%q&%@
A

LBL-31853
CONF-9108191 =~ —
UC-411

Spectroscopic Imaging, Diffraction,
and Holography
with X-Ray Photoemission

Report of the Workshop
at

Lawrence Berkeley Laboratory
August 14, 1991

Organized by:

C.S. Fadley, Lawrence Berkeley Laboratory and University of California at Davis
A.S. Schlachter, Lawrence Berkeley Laboratory
B. Tonner, University of Wisconsin-Milwaukee
M. Van Hove, Lawrence Berkeley Laboratory

Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

February 1992

Prepared for the U.S. Department of Energy under Contract No. DE-AC03-76SF00098



DISCLAIMER

This document was prepared as an account of work sponsored by the
United States Government, Neither the United States Government
nor any agency thereof, nor The Regents of the University of Califor-
nia, nor any of their employees, makes any warranty, express or im«
plied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial
product, process, or service by its trade name, trademark, manufac-
turer, or otherwise, does not necessarily constitute or imply its en-
dorsement, recommendation, or favoring by the United States Gov-
ernment or any agency thereof, or The Regents of the University of
California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government
or any agency thercof or The Regents of the University of California
and shall not be used for advertising or product endorsement pur-
poses,

This report has been reproduced directly
from the best available copy.

Available to DOE and DOE Contractors
from the Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road, Springficld, VA 22161

Lawrence Berkeley Laboratory is an equal opportunity employer.



Spectroscopic Imaging, Diffraction, and
Holography with X-Ray Photoemission

LBL--31853

Report of the Workshop

DE92 009142

at

Lawrence Berkeley Laboratory

August 14, 1991

Organized by:

C.S. Fadley, Lawrence Berkeley Laboratory and University of California at Davis
A.S. Schlachter, Lawrence Berkeley Laboratory
B. Tonner, University of Wisconsin-Milwaukee
M. Van Hove, Lawrence Berkeley Laboratory

Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

This report has been reproduced directly from the best possible copy.

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials
Sciences Division, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098

[ )

v bt 3%



Contents

WOrkshOp ANNOUNCEMENL . ...ttt srsssssass sesersens 4
WOTKShOP PrOZIam....cciieiiriiiiiniiieiis ittt sasss s st ses s ssnsissnns vii
List Of PartiCiPants.........ov i ix
Preface.. ...t s e s st st sr s s e xvii
Speakers

Introduction 10 the ALS ... 1

A.S. Schlachter

Photoelectron Holography and Quantitative X-Ray Photoelectron

Diffraction of Surfaces and Ultrathin FilmS ........coecevmeemisnennrmsnesnsensesssssanes R 17
B. Tonner

Some Aspects of X-Ray and Electron Holography ..., 57
A. Szoke

From Photoelectron Diffraction to Surface Crystallography..........cccviveveinreveniiiinnnnns 67
]J.J. Barton

Holographic Crystallography.........cceiii s, 103
D. Saldin

Prospects for Advanced Photoelectron Diffraction ..., 131

C.S. Fadley

Theoretical Developments in Photoelectron Diffraction ........ccvvveiiiven e, R 187
M. Van Hove

Efficient Multiple-Scattering Methods in Photoelectron Diffraction and XAFS....205
J. Rehr

Lattice-Site- and Chemical-State-Specific Photoelectron Diffraction............cc.cuu..... 227
S. Chambers

Photoelectron Diffraction of Magnetic Ultrathin Films..........cccoooiiiinnnn 247
J. Tobin

iii



Direct Imaging Photoemission Microscopy: Past, Present, and Future..................

E. Bauer

Recent Developments in Undulator-Based Scanning

Photoemission Microscopy
H. Ade

-------------------------------------------------------------------------------------------------

iv



IO IR YR IR e

Spectroscopic Imaging, Diffraction,
and Holography with X-Ray
Photoemission

Wednesday
August 14, 1991
at
Lawrence Berkeley Laboratory

=> The day before the ALS Annual Users' Association Meeting (August 15-16) ¢

X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over
length scales from about a micron all the way down to atomic resolution. Examples of these probes include
photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and
X-rayabsorption microspectroscopy. Although the method of image formation, chemical-state sensitivity,
and length scales can be very different, these X-ray techniques share a common goal of combining a
capability for structure determination with chemical-state specificity. This workshop will address recent
advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both
theoretical and experimental fronts. A particular emphasiswill be on novel structure determinations with
atomic resolution using photoelectrons.
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Preface

An Advanced Light Source (ALS) workshop on "Spectroscopic Imaging,
Diffraction, and Holography with X-Ray Photoemission" was held at the Lawrence
Berkeley Laboratory on August 14, 1991, in advance of the fourth ALS Users'
Association Annual Meeting. The workshop was one in an ongoing series with the
charter to identify and explore new scientific opportunities for high-brightness,
third-generation VUV and soft x-ray synchrotron light sources, in general, and the
ALS, in particular. The topic reflects the rapidly advancing progress in experimental
techniques based on photoelectron spectroscopy. These techniques extend the
traditional chemical-state specificity of photoelectron spectroscopy that is reflected in
the well-known alternate name “electron spectroscopy for chemical analysis”-—or
ESCA. The extensions are in two rather different directions.

In the first, photoelectron spectroscopy becomes spatially resolved photoelectron
microscopy or spectroscopic imaging, by which chemically specific spectral features
of inhomogeneous surfaces can be mapped with a spatial resolution eventually
reaching about 100 A. In the second, the interference between photoelectron waves
that are scattered by atoms as they make their way out of the surface and those that
. are unscattered gives rise to angular distributions in the photoelectron intensity that
- can be used to obtain structural information at the atomic level. In photoelectron
holography, this information takes the form of atomic-resolution images of the
atoms around an emitting atom in a specific chemical state. Feasibility experimcnts
accomplished with conventional x-ray tubes or existing synchrotron light sources
well demonstrate the promise of these techniques. But it is clear that their full
fruition awaits the availability of the ALS and other facilities like it, where high
brightness will make it possible to perform experiments of high spectral, angular,
and spatial resolution with reasonable count rates.

Spectroscopic imaging techniques fall into two broad categories: direct imaging
and scanning. Ernst Bauer (Technische Universitdt Clausthal, Germany) re iewed
the prospects for spatially resolved chemical analysis with direct imaging mcthods.
In direct imaging, electron optics {electrostatic or magnetic lenses) or a strong
solenoidal magnetic field are used to collect photoelectrons and to preserve their
spatial relationship on the way to an area detector. In photoelectron microscopy, the
ensemble of detected electrons of all kinetic energies generates the image. The
addition of an electron-energy analyzer gives direct imaging chemical-state
specificity because the image contains only electrons with kinetic energies
corresponding to a specific spectral feature, such as a chemically-shifted peak.
Harald Ade (SUNY-Stony Brook) provided an overview of scanning spectroscopic
imaging. For scanning, it is necessary to focus the x-ray< to a small spot, which is
rastered across the sample (in practice, the sample is moved through the spot) to
generate the image. There are several methods of focusing the x-rays with
somewhat complementary strengths and weaknesses. As in direct imaging, it is
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possible to do simple photoelectron microscopy by collecting all the photoelectrons
or chemically specific imaging with the use of an electron-energy analyzer. At this
early date, it seems likely that both the direct imaging and scanning techniques will
find considerable application in the analysis of materials, surfaces, and interfaces.
The ALS will be equipped with instruments of both types.

Effects due to the interference of photoelectron waves have a venerable history
in synchrotron radiation. For example, the high intensity of synchrotron radiation
made x-ray absorption fine structure (XAFS) spectroscopy into a practical tool for
obtaining interatomic distances in both ordered and disordered materials. In XAFS,
the interference between the wave emitted by an atom absorbing an x-ray photon
and those scattered back toward the emitter by neighboring atoms modulates the
absorption cross section, thereby giving rise to the well-known XAFS oscillations
above the absorption edge. The oscillations can be Fourier-inverted to extract the
radial distances between the emitter and the scattering atoms. More recently,
photoelectron diffraction has been developed into a technique for obtaining detailed
geometrical information about the arrangement of the scattering atoms
surrounding an emitter. In a diffraction experiment, the interference between
scattered and unscattered photoelectron waves creates a diffraction pattern at the
detector. The detector maps the pattern by moving around the soiid angle
surrounding the specimen surface at fixed photon and electron energies. The
_resulting angular distribution of photoelectron intensity reflects the geometry of the
scattering atoms. As in spectroscopic imaging, fixing the photon and electron
energies selects an emitter atom in a specific chemical state. Alternatively, it is
possible to map the diffraction pattern by scanning the wavelength of the
photoelectron wave at a fixed angle—a technique variously called energy-dependent
photoelectron diffraction or angle-resolved photoelectron fine structure (ARPEFS).
To ensure that the same emitter state is excited throughout the experiment, the
photon and electron energies are scanned in concert.

At the workshop, Scott Chambers (Boeing High Technology Center)
demonstrated the applicability of photoelectron diffraction to the relationship
between surface band bending and surface structure when selenium or tellurium
are on a gallium arsenide (001) surface. In particular, selenium, which is important
for surface passivation of gallium arsenide, is found several layers below the surface
on arsenic sites, forming a gallium selenide arsenide layer, whereas tellurium
remains at the surface. Chambers also discussed the formation of a ternary nickel
gallium arsenide layer when nickel is on a gallium arsenide surface, a process that
involves the interplay between interface chemistry and epitaxial regrowth. James
Tobin (Lawrence Livermore National Laboratory) showed how photoelectron
diffraction at low electron energies could be used to study ultrathin magnetic films
of iron on copper. At low energies, photoelectron diffraction is strongly surface
sensitive, thereby allowing surface alloys to be distinguished from overlayers and
permitting the investigation of structure with coverage. Magnetic order can be
detected by excitation of multiplet-split core states, but these experiments would be
considerably enhanced by the use of electron spin detectors and circular polarization.
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- What makes photoelectron diffraction strongly surface sensitive at low electron
energies (<200 eV ) is the presence of multiple scattering—the photoelectron wave
scatters from more than one atom on the way to the surface. In contrast, at high
electron energies (>500 eV), the scattering is dominated by a single atom and the
scattered wave tends to be concentrated in the forward direction along the axis
connecting the emitter and the scattering atom, so that photoelectrons from deeper
in the bulk can escape. To make a quantitative connection between diffraction
patterns and atomic structure, a theoretical treatment of the scattering process is
required. Michel Van Hove (Lawrence Berkeley Laboratory) provided an update of
the numerous factors involved in constructing a model, such as deciding when
multiple scattering must be accounted for and the possible inclusion of thermal
vibrations. The computer time required to obtain structural information mounts
rapidly as the number of scattering events grows, making accurate multiple-
scattering calculations impractical. John Rehr (University of Washington) surveyed
several methods of making approximate calculations and concluded that a method
based on a separable Green's function matrix was both accurate and computationally
efficient.

