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Abstract

OTTER (Organized Techniques for Theorem-proving and Effective Re-
search) is a resolution-style theorem-proving program for first-order logic
with equality. OTTER includes the inference rules binary resolution, hy-
perresolution, UR-resolution, and binary paramodulation. Some of its
other abilities and features are conversion from first-order formulas to

clauses, forward and back subsumption, factoring, weighting, answer
literals, term ordcring, forward and back demodulation, evaluable func-
tions and predicates, and Knuth-Bendix completion. OTTER iS coded in
C, is free, and is portable to many different kinds of computer.

1 Introduction

OTTER (Organized Techniques for Theorem-proving and Effective Research) is a
resolution-style theorem prover, similar in scope and purpose to the AURA [22] and
LMA/ITP [15] theorem provers, which are also associated with Argonne. OTTER
applies to statements written in first-order logic with equality. The primary design

considerations have been performance, portability, and extensibility. The program-
ming language C is used.

OTTER features the inference rules binary resolution, hyperresolution, UR-

resolution, and binary paramodul_tion. These inference rules take a small set of
clauses and infer a clause; if the inferred clause is new, interesting, and useful, it is

stored and may become available for subsequent inferences.

Other features of OTTER are the following:
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• Statements of the problem may be input either with first-order formulas or

with clauses (a clause is a disjunction with implicit universal quantifiers and
no existential quantifiers). If first-order formulas are input, OTTER translates
them to clauses.

• Forward demodulation rewrites and simplifies newly inferred clauses with a

set of equalities, and back demodulation uses a newly inferred equality (which
has been added to the set of demodulators) to rewrite all existing clauses.

• Forward subsumption deletes an inferred clause if it is subsumed by any ex-
isting clause, and back subsumption deletes all clauses that are subsumed by
an inferred clause.

• A variant of the Knuth-Bendix method can search for a complete set of reduc-
tions and help with proof searches.

• Weight functions and lexical ordering decide the "goodness" of clauses and
terms.

• Answer literals can give information about the proofs that are found.

• Evaluable functions and predicates build in integer arithmetic, Boolean op-

erations, and lexical comparisons and enable users to "program" aspects of

deduction processes.

Although OTTER has an autonomous mode, most work with OTTER involves in-
teraction with the user. After the user has encoded a problem into first-order logic
or into clauses_ he or she usually chooses inference rules, sets options to control the
processing of inferred clauses, and decides which input formulas or clauses are to
be in the initial set of support and which (if any) equalities are to be demodula-
tors. If OTTER fails to find a proof, the user may wish to try again with different
initial conditions. In the autonomous mode, the user inputs a set of clauses and/or
formulas, and OTTER does a simple syntactic analysis and decides inference rules

and strategies. The autonomous mode is frequently useful for the first attempt at a
proof.

1.1 What OTTER Isn't

Some of the first applications that come to mind when one hears "automated the-

orem proving" are number theory, calculus, and plane geometry, because these are
some of the first areas in which math students try to prove theorems. Unfortunately,

OTTER cannot do much in these areas: interesting number theory problems usually

require induction, interesting calculus and analysis problems usually require higher-
order functions, and the first-order axiomatizations of geometry are not practical.

(Nonetheless, Art Quaife has proved many interesting theorems in number theory
and geometry using OTTER [20, 19].) For practical theorem proving in inductive

theories, see the work of Boyer and Moore [2, 3].

OTTER is also not targeted toward synthesizing or verifying formal hardware or

software systems. See [7, 6] for work in those areas.
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Summaries of other theorem-proving systems can be found in proceedings of the

recent Conferences on Automated Deduction (CADE) [23,9].

1.2 History, New Features, and Changes

There have been several previous releases of OTTEa--version 0.9 was distributed
at CADE-9 in May 1988, version 1.0 was released in January 1989, version 2.0 in
March 1990, and version 2.2 July 1991. There was also a minor release, version
2.2ax, in January 1992.

Summary of New Features

• In the autonomous mode (See. 17.1), the user simply inputs clauses and/or
formulas, and OTTER decides on inference rules and strategies.

• The hot list (See. 17.2) can be used to give emphasis to some of the input
clauses. (Suggested by Larry Wos.)

• The user can declare function symbols to be infix with associativity and prece-
dence so that expressions can be written in a natural way (See. 4.6).

,,

• Clauses can be written in sequent notation (See. 17.11). (Suggested by Art
Quaife.)

• The new evaluable functions include bit string operations (See. 9) and floating-

point operations (See. 17.9).

• The inference rule gL builds in a generalization principle for cubic curves (See.

17.12). (Suggested by R. Padmanabhan.)

