u n it  function is used for controlling divide and conquer functions on axrays. It 
produces a transformer which is equal to one of two treinsformers depending on whether 
or not the array to which the new transformer is applied, is a singleton.

> i s u n it  :: (a  -> b) -> T (Vec a) (Vec b) -> T (Vec a) (Vec b)

It may be described thus:

tap  ( i s u n i t  f  t)  (a) =  (f a)
tap  ( i s u n i t  f  t) ( a i . . .  a,i) =  tap  t ( a i . . .  a,i), if n >  1 

where angle brackets denote vectors.
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6 S om e ex a m p le  program s

This section describes some programs written using the linear ADT described in the 
previous section. As might be expected from the frmctional nature of the lineax ADT, the 
programs have an FP [1] flavour. This is because we have elevated our array operations 
from the object (array) level to the function level.

A transformer to swap two elements of a vector is shown below:

> swap :: In t -> In t -> T (Vec a) (Vec a)
> swap i  j = read g e tv a ls  doswap
> where
> g e tv a ls  v = ( v ! i , v ! j )
> doswap ( iv a l . j v e d )  = a ss ig n  i  j v a l  # a s s ig n  j i v a l

The swap function produces a transformer which reads two values from a vector, emd then 
swaps the two values around.

An “i f ’ function may be expressed thus:

> t i f  :: (a  -> Bool) - > T a b - > T a b - > T a b
> t i f  c t  f  = read c g
> where
> g True = t
> g F a lse  = f

Given a predicate and two transformers this produces a transformer which behaves like 
one o f the two transformers, depending on the value of the predicate applied to the value 
to be transformed.

A w h ile  function may be deflned using the t i f  transformer.

> w h ile  :: (a  -> Bool) -> I  a a -> T a a
> w h ile  c t  = t i f  c ( t  # (w h ile  c t ) )  t id

This takes a predicate and a transformer as argument and produces a transformer. It 
repeatedly applies the transformer until the predicate does not hold on the transformed 
value. The w h ile  operation may be described thus:

tap  (w h ile  c t)  a =  s a

where s is the shortest sequence (t # t # . . .  # t) such that: not (c (s a)).

A sequential for loop, similar to w h ile , may be defined:
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> fo r  :: In t -> In t -> (In t  -> T a a) -> T a a
> fo r  1 h f  1 1 > h = t id
> 1 o th erw ise  = f  1 # fo r  (1+1) h f

The fo r  function takes two integer bounds and a function from an integer to a transformer 
as arguments. The function is applied over a rcinge of integers formed from the two 
bounds. The resulting sequence of transformers are sequentirilly composed using #. The 
fo r  transformer may be informally described thus:

tap  ( f o r  1 h 0  a =  tap  (t 1 # t (1+1) # t (1+2) # . . .  # t h) s

A sequential scan (prefix) operation may be defined using for:

> sscan  :: (a -> a-> a) -> T (Vec a) (Vec a)
> sscam op = read bounds ( \ ( l o , h i )  -> f o r  ( l o + l )  h i f )
> where
> f  i  = read p (a ss ig n  i )
> where
> p a = ( a ! ( i - l ) )  'op'  ( a ! i )

The sscan  function may be described thus:

tap  (ssc a n  ©) ( a i . .  .a.„) =  (ai ,ai  ® a2, . . .  ,a i 0  a2 © . . .  © a„)

A parallel divide and conquer map operation is shown below:

> tmap :: (a  -> b) ->  T (Vec a) (Vec b)
> tmap f  = i s u n it  f  (ca t  (h a lve  # pp (tmap f )  (tmap f ) ) )

This takes a function from a to b and produces a corresponding transformation from 
vectors of type a to vectors of type b. This may be described thus:

tap  (map D ( a i . . .  a„) =  (f a i . . .  f  a„)

A peiredlel divide m d  conquer scan operation may be defined using tmap:

> pscem :: (a -> a-> a) -> T (Vec a) (Vec ( a , a ) )
> pscem op = i s u n it  f  (c a t  g)
> where
> f  X = (x,x)
> g = h a lve  # pp (pscan op) (pscan op) # zuz (tmap h)
> h ( ( a , a s ) , ( b , b s ) )  = ( ( a , a s  ‘ op‘ b s ) , (as 'op'  b , a s  'op'  bs ) )
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This version of scan may be described thus:

tap  (pscein ©) ( a i . . .  a„,) =  ((ai,  I), (ai © a.2 ,1), -- - , {I, I)) where / =  ai © a2 © . . .  ©

This operation is only defined on arrays whose length is a power of two: since zuz produces 
a transformer which only works on equal length arrays^. Operationally, pscan is parallel, 
but less sequentially efficient thein sscan . Note that neither the sequential or parallel 
versions of scan perform any array copying.

One might wonder what the benefits of using functional languages are. After all if  we Weint 
efficient assignment why not use an imperative language? One of the many useful features 
of functional languages is the ability to define higher order abstractions. For example we 
may define a more general divide and conquer abstraction which encompasses tmap and 
pscan thus:

> dc :: T (Vec a) (Vec a.Vec a) -> — d iv id e
> T (Vec b.Vec b) (Vec b,Vec b) -> — p ost ad ju st
> (a -> b) -> — so lv e
> T (Vec a) (Vec b)
> dc d p s = i s u n it  s (c a t  (d # pp (dc d p s )  (dc d p s )  # p ))

This divide and conquer combinator allows transformations on vectors to be defined. It 
takes three arguments: a halving (splitting) function, a post adjust function which adjusts 
results before they are concatenated and a solve function which is applied to individual 
array elements.

For excimple using dc, tmap and pscan may be defined thus:

> tmap f  = dc h a lve  t i d  f

> pscan op = dc h a lve  (zuz (tmap h)> f
> where
> f  X = (x,x)
> h ( ( a , a s ) , ( b , b s ) ) = ( ( a , a s  'op'  b s ) , ( a s  'op'  b , a s  'op'  bs ) )

7 F urther research

Transformers as described are somewhat limited. There are three main problems with 
the present scheme:

*This is a standard restriction for the algorithm given; other algorithms can be expressed which work 
on unbalanced data.

170



•  Nested data structures cajmot be transformed, only top level data structmres can 
be transformed (except pairs of arrays).

•  The read operation must copy the result of the reading function. This is expensive 
if  the result is leirge. The tap  function suffers from a similar problem.

•  Apart from pairs multiple values cannot be transformed.

Handling nested structures requires a generalisation of the system. For example we require 
an a s s ig n  trainsformer having the following tjrpe:

> a s s ig n  :: Ix  ->  T a a -> T (Vec a) (Vec a)

This allows one transformer to be applied to a particular element on an array. There are 
many issues in this area of nested structures and generalising transformers.

The second problem, that of copying for reading, can be solved along similar lines to  
Wadler in [15]. Essentially einother ADT is defined, that of readers. This prevents read 
values from being shared eind yet allows pcirallel reading. The problem with this approach 
is its syntactic cliunsiness; monad comprehensions may solve this problem [15].

There is less of a copying problem with tap. All that is needed are some functions for 
defining arrays which prevent the defined arrays from being shared. (Note, that this 
copying problem is to  do with defining and not manipulating arrays.) One such array 
defining function, mentioned previously, might read an array from a file; another function 
is shown below:

> tap vec :: In t ->  In t -> ( Int  -> a) -> T (Vec a) b -> b

This function constructs a new vector and applies a transformer to it. The fiist two 
parameters specify the bounds of the vector. The third parameter is a function to initialise 
elements of the vector. The fourth parameter, a transformer, is applied to the vector 
constructed using the previous psirameters. This may be specified thus:

tap vec 1 h f  t =  tap  t (f 1, f  (1+1), . . . ,  f  h)

The third problem, transforming multiple values, can be overcome by the introduction of 
a general operation for defining transformers over all tuples. However, a better and more 
general solution might be to use records of values, but this requires an extension to the 
type system  to handle records . . .

It is desirable to have a h a lve  operation in Haskell to operate on naked arrays 
nhalve :: Vec a ->  (Vec a,Vec a) .  This operation is efficient to implement, since
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tinlike c a t it requires no copying. W ith nhalve operations such as reduce may be de­
fined, which can read, but not modify, arrays; for example a vector of numbers c£in be 
smnmed.

Sometimes it can be useful to copy and disceird arrays. A simple way to achieve this, in 
the present scheme, is with the following operations:

> tcop y :: T a ( a , a )
> f k i l l  :: T ( a ,b)  b
> s k i l l  :: T ( a , b)  a

However, these operations do not always interact well with cat ,  for example consider:
ca t tcop y . The resulting vector is larger thain the vector to which it is applied. One way 
to  prevent this is to have several ADTs eind to use Haskell’s type classes for overloading 
the operations. By analogy with Rjiskell consider the classes Eq and Num. The Eq class is 
more general that the Num class. Any operations on Eq are defined on Num but not vice 
versa. The operations described above tcop y, f k i l l  and s k i l l  belong to a less general 
class than the transformer functions previously described, since they allow discarding and 
duplication of values.

8 C onclu sion s

We have cirgued that preventing implicit array copying is better than trying to cure 
it. To this end we have defined a linear abstract data type. This supports efficient 
functioned assignment, and efficient divide and conquer operations, on arrays. The latter 
is particularly useful for writing parallel programs.

It might be useful to incorporate a linear ADT into SISAL so that the operational be­
haviour, efficiency, of programs is apparent from their text. This can greatly ease pro­
gramming when efficiency is importemt. However the ADT relies on higher order functions 
and a polymorphic type system, hence SISAL 1.2 is not suitable, but SISAL 2.0 [4] may 
be suitable. The linear ADT is particularly useful because it enables divide and conquer 
algorithms such as parallel map and scan to be expressed, using powerful low level primi­
tives. Divide and conquer edgorithms such as parallel scan cannot be efficiently expressed 
in SISAL.

Although the ADT described here allows some useful programs to be written, it is never­
theless too restrictive for general programming. Further research is necessary to increase 
the linear A D T ’s generality.

Acknowledgements. Thanks to my office-mates Brad Alexander and Dean Engelhardt 
for many interesting discussions and thanks to Andrew Wendelbom for his support and 
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Mathematical Syntax for SISAL
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Abstract

This paper presents a mathematical syntax which can be generated from SISAL 2.0 
and the tool to generate this mathematical form automatically. This tool is envisioned 
to be incorporated into a SISAL 2.0 translator. We contend that a mathematical 
syntax would be closer to a native language for computer users especially those well 
founded in mathematics. In addition, this mathematical form is suitable for overheads 
and textbook with the added benefit that the mathematical form is guaranteed to be 
syntactically correct. This will enhance the understandability presented programs. The 
example translations contained here are intended as a starting point for standardizing 
on mathematicalized SISAL and would be interested in others peoples ideas. There is 
no reason to prevent the extension of our approach to arbitrary functional languages.

1 U ser D om ain Language

Programming languages have traditionally been designed for use by those who have been 
specially trained in the engineering of software. This software has been built to solve 
problem in a wide range of specializations, most of which are outside the engineering of 
software. These developers of software by necessity also need to  be cross trained in these 
specia.lizations.

’ arya@cs.umn.edu
^Department of Computer Science, Lowell, MA 01854, {cmurphy,dwoods}@cs.ulowell.edu
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Those people in other specializations that need computer support have found it nec­
essary to develop in the programmer’s \vorld. This has diverted efforts from directly sup­
porting their own efforts and has enslaved them to working in areas tha t they may not feel 
competent in. Very few of us can work effectively in many disciplines.

There are a large number of disciplines tha t could use computer languages th a t are 
geared to the way tha t each disciplines finds natural to express the solutions to their prob­
lems and may describe the initial solutions in this user domain. A number of these disci­
plines utilize discrete mathematics in discussing solution for their problems and therefore 
the use of symbolism from discrete mathematics would be a natural choice. Another exam­
ple of a domain specific languages might be a dataflow style graphical display which might 
be good for systems engineers, network engineers or signal processing engineers.

We are currently taking a different approach in tha t we are starting from the program­
mers language and generating a representation back to  a user’s language similar to tha t of 
discrete mathematics. This display form of the programming language should be equivalent 
to a user language tha t would be developed with appropriate development tools.

We chose this mechanism to build these test languages as the development time is 
shorter. One could ( and eventually will have to ) build visual editors and parsers to 
examine the effectiveness of these user languages but would add several software layers to 
frontend, for example, the SISAL compiler. Others have input text tha t mimic the output 
form to generate visual form. We have chosen to transform the SISAL 2.0 language[l] into 
a discrete mathematics form that does appear to  be closer to what one might expect. There 
is an amount of programming “noise” ( such as type declarations ) that still exists in the 
output form but as the goal is to generate a form in which users could develop in, we have 
left this in.

2 B ottom -up  SISAL Parser

The current parser for SISAL 1.2 is a top-down implementation in C with no existing parser 
for SISAL 2.0 tha t we are aware of. We have used L-attributed LALR parser generator 
tools, which are capable of resolving reduce-reduce conflicts at parse time, to parse SISAL 
2.0. These are used to produce a bottom-up parser which generates a mathematical syntax 
for SISAL programs automatically. We also provide a method to  customize the output form 
to meet individuals preference. We use LaTex as the output form for the parser.

There are two primary language parsing tools which are used. The first is lcpg[‘£[. This
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program acts as a preprocessor to convert a parser specification with actions specified in 
C into a form tha t a YACC style program could interpret. The Icpg form has several ad­
vantages over YACC. The Icpg input language does not use the YACC notion of $ digit 
symbols to represent terminals and non-terminals values in the action portion of the spec­
ification, but replaces these with the symbol name preceded by a $. This greatly increases 
the readability of the specification and eliminates the errors caused by inserting actions 
in the right hand side. In addition, Icpg treats inherited attributes as arguments to , and 
synthesized attributes as results returned by nonterminals tha t are viewed as procedure 
calls. The other interesting notion in Icpg is tha t it allows the compiler developer to  spec­
ify conflict resolution rules tha t will allow one to resolve a reduce/reduce conflict at parse 
time. This obviously requires a different YACC style process which is called CYACC ( for 
Conflict YACC).

These tools allow the development of L-attributed LALR parsers without a lot of gram- 
mer rewriting in a clean, easy to  comprehend fashion. This speeds up the development 
process.

3 M athem atical Syntax

There are many reasonable mappings from SISAL 2.0 to a m ath form. We are currently 
using a mapping from SISAL to a form that is similar to tha t of discrete mathematics. 
Some of the more im portant mappings are: array indices, reserved words, mathematical 
operators, reduction symbols, language operator symbols, greek names etc., and general 
mathematical denotations.

As this is intended to  be a strawman mathematical syntax, this should be viewed as 
a starting point for a proper mathematical syntax for SISAL designed by an appropriate 
committee. Further, there is no reason to prevent the extension of this approach to  other 
functional languages. We must also recognize tha t there is not one uniform syntax tha t all 
will recognize as the best. It is hoped tha t a form can be found tha t is in the users domain 
that could be executable.

3.1 Identifiers

There is a transliteration of greek letter and special function names into their mathematical 
form. Therefore identifiers such as alpha, beta, gamma, delta, and epsilon are displayed as
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a  P J 6 e. The uppercase letters must be a dilferent source id as SISAL is a case insensitive 
language. Currently the names biggamma, bigdelta, bigtheta are displayed as T A 0 . We 
also can use this method to give special symbols such as sum and product the familiar 
forms H-

Other identifiers have display forms tha t are similar to  there SISAL but it is the first 
occurrence of an identifier tha t determines the capitalization. In addition, when arrays and 
streams elements are accessed we use a subscripted notation to indicate which elements. A 
hold over from SISAL is the ..  .notation as an array index.

We have chosen to leave function, modules, and programs definition statem ent very 
similar to SISAL form. The comma separator has been replaced x along with returns 
replaced by =>. For example

fu n c tio n  Reduce (pivot : integer x A : TwoD x B : OneD TwoD x OneD ) 

is the visual form for

Function Reduce(pivot:integer, A:TwoD, B:OneD returns TwoD,OneD)

The prototype form of a function is

fu n c tio n  MatMult (TwoDim x TwoDim => TwoDim )

3.2 T ypes

Types are a remnant from the programming language. To identify types the boldface word 
ty p e  is used followed by =  and the type definition. The type definition has the basic form

com pon en t_ n am e o r  class
type of component or class

For example:

a r r a y  [ ...  , ...]
numeric
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is the class array with 2 dimensions that is composed of the data type numeric. 

One can juxtapose several of these together to form a record

integer real integer 

or forming a union by separating the components with a |.

integer real integer

SISAL has the capability of allowing a programmer build up the set of values a type 
may contain by using the +  to  indicate set union and — for set dilference.

3.3 General Expressions

Immediately after the function definition is the return expression list tha t is evaluated to 
and therefore the return values of the function. In order to  extract values from inside 
iteration construct, the iterator returns an expression list tha t is composed of component 
from inside the iterator. To visualize this, we have place the expression list tha t is extracted 
from the iterator and placed under a left arrow. We would have preferred an arrow the 
length of the expression but has not been implemented in Tex. An alternative might have 
been to use H the the right of the expression list.

Expression lists are organized as one expression on a  line separated by a comma. Multi­
ple line expression would not have the comma to separate. There has been a suggestion tha t 
we inclose an expression list in a extended parenthesis tha t we have not yet implemented.

Bindings are indicated by and works over expression lists.

Special note on the visual form of array updates and generation of complete arrays. 
An array update takes on the form of a binding tha t references on the left hand side the 
components of the array being updated. On the right hand side is the expression list of 
values the array is being updated with. The example
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would update the values of the corresponding components of the G array from the M array 
leaving the undesignated components the same value as before.

Similarly array generators treat the type component as the value and subscript with 
the values being updated ( the entire array ). On the right hand side is a list of expressions 
that may preceded by a selection of the output array components tha t wiU be generated by 
the expression list. These right hand side entities are enclose in parenthesis. The example

a r ra y  numeric i), 2) ([i , j ] X ) ( A  i, ...B

would create an array with the size of the first dimension of array A by the size of the 
second dimension of array B. The value of the array would in the i,j components would be 
filled by the vector product from the A and B arrays.

Sisal let expressions predefines values for use inside the scope of the let expression. We 
have chosen to transform the let into the postdefine form using where notation. The let 
body is place before the declarations separated by the where .

SISAL selection constructs are the if and case. Each of these construct make be mapped 
to the same visual form. The visual selection is indicated by a large left curly brace tha t 
delimits horizontally the visual form that is affected. Immediately to the right of the brace 
is a vertical set of expression lists. Associated with each set on the last line of the set is a 
condition either starting with an if followed by a condition or an otherw ise.