To obtain structural details, such as the path lengths between the emitter and
scattering atoms, it is not necessary to record the entire diffraction pattern. It suffices
to make selective scans to generate spectra that can be inverted to yield the structural
data. In ARPEFS, for example, Fourier inversion of the energy-scanned spectrum
gives information similar to that obtained with XAFS. With patience or with
modern display-type analyzers, however, it is possible to make angular scans that
cover much of the solid angle surrounding the specimen surface. The display-type
analyzer simultaneously collects energy-selected photoelectrons in an angle-
resolved mode over a large solid angle. Inversion of this two-dimensional
diffraction pattern yields three-dimensional maps of the positions of the scattering
atoms. In this case, the diffraction pattern plays the role of a hologram produced by
the interference of the unscattered (reference) wave and the scattered waves that is
then reconstructed by computer to obtain an image of the objects causing the
scattering. It is important to remember, however, that this "atomic-resolution" is
not to be compared with the 100-A resolution promised for spectroscopic imaging.
Photoelectron holography images are obtained by averaging over the entire
illuminated area (perhaps a spot 10 micrometers in diameter) of what one hopes is a
homogeneous area. It is, of course, possible in principle to conceive of a spatially
resolved holography experiment with 100-A resolution, but such a feat will require
x-ray optical components with improved transmission.

To open the discussion of photoelectron holography, Brian Tonner (University
of Wisconsin-Milwaukee) provided a broad overview of the present capabilities of
photoelectron holography. In particular, the technique gives easily interpreted
chemical-state information, provides three-dimensional images with 0.5-A
resolution (0.05 A with modeling), can generate images of both surface and sub-
surface atoms, has no need for long-range order, and is widely applicable to metals,
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semiconductors, and insulators. Abraham Szoke (Lawrence Livermore National
Laboratory) then gave a historical overview of the development of this technique,
which dates back to 1975, summarized methods of generating holograms, and
introduced the problem of reconstructing holograms. Dilano Saldin (University of
Wisconsin-Milwaukee) explained in some detail the theoretical and experimental
application of holography with x-ray excited Auger electrons in copper. Charles
Fadley (University of California at Davis and Lawrence Berkeley Laboratory)
reviewed the results of several experiments in an attempt to assess the prospects for
photoelectron holography by answering such questions as: Why does holography
work as well as it does, how much information can be obtained from high-angular-
resolution data, how can the data be treated to reduce artifacts and improve the
information content, and what are the pros and cons of electron holography at high
and low electron energy? John Barton (IBM-T.J. Watson Research Center) discussed
the extension of electron holography to inverse diffraction by recording three-
dimensional diffraction patterns. This technique can be visualized as multiple-
wavenumber holography in which several data diffraction patterns are recorded,
each at a different electron energy (the photon energy moving in concert, as in
ARPEFS, so that the same emitter state is excited throughout the experiment). A
principal benefit is that the influence of multiple scattering and artifacts is reduced,
making reconstruction of the image more straightforward.



Introduction to the Advanced Light Source

A.S. Schlu. hter

Lawrence Berkeley Laboratory



vsn

erwogife)) ‘A3[axIag
£10je10qe] A3[d[Fdg duUdIME]
BIUIOJIe)) JO AJISIdATUN)
IYPORNYIS paII

Y¥x el % * Y ¥

SSAN.LHOIIY
QIINIAIDTAINN IO SIWVAL AVU-X
:TDUNOS IHOIT AAIONVAQV dHL

#¥ ¥ =%

STV
A0YN0S LHOIT dIDNVAAY



UOI[[IW G°66$ — IS0 UOIINIISUOD) .

—_——— NV
€661 Surrds ur suonjerado ur3ag .

9861 3je] ur we3aq jvafoxd uorpnisuo) ..

A3orouypay —
SDUIDS 1] —
s318Ayd rendajowr pue SOy —
3JUIIIS IdLJINS pUE S[ELIAJE]N —

:sapjIunumuod Axojeroqe] o
[eUocIjRU pue ‘Srwapede ‘AIjsnpul woIrj SIaydIeasar Aq pazi[un .

uuiu:bm awrylasdgge —
juazayod Aferrey —
sainjeaj [enpdads moireu uyim 2[qeuny A[peorg —

:ssouy8irq pajusapadsardun jo swreaq Aei-x 3Jos pue A[) S3PIAOI] .

A31[IdRy I13SN [RUOL}eN .

STV

MIIAYIAQ :IDUN0S IHOIT AIDNVAAY FH



PR |
MP'P -

qwn-
/ 13 .' " e [RUR— -
l LR I L o

e H
v"ll - .:!!:“

/ % s

.'Ib n""'

//"gp, ": .ll‘ '
! ";,;-';{'5 L0 Ll IS
i -f"‘t; e AR b
! '»"’ b"‘ 'A‘“!.{ v

\\ '3'!5’5" . s

A ;
.‘ “‘u»‘f"‘!&w" N

Wi 'I!IM
‘lm. ’-‘

X ~ , Vit e ———
?- T
NG . A1) !

1 S TN 90 W —earrmensirin
‘-- O A e SO 00 S

;,,a‘;,;‘_lg m;ﬁ'

\ -uw-r.au. ———










sI0je[npun jpuSew-jusueiurad-
suopI3s 3ySrens Suor-
2>uelwd moj -

(SdV \m.?‘ +3+3) ssauiyduq Y31y :uonerauad pamyy .

| | (STSN “3°3)
UOIjeIpeI UOIJOIYIUAS 0} pajedIpap :UOHeIdu8 puodag .

(1SS “83) sauryey
so1sAyd A8raua-yS1y je uonyerado >nisered :uoyesauad 3sirg .

STV —
2D4N0S NOILVIAVY-NOYLOYHINAG
NOILVYANIS)-AYIH ] 1S¥L] 3H] g TIM STV IHL



1£68-888 18X

Ay
- uonepe’

.. 19166, Ay
eqeuny o |  |d pue .Joneipe)
WONl-19SET, 0 7T .Joigpnpun,, d moﬂmwrm
1 s

..aINg Wby

Aes-x,,

..Buipuagq,,
Auoyoslesy
3 SnNONuURUOD

weaq uonO9IP - 4 AN
pajjonuod Apybi) e / suojoyd

(s1aubew aipousd)

Aei-x SUOI1D8S
wybiens Auepy o
uonow
SUCIOUd LOJ0919
. §i-TTated]g)
:SUOJIOIYOUAS :SUOJJ0JYOUAS
SMOLIOWO | : sAepo|

STV
NOILVIAVY NOYLOYHIONAG 10 NOILONTOAH



saryxadord INI[-13Se]
ym JYS31] aqorjs puodasodid Aer-x-3Jos ajqeuni e SI roje[npun uy

3INI3NIS dWI) PUOdISOdL] —
uoyezuejod reaur yiy — o
dUIYOd [e IR —
A313u3 uojoyd ajqeuny —
ssawy3uq Yy —

:uoljerper roje[npun jo sanjzadorq .

amjponijs joudew-juauewsdd srporrad ur sawn
Auewr juaq suord[d woiy uoyerpes jo uoyrsodiadus juardyo) .

STV
SAVY X O
ANA 40 Wvdg LHONG AYAA V SIDNAOAJ YOLVINAN[] NV



STV

ASsmue voioyd
A 001 A®MOL ADN | ASQ0L ASQL A9

T T T — T o
o 00t 10 >
008§ w
R L Y :
i oqn} Aasrx ¥ s
= - g0t =
£
o i - —
o /‘\ 1 Q—Owwz
FSIUNOS UOHTIDB ! m.. W
L UOLOMDUAS . SIS
Buston3 %
| R oo 2
NS = ecnog T 10180pUN "
uoloug PeouRADY = gy —
1 L /] i
Aumnd jo snsvew
IeLocu ve  sseuylug (]

sasind jI0yg .

33uer Suruny peoig .

IDUIIIYO)) &

L31an31suas diyads-judwary .

Anstwmayd ‘so1sAyd drwoje < sja8rey snonuay jo Apnig .
Adodsordiw < Surssnd>oy jo aseq .

Ayisuayur ySiy .

S 1V HHL 40 TANLVIJ NIVJA FHL SI SSANLIHON Y HOIH



STV

| sjouSew puaq woiry jey} ueyj 1334y3uq
000°0T JO I0jdeJ ® SI YOIYym weaq e adnpoid sroje[npun gV .

(N8) Abssu3z uojoyd

oL ,0t Ol 0l 0L o0l
[ 1 4 1— 4 13 —4 T m L] 1) — L4 L LN—OF

\ xs % .

—~ \ WSS -

o -4

: 2o ary 43n0

- < RS

- 9°CIM § -
.'ll 'l.ﬁFOF -

£JOJOINPUN

Sdv

ll"l‘T’ll

P |

i

1

1

| IS R |
fd .
(@)
-

8
e

M8 %1°0/,ww/ poiw/o8s/suojoyd

o'WW ITEY

01

¥)

o ;0!

yibuajonom

Ol

- i
o
-

SSANLHOIIdYg HOIH IAVH

SIDUNOS NOILVIAVI-NOYLOIYHIONAS NOLLVIINID-AUIH [



uoyerper pazurejod Are[nosmn .
JUIDS S[PLIdIeW
juawrdopaaap soudo

parexjur .

saur] JduSew-puaq § 10y pasordde uaaq saey oy sweady Jpudew-puag -

juawa[ddns

(A3) A6iauz uojoyd

saur] JouSew-puaq € 2Z1yn [IM 1Al -

werdory jaudep-puag .

'spuny pafoxd gV
03 Surpunj 1asn [enyueisqns axmbar Im werdoxd siyp .