• The user can write in C his or her own evaluable operations (See. 17.10).

• Given clauses can be selected interactively (See. 6.1.1). (Suggested by Bob
Veroff.)

_

• Ordered hyperresolution (Sec. 6.1.9) has been implemented (suggested by Mark
Stickel) and is the default.

• Some optirnizations have been implemented for propositional problems (See.
6.1.9).

• The justification lists for binary resolvents and paramodulants now tell which

literals or terms were unified to produce the clause (Sec 15).

Summary of Changes

• Term ordering has been simplified (See. 8)._

• Factoring is now applied also as a simplification rule (See. 6.1.4); for example,

the clause p(x)]p(a) simplifies to p(a).



• Conditional demodulators (See. 17.4) are written in a more natural way.

• Some of the options cause other options to be changed automatically. The

automatically changed options can now be overridden.

• Setting the flag binary_res causes the flags factor and unit_deletion to
be automatically set.

• The flag knuth_bendix causes a different set of options to be changed (Sees.
6.1.5 and 8.3).

• Multipliers in weight templates are written differently (See. 10).

• The parameter value that indicates "no limit" or "no action" has been changed
from 0 to - 1 for the parameters max_seconds, max.mere, max_given, max_gen,

max_kept,max_literals,max_proofs,demod_limit,and report.

Bugs in OTTER 2.2. The following bugs in OTTER 2.2 have been fixed.

• Calculation of tlle level of a proof would sometimes cause OTTER 2.2 to hang

just after printing the --- PROOF --- message.

• In some cases, OTTER 2.2 would crash when doing complicated demodulation
during evaluation of a negative evaluable literal during hyperresolution.

• Unit deletion with a unit clause containing an answer literal with variables
not in the ordinary literal was not handled correctly.

• When a multiliteral clause merged into an equality unit and the flag
dynamic_domod was set, the equality would never become a demodulator.

1.3 Useful Background

This manual does not contain an introduction to first-order logic or to automated

deduction. We assume that the reader knows the basic terminology including term
(variable, constant, complex term), atom, literal, clause, propositional variable, func-

tion symbol, predicate symbol, 5'kolem constant, Skolem function, formula, and con-
junctive normal form ( CNF), resolution, hyperresolution, and paramodulation. See

[25], [4], or [14] for an introduction to automated theorem proving, see [26] for an
overview of the field, see [21] and [1] for collections of important papers, and see

[24] for a list of outstanding general problems in the field.

2 Outline of OTTER's Inference Process

Once OTTER gets going with its real work--making inferences and searching for

proofs--it operates on clauses and on clauses only. If the user inputs nonclausal
first-order formulas, OTTER immediately generates clauses from them.



As with its predecessors AUR^ and LMA/ITP, OTTER'S basic inference mechanism
is the given-clause algorithm, which can be viewed as a simple implementation of

the set of suppcrt strategy [25]. OTTER maintains four lists of clauses:

usable. This list contains clauses that are available to make inferences.

sos. Clauses in list sos (set of support) are not available to make inferences; they
are waiting to participate in tile search.

passive. These clauses do not directly participate in the search; they are used only
for forward subsumption and unit conflict. The passive list is fixed at input
and does not change during the search. See Sec. 12.

demodulators. These are equalities that are used as rules to rewrite newly inferred
clauses.

The main loop for inferring and processing clauses and searching for a refutation
operates mainly on the lists usable and sos:

While (sos is not empty and no refutation has been found)

1. Let Eiven_clause be the 'lightest D clause in sos;

2. Move given_clause from sos to usable;

3. Infer and process ne. clauses using the inference rules in

effect; each he. clause must have the siren_clause as

one of its parents and members of usable as its other

parents; new clauses that pass the retention tests

are appended to sos;

End of .hile loop.

The set of support strategy requires the user to partition the input clauses into
two sets: those with support and those without. For each inference, at least one

of the parents must have support. Retained inferences receive support. In other
words, no inferences are made in which all parents are nonsupported input clauses.

At input time, OTTER'S list sos is the set of supported clauses, and usable is the
nonsupported clauses. (Once the main loop has started, usable no longer corre-

sponds to nonsupported clauses, because sos clauses have moved there.) OTTER'S

main loop implements the set of support strategy, because no inferences are made
in which all of the parents are from the initial usable list.

The following paragraph, tries to answer the frequently asked question "At a cer-
tain point, OTTER has all of the clauses available to make the inference I want, and

one of the potential palvnts is selected as the given clause--why doesn't the program
make the i1_[erence?"

