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ABSTRACT 
General Motors’ Delphi Saginaw Steering System and Sandia National 
Laboratories are working through a Cooperative Research and Development 
Agreement (CRADA) to develop real-time process controls for induction 
hardening systems and develop a better fundamental understanding of the 
induction heating process as related to materials and other process variables. The 
program consists of four tasks: (1) Process Characterization, (2) Data Acquisition 
and Controller Development, (3) Material Characterization, and (4) Computational 
Modeling. In the first year of this program a technical base was established in each 
of these areas that allowed us to understand the induction heating process and to 
identify the best approach to control the process in a laboratory environment. The 
second year of this program was dedicated to implementing this knowledge to 
control the induction heating process in the laboratory environment and to begin 
developing the hardware and software needed for control on the factory floor. 
Accomplishments in the first two years of this program will enable us to move this 
control technology to the factory floor in the third year of this CRADA. 
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EXECUTIVE SUMMARY 

Induction hardening is widely used to provide enhanced strength, wear resistance, and 
toughness in comp,onents made from medium and high carbon steels. Current limitations of the 
process include the lack of closed-loop process control, previously unidentified process and 
material variations which cause continual adjustment of the process parameters, coil and process 
development by trial and error, and an inability to monitor coil condition. Improvement of the 
induction hardening process is limited by an inadequate understanding of process fundamentals 
and materiaVprocess interactions. 

A multidisciplinary team from Sandia National Laboratories and Delphi Saginaw Steering 
Systems is investigating the induction hardening process under a Cooperative Research and 
Development Agreement (CRADA). Delphi Saginaw Steering Systems is a wholly owned 
subsidiary of General Motors. The program consists of four Tasks: (1) Process Characterization, 
(2) Materials Characterization, (3) Computational Modeling, and (4) Data Acquisition and 
Control. The primary goal for the first year of this program was to establish a technical base in 
each of these areas that will allow us to understand the induction heating process and to identifjl 
the best approach to control the process in a laboratory environment. The second year of this 
program was dedicated to implementing this knowledge to control the induction heating process 
in the laboratory environment and to begin developing the hardware and software needed for 
control on the factory floor. In the third and final year of this program, the control system will be 
introduced to the factory floor, and the knowledge and computational tools developed will be 
fhlly transferred to Saginaw. 

During the last 12 months, a number of prototype monitors and controllers were 
evaluated at Sandia. A first generation neural network controller was demonstrated at Sandia and 
in the induction laboratory at Delphi Saginaw. The application of intelligent control algorithms 
has led to the development of a closed-loop process controller that controls the HRC 50 case 
thickness to k 0.1 mm for the combination of one material and one geometry in a single-shot 
process. n i s  controller system uses a unique signal processing algorithm that computes the 
power delivered to the part during the heatingprocess. Physical changes in the part are reflected 
in this signal. Other highlights from the past year include: 

Incorporated heat-to-heat material variations in neural network control. 
Collected data streams for scanning induction systems at Saginaw to explore the possibility of 
controlling a wider variety of induction machines with a neural network system. 
Stockpiled production materials were characterized to assess the impact of variations in 
carbon content, ideal diameter, and Jominy hardenability on the induction hardened product. 
Identified analysis techniques for austination kinetics to study the effect of the high heating 
rates of inductiuon systems on material phase transformations. 
Mapped variations in electromagnetic properties of production materials as a finction of 
temperature and induction frequency. 
Completed parametric analysis with 1 -D model that demonstrated the dominance of Curie 
temperature on process control. 
Continued development of 3-D induction heating model and conducted tests for model 
validation. 
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These accomplishments have positioned the program at a point where the third year goal 
of introducing the neural-network induction control system on the factory floor at Delphi Saginaw 
is achievable. Further work in computational modeling and materials characterization in the third 
and last year of the CRADA will also improve the application and understanding of this important 
idustrial heat treating process. 
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NOMENCLATURE 

A = magnetic field potential, Wb/m 
B = magnetic flux density, Wb/m2 
C = specific heat, kJkg K 
E = electrical potential, V/m 
H = magnetic field strength, A/m 
Hs = saturation magnetic field strength, A/m 
I = current in each circuit, A 
J =  current density, A/m2 
K = thermal conductivity of the part, W/m K 
Q = power input from Joule heating, W/m3 
R = circuit resistance, ohms 
V =  applied voltage in each circuit, V 
T = temperature, K 
T, = Curie temperature, K 

f= frequency, Hz 
h, = hysteresis loss per cycle, 

p = magnetic permeability, Wb/A m 
po = magnetic constant, 4 ~ x 1 0 "  Wb/A m 
p,. = relative permeability at room temperature 
p = density, kg/m3 
CT = electrical conductivity, mho/m 

vii 
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Intelligent Systems for 
Induction Hardening Processes 

(24 Month Report) 

INTRODUCTION 

Induction hardening is widely used in the automotive, off-highway, and industrial equipment 
industries to provide enhanced strength, wear resistance, and toughness in components made from 
medium and high carbon steels [Zinn and Semiatin, 1988, Davies and Simpson, 1986, Tudbury, 
1960, Kern and Suess, 19861. Industrial equipment components such as ball screws, adtuator shafts, 
wear pins, and valve seats are often induction hardened. Commonly hardened components in the 
automotive industry include drivetrain components such as axles, gears, and constant velocity joints; 
engine components such as crankshafts, camshafts, and pump shafts; and chassis components such as 
spindle bearings and steering racks. Delphi Saginaw Steering Systems, formerly Saginaw Division of 
General Motors, is one of the world's largest users of this technology, hardening such components as 
axle shafts, constant velocity joint races, pump shafts, drive shafts, and steering components. Nearly 
250,000 parts are induction hardened daily by Delphi Saginaw at numerous locations in the United 
States and worldwide. 

Induction hardening is extensively used because it is a very fast, energy efficient, in-line 
heat treating technology that applies energy only to the volume of material required to be 
hardened. Short treatment times and decreased distortion generally result in less scrap, rework, 
and post-heat-treatment machining of parts. Induction hardening is also an environmentally 
benign process, requiring no endothermic atmospheres, plating processes, or stripping tanks. In 
contrast, the primary competing heat treating technology, carburizing, is an off-line batch process 
in which the entire volume of material is heated in a furnace. Batch heat treating results in higher 
direct energy costs, longer manufacturing lead times, and greater amounts of distortion when 
parts are quenched [Storm and Chaplin, 19871. In today's competitive environment, the ability to 
heat treat parts rapidly with in-line technology generates significant savings and quality 
improvements. 

