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Abstract 

Our previous experimental data indicated that a KBKZ 
constitutive law could adequately represent the rheological behavior 
of green carbon black-filled rubber. In this manuscript, we follow the 
evolution of nonlinear viscoelasticity as the rubber cures. By first 
focussing on the fully-cured filled rubber, we find that a KBKZ 
formalism, with the green rubber damping function but a different 
spectrum of relaxation times, applies equally well. Differential 
scanning calorimetry allow us to monitor the extent of reaction and, 
thereby, correlate the change in relaxation spectrum to rubber 
chemistry. A complete constitutive equation is presented that allows 
calculation of stresses in filled rubbers through cure. 
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I. INTRODUCTION 

In order to model the tire shaping process, a constitutive law 
for the filled rubber is required which will predict the change in 
viscoelasticity with cure and properly accumulate stresses during 
simultaneous deformation and cure. Since rubber temperatures in 
processing are neither uniform in time nor space, we cannot simply 
isothermally measure changes in rubber viscoelasticity with time 
during cure, but are forced to develop structure/property relations 
that correlate rubber rheology to chemistry. In this manner, we can 
calculate temperature and extent of reaction profiles within a tire 
which then uniquely determine the rubber's instantaneous response 
at each point. Stresses then accumulate through competition 
between nonlinear viscoelastic relaxation, stiffening by additional 
reaction, and applied deformations. 

Our previous investigations on the rheology of green carbon 
black-filled rubber1 employed an 18 vol.% carbon black filled natural 
rubber. This same rubber was used in the present study with added 
sulfur. All compounds were prepared at Goodyear Technical Center, 
Akron, Ohio. Vulcanization was complete within roughly twenty 
minutes at 150OC, and significant degradation in apparent modulus 
resulted at much longer cure tirnes. 

In this paper, we present, in Section 11, the linear and nonlinear 
viscoelasticity of fully-cured filled and unfilled natural rubbers. In 
Section 111, the evolution of linear viscoelasticity during cure is 
discussed. Section IV contains our investigations of extent of 
reaction from differential scanning calorimetry. We present a 
complete formalism for calculating stresses during rubber cure in 
Section V and discuss how to obtain the required material 
parameters in Section VI. 

11. VISCOELASTICITY OF CURED RUBBER 
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Linear Viscoelasticity 

Linear viscoelasticity was probed with a Rheometric RDS-2 in 
oscillatory shear. At temperatures above 300C, 2 5 m  diameter, 80 
cone-and-plates were used, while at lower temperatures, torsional 
rectangular geometry was employed with nominal sample 
dimensions of 0.125 x 0.5 x 2". Samples were prepared by pressing 
the productive green rubber between heated plattens (150OC) to form 
sheets for torsion rectangular geometry or directly onto the cone and 
plates. These samples were then held in the heated plattens for 20 
minutes to complete the cure. To remain in the linear regime, strains 
were typically kept below 0.1%. All samples were annealed at 120OC 
for 10 minutes prior to data acquisition to erase all previous strain 
history. 

Figures 1 and 2 portray the linear viscoelastic behavior of 
unfilled and filled cured rubber. We see from Figure 1 that the in- 
phase component of the unfilled rubber modulus attains its 
equilibrium value of roughly 2x106 dynes/cm2 at temperatures 
greater than 60OC within our experimental frequency window. The 
out-of-phase component, which is proportional to the spectrum of 
relaxation times, displays a power-law decay with a slope of roughly 
-0.18. The green unfilled rubber WLF parameters found previously1 
apply equally well to the unfilled cured rubber implying that the 
relatively low crosslink density does not significantly affect mobility. 
At a reference temperature of 25OC, these WLF parameters are 
C1=6.6 and C2=150OC in agreement with literature values.2 