The visual form of

if ( G[i,j] = 1 & Total > 5 ) then 0 
elseif ( Total "= 3 ) then 1 
else G[i,j] 
end if

is
0, if G i, j  =  1 / \  Total > 5

1, Total ^  3 

G i, j ,  otherw ise
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3.4 Iterators

Iterators have two basic forms in SISAL. There is the for loop constructs and the reduction 
operators. The reduction operators are treated as a special function with a internal mapping 
produced in the same manner as identifiers. The loop is indicated by the \/- Underneath 
this symbol is the SISAL in clause which is the set notation that indicates the values over 
which the iterator will range. For example

j^i

V
i€2...c-l

Above the V? have placed the predicate from the for-test component in SISAL 
indicating a while loop. A N O T  preceding the predicate indicates the until form. The 
above expression could be derived from

for j in 2..C-1 while j "= i
do

There are two special cases of the in clause of for expressions. The first is the dot 
product form. This is indicated by listing all of the in expressions under one V- The other 
is the cross product form which is indicated by a separate V symbol for each in expression.

V

could be derived from

for j in 2..C-1 dot i in 2..d-l
do

and

could be derived from
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for j in 2..C-1 cross i in 2..d-l 
do

There may be a declaration component immediately after the for. This is represented 
by a where clause bound to the scope of the loop. For instance

for j in 2..C-1 ; k = 10 
do ...

would be represented as

V
j€2...c-l

where
^  10

The body of the for loop is a flattened expression list and is placed after the V symbols.

4 Exam ples 

4.1 Life

program GameOfLifeExample

'/, John Conway’s Game of Life. Values of the Grid anre G’s or I’s. A 
’/, cell has 8 heighbors. Each iteration updates cells as follows: — If a 
'/, c ell has a 1 and greater than five of its neighbors have I’s, then it 
'/, should be updated to a 0. —  If a cell has a 0 and has more than
*/, three or fewer then three neighbors have I’s, then it should be 
'/, updated to a 1. —  otherwise the value of a cell remains unchaned.
’/, The simulation iterates n times. The border of the grid never 
*/, changes. The lower boimd of each dimension is assumed to be 1
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type Grid = a r r a y o f  integer;

function ComputeC G:Grid, i,j:integer returns integer )
let
Total := G[i+l,j-l] + G[i-l,j] + G[i+l,j + i] + G[i-l,j~l] + 

G[i-l,j] + G[i-l,j+l] + G[i.j-1] + G[i,j+1];
in
if ( G[i,j] = 1 & Total > 5 ) then 0 
elseif ( Total "= 3 ) then 1 
else G[i,j] 
end if 

end let 
end function

function DoWork ( G:Grid, r,c:integer returns Grid ) 
let
M := for k in [2..r-l] cross j in [2..C-1] do 
returns array[2..r-1,2..c-1] of Compute(G,k,j) 
end for;

in
G[2..r-1,2..c-1: M ]

end let 
end function

function Life( n:integer, G:Grid returns Grid ) 
let
r := size(G,1); 
c := size(G,2);

in
for i in [l..n] do 
G := doWork(G,r,c); 

returns G 
end for 

end let 
end function

end program
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p ro g ram  GameOfLifeExample

ty p e  Grid =  ‘----------- i
integer

fu n ction  Compute (G : Grid x i , j : integer =>■ integer )

' 0 , i f  G j =  1 / \  Total >  5

1, Total ^  3

G J-, j, otherw ise  

w h ere

Total G +  G t-i ,  j +  G j+i +  G ,-_i, j_ i +  G i - i , j  +  G ,_i, j+i  +  G i , j - i  +  G i j +

fu n ction  DoWork (G : Grid x r , c : integer =?► Grid )

w h ere

M ^  array  2 . . . r - i ,  2 . . . c - i {Compute (G , k , j )} V V
fce2...r-l j€2...c-l

fu n ction  Life (n : integer x G : Grid => Grid )

{ G }  V  G ^  do Work (G , r , c ) 

w h ere
r ■*— size (G , 1) 

c <— size (G , 2 )
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4.2 M atrix M ultiply

'/. This program illustrates the defiition and use of a matrix package 
7, comprising a matrix multiplication operation.

interface matrixRoutines
type TwoDim = array of n\imeric;
function MatMult( TwoDim, TwoDim returns TwoDim ); 

end interface

module MatrixRoutines

function Matmult( a, B : TwoDim returns TwoDim ) 
if size(A,2) "= size(B,l) then error[TwoDim] 
else array numeric [i in 1..size(A,1), j in 1..size(B,2):

[i,j] sum(A[i,..] * B[..,j])]
end if 

end function 
end module

program MatrixMultiplyExample

from MatrixRoutines: MatMult;

type TDR = a r r a y o f  real;

function MatMult( A, B: TDR returns TDR )
MatrixRoutines.MatMult( A, B ) 

end fimction

end program
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in terface  matrixRoutines

array  [. . .  , . . .]
ty p e  TwoDim =

numeric
fu n ction  MatMult (TwoDim x TwoDim => TwoDim )

m od u le  MatrixRoutines

fu n ctio n  MatMult (a , B : TwoDim TwoDim )

error [TwoDim ] , i f  size (A , 2) 7  ̂ size (B , 1)

array  numeric 1), je i . . . s i z e { B ,  2) ([i , j ] E  (A i , .. B j ) ) , otherw ise

program  MatrixMultiplyExample

MatrixRoutines
from

MatMult

real

fu n ction  MatMult (A , B : TDR =7> TDR ) 

MatrixRoutines.MatMult (A , B )
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4.3 Gaussian Elimination

program GaussExample

type Onel = array [..] of integer;
type OneD = array [..] of double;
type TwoD = array [..] of OneD;

function Reduce(pivot:integer, A:TwoD, B:OneD returns TwoD,OneD) 
let

mults := A[..,pivot] / a[pivot,pivot];
in

for row in A at [i] do 
nrow,
nB := if i = pivot then

row / A[pivot,pivot], 
b[i] / A [pivot,pivot]

else
row - mults[i]*A[pivot],
B[i] - mults[i]*B[pivot] 

end if 
returns array of nrow, 

array of nb 
end for 

end let 
end function

function Main ( n:integer,A:TwoD,B:OneD returns OneD) 
for i in [l..n] do

A,B := Reduce(i,A,B); 
returns B 
end for 

end function 
end program
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p ro g ra m  GaussExample

ty p e  One! s  ?£ £ ? 5 L L d
integer

array  [...]
double

array  [...]

ty p e  OneD =  

ty p e  TwoD =
OneD

fu n ction  Reduce (pivot : integer x A : TwoD x B : OneD => TwoD x OneD )

array  {nrow }, y  „tow , nB ^  { 
array  { n b } , )

row 
"S— ^ ^ —p tv o t ,  p tv o t

-J— fe-J------ , i f  i =  pivot
A  p iv o t ,  p iv o t

row — mults ,A  pivot 
B -  mults ,B pivot, o therw ise

w h ere

a  pivot, pivot
mults ^

fu n ctio n  Main (n : integer x A : TwoD x B : OneD ^  OneD )

{ B }  V  A , B ■!— Reduce (1 , A , B )
t € l . . . n
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4.4 Quicksort

program QuickSortExample 
type Info = array of integer;

function Quicksort(Data: Info returns Info) 
if (size(Data)<2) then Data 
else let Pivot := Data[liml(Data)];

Low, Mid, High := for E in Data do 
returns

array of E when E < Pivot,
array of E when E = Pivot,
array of E when E > Pivot

end for
in

Quicksort(Low) I I Mid I I Quicksort(High) 
end let 

end if 
end function 
end program
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p ro g ra m  QuickSortExample

T . _  arrayty p e  Info =  7
integer

fu n ctio n  Quicksort (Data : Info => Info )

D ata , i f  size (D ata ) < 2

Quicksort (Low ) || Mid || QuickSort (High ) 
where
Pivot ^  D ata

array {E  : E <  Pivot },
Low , Mid , High array {E  : E =  Pivot }, \/EeData > otherw ise  

array {E : E >  Pivot }

5 Conclusions

In this paper we have briefly described a mathematicalized form for SISAL 2.0 and the 
tools used to generate this form automatically. We feel tha t this form in i t ’s final version 
could allow a wider range of backgrounds to understand and implement programs in the 
spirt of SISAL development.

This methodology is also capable of other tasks. One example th a t we have done in the 
past is the visualization of intermediate forms such as IF1[3]. This visualized form gives a 
user an immediate feel for the information contained in a tree or a graph and we are also 
working on a dataflow representation of the graphs from the IF l form.
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Abstract

Within the SISAL programming environment, existing optimization tech­
niques do not address recursive functions. This limitation restricts the perfor­
mance of many applications. One approach is to transform recursive solutions 
into their iterative counterparts, thus allowing existing techniques to optimize 
the resulting form. In this paper, we discuss the issues involved in converting 
a recursive function into an equivalent iterative form. An outline of an algo­
rithm which performs a source-to-source transformation on tail recursive SISAL 
functions is presented. We then discuss the issues involved in generalizing this 
approach.

1 Introduction
Much of the expressive power of functional programming comes from the use of 
recursive decomposition. Recurrences play a central role in numerical computa­
tion [Gao90]. To address execution efficiency, optimization techniques, such as 
build-in-place [Ran87] and update-in-place [Can89], have been developed. As 
a precursor to these optimization techniques, functions are typically in-lined. 
Since the calling depth of recursive functions is not known until execution time, 
these functions cannot be in-lined. Without additional support for recursion, 
the performance that can be achieved for numerically intensive applications is 
limited since the current optimization techniques do not consider recursion.

In the current test suites, recursion is avoided because its use leads to poor 
performance. Although a recursive program can always be translated into an 
equivalent iterative one [BB86], requiring the user to perform the translation 
may introduce errors and confusion. If a problem lends itself naturally to a 
recursive decomposition, the corresponding recursive program is clearer and 
easier to prove than the equivalent iterative program [BB86]. Requiring the
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user to express the algorithm in a contrary manner is unproductive even when 
it yields better performance.

Within the SISAL programming environment, recursion is currently handled 
at run-time, resulting in high overhead costs. A stack is used both to maintain 
information about the calling sequence and to store temporary results. To ad­
dress the lack of optimizations for recursive functions, several approaches are 
possible. One approach is to convert a recursive function automatically into an 
equivalent non-recursive form [Boi92, BirSO, FLS87, Bbh88]. When possible, 
this conversion should take place as early as possible in the compilation pro­
cess to take advantage of other existing optimizations. The state introduced by 
removing recursion, however, is not readily expressible in an applicative pro­
gramming language. An alternative approach is to revise existing optimization 
techniques to consider recursion.

In this paper, we examine the approach of converting a recursive function 
into an equivalent iterative one. We first discuss some of the issues involved 
in this process. We then present an outline of an algorithm to remove tail 
recursion. Although this translation process is straightforward, this exercise 
provides a base for developing transformation techniques for a larger class of 
recursive programs.

2 The Task
In this section, we examine some of the issues involved in the automatic conver­
sion of a recursive function into an equivalent iterative form within an applica­
tive environment. For clarity, SISAL 1.2 source code is used in our discussion, 
although we intend the conversion process to be performed in the context of 
an intermediate language, for example IFl [SG85] or IF2 [WSYR86]. Using 
an intermediate language allows both state information to be introduced and 
existing optimizations to be performed, while keeping the conversion process 
language-independent. First, some definitions are provided.

D efinition: Simple Recursion exists when all recursive calls to a 
function appear in the definition of that function.

D efinition: Tail Recursion occurs when each recursive calls in func­
tion is the last operation performed by a particular function invoca­
tion.

D efinition: A Principal Call is the initial call to a recursive func­
tion.

D efinition: A Dependent Call is a function call within the definin- 
tion of a recursive function, principal call.

D efinition: A Continuation Path is an execution path that induces 
another recursive call.
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D efinition: A Termination Path is an execution path that allows 
the recursive function to terminate without inducing another recur­
sive call.

Execution of recursion requires that state information be maintained. This 
information, which resides on a run-time stack, allows the context of a recur­
sive call to be restored upon return. This is necessary since many activations 
of the same function may be in different phases of execution. To convert recur­
sive functions into their iterative forms, state information must be considered. 
There are forms of recursion that rely less heavily on state information than 
others. We concentrate on these forms of recursion because we want to limit 
the introduction of state information. Additionally, emphasis on these recursive 
functions helps to identify the issues involved in the conversion of other forms 
of recursion. Specifically, tail recursion is examined in order to establish a base 
from which further issues can be explored.

f u n c t i o n  p ( a . )

Figure 1 : Transformation of Tail Recursion into a  Loop

In tail recursion, the call sequence does not have to be maintained. The 
recursive function can be directly transformed into a loop structure, eliminating 
function-call overhead. Figure 1 depicts this conversion. Notice the values of the 
expressions, e,̂  passed to the recursive call must be evaluated and assigned to 
loop variables, a. These values are then used in flow-graph C  during succeeding

^denoting a set of expression, say ei . . .  en.
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executions of the loop. In the transformation process, the continuation path 
is redirected to the top of the function, while the termination path remains 
unchanged.

lunction lac (N :integer returns integer)

if N >= 2 then
N * fac (M - 1)

else
1

end if 
end function */, fac

Figure 2: SISAL 1.2 Recursive Definition of Factorial

function fac (N :integer returns integer)

for initial
accum := 1;
NewN := N; 

while (NewN >= 2) repeat
acciun := old NewN * old accum;
NewN := old NewN - 1; 

returns value of accum 
end for 

end function */. fac

Figure 3: SISAL 1.2 Iterative Definition of Factorial

To maintain the semantics of the function, other modifications must be made 
to the function. This can be seen by examining the differences in the recursive 
and iterative forms of a function computing factorials. These functions are 
presented in Figures 2 and 3, respectively. Notice there are two execution paths 
in the recursive form. The continuation path is repeatedly traversed until the 
condition statement causes a dependent call to function “fac” to terminate. 
All preceding function invocations are then terminated as each dependent call 
returns its value.

In the iterative form, a local variable, accum, is introduced to carry the result 
of the partial computation from one iteration of the loop to another.^ This is

This variable is initialized to  the identity value for the operation used in the com putation.
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necessitated by the change in the method of computation. In the recursive 
version, a series of expressions are partially evaluated, and are then completed 
upon return of the dependent call; thus “fac(l)” is computed first. The return 
value of the dependent call is then used to determine the next largest factorial. 
The values needed to complete the evaluations are normally stored on a run­
time stack, ■which is not needed in the iterative form.

It is straightforward to transform the factorial function by hand, but the 
transformation method cannot be readily applied to other forms of recursion. 
This example has identified an approach for addressing state information with­
out the use of a run-time stack. An outline of an algorithm to convert tail 
recursive functions into equivalent iterative ones is presented in the next sec­
tion. An example of converting quicksort using the algorithm is also provided. 
We then discuss some of the issues involved in eliminating general recursion.

3 O utline o f the Transform ation A lgorithm
Below we provide an outline of an algorithm to perform a source-to-source 
transformation on SISAL programs, removing tail recursion. The current algo­
rithm is limited since it only considers functions that have a single continuation 
path and a single termination path. Additionally, the function operating on the 
return value is limited to a single binary operator. This operator must have 
an identity value and this value must be provided. A detailed example using 
the algorithm is presented in Section 4. Notice, meta-symbols are delimited by 

and “> ”.

TRANSFORMING TAIL RECURSIVE SISAL FUNCTIONS 
INTO EQUIVALENT ITERATIVE ONES

G iven: A function definition “p”( / i ,  ■ •., / n )  which is tail recursive with only one 
termination path and only one continuation path. The identity value of 
the operator combining the results of the recursive call, e.g., < U N IT >  for 
< O P > .  Without loss of generality the function has the following template, 

fu n ctio n  p ( f l ,  . . . ,  fn) 
i f  (< C O N D > )  then

p ( f l ,  . . . ,  f n )  < 0 P >  < E X P R >
•/, o r  < E X P R >  < 0 P >  p ( f l ,  . . . ,  f n )  

e l s e
< T E R m E x p r >  

e n d  i f  
e n d  y, f u n c t i o n

197



1. Create the new function using the template:
i f  (< C O N D > )  t h e n  

f o r  i n i t i a l  
< I N IT >  

u n t i l  " ( < C O N D > )  
r e p e a t

< B O D Y >  
r e t u r n s  <R E T U R N >  

e n d  f o r
e l s e

< t e r m E x p r >  
end if

2. Initialize the lo o p  variables, replacing < IN IT >

(a) for each formal parameter of the function “p”, create a loop variable, 
and initialize it to its corresponding formal parameter, e.g., t f i  := / i .

(b) create a loop variable, and initialize it to the unit value of the < 0 P > ,  
i.e., “accum” := < U N IT > .  The variable is used to accumulate the 
results of the loop.

3. Copy the boolean expression controlling access to the continuation path 
into both < c o n d > s .  In the < c o n d >  associated with the “until” state­
ment, substitute all formal parameters with their corresponding loop vari­
ables, created in step 2a.

4. Substitute each reference to a formal parameter with a reference to its 
corresponding loop variable, i.e., < E X P R > [ / „ \ t / „ ] .

5. Replace < B O D Y >  with the fo l lo w in g  statements:
(a )  “a c c u m ” : =  < E X P R >  < O P >  “o ld  a c c u m ”

%  “ a c c u m ” : =  “o ld  a c c u m ” < 0 P >  < E X P R >
Note the position o / < E X P R >  w.r.t. < 0 P >

(b) t f i  := o i ; .. .tfn  := an] (Evaluating the parameters for the recursive 
call.)

6. R e p la c e  <R E T U R N > w i th  “a c c u m ” < 0 P >  < T E R m E x p r >
% o r  < t e r m E x p r >  < o p >  “a c c u m ”
Note ike position o / < e x p r >  w.r.t. < 0 P >
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4 A n Exam ple
In this section, we describe the conversion process by transforming the recur­
sive function quicksort. This function, depicted in Figure 4, has been extracted 
from the SISAL 1.2 reference manual [MSA+Sb, pg D-2]. For brevity, we have 
omitted the definition of the function Split. There are two recursive calls in 
this function, only one of which is transformed by our algorithm. The binary 
operator “||” (array concatenation) is associative, however the SISAL compiler 
parses it as a left associative operator. Therefore, the recursive call “quick- 
Sort(R)” is associated with the last expression executed and it is removed via 
the transformation algorithm.

function quicksort(Data :Info returns Info)

if array_size(Data) >= 2 then 
let

L,  Middle, R ;= Split(Data)
in
quickSort(L) I I Middle | | quickSort(R) 

end let 
else 
Data 

end if

end function quicksort

Figure 4; Recursive Definition of Quicksort

The first step in the algorithm is to create a template for the new function. 
This new template differs from the original template only in the structure of 
the continuation path; a for-loop has been inserted. From the original function, 
we can syntactically identify the following code fragments which are used in 
both functions.