Despite these advantages, induction hardening is not as broadly used as it might be. The 
lack of closed-loop process control results in quality control by destructive evaluation, 
necessitating a high-cost infrastructure for high-volume, close-tolerance parts. Previously 
unidentified material and process variations cause continual adjustment of process parameters. 
Variability of the induction hardening process leads to variability in resulting part case depths and 
mechanical properties. Because coil and process development are experience-based, iterative 
procedures, tooling and process development are not often optimized. The associated lead times 
and uncertainties for coil and process development inhibit the use of induction hardening even 
when the potential payoff for use is high. These factors lead to wide process windows, frequent 
destructive inspection requirements, heavier parts due to lower allowable design stress limits, and 
higher-t han-d esirabl e reject rates. 
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A multidisciplinary team from Sandia National Labs and Delphi Saginaw Steering Systems 
was formed in February of 1993 to investigate the induction hardening process under a 
Cooperative Research and Development Agreement (CRADA). The team consists of scientists 
and engineers with expertise in the thermal and fluid sciences, materials and processes sciences, 
pulsed power physics, advanced manufacturing controls, and manufacturing engineering. The 
overall purpose of the project is to improve the fbndamental understanding of the process and 
materiavprocess interactions, and to apply intelligent manufacturing algorithms and control 
systems to the induction hardening process. The anticipated results include a closed-loop control 
algorithm or process monitor with embedded robust materials and process criteria to ensure 
consistent final products. 

To achieve these goals, four interrelated areas of investigation were defined: (1) process 
characterization, (2) material characterization, (3) computational modeling, and (4) data 
acquisition and controller development. A program of coupled experimental and computational 
tasks conducted in multiple phases was defined to progressively move lab concepts to the factory 
floor. A specific part geometry and material (Saturn half shaft and 1050M steel) were selected to 
be representative of Saginaw processes and provide an accurate assessment of the potential to 
achieve closed-loop control. 
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PROCESS CHARACTERIZATION 

Induction hardening of a steel part is accomplished by passing an alternating current through a 
water-cooled copper coil which is coupled to the part by the induced magnetic field as shown in Figure 1. 
The alternating magnetic field induces eddy currents which resistively heat the outer surface of the part. 
The part is then quenched when the austenitized layer reaches the desired thickness. Many process 
parameters and material properties affect the thermal response of the part, including the amplitude, 
frequency and wave shape of the applied voltage; part geometry and the coupling between the coil and 
part; the electromagnetic properties such as electrical conductivity and magnetic permeability which are 
functions of temperature and fiequency; plus the thermophysical properties such as thermal conductivity 
and specific heat of transformation. 

Temperature Profile 
Cooling Connection 

/to Power iter 
- .  

Induction Coil We 

Llne 
d 
Y 
1s 

Magnetic Field Induction Current 

Figure 1. Schematic of the induction heating process. The part and coil are coupled through the magnetic 
field, enabling tracking of the process by monitoring the coil signals. 

The goal of the process characterization task is to develop a noninvasive process signature to 
track the progress of the process and enable closed-loop control. Electrical signals were the primary 
focus of the task fiom the start because they are readily available in production equipment and are easily 
adapted for control purposes. The basis of the process characterization task is that the coil and part are 
integrally linked through the magnetic field so changes in the part properties which occur as a result of 
heating should be reflected in the coil signature [Zinn and Semiatin, 1988, Verhoeven et al, 1986, 
Mordwinkin et al, 1986, Hassel, 1986, 1994, Martin and Wiley, 19561. The challenge is to understand 
and relate the electrical signal variations to the resultant case depth, defined for this project as the depth 
to 50 HRC. 

Delphi Saginaw provided a 10 kHz, 100-kW single shot machine for experimentation at Sandia's 
facility in Albuquerque, New Mexico, along with the expertise of how heat treating is accomplished in an 
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industrial setting on a production line. Delphi Saginaw also provided test pieces which consisted of right 
circular cylinders and spline-end pieces cut from axle bars, along with a number of appropriate induction 
coils. Coil voltage and current monitoring devices were developed by Sandia for reliable operation in the 
high magnetic field environment around the induction coil. Additional machine hncti,ons were also 
instrumented to completely characterize machine operation and control hnctions. A 486 EISA-bus 
personal computer with a megahertz-speed data acquisition card was installed for collection and 
processing of the acquired signals. 

During the first year of the project a unique signal processing algorithm was developed that 
separates the power and energy delivered to the part fiom the total pow.er and energy delivered by the 
induction machine[f;rost et al, 19941. Experimental validation of the signal processing algorithm was 
achieved by using a specially fabricated specimen calorimeter and by using the induction coil as a 
calorimeter. Results from the signal processing algorithm were correlated with the computational model. 

The signal processing algorithm provides a suite of 8 signals which change as the process 
progresses and vary across the parameter space of interest. As an example, the variation of one of the 
signals is shown for three different materials in Figure 2. As shown in the figure, the signal from IN 718, 
a paramagnetic material, stays constant through the heating cycle. The signal fiom AIS1 1050, a 
ferromagnetic medium carbon steel, exhibits a peak in the signal about halfway through a heating cycle 
which resulted in a nominal case depth. A third material, Hiperco 50, a ferromagnetic material with a 
high curie temperature, also exhibited a peak in the signal but the peak occurred later in the cycle. The 

t: 4104 
2 

0 
0 1 2 3 4 5 6 

Time 

Figure 2. Variation of a selected process signal with material. Republic 1050M is a ferromagnetic carbon 
steel, IN 71 8 is a paramagnetic material, and Hiperco is a ferromagnetic material with a high 
Curie temperature. 
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importance of having multiple characteristic process signals that change as the process progresses and 
which vary across the process parameter space is that an unambiguous correlation does not exist 
between a single signal and the depth of hardening. Thus, the use of neural network techniques to find 
subtle, nonlinear correlations between signal features and the depth of hardening is critical to the success 
of this project. The ability to relate characteristic process signals to metallurgical changes occurring in 
the parts using the computational model enabled rational selection of signals and signal features for 
establishing closed-loop control. Physical models of the process decrease the training requirements of the 
neural network by indicating the most critical parameters of the process. 

Sarrinaw ExDeiments 

Second year activities for the process characterization task included factor space experiments 
designed to identifjr the effects of heat-to-heat material variations and geometry effects on the 
characteristic process signals. The task provided support for controller development as a number of 
prototype control algorithms were evaluated. Additionally, data collection and evaluation experiments in 
Delphi Saginaw's induction laboratory, development of alternative methods to measure coil current at the 
coil, and support of modeling experiments were part of the year's accomplishments. 

Experiments were conducted in Delphi Saginaw's induction lab to determine if the signal 
processing algorithms would work equally well on a completely different power supply, and to examine 
the characteristic process signals that result fiom scanning. To evaluate power supply differences, the 
coil and specimens used for experimentation at Sandia were used at Saginaw with a power supply fiom 
their induction lab. The data acquisition system was identical to the system at Sandia and was purchased 
by Saginaw for their use with this project. The signal processing was done in software. Data was 
collected fiom single shot runs on both 4'' long round bars and spline end bars of the same heat of steel. 

The voltage and current waveforms from the Saginaw power supply were damped sinusoids 
rather than the chopped waveforms observed with the power supply in the Sandia laboratory. However, 
characteristic signals such as power into the part and energy into the part had identical features and 
similar magnitudes. Collection of data fiom a relatively small number of samples, approximately 20, 
allowed training of a neural net that predicted case depth to +/- 0.1 mm for the one heat of material used 
in these experiments. This was demonstrated for the Delphi Saginaw process engineers by running the 
process, then processing the data and predicting the case depth. The specimens were then sectioned and 
the case depth measured. The predictions were consistently found to be accurate. 

