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Abstract

Our previous experimental data indicated that a KBKZ
constitutive law could adequately represent the rheological behavior
of green carbon black-filled rubber. In this manuscript, we follow the
evolution of nonlinear viscoelasticity as the rubber cures. By first
focussing on the fully-cured filled rubber, we find that a KBKZ
formalism, with the green rubber damping function but a different
spectrum of relaxation times, applies equally well. Differential
scanning calorimetry allow us to monitor the extent of reaction and,
thereby, correlate the change in relaxation spectrum to rubber
chemistry. A complete constitutive equation is presented that allows
calculation of stresses in filled rubbers through cure.



I. INTRODUCTION

In order to model the tire shaping process, a constitutive law
for the filled rubber is required which will predict the change in
viscoelasticity with cure and properly accumulate stresses during
simultaneous deformation and cure. Since rubber temperatures in
processing are neither uniform in time nor space, we cannot simply
isothermally measure changes in rubber viscoelasticity with time
during cure, but are forced to develop structure/property relations
that correlate rubber rheology to chemistry. In this manner, we can
calculate temperature and extent of reaction profiles within a tire
which then uniquely determine the rubber's instantaneous response
at each point. Stresses then accumulate through competition
between nonlinear viscoelastic relaxation, stiffening by additional
reaction, and applied deformations.

Our previous investigations on the rheology of green carbon
black-filled rubber! employed an 18 vol.% carbon black filled natural
rubber. This same rubber was used in the present study with added
sulfur. All compounds were prepared at Goodyear Technical Center,
Akron, Ohio. Vulcanization was complete within roughly twenty
minutes at 1500C, and significant degradation in apparent modulus
resulted at much longer cure times. '

In this paper, we present, in Section II, the linear and nonlinear
viscoelasticity of fully-cured filled and unfilled natural rubbers. In
Section III, the evolution of linear viscoelasticity during cure is
discussed. Section IV contains our investigations of extent of
reaction from differential scanning calorimetry. We present a
complete formalism for calculating stresses during rubber cure in
Section V and discuss how to obtain the required material
parameters in Section VI

II. VISCOELASTICITY OF CURED RUBBER



Linear Viscoelasticity

Linear viscoelasticity was probed with a Rheometric RDS-2 in
oscillatory shear. At temperatures above 300C, 25mm diameter, 80
cone-and-plates were used, while at lower temperatures, torsional
rectangular geometry was employed with nominal sample
dimensions of 0.125 x 0.5 x 2". Samples were prepared by pressing
the productive green rubber between heated plattens (150°C) to form
sheets for torsion rectangular geometry or directly onto the cone and
plates. These samples were then held in the heated plattens for 20
minutes to complete the cure. To remain in the linear regime, strains
were typically kept below 0.1%. All samples were annealed at 1200C
for 10 minutes prior to data acquisition to erase all previous strain
history.

Figures 1 and 2 portray the linear viscoelastic behavior of
unfilled and filled cured rubber. We see from Figure 1 that the in-
phase component of the unfilled rubber modulus attains its
equilibrium value of roughly 2x106 dynes/cm?2 at temperatures
greater than 609C within our experimental frequency window. The
out-of-phase component, which is proportional to the spectrum of
relaxation times, displays a power-law decay with a slope of roughly
-0.18. The green unfilled rubber WLF parameters found previouslyl
apply equally well to the unfilled cured rubber implying that the
relatively low crosslink density does not significantly affect mobility.
At a reference temperature of 250C, these WLF parameters are
C1=6.6 and C2=1500C in agreement with literature values.2

In Figure 2, the entire relaxation spectrum of fully-cured,
carbon black-filled natural rubber is displayed at a reference
temperature of -700C (the glass transition temperature). Shown for
comparison is the corresponding spectrum for the green, filled
rubber.l As expected,? crosslinking does not appreciably affect the
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glassy modulus (~3x10% dynes/cm?2), the glass transition
temperature, nor the initial Rouse-like decay. The cured, filled rubber
does not exhibit an entanglement plateau as does the green rubber
but, rather, displays a sluggish, power-law decay, G'~©!/10, at low
frequencies. The cured, filled rubber master curve was constructed
using the same WLF parameters as for the unfilled, cured rubber
above. While this procedure is unambiguous in the transition regime,
the observed power-law behavior in the terminal regime makes the
time-temperature shifting procedure somewhat arbitrary.
Therefore, while use of the unfilled WLF parameters for the long-
time, high temperature response of the cured, filled rubber is
consistent with the data, it is not unique. We default to Occam's
razor and choose to use these parameters throughout the spectrum
with the belief that it is simpler to invoke a single relaxation
mechanism.