•  < C 0 N D >  =  array^ize(Data) > =  2
•  < E X P R >  =  quickSort(L) || Middle
•  < 0 P >  =  II
•  < t e r m E x p r >  =  Data
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Inserting these values into the new function’s template yields

lunction quicksort(Data :Info returns Info)

if (array_size(Data) >= 2) then 
for initial 

< I N IT >  
imtil " ( < C O N D > )  
repeat

< B O D Y >  
r e t u r n s  <R E T U R N >  

e n d  f o r
e l s e

Data 
end if 

end 'U function

The loop that has been inserted within the continuation path simulates the 
recursive behavior of the original function. Four parts of the loop must be 
defined, the < I N IT > ,  < C O N D > , < B O D Y >  and <R E T U R N > . Additionally, the 
original body of the continuation path needs to be inserted into the body of 
the loop.

In the initialization section, two loop variables are introduced. The first 
variable, tD ata, is used to mimic passing the parameter which corresponds to 
the formal argument Data, and is initialized to its value. As  the loop executes, 
tD ata  is updated to reflect the value of the next parameter to the recursive 
call being simulated. The second variable, accum  is used both to store and to 
combine the partial results as they are evaluated. The initial value of accum  
must not affect the first partial result. Since the operator < O P >  combining the 
results is array concatenation, the empty array is used to initialize accum. In 
general, the accumulation variable is initialized to the identity value for < O P > .  
The identity value must be know a ‘priori and supplied to the algorithm.

Entry to the continuation path is controlled by the < c o n d >  expression, 
“array^ize(Data) > = 2 ”. Similarly, execution of the loop continues as long as 
this condition holds. We must, however, replace Data  with the loop variable 
tData. In a recursive function which contains several continuation paths, the 
disjunction of all the conditions may be used as the test criteria, i.e., until 
( < C O N D l > |  . . .  | < c o n d N > ) .

In the < B O D Y >  section, the loop variables must be re-initialized for the 
next iteration. This operation is performed after the non-recursive expressions 
are evaluated. Thus, the statement “L, Middle, R := Spilt(tData)” is inserted
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into the loop body first.^ Next, the effect of evaluating the recursive expression 
is simulated by combining the results produced by the previous iteration of 
the loop with the remaining portion of the recursive expression, < E X P R > .  This 
result is then stored into accum. Finally, the loop variable, tD ata  which mimics 
the formal parameter of the recursive function is re-initialized, i.e., “tData := 
R”.

Because the concatenation operator is not commutative, operand placement 
is significant when combining the results. In the new function, old accum  is the 
left operand of the operator ||. However in the original function, the recursive 
call “quicksort(R)” is the right operand. As the loop is executed, the left 
portion of the subarray tD ata, which is now sorted, must be positioned both 
to the right of past results and to left of future results. At the top of each loop, 
accum  contains the left portion of the final sorted array while the new partial 
results are generated by the expression “(quickSort(L) I I Middle)”. These 
arrays are combined and stored into the new accumulated array which is used 
in the next iteration. In this manner, as the right portion of each subarray is 
sorted, the result is appended to the previously sorted subarrays.

Immediately prior to loop termination, accum  contains the entire sorted 
array except for the final value of tD ata. This value is then appended to the end 
of accum  in the returns statement of the for loop. Additionally, the keywords 
“value o f ’ have been inserted to make the final statement syntactically correct. 
The final form of the transformed function is depicted in Figure 5.

5 G eneral R ecursion
To establish a base for research, a class of recursive functions which do not 
require a run-time stack has been examined. For the transformation approach 
to be useful, other forms of recursion need to be considered. Although all 
recursive functions can be effectively computed via a loop construct, a major 
concern is maintaining state information across loop boundaries. The state 
information can be maintained by using a run-time stack, but this approach 
tends to result in poor performance.

A recursive call can occur in the middle of a function. Consider Figure 6 
which depicts a graph of a simple recursive function and how it might be trans­
formed. Subgraphs C and D represent the operations that are performed before 
and after each recursive call, respectively. The function is restructured to al­
low C to be executed repeatedly, via a loop. A similar change is made to D. 
In this situation, the context of the recursive call must be maintained. The 
number of times which the subgraphs C and D are executed must be the same. 
Additionally, the values which flow directly from subgraph C to D must be 
preserved. These problems do not occur in tail recursion since the values used

^The let construct has been removed for syntactic reason.
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function quicksort(Data :Info returns Info)

if array_size(Data) >= 2 then 
for initial

tData ;= Data; 
accum := ARRAY Info □; 

until "(array_size(tData) >= 2) 
repeat

L, Middle, R := Split(old tData); 
accum := old accum I I (quickSort(L) I I Middle) ; 
tData := R; 

returns value of accum I I tData 
end for 

else 
Data 

end if 
end function

Figure 5: Transformed Quicksort

function p(a)

Figure 6 : Graph of General Single Recursion
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in conjunction with the recursive call are used immediately.
To maintain proper sequencing of subgraphs, counters could be used. Al­

though using counters introduces state variables, it has the advantage of reduc­
ing the memory requirements associated with a run-time stack. The counter 
would be incremented each time the program loops through subgraph C. A 
test would be performed at the end of the function to determine if subgraph 
execution is balanced. This is depicted in Figure 7. Each time this test fails, 
the counter would be decremented and subgraph D would be executed.

= k + l ;

Figure 7: Graph of Counter Controlling Execution

The data values that flow directly to subgraph D from C  must be saved as 
succeeding values are produced by subgraph C. Additionally, as subgraph D 
executes, the data values are required in the opposite order in which they are 
produced. A stack could be used both to store these values and to reverse their 
order.

There are two approaches to addressing the additional state introduced by 
the stack. One approach is to manage a local stack, similar in the way in 
which the run-time system handles its stack. Although the number of values 
stored may be reduced, this approach does not allow other optimizations to 
be performed. In an alternate approach, a flexible array could be introduced 
to simulate a stack. The push and pop operations could be implemented by 
arrayjiddh and arrayjremh, respectively."  ̂ The optimizations developed for

* A rray jid d h  and array _remh are two of SISAL’s primitive operations for arrays.
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arrays, for example update-in-place [Can89], could then remove some of the 
inefficiencies in this approach.®

6 Prelim inary Indications
To gather evidence for the effectiveness of the transformation algorithm, a small 
program suite of hand transformed code was timed on a sequential architecture, 
the Vax 6520, running Ultrix. Although we are concerned about the perfor­
mance of these algorithms on parallel architectures, establishing results on a 
sequential architecture allows us to analyze our results without the additional 
variables introduced by parallel execution. The runs were made at off hours 
and were repeated 200 times to reduce the effects of system fluctuations. These 
timings are only preliminary but serve as a general indication of the benefits 
which might be achieved using this approach.

The comparison of the first two recursive programs. Factorial and Fibonacci, 
are presented in Figure 8 and 9, respectively. Due to their short execution 
times, each function was executed 100000 times, and the total time was divide 
by 100000. As one would expect, the iterative versions of the functions perform 
substantially better than their recursive counterparts. The non-linear growth 
of the iterative form of the Fibonacci function is due to the second recursive 
call, which is not be transformed by our existing algorithm.

To test the transformation approach on applications which use arrays, tim­
ings were produced for quick sort and merge sort. A range of array sizes from 
256 to 8192 elements were used to produce a set of timings. Unfortunately, the 
results obtained vary greatly, and we are in the process of analyzing the data.

7 Work in Progress /  Future Work
To establish the merits of this approach, we will gather empirical results. Ini­
tially, we will perform timings on hand modified source code. Since conversion 
introduces a sequential loop, our analysis will also weigh the potential loss of 
parallelism against the reduction in function call overhead. In algorithms with 
multiple recursive calls, e.g. quicksort, a function call can be used to initiate 
work on a different processor. Removal of both recursive calls could affect the 
amount of parallelism that is detected in the program. We believe, however, 
the cost of function call overhead is substantial enough to warrant conversion, 
in most cases.

SISAL source code was used for clarity in our discussion of the conversion 
process. Future research will be performed using IF l and IF2 as the source 
language. This will allow us to concentrate on fewer semantic constructs as well

®Update-in-place may be able to  identify th a t the array has a single owner and allow updates 
to  be done in place.
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as to detach the process from a particular source language. Additionally, this 
will give us the flexibility to introduce state information without compromising 
the benefits of other optimization techniques.®

Research is underway to extend the applicability of the conversion approach. 
In the cases we have examined so far, recursion has been limited to simple 
nodes. When recursion is part of a compound node, we expect different issues 
to be raised, dictating special handling. For example, removal of the remaining 
recursive call in the body of the quicksort function (Figure 5) may require 
special handling since it appears in the body subgraph of a loop.

According to our definition of tail recursion, the factorial program in Fig­
ure 2 is not tail recursive. Notice that the value N is  multiplied with the return 
value of each recursive call. The multiplication is part of subgraph D since it 
is executed after the recursive call (refer to Figure 10a). We have been able to 
fold this computation into the resulting loop. Figure 10b, however, illustrates 
a more complex graph which our present algorithm cannot handle.

In our research, we will also develop a taxonomy of recursive functions. The 
classification will be based both on the methods needed to transform a recursive 
function and on the characteristics of the resulting iterative version.

®That is, optim ization techniques, such as update-in-place, will not have to  consider the possible 
effects of the s ta te  th a t is introduced the conversion process.
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8 S u m m a ry
Optimization techniques have been developed for applicative languages. These 
optimizations have dealt primarily with the execution efficiency of array con­
structs. Recursion is an important language feature that has not been ad­
dressed in these optimizations. To enhance the existing optimizations, several 
approaches are possible. An approach that appears to have merit is to convert 
a recursive function into a non-recursive form. In this paper, we have identified 
several issues involved in this transformation process.

We have presented an outline of an algorithm to remove tail recursion from 
SISAL programs. Research is in progress both to generalize this method and 
to migrate the process to the IFl and IF2 level. Although removing recursion 
involves the introduction of state variables, this approach has the advantage of 
both reducing the memory requirements associated with a run-time stack and 
eliminating function call overhead. If this approach is successful, it relaxes the 
need for existing optimizations, such as build-in-place, to consider recursion. 
Additionally, it may expose other opportunities for optimizations which will 
both enhance the performance of existing SISAL programs and encourage the 
development of new SISAL applications.
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Im plem enting Arrays in SISAL 2.0

R. R. Oldehoeft 
Computer Science Department 

Colorado State University

1 Introduction

In th is  report we ou tline an  im plem entation  technique for arrays in  SISAL 2.0 [2] a.s well 
as in  o ther parallel program m ing languages. To preserve th e  efficiency of array  access 
required  for parallel system s w ith  either shared m em ory or d is tribu ted  mem ory, we rely on 
organizational opportun ities first observed while working th rough  th e  design of SISAL 2.0.

W e had  th ree  goals in  th e  redesign of array  facilities for SISAL. F irs t, th e  currently  
im plem ented version of SISAL, 1.2, has some redundancy  am ong array  operations th a t we 
w anted  to  sim plify w ithou t losing expressive pow er or convenience. Second, experience 
showed us th a t we need tru e  m ulti-dim ensional arrays (as well as arrays of arrays). T hird , 
o ther languages w ith  arrays define operations analogous to  those on scalars th a t work 
elem ent-by-elem ent on a rray  operands, so we defined th is  expressive pow er for SISAL arrays.

T h e  d istribu tion  of a rray  ob jects am ong th e  processor-m em ory pairs of d istribu ted- 
m em ory parallel system s is a  sub ject of significant curren t study. T he developm ent of 
explicit d istribu tion  techniques em bedded in  program m ing languages is exem plified by 
P C F  F ortran  [7]. F o rtran  D [5] uses program m er-defined declarations as well as com­
piler op tim izations to  im prove efficiency. A utom atic  d a ta  alignm ent is th e  goal of several 
p ro jects [4, 6 , 8 ].

A nother m ajo r group of research pro jects aim s to  preserve th e  illusion of a  single shared 
m em ory on d istribu ted-m em ory  m ultiprocessors. These d is tribu ted  shared-m em ory sys­
tem s m ay be tied  to  program m ing languages [3] or m ay be operating  system  based [1, 9, 10]. 
Different system s im plem ent versions of coherence, b u t m ost keep track  of fixed-size pages 
containing shared data .

O ur goal is to  provide an efficient im plem entation  th a t is sim ilar for bo th  shared- 
m em ory and  d istribu ted-m em ory  parallel system s. T he design uses d a ta  s truc tu res th a t 
work well in m achines w ith  shared m em ory supported  by in terconnection hardw are (not 
necessarily w ith  uniform  access tim e), and  th a t can be  m ade to  m axim ize th e  effectiveness 
of d is trib u ted  shared m em ory supported  by system  software.

Before discussing im plem entations, we need a  few concepts from  th e  revised language.
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array-ref ::=  p rim ary  [ selector ]
selector ::=  selector-part [, selector-part ] * • *

[ { diag-spec [, diag-spec ] • • • } ]  
selector-part ::=  expression | [ value-id in ] trip le t
tr ip le t ::=  [ expression ] . .  [ expression ] [• • expression ]
diag-spec ::=  value-id [ dot value-id ] • • •

In th e  above, brackets [ ] are lexical elem ents, and [ ] enclose syn tactica lly  optional forms. 
A trailing  ellipsis, • • •, ind icates th a t  th e  preceding m ay appear zero or m ore tim es.

In  SISAL 2.0, a selector  is a  com m a-separated  sequence of item s. Each has one of th e  
following tw o forms:

•  An in teger-valued expression. This form  only identifies some portion  of a larger array  
structu re ; o rd inary  subscrip ting is a  sim ple exam ple.

•  A tr ip le t.  T he first expression gives a  lower bound, th e  second expression defines 
an upper bound, and  th e  th ird  is th e  s tride  betw een subscrip t values for consecutive 
elem ents. This form  is useful for several purposes in different contexts. I t  m ay 
describe th e  ex ten t of an a rray  in th e  dim ension associated  w ith  th is position, it m ay 
select a  subarray  of an  ex tan t array, or it m ay define which elem ents to  u p date  w ith in  
an ex tan t array.

T he optional tr ip le t label “value-id in” is used for selection of diagonal subarrays. As 
in  o ther languages th a t  support subarray  selection, th e  com m a separato r in array  selector 
syn tax  specifies a  cross p roduct of th e  index sets and  gives subarray  selection th a t  is 
rectangular. In add ition , one would like to  select diagonal subarrays. B y identifying 
trip le ts  th a t  will proceed th rough  th e ir ex ten ts  together, we specify a  diagonal dim ension 
in th e  array. Syntactically, one nam es ranges by  preceding th em  w ith  “value-nam e in”, and 
specifies w hich value-nam es will vary  together in  w hat we will refer to  as a  group. T he dot 
no ta tion , exem plified below, connects th e  nam es of tr ip le ts  in  a  group. Subscript ranges 
th u s  identified m ust have th e  sam e exten ts. Nam es on trip le ts  take  on th e  values in the  
ranges. T he dim ensions of th e  subarray  are ordered, left to  righ t, by th e  first appearance 
of a  nam e (in a  group w ith  o ther nam es) on a  trip le t. For exam ple, consider th e  following 
definitions, assum ing th a t  A [ 1 . . 4 ,  1 . . 4 ,  1 . .  10] is a  three-dim ensional array:

B
C
D

= A[i in 1..4, j in 1..4, 1 {i dot j}]
= A[x in 4..1..-1, y in 4..1..-1, 5 {x dot y}]
= A[t in 3..1..-1, 4, u in 1..3 {t dot u}]

T hen  these arrays are defined by th e  following elem ents of A:

B = A[l,l,l], A[2,2,l], A[3,3,l], A[4,4,l]
C = A[4,4,5], A[3,3,5], A[2,2,5], A[l,l,5]
D = A[3,4,l], A[2,4,2], A[i,4,3]
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A ll three are one-dim ensional, and

E := A[ i  in  1 . . 4 ,  j  i n  1 . . 1 0  { i  d o t  j }  ]

specifies a  [1 . . 4 , 1 .  .1 0 ]  array of 40 elem ents com posed from codiagonal “lines” in each  
“plane.” Here th e  subarray reference has two groups. Group 1 consists of th e  two trip lets  
labeled w ith  i  and j  (defining th e  first dim ension of the resu lt), and group 2 has only  
the unlabeled triplet (defining th e  second dim ension) residing by itself. As usual, each of 
these selected  subarrays heis unit lower bound and unit stride in each dim ension. N ote  
that diagonal subarray definition is not lim ited  to  sim ple 45° diagonals. B y  using different 
strides in the associated trip lets, other orientations are possible (as long as exten ts m atch).

2 S h a r e d  M e m o r y

T he shared-m em ory array  im plem entation  in  th is section is in some ways conventional. 
B u t th e  subarray  and  transpose capabilities will be im p o rtan t in  th e  nex t section where 
they  con tribu te  to  preserving b o th  “array-ness” and  p artitio n ab ility  for d is trib u ted  shared 
mem ory. W e also ou tline an im plem entation  of th e  general diagonal subarray  technique 
described earlier.

2.1 Physical Data Space
T he storage for arrays contains a rectangular layout of values. W e can organize rectan­
gular storage in either row-m ajor or colum n-m ajor fashion; a language m anual need never 
specify how it is done. A colum n-m ajor order sim plifies FORTRAN interfacing, but since  
this im plem entation  m akes array transpose trivial, either will work w ith FORTRAN 90, 
assum ing that language also uses a “dope vector” approach like the one described next.

2.2 Dope Vectors
An array  value is a  po in ter to  a  “dope vecto r,” a  te rm  apparen tly  first used in [1 1 ]. O ur 
dope vecto r has these fields.

•  A reference count. This allows m ultip le uses of an  array  value to  share a  dope vector.

•  Physica l space poin ter .  W e need th is to  find th e  physical space for deallocation, not 
for subscripting.

• Physica l reference count po in ter .  All dope vectors th a t  share all or p a r t of the  physical 
a rray  po in t to  th e  sam e physical reference count. T he physical reference count is kept 
separate  from  th e  physical d a ta  space to m ake “build-in-place” operations possible.
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•  Logical base. This is a po in ter to  th e  place in  storage w here th e  array  elem ent 
subscrip ted  by  [0, . . 0 ]  resides. O ften th is  elem ent is nonexisten t, b u t “L B ” makes 
subscrip ting  m ore efficient.