OTTER's main loop eliminates an important kind of redundancy. Suppose one
can infer clause C from clauses A and B, and suppose both A and B are in list

sos. If A is selected as the given clause, it will be moved to usable and inferences
will be made; but A will not mate with B to infer C, because B is still in sos.

We must wait until B has ,xlso beea selected as given clause. Otherwise, we would

infer C twice. (The redundancy would be much worse with inference rules such
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as hyperresolution and UR-resolution that can use many parents.) In general, all

parents that participate in an inference must either have been in the initial usable

list or have been selected as given clauses. (This is not true when demodulators are

considered as parents.)

The procedure for processing a newly inferred clause new_cl follows; steps marked
with * are optional.

I. Renumber variables.

* 2. Output new_cl.

3. Demodulate new_c1 (including $ evaluation).

* 4. Orient equalities.

* 5. Apply unit deletion.

6. Merge identical literals (leftmost copy is kept).

* 7. Apply factor-simplification.

* 8. Discard new_c1 and exit if new_cl has too many literals or variables.

9. Discard new_c1 and exit if new_cl is a tautology.

* 10. Discard new_c1 and exit if new_cl is too 'heavy _.
* II. Sor_ literals.

* 12. Discard new_cl and exit if new_cl is subsumed by any clause

in usable, sos, or passive (forward subsumption).

13. Integrate new_cl and append it to sos.

* 14. Output kept clause.

18. If new_cl has 0 literals, a refutation has been found.

16. If new_cl has I literal, then search usable, sos, and

passive for unit conflict (refutation) ,ith ne,_cl.

* 17. Print the proof if a refutation has been found.

* 18. Try to make new_cl into a demodulator.

* 19. Back demodulate if Step 18 made ne,_cl into a demodulator.

* 20. Discard each clause in usable or sos that is subsumed by

ne,_cl (back subsumption).

* 21. Factor ne,_cl and process factors.

Steps 19-21 are delayed until steps 1-18 have been applied to all clauses inferred

from the active given clause.

3 Starting OTTER

Although OTTER has a primitive interactive feature (Sec. 14), it is essentially a

noninteractive program. On u Nix-like systems it reads from the standard input and

writes to the standard output:

o_;ter < input-file > output-file

No command-line options are accepted; all options are given in the input file.
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4 Syntax

OTTER recognizes two basic types of statement: clauses and formulas. Clauses are
simple disjunctions whose variables are implicitly universally quantified. OTTI_R's
searches for proofs operate on clauses. Formulas are first-order statements without
free variablesuall variables are explicitly quantified. When formulas are input,
OTTER immediately translates them to clauses.

Function symbols and predicate symbols are sometimes referred to as functors
when the distinction is not important.

4.1 Comments

Comments can be placed in the input file by using the symbol _.. All characters
from the first Z on a line to the end of the line are ignored. Comments can occur
within terms. Comments are not echoed to the output file.

4.2 Names for Variables, Constants, Functions, and Predicates

Three kinds of character string, collectively referred to as names, can be used for
variables, constants, function symbols, and predicate symbols:

• An ordinary name is a string of alphaz_dmerics, $, and _.

• A special name is a string of characters in the set *+-/\'<>='" :?©&! ; # (and
sometimes I).

• A quoted name is any string enclosed in two quotation marks of the same type,
either °' or '. We have no trick for including a quotation mark of the same
type in a quoted name.

(The reason for separatiag ordinary and special names has to do with infix, prefix,
and postfix operators; see Sec. 4.6.) Although out of place here, for completeness
we list the meanings of the remaining printable characters.

• . (period) u terminates input expressions.

• Y,-- starts a comment (which ends with the end of the line).

• , () []_ (and sometimes I) -- are punctuation and grouping symbols.

Variables. Determining whether a simple term is a constant or a variable depends
on the context of the term. If it occurs in a clause, the symbol determines the type:

the default rule is that a simple term is a variable if it starts with u, v, w, x, y, or

z. If the flag prolog_style.variables is set, a simple term is a variable if and

only if it starts with art upper-case letter or wit_ .. (Therefore, variables in clauses
must be ordinary names.) A simple term in a formula is a variable if and only if it

is bound by a quantifier.



Reserved and Built-in Names. Names that start with $ are reserved for special
purposes, including evaluable functions and predicates (Sec. 9), answer ]]terMs and

terms (See. 11), and some internal system names. The name = and any name that
starts with eq, EQ, or Eq, when used as a binary predicate symbol, is recognized as an
equality predicate by the demodulation and paramodulation processes. And some
names, when they occur in clauses or formulas, are recognized as logic symbols.