Scanning processes were also characterized in the Delphi Saginaw induction lab. The machine 
was set up with a standard scanning coil and operating parameters for a common production axle. Both 
round bars and filly machined axle bars were scanned. The voltage and current signals were acquired in 
a manner identical to the single shot experiments and the data was processed by the Sandia-proprietary 
software for signal processing. 

One of the characteristic process signals, total resistance, is shown in Figure 3 for a round bar 
scan-hardened using nominal production settings for the induction machine. Since the scanning rate and 
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. . 
heating parameters were changed by the machine logic over the scanning cycle it is not possible to 
directly relate signal characteristic variations to variations in material properties in the part, but the 
changes observed appear to be similar to the changes that occur in single shot processes. The same signal 
from an axle bar showed dips in the signal associated with reduced diameters and snap ring grooves, i.e. 
changes which reflect changes in coupling between the part and the induction coil. 
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Figure 3. Total resistance in the induction coil derived from voltage and current measurements at the coil 
leads. 

The characteristic signals fiom scanning processes revealed that different and more complex 
control algorithms would be necessary to control scanning processes. Controls may have to encompass 
the heating process as well as the scanning drive controls in order to enable delivery of a specific amount 
of energy to the coupled volume of material and allow optimization of the induction process and 
component properties. This kind of control algorithm will enable much more precise control of the heat 
treatment process and optimization of the processing and properties of induction hardened components. 
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Process Simal Measurement 

The experiments in Delphi Saginaw’s induction laboratory emphasized the need to have alternative 
current measuring devices available, if possible. It was found that installation of a Rogowski coil for 
current measurement at the induction coil is intrusive and requires, in some cases, undesirable redesign of 
the coil and machine. This is a concern Delphi Saginaw personnel expressed several times in the project. 

Pulsed Power Physics expertise was applied to design and fabricate current sensors called B-dot 
sensors for current measurement in the high electromagnetic field environment at the coil. These sensors 
monitor changes in the magnetic field strength by producing a proportional voltage. However, their 
output is sensitive to nearby structures which distort or change the magnetic field. Shielded B-dot probes 
were fabricated with non-magnetic materials to allow the use of these probes in a variety of 
environments. B-dot probes were evaluated in a number locations around the coil and current data was 
collected simultaneously with the Rogowski coil. 

Current signals fiom B-dot probes were similar to the current signals from the Rogowski coil in 
shape. Magnitude was calibrated by using the Rogowski coil signal as a gage. Thus, current signals from 
B-dot probes were suitable for use by the signal processing algorithms which generate the characteristic 
process signals. However, when the Rogowski coil and B-dot signals were collected simultaneously and 
then overlaid, there was always some offset between the two as shown in Figure 4. This apparently small 
difference in signals resulted in significant differences in the magnitudes of the characteristic process 
signals such as energy and power into the part. Since the signal processing algorithms were validated 
using data fiom the Rogowski coil and agreed closely with the results of the calorimetry, it was 
concluded that the B-dot probes were less accurate for use than the Rogowski coil. 

90 100 110 120 130 140 150 160 170 180 190 
Samples - 1 sample = 2uS 

Figure 4. Comparison of current measurements made with the B-dot probe and the Rogowski probe. The 
Rogowski coil measures a slightly larger negative current peak at the second zero crossing. 
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Induction machines also have an internal current sensor used by the machine to regulate the 
power delivered to the part being heated. This internal current sensor was also evaluated for use as the 
current monitor device for the Sandia control algorithm. In the Sandia lab machine, this sensor was 
located prior to the output transformer. The sensor produced similar waveforms which were phase- 
shifled in a non-linear way from the signal collected with the Rogowski coil. In this sense it provided a 
signal similar to the signals from the B-dot probes. Although the signals from the B-dot probes and the 
internal sensor could be used for current measurement and to generate characteristic process signals for 
controller purposes, using these devices essentially decouples the control algorithm from the process 
fimdamentals. Ultimately, it was concluded that this process signal was less desirable for process control 
purposes. 

Factor SDace E xperiments 

During the course of the second year, over two hundred steel specimens were hardened with 
support from the Process Characterization task to generate the data necessary for the Controller 
Development task. Over half of these specimens were fabricated from Inland Steel heats provided by 
Delphi Saginaw and stockpiled for this purpose. The remainder were specimens provided by Delphi 
Saginaw originally from a Republic Steel heat. Experiments were initially conducted using software data 
processing algorithms in order to determine what data were needed to be extracted from the 
characteristic signals for control purposes. Later experiments were conducted with the data processing \ 

algorithms embedded on a circuit board which extracted the required information and provided a 
feedback signal for processs control. The circuit board hardware significantly simplified data acquisition 
and analysis by preprocessing the signals and thereby reducing the routine computations. Factor space 
experiments to characterize heat-to-heat variations in input materials and the effects of geometrical 
differences were delayed until the circuit board hardware was fully developed. 

The materials factor space was conducted to characterize the differences between heats of steel 
from one supplier, Delphi Saginaw provided bars from 36 heats of 1050M steel from Inland Steel Bar 
Company as shown in Table I. Delphi characterized these heats with respect to chemistry and 
hardenability as shown in the table and provided copies of the steel mill certification report as well as their 
own characterization report, the "T" report. 

A fiactional factorial experiment was conducted across the standard range of power and time 
settings determined last year, and across the range of heat-to-heat variations. The heats were divided 
into three ranges of carbon content and ideal diameter, DI, the hardenability factor used by Delphi 
Saginaw to specify their materials. The specified carbon content for the steel is 0.46-0.54% carbon by 
weight, so the heats were assigned a value of "-" for carbon contents of 0.46-0.49%, "0" for carbon 
contents of 0.49-0.51, and "+" for carbon contents of 0.51-0.54%. The ideal diameter range represented 
by these heats was 1.14-1.64 inches, so the heats were assigned a value of "-" for DI in the range of 1.14- 
1.28, "0" for DI in the range of 1.29-1.48, and 'I+" for DI in the range of 1.49-1.64. From this matrix of 
heat-to-heat variables, it was desired to select heats to be representative of the largest differences 
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Table I. Description of 36 heats of 1050M steel provided by Delphi Saginaw for factor-of-space 
experiments. 

I I 

I TReport 
I 

between heats. Five heats were selected to be representative of the corners of the matrix, plus a 
centerpoint, i.e. a +tl' heat, T99130 (high DI, high carbon), a 'I+-'I heat, T98812 (high DI, low carbon), 
a "-+" heat, T98859, a "--" heat, T97947, and a "00" heat, T97934. It should be noted that heat T98859 
was actually a "O+" per the above matrix, but it was the closest heat to a "-+'I combination in the heats 
collected. 
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Analysis of the results of the factor space experiment revealed no consistent variations in response 
with carbon content or ideal diameter. As shown in Figure 5 ,  there was not much difference nor was 
there consistent variation in case depth fiom heat-to-heat at any of the powerhime settings used in the 
factor space. As shown in Figure 6, the maximum energy into the part varied significantly with power 
and time settings across the factor space, but for any given powerhime point in the factor space there was 
virtually no variation in energy into the workpiece. This points out a significant advantage of using neural 
networks in this project. Neural networks are able to account for subtle, non-linear differences in the 
heats of material. As shown in a later section of this report, using DI and weight percent carbon as inputs 
to the neural network, and monitoring the characteristic signals, a neural network was trained with an ' 

accuracy of +/- 0.1 mm across the range of heat-to-heat variations represented by the samples collected 
by Delphi Saginaw. 