In Figure 2, the entire relaxation spectrum of fully-cured, 
carbon black-filled natural rubber is displayed at a reference 
temperature of -7OOC (the glass transition temperature). Shown for 
comparison is the corresponding spectrum for the green, filled 
rubber.1 As expected,2 crosslinking does not appreciably affect the 
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glassy modulus (-3x109 dynes/cm2), the glass transition 
temperature, nor the initial Rouse-like decay. The cured, filled rubber 
does not exhibit an entanglement plateau as does the green rubber 
but, rather, displays a sluggish, power-law decay, G'-col/lo, at low 
frequencies. The cured, filled rubber master curve was constructed 
using the same WLF parameters as for the unfilled, cured rubber 
above. While t h s  procedure is unambiguous in the transition regime, 
the observed power-law behavior in the terminal regime makes the 
time-temperature shifting procedure somewhat arbitrary. 
Therefore, while use of the unfilled WLF parameters for the long- 
time, high temperature response of the cured, filled rubber is 
consistent with the data, it is not unique. We default to Occam's 
razor and choose to use these parameters throughout the spectrum 
with the belief that it is simpler to invoke a single relaxation 
mechanism. 

N o d  inear Viscoelasticity 

We previously determined that a separable KBKZ constitutive 
law accurately predicted the observed nonlinearities in green, carbon 
black-filled natural rubber.1 In this formalism, the apparent modulus 
of the rubber decreases with increasing strain in the nonlinear 
regime. The onset of nonlinearities is defined by a critical strain, and 
the magnitude of the softening by the "damping function". In Figure 
3, we show the results of a series of oscillatory shear tests on fully- 
cured, filled rubber in which the frequency is held constant within the 
test but the strain magnitude is increased. Three such tests were 
performed in which we examined the effect of temperature and 
strain frequency. Cone-and-plate geometry was employed and the 
samples were prepared and cured as above. From Figure 3, we can 
conclude that the onset of nonlinearity is governed solely by strain 
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magnitude and is independent of temperature and strain frequency, 
which is consistent with the KBKZ formalism. 

In Figure 4, we show the results of a series of step strain, stress 
relaxation experiments of increasing strain magnitude for the fully- 
cured, filled rubber. Again, cone-and-plate geometry, sample 
preparation, and cure history followed that described previously. 
The separable KBKZ constitutive law predicts that the shape of the 
modulus in these step strain tests is independent of applied strain, 
and experiments at 90OC bear this out for strains ranging from 0.5 to 
7%. All moduli exhibit the same slow power-law decay, G-t-*/lo, 
observed in the linear regime. The depression of the nonlinear 
modulus from its linear value, h(y)=G(t,y) /G(t), defines the damping 
function. The damping function for cured, filled rubber is shown in 
Figure 5 along with the damping functions for two linear filled green 
rubbers investigated previously.1 It is apparent that the damping 
function is unaffected by crosslinking, consistent with the 
interpretation that nonlinearities arise from a carbon black 
aggregate network. Moreover, the normalized in-phase oscillatory 
modulus from Figure 3 tracks the damping function as explained in 
reference 1. The invariance of the damping function with crosslink 
density will be shown to greatly simplify calculation of stresses 
during cure. 

Bulk Modulus 

To complete the characterization of the green or cured rubber 
viscoelasticity, we require the bulk modulus which is typically 
difficult to measure. Fortunately, Sandia owns a presssure 
dilatometer in which we can measure the volume of a sample as 
pressure is increased as a function of temperature. A lcm3 sample of 
the 18vol.% green carbon black filled natural rubber studied 
previously was placed in the dilatometer at room temperature 
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(22OC), and the specific volume was recorded as the pressure 
increased from atmospheric to 10 MPa. The results are shown in 
Figure 6. From this, we find a bulk modulus of 3.22~1010 dynes/cm2. 
If we assume that the underlying equilibrium shear modulus of the 
filled, cured rubber is within a factor of two of the unfilled cured 
rubber,3 then Poisson's ratio for the equilibrium solid is roughly 
0.49995 - quite an incompressible material. 