Overloaded Symbols. The user can use a name for more than one purpose, for
example as a constant and as a 5-ary predicate symbol. When the flag check.arity
is set (the default), the user is warned about such uses. Some built-in names are
also overloaded; for example, [ is used both for disjunction and as Prolog-style list
punctuation, and although - is built in as logical negation, it is generally used for
both unary and binary minus as well.

4.3 Terms and Atoms

Recall that, when interpreted, terms are evaluated as objects in some domain, and
atoms are evaluated as truth values. Constants and variables are terms. An n-

ary function symbol applied to n terms is also a term. An n-ary predicate symbol
applied to n terms is an atom. A nullary predicate symbol (also referred to as a
propositional variable) is also an atom.

The pure way of writing complex terms and atoms is with standard applica-
tion: the function or predicate symbol, opening parenthesis, arguments separated

by commas, then closing parenthesis, for example, f(a,b,c) and -(f(x,e),x). If
all subterms of a term are written with standard application, the term is in pure
prefix form. Whitespace (spaces, tabs, newlines, and comments) can appear in stan-
dard application terms anywhere except between a function or predicate symbol and

its opening parenthesis. If the flag display.terms is set, OTTER will output terms
in pure prefix form.

Infix Equality. Some binary functors can be written in infix form; the most
important is =. In addition, a negated equality, -(a=b) can be abbreviated a!=b.

List Notation. Prolog-style list notation can be used to write terms that represent
lists. To.ble 1 gives some example terms in list notation and the corresponding pure

prefix form. Of course, lists can contain complex terms, including other lists.

Table 1: List Notation
[3 $nil

Ix]y] $cons(x,y)

[x,y] $cons(x,$cons(y,Snil))
[a,b,c,d] $cons(a,$cons(b,$cons(c,$cons(d,$nil)) ) )
[a,b,clx] $cons(a,$cons(b,$cons(c,x)))



4.4 Literals and Clauses

A literal is either an atom or the negation of an atom. A clause is a disjunction of
literals. The built-in symbols for negation and disjunction are - and I, respectively.

Although clauses can be written in pure prefix form, with - as a unary symbol and
I as a binary symbol, they are rarely written that way. Instead, they are almost

always written in infix form, without parentheses. For example, the following is a
clause in both forms.

Pure prefix: I (-(a), I (=(bl ,b2) ,-(ffi(cl ,c2) ) ) )
Infix (abbreviated): -a I blfb2 I ci!=c2

Otter accepts both forms. (Clauses are parsed by the general term-parsing mecha-

nism presented in Sec. 4.6).

4.5 Formulas

Table 2 lists tile built-in logic symbols for constructing formulas.

Table 2: Logic Symbols
negation
disjunction I
conjunction &
implication ->
equivalence <->

existential quantification exists
universal quantification all

Formulas in Pure Prefix Form. Although the practice is rarely done, formulas
can be written ill pure prefix form. Quantification is the only tricky part: there is a
special variable-arity functor, $Quantified, for quantified formulas. For example,

Vxy3z(P(x, y,z)lQ(x,z)) is represented by

SQuantified(all,x,y,exists,z,[(P(x,y,z),Q(x,z))).

If the flag display_terms is set, tile formulas (and everything else) will be displayed
in pure prefix form.

Abbreviated Formulas. Formulas are usually abbreviated in a natural way. The

associativity and precedence rules for abbreviating formulas and the mechanism for
parsing formulas are presented in Sec. 4.6. llere are some examples.

standard usage OTTER syntax (abbreviated)
VxP(x) all x P(x)



Vcy3z(P(x, y, z) V Q(z,z)) all x y exists z (PCx,y,z) I Q(x,z))
Vx(P(x) AO(x) A R(x) -, S(x)) all x (P(x) _ Q(x) _ R(x) -> S(x))

Note that if a formula has a string of identical quantifiers, all but the first
can be dropped. For example, all x all y all z p(x,y,z) can be shortened

to all x y z p(x,y,z). In expressions involving the associative operations &
and I, extra parentheses can be dropped. Moreover, a default precedence on
the logic symbols allows us to drop more parentheses: <-> has the same prece-

dence as ->, and the rest in decreasing order are ->, l, _, -. Greater prece-
dence means closer to the root of the term (i.e., larger scope). For example,

p [ -q _ r->-s [ trepresents (p [ (-(q)& r)) -> (-(s) [ t),orin pure
prefix form, ->([ (p,_(- (q) ,r) ), [ (- (s) ,¢) ).

When in doubt about how a particular string will be parsed, one can simply
add additional parentheses and/or test the string by having OTTEa read it and
then display it in pure prefix form. The following input file can be used to test the
preceding example.

assign(stats_level,0).
set(display_terms).
formula_list(usable).

p[ -q&r-> -sIt. _,This formula has minimum whitespace.
end_of_list.