UG JIY/AIUIDG S[BLINR] SIMXT -

,OL (0t 201 .01 o0l o
S A .sE% soudQ pue SuiBewy ey  gen X1 - =
- .ﬂlllll y W UG S[ELIdJRIA] pUe 3dejIng sNxz -

L J ~

- / /\ 101 8 $1sAyJ d1uoyy pue Ansnuay)) 8N X2 -

o < A W s>1ureufq uoysnquIo)) 0OIN X1 -

i b o

: N .“._o_w. werdor 3dTAd(Q-UONIISU]

S o e w

- /(\ 1 02 s3unyas [euoynjysur AUew WOIJ SIAYDILISIY -
o

- o 7 BRI Yo sauridsip yoreasar Kuepy -

! (0] /

A A N S 3 - A3 4813 -

omp _m_ uoﬁ nm_ L0l = AS 00001~ A35 oU9 uojoyd

(y) wibuajanom

werdoxd peoig

NVIOOHUJ OIIILNIIDG TVILINJ



ontgen/Wurzburg

January 1896 R

13



(0661) 6616 TF g a7y "SAyd (066T) ZIOL T 1177 *asy shyd “1e 12 dreq 32y
(100) N Jo uondnysuodal dryderdojoy

lo11|

[o11]

[100]

S}JIYS [EIIWAYD IA[0S3I 0} Papaau uonn[osdr Y3IIY

satdads [edtwayd }09[3s
03 Aex x Aq pasnpoid uiaped uonperyyip uoipaaojoyd ainsedpy .

SUOISUdWIpP 33IY} ul
sarpads [estwayd d>yyads jo juswuoIrraua roqydrou-reau adewy .

STV
AHdVIDOTOH NOYLOATY NOILNTOSTY-DINOLY






*Amsnput [eonnod

-suwreyd oy 4 paonpaud s39[q® pouwnoj-amssazd 103 uoneondde Sunednsoaut st [.{q

*Apued I 3uTTeap ‘pPaIusuIo-PIIYo 18 SINJeW [BRTUT YSNOW[Y *SIAMIdenuew pooj 0
A3010uy 391 93 FUTSUSOI] UT PIIsa193Ul ST Auedwod 9y ‘Tnysso0ons SI uuavoﬁ s, LA

"SeIpued prey

pue sdodirjoy 918 satEpIPUED YO *STE10 ISBPRIq Suneod é UONEBIIPISUOD Jopun

ST e ‘oppreds,, Pofeo Je3ns paiofoo fenseds Suners uonoenyp seonpoxdar anbru
-439} ST, *s8uneod Apued 103 $59501d uoneIpAysp € soAjoAuT snbruysa 1oyouy

"JIB[000YO 91 JO A0BINS 9ANIA[JOJ 9 UO WIRIZO[OY € Ut Sunnsar ‘Jorfa1 9ys 01Ut passald

ST 918]000YO 9], "WIYS WeIFO[oY Passoquid Ue SUrjquuasdl 9INIONAS JOroI JINUTW ©

S8 Pjow 9y OUT I[INq ST WRISO0[0Y 95I9A1 Y "Plow & o3uT paod 10 papjow-uonaofur

9q ABW JEYI ‘91B[OO0YO SEB Yons Spooj 10§ J[qenms st ssa001d 1ey ], ‘sseoo1d 19jsuen
[eUI B ST PAAUIPISU0d 3uraq anbruyssn suo ‘smay Aydpvi8ojoy 01 Surpioosoy

"PAYsTIqelss sem Auedwod syt ek A

‘L8361 E INW[3og ourg Juoprsaxd pue 1opunoy Auedwos oy panssy uated e 19pun ‘pooy
a mﬁﬂwoﬁoa £1dde 01 sanbruyoa Sunordxs st uojsog 3o “*ou ‘SpoO.] [eUOISUSUIL]

"SWRIZ0o[GY 91B[020YD QTIPS JO JUIADE

o 8:» IMOLITP IOW SWO33q UOOS ABW 9500YD 07 Jeq JIB[OI0YD YOIy JO 910D Y.

SWEJIS0[0Y 3)8[020Y))

A301outp9a) teonpdo ul ﬂzwwﬁdwﬁ Jeo15)

16



Photoelectron Holography and Quantitative X-Ray Photoelectron Diffraction
of Surfaces and Ultrathin Films

B. Tonner

University of Wisconsin
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Photoelectron Holography and
Quantitative X-ray Photoelectron Diffraction
of Surfaces and Ultrathin Films*

Advanced Light Source
August 14, 1991

Brian Tonner
Dept. of Physics
Univ. of Wisconsin-Milwaukee

Collaborators:

Prof. D. K. Saldin, UW-M (thy.)
G. R. Harp, Z.-L. Han,
S. Hardcastle, J. Zhang

*Supported by NSF Div. Mat. Res.
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Structure of metal surfaces and thin-films
by Fourier-transform Photoelectron

Diffraction'

S. Hardcastle, Z.-L. Han, G. R. Harp, J. Zhang, X.-D. Wang, D. K. Saldin, and
B. P. Tonner

o What is new about photoelectron holography?
o Physical interpretation of “images”.
o Improved ‘deconvolution’ methods of direct imaging.

¢ Quantitative structure determination.

tSupported by NSF DMR-88-05171
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Features of
Photoelectron Holography

@ Easily interpreted chemical-state information

Three-dimensional "Image" of atomic
structure with 0.5 A resolution (direct) and
0.05 A resolution (modelied)

® Can image atoms below the surface

® Long-range order is not required

@® Applies to metals, semiconductors,

insulators



Method

1. Isolate region of sample by focussed X-rays or selected-area diffraction.

2. Measure 2x steradian angular-distribution of photoelectron diffraction, cr
hologrem.

3. Normalize hologram to extract anisotropy function I.

4. Phased two-dimensional Fourier-transform of data produces 3-dimensional
structure. |

IK(ov ¢) = Io(ov ¢)(l + X(av¢)) 4 (1)
#(r) = [ x(K) e*TaR. (2)
Image function: |¢(r)f?

Radial image function: |¢(r,F)|?
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Source

(b) Screen

Screen
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Photoemission Holography
in
Forward—scattering Geometry

o Buried atoms

e Prooes the “corel

o b\i*\nijvu;ﬂ\ ewctter t“I
cw ewmital .s)ﬂ-‘\'t
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Computer—drivea
Manipulator

Sample
A0
X-ray
Beam %
Hemispherical /
Electron Energy
Anglyzer

Idealization of the experimental geometry, which maintains a fixed angle
between the incident X-ray beam and the ejected electron (O paoon +O¢iectren =T =
const). For each crystal azimuth (#), the electron polar angle (©4) is scanned by
rotating the sample normal (ii). In practice, the incident X-ray beam illuminates
the entire sample surface, and the detector accepts a small solid-angle (AOA®)
around the emission direction (see text for details).
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Resl-epace intorpretation of x-ray-excited Anger-clectren difivaction irbm Cu(081)

H. Li and B. P. Toaner®
Deparenent of Hymis end Laberstory for Snrfass Siudies, Univensiy of 1Wossunin-biiluavkes
1900 £. Kenweed Biud., Milasuhes, Wissnsin 30211
(Recuivod 17 Angust 1967}

v v v v v v L4 v L4 L] v v v v v v L v

Intensity (arb. units)

| W VR W W | bl b2 4 o 1 2 1 3

85 75 65 55 48 35 289 15 5 -§

Polar Angle (deg)

FIG. 1. Illustration of 4ata acquisition and analysis of
Auger-clectron diffiraction along the Cu(001) [100) azimuth. (a)
Kinetic energy distribution of x-ray-excited LVV Auger eclec-
trons from Cu(001). The energy windows used to monitor AED
at 917 eV and the background at higher energy are shown. (b)
The dotted curve is the experimental background, the smooth
solid curve is a theoretical fit to the experimental background.
The modulated solid curve is the emission intensity from the
Auger clectrons. (c) Backgroumd-subtracted Auger-clectron
diffraction intensity, smoothed over a range of £1.5° in polar
angle.

3939 ©1988 The Americaa Physical Society
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N Cu(111) Auger

Intensity along
A [110] direction

'Reconstruction Intensity

llllllillllul[LllllllllllllllllllllllL

O 1 2 3 4 5 6 7 8
Distance from emitting atom (A)

5. Intensity of the reconstruction from the Cu(111) Auger diffraction pattern, along a
line in the [110] direction of the crystal, starting at the location of the emitting atom.

the expected position of a nearest neighbor atom is marked by the vertical line.
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N oy
1.5 N o "'u"-'nn.l |‘\“\.‘

Y fies um“' W
1.0 R F o i n.'. “

0.5 . Wl ; m,m ml

Intensity

The result of scattering calculation from a chain of two atoms, which
shows the zeroth-order forward-scattering along the atom chain (6 = 35.3°,% =
0°) and the higher-order diffraction featurss around the chain. Tte electron energy
used in the calculation is 914 eV and the distance between the atoms is 2.55A.
The details of the calculation can be found in Ch. 3.
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Cu(100) Auger
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Cu(100) Auger [001]
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High-resolution Photoelectron Holography
o High kinetic energy (~ 1keV), A < 0.4A.
o (Near) full hemisphericai pattern,
o High angular resolution {~s 1°).
o Multiple energies (to suppress artifacts).
o Improved algorithms (Scattered-Wave Included F-T, SWIFT).