111. EVOLUTION OF LINEAR VISCOELASTICITY DURING CURE 

Unfilled Natural Rubber 

In a simple procedure to monitor the change in viscoelasticity 
with cure, we performed sequential oscillatory frequency scans as the 
rubber cured between the cone-and-plate. We, therefore, obtained 
"snapshots" of the viscoelasticity during cure with minimal 
variations due to sample and fixturing differences or uncertainties in 
cure time and temperature history. Samples were prepared by 
pressing the rubber between plattens heated at 12OOC. Heating times 
and temperatures were kept as low as possible to minimize cure 
during preparation. The cone-and-plate was then fixtured to the 
rheometer and heated to 150OC. Frequency scans spanned from 1 to 
100 rad/s taking 3 points per decade. With these parameters, a single 
scan lasted only 20 seconds, during which little reaction occurred. 

Figure 7 shows the changes in the in-phase modulus of unfilled 
natural rubber as it cured at 150OC. From 0 to 15 minutes, the 
magnitude of the modulus increased and its frequency dependence 
lessened. By 15 minutes, the sample was nominally fully-cured and 
the equilibrium modulus was roughly 3x106 dynes/cm2 (note that the 
absolute temperature dependence of the equilibrium modulus 
accounts for the difference in measured values at 150OC here and 
22OC in section 11). As the sample was heated for longer times at 
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150OC, degradation occurred, and at 50 minutes, the equilibrium 
modulus measured 2x106 dynes/cm2. If one could track the increase 
in equilibrium modulus with time during cure, we would have a 
reasonably direct measurement of extent of reaction, since theory 
relates reaction to network topology to equilibrium modulus. 
However, even at 8 minutes when the reaction has progressed 
considerably, significant viscoelastic relaxation clouds our ability to 
determine the true equilibrium modulus, and we must revert to other 
means of monitoring extent of reaction. (For the best, and only, 
complete description of the evolution of viscoelasticity in unfilled 
curing rubbers, see reference 4.) 

Filled Nafural Rubber 

We followed the same procedure to monitor the evolution of 
viscoelasticity in our filled natural rubber, except that the curing 
temperature was lowered to 12OOC to allow us time to follow more 
completely the changes in the relaxation spectrum. These scans, 
obtained from 0 to 70 minutes, are shown in Figure 8. Again, the 
apparent modulus increases with time, the slope lessens, and no 
equilibrium modulus is observed. Within our experimental frequency 
window at 12OOC, the in-phase modulus seems to be obey a power- 
law frequency relation, GI-&, with the slope A decreasing from the 
green value of roughly 0.3 to the fully-cured value of 0.1 as cure 
progresses. In the next section, we will relate the exponent A to the 
extent of reaction. 

In Figure 9, we replot Figure 2, in which the in-phase dynamic 
moduli for green and fully-cured filled rubber were shown at a 
reference temperature of -7OOC, and add two viscoelastic 
"snapshots" during cure from Figure 8 (appropriately shifted to 
-7OOC). We can now see more clearly the effect of cure on the linear 
viscoelastic behavior of filled rubber.The transition regime (from 10-4 
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to 10 rad/s) is affected only slightly by cure. However, to calculate 
accurately stress evolution during cure, it is imperative to capture 
the change in the spectrum of relaxation times with cure at long- 
times. 

- 

IV. MEASUREMENT OF EXTENT OF REACTION 

Differential Scanning Calorimetry 

As stated before, our goal is to develop structure/property 
relationships for curing filled rubber so that the local viscoelastic 
response can be related to a molecular property calculable from a 
knowledge of thermal history alone. Therefore, we need to measure 
the extent of reaction. Perhaps the easiest method to f 0 l l 0 ~ 7  a 
reaction is by differential scanning calorimetry (DSC) where the 
evolution of heat is monitored as the reaction progresses. Here, we 
will assume that the major source of heat comes from the actual 
crosslinking reaction. The instantaneous reaction rate is then found 
by normalizing the DSC signal by the integrated total heat released 
(the heat of reaction). Isothermal DSC traces (reaction rates) for 
filled and unfilled productive natural rubber cured at 150OC are 
shown in Figure 10. Both curves exhibit autocatalytic behavior, and 
the unfilled system reacts a bit slower than the filled. 