. 

In order to evaluate the validity of the approach used to encompass variations in component 
geometry, two fiactional-factorial experiments were conducted at the power and time settings determined 
previously. The first experiment used 4 inch long right circular cylinder specimens with reduced 
diameters which ranged from 0.8 inches to 0.9 inches. The 0.9 inch diameter is representative of the 
reduced diameter section of the target application axle bar. Case depth varied consistently with diameter, 
power and time, as expected. The most important finding was that the characteristic process signals had 
similar features but different absolute values as shown in Figures 7a and 7b. Changing the diameter 
changed the coupling between the part and the coil resulting in less energy into the workpiece and 
reduced resistance as measured by RO, but the features of the signals were identical. Thus, the control 
algorithm is suitable for use across a broad range of reduced diameters. 

The second geometry factor space compared the resulting characteristic signals from standard 
four inch long round bars versus splined bars cut fiom the ends of actual axle shafts. These specimens are 
shown in Figure 8. The purpose of this experiment was to determine if the signal processing and control 
algorithms were suitable for use with more complex geometries associated with actual parts containing 
splines, reduced diameters, and snap ring grooves. As with the reduced diameter bars, the characteristic 
signals had similar features but different absolute values as shown in Figures 9a and 9b. Thus, it was 
determined that the signal processing and control algorithms were suitable for use across the fbll range of 
geometries targeted for this project. 

The knowledge gained in the materials and geometry factor space experiments, as well as the 
experiments conducted in Delphi-Saginaw's induction laboratory, provided critical information for the 
selection of a specific application for implementation of our process control technology on the factory 
floor. After carehl consideration, Delphi Saginaw and Sandia chose to focus the third year effort on 
control and process optimization for the Saturn Intermediate Shaft. The shaft is larger than the axle bars 
used in the experiments at Sandia's facility, but the process and induction machine were similar to the 
process and machine at Sandia. The manufacturing schedule of the Saturn Intermediate Shaft allows for 
real-time experimentation since it is not a three-shift operation. 
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Figure 5. HRC 50 case depth variation from heat-to-heat with fixed control setting on the induction 
power supply. 
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Figure 8. Splined rod geometry used for complex geometry tests 
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MATERIAL TASK 

m e  basic goal of the Materials Characterization Task is to identih and characterize the 
materialsproperties which are critical in determining the response of the material to the 
induction hardeningprocess. In particular, the intent is to understand the relationships between 
heat-to-heat variability and variability in the hardening response so that control algorithms can be 
designed to compensate for the differences. The variation from heat-to-heat can be divided into 
variation in the response of the heat to a given thermal cycle (i.e. what transformations occur and 
at what rate for a given time-temperature path?) and variation in the thermal response of the 
material to a given energy input (i.e. what thermal cycle results from a fixed energy input?). The 
variation of hardening response for specific thermal cycles has been the focus of the second year 
of the project, although experiments to assess the response to input energy have also been 
designed. 

' 

Approach 

During the second year of the project, three primary approaches have been taken. These 
are: (1) Expansion of the hardenability/quench severity analysis developed during the first project 
year; (2) Collection of 1050M heats and development of a database for chemistry, DI, Jominy 
hardenability, microstructure, and cleanliness; (3) Development of experimental and analytical 
methodologies for determining the on-heating transformation kinetics. Each of these approaches 
are discussed below in terms of their relationship to the project goals and the results to date. 

Hardenability/Ouench Severity Analvsis 

report and is discussed in detail in a paper by Knorovsky et al. [ 19951. There are two major 
aspects to this work: (1) An evaluation of the effect of nonisothermal temperature profiles (e.g. 
surface heated) on cooling rates during quenching, and (2) Development of an analysis procedure 
and estimates of case depth variation due to variation in ideal diameter @I) and quench factor 
(H) * 

The basis of the of the hardenabilitylquench severity analysis was described in the first year 

The evaluation of the effect of nonisothermal temperature profiles was conducted by finite 
element modeling and comparing the cooling rates at various depths in 1 inch diameter bars. 
Comparisons were made between bars which were either uniformly heated throughout, or had 
temperature profiles similar to those in induction heated shafts. In essence, the results of this 
work showed that the cooling rates for the given bar size and quenching conditions were not 
strongly affected by the initial temperature profile. As a result, it is acceptable to use quantitative 
hardenability theory (which was developed for uniformly heated material) to assess the influence 
of variations in DI and H. 
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The results of the analysis of case depth variation as a function of ideal diameter and 
quench factor are summarized in Figure 10. The figure shows case depth (as a fiaction of the 
diameter) for a 1 inch diameter bar isothermally heated to austenite. The case depth in Figure 1 is 
calculated from quantitative hardenability theory. The figure also shows the DI range given by the 
GM specification. As shown, two hardening regimes can be identified; that in which the hardened 
depth is limited by the hardenability of the material, and that in which the hardened depth is 
limited by the depth to which the part is austenitized. For the 1050M steel used at Saginaw and in 
the experimental program at Sandia, the hardenability @I) and quench factor (H) are sufficient to 
insure that the hardening operation is in the depth-of-heating limited range. Further evidence of 
this conclusion is that samples in the various factor space experiments at Sandia could be fully 
hardened to the center of the bar, thereby demonstrating that the hardenability and spray quench 
are sufficient. 

Case Depth as a Function of Hardenability 
and Quenching 

(Isothermal Temperature Profile, 1 " Dia.) 
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Figure 10. Case depth as a fhnction of hardenability and quench severity for an isothermally 
austenitized 25.4 mm diameter bar. The current Saginaw Specification aim and range 
for DI are indicated on the figure. 
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There are several important implications to the observation that most induction hardening 
processes are operating in the depth of heating limited range. The first of these implications is 
that process control schemes based on consideration of the energy into the part, such as the neural 
network approach being used at Sandia, are physically appropriate. Secondly, fiom a materials 
perspective, the hardening process is controlled by the on-heating transformation to austenite 
rather than the on-quenching transformation to martensite. Finally, since the formation of 
austenite is mechanistically different than the formation of martensite, traditional hardenabizity 
parmeters such as DI or Jominy end quench testing may not adequately describe heat-to-heat 
variations in induction hardening. A more suitable measure is likely to be the austenite formation 
kinetics at induction heating rates. Means for comparing steel heats in terms of the variation in 
austenite transformation kinetics are under development, and are discussed more fully below. 