In general, _ hitespace is required around _11 and exists and to the left of -;
otherwise, whiteupace around the logic symbols can be removed. See Sec. 4.6 for
the rules.

4.6 Infix, Prefix, and Postfix Expressions

Many Prolog systems (for example Quintus and Sicstus) have a feature that allows
users to declare that particular function or predicate symbols are infix, prefix, or
postfix and to specify a precedence and associativity so that parentheses can some-

times be dropped. OTTER has a similar feature. In fact, the clause and formula
parsing routines use the feature. Users who use only the predeclared logic operators
for clauses and formulas and the predeclared infix equality = can skip the rest of
this section.

Prolog users who are familiar with the declaration mechanism should note the
following differences between the Quintus/Sicstus mechanism and OTTEIt's.

• The predeclared operators are different. See Table 3.

• OTTER does not treat comma as an operator; in particular, a,b,c cannot be

a term, as in a,b,c -> d,e,f.

• OTTER treats the quantifiers all and exists as special cases, because they

don't seem to fit neatly into the standard Prolog mechanism.
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$ OTTER requires whitespace in some cases where the Prologs do not.

Functors to be treated in this special way are given a type and a precedence.

Either OTTER predeclares the functor's properties, or the user gives OTTER a com-
mand of one of the forms

op(precedence, type, functor).
op (precedence, type, list-of-functors).

The precedence is an integer i, 0 < i < 1000, and type is one of the following: xfx,

xfy, yfx (infix), fx, fy (prefix), xf, yf (postfix). See Table 3 for the commands
corresponding to the predeclared functors.

Table 3: Predeclared Functors
op(800, xfx, ->). op(700, xfx, @<).
op(800, xfx, <->). op(700, xfx, Q>).
op(790, xfy, I). op(700, xfx, @<=).

op(780, xfy, &). op(700, xfx, @>=).

op(700, xfx, =). op(500, xfy, .).
op(700, xfx, !=). op(500, xfx, -).

op(700, xfx, <). op(500, fx, +).
op(700, xfx, >). op(500, fx, -).
op(700, xfx, <=).
op(700, xfx, >=). op(400, xfy, ,).
op(700, xfx, ==). op(400, xfx, /).
op(700, xfx, =/=). op(300, xfx, mod).

Given an expression that looks like it might be associated in a number of ways,
the relative precedence of the operators determines, in part, how it is associated. A

functor with higher precedence is more dominant (closer to the root of the term),
and one with lower precedence binds more tightly. For example, the functors ->, I,

&, and - have decreasing precedence; therefore the expression p & - q I r -> s is
understood as ((p _ (-q)) I r) -> s.

Ill each of the types, f represents the functor, and x and y, which represent the

expressions to which the functor applies, specify how terms are associated. Given
an expression involving functors of the same precedence, the types of the functors
determines, in part, the association. See Table 4. The following are examples of
associativity:

• If + has type xfy, then a+b.c+d is understood as a+(b+(c+d)).

• If -> has type xfx, then a->b->c is not well formed.

• If - has type fy, then - - -p is understood as -(-(-(p))). (The spaces are
necessary; otherwise, --- will be parsed as single name.)

11
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Table 4: Functor Types
xfx infix (binary) don't associate
xfy infix (binary) associate right

yfx infix (binary) associate left
fx prefix (unary) don't associate
fy prefix (unary) associate

xf postfix (unary) don't associate
yx postfix (unary) associate

• If - has type fx, then - - -p is not well formed.

Caution: The associativity specifications in the infix functor declarations say noth-
ing about the logical associativity of the operation, e.g., whether (a+b)+c is the
same object as as a+(b+c). The specifications are only about parsing ambiguous

expressions. In most cases, when an operator is xfy or yfx, it is also logically
associative, but the logical associativity is handled separately; it is built-in in the
case of the logic symbols [ and & in OTTER clauses and formulas, and it must be
axiomatized in other cases.

Details of the Functor Declarations. (This paragraph can be skipped by most
users.) The precedence of functors extends to the precedence of expressions in the

following way. The precedence of an atomic, parenthesized, or standard application
expression is 0. Respective examples are p, (x+y), and p(a.b,c,d). The prece-

dence of a (well-formed) nonparenthesized nonatomic expression is the same as the
precedence of the root functor. For example, a&b has the precedence of &, and a_b [c
has the precedence of the greater functor. In the type specifications, x represents an

expression of lower precedence than the functor, and y represents an expression with
precedence less than or equal to the functor. Consider a+b+c, where + has type xfy;

if association is to the left, then the second occurrence of + does not fit the type,
because a.b, which corresponds to x, does not have a lower precedence than +; if
association is to the right, then all is well. If we extend the example, under the dec-

larations op(700, xfx, =) and op(500, xfy, +),theexpressiona+b+c=d+emust
be understoodas (a+ (b+c))= (d.e).