The integrated extents of reaction for filled rubber at 120 and 
150OC are shown in Figure 11. The DSC results are in agreement 
with our viscoelastic experience in that the reaction is complete in 
roughly 20 minutes at 150OC. Curves for extent of reaction or 
reaction rate versus time at different temperatures (from 120 to 
160OC) can be superposed by simply scaling time, which implies that 
a single reaction mechanism is operative over this range. The time 
for which the reaction rate is greatest (the peak time) is plotted 
against the reciprocal reaction temperature in Figure 12. The 
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reaction does follow an Arrhenius relation (rate-e-E/RT) and our 
observed activation energy is 24 kcal/mole for which the reaction 
rate roughly doubles every 1OOC. 

Now that we can measure the extent of reaction, we are in a 
position to develop structure/property relations. Specifically, we 
could fit the spectrum of relaxation times at a given time during cure 
to a series of exponentials and relate the change in series prefactors 
and relaxation times to the extent of reaction at that time. Since we 
observed in Figure 8 that the terminal relaxations can be described by 
a single exponent A, it is more convenient here to plot this single 
parameter against extent of reaction (Figure 13). Interestingly, the 
decay exponent quickly decreases to the fully-cured value of 0.1 when 
the reaction is only 20% complete. 

Cure Shrinkage 

For completeness sake, we also attempted to measure the 
volume shrinkage due to cure in our dilatom-eter. In this experiment, 
the green, productive, d i l l e d  rubber was placed in the dilatometer, 
and the temperature was raised from room temperature to 90OC. 
Since the dilatometer requires massive walls for pressure tests, the 
thermal response is quite slow; it took roughly two hours to reach 
steady state. We chose a relatively low cure temperature of 9OOC so 
that minimal cure would occur during this initial transient. Over a 
one day period, no volume change was observed even though the 
reaction progressed to roughly 70% (Figure 14). We, therefore, 
conclude that cure shrinkage is unimportant for stress calculations. 
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V. FORMALISM FOR CALCULATING STRESSES DURING 
RUBBER CURE 

Computational Considerations 

Stress calculations during cure are greatly simplified if the 
thermal problem can be solved independently prior to the actual 
stress calculations. In this case, one could first determine the 
temperature history for each point in the rubber and then, since the 
extent of reaction is dependent only upon temperature history, 
calculate the extent of reaction time profile at each point. This 
information could then be passed to the stress calculations in which 
material properties at a given time are related to extent of reaction. 

Unfortunately, the tire shaping process may not lend itself to 
such a decoupling. For instance, the tire temperature at the instant of 
steam inflation is room temperature. Initial inflation is so fast that 
no appreciable thermal transport occurs by conduction through the 
tire. Therefore, we conjecture that the tire temperature rises 
significantly only when it first meets the heated mold. If our goal is to 
model the relatively slow tread filling, then the thermal and stress 
problems do not seem to decouple. However, we may have less 
difficult goals, such as predicting cord deformation within the tire, 
which may be less sensitive to this surface phenomerna. 

For simplicity, let's assume that the thermal and stress codes 
do decouple. (The coupled problem can be handled in essentially the 
same fashion but in an iterative process.) We would first calculate the 
thermal and extent of reaction profiles at each point in the rubber. 
This information would then be passed to the stress codes which 
require a proper constitutive law for rubber rheology that we discuss 
now. 
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Green and Cured Constitutive Law 

From our studies on green and fully-cured carbon black-filled 
natural rubber we conclude that a separable KBKZ formalism 
accurately predicts the observed shear nonlinearities. Moreover, the 
damping function seems to be independent of extent of cure. As seen 
in Section 111, however, the spectrum of relaxation times does 
change with cure. For a small simple shear strain, the separable 
KBKZ shear stress prediction for green or cured filled rubber is 

-ca 

where h(y) is the damping function and m(t)=-dG/dt (Gm=O for 
green rubber). 