•  N u m b e r  o f  dimensions. W e use n  for th is value.

•  Packets .  Define n packets, one for each dim ension of th e  array. A packet for d im en­
sion j  contains th ree  values:

1 . L j,  th e  lower bound.

2 . t/ j , th e  upper bound.

3. M j,  th e  m ultip lier .  Let Sk be th e  ex ten t of th e  array  in  dim ension k, w ith  5o 
th e  size of an  array  elem ent. T hen  th e  m ultipKers for colum n-m ajor storage are

M l =  5o
M j  =  j  — 2 , . . . ,  n

For row -m ajor array  storage, th e  only change is in th e  m ultip lier com putation:

M „ =  5o
M j  — M jj- iS j j .1 , j  — n  1 , . . . , 1

In either case, each m ultip lier is th e  address d istance from  th e  a rray ’s “origin
elem ent” to  th e  ad jacent elem ent in each dim ension.

T he logical base L B  is easy to  com pute:

n
L B  = (address ([Li , .  . . ,L n ] )  -  X I  ^

k—1

A subscrip t reference to  th e  elem ent [ii, 2̂ , . . .  ,*n] transla tes  to  th e  com putation

n
L B  -t- X I ifc X Mk

k = i

For exam ple, if th e  th e  three-dim ensional array  A used in th e  diagonal subarray  exam ple 
above is stored  in m em ory a t address 1 in  row -m ajor order, and each elem ent takes 4 units 
of addressable storage, th en  its  dope vector will be

LB n Li M l L 2 U2 M 2 Lz Uz M 3
-203 3 1 4 160 1 4 40 1 10 4

and elem ent [ 2 , 3 , 4 ]  is found at address —203 -f 2 x  160 +  3 x  40 - 1 - 4 x 4  =  253. N ote  
that the reference count and pointer fields were om itted  for sim plicity.
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2.3 Som e O perations

In addition  to  single elem ent subscripting, we describe th e  im plem entation  of tw o o ther 
array  operations in te rm s of m anipu lations on dope vectors. These operations work as 
we wish them  to  because, in  each dim ension, th e  d istance betw een ad jacen t elem ents is a 
constant.

2 .3 .1  T ra n s p o s e

Simply copying a  dope vector w ith  packets in  reverse order (and keeping th e  sam e L B )  
im plem ents an  n-dim ensional transpose operation. Because m anipu lation  of dope vectors 
is no t possible in  th e  source language, th e  transpose operation  should be  an  in trinsic  
function. One m u st increm ent th e  physical reference count since b o th  th e  original array  
and its transpose are sharing all th e  elem ents.

To see w hy th is works, elem ent [e’l , . . . ,  e„] is found a t address

L B  +  X M \  “h • • • "T in X 

In a  transpose, th is  sam e elem ent is indexed v ia  [ in, . . . ,  ii] and  its  address is th e  same:

L B  +  in X Mn +  • • • +  ii X M l  

For exam ple, th e  transpose of A above is described by th e  dope vector

LB n Li M l L2 U2 M2 La Ua Ma
-203 3 1 1 0 4 1 4 40 1 4 160

and elem ent [ 4 ,3 ,2 ]  is a t address —203 +  4 x 4  +  3 x  40 +  2 x  160 =  253.

2 .3 .2  S u b a r r a y  S e le c tio n

Subarray selection is a  powerful no ta tion  for expressing algorithm s on arrays. Surprisingly, 
bo th  rectangular and  diagonal selection can be  unified in a single algorithm  th a t  produces 
first-class arrays as results.

R e c ta n g u la r  S e le c tio n  W hen som e subscrip t elem ents are trip le ts , they  specify subar­
rays instead  of single elem ents. T he resu lt is a  new dope vector derived from  th e  original 
one which shares th e  physical array  space (one m ust increm ent th e  physical space reference
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count). T he dope vector for com pletely rectangu lar selection is com puted th is  way:

n' =  num ber of trip le ts  
L'j = l , j  =  I , . . . , n '

=  (« i -  ^i) +  1 , i  =  1 , . . . ,  n '
M j =  ad d re ss ([ /i, . . .  , l j  +  s j , . . . ,  In]) -  address([/i, . . . J j , . . . ,  In]), j  —

=  M j  X  Sj, j  =  

L B ' = a . d d T e s s { [ h , . . . , l n ] ) - ' £ M ' j
i= i

Each m ultipher is th e  address d istance betw een th e  su b array ’s “origin elem ent” and th e  
ad jacent elem ent in each dim ension.

As an exam ple, th e  subarray  A[3 . . 1 . . - 1 ,  2 , 1 . . 9 .  . 2 ] of our three-dim ensional A 
whose dope vecto r was given above is described by the  tw o-dim ensional dope vector

LB n Li M l L2 U2 M 2

513 2 1 3 -160 1 5 8

D ia g o n a l S e le c t io n  F irs t, we explain how to  derive a  dope vector for a  subarray  specified 
by trip le ts  th a t  are all in  th e  sam e group:

A[i in ll..ul..sl, ... , j in ln..un..sn {i dot j} ]

for an array  A w ith  n dim ensions. T he resu lt is one-dim ensional, a  line in  n-space. All 
ex ten ts {uj — I j )  -i- Sj -1-1  m ust be th e  same, an d  th e  subscrip ts [Zi,. . . ,  Z„] and [ u i , . . . ,  u„] 
m ust be  legal. T he derived dope vector contains

I _n
L',
U[

L B '  =

1
1
[ui — Zi) Si -F 1
a ddress{ [ l i  +  S i , . . .  Jn  +  3 „])

n

i=i
address ([Zi,. . . ,  Zn]) -

a d d r e s s { [ l \ , . . .  Jn])

T he subarray  A [i i n  1..3, j in  4..2..-1, k i n  5.. 7 { i  d o t  j d o t k}] is one­
dim ensional and  characterized  by  th e  dope vector

LB n Li Ur M l
13 1 1 3 124
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S u b a r r a y  S e le c tio n  in  G e n e r a l  We can unify rectangular and  com pletely diagonal 
subarray  selection in  a  general way. A subarray  reference contains a  m ix  of sim ple expres­
sions and  nam ed  and unnam ed  trip le ts . Some of th e  nam ed trip le ts  m ay be d o t te d  to
show th a t  th e ir  ranges are to  vary  together in  a  group. Each unnam ed  trip le t and  each
nam ed  b u t u n d o tte d  trip le t resides in  a  separate  singleton group. T rip lets , tg„
reside in group g. T he groups together m ust define dim ension directions from  a  single 
a rray  elem ent, th e  “origin elem ent” of th e  subarray.

Let G  be th e  num ber of resu lting  groups, ordered by th e  left-to-right appearance of th e  
first tr ip le t in  each. T he dope vector for th e  subarray  is defined th is  way:

n ' = G
L'g =  1, =  1, • • •

~  ~  ^̂ 91 9  =
Mg — address (origin elem ent w ith  1 step  applied from  group g) —

address (origin elem ent), ^  =  1 , . . . ,  G
G

L B '  =  address (origin elem ent) — ^  M '
5=1

To exem plify general subarray  selection, recall th a t  E, defined in  an  earlier exam ple, is 
A [ i in  1 . . 4 ,  j  i n 4 . . 1 . . - l ,  1 . . 10 { i  d o t  j } ] .  H ere G =  2, w ith  group 1 con tain ­
ing th e  first tw o trip le ts  d o t te d  together, and  th e  th ird  trip le t is in  group 2. T he origin 
elem ent is a t [ 1 , 4 , 1 ] .  T hen  E’s dope vector is com puted:

n' = 2

l ; = 1
Ug, =  1
U[ =  A
f / ' =  1 0

=  address([2 ,3,1]) — address([l, 4, Ij) =  120
Mg =  a d d re s s ( [ l,4 ,2]) — a d d re s s ( [ l ,4 ,1]) =  4
L B '  =  a d d re s s ( [ l ,4 ,1 ]) — (120 -f 4) =  —3

B oth  rectangu lar and  diagonal subarray  definition resu lts in a dope vector th a t  is usable 
in  an im plem entation  in  th e  sam e w ay as any  o ther a rray  dope vector. No special cases 
arise: A subarray  m ay be subscripted , fu rth er sub array ’ed, u p d a ted , passed as an actual 
function  param eter, used in  a rith m etic  operations, and  so forth.

3 D istributed  M em ory

In  m ulticom puter system s w ith  separate  physical m em ories, issues arise in  th e  p lacem ent of 
array  segm ents for efficient execution. We assum e a  shared virtual m em o ry  im plem entation  
w herein a  single v irtua l address space is shared by all processors, as discussed above. Pages 
m ay reside in one or m ore of th e  physical m em ories, depending on th e  system  design.
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Two issues need to  be addressed to  exploit a  shared  v irtu a l m em ory efficiently. F irs t, 
in  th e  d is tribu tion  of array  pieces (rows, colum ns, or blocks, for exam ple) across processor- 
m em ory pairs, false sharing  m ust be avoided. This can occur if we naively place, in  a 
single v irtu a l page, a rray  elem ents from  m ore th a n  one piece. T hen  w rites to  th e  pieces by 
different processors are  updates of th e  sam e v irtu a l page, and  m any m essages are required  
to  keep th e  v irtu a l page involved coherent. We avoid th is by expanding th e  individual 
pieces to  v irtua l page boundaries w ith  “p h an to m ” elem ents, denoted in diagram s by  □.

Second, we w an t to  continue th e  shared-m em ory illusion afforded by th e  system  and 
described in  th e  previous section for ac tua l shared memory. T h a t is, we will continue to  
use dope vectors of conventional content to  access arrays. W e will also use dope vectors to  
define th e  a rray  p a r ts  th a t  are d is trib u ted  to  different processors in  such a w ay th a t  they  will 
efficiently access those  v irtua l pages containing ju s t th e  needed subarrays. B y continuing 
th e  shared-m em ory illusion a t th e  higher abstrac tion  level of array  d a ta  s truc tu res, we 
avoid m ultip le  special cases th a t  a com piler and  run  tim e system  would have to  handle.

In add ition  to  th e  n o ta tion  for describing arrays in  actual shared m em ory, we will use 
tw o m ore symbols. N  is th e  num ber of addressable u n its  in  a v irtu a l page. P  is th e  num ber 
of processors th a t bu ild  and access th e  d is tribu ted  a rray  p a rts—hence P  is also th e  num ber 
of array  p a rts  and  is know n before th e  a rray  is bu ilt a t run  tim e.

One can use a  varie ty  of form s for a rray  p arts  to  be d istribu ted . A m ong these are 
sets of contiguous colum ns, sets of contiguous rows, or subrows or colum ns (parts  of a 
one-dim ensional array , or tw o-dim ensional blocks of a  tw o-dim ensional array, for exam ple). 
See [4, 6 ] for discussions of how a  com piler m ight com e to  a  decision ab o u t an  efficient 
decom position of an  a rray  in to  p arts . H ere we explore th e  efficient im plem entation  of some 
of these decisions.

We now consider a  general tw o-dim ensional subarray  d istribu tion , and  its  generalization 
and  sim plifications. W e assum e a  row -m ajor array  storage layout, b u t th e  developm ent 
for colum n-m ajor arrays is ju s t as easy. T he developm ent also assum es th a t arrays are 
one-origin, w hich can be  generalized w ithou t difficulty.

3.1 T w o-D im ensional B lock D istribution

Consider an  array  A w ith  type  a r r a y  [1 . . u l , 1 . .u 2 ] o f  T. W e will divide A in to  R  rows 
and  C  colum ns of rec tangu lar blocks, each w ith  r  subrows and  c subcolum ns (except 
perhaps th e  last row an d  colum n of blocks).

P  =  (u i — 1 ) ^  r  -f 1 , C  =  (u 2 — 1 ) -r c -f 1

T he num ber of processors is P  =  R x  C . E ach elem ent of type  T takes So space; we assum e 
th a t So divides N .  In  each block, we p ad  each subrow  w ith  phan to m  elem ents to  use an 
in tegral num ber of pages, so each subrow  s ta rts  a t th e  beginning of a v irtu a l page. Each 
subrow takes (c x  So — 1) -j- A" +  1 pages. Let be th e  num ber of colum ns in  a  padded 
subrow:

c a  =  { N ^  S o )  X  ( ( c  X  So -  1 ) -  iV  +  1 )
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Instead  of A, consider B of type  a r r a y [1 . .R , 1. .C] o f  c irra y C l. . r ,  1. .cA] o f  T. 
This can in tu rn  be considered to  have type a r r a y [ l . .R, 1.  .C,  1 . . r ,  1 . . cA] o f  T. In 
v irtu a l storage, th e  layout for our block-decom posed a rray  is:

Row 1 of block 1 , 1  □ Row 2 of block 1,1 □ . . .  □ Row r  of block 1,1 □ . . .  □

Row 1 of block 1,2 □ Row 2 of block 1,2 □ . . .  □ Row r  of block 1,2 □ . . .  □

Row 1 of block R , C  □ . . .  □ Row 2 of block i?, C  □ . . .  □ Row r  of block R , C  □ . . .  □

T he following dope vector describes th e  storage:

LB n Ul M l L 2 U2 M 2 Lz Uz M z L 4 U4 M 4

4 1 R M 2 X C 1 C M s X r 1 r M 4 X Ca 1 c So

N ote th a t  M 3 is com puted  using ca , no t c.

T hen  a source reference to  A [ i , j ]  is tran sla ted  by  th e  com piler to

B [ ( i - l ) / r + l ,  ( j - l ) / c + l ,  ( i - l ) m o d ( r ) + l ,  ( j - l ) m o d ( c ) + l ]

and  norm al four-dim ensional subscrip ting successfully access all elem ents.

Since P  =  R  x  C  processors in  parallel will build  and  fu rther reference each block, 
we need to build  P  tw o-dim ensional dope vectors so each will reference exactly  the  block 
residing in unique v irtu a l pages. T his is accom plished by th e  subarray  operations:

B [ l ,  1, B [ l , 2 , . . ]  . . . B [ l ,  C, . . , . . ]
B[2 ,  1, B[2 , 2 , . . . B[2,  C, . . , . . ]

B[R,  1, . . .  . . ] B[R, 2 , . . ,  .*3 . . . B[R, C, . . , . . ]

As a  concrete exam ple, consider A of type  a r r a y  [ 1 . .5 ,  1 . .7 ]  to  be built in parallel 
on 3 X 4 =  12 processors. T he d istribu tion  by  blocks 2 x  2 in  size is:

1 , 1 1 , 2 1,3 1,4 1,5 1 , 6 1,7
2 , 1 2 , 2 2,3 2,4 2,5 2 , 6 2,7
3,1 3,2 3,3 3,4 3,5 3,6 3,7
4,1 4,2 4,3 4,4 4,5 4,6 4,7
5,1 5,2 5,3 5,4 5,5 5,6 5,7
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For sim plicity  5q =  1 in  all exam ples. Suppose N  =  3. T he desired v irtu a l m em ory layout 
(w ith Ca — 3) is:

1 , 1  1 , 2  □ 2 , 1  2 , 2  □ 1,3 1,4 □ 2,3 2,4 □ 1,5 1,6 □ 2,5 2,6 □ 1,7 □ □ 2,7 □ □

3,1 3,2 □ 4,1 4,2 □ 3,3 3,4 □ 4,3 4,4 □ 3,5 3,6 □ 4,5 4,6 □ 3,7 □ □ 4,7 □ □

5,1 5,2 □ □ □ □ 5,3 5,4 □ □ □ □ 5,5 5,6 □ □ □ □ 5,7 □ □ □ □ □

T he dope vector we need to  access th e  en tire  space as an  ord inary  array is (in all exam ples, 
we will assum e th e  first elem ent is at v irtua l address 1 ):

LB n Li Ul M l L2 U2 Ms La Us M s l 4 U4 M 4

-33 4 1 3 24 1 4 6 1 2 3 1 2 1

D ope vectors for each of th e  12 processors to  define and  m an ipu late  th e  blocks are form ed 
by  conventional subarray  operations. For exam ple, B [2 , 3 ]  is the  [2 ,3 ]  block and 
is described by th e  dope vector:

LB n Li Ul M l L 2 U2 M 2

+33 2 1 2 3 1 2 1

Each processor uses one-origin subscripting to  access its  block.

3.2 G eneralizations

T he reader will be able to  see th a t  a block d is tribu tion  of higher-dim ensional arrays in to  
higher-dim ensional blocks is easily done. However, in  [4] th e  argum ent is m ade th a t  to  
effectively exploit parallelism  in  large-scale d istribu ted-m em ory  m ultiprocessors, one needs 
only to  th in k  of one- and  tw o-dim ensional arrays of processors, and  d istrib u te  th e  o ther 
dim ensions w ith in  blocks to  them .

3.3 R ow  D istribution

Some algorithm s will work b e tte r  if a  contiguous group of en tire  rows is given to  each 
processor instead  of a  block of subrows and  subcolum ns. T hink  of this as a special case in 
w hich c =  « 2  => C  =  1. This alone elim inates th e  dim ension 1. .C,  b u t one can sim plify 
fu rther. H ere one only needs to  add  colum ns to  th e  righ t side of th e  array  A  so each row 
begins on a  v irtu a l page boundary. T he a rray  we actually  store is B [ 1 . . u l , 1 . . cA] and 
is d is tribu ted  to  processors in subarrays

B C ( j - l ) * r + l j * r ,  =  1 , . . . ,  P
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R etu rn ing  to  our exam ple, using P  =  3 processors w ith  r  =  2 whole rows per block, 
th e  array  is d is trib u ted  as follows;

1.1 1,2 1,3 1,4 1,5 1,6 1,7
2.1 2,2 2,3 2,4 2,5 2,6 2,7
3.1 3,2 3,3 3,4 3,5 3,6 3,7
4.1 4,2 4,3 4,4 4,5 4,6 4,7
5.1 5,2 5,3 5,4 5,5 5,6 5,7

If =  3, th e  desired v irtu a l storage layout is:

1,1 1,2 1,3 1,4 1,5 1,6 1,7 □ □ 2,1 2,2 2,3 2,4 2.5 2,6 2,7 □ □

3,1 3,2 3,3 3,4 3,5 3,6 3,7 □ □ 4,1 4,2 4,3 4,4 4,5 4,6 4,7 □ □

5,1 5,2 5,3 5,4 5,5 5,6 5,7 □ □

T he dope vector for th e  en tire  array  is:

LB n Ti M l l 2 U2 M 2

-9 2 1 5 9 1 7 1

and th e  dope vector for th e  m iddle subarray  is (for exam ple):

LB n Lx Ux M l L 2 U2 M 2

+ 9 2 1 2 9 1 7 1

3.4 Colum n D istribution

It is som etim es appropria te  to  d is tribu te  contiguous colum n sets. This is also a  special 
case of rectangu lar block d istribu tion  w ith  r  =  u \ R  =  \ .  As in th e  preceding, we 
can store a tw o-dim ensional array  and  d istrib u te  tw o-dim ensional subarrays. Here we pad  
colum ns w ith  elem ents so each begins on a  v irtu a l page boundary. However, since we will 
continue to  th in k  abou t arrays as row -m ajor, we require a  new wrinkle.