Materials Database 

Through agreement with Saginaw, approximately 40 heats of 1050M bar stock were 
stockpiled during the year. These heats have been evaluated at both Saginaw and Sandia using a 
variety of techniques, and have also been used in a number of induction hardening factor space 
experiments. The intent of this effort is to establish a materials database from which realistic heat- 
to-heat variations can be assessed. At Saginaw, the following were determined for each of the 
heats: heat chemistry (as determined by both the steel producer and the Saginaw chemical analysis 
laboratory), Jominy end quench hardenability, macrostructure and grain size, and inclusion rating. 
Figure 1 1 shows an example of these determinations, and represents the Jominy response for 
twenty three of the stockpiled heats. From the results of this work, extremes in Jominy 
hardenability were selected for comparison in terms of induction hardening response. In general 
the hardening response of the these heats, though not dramatically different, did not follow the 
trends that might be expected fiom the Jominy behavior. Following the discussion in the previous 
section, this observation is not unreasonable since the Jominy test is a traditional measure of 
hardenability (Le. is indicative of the on-cooling rather than on-heating behavior of the steel). 
Laboratory induction hardening tests of steel heats with extremes of DI and carbon content, which 
are again primarily measures of on-cooling response, yielded results similar to that for the Jominy 
comparison. 

At Sandia, the magnetic properties of the heats as a function of temperature have been 
evaluated and the austenitization kinetics are being determined. Discussion of the results of the 
magnetic measurements is presented in the Computational Modeling section of this report. The 
determination of austenitization kinetics and its relationship to control philosophies is discussed in 
the following section. 
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Figure 1 1. Jominy results for twenty three stockpiled 1050M steel heats. The curve fits shown 
are based on a four parameter fit of the form HRC = A-[Bexp(CJD)]. 

Austenitization Kinetics 

Figure 12a shows the results of thermocouple measurements of induction heated 25 mm 
diameter cylinders hardened to a depth of approximately 5 mm. Measurements are shown for the 
part surface, 113 radius, 213 radius, and center. For typical shaft applications, the hardened depth 
is also on the order of 4-5 mm, so the 213 radius thermal cycle is indicative of the thermal cycle 
near the root of the case. As shown, the time above the first temperature at which austenite 
becomes stable (kl) is comparatively short and is on the order of approximately 2 seconds. In 
addition, the shape of the thermal cycle above 
austenite formation kinetics must be defined for this type of thermal cycle. 

is approximately parabolic. Clearly, the 

Figure 12b shows an actual thermal cycle (run in a weld thermal cycle simulator) for the 
austenite transformation kinetics study. In this thermal cycle, a two second linear ramp to 710°C 
(&I) is followed by a two second parabolic cycle to a peak temperature of 830°C. As the 
temperature reaches on the cooling portion of the parabola, a helium spray quench is applied 
to insure that all the austenite which had formed is transformed to martensite. The fraction 
martensite and hardness can then be measured. Determination of the transformation kinetics in 
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this manner has two principal advantages over other approaches. First, the simulation 
experiments allow for direct comparison of the heats following thermal cycles which are very 
similar to induction thermal cycles. Secondly, since the relationship between time and 
temperature is fixed by the parabolic shape, kinetic parameters can be determined in a 
comparatively small number of experiments. For this work, the approach described by Ashby and 
Easterling [ 19841 is being explored. The approach considers the transformation in hypoeutectoid 
steels to proceed initially by transformation of the pearlite, followed by transformation of the 
proeutectoid ferrite. Both processes are controlled by carbon diffusion. It is expected that the 
simulation experiments and analysis will yield a materials "characteristic" which will be applicable 
to control algorithms. In addition, by selecting peak temperatures between &I and &3, heat-to- 
heat variations in the positions of the phase boundaries can be assessed. 

Initial results using the parabolic thermal cycles have shown differences between heats. 
For example, Figure 13 compares the hardness of two 1050M steel heats following thermal cycles 
which consisted of a two second linear ramp to 7 10°C followed by a three second parabolic cycle 
above that temperature and a helium quench. The data is shown in terms of hardness as a 
fhction of peak temperature for the parabolic cycle. At high temperatures where austenitization 
is complete, the two steels show essentially the same hardness. However, for peak temperatures 
near and below the upper critical temperature (770 and 740°C) the steels display significantly 
different hardness. These two heats have previously been shown to have a factor of two 
difference in prior austenite grain size, with the Bethlehem heat being finer. The results of 
Figure 4 are therefore consistent with the microstructural observations and the transformation 
mechanism described by Ashby and Easterling [1984], since the finer microstructure can be 
expected to transform more rapidly. 

If it is assumed that the fitted curves of Figure 13 are reasonable representations of the 
hardness as a fhction of peak temperature, it is possible to develop a first order estimate of the 
difference in hardening depth expected for these two steels. To achieve a hardness of 50 HRC, 
the two steels require slightly different peak temperatures (approximately 748 and 756°C for the 
three second parabola). From Figure 12a, a curve of depth versus peak temperature can be 
constructed and the derivative of this curve at a peak temperature of 750°C is roughly 0.03 
d o c .  Thus, for the 8OC difference in peak temperature, the expected variation in hardened 
depth is on the order 0.24 mm. Clearly this estimate is only approximate and requires substantial 
refinement. However, the estimate demonstrates that variation in the on-heating transformation 
behavior can result in significant variation in the hardening response. 

Following refinement of the kinetic measurement methods and analysis, the stockpiled 
1050M heats will be compared. In addition, Saginaw has also supplied machined samples of a 
number of other steels which are induction hardened. These materials will also be evaluated in 
terms of their on-heating transformation kinetics. 
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Figure I2a. Results of thermocouple measurements for a 25 mm diameter cylindrical bar induction 
hardened to approximately 5 mm case depth. 
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Figure 12b. Typical thermal cycle used ~OJ. evaluation of austenititation kinetics. 
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Figure 13. Comparison of hardness for two 1050M heats following thermal cycles consisting of a 
two second linear ramp to 7 10°C followed by a 3 second parabolic cycle above that 
temperature and a helium quench. 
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COMPUTATIONAL MODELING TASK 

The computational modeling task of the induction heating CRADA with General Motors 

Develop a findamental understanding of the induction heating process 
Aid in the interpretation of experimental results 
Assist in the development of controls 
Determine the significance of material properties. 

has four primary objectives: 

These tasks are intended to maximize the likelihood that we produce a science-based control 
system that accurately controls the depth of hardening in automotive parts. To compliment the 
control development efforts, the modeling task is also committed to developing a computer model 
that can predict temperature profiles in parts during the induction heating process. 

Approach 

During the second year of this project, three major activities were undertaken in the 
Computational Modeling Task. These activities are as follows: (1) Confirm power estimates 
derived from electrical signals, (2) Study electromagnetic variations in axle materials and the 
impact of these variations on the induction heating process, (3) develop a 3-D model to predict 
temperature profiles in inductively heated parts and veri@ the model with experimental results. 
The Computational Modeling Task activities are described more hl ly  in the following paragraphs. 