An integral equation such as Eq. 1, however, does not lend itself 
to iterative solution as well as a differential version. Therefore, Dan 
Segalrnan516 has developed a differential constitutive equation 
which mimics the separable BKZ equation in a step strain 
experiment. For small strains, his model gives (in the limit as 
P=1,&0=0, and hD=hk=hi=h) 

d o  0 .  dE dD D =' - G i  g(D) 2 with -+-=R =i +-- 
dt T i  dt dt h 

where the total stress E= E Q ~  + G,y, E is the infinitesimal strain 
tensor, D is the "damage" which decays with a characteristic time, h, 
and R is the rate of damage accumulation that follows its own 
evolution law. 
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then R = E; otherwise R = 0 

where - +-=- 
dt h h 

dE =k =k E = E 

(3) 

The shear stress, B, in response to a fast (in the sense that 
negligible damage healing or viscoelastic relaxation occurs), 
monitonically rising shear strain of magnitude, y, can be calculated. 

sin ce 

1 

From this, we can relate g(D) to the KBKZ damping function, h(y), by 
differentiating the integral to obtain, g(y) = h(y) + y dh/dy, or in 
general, g(D) = h(D) + D dh/dy. 

From thermorheological simplicity, the Ti ' s  and h must obey a 
single WLF law. 
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For nonisothermal operation, Eq. 2 now becomes 

-R ,  and dD D 
dt aTh 

+-- - 

and, for a step strain experiment in which temperature may vary 
during the test, the result analogous to Eq. 4 is 

1 1 

from which a natural "reduced" time, t(t), is defined. 
From our studies on green and fully-cured rubbers, we also 

know that h and g(D) are independent of cure. Unfortunately, the 
spectrum of relaxation times does change with cure as does the 
equilibrium modulus. Now we must incorporate these changes into 
the constitutive law and determine how to evaluate the required 
parameters. 

Cons tit  u t ive Law Through Cure 

Let's first consider the effect of an increase in equilibrium shear 
modulus with cure. From theory,7 the equilibrium modulus of 
vulcanizates is proportional to the crosslink density, which we will 
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assume is in turn proportional to the extent of reaction as measured 
by DSC. That is, Goo-(p-pgel) where Pgel is the extent of reaction at 
the gel point. However, pgel is vanishingly small due to the high 
molecular weight of the green rubber chains (-300k), such that Goo= 
G,f p where Gmf is the equilibrium shear modulus of the fully-cured 
network. Now, we will also assume that new crosslinks are attached 
to the existing network in an unstrained state. This is not quite 
correct, in general, (see references 8 and 9 for a complete theory) but 
is quite adequate for the current problem. Therefore, the residual 
stresses at long times accumulate in the rubber according to the 
following equation 

We now turn to the change in the stress relaxation modulus 
with cure as seen in Figure 8. Examining Eq. 2, we could conceivably 
imbed this cure dependence in either the relaxation times, Ti, or the 
mode weightings, Gi. To determine the appropriate path, let’s 
consider the following thought experiment. A step strain is imposed 
initially on green rubber. Immediately following this, the rubber is 
magically fully cured. Our expectation is that the time dependence of 
the stress response will be indistinguishable from the response for 
step strain on a fully-cured rubber. However, the two choices 
presented above for describing the cure dependence lead to two 
distinct stress predictions. If we only use cure dependent weightings 
and constant relaxation times, we get 

which is inconsistent with our expectation in that the predicted shape 
of the response mimics that of the green rubber rather than that of 
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the cured rubber. If we use only cure dependent relaxation times and 
constant weightings, we get 

which is the anticipated result. Therefore, we conclude that the 
change in linear viscoelastic properties with cure (as seen in Figure 8) 
should be expressed as cure dependent relaxation tirnes solely. 