T he desired v irtu a l m em ory storage layout is colum n-m ajor, so groups of columns 
can be d istribu ted . T he  en tire array  is still accessible in conventional (row -m ajor) ways by 
building th e  overall dope vector differently. T he actual layout is conventionally addressable 
by applying a  transpose  operation  to  a colum n-m ajor dope vector describing th e  augm ented 
array. Subarray  dope vectors are constructed  for access to  d is tribu ted  colum n groups via 
norm al subarray  operations to  th is “unusual” overall dope vector.
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we w ant is:
example: A [ l . 5 , 1 . . 7 ] , P  = 3 =

1,1 1,2 1,3 1,4 1,5 1,6 1,7
2,1 2,2 2,3 2,4 2,5 2,6 2,7
3,1 3,2 3,3 3,4 3,5 3,6 3,7
4,1 4,2 4,3 4,4 4,5 4,6 4,7
5,1 5,2 5,3 5,4 5,5 5,6 5,7

Let iV =  3, so r„ =  ac tua l rows =  6. T he desired v irtua l m em ory layout is:

1,1 2,1 3,1 4,1 5,1 □ 1,2 2,2 3,2 4,2 5,2 □ 1,3 2,3 3,3 4,3 5,3 □

1,4 2,4 3,4 4,4 5,4 □ 1,5 2,5 3,5 4,5 5,5 □ 1,6 2,6 3,6 4,6 5,6 □

1,7 2,7 3,7 4,7 5,7 □

T he transpose of a  colum n-m ajor dope vector addresses th is space:

LB n L i u . M l l 2 U2 M 2

-6 2 1 7 1 1 5 6

T he subarray  dope vector for th e  m iddle colum n set is:

LB n L i Ui M l L 2 U2 M 2

6 2 1 5 1 1 2 6

3.5 O ne-D im ensional Array D istribution

We can th in k  of th is as block d istribu tion  of a tw o-dim ensional array  w ith  only one row, 
so r ,  R , and  do not exist. Beginning w ith  an array  A  of ty p e  a r r a y  [1 . .u2] o f  T, we 
w ant a one-dim ensional array  B of one-dim ensional arrays: a r r a y  [ 1 . .  C] o f  a r r a y  [1 . . c] 
o f  T.

A tw o-dim ensional dope vector describes th e  en tire  array:

LB n Li Ui M l L 2 U2 M 2

2 1 c ca X So 1 c 5o
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A reference to  A Cj] m ust be tran s la ted  by th e  com piler to  B [ ( j  -1 )  /c + 1 , ( j  -  l)m o d (c ) +1] .

As an  exam ple, consider A [ l .  .1 0 0 ], w ith  P  =  10 and  N  =  15. T he desired v irtua l 
storage layout is:

1 2 3 . . .  10 □ □ □ □ □ 11 12 13 . . .  20 □ □ □ □ □ . . . 91 92 93 . . .  100 □ □ □ □ □

A reference to  A [j]  becom es B [ ( j - 1 ) /1 0 + 1 ,  ( j - l )m o d ( 1 0 ) + l]  using th e  dope vector:

LB n P i Ui M l L2 U2 M2
-15 2 1 10 15 1 10 1

T he dope vector for th e  processor is:

LB n P i Ui M l
- 1 5  -F ( i  -  1) X 15 1 1 10 1

4  C o n c lu s io n s

T his report describes im plem entation  m ethods for m ultidim ensional arrays in  SISAL 2.0 
th a t  can be useful for o ther languages as well. T he m ethods are sim ilar for b o th  shared- 
m em ory and  d istributed-m em ory  parallel com puter system s to  simplify com piler and ru n ­
tim e  software. T he d istribu ted-m em ory  version uses SISAL 2.0 techniques for subarray  
definition to  align d istribu tab le  subarrays in  shared v irtu a l m em ory to  elim inate false 
sharing while preserving th e  ab ility  to  address th e  array  as a  whole in s tan d ard  ways.
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Abstract
This paper describes an improvement of the reusability model of the 

SISAL lajiguage. The study of the object oriented paradigm limits leads us 
to propose several extensions promoting a higher reusability scheme. The 
paper contains the description of the FOL language and of its translator 
to SISAL as well as insights in our future work on impure effects.

Introduction
The SISAL language is part of a project whose goal is to demonstrate that 
functional programs executed on classic “Von Neumann” architectures can be 
as efficient as any imperative languages (see [BCF091]). This will enhance 
the development of this expressive and reliable programming paradigm, well- 
adapted to the realization of logical algorithmic proofs. The first part of this 
paper develops the reasons why functional programming and reusability matter. 
The second part describes the usefulness of an advanced data description model. 
The third part is a concise description of the FOL language and of its translator 
to SISAL . The last part concludes and presents the research subjects which will 
be developed around the FOL language.
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1 Improving efficiency in program developm ent
One of the most sought goal of computer science is the improvement of the 
efficiency in program development. The use of functional languages and the 
development of reusability are two of the possible answers to this problem.

1.1 Usefulness of pure functional languages
The first computation model which has been intensively used was the Von Neu­
mann’s engine. Although this model was close to the way computer worked, its 
high degree of complexity made quite impossible the study of the logical prop­
erties of algorithm written in this model. Other much simpler mathematical 
models, such as the typed A-calculus could be used to work out logical proofs 
of algorithm, but the translation from Von Neumann’s imperative style was not 
trivial. The best solution was to use languages which could be easily translated 
in one of these models (see [Bac78]). The functional languages, and in particular 
SISAL , are based on the typed A-calculus.

1.1.1 Provable algorithm

The simplicity of the A-calculus mathematical model enables to develop several 
kinds of proofs about the correction and confluence of algorithms. This goal 
which has driven many research projects in computer science is part of the 
quest for higher efficiency in software development. Proofs could be developed 
with any mathematical model, but only simple ones will permit the development 
of efficient enough systems.

1.1.2 Quasi m athem atical expressiveness

The syntax of functional languages mimics the definition of mathematical func­
tions. This propriety eases the development of programs by mathematicians and 
engineers, who do not have to learn quite esoteric language syntax to express 
their equational problems.

1 .1 .3  R elia b ility  o f  program

One of the major problems when using software written by someone else is that 
you do not know exactly what modification the code does to its environment, 
the so called “side effects” . A software library cannot be declared safe and so 
cannot be used in any case in such a situation. Pure functional languages forbid 
access to memory cells, a function can only use the value of its parameter and
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return a new value, it cannot modify its caller’s environment. Thus, the use of 
functional languages guarantees that a function in a library can be safely used.

These problems motivated the definition of the SISAL language which proved 
that reliable functional languages could be as efficient as imperative ones without 
resorting to ad hoc non-“Von Neumann” architecture (see [Can]).

1.2 Usefulness of reusability

Programmers spend most of their time rewriting already existing software com­
ponents. Either they know nothing of the existence of these softwares, or their 
requirements are slightly different and impose complete rewriting of the soft­
ware.

In the last decade, these problems have been investigated by the software 
engineering community in two different ways. The first approach consisted in 
improving the description of existing softwares, so that it would be easier to look 
for old sources than writing new ones. The second approach, which is our field of 
study, tries to elaborate new paradigms of programming, so that slight changes 
in software requirements do not involve rewriting of all software components, 
but only a mere addition of new sources corresponding to the differences.

Research in knowledge modeling proposed to improve the data models as a 
means to enhance reusability.

2 D a ta  m o d e l d e s c r ip t io n

The evolution of programming languages has first stressed the formalization 
of behavior before studying data description. The next step in programming 
languages evolution has been the adoption of knowledge modeling mechanism 
to describe data types. The concept of class has become the basis of the object 
oriented model which is currently one of the leading trend in the development 
of new programming languages.

2.1 Classic class based model

Research in knowledge modeling proposed the association of data and behav­
iors as a stronger semantic model of programs. The inheritance and genericity 
mechanism enabled to reduce the size of the description of complex systems by 
improving reusability. However, this goal still encounters some problems.

225



2.1.1 D a ta  +  B eh avior =  Class

In the object oriented paradigm, the description of programs is based on ideas 
issued from knowledge modeling. An abstract object is represented by its de­
composition in sub-objects and by the description of its behaviors. Such a 
representation is called a class. Several mechanisms, both syntactic and seman­
tic, simplify the description of complex systems by classes. All along this paper, 
the word behavior will be used to describe a function part of a class. Its choice 
was motivated by our will to show that the same model could be used with 
different evaluation paradigms.

2 .1 .2  C om p osition , G en eric ity  and In h eritan ce as R eu sa b ility  schem es

The oldest and more efficient reuse concept is the composition. It consists in 
describing a class as a sum of its different parts and its behavior as a composition 
of their behaviors. This scheme is very useful for programs which only change the 
top of their structural decomposition; but if the changes concern only the bottom  
of the decomposition, a lot of components have to be modified or reprocessed 
by the compilers.

A new kind of reuse scheme was thus needed, which would enable users 
to describe new parts of a software system as slight different versions of old 
parts and to integrate them with a minimum of work. The first step in this 
direction was the conception of generic mechanism. Some bottom parts of a 
software component decomposition were specified only by their interface with 
the system. Every other part having the same interface could be substituted for 
these.

This scheme was very interesting for the development of storage types such as 
list, tree or stack, but users had to fully describe every behavior of the interface, 
even if only one changed from other parts. The next step was the development 
of the inheritance mechanism which enabled users to describe a new component 
as an extension of an old one. Only the description of the changed behavior and 
the new ones were needed. The data type of these systems could now be par­
tially ordered. Each class having no ancestor is the root of an inheritance tree. 
The dynamic binding mechanism resulting from the combination of inheritance, 
polymorphism and overloading solves the problem of reprocessing the top part 
of a system when changes are made in the bottom parts.

To describe the fact that the class B  is an heir of class A ,  the following 
notation is used: A \ , B .

2 .1 .3  L im its o f  th e  m od el

The improvements introduced by these approaches were noticeable in several 
cases, particularly in the implementation of abstract data types and user in­
terface management systems (see [VL88]). In general, studies have shown an
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improvement in efficiency when reusability has been stressed as one of the de­
sign principles (see [LHKS92]). A paradox can be found here, object oriented 
languages, designed to improve reusability, burden users with the necessity to 
predict every use of a software component before implementing it.

Another major problem with the standard class model is the difficulty of 
unifying several class hierarchies. For example, abstract syntax trees are very 
useful for formal manipulation of mathematic formulae. Each node of these trees 
can have several sons depending on the type of the node and of the number of 
the parameters, that the function or operator it represents, have. If you have 
efficient class implementations of unary, binary, ternary and n-ary tree coming 
from different sources, you would like to merge them to solve this problem. 
This merging is impossible in the standard object oriented system if you cannot 
modify the code of both classes.

2.2 The key to a higher reusability
To improve the easiness of reusability scheme, the object oriented approach has 
been enhanced with two new paradigms in our project.

2 .2 .1  Im p lic it G en eric ity

Several object oriented languages do not include a genericity mechanism. This 
one can easily be emulated by using polymorphism and inheritance, but this 
approach lacks of the strong typing properties of explicit genericity. Genericity 
can be a source of problems in the case of software reuse. You have to imagine 
every possible use of a software component in order to describe as generic every 
part of the components which could be of any use as a generic part.

In order to avoid this problem, we decided to include in our language an 
implicit genericity mechanism. Every field of a class is considered to be generic. 
This permits the definition of a stronger type system. Consider the following 
example:

class Pair < Any>
Fst, Snd : Any 

end class;

class Point < PairC Fst, Snd : Real]> 
end class;

class Complex < PairC Fst, Snd : Real]> 
alias Fst as Re, Snd as Im 

end class;
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class Vector < Pair[ Fst, Snd : Point]> 
end class

An instance of class Pair cannot be affected to a variable of type Point, Com­
plex or Vector. This typing scheme is stronger than the genericity simulation 
using inheritance and polymorphism.

Our implicit genericity implies that each field of the object is generic vpith 
its type constrained to be a subtype of the original type of the field.

2 .2 .2  L ate ab straction

We have shown that the inheritance relation limits drastically software reuse 
in some cases because only the leaf of the inheritance tree can grow. We have 
devised a scheme enabling the growth of its roots, so that users can combine 
similar classes and give them a common father in the inheritance tree. The 
major problem is the definition of the similarity relation between class behav­
iors. The intuitive semantic description of a behavior is its signature, i.e. the 
types of its parameters. This relation is necessary but not sufficient, the set 
of behavior with the same signature is quite larger than the set of similar be­
haviors. Currently, the use of this only relation requires that the user provides 
the lacking information. Then, coherence checks are performed by the system. 
The next step will be to use the scheme for using signature isomorphism to 
search functions in libraries (see [Rit91]) to reduce the set of similar behaviors. 
Other opportunities come from the theory of effects which can be synthesized 
algebraically and would require no other work from the user.

To describe the fact that the class A is an abstraction from the class B  and 
C, the following notation is used; A  = B QC.

The following example shows the use of late abstraction to combine two 
pre-existing classes.

class BinaryTree < Any >
Info : Any;
Left, Right : BinaryTree;
function Process ( par : Any; returns Any ) 

let LeftC, RightC :=
Left.Process( par ),
Right.Process( par ) in

end let 
end frmction 

end class;
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class TemaryTree < Any >
Fst, Snd, Trd ; TemaryTree; 
function Compute ( par : Any; returns Any ) 

let FstC, SndC, TrdC :=
Fst.Compute( par ),
Snd.Comput e( par ),
Trd.Compute( par ) in

end let 
end function 

end class;

abstract Tree = BinaryTree, TemaryTree;

An instance of the class TVee is a tree which can have two or three sons 
at each node. A value of Tree type can be assigned to every field of Tree, 
BinaryTree or TemaryTree type in the initial classes.

Up to now, a semantic description of behaviors, sufficient enough to enable 
an automatic synthesis of the abstracted class, has not yet been designed. Thus, 
we still need other information provided by the user. The system can be used 
in two ways, either the user specifies some or all the common behaviors and the 
system checks whether they can really be unified, or the user asks the system 
which behaviors are compatible and selects among these which are the common 
ones.

The fist rule for comparing behaviors is that each behavior must have the 
same arity. Then the type compatibility of the signature must be checked with 
the following laws:

E b  f  : U x - * V i , g : U 2 - ^ V 2 , 3 U i , U i < U z , U 2 <  Us,  3  Vi <  ^3, V2  <  V3 
3 h = /  © h : {C/iUi}&{U2 -  U2}

This rule means that a common behavior can be defined if there exists both 
a common supertype of the parameter and of the result of both behavior.

The value of these supertypes U3  and V3  are computed with the following 
laws:

U i < U 2 = > U 3  =  U2
Ui >  U2 =!> f/3 =  Ui 

3 U  =  U i Q U 2 =>U3  =  U
V i< V 2= > V 3 =  U2

Ui > U2 V3 =
3 V  =  V i Q V 2 =>V3  =  V

The type {Ui Vi}ic{U 2 —>■ V2 } means that either the function takes a 
parameter of type U\ and returns a value of type Vi, or it takes a parameter of
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type U2 and returns a value of type V2 - This type is part of the A& typed A- 
calculus developed by Giuseppe Longo at the LIENS (see [CGL92] and [Cas92]). 
There are slight differences due to the fact that each occurrence of the type of 
the class in its definition is substituted by the type of the late abstraction.

For example, after this substitution, the BinaryTree, TemaryTree and Tree 
classes will be equivalent to the following code:

—  This is the abstracted class, there is no implementation o i  its
—  behaviors in its definition, they will be done in the subclasses

class Tree < Any >
Info : Any;
function ProcessCompute ( par : Any returns Any ) 

def erred 
end function 

end class;

class BinaryTree < Tree >
Info : Any;
Left, Right : BinciryTree;
fimction ProcessCompute ( par : Any returns Any ) 

let LeftC, RightC :=
Left.ProcessComputeC par ),
Right.ProcessComputeC par ) in

end let
end class;

class TemaryTree < Tree >
Fst, Snd, Trd : TemaryTree;
function ProcessCompute ( par : Any retums Any ) 

let FstC, SndC, TrdC :=
Fst.ProcessComputeC par ),
Snd.ProcessComputeC par ),
Trd.ProcessComputeC par ) in

end let 
end function 

end class;

The similar function Process and Compute have been combined in the unique 
function ProcessCompute and the class Tree has been created. It can be applied 
to both classes because it is defined in the class Tree and both inherit from it.
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These extensions extend the possiblity of reusability in the FOL language. The 
next part will describe concisely the language itself.

3 O v e rv ie w  o f  th e  FOL la n g u a g e

The subject of the study leading to the conception of the FOL language was 
“Introduction o f object oriented paradigm in logic and functional languages”. 

Its first part led to the realization of the CIEL programming language which 
uses logic resolution as an evaluation mechanism for a class based language 
(see [Gan88]). This study concerned mainly the class model and the associated 
type inference system.

Some of its results pointed out several problems about the merging of clas­
sic object oriented features and non-imperative paradigms. One of the major 
problems was that objects are often recognized as means of storing data and are 
required to be persistent and prone to side effects. The resolution mechanism 
of CIEL involved copying of data and forbade side effects as every logic based 
language does. In the functional paradigm, side effects are possible and some­
times very useful for the user. Thus, the second part of the study, concerning 
the functional paradigm, was split in two parts. The first one concerning the 
data type model and reuse problem, led to the definition of FOL . The second 
one, related to the problem of data persistence and impure effects, will be the 
subject of future work. The choice of using a classic functional language as an 
assembly language permitted to limit the study to the data model description 
parts of the language.

3.1 Its syntax
FOL being an extension of SISAL , its syntax was designed, so that classic SISAL 
sources could be translated without any problems. The definition of a class is 
loosely modeled after the definition of a record type.

