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X-ray probes are capable ofdetermining the spatial structure ofan atom in a specific chemical state, over
length scales from about a micron ali the way down to atomic,resolution. Examples of these probes include

photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and
X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity,
and length scales can be very different, these X-ray techniques share a common goal of combining a
capability for structure determination with chemical-state specificity. This workshop will address recent
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theoretical and experimental fronts. A particular emphasis will beon novel structure determinations with
atomic resolution using photoelectrons.
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Preface

An Advanced Light Source (ALS) workshop on "Spectroscopic Imaging,
Diffraction, and Holography with X-Ray Photoemission" was held at the Lawrence
Berkeley Laboratory on August 14, 1991, in advance of the fourth ALS Users'
Association Annual Meeting. The workshop was one in an ongoing series with the
charter to identify and explore new scientific opportunities for high-brightness,
third-generation VUV and soft x-ray synchrotron light sources, in general, and the
ALS, in particular. The topic reflects the rapidly advancing progress in experimental
teckmiques based on photoelectron spectroscopy. These techniques extend the

, traditional chemical-state specificity of photoelectron spectroscopy that is reflected in
the well-known alternate name "electron spectroscopy for chemical analysis"---or _
ESCA. The extensions are in two rather different directions.

In the first, photoelectron spectroscopy becomes spatially resolved photoelectron
microscopy or spectroscopic imaging, by which chemically specific spectral features
of inhomogeneous surfaces can be mapped with a spatial resolution eventually

, reaching about 100 A. In the second, the interference between photoelectron waves
that are scattered by atoms as they m_Ike their way out of the surface and those that

are unscattered gives rise to angular distributions in the photoelectron intensity that
can be used to obtain structural information at the atomic level. In photoelectron
holography, this information takes the form of atomic-resolution images of the
atoms around an emitting atom in a specific chemical state. Feasibility experim,.nts
accomplished with conventional x-ray tubes or existing synchrotron light sources
Well demonstrate the promise of these techniques. But it is clear that their full
fruition awaits the availability of the ALS and other facilities like it, where high
brightness will make it possible to perform experiments of high spectral, angular,
and spatial resolution with reasonable count rates.

Spectroscopic imaging techniques fall into two broad categories: direct imaging
and scanning. Ernst Bauer (Tecl'mische Universit/it Clausthal, Germany) r_:dewed
the prospects for spatially resolved chemical analysis with direct imaging m_.ihods.
In direct imaging, electron optics (electrostatic or magnetic lenses) or a strong
solenoidal magnetic field are used to collect photoelectrons and to preserve their
spatial relationship on the way to an area detector. In photoelectron microscopy, the
ensemble of detected electrons of ali kinetic energies generates the image. The
addition of an electron-energy analyzer gives direct imaging chemical-state
specificity because the image contains only electrons with kinetic energies
corresponding to a specific spectral feature, such as a chemically-shifted peak.
Harald Ade (SUNY-Stony Brook) provided an overview of scanning spectroscopic
imaging. For scanning, it is necessary to focus the x-ray_ to a small spot, which is
rastered across the sample (in practice, the sample is moved through the spot) to
generate the image. There are several methods of focusing the x-rays with
somewhat complementary strengths and weaknesses. As in direct imaging, it is
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possible to do simple photoelectron microscopy by collecting all the photoelectrons
or chemically specific imaging with the use of an electron-energy analyzer. At tI'ds
early date, it seems likely that both the direct imaging and scanning techniques will
find considerable application in the analysis of materials, surfaces, and interfaces.
The ALS will be equipped with instruments of both types.

Effects due to the interference of photoelectron waves have a venerable history
in synchrotron radiation. For example, the high intensity of synchrotron radiation
made x,ray absorption fine structure (XAFS) spectroscopy into a practical tool for
obtaining interatomic distances in both ordered and disordered materials. In XAFS,
the interference between the wave emitted by an atom absorbing an x-ray photon
and those scattered back toward the emitter by neighboring atoms modulates the
absorption cross section, thereby giving rise to the well-known XAFS oscillations
above the absorption edge. The oscillations can be Fourier,inverted to extract the
radial distances between the emitter and the scattering atoms. More recently,
photoelectron diffraction has been developed into a technique for obtaining detailed
geometrical information about the arrangement of the scattering atoms
surrounding an emitter. In a diffraction experiment, the interference between
scattered and unscattered photoelectron waves creates a diffraction pattern at the
detector. The detector maps the pattern by moving around the soi!d angle
surrounding the specimen surface at fixed photon and electron energies. The
resulting angular distribution of photoelectron intensity reflects the geometry of the
scattering atoms. As in spectroscopic imaging, fixing the photon and electron
energies selects an emitter atom in a specific chemical state. Alternatively, it is
possible to map the diffraction pattern by scanning the wavelength of the
photoelectron wave at a fixed angle--a technique variously called energy-dependent
photoelectron diffraction or angle-resolved photoelectron fine structure (ARPEFS).
To ensure that the same emitter state is excited throughout the experiment, the
photon and electron energies are scanned in concert.