Validation of Power Estimates 

One of the unique contributions of this program is a system model that allows us to 
calculate the power and energy that is delivered to the part and the coil. These calculations are 
based upon the electrical signals from the coil, and the calculation routines are described in the 
first annual report of this CRADA [Adkins et al, 19941 

A calorimeter system was developed that allows us to veri@ the results of the power 
predictions. The energy distribution in the partkoil system that was measured with the calorimeter 
and predicted with the electrical signature analysis is shown in Figure 14. Calorimeter 
measurements on water-cooled part showed that 73 kJ of energy went into the part and about 10 
kJ went into the water cooling the coil. It was estimated that about 10 kJ was conducted up the 
bus to the coil and roughly 6 W went into heating the coil. Based on the electrical signature, 
75 kJ went into the part and 98 W went into the coiVpart system. The part energy predictions 
matched well with the calorimeter measurements, and the energy prediction into the entire system 
was reasonable once the estimates for the stored and conducted energy were included. 

The water-cooled part had a rapid response time, and because it was water-cooled, it was 
possible to run the system to a steady state condition. Under steady conditions, the measured 
power to the part was 18.8 kW, and the power based on the electrical signature was 19.3 kW. 
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Figure 14. Energy distribution in induction heating system measured through calorimetry and 
electrical signal data reduction. Stored energy and conduction away form the coil are 
estimated. 

The calorimetry work showed that the electrical signature analysis could predict the power to the 
part to within 3%. 

Electromagnetic Propertv Variations in Materials 

In the first year of this CRADA, a one-dimensional computer model was developed that 
predicts temperature profiles in cylindrical axle stubs in a long induction coil. Along with the 
temperature predictions, the model also illustrates the impact that property changes have on the 
power that is transferred from the induction coil to the part. As the surface temperature of the 
part exceeds the Curie temperature, the total power that is transferred to the part declines. This 
phenomena is also observed in the power signal that is derived from the electrical measurements 
on the coil. 

The importance of the Curie temperature on the heating profile in the part becomes 
apparent when a comparison is made between the influence of various properties, such as Curie 
temperature, hysteresis losses and electrical resistance. Figure 15 shows the predicted temperature 
profile at the end of the heating cycle in a 23.8-mm diameter 1050 steel stub. At the end of the 5- 
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second heating cycle, the core of the stub was above 6OO0C, and the 780°C Curie temperature 
was exceeded at a depth of 5 mm for all four cases. Figure 15 shows that a 10% increase in 
hysteresis losses has virtually no effect on the heating profile, and a 10% increase in the electrical 
resistance only slightly lowers the final temperatures. Increasing the Curie temperature by 20°C, 
however, causes the surface temperature to increase by 40°C when compared to the base case. In 
fact, the temperature profile throughout the part increases with the higher Curie temperature 
which indicates that the part has absorbed more energy. 

I - BASECASE 

1 I 1 

Since the Curie temperature does not appear in material specifications, variations among 
steel suppliers and material lots from the same producer could influence, the induction hardening 
of parts. The magnetic properties of the production steels generally are not known in detail. A 
system to measure the magnetic properties of steel samples as both a function of temperature and 
frequency was constructed at Sandia. The hysteresis measurement system is shown schematically 
in Figure 16. The material in question is cut into thin washers that are laminated together to form 
the core of a transformer. A current through the primary winding of the transformer creates a 
magnetic field around the core, and the resulting magnetic flux in the material is detected with the 
secondary coil. The samples are placed in an oven to control the temperature while the magnetic 
hysteresis properties are measured. 
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Figure 15. Parametric comparison of temperature profiles a t  the end of a 5-second induction 
heating cycle. Results are from the I-I) model for a cylindrical part. Profile for 10% 
increase in hysteresis loss coincides with base case. 
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Figure 16. Schematic of system for measuring electromagnetic properties. 

Examples of the magnetic characteristics of the 1050 steel that is used in Saginaw's 
production half-shafts are shown in Figures 17 and 18. The area within the hysteresis loop 
represents the losses that occur as the magnetic field reverses around the part. This loss 
contributes to the heating of the part. The slope of the loop represents the magnetic permeability. 
During the heating process, the temperature of the part increases, and operating frequency of the 
induction heater changes. Figures 17 and 18 show that both of these effects alter the hysteresis 
losses in the part. As the frequency increases, the energy losses increase, and as the temperature 
rises, losses decrease until the material reaches the Curie temperature. Above the Curie 
temperatures, hysteresis losses no longer contribute to the heating of the part. 

Figures 19 and 20 show the magnetic characteristics for two samples of 1050 M steel 
from two suppliers. The properties are similar at room temperature. As the temperature rises, 
however, hysteresis losses drop more rapidly in the Inland steel and the permeability is noticeably 
higher. The more rapid drop in losses indicates that the Inland steel has a lower Curie temperature 
than the Republic. 
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Figure 17. Measured magnetization hysteresis as a fbnction of frequency. 
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Figure 18. Measured magnetization hysteresis as a fbnction of temperature. 
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Figure 19. Comparison of measured relative permeability of 1050M steels fiom two vendors. 
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Figure 20. Comparison of measured hysteresis losses of 1050M steels from two vendors. 
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SpecifLing the electromagnetic properties for the material is probably impractical for 
automotive parts production. However, once an induction controller is properly trained, the 
controller should be able to compensate for the material variations. Using the Curie temperature 
as an input parameter to the neural-network may make it possible to control the proc,ess over a 
larger manufacturing parameter space. Measuring the Curie temperature with the current system 
is somewhat inconvenient, but it may be possible to devise a system that will give a measure that 
is indicative of the Curie temperature. This is one avenue that will be investigated in the next year 
of this CRADA. 

3-D Model Development 

While the 1-D model can give usehl insights into the dominant parameters in the 
induction heating process, a full three dimensional model is needed to give practical answers to 
induction heating problems. For the 3-D model, the coupled electromagnetic and thermal fields 
that are associated with the induction heating process are being simulated using a combination of 
the finite element codes; TOR0 I1 solves the electromagnetic problem and COYOTE I1 provides 
a solution to the thermal problem [Gartling and Hogan, 19941. The two finite element codes are 
coupled through the Parallel Virtual Machine (PVM) software which allows the individual codes 
to be maintained separately and run on one or more CPU’s. 

The electromagnetic solution determines the volumetric heating in the part that results 
from resistance heating and hysteresis losses. This heating is used as an input to the thermal model 
to determine the temperature profile in the part as a hnction of time. Temperature changes, of 
course, affect the electromagnetic properties that influence the electromagnetic solution. The time 
scale for the electromagnetic response (tmxl/J) is significantly less than the thermal time scale 
(t&&iameter%herniaZ diffusivi@). To save on computational time, the thermal problem is 
accurately solved in time, and the electromagnetic problem is updated periodically as dictated by 
significant changes in temperature. 

Table II provides the basic equations that are used to provide a solution to the induction 
heating problem. A quasi-static form of Maxwell’s equations is used to solve the electromagnetic 
problem, and Fourier’s law is used to solve the thermal problem. The electrical conductivity, 
thermal conductivity, specific heat and density are all allowed to change with temperature. The 
magnetic permeability is a function of both the temperature and the magnetic flux density. 

Work on the 3-D induction heating computer code has not been completed. Both codes 
are operational, but work is currently underway to fully couple the codes and to validate the 
predicted results. 
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Table 11. Governing equations for 3-D model. 