45



Scathered-Ldave

Twchded
Fomr\ w ng ‘LM

Zeb) = f'k(n, ) X(k)de
s—wave emitter,

s—wave scatterers ‘buwd G,..\ 5“_'“040( wau{‘

(a)  Ywg)s F(He‘Vé-"‘

|

|

|
RADIUS

INTENSITY

46



Deconvolution of Atomic Scattering Factor:
Modified Fourier-transform Algorithm

é(r) = / m;,:ﬁ‘;‘.w.-, x(K) ¢*Raq, (10)

e Deconvolving only the phase removes some of the atom-shift, but leaves
a large anisotropy in the atom-image intensity.

o Deconvolving both the phase and the amplitude corrects for both the
atom-shift and the asymmetry, but increase the twin-image amplitude (a
lot).
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Photoemission Diffraction
and
Holographic Imaging

Characteristics:
@ Chemical-state specific
@ Surface and sub-surface atoms
@ 3D atomic coordination and sites
by holographic reconstruction
@ Below 0.05 Angstrom accuracy
with structure refinement (modelling)

Developments:
@ Need high flux/smail bandwidth
radiation in 100-1500 eV range
® Need more efficient detectors

* ng.Lmt ul‘*\‘\
SPEM
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Needs for Next-generation
X-ray Photoelectron Diffraction

Energy resolution of 0.1 eV

Photon energy range to 1000 eV
Angular resolution of 0.1 degree
Anguiar range of 2-pi steradian
Small spot size (few micron or less)

High count rates

56

Chemical state

Multi-energy holography
Resolve hlgh-lrequéncy fringes
High accuracy in hologram
Isolate small chemical domains

Reduce sample exposure



Some Aspects of X-Ray and Electron Holography

A. Szoke

Lawrence Livermore National Laboratory
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SOME ASPECTS OF X-RAY AND ELECTRON HOLOGRAPHY.
ABRAHAM SZOKE
LAWRENCE LIVERMORE NATIONAL LABORATORY
ROWLAND IQTI;'II)‘ITUTE FOR SCIENCE.

1./ A short historical overview.
II./ Some thoughts on the reconstruction of holograms.
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A VERY SHORT HISTORICAL NOTE. (1)
HOLOGRAPHY. Gdbor invented it before there were lasers.

1./ Coherent superposition of wavefronts has (most of) the
missing information,

2./ Mlumination with the reference beam reconstructs the
object by "deconvolution",

Problems: Ordinary sources have short coherence length.
Fringes are small, of the order of A.
Limited magnification, accompanied by distortion.

PHOTOELECTRON DIFFRACTION, Liebsch, 1974,
He realized that the first (odd) order scattering of a photo-
electron contains information about the emitting atom's

environment.

(Even order scattering that interferes with the photoemission
produces EXAFS.)
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MORE HISTORICAL NOTES. (2)
HOLOGRAPHY WITH A LOCAL REFERENCE BEAM.  Szbke, 1975, 1985,

1./ The emission of a characteristic X-ray, or a potoelectron,
or an Auger electron can serve as a reference beam in
holography.

2./ The elastically scattered waves from neighboring objects
interfere to give a hologram.

This method corrects Gabor's problems and has some more advantages.
The objects are close, no long coherence length needed.
The recorded interference fringes are large, >>A\.
Great magnification is inherent in the process.
Many similar objects, similarly oriented, (but not necessarily
ordered in space) give a single hologram.
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MORE HISTORICAL NOTES

(3)

Methods of producing holograms (From Szbke, 1985)

RECORDING MEDIUM
X-rays electrons
Local source Characteristic Photoelectron or Auger

radiation

electron diffraction.

Scattering form a

Diffuse X-ray

Diffuse LEEDS.

disordered array scattering,
of references.
NEW IDEAS AND METHODS.

Explicit formulas for the reconstruction of a hologram,
(J. J. Barton, 1988 )
Electrons backscattered from the lattice acting as reference,
(B. Tonner, et al,, 1989 )
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RECONSTRUCTION OF HOLOGRAMS AND MULTIPLE SCATTERING. (1)
With acknowledgement to the work of Barton, Tong, Rehr,

1./ Single scattering, general (angle dependent, complex) scattering
amplitude, We will follow Barton's derivation.

The "useful" part of the hologram is

%(0) = __M____l {fo(0) + an(e)exp[ ikrp(1-cos@)]}
n‘

Using the Helmholtz - Kirchhoff intergal theorem, we get

Ur) = ﬂll—i_i‘%sj{ [fo*(8)fn(0)exp(ikrp-ik.rp) + cc.] exp(-ik.r)}

The reconstructed object will in general be of weird shape. If the
angular dependence of fy(0) is known, the hologram can be corrected

by multiplying it with 1/f,(8). (This is my interpretation of the
proposal by Barton and by Tong.)

An alternative interpretation is a two step proccss. In the first step

the weird shape is reproduced, in the second the result is interpreted
as a superposition of known weird shapes.
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RECONSTRUCTION OF TOLOGRAMS AND MULTIPLE SCATTERING. (2)
2./ Multiple scattering, gencral considerations.
The propagation of the electron, or the X- -ray in the medium can be

described by an mtegral equation.

In X-ray diffraction it is called the dynamical theory. (Darwin, Ewald,
Laue, beginning cca. 1915.)

In quantum mechanics it is called the Lippmann - Schwinger equation.
For discrete scatterers the integral reduces to a sum.
3./ Multiple scattering, isotropic (s-wave) point scatterers.

The Green's function for the propagation of the electron is

G(R,0:E) mEﬁPﬁll-‘Bl z:expilltkl_R—rnl)v exp(ikirg))

T 4nir,l
nm‘ﬂ
2 :exp(ikIR-rnl)V exp(iklrg-rml) v exp(iklry D
4nR " 4rlrg-rml M Axlry!

n=m m=0
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RECONSTRUCTION OF HOLOGRAMS AND MULTIPLE SCATTERING. A3)

The series can be resummed by singling out the last scatterer

G(R.O:E) =ME+ZCXP(4HM|)V exp(ikiry|)

n

4nR 4rirgl 4xiryl
nz0
exp(-ikirgl). . exp(ikirg-rpml) exp(iklryl)
* 2 47t|rnl vn 4ﬂ|rn‘rm| vm 4n'rm| e
n=mz0
+§ :exp(ikIR-rnl)v exp(iklrnD+ exp(iklrp-rml) v exp(iklrml)+
4nR n 47t|rnl 4n|rn‘rml m 4n|rm|
nz0 m=#=n m=0

The general form of the series is the same as for single scattering

X

G(R,0;E) = °—E£—l{fo(e) + an(e)exp[ -ikrp(1-cos8)]}

The first term, fo(6), is the angle, and energy dependent factor for
EXAFS. The second term changes the phase, ani intensity of atom n
in its reconstruction, but it does not move its position.

This is the "theory of fog". The first layer of scatterers is seen

clearly, the images of the deeper layers are attenuated severely *
even if there are no losses.
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RECONSTRUCTION OF HOLOGRAMS AND MULTIPLE SCATTERING. (4)
4./ Discrete scatterers, but general scattering.

Rehr has derived a formula that treats this case. It is also similar in
form to the single scattering case, but both f,(8) and f4(6) depend

strongly on the scattering by the other atoms.

The only real hope I have that an iterative algorithm will converge to
the correct solution.

Recent work by Barton and by Tong propose to use holograms at
various electron energies to arrive at better estimates. These can
also be used the same way.
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From Photoelectron Diffraction to Surface Crystallography

J.]. Barton

IBM T.J. Watson Research Center
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c(2x2)S/Ni(00l)

X8L 853-8008

Su.rga.ce Stewcture:

Site : Direct
BON.A unatk: Agcu.raée.
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From Photoelectron Dlﬁ'n ay &,m/dmx(
To Surface Crystallography |

Point-Source Electron Diffraction
Geometrical Phase Terms.
Direct crystallography.

Experimental Design
2D angles 4+ 1D wavenumber.
Medium Energies.

Will It Work?
The Problem of the Auger Holes
Multiple Scattering w/o Partial Waves

wl Loo Terminello ,LLNL
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Role Ofy Photons

One Photon,
One Atom,
One Photoelectron.

Photon Coherence Not Relevant.
Photons Select Source Atoms.

Resolution Determines Averaging.

One Site | Qv Site
e

Two Sites | |

Kinetic Energy =
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Space Coherence
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TolerSerence Oscillakions

:
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Scattering Factor Methods.

Separate Ggometry from Potential

Phese ﬁﬁ\p

Plane wave ApPoL. t - 9(9}
C-Fadley.
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Geometrical Phase Terms
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Angle Resolved Photoemission Extended Fine Structure




Angle Resolved Photoemission
Extended Fine Structure

B | I | 1
Q | e(2x2)s /Ni(100)
|
3 | ik
2 (Ton ek
; I )
ARPEFS - [110] | ARPEFS - [100]
s Yealkis a’c
Kinetic Energy (eV) P \&-—3. \2,
[100] 110
100
| e

8 Independent geometry information
| from many different angles

0 10
Apath length (&) 'D\Sn\\‘\&&

From Barton et al. (1983)
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Experiment Stationary Phase Integral Peak
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Hologram
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Monochromatic
photon

Angle Analysis

s
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Photoelectron Measurement (K)

3-D Image
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Holographic Reconstruction (R)
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e“‘c"'éf S Qea.\(e&
R | it Teo

Isophotes [contour lines of the intensity I(4,0)] in a meridional plane near focus of a converging spherical wave
diffracted at a circular aperture. The intensity is normalized to unity at focus. The dotted lines represent the
boundary of the geometrical shadow. When the figure is rotated about the u-axis, the minima on the v-axis
generate the AIRY dark rings.

[Adapted from E.H. LINFOOT AND E. WOLF, Proc. Phys. Soc. B 69, 823 (1956).]
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Experiment Stationary Phase Integral Peak
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- Experiment Stationary Phase Integral Peak

ID ARPEFS [ dk ¢ta-aR) it Plr'—la—-a-k

2D Holography [] dk.dk, ete-Fhigikk i

Inverse . AL oik(a—d-k) —ik(r'—-F) " 7 _
\31) i m! [ dk [[ dk.dk, e*c-ZRe Plr' - alPlr' -

- )
S&SSA\&&\% ) e -F.§)
e.ui-rads osc\\\'x\-wn-s ot
P am& \o.\

83



|{Experimental Design Issues

Goals:
Direct — Site.
Accurate — 0.02A.
Requirements:

Measureable | o - 3@@\,1

Low or Medium Energies
Simultaneous 2D
Resolvable Site (2A) |
< Multiple Medium Energies
Accurate (0.02A)
Precise relative emission angles.
Precise relative amplitude..
More accurate theory.
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PHOTON CROSS SECTIONS, 0.1 keV TO 1 MeV
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The photoemission intensity calculated for a Cu-Cu photoemitter-scatterer system as a function of scattering
angle The radiation is unpolarized (sum of two perpendicular polarizations) and incident perpendicular to the
k, T plane. Curves are shown for initial-state angular momentum /j ranging from /; = 0 to 3, and electron kinectic

energies of 100 eV, 300 eV, and 1000 eV. Only the /j — I; + 1 channel is included. The intensity I is normalized

to the primary-wave intensity Ig as the quantity X = (I -
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Experimentall Prognosis

Setup Complicated:
Synchrotron Radiation.
2D Analyzer. |
‘Angle Calibration.
'High-Capacity Computing System.
3D Data Analysis Software.
Use Straightforward:
No time-dependent calibration.
No mechanical motions.
Electron energy only variable.