At the workshop, Scott Chambers (Boeing High Technology Center)
demonstrated the applicability of photoelectron diffraction to the relationship
between surface band bending and surface structure when selenium or tellurium
are on a gallium arsenide (001) surface. In particular, selenium, which is important
for surface passivation of gallium arsenide, is found several layers below the surface
on arsenic sites, forming a gallium selenide arsenide layer, whereas tellurium
remains at the surface. Chambers also discussed the formation of a ternary nickel
gallium arsenide layer when nickel is on a gallium arsenide surface, a process that
involves the interplay between interface chemistry and epitaxial regrowth. James
Tobin (Lawrence Livermore National Laboratory) showed how photoelectron
diffraction at low electron energies could be used to study ultrathin magnetic films
of iron on copper. At low energies, photoelectron diffraction is strongly surface
sensitive, thereby allowing surface alloys to be distinguished from overlayers and
permitting the investigation of structure with coverage. Magnetic order can be
detected by excitation of multiplet-split core states, but these experiments would be
considerably enhanced by the use of electron spin detectors and circular polarization.
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What makes photoelectron diffraction strongly surface sensitive at low electron
energies (<200 eV ) is the presence of multiple scattering--the photoelectron wave
scatters from more than one atom on the way to the surface. In contrast, at high
electron energies (>500 eV), the scattering is dominated by a single atom and the
scattered wave tends to be concentrated in the forward direction along the axis
connecting the emitter and the scattering atom, so that photoelectrons from deeper
in the bulk can escape. To make a quantitative colxnection between diffraction
patterns and atomic structure, a theoretical treatment of the scattering process is
required. Michel Van Hove (Lawrence Berkeley Laboratory) provided an update of
the numerous factors involved in constructing a model, such as deciding when
multiple scattering must be accounted for and the possible inclusion of thermal
vibrations. The computer time required to obtain structural information mounts
rapidly as the number of scattering events grows, making accurate multiple-
scattering calculations impractical. John Rehr (University of Washington) surveyed
several methods of making approximate calculations and concluded that a method
based on a separable Green's function matrix was both accurate and computationally
efficient.

To obtain structural details, such as the path lengths between the emitter and
scattering atoms, it is not necessary to record the entire diffraction pattern. It suffices
to make selective scans to generate spectra that can be inverted to yield the structural
data. In ARPEFS, for example, Fourier inversion of the energy-scanned spectrum
gives information similar to that obtained with XAFS. With patience or with
modern display-type analyzers, however, it is possible to make angular scans that
cover much of the solid angle surrounding the specimen surface. The display-type
analyzer simultaneously collects energy-selected photoelectrons in an angle-
resolved mode over a large solid angle. Inversion of this two-dimensional
diffraction pattern yields three-dimensional maps of the positions of the scattering
atoms. In this case, the diffraction pattern plays the role of a hologram produced by
the interference of the unscattered (reference) wave and the scattered waves that is
then reconstructed by computer to obtain an image of the objects causing the
scattering, lt is important to remember, however, that this "atomic-resolution" is
not to be compared with the 100-_ resolution promised for spectroscopic imaging.
Photoelectron holography images are obtained by averaging over the entire
illuminated area (perhaps a spot 10 micrometers in diameter) of what one hopes is a
homogeneous area. It is, of course, possible in principle to conceive of a spatially
resolved holography experiment with 100-A resolution, but such a feat will require
x-ray optical components with improved transmission.

To open the discussion of photoelectron holography, Brian Tonner (University
of Wisconsin-Milwaukee) provided a broad overview of the present capabilities of
photoelectron holography. In particular, the technique gives easily interpreted
chemical-state information, provides three-dimensional images with 0.5-_
resolution (0.05 _ with modeling), can generate images of both surface and sub-
surface atoms, has no need for long-range order, and is widely applicable to metals,

xix



semiconductors, and insulators. Abraham Szoke (Lawrence Livermore National
Laboratory) then gave a historical overview of the development of this technique,
which dates back to 1975, summarized methods of generating holograms, and
introduced the problem of reconstructing holograms. Dilano Saldin (University of
Wisconsin-Milwaukee) explained in some detail the theoretical and experimental
application of holography with x-ray excited Auger electrons in copper. Charles
Fadley (University of California at Davis and Lawrence Berkeley Laboratory)
reviewed the results of several experiments in an attempt to assess the prospects for
photoelectron holography by answering such questions as: Why does holography
work as well as it does, how much information can be obtained from high-angular-
resolution data, how can the data be treated to reduce artifacts and improve the
information content, and what are the pros and cons of electron holography at high
and low electron energy? John Barton (IBM-T.J. Watson Research Center) discussed
the extension of electron holography to inverse diffr_.ction by recording three-
dimensional diffraction patterns. This technique can be visualized as multiple-
wavenumber holography in which several data diffraction patterns are recorded,
each at a different electron energy (the photon energy moving in concert, as in
ARPEFS, so that the same emitter state is excited throughout the experiment). A
principal benefit is that the influence of multiple scattering and artifacts is reduced,
making reconstruction of the image more straightforward.
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Introduction to the Advanced Light Source

A.S. Schl._ _ter

Lawrence Berkeley Laboratory
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Photoelectron Holography and Quantitative X-Ray Photoelectron Diffraction
of Surfaces and Ultrathin Films

B. Tonner

University of Wisconsin
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PhotoelectronHolographyand
QuantitativeX-ray PhotoelectronDiffraction

of Surfacesand UltrathinFilms*

AdvancedLightSource
August 14, 1991

BrianTonner

Dept. of Physics
Univ.of Wisconsin-Milwaukee

Collaborators:

Prof.D. K. Saldin,UW-M (thy.)
G. R. Harp,Z.-L. Han,

S. Hardcastle, J. Zhang

*Supportedby NSF Div.Mat. Res.



Structure of metal surfaces and thin-films
by Fourier-transform Photoelectron

Diffraction t

S. HardcasUe,Z.-L. Han,G. R. Harp,j. Zhang,X.-D. Wan|, D. K. SaMin,and
B. P.Tonner

• What isnewaboutphotoekctronholography?

• Physicalinter_etationof "images".

• Improved'deconvolution'methodsof directimasing.