Now we need to determine how the relaxation times change 
with cure. Returning to theories of linear viscoelasticity,2 we 
remember that the "relaxation spectrum", H(z), is defined as 

00 

-t/z G(t)-G, = JdlogT H(z) e 
-GO 

Since we will be working with a discrete spectrum of relaxation 
times (a Prony series), Eq. 11 reduces to 

which defines Gi in terms of H(zi). We argued above that we needed 
to imbed all the cure dependence into the relaxation times and none 
in the weightings. In other words, the Gi's must not depend upon 
cure. However, from Eq. 11, H(T) does depend upon cure since G(t) 
changes with cure. This implies that the term, [ l ~ g ~ i + l - l ~ g ~ i ] ,  in Eq. 
12 which defines the spacing between our discrete relaxation times, 
must exactly balance any changes in H(Ti). While this may sound like 
a problem, it actually allows us to calculate the cure dependence of 
the relaxation times. 
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If we require Gi(pj)=Gi(pj+l), then from Eq. 12 we must satisfy 
the following equation for a change in cure from state pj to pj+l 

which is simply a recursion formula for the new relaxation times 
given our knowledge of the green rubber (p=O) discrete relaxation 
times and the change in H(z) with cure. The green rubber discrete 
spectrum is discretionary (whatever fits works!), and the theory of 
linear viscoelasticity2 gives us simple algebraic approximations for 
H('I:). For example, H(z) can be related to the stress relaxation 
modulus by 

d2  log G( t)  

t=22 
dlog t dlog t 

so that changes in G(t) are translated into changes in H(z). 

stress during the cure of carbon black-filled rubber. 
We now have a complete formalism to describe the evolution of 
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N t dE 
=1 dt i=O -ca 

CS= C 0. + J d s z ( s )  G,(s) 

d o  =i =i 0 dE ' dD D 

- - 

+-- - R  = G i  g(D) 2 with - + 
dt aTapiTi dt dt aTh 

dg (= E - &  = k )  

dt / =  & - E  =kl  
i f D =  E - E  andE=-=e > 0, 

then R = E; otherwise R = 0 

I= = k /  

These equations with Eq. 13 and 14 fully characterize our system. 

VI. DETERMINATION OF MATERIAL PROPERTIES 

Let's now assume that the above approach will be adopted for 
modelling curing rubbers. We are now faced with the task of 
gathering the required parameters for the model on a series of new 
rubber compounds. It would behoove us to determine the minimal 
suite of experiments. As a first step, we will list the required 
parameters. 

the WLF parameters: C1, C2, and Tr 
the damping function parameters: h(y) or h and g(D) 
the linear viscoelastic parameters: Gi, 

We first must characterize the linear viscoelasticity of the green 
rubber. The simplest approach is to employ cone-and-plate geometry 
(angle< 100)  and measure the oscillatory moduli at various 
temperatures at extremely small strains (~0.5%). As explained in 
Reference 1, it is important to anneal these samples carefully to erase 
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the strain history of sample preparation and fixturing such that one 
obtains a true representation of the linear viscoelastic modulus. The 
WLF parameters (Cl,  C2, and T,) can be determined from the 
superposition shfts and G(t) is directly related2 to G' and G". 

for example, G( t )  = G '  (0) - 0.4Gr'(0.400) + 0.014G"(100)1,-1,, - (16) 

The relaxation spectrum, H(z), could be calculated from Eq. 14 or 
directly from G' or G". The relaxation time spacing for the green 
rubber is discretionary, so that, using Eq. 12, we can determine the 
corresponding Gi's for the green rubber. 

While the rubber is between the cone-and-plate, we can 
characterize the nonlinearities in a series of straightforward tests, 
single step shear strains in which the strain magnitude is increased 
from the linear regime (-10-4) to processing strains of interest. It is 
imperative to anneal the sample between tests. The vertical shifts 
are identically the KBKZ damping function, h(y), and can be related 
to the differential damage function, g(D)=h(D) + D dh/dy. 

which 
describes the rate of damage healing. This requires examination of 
our sample at various intervals after damage has been created. At 
the completion of the final step shear strain test described above, we 
have created damage equal to the strain amplitude. If we leave the 
sample in the rheometer, we can monitor the damage healing by 
periodically measuring the apparent linear oscillatory moduli (whch 
creates no additional damage), and, since damage heals slowly, the 
damage during each of these measurements will be constant. From 
Eq. 2, the ratio of the apparent linear G' at a time t after the original 
step strain test to the virgin linear G' (when there was no damage) 
equals g(D). Damage itself will healing as D = y(l-e-t/h). We can use 
our measured KBKZ damping function to calculate g(D) for various 
values of h and compare to our measured g(D). 