Nonlinear Viscoelasticity

We previously determined that a separable KBKZ constitutive
law accurately predicted the observed nonlinearities in green, carbon
black-filled natural rubber.! In this formalism, the apparent modulus
of the rubber decreases with increasing strain in the nonlinear
regime. The onset of nonlinearities is defined by a critical strain, and
the magnitude of the softening by the "damping function". In Figure
3, we show the results of a series of oscillatory shear tests on fully-
cured, filled rubber in which the frequency is held constant within the
test but the strain magnitude is increased. Three such tests were
performed in which we examined the effect of temperature and
strain frequency. Cone-and-plate geometry was employed and the
samples were prepared and cured as above. From Figure 3, we can
conclude that the onset of nonlinearity is governed solely by strain
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magnitude and is independent of temperature and strain frequency,
which is consistent with the KBKZ formalism.

In Figure 4, we show the results of a series of step strain, stress
relaxation experiments of increasing strain magnitude for the fully-
cured, filled rubber. Again, cone-and-plate geometry, sample
preparation, and cure history followed that described previously.
The separable KBKZ constitutive law predicts that the shape of the
modulus in these step strain tests is independent of applied strain,
and experiments at 900C bear this out for strains ranging from 0.5 to
7%. All moduli exhibit the same slow power-law decay, G~t-1 /10,
observed in the linear regime. The depression of the nonlinear
modulus from its linear value, h(y)=G(t,y) /G(t), defines the damping
function. The damping function for cured, filled rubber is shown in
Figure 5 along with the damping functions for two linear filled green
rubbers investigated previously.l It is apparent that the damping
function is unaffected by crosslinking, consistent with the
interpretation that nonlinearities arise from a carbon black
aggregate network. Moreover, the normalized in-phase oscillatory
modulus from Figure 3 tracks the damping function as explained in
reference 1. The invariance of the damping function with crosslink
density will be shown to greatly simplify calculation of stresses
during cure.

Bulk Modulus

To complete the characterization of the green or cured rubber
viscoelasticity, we require the bulk modulus which is typically
difficult to measure. Fortunately, Sandia owns a presssure
dilatometer in which we can measure the volume of a sample as
pressure is increased as a function of temperature. A lem3 sample of
the 18vol.% green carbon black filled natural rubber studied
previously was placed in the dilatometer at room temperature
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Fig. 5: KBKZ Damping Function
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(220C), and the specific volume was recorded as the pressure
increased from atmospheric to 10 MPa. The results are shown in
Figure 6. From this, we find a bulk modulus of 3.22x1010 dynes/cm?.
If we assume that the underlying equilibrium shear modulus of the
filled, cured rubber is within a factor of two of the unfilled cured
rubber,3 then Poisson's ratio for the equilibrium solid is roughly
0.49995 - quite an incompressible material.

III. EVOLUTION OF LINEAR VISCOELASTICITY DURING CURE
Unfilled Natural Rubber

In a simple procedure to monitor the change in viscoelasticity
with cure, we performed sequential oscillatory frequency scans as the
rubber cured between the cone-and-plate. We, therefore, obtained
"snapshdts" of the viscoelasticity during cure with minimal
variations due to sample and fixturing differences or uncertainties in
cure time and temperature history. Samples were prepared by
pressing the rubber between plattens heated at 1200C. Heating times
and temperatures were kept as low as possible to minimize cure
during preparation. The cone-and-plate was then fixtured to the
rheometer and heated to 1500C. Frequency scans spanned from 1 to
100 rad/s taking 3 points per decade. With these parameters, a single
scan lasted only 20 seconds, during which little reaction occurred.