• Quantitativestructuredetermination.

tSupportedbyNSF DMR-88-05171
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4) Easily Interpreted chemical.stats InfonaatJon

li Three-dimensional"Image"of atomic
structure with 0.5 A resolution (direct) and
0.05 A resolution(modelled)

• Can Imageatoms below the surface

• Long-range order Is not requlrN

i) Applies to metals, semlconductms,
Insulators

_N



Method

1. Isolate regionof sampleby focussedX-rayso¢selected-areadiffraction.

20 Measure2f steradianangular-d_strglmtioeo( pkotoekctme diffraction,¢r
holofrem.

3. Normalize hologramto extractanisotropyfunction I k.

4. Phasedtwo-dimens_onalFourier-transformof data produces3-dimensional
structure°

IK(o,_)= Io(O,_)(1+x(o,_)). (1)

_(r)= ] x(_c)_,x_. (2)
Image function: I_(r)l=

Radial imagefunction: I_(,,_)1=

21



(a) Object

I
I
Source

(b) Screen

Screen
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Photoemission Holography
in

Forward-scattering Geometry
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Computer-drl_n
Manipulator

Hemispherical
Electron
Analyzer

Idealization of the experimental geometry, which maintains • fixed ankle
between the incident X-ray beam and the ejected electron (O_,-t-e,_.m.,, = r =

con•t). For each crystal _zimuth (0), the electron polar angle (O.I) is _znned by
rotatin_ the sample normal (ft). In practice, the incident X-ray beam illuminates
the entire sample surface, and the detector •ccepts • small solid-_ (L_OAO)
around the emission direction (see text for details).

24



I'NYNCAJ,mlvmw II vouJtm lr0 mulmmt 8 iJ JdddtCUtlm4

ntui.aeemUoaawltJeatd x-nnNz4:l,od_ dMkenii _ CV(NU

H. ILJmd I_,P. Teim"
Jq,m,,uwqCaloula-._ Lgim,n,,p,jlw.ln.,.jrm.lUmlUtUmJ,edV_- : _'_."*__' --

lT A,qpnmlitli?J

iii | • Iii i_nuu • I II • • I[ I V • • • W • • • g • •

(al j

(b) " ' " .:..

N

85 ,75 85 56 416 &5 25 15 5 -5

Polar Angle (deg)

FIG. I. llhmr_m of tara acquisitionmi analym of
Auger-electroat diEraction along the Cu(001) [100]azimuth. (at)

Khn_k enerllY distribution of x-ray-excited L VV Auger cleo-
from from Cu(001). The energy windows used to monitor AED
at 917 eV and the beck|round at higher energy are shown. (b)
The dotted curve is the experimental background, the smoo4h
solid curve is • theoretical fit to the experimental background.
The modultted solid curve is the emission intensity from the
Auger electrons. (c) Btckgroumd-subtracted Aulter-eJectroa
diffraction intensity, smoothed over a range of + 1.5" in polar
angle.
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0 1 2 3 4 5 6 7 8

Distance from emitting atom (A)

5. Intensityoi"the rc,constructionfromthe Cu(ltl) Augerdill'ra_tionp,_ttern,alongaL

line in tile [110]directionof the crystal, starting at the location of tile emitting atom,

the expectedpositionof • nezrest neishbor ztom is ma;ked by the vertical line.
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Z I'

The result of scattering calculation from a chain of two atoms, which
shows the zeroth-order forward-scattering along the atom chain (e = 35.3", 4, =

0°) and the higher-order diffraction featur_ around the chain. Tl_e electron energy
used in the calculation is 914 eV and the distance between the a_.oms is 2.55._.
The details of the calculation can be found in Cb. 3.
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High-resolution Photoelectron Holography

• High kineticanerw (;u l keV), ,_<:0.4,_..

• (Near) fullhemisphericalpattern.

• Highangularresolution(_u1°).

• Multipleenergies(to suppressartifacts).

® Improvedalgorithms(Scattered-WaveIncludedF-T, SWIFT).
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Deconvolution of Atomic Scattering Factor:
Modified Fourier-transform Algorithm

• Deconvolvingonly the phase removessomeof the atom-shift, but leaves
a large anisotropyin the atom-image intensity.

® Deconvolvingboth the phase and the amplitude correctsfor both the
atom-shift and the asymmetry,but increasethe twin-image amplitude(a
lot).
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(a) Single-energy
e,_ Hologram

_KI| r Multiple-energy
Hologram
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Charactedsti_:
• Chemical-statespecific
• Surface and sub-surfaceatoms
• 3D aKxniccoordinationand sites

by holographicreconl_wch_t
QBelow0.05Angstrom=:curacy

with structure re_m_mt (modelling)

• Need high11ux/smallbandwi¢_
radiationin 100-1500 eV racx_

• Need more efficientdetectors

SK,

, 55
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ii

! Needs forNe_-generation ....I1X-ray Photoelectron Diffraction

Energy resolution of 0.1 eV Chemical state

Photon energy range to 1000 eV Multi-energy holography

Angular resolution of 0.1 degree Resolve high-frequencyfringes

Angular range of 2-pl steradlan High accuracyIn hologram

Small spot size (few micron or less) Isolate small chemical domains

High count rates Reduce sample exposure
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Some Aspects of X-Ray and Electron Holography

A, Szoke

Lawrence Livermore National Laboratory
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SOME ASPECTSOF X-RAY AND ELECTRONHOLOGRAPHY,

ABRAHAMSZOKE

LAWRENCE LIVERMORE NATIONAL LABORATORY
AND

ROWLANDINSTITUTE FOR SCIENCE.

I,/ A short historical overview.
II./ Some thoughts on the reconstruction of holograms.
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A VERY SHORT HISTORICAL NOTE, ( 1)

HOLOGRAPHY, Giber invented it before there were lasers,

1,/ Coherent superposition of wavefronts has (most of) the
missing information.

2./ Illumination with the reference beam reconstructs the
object by "deconvolution",

Problems: Ordinary sources have short coherence length.
Fringes are small, of the order of L,

Limited magnification, accompanied by distortion.

PHOTOELECTRON DIFFRACTION, Liebsch, 1974.

He realized that the first (odd) order scattering of a photo-
electron contains information about the emitting atom's
environment.