ELECTROMAGNETIC EQUATIONS: 

B = V x d  

1 
P 

H = - B  

THERMAL EQUATION: 

PROPERTIES: 
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3-D Test Results 

The first full test case for the 3-D model will be a grooved cylinder made of 1050M. The 
grooved sample is 25.4-mm long by 23.8-mm in diameter with four longitudinal grooves. 
Induction heating tests have been performed on one of these samples to measure the temperature 
profile during a heating cycle. Thermocouples were intrinsically welded in holes halfway through 
thle sample at the four locations shown in Figure 2 1. A slip-ring assembly allowed the part to be 
rotated during the heating process. 

Figure 22 shows the measured temperatures in the part during a 5 second induction 
heating run. Coil signal measurements indicated that a total energy of about 34.6 W went into the 
piirt while about 50 W went into the coiVpart system. The temperature at the surface of the part 
rase the fastest, but by the end of the heating cycle, the temperature at the base of the groove 
slightly exceeded the surface temperature. The power to the part that was based on the electrical 
signature is given in Figure 23, The profile shows the characteristic drop in power as the surface 
temperature nears the Curie temperature (1 436OF). Figure 24 shows the final hardening profile in 
thle part. 

Results from this experiment and others will be used to veri@ the predictions of the 3-D 
model when it becomes filly operational. 
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Figure 2 1. Location of thermocouples in splined test sample. 
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Figure 22. Measured temperatures in splined part during induction heating, 
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Figure 23. Power to the splined part during induction heating. 
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DATA ACQUISITION AND CONTROLLER DEVELOPMENT 

n e  goals for the Data AcquisitiodController Development Task includes developing a real-time 
control scheme for the induction hardening process for a complex-geometry production part. So far, the 
following items have been achieved: identified the pertinent information for real-time on-line control; 
tested prototype data acquisition and signal processing systems and process control system; developed a 
monitor/control scheme for simple geometry, single material. Currently, the system is ready to begin 
implementation at the Saginaw facilities for the Saturn intermediate shafts. 

The unique monitor and controller have been successklly demonstrated. Instead of using trial and 
error to set up the machine for a specific case depth requirement, the operator may now set the power to 
within a normal specified range, enter the material properties (from the plant’s incoming reports) and 
enter a desired case depth. The controller monitors the energy into the part and into the machine, and 
determines when the part has obtained the desired case depth. 

To achieve this new method of control, several tasks were completed in CRADA Year 2. A 
model of the system was built for control methodology from the factor space experiments. Neural 
networks were used to develop the monitor and control scheme, which was demonstrated in June 1994. 
In July, the monitor was transferred to the Saginaw lab machine, and successklly demonstrated there. 
Then, a real-time system was designed and built into prototype hardware. This was demonstrated as both 
a monitor and controller in late 1994. The heat-to-heat material variations and geometry effects on the 
system model were also evaluated, along with data from scanning runs. 

Svstem Model 

A system model was developed for the control methodology. The signal processing and data 
evaluation system was improved for higher fidelity output, basically getting some of the ‘noise’ out of the 
system. The necessary experiments for process characterization and neural network training were 
completed. Experiments were also done for model validation, for both the control model and the first 
principles model. The extensive workstation calculations for signal processing were eventually replaced 
by a hardware signal processor. 

Neural Network DeveloPment 

Extensive development was done in the area of pre-processing of the machine signals for input to 
the neural network. Due to the time required to obtain the endpoints for each run of data, a limited 
amount of data was available for training. By judiciously choosing the input parameters, a network which 
generalized relatively well was developed. The input signals investigated included: energy into the 
workpiece, maximum average power, maximum total resistance, number of seconds of heating after 
reaching Curie temperature, materials properties (DI and carbon content), and several variations on each 
of these signals. 
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A sketch of one of the neural networks investigated is seen in Figure 25. Backpropagation 
learning was used for this network. Sigmoidal and hyperbolic tangent fbnctions were used for the node 
transfer fhctions. Use of linear outputs and various weighted learning schedules were also investigated 
for this set of data. 

Investigation was also done into the use of signals from alternate sensors, including a B-dot 
sensor, an internal current sensors and a Rogowski coil. These inputs were investigated in conjunction 
with work being performed in other task areas. (See discussion in Process Characterization Section.) 

Output Node r l  ~c5o DepthEstimate 

Input 
Nodes 

Energy into Total Resistance Material 
Workpiece Energy Property 

Figure 25. Neural network configuration 

Results 

For purposes of demonstrating of the technology, it was first desired to show the ability of a 
neural network to adequately estimate the outcome of an induction run fiom the electrical signals. From 
the network development discussed previously, some successful networks were obtained for a simple 
geometry and a single heat of material. These results are shown in Figures 26 and 27. The points shown 
in Figure 26 correspond with the data sets that were used to train the network. The solid lines show the 
RC50 depth that was estimated by the neural net when the training data set was used as the input to the 
net. Figure 27 shows a comparison between the estimated and measured HRC 50 depth for an 
independent set of test data (i.e., data that were not used in training the network). The outputs fiom the 
given network were able to predict the HRC50 depths to within the manufacturing design tolerances of 
+/- 0.10mm. 
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Figure 26. Training the neural network. 
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Figure 27. A comparison between measured RC50 depths and neural network estimates for an 
independent data set. 
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From a first examination of the experimental data from the material factor space, some general 
trends can be seen. (See Figures 28 and 29). Notice, however, that in the region of greatest interest, 
RC50 of 4.0 to 5.0 mm, these trends are not separable enough to form a straightforward or linear 
relationship between any one measurable feature and the output of RC50 depth. The neural network, 
which is known for its nonlinear mapping capabilities, is able to couple several of the inputs to map to a 
reasonable estimate of the output. 

The material factor space experiments encompassed a wide range of material properties. The 45 
data points fiom this experiment were used to train a network. Results fiom the training set are shown in 
Figure 30. This shows a good mapping of the training data to within an average error of .0704mm. The 
test set consisted of 6 data points which were not included in the training set. As can be seen in Figure 
3 1, the generalization was fairly good, to an average total error of 0.1240mm. Considering that the best 
methods for measuring the output data are accurate to only +LO.  lmm, this mapping is good. 

Demonstration in Saainaw Lab 

The data acquisition system was duplicated in the Saginaw lab on a duplicate production machine 
by a joint effort of the Saginaw and Sandia participants in June of 1994. The resulting waveforms from 
the Saginaw machine differed greatly from the waveforms on the machine at the Sandia facility. Data 
were acquired fiom this machine for simple and complex geometry parts, and for single shot and scanning 
modes of operation. Despite the differences in waveform shapes, a neural network of the same 
architecture and input domains was trained for the Saginaw machine from a small lot of data. Using this 
newly trained network, a software-based monitor was demonstrated to predict the hardening depth to 
within the 0. lmm tolerance. 