Figure 7 shows the changes in the in-phase modulus of unfilled
natural rubber as it cured at 1509C. From 0 to 15 minutes, the
magnitude of the modulus increased and its frequency dependence
lessened. By 15 minutes, the sample was nominally fully-cured and
the equilibrium modulus was roughly 3x106 dynes/cm? (note that the
absolute temperature dependence of the equilibrium modulus
accounts for the difference in measured values at 1500C here and
220C in section II). As the sample was heated for longer times at
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Fig. 7: Change in Linear Viscoelasticity with
Cure_in Unfilled Natural Rubber at 150°C
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1500C, degradation occurred, and at 50 minutes, the equilibrium
modulus measured 2x106 dynes/cm?. If one could track the increase
in equilibrium modulus with time during cure, we would have a
reasonably direct measurement of extent of reaction, since theory
relates reaction to network topology to equilibrium modulus.
However, even at 8 minutes when the reaction has progressed
considerably, significant viscoelastic relaxation clouds our ability to
determine the true equilibrium modulus, and we must revert to other
means of monitoring extent of reaction. (For the best, and only,
complete description of the evolution of viscoelasticity in unfilled
curing rubbers, see reference 4.)

Filled Natural Rubber

We followed the same procedure to monitor the evolution of
viscoelasticity in our filled natural rubber, except that the curing
temperature was lowered to 1200C to allow us time to follow more
completely the changes in the relaxation spectrum. These scans,
obtained from 0 to 70 minutes, are shown in Figure 8. Again, the
apparent modulus increases with time, the slope lessens, and no
equilibrium modulus is observed. Within our experimental frequency
window at 1200C, the in-phase modulus seems to be obey a power-
law frequency relation, G'~04, with the slope A decreasing from the
green value of roughly 0.3 to the fully-cured value of 0.1 as cure
progresses. In the next section, we will relate the exponent A to the
extent of reaction.

In Figure 9, we replot Figure 2, in which the in-phase dynamic
moduli for green and fully-cured filled rubber were shown at a
reference temperature of -700C, and add two viscoelastic
"snapshots" during cure from Figure 8 (appropriately shifted to
-700C). We can now see more clearly the effect of cure on the linear
viscoelastic behavior of filled rubber.The transition regime (from 10-4
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Fig. 9: Changes in Linear Viscoelasticity with Cure
in 18 vol.% Carbon Black Filled Natural Rubber
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to 10 rad/s) is affected only slightly by cure. However, to calculate
accurately stress evolution during cure, it is imperative to capture
the change in the spectrum of relaxation times with cure at long-
times. |

IV. MEASUREMENT OF EXTENT OF REACTION
Differential Scanning Calorimetry

As stated before, our goal is to develop structure/property
relationships for curing filled rubber so that the local viscoelastic
response can be related to a molecular property calculable from a
knowledge of thermal history alone. Therefore, we need to measure
the extent of reaction. Perhaps the easiest method to follow a
reaction is by differential scanning calorimetry (DSC) where the
evolution of heat is monitored as the reaction progresses. Here, we
will assume that the major source of heat comes from the actual
crosslinking reaction. The instantaneous reaction rate is then found
by normalizing the DSC signal by the integrated total heat released
(the heat of reaction). Isothermal DSC traces (reaction rates) for
filled and unfilled productive natural rubber cured at 1500C are
shown in Figure 10. Both curves exhibit autocatalytic behavior, and
the unfilled systém reacts a bit slower than the filled.

The integrated extents of reaction for filled rubber at 120 and
1500C are shown in Figure 11. The DSC results are in agreement
with our viscoelastic experience in that the reaction is complete in
roughly 20 minutes at 1500C. Curves for extent of reaction or
reaction rate versus time at different temperatures (from 120 to
1600C) can be superposed by simply scaling time, which implies that
a single reaction mechanism is operative over this range. The time
for which the reaction rate is greatest (the peak time) is plotted
against the reciprocal reaction temperature in Figure 12. The
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Fig. 12: Arrhenius Plot for 18 vol.%
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reaction does follow an Arrhenius relation (rate~e-E/RT) and our
observed activation energy is 24 kcal/mole for which the reaction
rate roughly doubles every 100C.