(Even order scattering that interferes with the photoemission
produces EXAFS,)

I
I
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MORE HISTORICAL NOTES, (2)

HOLOGRAPHY WITH A LOCAL REFERENCE BEAM, Sz_ke, 1975, 1985.

1.1 The emission of a characteristic X-ray, or a potoelectron,
or an Auger electron can serve as a referepce beam in

holography.
2./ The elastically scattered waves from neighboring objects

interfere to give a hologram.

This method corrects G_.bor's problems and has some more advantages.
The objects are close, no long coherence length needed.
The recorded interference fringes are large, >>_,.

Great magnification is inherent in the process.
Many similar objects, similarly oriented, (but not necessarily

ordered in space) give a single hologram.
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MORE FIISTORICAL NOTES (3)

li
Methods of producing holograms (From Szoke, 1985)

RECORDING MEDIUM

X-rays electrons
q i i , L_ - i u i i ii - ., ............ H

Local source Characteristic Photoelectron or Auger
radiation electron diffraction.

i i i i i i • . i iii I i i iii ii i i ............. L............... _

;cattering form a Diffuse X-ray Diffuse LEEDS.
disordered array scattering.
of references.

. i , ,,i . .,, ,,,.. , .... _ ., ........... 6_

NEW IDEAS AND METHODS.

Explicit formulas for the reconstruction of a hologram.
(J, J. Barton, t q_ )

Electrons backscattered from the lattice acting as reference.
(B. Tonner, et al., I_lg_ )

i

I
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RECONSTRUCTION OF HOLOGRAMS AND MULTIPLE SCATTERING. (1)

With acknowledgement to the work of Barton, Tong, Rehr.

1./ Single scattering, general (angle dependent, complex) scattering
amplitude, We will follow Barton's derivation.

The "useful" part of the hologram is

exp(ikR)
_(0) = 4_R {fo(0) + _fn(0)exp[-ikrn(1-cos0)] }

n

Using the Helmholtz- Kirchhoff intergal theorem, we get

U(r)= 1, 2rtR2 _ _{[fo*(0)fn(0)exp(ikrn-ik.rn) + ce.] exp(-ik.r) }nS

The reconstructed object will in general be of weird shape. If the
angular dependence of fn(0) is known, the hologram can be corrected
by multiplying it with 1/fn(0). (This is my interpretation of the
proposal by Barton and by Tong.)

An alternative interpretation is a two step process. In the first step
the weird shape is reproduced, in the second the result is interpreted
as a superposition of known weird shz,pes.
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RECONSTRUCTION OF r!OLOGRAMS AND MULTIPLE SCATIERING. (2)

2./ Multiple scattering, general considerations. _

The propagation of the electron, or the X-ray in the medium can be
described by an integral equation.
In X-ray diffraction it is called the dynamical theory. (Darwin, Ewald,
Laue, beginning cca. 1915.)
In quantum mechanics it is called the Lippmann - Schwinger equation.
For discrete scatterers the integral reduces to a sum.

3./ Multiple scattering, isotropic (s-wave) point scatterers,

The Green's function for the propagation of the electron is

exp(ikR) +_"_ exp(iklR -r.nl)v nexp(iklrnl)
G R,0;E = 47_K,( ) r, _ 4rtR 4_lrnl

r__',0

Z , exp(iklrml)
+ exp(iklR'rnl)v Vm +

exp(iklrn-rm I)
4gR n 4glrn-rml 4_lrml "'"

nam m_0
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RECONSTRUCTION OF HOLOGRAMS AND MULTIPLE SCATTERING. (3)

The series can be resummed by singling out the last scatterer

exp(ikR)i exp(-iklrnl)V exp(iklrnl)
G,..,0;E,rR_ = 4rtR 4glrnl n 4glrnl

n_0

_exp(-iklrnl)v exp(iklrn-rml)v exp(iklrml) .._
+ 4nlrnl n 4nlrn-rml m 4glrml +'

n_m_0

+_ exp(iklR-rnl |rexp(iklrnl) _exp(iklrn-rm')v exp(iklrml)+, t
4rtR )Vn 4nlrnl + 4_lrn-rml m 4_lrml "

n_0 t.. m an m_0

The general form of the series is the same as for single scattering

exp(ikR)
G(R,0;E) = 4_R {fo(0) + _fn(0)exp[-ikrn(1-cos0)]}

n

The first term, fo(0), is the angle, and energy dependent factor for
EXAFS. The second term changes the phase, ar,,+_intensity of atom n
in its reconstruction, but it does not move its position.

This is the "theory of fog". The first layer of scatterers is seen
clearly, the images of the deeper layers are attenuated severely"
even if there are no losses.
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RECONSTRUCTION OF HOLOGRAMS AND MULTIPLE SCATTERING. (4)

4./Discrete scatterers, but general scattering.

Rehr has derived a formula that treats this case. lt is also similar in

form to the single scattering case, but both fo(0)and fn(0) depend
strongly on the scattering by the other atoms.

The only real hope I have that an iterative algorithm will converge to
the correct solution.

Recent work by Barton and by Tong propose to use holograms at
various electron energies to arrive at better estimates. These can
also be used the same way.
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From Photoelectron Diffraction to Surface Crystallography

J.J. Barton

IBM T.J. Watson Research Center

lp
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C(2x2)SlNi(O01)

[011]

•._[010 ]
Ni 4.

XBL 853-8008

Si_e : Direct
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• _i__/' --I-
From Photoelectron Dtffr_!_j_:l_n
To Surface Crystallography

Point-Source Electron Diffraction
Geometrical Plume Terms.

Direct ¢ryst_i[ographyo
Experimental Des_a

2D _mgaes+ lD wavenumber.
Medium Energies.

i

Will It Work?