Insensitive to macroscopic
vibration.

Insensitive to sample position.

Ten holograms at 1/10 as much
time.

Direct analysis to 3D images of
surface sites!
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Will It Work?

Cannot just “Try It and See”
Accuracy Criterion?
Limitations Intrinsic?

Do We Understand Electron
Scattering?

Yes, but...

~ Problem of the Auger Holes (D.
Frank, A. Hubbard, et al.).

Theoretical Best Inversion.
Inverse Diffraction. |
Angular Spectrum of Plane Waves.
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Cu(100) 56 eV
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| Curved Source Waves.

. Eﬁ‘eéts'appeax ‘when I(I +1)/kr is not small.
. Photoemission selection rules:

lmax = Li+1 ‘

T

For example, Cu 3p, Iy =

o Auger selection rules:

lmu, lmu - 2

lmax = Li+lr+1
lf —_— lm,lm""2,.oo (lf>0)

For example, Cu 3p3d3d (M23Ny4sNys), If = 5.

Q=0 ous Qz%
?e:.\'\s e 1
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Electron Mutiple Soattering
in Angular Spec!:um Repmesentatlon

| Ay &a(‘g\ dd“' .
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1. Two dimensional FT of Source (= Angular Spectrum!)
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c2x2  S/Ni(100)

101



Holographic Crystallography

D. Saldin

University of Wisconson-Milwaukee
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Holographic Crystallography

D. K. Saldin

Collaborators
B. P. Tonner
G. R. Harp

Z. L. Han

B. L. Chen
~ X. Chen
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ZONE PLATE HOLOGRAM

o
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Reconstruction Intensity
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Rotating polar axis
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“Onion-Skin” Algorithm
D. K. Saldin and J. B. Pendry,
Surface Sci., 162, 941 (1985)
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Prospects for Advanced Photoelectron Diffraction

C.S. Fadley

University of California at Davis
and
Lawrence Berkeley Laboratory
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“PROSPECTS Folz ADVANCED
ProTo ELE CTROM DIFFRACTION

S. TnevumASAN"' G.S. HeamaN , T TrAN,
Y.T. L, R.S.SAIKI, F zuangt

Umv. OF HAWA(|

AP &Ab‘quI.A, M. VAN HoVE, C.S.FADLEWT
LAWAENCE BERKELEY LAB.

C* ALSOe OLOMNMW, OF OM.«F.-DAWS)

@ PHoToELECTRON-/AUGER- HoLOGRAPHY ¢
WHM DO THEY WORK (S WELL AS THEVY Do!
HOow NUeH BETTER CAN WE MAKE THEM?

@ HIGH ANGLLLAR RESILUTION DATA: How
MUCH MORE INFO. DOES (T CONTARIN?

® TENPERATURE-DEPENDENT STUDIES OF!
©® SURFACE PHASE TRANSITIONS
® MAGNETIC SHORT-RANGE ORDER-
WITH €7 SPIN RESascuidN

SverenTsd BN: D.0.B.-L.B.L.
00“02 [ ]

N.E.D.0.- R.\.T.). (TAPAN)
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SoME FUNDAMENTALS :

® ATon- SPECIEIC PROBE

© SHoAT- RANGE-ORD&ER PROBE:
0 LARGELY FIRST 3-5 SPHERES, BuT
® SOME INFO. ouT TO ~10-35 A

® VERM SHORT TIME SCALE OF ~ 101 sec

(CF. MOSSBAUER @+l0~ ! sac )

wELASTIC n® ScarT. @~ 10" {2 sec
2-e° carTure BY d @ ~ 10°% sec
@ RATHER. WBLL DESCRRIBED FOoR & 200eV BY
SINGLE-SCATTERING MODEL , WITH
HULTIPLE SCATTERING® EPFECTS PeS -
SIBLE 1l LOW~INDER RowWS AND @ LOWER
ENERGIES .
® HIGH-ENERGIES 2 S00aV =D
® FORWARD~- SCATTERING DOMINANT
© MORE BuLk SENSITIVITY
© LOW-GRNERGIES £ 200V =>
© FoRWARD~- AND BACK- SCATTERING
® MoRE SURFACE SENSITIVE
® MAGNETIC SCATTER(NG EFFECTS
CEXCHANGE, SPIN- ORBIT ) BECOME
IRPORTANT

G G, AR W emns e @wme e Gwww  SMen Wy GEEee s wm e @Wae N GETw  Gee  Gieee  Gevew cammend

R ToNG ET AL., BARTON % SHIRLEN, VAN
HWOVE ET AL., OUR. GROUP
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EROM SINGLE- SCATTERING THEORN |
(E.G. P.R.B2L,6oBS('80), P.R. BET, %841('83))

T )ec

¢°+§¢J|z, Ez onN Famﬁ:— c:urreu,
2. o(df *
oc ¢°| “'%(% j“" Q?j ) + sz;‘%¢¢

Te §; 4% smace we T Gep ", A neces:

SARM CONDITION FOR SIMPLE WOLOGRAIHY:
‘ ' N Ny .
T() . F + 2F, BIF @lcoskr - cose S+ V(e

——r——

."—v—-—l
o ~ "PATH LENGTH SCATTERING
DVIEFERLENCE  PHASE
‘ X(E)-- I‘r,-’ro “{” L ‘e e T j
I ' | |

with L F = (é-&\ exp(-Lo/2,) .
= amplitude of diveet WQV@:Io/z

‘,z = om'pLif.-ude of scaltteved wave
- AL ur
e A-k:' W = exp(-Ak; U )
- 2
k. = -2k® (1- cos8;)W;
s r%“ 7 exp ( 0s8&;) W)

£ v
o gy 4 7

LivE EXAFS{SERAFS, BuT THERE.
® ADD CENTRAL ATOM PHASE SHIFT
'Y ¢J-=)'n- Fonr ActlL SCATTERERS
@ CoSm Sin IN ANGLE (NTEGRATION
@ é-%lv&-:% é%/vj" IN ouTl’Acu- PATHS
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Cu AUGER:EMISSION ..o’
TE 291706V, dy.p= 2.56A 4 Chain Axi

~=— Multiple-Scattering exp (-L/24A)
-—— Single-Scattering
[]O]] EMITTER

:;Jo. Atoms SS=MS
-2 . | 45t 2ND

|nS DEFOCUSSNG SS= MS

 6 _.[Lw

0 10 20 30 40 50 eo 70 80 90
[100]POLAR ANGLE FROM SURFACE [001]

KADUWELA ET AL.,PHYS. SCRIPTA 41, 948 ('70)
REHR, ALBERS, PHYS. REN. BYq, 8139('90)

INTENSITY (Arb. Units)
N
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(b) SOME MULTIPLE SCATTERING EFFECTS

o |
4° /P INTENSITY REDUC-
‘ ¢i+ ¢jk+'" é TION. HS “"DEFO~
° CUSSING"

(i Em R b ),
STRANGER ( | HIGHER Ekin |
“BACK N/ |
SCATTERING

MS DEFOCUSSING .
CLASSICAL PICTURE

142

CarLcs. BY: TonG ET AL,
BarToN, VAN Hove
ET AL.
Our GRoUP



INTENSITY (Arb. Units)

CuAUGER EMISSION  __ “fof"
- ‘ - ain AXIS
Ekin' 917.0eV, d,_,=2.56 A 45° o0
| Surface"u
—-= Multiple-Scattering 7 exp(-L/2A,)
— Single-Scattering n=2,3,4...,10
No. Atoms
n= |
2/\
4 FWHM
DRCREAS _
4 —
6 >
8 . . e S
l
10 i |
ol e b b b e b a1
O 10 20 30 40 50 60 70 80 90

[100]POLAR ANGLE FROM SURFACE [o01]
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Xl Ky, ky) FOR Silp, EHISSION FRom Si(111) i ~138TeV
EXPERVMENT! A\ (\\[L "9~ oC=174°
VANV e e
TN =
,’\e\ i—‘ N , :, D A ) j

—

{ ¢ LI Ty

O 20 %o 606 80 120 - 180
(0 = OPRAMIME AMRLE oB MaLAS.
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ELECTRON EMISSION Holo G:RAPHY
Synthetlc imdge Reconitruction

“PLANE “m’”g"’“‘

@ S20KE, ATP
CONF. PROC.14F
€1996)
@ BARTON,
PHYS  RAY. LEIT.
e1,135,('82)

. UNSSATT,
REF.
%= OPENING ANGLE: ’ !
oo I(ky,ky,k3)-To
x(k%, k«y, Lz) - . :V;Vg
SCATT. ‘
x & |F;(e;)| cos (kv:,-u-co.s Q,-)-!-%(O\;)}
J
SCarT. PATH LENGTH
| ARrPLITUDE DIEFER s
RESOLUTION (ss-ns) wc::;.
0.6de 2.6A SHIET
Ax|=lay)z = . ~ 204
l (=1 vl s‘n?«, ’ lAZ | ST Tio7a) (SS"’I‘IS)

IM&GE . l:'.. -»
U = Ulxp) de_fs ACR) e T 40“

= 2DIM. F. T
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THE BASIC EQUATICNS,

T(E)oe ]f-&- w."
o |6, (* +§-(¢*6 +¢¢’)+;s

with @ = (E)e"“ R }ra HAN me.w.u:
)

INGLASTEC ATTEN «,

Cm s w.  HATRAY BLERENTT,
Ll (V- -V
¢ = Fik)e vy, f50 , DV, H.S,

-

I & (Fy >+ 2{F,"F~ ek, A

S'ﬂ-l WoLOGAAN — BT na: AT & 93- |
o M T M Y
. » ¢"' (e';‘.h) ¢ ¢ b—‘ (;';-Vj)
PR e +RRre Y
.___.———-——v—-'—'———_)
SeuF uouaam - ET PRALSE AT
x ( " "V‘ls) L AF-h

OOC’M EFFG&“ M! n NON " CONSTANT
R(E) AWD F (&) v &Y ?

e PLUS EFFECTS DUE TO MWLTIPLE ScArT?
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METHODOLOGY |

@ SSHMS FULL SPHARIAL-WAVE CALCULATIONS
WITH GENERAL CADE WUSING REHMAL-ALDERS
MATHOD! S—ouTGeING ( "AUGRR"Y)) BXRACT

L L4 PHTIBMICSION ; IDEAL WEAYK. S— S
our SCAT.