Now that we can measure the extent of reaction, we are in a
position to develop structure/property relations. Specifically, we
could fit the spectrum of relaxation times at a given time during cure
to a series of exponentials and relate the change in series prefactors
and relaxation times to the extent of reaction at that time. Since we
observed in Figure 8 that the terminal relaxations can be described by
a single exponent A, it is more convenient here to plot this single
parameter against extent of reaction (Figure 13). Interestingly, the
decay exponent quickly decreases to the fully-cured value of 0.1 when
the reaction is only 20% complete.

Cure Shrinkage

For completeness sake, we also attempted to measure the
volume shrinkage due to cure in our dilatometer. In this experiment,
the green, productive, unfilled rubber was placed in the dilatometer,
and the temperature was raised from room temperature to 900C.
Since the dilatometer requires massive walls for pressure tests, the
thermal response is quite slow; it took roughly two hours to reach
steady state. We chose a relatively low cure temperature of 900C so
that minimal cure would occur during this initial transient. Over a
one day period, no volume change was observed even though the
reaction progressed to roughly 70% (Figure 14). We, therefore,
conclude that cure shrinkage is unimportant for stress calculations.
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Fig. 14: Investigation of Cure Shrinkage at 90°C
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V. FORMALISM FOR CALCULATING STRESSES DURING
RUBBER CURE

Computational Considerations

Stress calculations during cure are greatly simplified if the
thermal problem can be solved independently prior to the actual
stress calculations. In this case, one could first determine the
temperature history for each point in the rubber and then, since the
extent of reaction is dependent only upon temperature history,
calculate the extent of reaction time profile at each point. This
information could then be passed to the stress calculations in which
material properties at a given time are related to extent of reaction.

Unfortunately, the tire shaping process may not lend itself to
such a decoupling. For instance, the tire temperature at the instant of
steam inflation is room temperature. Initial inflation is so fast that
no appreciable thermal transport occurs by conduction through the
tire. Therefore, we conjecture that the tire temperature rises
significantly only when it first meets the heated mold. If our goal is to
model the relatively slow tread filling, then the thermal and stress
problems do not seem to decouple. However, we may have less
difficult goals, such as predicting cord deformation within the tire,
which may be less sensitive to this surface phenomema.

For simplicity, let's assume that the thermal and stress codes
do decouple. (The coupled problem can be handled in essentially the
same fashion but in an iterative process.) We would first calculate the
thermal and extent of reaction profiles at each point in the rubber.
This information would then be passed to the stress codes which
require a proper constitutive law for rubber rheology that we discuss

now.
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Green and Cured Constitutive Law

From our studies on green and fully-cured carbon black-filled
natural rubber we conclude that a separable KBKZ formalism
accurately predicts the observed shear nonlinearities. Moreover, the
damping function seems to be independent of extent of cure. As seen
in Section III, however, the spectrum of relaxation times does
change with cure. For a small simple shear strain, the separable
KBKZ shear stress prediction for green or cured filled rubber is

t
o= Jdsm(t-s) {h[y(t)-v(s)]} [y()-v(s)] + Guv(t) (1)

—00

where h(y) is the damping function and m(t)=-dG/dt (Ge=0 for
green rubber).

An integral equation such as Eq. 1, however, does not lend itself
to iterative solution as well as a differential version. Therefore, Dan
Segalman®,6 has developed a differential constitutive equation
which mimics the separable BKZ equation in a step strain

experiment. For small strains, his model gives (in the limit as
B=1,e0=0, and Ap=Ak=Aj=A)

=i, =l_G, gD with — +
dt 1 1 8 )dt t

do. o. de
== with D+2-R @

where the total stress g = £0; + GooY, £ is the infinitesimal strain
tensor, D is the "damage" which decays with a characteristic time, A,
and R is the rate of damage accumulation that follows its own
evolution law.



ifD=’§—§k{andE—g—§ (IE“Ek')>O,
E-E
then R =E; otherwise R=0 (3)
dek E
A

where ———+——k—

dt A

The shear stress, ¢, in response to a fast (in the sense that

negligible damage healing or viscoelastic relaxation occurs),
monitonically rising shear strain of magnitude, 7, can be calculated.

since
5y (t)= t/n;dse i g(D(s)
) @
~Gre~t/% [ds g(e(s)) L(s) =Gie/5 fay' g(v)
0 dt 0
then
g ]
[dy" g(v")
o()=y[£G; ™% +Gu | | -———| = ¥G(® h(¥)

From this, we can relate g(D) to the KBKZ damping function, h(y), by
differentiating the integral to obtain, g(y) = h(y) +y dh/dy, or in
general, g(D) =h(D) + D dh/dy.