Demonstration of Monitoring and Control 

Demonstrations were done separately for both monitor and controllers. The monitor systems were 
demonstrated at both Sandia and Saginaw in May, June and July, 1994. These monitors were run using 
software schemes only, which took about 10 minutes to complete computations on a PC. A hardware 
signal processor was necessary to implement a real-time estimator and controller. A rough prototype of 
the hardware was in place in August. Due to the format changes in the data, new training data were 
required for this hardware. A new network was trained, and the real-time controller was successfhlly 
demonstrated on the Sandia machine in November. This controller was able to accurately control the 
machine to achieve a desired RC50 depth to within 0. lOmm in a single heat of steel. 

Tested and Evaluated Prototype Controllers 

Sandia designed the signal processing hardware to replace the extensive calculations done on the 
host computers. The first rough prototype was built in July, and implemented at Sandia in August. After 
much development of the electronics and elimination of noise problems, the real-time controller was 
demonstrated in November. Printed circuit boards were built in January of 1995. 
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It is important to note that the signal processing hardware is essential for the real-time prototype 
controllers. Several networks were tested for accurate estimation of the hardness depth. The best 
systems were able to control the process to 0.1 O m .  Rough compensation was done for the delay times 
between the host computer and the machine controllers. 

Energy into Wkpc vs. RC 50 - Material Variations 
6 I 

4 -  

X 
0 

x x  

X x O  

x o  
xc. x 

x x  0 
0 

'8.12 O i 4 -  0.66 0.68 0.7 0.72 0.74 C 
EWP 

'6 

Figure 28. Results from the material factor of space experiment showing the relationship between the 
energy into the workpiece and the RC5O depth. 
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Figure 29. Results fiom the material factor of space experiment showing the relationship between the 
change in the overall circuit resistance and the RC50 depth. 
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Figure 30. Training of the neural network using the 45 data points generated in the factor of space 
experiments. 
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Figure 3 1 .  RC50 depth estimated by the neural network trained with the factor of space experiments. 
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SUMMARY A N D  CONCLUSIONS 

Induction hardening is widely used to provide enhanced strength, wear resistance, and toughness 
in components made from medium and high carbon steels. Currently, use of the process is limited 
because of several factors. These factors include: (1) the lack of closed-loop process control, (2) 
unidentified process and material variations cause continual adjustment of the process parameters, and (3) 
coil and process development is by trial and error. To overcome these limiting factors, it is necessary to 
develop an improved understanding of process fundamentals and materidprocess interactions. It is also 
necessary to develop a robust control system that can compensate for changes in process variables. 

A multidisciplinary team from Sandia National Laboratories and Delphi Saginaw Steering Systems 
(a wholly owned subsidiary of General Motors) is investigating the induction hardening process under a 
Cooperative Research and Development Agreement (CRADA). The program consists of four tasks: (1) 
Process Characterization, (2) Materials Characterization, (3) Computational Modeling, and (4) Data 
Acquisition and Control. Over the past year, advances have been made in each of these areas that will 
further our ultimate goal of improving the industrial application of induction hardening of materials. The 
primary goal for the first year of this program was to establish a technical base in each of these areas that 
allowed us to understand the induction heating process, and to identifjl the best approach to control the 
process in a laboratory environment. The second year of this program was dedicated to implementing this 
knowledge to control the induction heating process in the laboratory enviroment, and to begin developing 
the hardware and software needed for control on the factory floor. In the third and final year of this 
program, the control system will be introduced to the factory floor and the knowledge and computational 
tools developed in this program will be Miy transferred to Saginaw. 

Accomplishments in each of the task areas in this, the second year of the CRADA can be 
summarized as follows: 

Process Characterization 

Characteristic process signals were evaluated across heat-to-heat variations within material supplied 
by one vendor. While no clear cut correlations were found, the use of ideal diameter and carbon 
content were useful inputs for the neural network based controller. 
Characteristic process signals were evaluated across a range of geometry variations. For both right 
circular cylinders of various diameters and splined-end bars, variations in the absolute values of the 
signals were observed but the signal characteristics were identical. These variations required no 
changes to the signal processing or control algorithms. 
Alternative coil current monitoring approaches were developed and evaluated. B-dot probes 
mounted on the coil and the internal current sensor of the machine can both be used for control 
purposes. However, the absolute values of the characteristic signals produced when using these 
sensors cannot be correlated with to the findamentals of the process. 
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Single shot and scanning process data from different power supplies were studied at the Saginaw 
Induction lab. The characteristic signals were consistent across power supplies. Scanning processes 
will require different control algorithms. 

Materials Task 

The hardenability/quench severity analysis has been completed. The results of this analysis 
indicate that the induction hardening process generally operates in the heating limited regime. 
As a result, the characteristics of the formation of austenite are of primary importance in this 
process. Since the process is controlled by on-heating behavior, process controls based on 
energy input are physically appropriate. 
A jointly generated materials database has been established for a large number of stockpiled 
heats. This stockpile and database is being expanded and provides valuable information on 
real heat-to-heat variation. 
A new method for characterizing the austenitization kinetics of hypoeutectoid steels has been 
developed. Although this method has not been fblly refined, differences between heats have 
been observed. It is believed that this approach will yield materials characteristics which are 
applicable to process control philosophies. 

Modeling; Task 

A thermal analysis validated the system-model estimated power distribution to the coil and 
workpiece. Calorimetry work showed that the electrical signal analysis that is used in controlling the 
induction heater can estimate power to the workpiece to within 3%. 
Magnetic property variations were evaluated among material suppliers. Variations in magnetic 
properties were small for 1050M steel at room temperature. At higher temperatures, however, 
variations were significant, and they would lead to differences in the induction heating profile. A 1- 
D induction heating model showed that the sensitivity to Curie temperature variations dominates the 
induction heating process. 
Coding for the 3-D induction heating model was completed. The coupled electromagnetic and 
thermal fields that are associated with the induction heating process are simulated using a 
combination of the finite element codes; TOR0 I1 solves the electromagnetic problem and 
COYOTE I1 provides a solution to the thermal problem. The two finite element codes are coupled 
through the Parallel Virtual Machine (PVM) software which allows the individual codes to be 
maintained separately and run on one or more CPU’s. Validation of the code is still pending. 
Test data was generated to validate the 3-D model. Temperature profiles on a splined shaft were 
obtained during an induction-heating and quench cycle. The electrical signature was also measured 
during the heating cycle to give an estimate of the power to the part and coil. Together, this 
information will be used to validate the 3-D model results. 
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Data Acauisition and Control 
A prototype hardware signal processor was designed and built to speed computations. The signal 
processing hardware was required for real-time control. 
A first generation neural network controller was demonstrated at Sandia. Application of intelligent 
control algorithms has led to the development of a closed-loop process controller that controls the 
HRC 50 case thickness to k 0.1 mm for the combination of one material and one geometry in a single- 
shot process. 
A neural network controller was also sucessfblly demonstrated at the induction laboratory at Delphi 
Saginaw . 
Data streams were collected for scanning induction systems at Saginaw to explore the possibility of 
controlling a wider variety of induction machines with a neural network system. 

These accomplishments have positioned the program at a point where the third year goal of 
introducing the neural-network induction control system on the factory floor at Delphi Saginaw is 
achievable. Further work in computational modeling and materials characterization in the third and last 
year of the CRADA will also improve the application and understanding of this important idustrial heat 
treating process. 
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