4.7 Whitespace in Expressions

The reason for separating ordinary names from special names (See. 4.2) is so that
some whitespace (spaces, tabs, newline, and comments) can be removed. We can
write a+b+c (instead of having to write a + b + c), because "a.b.c" cannot be a
name, that is, it must be parsed into five names.

Caution. There is a deficiency in OTTER'S parser having to do with whitespace
between a name and opening parenthesis. The rule to use is: Insert some white

space if and only if it is not a standard application. For example, the two pieces
of white space in (a+ (b+c))= (d+e) are required, and no white space is allowed

after f or g in f(x,g(x)).
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4.8 Bugs, etc., in Input and Output of Expressions

, Tile symbol [ is either Prolog-style list punctuation or part of a special name.
With the built-in declaration of [ as infix, the term [alb] is ambiguous,
with possible interpretations tl =$cons (a ,b) and t2 =$cons(I (a,b) ,$n±1).

OTTER recognizes I'aJb] as tl. The term t2 can be written [(alb)]. The bug
is that t2 will be output without the parentheses. This is the only case I know
in which OTTER cannot correctly read a term it has written.

• A term consisting of a unary + or - applied to a nonnegative integer is always
translated to a constant.

• Parsing large terms without parentheses, say al*a2+a3+...+al000, can be
very slow if the operator is left associative (yfx). If you intend to parse such

terms, make the operator right associative (xyf).

• Quoted strings cannot contain a quotation mark of the same type.

• The flag check_arity sometimes issues warnings when it should not.

• Braces ({}) can be used to group input expressions, but OTTER always uses
ordinary parentheses on output.

4.9 Examples of Operator Declarations

Group Theory. Suppose we like to see group theory expressions in the form

(ab-lc-l-l) -1, in which right association is assumed. We can approximate this
for OTTER with (a*b" *c" ")'. (We have to make the group operator explicit;
-1 is not a legal OTTER name; the whitespace shown is required.) The declara-

tions op(400, xfy, *) and op(350, yf, ") suffice. Other examples of expres-
sions (with minimum whitespace) using these declarations are (x*y)*z=x*y*z and

(y,x)" fix" *y'.

OTTER Options. Options are normally input (Sec. 5.1) as in the following exam-
ples.

set(prolog_style_variables).
clear(print_kept).

assign(max_given,300).

If, however, we make the declarations (the precedences are irrelevant)

op(100, fx, set).
op(lO0, fx, clear).

op(lO0, xfx, assign).

then we ,nay write
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set prolog_style_variables.

clear print.kept.

max.given assign 300.

5 Commands and the Input File

Input to OTTER consists of a small set of commands, some of which indicate that

a list of objects (clauses, formulas, or weight templates) follows the command. All

lists of objects a_-e terminated with end.of.list. The commands are given in Table

5. There are a few other commands for fringe features (See. 17).

Table 5: Commands

include(file_name). X read input from another file

op(precedence, type, name(s)). 7. declare operator(s)

makeJvaluable(sym, eval-sym). 7, make a symbol evaluable

set(flag_name). 7. set a flag

clear(flag_name). 7. clear a flag

assign(parameter_name,integer). 7. assign an integer to a parameter
list(list_name). 7.read a list of clauses

formula_list(list_name). 7.read a list formulas

weight_list(weight_list_name). 7. read weight templates

lex(symbol_list). 7. assign an ordering on symbols

skolem(symbol_list). X identify skolem functions

irpo_multiset_status(symbol_list). 7.status for LRPO

5.1 Input of Options

OTTER recognizes two kinds of option: flags and parameters. Flags are Boolean-

valued options; they are changed with the set and the clear commands, which take

the name of the flag as the argument. Parameters are integer-valued options; they

are changed with the assign command, which takes the name of the parameter as

the first argument and an integer as the second. Examples are

set(binary_res). 7.enable binary resolution

clear(back_sub). 7.do not use back subsumption

assign(max_seconds, SO0). 7.stop after about 300 CPU seconds

The options are described and their default values are given in Sec. 6.

5.2 Input of Lists of Clauses

A list of clauses is specified with one of the following and is terminated with

end_of_list. Each clause is terminated with a period.
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list (usable).

list (sos).

iist (demodulators).

list(passive).