The Problem of the Auger Holes
Multiple Scattering w/o Partial Waves
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i i

Role Of Photons
i i i

_ ./0 o 0o One Photon,
' .....00 °/.0.O/ One Atom,_. """"S:-? One Photoelectron.

° oo oe_ QI_

"_.O-_:;.G,@O/
omoeIQ _t Q

/ _ .........,'..., _/

/OOO,,e
Photon Coherence Not Relevant.

Photons Sel_t Source Atoms.

Resolution Determines Averaging.

= Kinetic Energy _
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Space Coherence _I

Ion Cores !
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ScatteringFactorMethods.

Separate G_meW from Potential
I,

a+b
a

b
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[Geometr!cal Phase Terms]

1(_) = ,'®-

z(T,)= iPo12+

a {i i __3
c.c.+

.x:x:p__ P_o""-'"_"<'-'"_+
c.c +

... (mu__;pie - scattering) +
_:. ._. ..

_._ _ "t___ae_it(o,_t.o,)
a' "_' a ; e,_(_ t.o_+

(cross - terms)'g
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Angle Resolved Photoemission Extended Fine Structure



Angle Resolved Photoemission
Extended Fine Structure

-1 ...... i .... J.......... I ......

/' e/, ]i_, 100 ......._"-_ _)e,__ &£ ,,,,, I
=. [_.._1,2,3

t_ [1tO],
:: \,'-",
0 - Independentgeometry Information

_ from manydifferent angles

0 6 10 r._ul,

From Barton et al, (1983)
•XBL 834-9336
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r_periment Stationary Phase l,nte_r_l Peak

2D Holography ff dkzdku ei_(°-_'_)eiO'_ eit'P[r_ - _

3D Inverse
Diffraction / dk ]] dkffidl_"Ue"_(°-'_)e -'_('_-J'_) Pn[r' - a]P[_ -



Ky Hologram

Monochromatic
photon

Angle Analysis

7_/...

i ,

Photoelectron ,Measurement (K)
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Theory S/Ni(100) k = 12/_

79



Isophotes [contour lines of the intensity l(u,v)] in a meridional plane near focus of a converging spherical wave
diffracted at a circular aperture. The intensity is normalized to unity at focus. The dotted lines represent the
boundary of the geometrical shadow. When the figure is rotated about the u-axis, the minima on the v-axis
generate the AIRY dark rings.

[Adapted from E.H. LINFOOT AND E. WOLF, Proc. Phys. Soc. B 69, 823 (1956).]

80



Experiment Stationary Phase hteg¢_ Peak
'" '" --i• i i i iii iii iii i i . i . iii ii Jill i i i iii i ilil ii ii

lD ARPEFS ] dk e_t('-_'_)e -"_' P[r'- la - _. kl]

_ dk=dk, e't(°_'_)e 'tJ'it e't*P[_ -

3D Inveme

; Diffraction ] dk _ dkfdk, e't('-'t)e -'t('-O'ii') /_|r' - elelJ -

l

t g Too
t - t,+'_r,+

- o0..+'_L'

I _'__i<'.ec.'t:+I
1

I
81

I



i

i i

1 1 1
Imaging FT Imaging FT Iimaging FT

,, ,, , _...4_._ '
i

Yl _ 'i l ' i l
P i i _ F

/ ..... I ___ ,._,I-/ .... ' _.___.__.._!
Z ..... _

Phase Phase Phase

-- ®®® Final Image- @

,J
L__. I __l

' j

82



Experiment Stationary Phase Integral Peak
i, i • ii i a |l i i i ,i i , ii i ,i i

lD ARPEFS ] dk eik('-g$}e -ire P[r _- la - g. _'
i

a ,-w _ __
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..... [Experimental Design Issues I

GoaIs_

Direct -, Site. ,
Accurate -, 0.02A.

Requirements:
Messureable

Low or Medium Ener ies I_)- ___f
' Simultaneous 2D

Resolvable Site (2._)
Multiple Medium Energies

Accurate (0.02._)
Precise relative emission angles.
Precise relative amplitudes.
More accurate theory.
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PHOTON CROSS SECTIONS, 0,IkeV TO 1MeV j _
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-0.5

"__ O" 30" 60" 90" 120" IGO" 180"

The photoemission intensity calculated for a Cu-Cu photoemiffer-scatterer system as a function of scattering
an_le. The radiation is unpo|arized (sum of two perpendicular polarizations) and incident perpendicular to the
k, r plane. Curves are shown for inJUa]-stateangular momentum li ranging from li = 0 to o, and electron kinectic

energiesof100eV,300eV,and 1000eV. Only theli--+li+ Ichannelisincluded.The intensityIisnormalized

totheprimary-waveintensity10asthequantityX _ (I- 10)/10.
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, Angle Correction

I

l

Polynom;al (order n)
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Experimental Prognosis

Setup Complicated:

Synchrotron Radiation.

2D Analyzer.

Angle Calibration.

High-Capacity Computing System.
q"3D Data Analy_ls Software.

Use Straightforward:

No time-d_pendent calibration.
No mechanical motions.

Electron energy only variable.

Insensitive to macroscopic
vibration.

Insensitive to sample position.

Ten holograms at 1/10 as much
time.

Direct analysis to 3D images of
surface sites!
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Will It Work?

Cannot just "Try It and See"

Accuracy Criterion?
Limitations Intrinsic?

Do We Understand Electron

Scattering?
Yes, but...

Problem of the Auger Holes (D.
Frank, A. Hubbard, et al.).

Theoretical Best Inversion.

_ Inverse Diffraction.

Angular Spectrum of Plane Waves.
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Cu(lO0) 56 eV
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[Curved Source Waves.]

• Effects appeax 'when l(l + 1)Ibr is not small.