® IMAGES Priduced BV u,n.m. FouRIER
TRANSROAM (BARTON):

ggmm kawy g ileyx “"”".Lu,a,|

@ IMAGE IMPOVEMENT BY!

|PT( = W x,y,e) =

® CUTTING PULL HolLoGraM AN&LE ol (£180°)
TO BUIMINATE ROAWAALD SCATT., PEAALS

® ELIMINATING FoNWAND SCATT. PEAKS
BUY GAWUSSIAN FActoRr ! ol

1- exp(-0.6%1 8’/)‘)

HWHH
x1ct20® 0 0

s

@ USE oF SCATTENRED-WAVE INTEGRAL FOURIER
TRANSFonH (SWIBT ) METHOD O0F SALDIN

ET AL.:
ke .
|Swier\= uu.v.z)Blﬁ% "k"" "*\'&V—u“ﬁl

smwcw-wm:. -P(k h-'r' v) For moW,

WITH REAUIREHEAT AT Few | NeT GO
BELoW SIME THRESHoLD (= SWIFT') AS
% oF (fsulnayx For PaoDLEM
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ARLE. PoS(TIONS , PEAK SHAPES (MAMVED
WITH SWIET’ corABCnoNS?

® UWSING ONLM PART oOF FUWlL HdLoGMH
™ 1SCLATE CEATAIN ATOMS AND REOUCE

REAL/ TWIN OVERLAP.
TS SWIET' CorAsensN HorE EFPEeTIVE?

® DoING PHASED SUMAANDIN OF 1MAGES

AT SEVENL BNBAGHES (BAATIN) wiTH
ANDO WITHOWT SCATTEASO~ WAVE CorNBC—

TION ¢

L\
U™"lx,N, 7») |$e ¢ (er), , LE 1,2, 0
ENERGIES

onr
U"lx N, )= , {l e"“‘" (5w FT')i, .

ARE TWINS + HS EffBers REOWCED!
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(@) Xk, ky), B=1.0:

SELE= INTER= © n
feasnch = }
Ecrecrs: ’/}%

d (

b=+ p§¢‘, o o e
7 2

vVARIABLE o f
PARAMEYSR | ———

= 0.18

= HAY BE
— (MPORTANT
=—— AS WEAKER

—— peATuRES !

20— THEVUTHASAN
= ETAL, PRI,

Haafes




HORIZONTAL
S-AToM chAawN . (FTI m

(@) SS s-WAVE: 8e196°

|

IDEAL ,
VM“_ = ey e e =

4 = : =
o i

X(4)

0
e
‘ (b) SSFULL: otz 186®

e
== Ve
Sy
by

F e e ]
E‘m—_‘w
B ]

==

—~~ 4 = =
os; =
o e ]

(c) SSFULL, a=120°

e T e et § oot
TR =
P me
o=
e

T e e e

(d) MSFULL: &t21806°

4 V= = = &= =3 =

2 1E A A AL\
-4 eV — ____ﬁ___:____E_ =
12 -0 -8 -6 -4 -2 2 4 6 8 10 12

THEVUTHASAN ET AL,
P.R.L.. 7/22/94
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S-OUT GOING VS, PHOTUEMISS/ION

THEORY
Xlky,ky) (=% IDEAL
FoR S eTuss.T . S-WAVE

FROM 9- ATOM ss
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FuLL 88
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' XPD FROM A HIGH-z ADSORBATE - S/Ni(001)

S2p, Ekin= 1085 eV
SINGLE SCATT,

LMIT?

Info. from substrate requires large 6-scattering
. Weaker effect

Does high angular resolution data permit
determining z? ... And d12?

Saii,
ET AL.,
To BE PULBL.,
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EFEECT OF INCREASED RESoLWUTION

ADSoRBATE | ¢ (2%2)S/Ni (001) g - 7°
EMISSION EXPT.
£ = Erin=1323€V AT ]
'-*3.0° Imax "20/0
>
=
w
Z
L
—
<
Q
N
wm
R.SAIW|, )
C.FADLEY
100]

<~} MIRROR PLANE
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FINAL. EXAPT. / THEORY COMPARISON Y

S2p Intensity (arb. units)

c(2x2)S on Ni(001) o
— Expt. Q = +1,5° Eyy,= 1085 6V| 2.8 016 A\
——8.S. Theory | x‘
(217 Atoms) dips 106
0= A/l max= ﬂo |
| R-FACTOR
ANACMSIS
cecassic’)
Sens NS
ErracTs
1 ! AT LOwesT
\ \ \ ~ 56°/o!
\\ /\//J\\,./’ \\ /\ ’“\ ,II \\ r Ill \vvl \"’\A I’ A““.‘
lvl KT \ 1\‘l,| ‘: l\}.n_..l N L..n....l.\ Leaa.
C° 10° 20° 30° 40° 50° 60°. 70° 80° 90°

[100]  Azimuthal Angle ¢  [010]
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Effect of Ni Substrate Interplanar Expansion

c(2x2)S/Ni(001)
25A Cluster --Sum of 4 Angles

LIS It R R R BN Bt DO | DL et

dy, = 1.76A (Bulk)

= 0.054
E i
-
[e - \
O 0.052 |- \ = I
© ! V .
ul- % ’
= 0.050 | "
' i ~/777 5.7% Expansuon
N N | .L__L.._LLllll.__l.._L

1.25 1.30 135*140 1.45 150 1.55

Z- Dllstance (A)

orTintune
STRWETWRE
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35 AToHS FOR MS CALC, ‘[010]
c(zxz)S/Nc(om) 217-AToM cmsvy/;cn. S§S CALLS,

M b WA ||ll""l"'" hht AL AAAAL RAAAS A At Mt bkt Sl At Mt Mnif | l'“l

25A Cluster

Mtdd A bdd M | l

9 19

nd Layer Ni Osb.o

o
¥ 1 1 1 1 4 1 i 1§ T l 1 X 1 14 kY
-~

o
rl“
@)

—> [100]

Distance Along [010] (A)

L S} i1
1

=1
alasaalisial aadanaalisandisantonas P PO TRV VU DUV FVUUN PVP FUOW POV JUU FOvN

5 o 5 10 15 20 25
Distance Along [100] (A)

mp = STRONG FWD. SCATTERING IN
GRAZING (LOwW &) EM\SSION
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c(2x2)S on Ni(001)
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Ylk, ky): S2p EHISSION

N\ S e Nl A
w——— = rzf«w//l;‘.:h[»‘?

K
YR M'\* = ’ =\//[ 4 7
| WNS—— =

il A =

b e A o= N ANNAN :
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e =il
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Anisotropy vs. Polar Angle
(b) c(2x2)S/Ni{001)—No Angular Broadening
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INTENSITY

INTENSITY
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(2% 8) RECONSTRUC—
TioN

Melting point = 1210.4 K
Density of solid at Tm = 5.22 g/cm3

5'670 cOH’p
Density of liquid at Tm = 5.53 g/cm3

(Solid-to-liquid linear compression of 1.9%)
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A Proposed Model:

T < 1050 K

1st double layer\.(.)
substrate . ®
T e 0

T> 1050 K

Qe+ O ¢ ‘"Liquid-Like"

'Bou.nda.ry
Q O, : O

_ o0 - 00
- OO0 - O @O
Domains Domains

In Registry

Out of Registry
E.G. McRae and R.A. Malic, Phys. Rev. B 38, 13163 (1988)

Does this involve also solid to
liquid compression?
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Ge 3p Intensity (Arb. Units)
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Temperature Dependence of
Forward-Scattering Peak
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Projection of X(k) Onto ky-ky Plane
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Horizontal FT Contour Plots
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® THeTY ELECTRON DIEERACTION CAN BE USED
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Theoretical Developments in Photoelectron Diffraction

M. Van Hove

Lawrence Berkeley Laboratory
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N

INTRODUCTION

Purpose:

summarize:

theoretical state of the art

in electron emission from surfaces
address:

some physical principles
that underlie the formation of holograms
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BASICS OF ELECTRON EMISSION

Types of electron emission:
| - photoelectrons
matrix element well known (if single-channel em(‘ssion )
element specific
- Auger electrons

matrix element poorly known,
but approximately s-wave at E > 300 eV

element specific
- Kikuchi (inelastic) electrons
matrix element poorly known, except for phonon losses
not element specific
- MEED (elastic) electrons
matrix element well known

not element specific

Electrcn energy range:

- 300 - 1500 eV

Measurement:
- scanned angle (ARXPD, ARAES,...)
- scanned energy (PhD, ARPEFS,...)

Structure information:
- interference between direct and scattered paths
- forward focusing (forward scattering)

Fadley, Egelhoff, ...
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Osterwalder et al

Al(001) , MgKa.
0=45°, AQ<3°
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THEORY

Physical ingredier: ts:
- muffin-tin model
- ~Inelastic mean free path

- Debye-Waller factor ¢

Form of scattering wave:
- plane wave vs. spherical wave

plane wave simpler
{

Role of multiple scattering:
- single vs. multiple scattering

single scattering much simpler

Validity of approximations:

- single and plane-wave (SSPW) scattering valid in favorable cases

what is accuracy of such (non-holographic) structure determination?

- multiple and spherical-wave (MSSW) scattering often needed

for aligned atoms (forward focusing)

for interference features

what is accuracy of such (non-holographic) structure determination?
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ATOMIC SCATTERING AMPLITUDE

(= 60eV

=100 eV

E -~ 300 eV

s E 1000 eV L N

U8R 0E
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E =917 eV CU AUGER EMISSION FROM A
POINT SOURCE AT THE END OF Cu CHAIN
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MSSW implementations:
common physical ingredients, but slightly different mathematical treatments

cluster approach

- Taylor-Series Magnetic-Quantum-Number Expansion (TS-MQNE)
Barton and Shirley, Van Hove
- separable Green’s function matrix method
Rehr and Albers, Fadley et al
- Reduced Angular Momentum Expansion (RAME)
Fritzsche, Rennert
- concentric shells (XANES-like)
Saldin et al

slab approach

- layer stacking (LEED-like)
Tong et al
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AN ISSUE

Thermal vibrations:
Debye-Waller factor

distant source (MEED, LEED, XRD, etc.):
average of diffracted amplitudes over configurations

nearby point source (ARPES, ARAES, XAFS, etc.):
average of diffracted [ntensities over configurations

both averages give same Debye-Waller factor (Rehr - XAFS)

DW factor sharpens forward focusing peak, with no height loss;

counter to observation, e.g. Pb, CO (Bonzel et al):
peak broadens and weakens!