Example:

list(usable).

x = x. Y,reflexivity

f(e,x) - x. Y,left identity

f(g(x)°x) - e. _ left inverse

f(f(x,y),z) = f(x,f(y,z)). _,associatlvity

f(z,x) !m f(z,y) J x " y. X left cancellation

f(x,z) != f(y,z) J x - y. Y,rish_ cancellation

end_of.list.

If the input contains more than one clause list of the same type, the lists will

simply be concatenated.

5.3 Input of Lists of Formulas

A list of formulas is specified with one of the following and is terminated with

end.of_list. Each formula is terminated with a period. (Note that demodulators

cannot be input as formulas.)

formula.list (usable).

formula_list (sos).

formula_list (passive).

Example (analogous to above):

formula_list (usable).

all a (a- a). X reflexivity

all a (f(e,a) = a). _ left identity

all a (f(g(a),a) - e). _ left inverse

all a b c (f(f(a,b),c) = f(a,f(b,c))). _ associativity

all a b c (f(c,a) = f(c,b) -> a = b). _ left cancellation

all a b c (f(a,c) = f(b,c) -> a _ b). X right cancellation

end_of_list.

If the input contains more than one formula list of the same type, the lists will

simply be concatenated.

5.4 Input of Lists of Weight Templates

A list of weight templates is specified with one of the following and is terminated

with end_of_list. Each weight template is terminated with a period.
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weight_list(pick_given). X for selectlng given clauses

weight.list(purge_gen). X for discarding generated clauses

weight_list(pick_and_purge). _ for both picking and purging

weight_list(terms). _ for ordering terms

Example:

weight_list(pick_and_purge).

weight(a, 0). _ weight of constant a is 0

weight(g($(2)), -SO). _ twice weight of argument - 50

weight(P($(1),$(1)), 100). _ sum of ,eights of args + 100

weight(x, 5). _ all variables have weight 5

veight(f(g($(3)),$(4)), -300). _ see Sec. "Weighting"

end_of_list.

See Sec. 10 for the syntax and use of weight templates.

5.5 The Commands lex, skolem, and lrpouaultiset_status

Each of the commands lex, skolem, and lrpo_multiset_status takes a listof

terms as an argument. The lex command specifies an ordering on symbols, and the

others give properties to symbols. An example is

lex( [a, b, f(_,_), d, g(_), c] ).

The arguments of f and g serve as place-holders only; they identify f and g as

function or predicate symbols and specify the arity.

lex([...3). The lex command specifies an ordering (smallest-first) on function

and constant symbols. Lexical ordering on terms is used in four contexts:

orienting equality literals (Secs. 8.1.2 and 8.2.2), deciding whether an equal-

ity will be used as a demodulator (Secs. 8.1.3 and 8.2.3), deciding whether

to apply a lex-dependent demodulator (Secs. 8.1.4 and 8.2.4), and evaluat-

ing functions/predicates that perform lexical comparisons (Sec. 9). If a lex

command is not present, then OTTER uses a default ordering (Sec. 8).

skolem( [... ] ). The skolem command identifies constant and function symbols as

Skolem symbols. (If the user inputs quantified formulas and OTTER Skolem-

izes, this command is not necessary.) The Skolem property is used by the op-

tions para.skip.skolem (Sec.6.1.3)and delete, ident ical_nested_skolem

(Sec. 6.1.4).

lrpo_mulziset_status ( [... ] ). This command specifies multiset status for the lex-

icographic recursive path ordering (flag 1tOo). See Sec. 8.2.
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5.6 Other Commands

The command op (precedence, type, name(s}), example op(400,xfy, +), declares
one or more symbols to have special properties with respect to input and output.
See See. 4.6.

The command make_evaluable(symbol, evaluable-symbol), for example

make_evaluable(_+_, $$UM(_,_), copies evaluation properties from an evaluable
symbol to another symbol, so that one can write x+3 instead of $SUM(x,3). See
Sec. 9.1.

The command include(file_name) causes input to be read from another input

file. When the included file has been read, OTTER resumes reading commands after
the include command. The file name must be recognized as an OTTEa name, so
if it contains characters such as period, slash, or hyphen, it must be enclosed in

(single or double) quotes. Included files can include still other files. A list of objects
(clauses, formulas, or weight templates) cannot be split among different input files.
One can, however, read clauses into a list from more than one file, as in the following

example.

standard input file fl.in file f2.in
include("fl.in"), list(usable), list(usable).

include ("f2. in"). p(a). p(b).
end_of_list, end_of_list.

6 Options

Flags arc Boolean-valued options, and parameters are integer-valued options. When

the user changes an option, OTTER sometimes automatically changes other options.
Tile user is informed in the output file when such a change occurs.