• Photoemission selection rules:

lm_ = li + 1

lI --" lmAx,lm_-2

For example, Cu 3p, ly =

• Auger Lselection rules:

lmex -- . li "t"/1"'!-12

l! = lm.x, Im_- 2,... (li > 0)

For example, Cu 3p3d3d (M23N46N4s), l! = 5_}1.
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El.ectmnMutipleSacttsdng_
in AngularS_c_tr_umRepmsent_ion
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c2x2 S/Ni(100) 81s Theoryk=12A
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Holographic Crystallography

D, Saldfn

I'

University of Wisconson-Milwaukee
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Holographic Crystallography

D. K. Saldin

Collaborators

B. P. Tonner

G. R. Harp

Z. L. Han

B. L. Chen

X. Chen
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Reconstruction Intensity
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Aiomlc zone ptote (d-wove emitter')
I
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Atomlc zone prate <F-wove emitter)
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Atomlc zone Pirate (g-wove emitter)
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F. S. Peaks
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Rotating polar axis
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"Onion-Skin" Algorithm
D. K. Saldin and J. B. Pen.dry,

Surface Sci., 162, 941 (1985.)
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Prospects for Advanced Photoelectron Diffraction

C,S, Fadtey

University of California at Davis
and

Lawrence Berkeley Laborato_
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XPD FROM A HIGFI-zADSORBATE - S/Ni(001)
I II IlJl IIIII I I' ]_11111 . IIIIII . II ...... ' .... I ..... _IIII I II II I __ II II III|l IliaI| ............ I I

S2p, Ekln = 1085 eV
$1_.cE' S_I"T',

¢..IM

\

lnfo. from substrate requires large e-scattering
.'. Weaker effect

Does high angular resolution data permit
determining Z? ... And d12?

£r Al.,,
To le P_L,

157



158



159



Effect of Ni Substrate Inter lana Expan i._,,,,........... .........., ,,.........._p____,r ,.., s on

c(2x2)S/Ni(O01)
25A Cluster --Sum ef 4 Angles
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Ge(111)- (lxl)

-r'loN

Melting point = 1210.4 K

Density of s:lid at Tm = 5.22 g/cm3'__
Density Of liquid at Tm = 5,53 g/cm 3r'_GR° _,ONP,

(Solid.to-liquid linear compression of 1.9%)
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A Proposed Model:

T < 1050 K

T > 1050 K

O" O " "Liquid-Like" (_) (_

_'_ _ "Bou.ndo.v'y

0 _-
d o" S'" oo

• 0 O" • 0 ®
Domains Domains

Out of Registry In Registry
E.G. McRae and R.A. Malic, Phys. Rev. B 38, 13163 (1988)

Does this involve also solid to
liquid compression?
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Temperature Dependenceof
Forward.Scattering Peak
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Temperature Dependence of
Forward.Scattering Peak
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Projection of X(k) Onto kx-k_
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I Horizontal FT contour Plots--

IFTI, Experiment

HWHM=7.5A

Z = 3.27,&,,RT-
36or..

IFTi,Experiment
HWHM 7.5A
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Theoretical Developments in Photoelectron Diffraction

M° Van Hove

Lawrence Berkeley Laboratory
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INTRODUCTION

Purpose:

summarize:

theoretical state of the art
in electron emissionfrom surfaces

' address!

some physical princlples
that underlie the formation of holograms
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BASICS OF ELECTRON EMISSION

Types of electron emission:

- photoelectrons

matrix element well known (if single-channel emission)

element specific

- Auger electrons

matrix element poorly known,
but approximately s-wave at E > 300 eV

element specific

-Kikuchi (inelastic) electrons

matrix element poorly known, except for phonon losses

,not element specific

- MEED (elastic) electrons

matrix element well known

not element specific

Electron energy range:

- 300-1500eV

Measurement:

- scanned angle (ARXPD, ARAES,...)

- scanned energy (PhD, ARPEFS,...)

Structure information:

-interference between direct and scattered paths

- forward focusing (forward scattering)

Fadley, Egelhoff, ...
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THEORY

Physical ingredie= ts:

- muffin-tln model

-inelastic mean free pathr

. Debye-Waller factor '2.

Form of scattering wave'

- plane wave vs. spherical wave

plane wave simpler

Role of multiple scattering:

- single vs. mult|ple scattering _

single scattering much simpler

Validity of approximations:

- single and plane-wave (SSPW) scattering valid in favorable cases

wt_atis accuracy of such (non-holographic) structure determination?

- multiple and spherical-wave (MSSW) scattering often needed

for aligned atoms (forward focusing)

for interference features

what is accuracy of such (non-holographic) structure determination?
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E -- 917 eV CU AUGER EMISSION FROM A
POINT SOURCE AT THE END OF Cu CHAIN
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MSSW implementations:

common physical Ingredients, but slightly different mathematical treatments

cluster,approach

- Taylor-Series Magnetic-Quantum-Number Expansion (TS-MQNE)

Barton and Shirley, VanHove

- separable Green's function matrix method

Rehr and Albers, Fadley et al

- Reduced Angular Momentum Expansion (RAME)

Fritzsche, Rennert

- concentric shells (XANES.like)

Saldin et al

slab approach

-layer stacking (LEED-like)

Tong et al
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AN ISSUE

Thermal vibrations:

Debye-Waller factor

distant source (MEED, LEED, XRD, etc.):
average of diffracted amplitudes over configurations

nearby point source (ARPES, ARAES, XAFS, etc.):
average of diffracted intensities over configurations

both averages give same Debye-Waller factor (Rehr. XAFS)

DW factor sharpens forward focusing peak, wlth no height loss;

counter to observation, e.g. Pb, CO (Bonzel et al):
peak broadens and weakens!