From thermorheological simplicity, the Ti's and A must obey a
single WLF law.

MT) Ti(T) | _ _—Cq(T-T,)
1°g£x(Tr))*log(ri('rr)j—log(aﬂ—C2+T—Tr ©)
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For nonisothermal operation, Eq. 2 now becomes

dgi S, G: 2(D) de
+ — . =
dt artt; 8 dt
dD D
— +—=R, and
dt aTk an (6)

gy & _ E
dt aTk aTk

and, for a step strain experiment in which temperature may vary
during the test, the result analogous to Eq. 4 is

v
t N (j)dy' g(y")
_— : - G oy
o(t) Y{ZGI exp[ gaT[T(u)] Ti(Tr)]+ ocl v )

=v[2G; eH0 + G | h(n) =G h()

from which a natural "reduced" time, &(t), is defined.

From our studies on green and fully-cured rubbers, we also
know that A and g(D) are independent of cure. Unfortunately,. the
spectrum of relaxation times does change with cure as does the
equilibrium modulus. Now we must incorporate these changes into
the constitutive law and determine how to evaluate the required

parameters.
Constitutive Law Through Cure
Let's first consider the effect of an increase in equilibrium shear

modulus with cure. From theory,” the equilibrium modulus of
vulcanizates is proportional to the crosslink density, which we will
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assume is in turn proportional to the extent of reaction as measured
by DSC. That is, Geo~(p-pgel) Where pgel is the extent of reaction at
the gel point. However, pgel is vanishingly small due to the high
molecular weight of the green rubber chains (~300k), such that Geo=
Go.f p where G..fis the equilibrium shear modulus of the fully-cured
network. Now, we will also assume that new crosslinks are attached
to the existing network in an unstrained state. This is not quite
correct, in general, (see references 8 and 9 for a complete theory) but
is quite adequate for the current problem. Therefore, the residual
stresses at long times accumulate in the rubber according to the
following equation

t de
o(t—>eo)= | dsaf(S)Goo(S) (8)

—00

We now turn to the change in the stress relaxation modulus
with cure as seen in Figure 8. Examining Eq. 2, we could conceivably
imbed this cure dependence in either the relaxation times, 1, or the
mode weightings, Gj. To determine the appropriate path, let's
consider the following thought experiment. A step strain is imposed
initially on green rubber. Immediately following this, the rubber is
magically fully cured. Our expectation is that the time dependence of
the stress response will be indistinguishable from the response for
step strain on a fully-cured rubber. However, the two choices
presented above for describing the cure dependence lead to two
distinct stress predictions. If we only use cure dependent weightings
and constant relaxation times, we get

6(t)=yh(y) [£G;(0)e™™ |=yh(y) G(t,p =0) ©)

which is inconsistent with our expectation in that the predicted shape
of the response mimics that of the green rubber rather than that of
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the cured rubber. If we use only cure dependent relaxation times and
constant weightings, we get

o du
G; exp| -] —22
> exp[ (I)Ti[P(u)]ﬂ (10)

=yh(y) [£G; e™V5PV| =yh(y) G(t,p=1)

o(t)=vh(y)

which is the anticipated result. Therefore, we conclude that the
change in linear viscoelastic properties with cure (as seen in Figure 8)
should be expressed as cure dependent relaxation times solely.