The damage model requires the additional parameter 
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For comparison, the KBKZ formalism would predict that the 
reduction in G'linear in these experiments arises from the fading 
memory of the step strain history rather than from "damage", and 
anneals with the only available spectrum of relaxation times, G(t). 

= I -  G( t )  [l- h(y)] G ' linear ( t ) 
G' linear ( 0 )  G' linear ( 0 )  

Using Eq. 17, we can compare experimental data with 
theoretical predictions for green carbon black-filled rubber to 
determine the best value for h. In Fig. 15, we see that h=320 and 2 
minutes fit the data at 22OC and 9OoC respectively (this corresponds 
to the predicted WLF shift from 22 to 90OC). While it is encouraging 
that the fits are reasonable and that h does follow the WLF 
prediction, both sets of data suggest that a spectrum of damage 
healing times (i.e. many hi's) would be more appropriate as predicted 
by a KBKZ formalism (Eq. 18). 

We now require a knowledge of how the relaxation times 
depend upon cure. The simplest method for determining extent of 
reaction relies on differential scanning calorimetry, as discussed in 
Section IV. Frequency scans, as described in Section 111, can then be 
run during cure at various temperatures to gather snapshots of 
linear viscoelasticity. Psuedo-time-temperature master curves at 
constant extent of reaction can be constructed by piecing iso-cure 
snapshots together from these scans at differing temperatures. Of 
course, the fully-cured rubber is amenable to a more conventional, 
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rigorous investigation of G' and G" as undertaken for the green 
rubber and true time-temperature master curves can be constructed. 
From these data, we can construct H(z) as cure progresses using Eq. 
14, and can then determine the cure dependence of the discrete 
relaxation times using Eq. 13. 

Finally, we need to determine the increase in equilibrium 
modulus with cure. As strange as its may sound, the calculated 
stresses for many problems will not depend strongly on the 
equilibrium modulus - that is, the rubber really doesn't know it is a 
solid. This apparent oxymoron is true due to the extremely slow 
relaxations in filled rubbers and the fact that the majority of cure will 
occur under no large applied deformations. 

Consider the tire shaping process once again. The largest 
deformation by far occurs at the start when the rubber is 
unvulcanized. Here, the equilibrium modulus is rigorously 
unimportant. Only in the latter stages of filling when the 
temperature rises sharply and cure begins will the equilibrium 
modulus enter. However, since the incremental strains are small at 
this point and the relaxation times exceedingly long, the apparent 
modulus governing the stress evolution will not reflect the 
equilibrium modulus but rather some higher value associated with 
the relaxing rubber. For example, in Figure 4, the Linear modulus has 
only decreased by a factor of two in 103 seconds. Since the decay 
slope is roughly 4/10, the modulus will have only decreased by a 
factor of three even in an additional 5 years (108 seconds). However, 
we must decay yet another decade to observe the underlying 
equilibrium modulus, so we see how unimportant the true solid-like 
behavior really is. Even the softening effect of the KBKZ formalism 
does not help since, from Figure 5, we see that a strain of 10% only 
decreases the modulus by an order of magnitude, which still leaves 
us far from the equilibrium modulus. The important role of cure is 

' 1  

' I  
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not to increase the equilibrium modulus but to change the relaxation 
spectrum which gives the appearance of "solid-like" behavior. 

The true equilibrium modulus does become more important for 
less highly filled rubbers since they display less of the obscuring 
nonlinear viscoelastic character, and it may be possible to measure 
the underlying equilibrium modulus directly by oscillatory or step 
strain experiments at large strains and high temperatures. For the 
highly filled rubbers, extremely high strains will be required (e.g. 
300% modulus). 

VII. CONCLUSIONS 

The equations presented here enable calculation of stresses in 
carbon black filled rubber through cure. We have tried to minimize 
the pain of implementing these equations by chosing differential 
versions of the constitutive model for computational efficiency and 
by presenting a minimal suite of experiments to characterize new 
materials. 
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