i

BUT: DW assumes:

rms vibration amplitude ,/< u2> < < wavelength ,_

examples:
',

J <u 2 > = O.10 _ (bulk Ni) - 0.25 _ (bulk Pb, -CO) at RT

300 < E < 1000 eV -, 0.7 > _ > 0.4

SO" ,/<u 2> = X andDWbreaksdownl

EFFECT: forward focusing peak must be smeared out, not sharpenedt

-, no forward focusing _ electron microscopy=), = 0.03-0.01 < < ,/<U2>

straight averaging over configurations

Fadley, Kaduwela, Van Hove: CO / Fe (100)

other complication: correlated vibrations

Fadley et al
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Breuer, Knauff, and Bonzel: XPD study of surface disordering of Pb(1101

(a) Plot ofln AI(®,T) vs temperature for the peak al ® = 45° in

[,_,,_(ISl) and ® = 54.7* in _ direction ( × ). (b) FormDebye-Wallcr
tl

effectscorrected intensity distribution A1((9, 7")vs temperature for the lv,,o

peaksin (a). 199
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ANOTHER ISSUE

Meaning of Fourier transform in electron holography:

assume weighted and ptlased distribution S(R) of s-wave point sources,
emitting amplitude A(k,R) at large R, excluding ali scattering"

(this mimicks multiple scattering as extra sources)

eikr ,
#,

A(k,R)- J'J'J"d3R S(R)e /k'R
R

then, inversely:

S(R) = j'[J" d3k A(k,R)e ik'R

SO: Fourier transform of non-scattered amplitude is point-source distribution

- this is ideal goal of holography

BUT: electron holography uses intensity/(k,R):

s'(a) = j"J'[ d3k/(k,a) eik'R

i.e."

image = effective point source distribution S'(R),
such that S'(R) reproduces "amplitude" A' = I,
where/is actual hologram

SO' electron holography yields an effective point source distribution S'(R),
that compensates for:

- using I, not A (giving twin and self-images)
- phase shifts, including fon,vard focusing

I - multiple scattering
- finite integration domain
- etc...

, example:

forward focusing:

causes effective source at focus
and no imaqe at nucleus of scatterer
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Efficient Multiple-Scattering Methods in Photoelectron Diffraction and XAFS

J. Rehr

University of Washington

1
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Theor_cal forward _:a_g (Ohi=(7) ratios of

X(SW)IX(PW) are ,shown as a fun_on of sca_ distance
from 1.75 to 19.92 A and for energies of I_ 1420 eV.

__) _-_L=.j_jo,,./_,_,,,c,.,(__'_"_-_,_zLI,-_,)'/¢"
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Many of our results are contained in the literature.

Theyare, however, not easily available. As a matter__.

0.drfact_ we found the references only after having
_erived most of them. The characteristic of beingd

hidden was re-emphasized in that an additional
_nealogic tree of references was called to our atten-

_n _2 after having submitted the paper to the
Editor. It is very likely that still further references

%e_ in the literature. _"'_5 _"_" _° i_k I&q0'

Our method is based on a new separable representation
of the free Green 's-function matrix elements _

Gt..z,(p)=(L,RIGIL',R'), where p=k(R-R'). These
propagator (or translation operator)matrix elements
GI..L, also appear in the addition formula for the transla-
tion of screened spherical waves 13-15 as well as in
multiple-scattering expansions, l-z'15 The theory of such
functions has an extensive, if relatively obscure literature;
a historical survey is given in Ref. 13. Like other
researchers in this area, we have occasionally found some

, ,,

of our results in the literature only after having first

worked them out independently bY ourselves.
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Lattice-Site- and Chemical-State-Specific Photoelectron Diffraction

S, Chamber,_

Boeing High-Technology Center
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Lattice-site- and Chemical-state-specific
X-ray Photoelectron Diffraction

Scott A. Chambers
Boeing High Technology Center

Seattle, Washington

Outline

I. Site-specific XPD

A. Se/GaAs(001)

B. Te/GaAs(O01)

Issue -- Relationship between surface band
bending and surface structure

II. State.specific XPD

A. Ni/GaAs(001)

Issue -- Interplay between interface chemistry
and epitaxial regrowth

I
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""" XPDTechnology
Center , ,j , _ ,, , _,,,, ,,,, , , , , ,, ,, , ,,,,, ,, J , ,, ,,,, ,, ,, L,_ , .,,,,, .,

scattered Auger or RzzExJvz_
photoelectron wave

primary x-ray (h_) I(k) \ f_.

primary Auger or
photoelectron wave

I(k) _ i_llo (r,c_)+ _. _Fj(rj,_j,0j) 12J
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T..EEPOSS,BLECAUSESOFSU.FACE

1. Elim=nation of Ga & As dangling bond states

cC=,z) o_ •----. - • a,-,_- a,_" • • •

A........... .........o:_....=...._.o.... ,--- .
• • • •
• • • • ,T',_,T', . . .

2. Low gap state, density at the surface

% ._.o= ._.o ,,At' _,,\/_ .,.0 6=
I _ '__ _ _ % _ _ _ _ I

T. Ohno and K. Shiraishi, Phys./:tev. _ 11194 (1990)

3. Delta doping at the surface

o-i -
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Conclusions and Future Directions

1. Site-specific XPD works provided the sites possess
different symmetries with respect to specimen
crystal axes (i.e. zinchlende).

2. State-specific XPD works provided the chemical
shifts are large enough to be reasonably resolved.

3. State-specific XPD can be done with
monochromatic lab x-ray sources, but it is very
slow. High total energy resolution (~0.2-0.3 eV),
high photon energy (>~ 1 keV), and higil intensity
(ALS!) required for more rapid data acquisition and
lower statistical uncertainties in measured
anisotropies.
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Photoelectron Diffraction ot Magnetic Ultrathin Films

J, Tobin

Lawrence Livermore National Laboratory
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PHOTOELECTRON DIFFRACTION
OF BIMETALLIC SURFACES
- - Ii IIIII I I I IIII II II .......... I|11 ......... I II II - _LIII II II III I III I I __

Surface Sensitivity and Elemental selectivity

Au/Cu(001)

_ _1( T'O]

,,,,,,,m I _I_L_

_ - .
_f-

ii Iii I _lJ I

_B= _fac_ alloy

_" layC = over er
Irl
C
@._ calculation
C

Photoelectrons ,o ,20,_o,,o,_ 2o0
Kinetic Energy (ev)

scattering
off of

neighbors.
Diffractions causes modulations

in cross section vs. kinetic energy.