Now we need to determine how the relaxation times change
with cure. Returning to theories of linear viscoelasticity,2 we
remember that the "relaxation spectrum”, H(t), is defined as

G(f)-G. = Jdlogt H(t) et/F (1)

Since we will be working with a discrete spectrum of relaxation
times (a Prony series), Eq. 11 reduces to

_ _ X . o et/ Ne -t/
G(t) - Go = YH(1;) [logtis1 —logT; |e = zoc;le (12)
- 1=0 i=

which defines G;j in terms of H(tj). We argued above that we needed
to imbed all the cure dependence into the relaxation times and none
in the weightings. In other words, the Gi's must not depend upon
cure. However, from Eq. 11, H(t) does depend upon cure since G(t)
changes with cure. This implies that the term, [logti+1-logt], in Eq.
12 which defines the spacing between our discrete relaxation times,
must exactly balance any changes in H(tj). While this may sound like
a problem, it actually allows us to calculate the cure dependence of
the relaxation times.
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If we require Gi(pj)=Gi(pj+1), then from Eq. 12 we must satisfy
the following equation for a change in cure from state pj to pj+1

H[Ti(Pj)] log Ti41(Pj)
H|ti (pje1)] T (Pj)

logTi+1(Pj+1) =log Ti(pj1) + (13)

which is simply a recursion formula for the new relaxation times
given our knowledge of the green rubber (p=0) discrete relaxation
times and the change in H(t) with cure. The green rubber discrete
spectrum is discretionary (whatever fits works!), and the theory of
linear viscoelasticity2 gives us simple algebraic approximations for
H(t). For example, H(t) can be related to the stress relaxation
modulus by

(14)

(= _Go) LG _((dlogGly ? d%logG(t)
()=~ dlogt dlogt d(logt)2

t=21

so that changes in G(t) are translated into changes in H(r).
We now have a complete formalism to describe the evolution of
stress during the cure of carbon black-filled rubber.
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N t 4 de c
o= 0. + —= 0o
9=2 g, + | ds(s) Gulo
do c.
=1+ = —=G; g(D) —= with —9+—D =R
dt aTapi*ci d d aTK
de (E_Ek)
ifD=|§—§k’andE=——=o >0,
o & \E—ek‘
- T (15)
then R=E; otherwise R=0
de £ £ —_ —
where —£+=K —_=_ and log(ar)= C1(T-T,)
dt aTk aTk Cz +T-T,

These equations with Eq. 13 and 14 fully characterize our system.

VI. DETERMINATION OF MATERIAL PROPERTIES

Let's now assume that the above approach will be adopted for
modelling curing rubbers. We are now faced with the task of
gathering the required parameters for the model on a series of new
rubber compounds. It would behoove us to determine the minimal
suite of experiments. As a first step, we will list the required
parameters.

the WLF parameters: C1, C2, and Ty

the damping function parameters: h(y) or A and g(D)

the linear viscoelastic parameters: Gi, Ti(p)

We first must characterize the linear viscoelasticity of the green
rubber. The simplest approach is to employ cone-and-plate geometry
(angle<100) and measure the oscillatory moduli at various
temperatures at extremely small strains (<0.5%). As explained in
Reference 1, it is important to anneal these samples carefully to erase
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the strain history of sample preparation and fixturing such that one
obtains a true representation of the linear viscoelastic modulus. The
WLF parameters (Ci, C2, and Tr) can be determined from the
superposition shifts and G(t) is directly related? to G' and G".

for example, G(t)=G'(®)-0.4G"(0.400)+0.014G"(100)|,_; ,,  (16)

The relaxation spectrum, H(t), could be calculated from Eq. 14 or
directly from G' or G". The relaxation time spacing for the green
rubber is discretionary, so that, using Eq. 12, we can determine the
corresponding Gi's for the green rubber.

While the rubber is between the cone-and-plate, we can
characterize the nonlinearities in a series of straightforward tests,
single step shear strains in which the strain magnitude is increased
from the linear regime (~10-4) to processing strains of interest. It is
imperati-ve to anneal the sample between tests. The vertical shifts
are identically the KBKZ damping function, h(y), and can be related
to the differential damage function, g(D)=h(D) + D dh/dy.