BUT: DW assumes:
rms vibration amplitude /<u®> << wavelength )
examples:
/<u?> = 0.10 A (bulk Ni) - Q._2§A(bulkﬁb, -CO) at RT
300 < E < 1000eV + 0.7 >X>0.4A
SO: /<u®> =~ X and DW breaks down!
EFFECT: forward focusing peak must be smeared out, not sharpened!
-+ no forward focusing in electron microscopy:

A = 0.03-0.01A << /<u®>

straight averaging over configurations

Fadley, Kaduwela, Van Hove: CO /Fe (100)

other complication: correlated vibrations

Fadley et al
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D.A. Wesner et al. / Bending vibration of CO on Nii1g)
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VST A8, 1489 (1390)
Breuer, Knauff, and Bonzel: XPD study of surface disordering of Pb(1 102
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FesCO cluster
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treatment of vibrations

C ewission from & CO cluster
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ANOTHER ISSUE

Meaning of Foufiee»r transform in electron holography:

assume weighted and phased distribution S(R) of s-wave point sources,
emitting amplitude A(k,R) at large R, excluding all scattering:

(this mimicks multiple scattering as extra sources)
e/‘kr a _
A(K,R) = —— [[[ dR S(R) ek
R
then, inversely:
 S(R)=[[[ Pk A(k,R) e’%R

SO: Fourier transform of non-scattered amplitude is point-source distribution

- this is ideal goal of holography

BUT: electron holography uses intensity /(k,R):
S'(R) = [[[ &% I(k,R) &R

image = effective point source distribution S’(R),
such that S'(R) reproduces "amplitude" A’ = |,
where / is actual hologram

SO: electron holography yields an effective point source distribution S'(R),
that compensates for:

- using 1, not A (giving twin and self-images)
- phase shifts, including forward focusing

- multiple scattering

- finite integration domain

- etc...

example:
forward focusing:

causes effective source at focus
and no imagqge at nucleus of scatterer
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Efficient Multiple-Scattering Methods in Photoelectron Diffraction and XAFS

J. Rehr

University of Washington
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X{SW)/X(PW}, FORWARD SCATTERING
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Theoretical forward scattering (Oy;=0") ratios of
X(SW)/X(PW) are .shown as a function of scatterer distance
from 1.75 to 19.92 A and for energies of 100—1420 eV.
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Denos 4 Mayimen € 1965)

Many of our results are contained in the literature.
They are, however, not easily available. As a matter
of fact, we found the references only after having
mdenved most of them. The characteristic of being
hidden was re—emphaswed in that an additional
genealogic tree of references was called to our atten-
tion"’ after having submitted the paper to the
Editor. It is very likely that still further references

exist in the literature. ‘ ' Y
e l‘era ure - 80«»\3 ‘:&oL. "‘o Q‘a‘“\\k (8‘ios

TR+ R Alberr (1a90)

Our method is based on a new separable representation
of the free Green's-function matrix elements
G, p)=(L,R|IG|L',R"), where p=k(R—R’). These
propagator (or translation operator) matrix elements
G, ;- also appear in the addition formula for the transla-
tion of screened spherical waves'>™! as well as in
multiple-scattering expansions.' “>!'> The theory of such
functions has an extensive, if relatively obscure literature;
a historical survey is given in Ref. 13. Like other
researchers in this area, we have occasionally found some
of our results in the literature only after having first
worked them out independently by ourselves.
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Lattice-Site- and Chemical-State-Specific Photoelectron Diffraction

S. Chambers

Boeing High-Technology Center
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Lattice-site- and Chemical-state-specific
X-ray Photoelectron Diffraction

Scott A. Chambers
Boeing High Technology Center
Seattle, Washington

Outline

I. Site-specific XPD
A.Se/GaAs(001)
B.Te/GaAs(001)

Issue -- Relationship between surface band
bending and surface structure

II. State-specific XPD
A.Ni/GaAs(001)

Issue -- Interplay between interface chemistry
and epitaxial regrowth
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?:El?nology X PD

Center

BOEING

scattered Auger or
photoelectron wave

primary x-ray (hv)

primary Auger or
photoelectron wave

(k) o= | yg (r,00) + Zj\vj(rj.oci,ej) 2
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Fermi-level Pinning
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SITE- SRECIFIC XPD

Se/n-GaAs(001) Te/n-GaAs(001)
~< normal emission

(9=90°)
AEgg.q (V)
0.23(5)  0.56(5)

0.29(5)

PHOTOELECTRON INTENSITY (arb. units)

BINDING ENERGY (eV)
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GaAs (001)

e=45°
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Se/n-GaAs(001)
6 = 35°

soesse EXperiment
—~ — ~ theory

10%)

- TUEocRY-1l
CATiopn &
SVSLATTW
Emission

—

ANISOTROP

THEORY -
AE \0:

SUS LATT\CE
EMissiom

1 1 1

-10 10 30 50 70 90
AZIMUTHAL ANGLE, ¢ (degrees)
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a= Se/GaAs(001) b= Te/GaAs(o01)
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INTENSITY (arb. units)
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THREE POSSIBLE CAUSES OF SURFACE
ELECTRONIC PASSIVATION--Se/GaAs(001)

1. Ellmmation of Ga & As danglmg bond states

C(gil)ﬂl . o s o . . .0 . ® ° .

c(2»9)
UMIT CELL

2. Low gap state dehsity at the surface
A- S-As AFmigoporpg BAND |

N7 27 f//%
\A/S\A/ %vt 2’0_/%{%"/‘&@& g 2_01.;/ //é A \G /S\G ,
5 S go 0.0%—\02 m ? 0,():“~ V y Er O. Q
Vo) § BT a & 2 7 !
WNE LY
/7 \ A"/ .\ _wr/%; L .Y/ ) "mp%; il /P/ S\Ga/ ‘\

D1 - DANGLING Boww BAND D2- BPRWOGE Bonv BANT
T. Ohno and K. Shiraishi, Phys. Rev. B42, 11194 (1990)
3. Delta doping at the surface
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PHOTOELECTRON INTENSITY (arb. units)

STATE-SPECIFIC XPD
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PHOTOELECTRON INTENSITY (arb. units)
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ANISOTROPY (—
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Conclusions and Future Directions

1. Site-specific XPD works provided the sites possess
different symmetries with respect to specimen
crystal axes (i.e. zinchlende).

2. State-specific XPD works provided the chemical
shifts are large enough to be reasonably resoclved.

3. State-specific XPD can be done with
monochromatic lab x-ray sources, but it is very
slow. High total energy resolution (~0.2-0.3 eV),
high photon energy (>~ 1 keV), and high intensity
(ALS!) required for more rapid data acquisition and
lower statistical wuncertainties in measured
anisotropies.
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Photoelectron Diffraction of Magnetic Ultrathin Films

J. Tobin

Lawrence Livermore National Laboratory
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PHOTOELECTRON DIFFRACTION
OF BIMETALLIC SURFACES L

Surface Sensitivity and Elemental selectivity

Au/Cu (001)
£ VA
z -
7
E B = surface alloy
g calculation
z C = overlayer

- ‘E" ' calculation
Photoelectrons T 0 100 120 140 160 180 200
. Kinetic Energy (ev)

scattering

off of

neighbors.

Diffractions causes modulations
in Cross section vs. kinetic energy.

(1) Distinguish a surface alloy from an overlayer and
(2) Study variations in structure as a function of coverage.

Experiment: Tobin, et al,
Theory: S. Y. Tong, et al.
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INTENSITY (ARBITRARY UNITS)

Fe/Cu (001) Cores

-d

pon

o

H ﬁ COV ~ |

Fels
Cul3p
hy = 190 eV

Feldp

-y

n am

110 100 90 80 70 60

BINDING ENERGY (eV)

Photoelectron
Diffraction
of Fe 3p

— Multiplet Splitting &
Spin-Orbit Splitting
Produce Asymmetry
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PHOTOELECTRON SPECTROSCOPY @
SPIN RESOLUTION

———— - - Origin
s TN of magnetism:
3p %EE | alignment of
3 1+ spins.
. Spin Polarization

Problem: low efficiency of detector (10-4) in
photoemission
Solution: intense scurces, e.g. undulators

. - . i Tt §

_~1'™L'Fe/Cu@n_ il
al | ] ICARBONE e £ an |
s o 1|2 Ps. B 23, 325(199¢
st 1| #1eteBRECHT @t oL
xt { | PP7S. REV. LETT. _‘_{')foo
é‘. 1l Buck Fe (/”o)?
§— Use the
‘:'* e 3s 1o do
=] Feds ‘ photoelectron
5 Culp * diffraction.

g{ hv = 190 eV MP\.. |

BINDING ENERGY (eV)



Fe3s Peaks

(ARBITRARY UNITS)

INTENSITY

v v v v v v L 2N 4 v v v v v v v v

Coverage

1 3/8

102 99 96 93 g0 87
BINDING ENERGY (eV)

AB = 3.8eV
Approximately
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0.8

0.6

0.4

0.2

1 1/4"ML" Fe/Cu(001)

Total
Cross Section

Preliminary

Fraction in - 04
2nd Peak

230 240 250 | 260 h\) (eV)
136 146 156 166 KE(eV)
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Direct Imaging Photoemission Mictoscopy: Past, Present, and Future

| .E. Bauer

Technische Universitgt Clausthal
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DIRECT IMAGING
PHOTO ENMISSION _MICROSCOPY -

PAST . PRESENT MD FUTURE

UHV
CATHOOE LENS SKSTEMS

MATERIALS SCIENCE

DAST : DISCHARGE [AMPS

l

FUTURE : SYNCHROTRON RADIATION

COlLLABORATORS ( CHRONOLOGAL):
G. TURMER , W. TELIEPS, M. MINOSCHAY
w. SW/EC’H L. VENEKLASEN, G MA/ex
M. Azr/ww H. PINKVOS, G. LILIENK AIMP