•r.T

(1) Distinguish a surface alloy from an ovcrlayer and

(2) Study variations in structure as a function of coverage.

Experiment: Tobin, ct al.

Theory: S.Y. Tong, ct al.
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PHOTOELECTRON SPECTROSCOPYIN RESOLUTION
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Direct Imaging Photoemission Microscopy: Past, Present, and Future

E. Bauer

Technische Universitat Clausthal
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Recent Developments in Undulator-Based
Scanning Photoemission Microscopy

H. Ade

State University of New York-Stony Brook

i L, t_p
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Recent Developments in Undulator-Based

Scanning Photoemission Microscopy

i

X1-SPEM (NSLS, BNL, USA)

Harald Ade, Cheng-Hao Ko, and Janos Kirz

Steven L. Hulbert and Erik D. Jol_nson

Erik Anderson, Dieter Keto

MAXIMUM (SRC, Wisconsin, USA)

Franco Cerrina et al.

Ellipsoidal Ring Mirror SPEM (DESY, Hamburg, FRG)
i

Christoph Kunz et al.
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Outline

• Motivqtion for spectromicroscopy, What can we learn?

• Approaches to spectromicroscopy, microprobe devices.

• Requirements on the source.

• X1-SPEM, instrument details

• First results, present status

• Future outlook: spatial, energy, and time resolution

J
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Why X-Ray Photoemission Microscopy?

• Photoemission/Soft X-Ray Spectroscopies are

Very Powerful Techniques for Studying

- Chemistry at .Surfaces

- Geometric and Electronic Structure

• Until Recently, Not Much Lateral Resolution

- Require Model System (PES)

- Robust Systems (electron probes: SAM, STEM, etc.)

® Many Systems of Interest Are Inhomogeneous and/or e-Beam Sensitive

- Oxides/Oxyhydroxides
:q

- Catalytic Systems

- Thin Film/Thin Film Growth (polymers esp.)

- Semiconductor Devices

- Interfaces, Co-polymers

• PEM Contains More Information than SAM: Primary Photoelectron Peaks
and AUGER Peaks (can use Auger parameter)

• XANES Mode for Certaha Elements
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What can we learn from XPS

, PHOTOELECTRON
ENERGY
SPECTRUM
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I
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Chemical Shifts
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Approaches to Spectromicroscopy _:

ImaKe e- (E_ectron Optical Instruments):

• electro-static (Bauer-Telieps, Tanner micro-XANES)

PHOTOELECTRON IMAGIN(I 28"3'
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4- itop ' \ _ilecttd _M_We,

X

s, .__, /
Speclmen lens _-,--lay(_- _xl$ o| '

(cathodel de|(ecled bundle

• magneto-static (Beamson, Pia_ecta)
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Focus X-rays (Microprobe Instruments):

• normal incidence multilayer Schwarzschild (F.Cerr" aa)

ri_u_,_ _. 0._ N.A. _:hwarz_ahild obJe_tlve

I o

gr-az_. _c_ence e_psoi'd_i (I_unz)

• zone p_ate. (S_PEM,) _ Ioo_-L/ --_ _ $.,ooo a ]/
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Point analysis of A1 line
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CMA tuned to Al L'p
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Possible Experiments

• Heterogeneous Alumina (A1203 + _H20)

- Catalyst or used as support for catalysts

- Surface acidity depends strongly on binding energy of hydrogen in the
hydroxyl group (alumina phase, local geometry)

- Dosing with ammonia, various alcohols, CO, and CO2
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Summary of Present X1-SPEM Capabilities

• First and Only Submicron Images with Primary Photoelectrons

• Spatial Resolution Approaching 100 nm

• 3-6 eV Energy Resolution with Primary Photoelectrons

• 5-9 x 10s photons/(sec, 0.29% BW) @ 650 eV

• Simultaneous TY and CMA Images

• Feasibility Studies on Alumina Under Way
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Instrumental Improvements of the X1-SPEM

• Add XANES Mode with 0.3-1.0 eV Photon Energy Resolution

• Higher Spatial Resolution (few months: sub-100 nm; one year: 50 nm; few
Years: 20 nm)

• More Efficient Grating (gain of 2-5 in flux)

• Ni Phase Zone Plates (gain of factor 2 in flux)

• Commercial Spectrometer (gain of >10 peak count rate, simultaneously
factor 2 in energy resolution, or <1 eV energy resolution)

• Multiple Energy (16 channel) Detection over 5-20 eV Window

• Alternate Signals (PSD, fluorescence [ALS], scattering)
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Comments on Scanning Versus E-Imaging

• Spatial Resolution: E-Imaging May Be the Winner (XANES)

,, Energy Resolution: Scanning and Imaging at Par

• Detection Efficiency: Scanning f2/2_ > 10% and Multichannel Detection,

E-Imaging (XPS mode) f2/2_ _ 0.1% (depends on 3r)

• Time Resolution: Since Undulator Output Is Coherent, Time Resolution
Determined by the Detection Efficiency (i.e., E-imaging loses its advantage as
a parallel imaging system)

• Damage: If Thermal, Need E-Imaging, Otherwise Scanning (detection
efficiency)

Alternate Signals:

• Scanning: Fluorescence, SA Diffraction/Scattering, Neutral Ions

• E-Imaging: Compatible with LEED, Photoelectron Holography

Both techniques have a bright future and complement each other.
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