3 .1 .1  T h e class stru ctu re

The definition of a class in FOL is constituted by the following parts;

• The ancestor of the class

•  New fields and redefinition of old ones

•  New functions and redefinition of old ones

The definition of new behaviors which are a mere composition of the class 
field behaviors can be achieved by a mechanism of parallel evaluation. This 
means that the behavior of each of the concerned fields will be applied, leading
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to the elaboration of a new instance, which will be the same for all the field 
behaviors.

A few examples of FOL classes, describing a part of a formal derivation sys­
tem, are given below;

class Expr < Any >

—  The behavior Derive is deffered which means that it must be
—  defined in each of Expr subclasses

function Derive ( retums Expr ) 
deferred 

end function 
end class;

class Const < Expr >
Value : Integer;
function Derive ( returns Const )

returns instam.ce Const [ Value : 0 3 
end function 

end class;

class Variable < Expr >
function Derive ( retums Const ) 

returns Const C Value : 1 ] 
end function 

end class;

class Plus < Expr >
Left, Right : Expr;
function Derive ( returns Plus )

returns instance Plus C Right : Right.Derive;
Left : Left.Derive ]

end function 
end Plus;
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class Times < Expr >
Left, Right : Expr; 
function Derive ( retums Plus ) 

let LocalLeft, LocalRight :=
instance Times [ Left : Left.Derive;

Right : Right ] , 
instemce Times [ Left : Left;

Right : Derive.Right ] in 
returns instance Times C Left : LocalLeft;

Right : LocalRight ]
end let 

end function 
end class,-

class Main
function Execute ( retums Null ) 

let val ;= instance Plus
[ Left : instance Times

[ Left : instance Const 
[ Value : 2 ]:

Right : insteoice Veoriable ] ; 
Right : instance Variable ]; in 
val.Derive 

end let 
end function 

end class

3.2 Its semantics
The FOL semantics is a combining of the semantics of classic imperative object 
oriented languages as E i f f e l  (see [Cox87] and [Mey88]) and classic typed func­
tional languages as ML, Miranda or H askell (see [Tur86], [HJW92], [BW88], 
[CH90], [Mau92] and [Wik87]).

3 .2 .1  T y p e  checking system

FOL type system is an extension of the Damas Milner polymorphic A-calculus 
with overloading, subtyping and intersection types.

The subtyping relation means that you can assign to a variable of a given 
type every value of a lower type. So, a type structure must be a super structure 
of each of its supertype, which means that every structural action which can be 
applied to a given type should be appliable to every lower type.
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The subtyping relation in FOL is built from the inheritance and the abstrac­
tion relation. We associate a type r to each class C. We use the following 
notation for this association: C '^  r. The rules for subtyping are the following:

a > B

This rule means that the type inferred by the heir of a class is inferior to the 
type inferred by this class.

B < a , x <  a

The type a  in the previous rule is such that: Vr, / ? < r V x < T ^ a < r .
This rule means that the type inferred by an abstraction is the nearest type, 

greater than the types inferred by the abstracted classes.

U2 <  Ui A V i <  V2
U i ^ V i < U 2 ^  V2

This subtyping rule enables to assign a function to a variable of a higher 
type. This function will have to accept every argument the higher typed one 
would have accepted, so its parameter type should be higher. It will also have 
to return a value whose type is accepted by every assignment made by applying 
the higher function. So its return type must be lower than the return type of 
the higher one.

V i e  J ,  €  y ,  U2,i < U i j  A V i j  < V2,i
< {^2,1 —*•

This rule extends the previous one to the case of overloaded functions. Each 
of the possible functions of the higher type must correspond to one of the func­
tions of the lower type. This one can have more overloaded functions than the 
higher one.

The use of records to describe class components requires the following type- 
checking rule which describes the record sub-type relation:

________________ Vi g [l..m] [/j < Vi________________
( ( ' U i  : l / . i ' j  . . . J • f i m + n ) )  ^  ( ( ^ 1  * ^ 5  * '  '  j

It means that an heir of a given class can have more fields than this one has 
and that it can redefine the type of its fields if the new ones are subtypes of the 
old ones.

These type checking rules are based on an extension of the Damas Milner 
system proposed by Giuseppe Longo at the LIENS (see [CGL92] and [Cas92]). 
It is an extension of the typed A-calculus with subtyping and overloading called 
A&.
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3.2.2 Behavior selection system

Classic behavior selection in the Damas Milner type system consists in choosing 
to apply the function whose signature corresponds to the list of its parameter 
types. In the case of a curryfied function, we have the following rule;

E \ - x : U , f : U  - ^ V  
E  h  f { x )  : V

In FOL , the selection scheme is more complex due to the nature of the 
subtyping and overloading relations. So the previous rule becomes:

E h  X : E , f  : V - * W , U  < V  
E  h  f { x )  : W

This rule enables to call a function with parameters whose types are subtypes 
of the function signature.

The following rule shows which behavior will be chosen in case of overloading:

E h x : E , f : { l / i - * V i } & : - - -  ^  V„}, Ui =  m in je i . . .„  Uj < U
E  h  f i x )  : Vi

There are several signatures for the same fuction name. The chosen one 
must be the closest to the types of the parameters in respect to the subtyping 
relation.

This rule extends the classic object oriented dynamic binding mechanism: 
Usually, the selection of the correct behavior is made by looking at the real type 
of the first parameter. The curryfication mechanism extends this selection to 
the real type of each parameter.

3.3 From FOL to  SISAL
The SISAL language provides all the mechanisms for the implementation of our 
reusability paradigm. Therefore, we decided to implement the FOL language as 
a translator to SISAL source.

3 .3.1 T ranslation  schem e

Each FOL class will be translated in a record type corresponding to the fields of 
the class and in a list of function definitions corresponding to the behaviors of 
the class. The name of the class will be appended to each SISAL definition to 
reduce the possibility of conflict with pure SISAL code.

The most complex part of the scheme is the implementation of the dynamic 
binding mechanism. A variable of a given type may contain a value of one 
of its subtype. This may only be implemented using type sets. One way of 
implementing late binding is to define a type set for each branch of the subtype
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hierarchy. Each function will be defined once for each different signature and 
the application of the correct definition will be done using a type case structure.

The translation of a class generates the following SISAL constructs: a record 
type made of the class fields and of its ancestors’ ones, a type set which is the 
union of the new record and of its subclass type sets, the definition of each 
function corresponding to the behavior of the class. For each existing behavior 
in the inheritance hierarchy, a dispatching function is generated. This one takes 
type sets as parameters and selects which class behavior is used with a type 
case on its argument runtime types.

The previous example about formal derivation will be translated as the fol­
lowing SISAL code:

—  This is the translation of the Expr class

type R_fol_Expr = empty;

—  This type will enable the manipulation of subtype variable

type TS_fol_Expr = R_fol_Expr 
+ TS_fol_Const 
+ TS_fol_Variable 
+ TS_fol_Plus 
+ TS_fol_Times;

—  This is the translation of the Const class

—  The prefix R_fol_ indicates the record associated to a class

type R_fol_Const = record C Value : Integer ];

—  The prefix TS_fol_ indicates the type set used to implement
—  polymorphism

type TS_fol_Const = R_fol_Const;

—  The prefix F_fol_‘‘class name’’ indicates the SISAL implementation
—  of a class behavior

function F_fol_Const_Derive ( retums TS_fol_Const ) 
retums record R_fol_Const [ Value : 0 ]

end function;
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—  This is the treinslation of the Vao’iable class

type R_fol_Variable = record [ Value : Integer ];

type TS_fol_Vaxiable = R_fol_Vaxiable;

function F_fol_Variable_Derive ( returns TS_fol_Const ) 
retums record R_fol_Const [ Value : 1 ] 

end ftinction

—  This is the translation of the Plus class

type R_fol_Plus = record C Left, Right : TS_fol_Expr ]; 

type TS_fol_Plus = R_fol_Plus;

function F_fol_Plus_Derive ( P_fol_obj : R_fol_Plus retums TS_fol_Plus ) 
retums record R_fol_Plus [

Left : F_fol_Derive ( P_fol_obj.Left );
Right : F_fol_Derive ( P_fol_obj.Right )] 

end function

—  This is the translation of the Times class

type R_fol_Times = record [ Left, Right : TS_fol_Expr ]; 

type TS_fol_Times = R_fol_Times;

function F_fol_Plus_Derive ( P_fol_obj : R_fol_Plus retums TS_fol_Plus ) 
retums record R_fol_Plus C

Left : F_fol_Derive ( P_fol_obj.Left );
Right : F_fol_Derive ( P_fol_obj.Right )] 

end function
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—  This dispatch function is the key to the dynamic binding mechanism

—  The prefix F_fol_ indicates the dynamic binded behavior common to
—  every class

function F_fol_Plus ( P_fol_obj : TS_fol_Expr retums TS_fol_Expr ) 
case type ( P_fol_obj )

R_fol_Const : retums F_fol_Const_Derive ( P_fol_obj ) ;
R_f ol_Variable : retums F_Vairiable_Derive ( P_fol_obj ); 
R_fol_Plus : retums F_fol_Const_Plus_Derive ( P_fol_obj ); 
R_fol_Times : retums F_fol_Times_Derive ( P_fol_obj ); 

end case 
end function

3.3.2 O p tim iza tion

The dynamic binding mechanism consumes a lot of CPU time. Thus, using a 
static binding detection scheme to reduce its use is a very efficient optimization. 
In the case of static binding, the global performances are these of classic SISAL 
code. Currently, the detection scheme concludes when an instance of a class 
cannot have been over-typed, i. e. in the body of the let defining this variable.

3 .3 .3  T h e librarian

To avoid parsing every class each time we use the translator, some information 
about all the classes previously parsed, is kept in the librarian. This part of the 
system is also in charge of the generation of the dispatching function and of the 
backpatch of the type sets for each class whose heirs have changed.
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4 C o n c lu s io n s  a n d  Perspectives

The first part of our project about improvement of the user condition by provid­
ing better languages and systems leads to the realization of the FOL language. 
The evaluation mechanism used is the pure typed A-calculus. The second part 
of the project, currently under investigation, studies the modeling of impure 
effects. This will provide the easiness brought by impure effects to the program­
mer without losing the reference transparency of the model. The backbone 
of this work will be the study of the linear type system (see [Gir87], [Laf88], 
[Ode], [Gde92], [Wad90a] and [Wad91]) and the monad programming paradigm 
(see [Wad90b] and [Wad92]). A new semantic description of behaviors based 
on constraint equations and effect systems using algebraic reconstruction algo­
rithms (see [JG] and [JG88]) will reduce the need for user intervention in the 
late abstraction mechanism.
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Twine: a Portable, Extensible Sisal Execution 
Kernel*

Patrick J. Miller 

November 4, 1992

1 Introduction
Functional program s are very much like black boxes -  inputs a re  applied to  program s 
th a t  produce o u tp u ts . We need tools to  help us peer in to  these  boxes and  find out 
w h a t’s going on. Some of th e  trad itional tools program m ers use to  augm ent pro­
gram s (p rin t s ta tem en ts, m onitors, histogram m ers) are im possible to  describe in th e  
functional paradigm . This paper presents ways to  in strum en t a  com putational engine 
th a t is sim ulating a  functional execution. T he T W IN E  engine executes a  serialized, 
com piled version of Sisal’s in term ediate  form  IF l .  T h e  tool generation environm ent 
allows m oderately  sophisticated  users to  w rite packages th a t can in s trum en t running 
Sisal program s. T h e  engine provides a  clean ab strac tio n  of th e  execution, so th e  tool 
w riter does not have to  w orry as m uch abou t th e  in ternal execution of th e  program . 
T he  engine ta lks to  tools th rough  an  even t-driven  interface. This paper gives an 
overview as to  how th e  engine works, and how Sisal codes a re  com piled for it. T he 
p ap er concludes w ith  an  exam ple which constructs an  in s tru m en t which m onitors 
a rray  sizes.

2 Overview
T W IN E  is p rim arily  a t t<{uential execution engine for IF l like languages (hereafter 
denoted  IFx). IF x  cod> s are  denoted by  acyclic, hierarchical graphs w ith  iteration , 
recursion, and  function application  im phed by th e  sem antics of its operations. O p­
erations are  denoted  by nodes of th e  graph, while values are  carried on th e  edges of 
th e  graph. T hese g raph ical program s are serialized to  allow fram e based sequential 
execution. T hese fram es a re  m apped to  functions (Y IFT  conversion) th a t  define au ­
tom atic  values and  th a t  drive th e  engine. T he engine contains in struc tion  definitions

* This work was suppo tod (in part) by the Applied Mathematical Sciences subprogram of the 
Office of Energy Research, U.S. Department of Energy, by Lawrence Livermore National Laboratory 
under contract No. W-7405-Eng-48.
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d e f i n e  Avg
f u n c t i o n  Avg(x,N ,E,W ,S : 

r e tu r n s  r e a l )  
( (x -N )+ (x -E )+  

( x - W ) + ( x - S ) ) /4 .0  
end f u n c t i o n

real

X 14 “avg”
E 8 1 0 1 Real %na=T8
N 1 Minus
E 0 1 1 1 Real %na=x
E 0 2 1 2 Real %na=N
N 2 Minus
E 0 1 2 1 Real %na=x
E 0 3 2 2 Real %na=E
N 3 Minus
E 0 1 3 1 Real %na=x
E 0 4 3 2 Real %na=W
N 4 Minus

, , E 0 1 4 1 Real %na=x
E 0 5 4 2 Real %na=S
N 5 Plus
E 1 1 5 1 Real % na=Tl
E 2 1 5 2 Real %na=T2
N 6 Plus
E 5 1 6 1 Real %na=T3
E 3 1 6 2 Real %na=T4
N 7 Plus
E 6 1 7 1 Real %na=T5
E 4 1 7 2 Real %na=T6
N 8 Div
E 7 1 8 1 Real %na=T7
L 8 2 Real “4.0”

Figure 1: D ataflow speciflcation of a Sisal code fragm ent

(a sort of fi-code  tab le), I /O  m anagm ent routines, dynam ic m em ory (H eap) m ang- 
m ent routines, an  ALU interface, event signal generators (explained below), a  system  
s ta te  stack , and  some system  sta tu s  variables.

2.1 Serialization
IF x  codes are really dataflow  graphs, so execution order is no t explicit, b u t ra th e r is 
im plicitly  controlled by d a ta  dependency inform ation contained  in th e  edges. M any 
parallel and  sequential orderings are possible. Since T W IN E  is sequential, we only 
concern ourselves w ith sequential orderings. Consider th e  code fragm ent, dataflow  
graph, and  associated  If  1 code in F igure 1. For th e  sequential engine to  work, we 
m ust serialize th e  nodes (operations) in g raph  and  assign fram e offsets to  th e  edges 
(values). M any orders are possible: some orders follow th e  original source order, 
some follow a  m ore optim ized p a th  (e.g. com m on sub-expressions elim inated and 
m igrated), and  som e orders m ay be m ore eager in  evaluation. F igure 2 shows th e
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Integer
Integer
Integer
Integer
Integer
Integer
Integer

x; Integer N; 
E; Integer W;
S ; Integer T1; 
T2; Integer T3 
T4; Integer T5 
T6; Integer T7 
T8;

Integer
Integer
Integer
Integer
Integer
Integer
Integer

x; Integer N; 
E; Integer W;
S; Integer T1; 
T2; Integer T3 
T4; Integer T5 
T6; Integer T7 
T8;

T1 = x-N; T1 x-N;
T2 = x-E; 12 = x-E;
T3 = T1+T2; T4 = x-W;
T4 = x-W; T6 = x-S;
T5 = T3+T4; T3 = T1+T2;
T6 = x-S; T5 = T3+T4;
T7 = T5+T6; T7 = T5+T6;
T8 = T7/4.0; T8 = T7/4.0;

Source O rdering E ager O rdering

Figure 2: Serializing an  IFx  graph in to  a  fram e 

source order and  eager order for th e  code in F igure 1.

2.2 Y IF T  convei'sion
T W IN E  converts these seriahzed graphs in to  C code th a t interfaces w ith  th e  engine. 
This is done w ith  a  too l called Y IFT  (Yet ano ther In term ed ia te  Form  T ransla tor). 
IF x  types are  represented w ith  C struc tu res, and  edge nam es an d  literals are pooled. 
A tab le  of IF x  graphs is constructed  w ith  pointers to  C functions which contain  the  
seriahzed graphs. F igure 3 shows a segm ent of th e  Y IFT  o u tp u t. N o te  th a t  no 
sem antic interpretatiou. is done. O perations are  denoted only by IF x  opcodes. T he 
engine and  its  run tim e m ake aU execution decisions. Y IFT  ju s t recreates th e  IFx  
graph  in C form.