The damage model requires the additional parameter A which
describes the rate of damage healing. This requires examination of
our sample at various intervals after damage has been created. At
the completion of the final step shear strain test described above, we
have created damage equal to the strain amplitude. If we leave the
sample in the rheometer, we can monitor the damage healing by
periodically measuring the apparent linear oscillatory moduli (which
creates no additional damage), and, since damage heals slowly, the
damage during each of these measurements will be constant. From
Eq. 2, the ratio of the apparent linear G' at a time t after the original
step strain test to the virgin linear G' (when there was no damage)
equals g(D). Damage itself will healing as D = 'y(l—e't/ 7‘). We can use
our measured KBKZ damping function to calculate g(D) for various
values of A and compare to our measured g(D).
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G'linear (t)
G'linear (0)

- - dh _
gth (D)= h(Y[l—e t/}‘]) + y[1-e t*] E(Y[l—e t/x])

Bexptl (D)= (17)

For comparison, the KBKZ formalism would predict that the
reduction in G'linear in these experiments arises from the fading
memory of the step strain history rather than from "damage"”, and
anneals with the only available spectrum of relaxation times, G(t).

G. linear () =1-— G(t) [1_h(,Y)] (18)
G'linear (0) G'linear (0)

Using Eq. 17, we can compare experimental data with
theoretical predictions for green carbon black-filled rubber to
determine the best value for A. In Fig. 15, we see that A=320 and 2
minutes fit the data at 22°C and 90°C respectively (this corresponds
to the predicted WLF shift from 22 to 90°C). While it is encouraging
that the fits are reasonable and that A does follow the WLF
prediction, both sets of data suggest that a spectrum of damage
healing times (i.e. many Ai's) would be more appropriate as predicted
by a KBKZ formalism (Eq. 18).

We now require a knowledge of how the relaxation times
depend upon cure. The simplest method for determining extent of
reaction relies on differential scanning calorimetry, as discussed in
Section IV. Frequency scans, as described in Section IlII, can then be
run during cure at various temperatures to gather snapshots of
linear viscoelasticity. Psuedo-time-temperature master curves at
constant extent of reaction can be constructed by piecing iso-cure
snapshots together from these scans at differing temperatures. Of
course, the fully-cured rubber is amenable to a more conventional,
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rigorous investigation of G' and G" as undertaken for the green
rubber and true time-temperature master curves can be constructed.
From these data, we can construct H(t) as cure progresses using Eq.
14, and can then determine the cure dependence of the discrete
relaxation times using Eq. 13.

Finally, we need to determine the increase in equilibrium
modulus with cure. As strange as its may sound, the calculated
stresses for many problems will not depend strongly on the
equilibrium modulus - that is, the rubber really doesn't know it is a
solid. This apparent oxymoron is true due to the extremely slow
relaxations in filled rubbers and the fact that the majority of cure will
occur under no large applied deformations.

Consider the tire shaping process once again. The largest
deformation by far occurs at the start when the rubber is
unvulcanized. Here, the equilibrium modulus is rigorously
unimportant. Only in the latter stages of filling when the
temperature rises sharply and cure begins will the equilibrium
modulus enter. However, since the incremental strains are small at
this point and the relaxation times exceedingly long, the apparent
modulus governing the stress evolution will not reflect the
equilibrium modulus but rather some higher value associated with
the relaxing rubber. For example, in Figure 4, the linear modulus has
only decreased by a factor of two in 103 seconds. Since the decay
slope is roughly -1/10, the modulus will have only decreased by a
factor of three even in an additional 5 years (108 seconds). However,
we must decay yet another decade to observe the underlying
equilibrium modulus, so we see how unimportant the true solid-like
behavior really is. Even the softening effect of the KBKZ formalism
does not help since, from Figure 5, we see that a strain of 10% only
decreases the modulus by an order of magnitude, which still leaves
us far from the equilibrium modulus. The important role of cure is
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not to increase the equilibrium modulus but to change the relaxation
spectrum which gives the appearance of "solid-like" behavior.

The true equilibrium modulus does become more important for
less highly filled rubbers since they display less of the obscuring
nonlinear viscoelastic character, and it may be possible to measure
the underlying equilibrium modulus directly by oscillatory or step
strain experiments at large strains and high temperatures. For the
highly filled rubbers, extremely high strains will be required (e.g.
300% modulus).

VII. CONCLUSIONS

The equations presented here enable calculation of stresses in
carbon black filled rubber through cure. We have tried to minimize
the pain of implementing these equations by chosing differential
versions of the constitutive model for computational efficiency and
by presenting a minimal suite of experiments to characterize new
materials.
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