- &oaf .
Chemical Amgsx:

Indirect Aualysis

| m
PEEM | LEEM
)
A LEED
Examples :
Cu/Mo (i0) 2d Mo carbice [Mo (110)

3d 9% CusSc / Si ()
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Drect Aua @szs

chemicas { (onf,oon{/aa S CEgter)
envionment 4E.,,
hy - E; Phoboeleclron XPEEM
EC‘GI" = E _
e = Auwerelecton AEEM
Ev-biE
%
m'clospecﬁosco,oy rpec/ro MICI0SCIP 4
7 q\%L‘ ’\%L‘.:—
sequendial pare et
Tramsmissron T 10% = ?
( Euergy dm.(yer (Cafhode lons +
energy /Zéer )
$+8 ~ 7T

N~ (St8)%
S . 7l_aBT "
N
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Direct (mon-scanning)

Surface Microscopy
with  characteristic - £-ray
photo etectroms
"YPEEM "

W/iy; Q Disadwantages of scannivg
. Sey«mﬁai ionz/eacyww//m :
o Stringent photon /ocmm; requiiements
. Larye local yea‘mn load
o Exbreme (6«/ hime mechamical sta bty
of Cowplete ry:/em

@ Chemicat m,érm fom cmﬂmen/my fo
sfrucfural " obfained by
Low Ewer” Election /’//‘cm:co/oy CLEEM)

YPEEM

LEEN = seem  (Auger)

!
XPEEM as an exfension c)/ LEEM
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wSpectromicroscopy
T=27 —— FElecton optics @

S'/fm €, Beakfmm( 2 /7 3 mm”a /{,%” @

WEQ > TWumination, @
 9-@ ‘
|

Qualifelive ana lysts @
l
Quanti{atire aualysis @

( Emisstom process from condemsed waller)

e

@ Eledron optics

Assusplion :
Qua&iy (. Transwissioss 7: Resolution §)
limited 67 aberrations of

acceleration ﬁ’ee’{ of Cathode €ens
(not by aberratioms of energy ﬂt/cr
Or oOfker Componemts of sycten. )
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Homo gemeaus Fred!
Trausmission 7
Rewoluton r = &L

ﬁr qoy//)]_n“m Gf@ﬂ(&fé
Oﬂd AEF = /QV

Wy = 200000 W
1 =1V
T, {L=3mm

I
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(DD Emission Plocess
o Reguirements
@ Ewergy
@ Backjrouvd

o

i ~eL-
lida S‘O’erg
o r efOIOOeV
cr ] ‘

L XPFEM: hy ~ E;+W0eV | not /‘f; K, , A6 A /
— tuneable source :ryoxltrm‘mn

AEEM : low energy ransifions (> Loek), mot
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jonization cross ~sections
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Comparifms

electrons phofons
Maxisusw Iomization Cross-sections (= /o’“a'n‘)
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o 0.3/ o7 07
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o 0.10 X S Xy 4
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P 228 - §F ¥
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| Quatitative A Yos
Evample : 4 [Si
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@ Quantitafiye A'm(xﬂs_'_

Detectable 4N, = N,-A, MM
ot a given @verage density S¢ S=5+45,
. Ny = (M) B8 8
in integration time T | essume B=B
AN, 2 45, =405, 4 covera

;e
4, momolayer sigmal
Recognition condrfion |

45, 2 K(sa+B+54+8)"

86, £ -%—-‘m—
. Al |
Agdmh 79’ S.A 2 S;'/ , 22x22 um? p/,(ff p £=<
v APEEM AEEM
(se) Spy=Mo, B =S Sqr <20 , B=700
/ 0.92 [0S
10 0.27 d.32
(00 | 0.08 0.0
/000 0.03 0.03

¢
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Recent Developnients in Undulator-Based
Scanning Photoemission Microscopy

H. Ade

State University of New York-Stony Brook
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Recent Developments in Undulator-Based

Scanning Photoemission Microscopy

X1-SPEM (NSLS, BNY, USA)

Harald Ade, Cheng-Hao Ko, and Janos Kirz
Steven L. Hulbert and Erik D. Johnson
Erik Anderson, Dieter Kern .

MAXIMUM (SRC, Wisconsin, USA)

Franco Cerrina et al.

Ellipsoidal Ring Mirror SPEM (DESY, Hamburg, FRG)

\\

Christoph Kunz et al.
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Outline

Motivition for spectromicroscopy. What can we learn?
Approaéhes' to spectromicfoscopy, microprobe devices.
Requirements on the source.

X1-SPEM, instrument details

First results, present status

Future outlook: spatial, energy, and time resolution
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Why X-Ray Photoemission Microscopy?

e Photoemission/Soft X-Ray Spectroscopies are

Very Powerful Techniques for Studying
— Chemistry at Surfaces

- Geometric and Electronic Structure

e Until Reéently, Not Much Lateral Resolution
— Require Model System (PES)

Robust Systems (electron probes: SAM, STEM, etc.) -

* Many Systems of Interest Are Inhomogeneous and/or e-Beam Sensitive

Oxides/Oxyhydroxides

Catalytic Systems

Thin Film/Thin Film Growth (polymers esp.)
Semiconductor Devices

Interfaces, Co-polymers

e PEM Contains More Information than SAM: Primary Photoelectron Peaks |
and AUGER Peaks (can use Auger parameter)

¢ XANES Mode for Certain Elements



"~ What can we learn from XPS

PHOTOELECTRON
ENERGY
SPECTRUM

VACUUM
LEVEL

ADSORBATE
LEVEL

A‘Ag@r’" O‘AZC.Q% o—@ C.ore. //L()(L
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Chemical Shifts

b Porovo wtheyl acrybale

0 H H

X | [ l
F-;C——C-—O——(E-——-(;:-—H
F b h

5 N

m»—

4

w

gl ¥

z

lT'lI1YrLA—_—A

"B 6 4 2 0 Ey=291.2eV
CHEM. SHIFT

294



BINDING ENERGY, eV
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Approaches to Spectromicroscopy

Image e- (El’ectron Optical Instruments):

o electro-static (Bauer-Telieps, Tonner micro-XANES)

PHOTOELECTRON IMAGING 283

Apetture
wap

Iays(w@'~- anes of
uordeiteciqd buyndles

‘Stop
opening

= b 14
. ! T — -
Specimen tens Z&w@; axis of

(cathode) deffected bundle

e magneto-static (Beamson, Pianetta)

{roge screen plone

Object plane

| \

733 ! :

AT A !
~“% \ ! a(2) =

a(r— 3= s —
A| ] \ :
. \

!

! 1

]

-
-

Projection of electrun trajectories
ot the objest plane

/d
~

} r{+} )
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Focus X-rays (Microprobe Instruments):
e normal incidence multilayer Schwarzschild (F.Cerr’ aa)

Faku’i\‘a% u{,:a b*%—— S'q:a.“"-'a{ e So lan & e

'+ O 7\
‘e | het OV‘J-(‘Q. 'P_nu % Tlu

WD fuw cun
Figure 1. 0.3 N.A. Schwarzschild objective

)me,fcp Ly < 280\

¢ grazing incidence ellipsoid (Kunz)

%O L —° 2500 2\/ ‘e '(' ‘g- (’\7
S alstrbeded {rmasacc

,‘{/ oo C, .
te  ticed Gownd %
. ¢ central  Muror
entrance beam_ stap 5|
WW—" ‘ rocus
— N > sample
13

5
ix é

\
| £
Pad bl A
can
| 1000 mm ‘ L ISmfw_ .};c@:‘mg
W o '

¥
Principle and parameters of the scanning photoclectron microscope under’
constructian at HASYLAB. F|, F, are the foct of the elliptical mirvor:

Cocteal o6 sbr yed: D fectr x lunto
T an-ul-uE g;w q{ A‘i'gl f.oﬁvl»\

e Zone plate (SPEM) vlooely —® w 2000 2V
Fttable orver ~ (85 Y Bl (Lo lcw>

/’
y WD & -2 uawe
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Possible Experiments

e Heterogeneous Alumina (Al,O3 + eH;0)
— Catalyst or used as support for catalysts

— Surface acidity depends strongly on binding energy of hydrogen in the
hydroxyl group (alumina phase, local geometry)

— Dosing with ammonia, various alcohols, CO, and CO,
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Summary of Present X1-SPEM Capabilities

e First and Only Submicron Images with Primary Photoelectrons
e Spatial Resolution Approaching 100 nm

* 3-6 eV Energy Resolution with Primary Photoelectrons

e 5-9 x 108 photons/(sec, 0.29% BW) @ 650 eV

e Simultaneous TY and CMA Images

e Feasibility Studies on Alumina Under Way
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Instrumental Improvements of the X1-SPEM

* Add XANES Mode with 0.3-1.0 eV Photon Energy Resolution

* Higher Spatial Resolution (few months: sub-100 nm; one year: 50 nm; few
years: 20 nm)

* More Efficient Grating (gain of 2-5 in flux)
* Ni Phase Zone Plates (gain of factor 2 in flux)

* Commercial Spectrometer (gain of >10 peak count rate, simultaneously
factor 2 in energy resolution, or <1 eV energy resolution)

* Multiple Energy (16 channel) Detection over 5-20 eV Window

¢ Alternate Signals (PSD, fluorescence [ALS], scattering)
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Comments on Scanning Versus E-Imaging

* Spatial Resolution: E-Imaging May Be the Winner (XANES)

¢ Energy Resolution: Scanning and Imaging at Par

e Detection Efficiency: Scanning Q/2n > 10% and Multichannel Detectlon,
E-Imaging (XPS mode) Q/2r < 0.1% (depends on o,)

* Time Resolution: Since Undulator Output Is Coherent, Time Resolution
Determined by the Detection Efficiency (i.e., E-imaging loses its advantage as
a parallel imaging system)

* Damage: If Thermal, Need E-Imaging, Otherwise Scanning (detection
efficiency)

Alternate Signals:
* Scanning: Fluorescence, SA Diffraction/Scattering, Neutral Ions

* E-Imaging: Compatible with LEED, Photoelectron Holography

Both techniques have a bright future and complement each other.
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