2.3 T W IN E  Engine
T he T W IN E  engine is a  run tim e lib rary  th a t is Hnked w ith th e  Y IF T ’ed code. Con­
ceptually, it consists of a  ^-code tab le , an  ALU interface, a dynam ic m em ory m anager, 
a  system  s ta te  interface, and  an  event interface. F igure 4 shows th e  s tru c tu re  of these 
com ponents. T he  Y IF T ’ed code is plugged in to  th e  engine (dashed box), and  the  
C ontroller m anages th e  execution. L ater, we will see how to  design “Packages” to 
interface w ith  th e  engine.
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#include "SC.h"
#define HodeTable Frag_NT 
#define SoiirceTable Frag_ST

/* Type Table */
ForwardBasic(T3rpe6 ) ;
DelineB2isic(T3rpe6 ,{"Real"},IFlReaI.);

/* Edge Hajne Pool */  
static char EKPGC16] = {

"iroLL","EDGE_9.1_T0_l.l",'‘S","X". . . .
>:

/* Literzil Pool */  
static char LPG [4] = {

"4.0", /* 1 * /
>:
LitercilPool-C

Literal ( TjrpeB, LP+0 ) ,
>:

NodeStuff KodeTable[TableSize] = {
EntrylnfonBation(1,1,"Frag"),
{1,1,5,NTypes+0 HTypes+0,NULL,NodeTable+1,
Graph, TRUE ,{7,8, NULL, NULL, GP ( GN+0 ) , GP(AVG_), GP( AVG_Setup) >, {3»>;

/* Code */
GlobaJ.Fun.ction(AVG_) {

EnterGraph(1,7,2,1);

/* Argument/Result pointers are placed on a stack */ 
ArgInput(l,l,CP(ENP+3));/* X */
ArgInpnt(2,2,CP(ENP+6));/* N */
Local0utput(l,l,CP(ENP+7)): /* EDGE_2.1_T0_6.1 */
/* And passed to a node execution function in the kernel */ 
HodeExecute(2,2,1,NT3rpes+0 ,NTypes+0,NULL,

NodeTable+1,Simple,FALSE,{135},{4});

LocalInput(l,7,CP(ENP+13)):/* EDGE_8.1_T0_9.1 */ 
Literallnput(2,1);/* 4.0 */
ArgOutput(l,l,CP(ENP+D); /* EDGE.9.1_T0_1.1 */  
NodeExecute(9,2,1,NT3rpes+0,NTypes+0,NULL,

NodeTable+1,Simple,FALSE,{122},{4});

ExitGraph(l);

F igure 3: Y IFT  transla tion
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IF x  code fram es 
w /s tack  m em ory

PackageEvents

C ontroller

H eap
System
S ta te

ALUii

F igu re  4: T he T W IN E  engine

T h e  ^-code tab le  lets packages m odify and  extend th e  IF x  sem antics. For instance, 
if a  new IF x  node w ith  op code 225 were developed, th e  package could execute:

void N ew Routine();
0pTable[225].Code = NewRoutine;
OpTable[225].Name = "New OP";

to  provide th e  new definition. Similarly, th e  package could execute

void M yPlus();
OldPlus = OpTableElFPlus].Code;
OpTableElFPlus].Code = MyPlus;

to  override th e  definition for an  existing operation. T he dynam ic m em ory m anager 
controls access to  IF x  dynam ic objects. All dynam ic objects share  a  com mon, ex­
tend ib le  s tru c tu re  know n as a  bag. T hese bags are  really restric ted  B -trees (BAG 
=  B -Tree A ggregate) th a t  can  be arb itra rily  extended (although  access tim e is pro­
po rtional to  th e  height of th e  tree). G arbage collection scavenges unreferenced bags 
periodically  to  keep th e  heap com pact. D ifferent ALU’s can b e  com piled in to  th e  
T W IN E  kernel. T his allows T W IN E  to  act as a  high level in terface to  new m athe­
m atics libraries. This facility  can  be used to  m ake T W IN E  sim ulate  C ray a r ithm etic 
and  precision on a  w orkstation  for exam ple. T he  system  s ta te  and  event generator 
will b e  discussed along v/Th packages.
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Table 1: Kernel Events

Signal E vent
P re S ta rt Access a t  p rogram  s ta rtu p . Allows control of t .o u t options
S ta rt Execution is ab o u t to  begin.
Function A function g raph  is executing.
G raph A graph is executing.
E n dG raph A function or g raph  is term inating .
PreN ode A sim ple or com pound operation  is executing.
PostN ode A sim ple or com pound operation  is term inating .
E rro r A n error value has been generated.
Forall A IFForaU com pound is executing.
Com plete Execution ends.

3 P a c k a g e s

T he kernel can crea te  stand-alone program s in th e  m anner of a  em ulator, b u t o ther 
th an  resu lts, we can  retrieve no inform ation ab o u t th e  execution. T W IN E  allows 
in strum en t packages to  interface w ith  IFx  executions. T he  kernel and  instrum en t 
package runs as co-routines, passing control back and  forth . C ontro l is passed from  
kernel to  package w hen in teresting  “events” take  place. T he package scans th e  system  
sta te , does its work, an  lets control pass back to  th e  kernel.

3.1 E vent Interface
T he kernel signals in teresting  events to  th e  in strum en t package. Table 1 lists the  
event signals th a t th e  kernel m ay generate. W hen these events occur, they  are deliv­
ered to  th e  PACKAGE_HOOK function  in th e  in strum en t package. This function should 
decode th e  hook, take  app rop ria te  action, and  re tu rn . T h e  kernel wiU th en  continue 
com puting  u n til th e  ne.'d event. F igure 5 shows a  very sim ple in strum en t package 
th a t counts function  invocations.

3.2 S ystem  State
Som etim es, th e  event signal contains all inform ation an  instrum en t package needs. 
For exam ple, th e  package in F igure 5 only needed to  know th a t a  function was being 
invoked, not w hich one. The package can get m ore inform ation from  th e  kernel. M ost 
of this inform ation is contained in th e  system  execution stack. A t th e  tim e of th e  
signal, th e  top  of th e  stack will con tain  th e  node or graph  cu rren tly  being executed. 
E ntries lower in  th e  stack contain  th e  dynam ic chain  of graphs, com pound operations, 
and functions leading up to  p rogram  entry. C onsider th e  code:
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void
PACKAGE_HOOK(hook)

PackageHookType hook;
{

static int count = 0;

switch( hook ) { 
case PackageFunction: 

count++; 
break; 

case PackageComplete:
printf("5id function calls\n" .count) ; 
break;

}

Figure 5: A sim ple PACKAGE_HOOK function

function Exajaple(n : integer retiirns integer)
if ( n < 0 ) then n+1 else n-1 end if 

end function

If an event were signaled at th e  n+1 operation, then the stack  would look like

Plus
T rue G raph

If
E xam ple Function

Call

E ach en try  in  th e  system  execution stack  contains pointers to  inpu ts, o u tp u ts , local 
d a ta , and  s tru c tu re . T he  in strum en t can see th e  en tire  active s ta te  of th e  com putation  
by  trac ing  back through th e  stack. Functions are  provided th a t re tu rn  th e  to p  entry  
in th e  s tack  o r th a t  re trirn  useful inform ation ab o u t th e  com putation . Some system  
variables can  be set th a t  can affect com putation  or I /O  form atting . T able 2 hsts some 
of these.
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Table 2: Im portant System Interface Functions and Variables

N am e K ind D escription
T opO fE nvironm entS tackO Function R etu rns top  en try  of stack
G etF im ctionN ode(x ) Function F irs t function lower th a n  en try  x
F ib r e P r in t ( x ) Function D isplay x to  o u tp u t
PrintM aix Variable M ax num ber of elem ents to  p rin t (0=oo)
In f in i te L o o p C o u n t Variable M ax num ber of iterations o r recursions 

(0=oo) before setting  I n f in i te L o o p F la g
I n f in i te L o o p F la g V ariable T R U E  if in an  infinite loop or recursion 

S tays T R U E  until explicitly  reset
IF o rm at Variable Integer fo rm at for o u tp u t
RFormat Variable R eal form at for o u tp u t
DFormat Variable D ouble fo rm at for o u tp u t

4 A  sim ple exam ple
This section will show how to  interface a sim ple m onitoring too l to  a T W IN E  program . 
I t  will describe som e of th e  s tru c tu re  of system  stack  entries and  show how to  get a t 
run tim e values. I t  will also show how to  use th e  IFIOBJECT union type.

Suppose we have a  Sisal program  in w hich we wish to  know th e  average size of 
an  a rray  or s tream  th a t  is being scattered  in a  Forall loop. F rom  I F l  sem antics, we 
know th a t  these arrays en ter an  IFAScatter operation. If we check every node en try  
event, we can de tec t all IFAScatter operations. W e can th en  m ake a  runn ing  to ta l 
of a rray  sizes and  en try  counts. A t th e  end of th e  program , p rin t th e  average.

4.1 Event H andler
Since we use an  event-driven interface, we use an  event handler function  PACKAGE_HOOK 
to  in te rp re t events. F igure 6 shows th e  o u thne  of th e  handler function  for th e  array  
average instrum en t. T he  include files SC.h and SCLib.h define T W IN E  structu res 
and  accessors. T he functions AddLocals and  InitializeGraphLocals are  required. 
T heir purpose is to  bind nam es to  edges for debugger in strum ents, and  they  are not 
im p o rtan t here. T he event handler function is sim ply a  switch to  decode th e  events 
we need to  instrum en t. Here, th e  ModeCheck function (described la ter) will check for 
AScatter operations, and th e  Finish function  will p rin t ou t th e  final average.

4.2 G etting at the system  stack
W hen an  event occurs, th e  top  of th e  system  stack  contains th e  cu rren tly  executing 
node. T he rou tine NodeCheck will need to  get inform ation ab o u t th a t  node. T he

250



#include "SC.h"
#include "SCLib.h"

void AddLocals0  {} /* Required function */
void InitializeGraphLocals() {} /* Ditto */

int N = 0, Total = 0;

void NodeCheckO
■C

>

void FinishO

if ( N > 0 ) {
printfC"# y.d occurrences. Jig avg size\n",
N,((double)(Total))/((double)(N)));

} else {
printf("# No occurrencesXn");

}
>

void PACKAGE.HOOK(hook)
PackageHookType hook;

switch(hook) { 
case PackagePreNode: NodeCheckO; break;
case PackageComplete: FinishO; break;

}
}

Figure 6: A rray  average in strum en t event hand ler function
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void NodeCheckO 
{
#define IFAScatter (114)

Environment *Top;
Nodelnfo TopNode;
int EdgeCount;
IFIOBJECT *ArrayEdge;

/* Get the top element of the system stack */
Top = TopOfEnvironmentStackO;
TopNode = Top->INFO;

/* MaJse sure its an AScatter node! */ 
if ( OpCodeOf(TopNode) == IFAScatter ) {
N++; /* Found one */

/* Get the length of the array being scattered */
EdgeCount = INARITY(TopNode); /* Always be one for AScatter */ 
if ( EdgeCount > 0 ) {
ArrayEdge = Top->IN[0]; /* Zero based! */
Total += ArrTS(ArrayEdge);

>

F igure  7: T h e  NodeCheck function

body  of th e  NodeCheck function  is shown in F igure 7. W e first get th e  top  value 
in th e  system  stack  T he s tru c tu re  of this “environm ent” en try  is shown in T able 3. 
T he node inform ation is th en  retrieved in to  a  “nodeinfo” struc tu re . Various accessors 
allow th e  in strum en t program m er to  get a t  inform ation w ithin  this s tru c tu re . Here, 
we find th e  AScatter nodes b y  checking th e  op code of th e  in struc tion , and  we m ake 
sure th e  expected edges really  exist. T hen , we get th e  “IF l ob ject” from  th e  list of 
instruc tion  inputs and use an  ob ject accessor to  find th e  size of th e  a rray  and  add  it 
to  th e  runn ing  sum. Table 4 and  Table 5 show some of th e  im p o rtan t node, object, 
type, and  bag accessors defined by T W IN E. W e can use these accessors to  ga ther 
m any kinds of inform ation ab o u t th e  running  process. T he  instrum en t is Hnked 
in to  a  T W IN E  program  (versions 1.3 and  la ter) w ith  th e  -g  option. Suppose th e  
in strum en t has been compiled in to  a  file instrument .o, then  execute th e  following
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Table 3: TW IN E System Stack Entry  S tructure

E nvironm ent System  S tack E ntries
NAM E N am e of graph, function, or instruc tion
IN FO Points to  IF x  node s tru c tu re  inform ation
IN A list of inpu ts to  graph, function, or instruc tion
O UT A hst of o u tp u ts  (if com puted yet)
VARS A hst of local values (graphs and  com pounds only)
VARCO UNT N um ber of locals

Table 4: Node, T ype, O bject, and  Bag Accessors

N ode Accessors (N odelnfo)
IN A R IT Y in t N um ber of in p u t edges
O U T A R IT Y in t N um ber of o u tp u t edges
IT ype *TypeD List of expected in p u t types
O T ype *TypeD List of expected o u tp u t types
N odelD O f in t Local offset in  graph
P aren t Of N odelnfo P aren t graph  o r com pound
C hildC ountO f in t N um ber of children in  graph
C hildrenO f *NodeInfo List of children nodes
SubN odeC ountO f in t N um ber of sub-graphs
SubN odeO f *NodeInfo List of sub-graphs
O pC odeO f in t IF l opcode
G raphN am eO f *char N am e of graph
G raphC odeO f FU N C TIO N Code to  execute
IsSim ple in t 1 if  is an  IF l  sim ple node
IsC om pound in t 1 if is an  IF l  com pound node
IsG raph in t 1 if is an  IF l  g raph  node
IsE xported in t 1 if listed in th e  define s ta tem en t

T ype Accessors (TypeD )
T y peE n tryO f E n try  T ype IF l ty p e  (IF lA R R A Y , IF IB A SIC , . . . )
K indO fBasic B asicType IF lB oo lean , IF lC h a ra c te r , . . .
E lem entT  ypeO fA rray T ypeD Base type  for arrays
E lem entT  ypeOfS tream TypeD Base type  for stream s
FieldC ountO fR ecord in t N um ber of fields for th is record type
F  ieldT  ypes 0  fRecord *TypeD List of field types
TagC ountO fU nion in t N um ber of tags for th is union type
TagTypesO fU nion *TypeD List of tag  types
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T able 5: Node, T ype, O bject, and  Bag Accessors (continued)

O bject Accessors (^ IF IO B JE C T )
T ypeO f TypeD T ype s tru c tu re  for object
B asE rr SisalBoolean T rue if an  error value
BVal SisalBoolean Boolean value of ob ject
CVal S isalC haracter C harac ter value of object
DVal SisalDouble D ouble value of ob ject
IVal Sisallnteger Integer value of object
RVal SisalReal R eal value of ob ject
A rrlsO K SisalBoolean T R U E  if e rro r a rray
IsA rrL B E rr SisalBoolean T R U E  if lower bound  is an  error
A rrLB Sisallnteger Lower bound of a rray
A rrPS unsigned in t Prefix  size
A rrTS unsigned in t T o ta l size
A rrC ol B ag P tr Collection of objects
B agPos(n,A ) unsigned in t Position of n th  elem ent in a rray  A
FunN am e *char N am e of function constan t
FunC ode FU N C TIO N C ode for function
R ecE rr SisalBoolean T R U E  if record is an  error
RecCol B ag P tr L ist of field values
U niE rr SisalBoolean T R U E  if union is an  error
U niTag Sisallnteger V ariant tag  for union
UniVal B ag P tr A one elem ent bag holding th e  value
IsE m ptyO bject in t 1 if object h asn ’t  been defined

Bag Accessors (B agP tr)
P o in terIn toB ag(b ,n ) * IF 1 0 B JE C T G et n th  ob ject from  bag b
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y, twine -g=instrument.o foo.sis ...

T his adds th e  in strum en t to  th e  t . o u t executable.

5 C o n c lu s io n  a n d  W a r n in g

T W IN E  provides a  sim ple in s tru m en t interface to  running  IF x  com putations. T he 
T W IN E  debugger shows how powerful these in strum en ts  can be. T he  underlying 
engine supports th e  original I F l  sem antics w ith  erro r values and  an  event-driven 
in s trum en t interface. M any kinds of instrum ents can  be w ritten  w ithou t explicit 
knowledge of th e  kernel and  w ithou t m odifying th e  kernel. This is a  g reat advan tage 
over th e  original Sisal d eb u g g er/in te rp re te r system  (DI) which required in tegration  
of all tools in to  th e  execution kernel.

T W IN E  is n o t all powerful, however, because it executes only th e  s tric t IF l  se­
m antics. This m eans th a t  T W IN E  executions do  no t tak e  advan tage of th e  m em ory 
optim izations available in OSC [C091]. Unless th e  too l takes th is in to  account, it 
m ay  give skewed results. R igh t now, T W IN E  does no t im plem ent th e  IF2  buffer 
type , nor does it su p p o rt lazy evaluation of stream s. F u tu re  revisions of T W IN E  will 
su p p o rt these features.
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Investigating the Memory Performance of the 
Optimising SiSAL Compiler

Dean Engelhaxdt and Andrew Wendelborn*
University of Adelaide
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Abstract

This paper describes additions made to the runtime system of OSC vl2.7 which al­
low details of memory usage to be collected at discrete time steps. We also discuss 
experiments we have carried out with the aid of this tool, and describe how these 
experiments have helped us gain a better understanding of the memory character­
istics of OSC and its optimisations. We further show how this understanding has 
enabled us to hand-optimise the memory performance of our programs to produce 
optimal memory performance.

1 In tro d u ctio n

One of the greatest advantages SiSAL has over imperative languages such as C is tha t it has in 
OSC [2] an im plementation which can provide comparable execution-time performance, while 
removing from the programmer the burden of explicitly managing the memory over which 
the program runs. It can be argued tha t even languages such as FORTRAN force this burden 
upon programmers in so much as the programmer must manually handle reuse of storage to 
produce efficient code. In contrast to programs written in these ‘memory-explicit’ languages, 
SlSAL programs abstract completely over memory by means of provided data types and single 
assignment semantics, and leave the task of inferring the details of memory allocation to the 
compiler and runtim e system. Cann’s OSC goes through several optimisation stages to 
construct and modify memory-explicit representations (expressed in IF2[7]) of the program 
being compiled, with C code being produced from these representations as the final output 
of the compiler.

The question naturally arises as to whether these memory-explicit forms produced by such a 
compiler are as efficient as code written directly in memory-explicit languages like FORTRAN 
and C. Numerous reports have been made asserting a comparable execution tim e performance 
between SiSAL programs compiled with OSC and their imperative counterparts [4, 3, 1], but 
few if any reports have addressed issues of memory performance.

‘ Authors’ Address; Department of Computer Science, University of Adelaide, GPO Box 498, 
Adelaide 5001, Australia. E-mail: {dean,andrew}@cs.adelaide.edu.au
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This paper describes local additions made to the OSC runtime system which allow for the 
construction of a memory profile of executing SiSAL programs. From these profiles graphical 
output can be generated using the PostScript^ plotting program described in [6]. W ith the aid 
of this profiling tool and its graphical output we have investigated the memory performance 
of some simple programs, and deduced some characteristics of OSC’s optimisations with 
respect to  memory.

2 P ro filin g  A d d itio n s to  O SC

This section gives a brief background on OSC’s memory management system in order tha t 
the reader may gain some impression of exactly what statistics we are collecting with our 
profiling system. Following this appears a description of the operation and output of this 
system.

The OSC memory system is a slightly modified implementation of tha t presented in [5]. It 
consists of two parts: a boundary tag pool and a number of block caches (one per worker 
process). The boundary tag pool is essentially a large region of memory which is broken 
into blocks by the presence of “zero blocks”; record structures which hold information about 
the memory which immediately follows in the pool. These zero blocks are linked together to 
form a list. A block within the boundary tag pool is in one of three states: free, allocated, 
or cached. Cached blocks arise as a result of the runtime system deallocating an allocated 
block. R ather than simply returning the block to  a free state, the system marks it as cached 
in the hope tha t at some stage in the future an allocation request will occur for an amount of 
memory very close to, or exactly the same as, the size of the cached block. In tha t instance, 
the cached block would be granted to the calling program rather than requiring the allocator 
to split a free block to fill the request. Each worker process maintains a list of the (cached) 
blocks th a t have been deallocated by it — these lists are referred to as the workers’ block 
caches.

Thus the process tha t takes place when an allocation request is received by the OSC runtim e 
system is as follows: firstly a check is made of the requesting worker process’ block cache to 
determine whether a block of exactly right or near size is present. If such a block is found 
it is allocated to the worker. If no such block is found, the runtime system searches the 
boundary tag pool to find a free block larger than the size requested. If it finds such a block 
it splits it into two blocks (by inserting another zero block into the pool) and allocates the 
appropriate portion to fill the request. If no such block is found the system is forced to flush 
all the block caches present within the system, and coalesce all the free blocks tha t result. 
After such a cache flush another search of the boundary tag pool for a block larger than 
tha t requested occurs, and if this second search fails, the runtime system term inates with a 
message to the effect tha t memory is full.

The provision of runtim e memory profiling for the OSC system has required several changes 
to the allocation and signal handling code of the runtime system. Firstly, to allow for a better 
accounting of what allocated memory in the boundary tag pool represents, we have included 
an extra field in the zero block structure mentioned above. This extra field holds information

^Postscript is a trademark of Adobe Systems Incorporated
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about what type of IF2 node brought about the allocation whose memory immediately follows 
the zero block. We have modified the allocation portion of OSC’s runtim e system to update 
the creator field of a zero block upon allocation of the block of memory it corresponds 
to. We have further added code to the allocation subsystem to traverse and report on the 
memory present within the boundary tag pool and the block caches. To perform this memory 
reporting at discrete tim e steps during the program’s execution, we have made modifications 
to  the signal handling portion of the system. Specifically we have arranged for an operating 
system tim er to be set up at the commencement of execution of the user program. A 
command line option to  the s . ou t binary controls the timeslice duration with which this 
tim er is initialised. The user program executes as normal until the tim er expires and the OS 
sends a signal to  the OSC runtim e system. The runtime system catches this signal, stops the 
tim er, suspends execution of the user program and invokes the memory reporting routine 
mentioned above. A summary of the information gleaned from this traversal is appended to 
a memory profile file called s .p r o f .  Once this reporting is complete, the OS timer is reset 
to the original timeslice duration and the execution of the user program is resumed.

At each tim estep the following information is gathered via a traversal of OSC’s caches and 
boimdary tag pool and appended to the s . p ro f  file:

•  Amount of tim e actual (non-profiling) code has been running,

• Number of allocation calls made during the last time step,

• Number of these allocation requests tha t were handled by OSC’s block cache,

•  Number of times the cache needed to be flushed in the last tim e step,

•  Amount of memory currently allocated within the system,

• A breakdown of this allocated memory by the type of IF2 node tha t caused it to be 
allocated,

•  Number of free blocks presently within the boundary tag pool and their sizes,

•  Number of blocks present within OSC’s cache and their sizes.

The graphical plots which appear throughout the remainder of this paper are drawn from 
the IF2 breakdown of allocated memory.

The signal handling semantics we have mentioned above are somewhat simplified; the actual 
system as implemented requires certain sections of the runtime system to be made critical 
sections, tha t is not to  be interruptable by signals from the timer. In addition to this, the 
process of stopping all worker processes in a multiprocessor system (where any number of 
these processes may be within critical sections) before traversal of the boundary tag pool, 
adds complexity to the signal handling semantics. Details of these more complicated aspects 
of our modified system are not given here, since these are largely irrelevant to  the remainder 
of this paper.
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3 E x p er im en ts  w ith  M em ory  C on su m p tion

The main motivation for profiling the memory performance of the OSC system was to  in­
vestigate the memory characteristics of the system and to compare those to  the expected 
performance tha t could be achieved by writing the equivalent program in C or FORTRAN. 
This section presents two sets of experiments carried out with the modified runtime system 
and documents the results obtained from them. The profiles which appear are from a modi­
fied OSC 12.7 running on a SPARCstation under SunOS. Thus all loops are run sequentially.

The first series of experiments were with programs tha t constructed non-regular array struc­
tures. Shown below (in figure 1) are two SiSAL codes which construct such structures; 
both structures are two dimensional triangular matrices of integers, the first with columns 
of monotonically increasing length (as the m atrix is traversed row-wise), the second with 
monotonically decreasing columns. The memory profiles of running each of these programs 
with program input 2000 is shown in figures 2 and 3.

ty p e  aa  =  a r ra y  [a rra y  [ in te g e r  ]]j 
fu n c tio n  m ain (n: in te g e r  re tiu n s aa)

fo r in it ia l  
a rr  :=  iirra y  eta Q; 
cnt :=  1 

w h ile  (cnt <  n) r e p e a t
a rr :=  a rra y ^ d d h  (old arr, etrrayJill (l,o ld  c n t,l))  ; 
cnt :=  old cnt +  1; 

r e tu r n s  vedue o f  eirr 
e n d  fo r

end function

ty p e  eta =  a r ra y  [a rra y  [ in te g e r  ]]; 
fu n c tio n  metin (n: in te g e r  re tu rns eta)

fo r  initieil 
a rr :=  a r ra y  aa  Q; 
cnt ;=  n 

w h ile  (cnt >  1) r e p e a t
a rr :=  a rra y ^ d d h  (old etrr, etrrayJill (l,o ld  c n t,l) )  : 
cnt ;=  old cnt - 1; 

r e tu r n s  v a lu e  o f  etrr 
e n d  fo r

end function

Figure 1: Code for increasing ajid decreasing ragged array programs

m ytestout •pi 00 •ds15000000 <z MonJid 1315:34:42 1992

RMMdMAIocDVI

200.0 600.0 1000.0

Figure 2: Profile for increasing column program of figure 1 (n=2000)
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Figure 3: Profile for decreasing column program of figure 1 (n=2000)

These profiles show a memory performance tha t is of the expected ‘shape’; tha t is the amount 
of memory allocated monotonically increases. However, the amount of memory used by the 
programs is significantly different. The increasing column program has a peak memory usage 
of approximately 8Mb, a figure which compares favourably with an equivalent C program 
which would need to allocate space for about 2 million integers each of which occupies 4 
bytes on the SPARCstation. However, the decreasing column program has a peak memory 
usage approximately twice this amount, despite the fact that the same number of elements of 
the same type are being stored. An explanation for this disparity has yet to be determined.

A second series of experiments we have performed with the modified OSC system compare 
the memory requirements of three programs which calculate the same value but use different 
S is a l  constructs to do so. The problem to be solved is very simple: a function named sub 
takes an integer as its argument and returns an integer which is the result of constructing a 
large triangular array and reducing it via S is a l ’s su m  reduction. The code for sub is shown 
in figure 4, however details of the calculation are not as im portant as the function’s expected 
memory consumption. We would expect a steep increase of memory during the construction 
of the array, and a  steep fall following the reduction.

The particular calculation we perform is a summation of 30 calls to this function with 
differing arguments. There are essentially three ways of expressing this calculation: directly 
as a sum of function invocations, as a product form loop, or as an iterative-style loop. The 
S is a l  code for each version is shown in figures 5, 6. The memory profiles which result from 
running these programs are shown in figures 7, 8, and 9 respectively. The argument passed to 
the program was 500 for the direct addition program and 1000 for the other two. It was not 
possible to complete a run of the direct addition program with 1000 as memory consumption 
exceeded that available on out system.

The graph for the product form (figure 8) is essentially what we would intuitively expect all
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ty p e  aa  =  a r ra y  [a rray  [ in te g e r  ]]; 

fu n c tio n  sub (n: in te g e r  re tu rn s in te g e r)

le t
tm p :=

fo r in it ia l  
a rr ;=  a r ra y  aa  Q; 
cnt :=  1 

w h ile  (cnt <  n) r e p e a t  
a rr :=  array  ̂ d d h  (o ld  arr, array Jill (1, o ld  cnt, 1)); 
cnt :=  cnt +  1 

r e tu r n s  v a lu e  o f  arr 
e n d  fo r

in
fo r  j  in tm p
r e tu r n s  v a lu e  o f  su m  j[l]
e n d  fo r 

e n d  le t

e n d  fu n c tio n

Figure 4: Code for the function sub

fu n c tio n  add (n; in te g e r  re tu rns in te g e r)

sub (n+1) +  sub (n+2) +  sub (n+ 3) +  sub (n+4) +  sub (n+5) +  
sub (n+ 6) +  sub (n+7) +  sub (n+ 8) +  sub (n+9) +  sub (n+10) +  
sub (n+11) +  sub (n+12) +  sub (n+13) +  sub (n+14) +  sub (n+15) +
sub (n+16) +  sub (n+17) +  sub (n+18) +  sub (n+19) +  sub (n+20) +
sub (n+21) +  sub (n+22) +  sub (n+23) + sub (n+24) +  sub (n+25) +
sub (n+26) +  sub (n+27) +  sub (n+28) + sub (n+29) +  sub (n+30)

e n d  fu n c tio n

Figure 5: SiSAL code for direct addition program

fu n c tio n  fo ra ll (n: in te g e r  re tu rns in te g e r)  

fo r  i in  1,30
r e tu r n s  v a lu e  o f  su m  sub (n+ i) 
e n d  fo r

e n d  fu n c tio n

fu n c tio n  iter (n: in te g e r  re tu rns in te g e r)  
fo r in it ia l

i :=  1
w hile  (i <  30) r e p e a t  

i :=  old i +  1 
r e tu r n s  v a lu e  o f  su m  sub (n+i) 
e n d  fo r 
e n d  fu n c tio n

Figure 6: SiSAL code for product form and iterative style addition programs
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Figure 7: Memory profile of direct addition program of figure 5 (n=500)
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Figure 8; Memory profile of product form addition program of figure 6 (n=1000)
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Figure 9: Memory profile of iterative addition program of figure 6 (n=1000)

three graphs to look like. That is, it consists of 30 peaks, each corresponding to a call to 
sub. The iterative program profile (figure 9) is similar, but shows noticeably higher memory 
usage than the product form. The simple addition program exhibits very poor memory 
performance, essentially being a monotonic allocation of memory. The runtime system in 
this case is obviously not performing deallocations when possible.

To investigate the diflFerences between the performance of these three versions of the same 
calculation, we examined the C code produced by the OSC compiler for the different pro­
grams. Notably we found tha t for the simple addition case, the compiler completely inlined 
all calls to function sub producing a monolithic block of 0  code which included 30 copies 
of the code for sub. The C code for sub included a call to the runtime memory allocation 
subsystem, but not a corresponding deallocation of th a t memory following the reduction of 
the produced array. This explains the observed monotonically increasing memory usage. 
By placing such deallocations in the C code for the direct addition program, a much better 
memory performance was obtained. Profiles of runs of this patched program with input data 
500 and 1000 axe shown in figures 10 and 12 respectively. It is worth noting tha t an almost 
identical improvement in memory performance is made simply by forcing OSC to compile 
sub into a C function rather than inlining it.

Similar observation of the C code produced by OSC for the iterative program revealed the 
presence of a ‘memory leak’ of a similar nature. The semantics of SiSAL are such tha t the 
initialisation section of a while loop counts as the first iteration of the loop as far as reductions 
are concerned. Thus, the C code generated for the iterative program contains two distinct 
copies of the code for sub; one corresponding to the initialisation section of the SiSAL loop, 
and a second copy within a C f o r  loop which corresponds to  the body of the SiSAL loop. 
The memory allocated by the copy of the code for sub within the C loop is deallocated as 
the last statem ent of that loop. However the memory allocated in the initialisation code is 
not deallocated. This explains the large block of memory figure 9 shows being held onto 
for most of the program ’s execution. By placing these deallocations within the C code, the
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Figure 10: Memory Profile of modified version of direct addition program (n=500)

profile shown in figure 11 was obtained. The memory performance of this modified iterative 
program is now comparable to the performance of the product form program. Note, however 
tha t a run of the modified direct addition with program input of 1000 (the same as for the 
runs of the product form and iterative form) yields the profile shown in figure 12. The peak 
memory consumption in this program is approximately half that of the modified iterative 
and product form programs. This seems to indicate tha t in these programs, memory is still 
being unnecessarily held onto beyond its usefulness.

4 E x p er im en ts  w ith  S torage R eu se

A second area of OSC 12.7’s memory performance we chose to  investigate with our profiling 
tool was memory reuse. T hat is, whether the IF2 analyses and operations the compiler 
performs include a consideration of possible reuse of the memory allocated to  an expression’s 
input param eters to build its output. For example, in the program shown in figure 13, the 
expression which calculates b from A can be readily performed by destructively overwriting 
the memory allocated to A, since:

1. A is never used after the calculation of the expression in question,

2. The memory size of the expression’s input (A) and output (b) are identical,

3. Each element in the result array depends solely on the corresponding element in the 
input array.

If OSC performs any memory reuse optimisations we would expect the generated C code for 
this program to calculate b by such a destructive writing operation. In this case we would 
expect the memory profile of this program to be fairly flat (that is, memory usage should be

265



whHepatched.out «p100 ■dB30000000 31989088 bytes x seoonde Wed Aug 12 12:21:26 1992

3500K.

3000k.

1500k.

I RtggedMAilocOVI

10.0 Mcends

Figure 11: Memory Profile of modified iteration program (n=1000)
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Figure 12: Memory Profile of modified direct addition program (n=1000)
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constant). The observed profile, shown in figure 14, shows a flat initial region (corresponding 
to  the calculation of c), followed by the allocation of extra memory for b. Thus we conclude 
tha t the opportunity for memory reuse is not being acted upon. This essentially halves the 
maximum size of the problem which may be solved with this program on a given machine.

fu n c tio n  nuun (A: a rra y [in te g e r]  returns a r ra y  [in teger], in te g e r)  

le t
n  := a rrayJim h  (A); 
c :=  fo r i in l ,n

r e tu r n s  v a lu e  o f  su m  i 
e n d  for; 

b  := fo r  1 in A
r e tu r n s  a r ra y  o f i +  c 
e n d  fo r

in
b,c 

e n d  le t

e n d  fu n c tio n

Figure 13: Memory reuse example

5 F u tu re  W ork

The system we have described in this paper so fax is a modified version of OSC 12.7. For 
purposes of experimenting with SiSAL’s stream data type (which is not properly supported 
by the newer OSC versions), we also use an earlier release of the OSC system. By making 
similar modifications to  this system we have provided equivalent profiling functionality for 
this compiler. Some preliminary runs of this profiler have shown memory performance for 
identical programs run under the older system is significantly different to tha t observed for 
the program run imder the newer system. In the cases we have examined so far, the pattern  
of memory usage under the old OSC is less prone to the jagged peaks present in the profiles 
of the programs discussed in section 3. Additionally, the peak memory usage of programs 
under the eaxly OSC system seems generally to be lower.

In the future we hope to perform more experiments with the stream version of OSC in 
an attem pt to isolate the effects stream  param eters to the runtime system (such as buffer 
sizes) have on memory usage. We would also like to use our profiled stream system to 
allow us to examine the memory usage of a SiSAL streams implementation of the c la u s i f y  
program presented by Runciman and Waheling in [6]. In particular it would be interesting 
to  determ ine whether the program modifications which lead to  improvements in the LML 
program, lead to similax improvements in the SiSAL program. We have already investigated 
this with a strict (array) SiSAL implementation of the program with mixed results. The 
non-strictness afforded by streams should, however, provide a much more even comparison 
with the (lazy) LML program.
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Figure 14: Profile for the memory reuse example of figure 13

6 C on clu sion s

In this paper we have presented a tool which allows dynamic information concerning memory 
allocation within the OSC system to  be collected. We have shown a number of simple 
experiments and their results which give us some insight into the memory characteristics of 
the OSC system. Our experiments with memory consumption showed tha t in most cases 
the amount of memory consumed by an OSC aggregate type is roughly equivalent to that 
occupied by the  same kind of aggregate in a language like C. Consider for example the 
monotonically increasing column triangular axray mention in section 3: the SiSAL structure 
consumed about 8Mb (according to the profile), while a similar C structure would consist of 
2 million elements of 4 bytes each plus structuring overhead. However, in other cases, such as 
the decreasing column triangular array, the OSC system’s representation of data structures 
is significantly more expensive than a similar structure represented directly in C.

The experiments documented with the direct addition, product form addition and iterative 
addition programs showed tha t in many cases the C code output from the compiler ‘loses’ 
memory by not performing deallocations when memory is no longer needed. In the direct 
addition program the effect of this memory loss was acute since memory for tem porary 
arrays allocated by the code for the function sub is never deallocated which leads ultim ately 
to  the unnecessary accumulation of blocks of memory which are no longer required for the 
computation. Since the addition of C code to perform these deallocations at the appropriate 
places in the code is simple, we conclude that either insufficient analysis is performed to 
recognise these deallocation opportunities, or tha t the provision of a memory efficient system 
has not been a  priority in the development of OSC. The memory reuse experiments we have 
presented in section 4 seem to indicate at least tha t the possibilities for reuse of memory 
present in the situation we tested is either not detected or not acted upon.

One of the initial goals of constructing a profiling system for OSC was to  provide some help
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to  programmers who wish to fine tune the memory performance of their programs. That 
is, our original goal was to produce a system which reported the same kind of programmer- 
useful data as tha t produced by Runciman and Wakeling’s system described in [6]. The tool 
we have produced falls significantly short of this goal; our profiles only relate memory usage 
back to  IF2 nodes tha t caused the memory to  be allocated, rather than to SiSAL constructs. 
There axe essentially two related difficulties we encountered in attem pts to  provide such a 
user tool:

1. The fact tha t the final code which is executed is the result of many optimisations makes 
it very difficult to relate an event in the running version of the program back to its 
source,

2. The task of propagating sufficient information to allow better correlation between the 
final code and the original source is complex since it involves extensive modification to 
an already complicated and largely undocumented system.

Even if the second problem were overcome, it is still uncertain as to whether sufficient 
accountability is attainable to  make such a tool of practical use to SiSAL programmers.

The tool as it stands is, however, useful to those in need of guidance in fine tuning the 
performance of a program. Our experiments with C code modifications to OSC output have 
been motivated, guided and evaluated by the profiles we have obtained from the executing 
program. In the case of the direct addition program we have discussed, this guidance has 
led to  dram atic decreases in the peak and average memory usage of the program, and indeed 
increased the maximum size of the problem we could solve on our machine. This last concern 
is perhaps the most im portant from the perspective of SiSAL as a scientific programming 
language; in many cases numeric algorithms operate over very large aggregate structures 
which will inherently consume large quantities of memory. Any tool that will lend a pro­
grammer guidance with hand optimising a program’s memory characteristics will essentially 
be allowing problems to be solved whose size would normally preclude them  from solution on 
the available hardware. We have demonstrated that our profiling tool can provide guidance 
in attaining the mciximal problem size solvable on a particular machine running OSC.
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