Several additional flags and parameters are described in Sec. 17.

6.1 Flags

6.1.1 Main Loop Flags

A given clause is taken from sos at the beginning of each iteration of the

main loop. The default is to take the lightest clause with respect to either

weight_list(pick_given) or weight_list(pick_and_purge). If neither weight
list is present, tile weight of a clause is its number of symbols.

sos.queue -- default clear. If this flag is set, the first clause in sos becomes the

given clause (the set of support list operates as a queue). This causes a breadth-first
search, also called level saturatio,. Some information about search levels is printed

(see Sec. 15) when this flag is set.

sos_stack -- default clear. If this flag is set, the last clause in sos becomes the
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given clause (the set of support list operates as a stack). This causes a depth-first
search (which is almost never useful with OTTER).

input_sos.firs_ -- default clear. If this flag is set, the input clauses in sos are
given a very low pick_given weight so that they are the first clauses selected as
given clauses.

into ractive_given -- default clear. If this flag is set, then when it's time to select
a new given clause, the user is prompted for his or her choice. This flag has priority
over all other flags that govern selection of the given clause.

print.given -- default set. If this flag is set, clauses are output when they become
given clauses.

print.lists_at_end -- default clear. If this flag is set, then usable, sos, and
demodulators are printed at the end of the search.

6.1.2 Inference Rules

binary_ras -- default clear. If this flag is set, the inference rule binary resolution

(along with any other inference rules that are set) is used to generate new clauses.
Setting this flag causes the flags factor and trait_deletion to be automatically
set.

hyper_res -- default clear. If this flag is set, the inference rule (positive) hyperres-
olution (along with any other inference rules that are set) is used to generate new
clauses.

neg_hyper.res -- default clear. If this flag is set, the inference rule negative hy-
perresolution (along with any other inference rules that are set) is used to generate
new clauses.

ur_ree -- default clear. If this flag is set, the inference rule UR-resolution (unit-
resulting resolution) (along with any other inference rules that are set) is used to

generate new clauses.

para.into -- default clear. If this flag is set, the inference rule "paramodulation

into the given clause" (along with any other inference rules that are set) is used to
generate new clauses. When using paramodulation, one should include the appro-
priate clause for reflexivity of equality, for example, x=x.

para_from -- default clear. If this flag is set, the inference rule "paramodulation

fl'om the given clause" (along with any other inference rules that are set) is used to
generate new clauses. When using paramodulation, one should include the appro-
priate clause for reflexivity of equality, for example, x=x.

detaod_inf -- default clear. If this flag is set, demodulation is applied, as if it were
an inference rule, to the given clause. This is useful when term rewriting is the main

objective. When this flag is set, the given clause is copied, then processed just like

any newly generated clause.
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6.1.3 Paramodulation Flags

para_from.left -- default set. If this flag is set, paramodulation is allowed from the
left sides of equality literals. (Applies to both para_into and para_from inference
rules.)

para.from_right -- default set. If this flag is set, paramodulation is allowed from
the right sides of equality literals. (Applies to both para_into and para_from
inference rules.)

para_into.left -- default set. If this flag is set, paramodulation is allowed into left
sides of positive and negative equalities. (Applies to both para.into and para.from

inference rules.)

para.into_right M default set. If this flag is set, paramodulation is allowed into
right sides of positive and negative equalities. (Applies to both para_in¢o and
pars_from inference rules.)

para.from_vars -- default clear. If this flag is set, paramodulation from variables
is allowed. Warning: setting this option may produce too many paramodulants.

(Applies to both para_into and para_from inference rules.)

para_into_vars -- default clear. If this flag is set, paramodulationinto variables
is allowed. Warning: setting this option may produce too many paramodulants.

(Applies to both para_into and para_from inference rules.)

para_from_units_only -- default clear. If this flag is set, paramodulation is al-
lowed only if the from clause is a unit (equality). (Applies to both para_inl:o and
para.from inference rules.)

para_in*co_units_only -- default clear. If this flag is set, paramodulation is al-
lowed only if the into clause is a unit. (Applies to both para_into and para.from
inference rules.)

para_skip_skolem- default clear. If this flag is set, paramodulation is never

allowed into subterms of Skolem expressions [16]. (Applies to both para_inl;o and
para_from inference rules.)

para_ones_rule -- default clear. If this flag is set, paramodulation obeys the l's
rule. (The l's rule is a special-purpose strategy for problems in combinatory logic;

its usefulness has not been demonstrated elsewhere.) (Applies to both para_into
and para_from inference rules.)

para_all -- default clear. If this flag is set, all occurrences of the into term are
replaced with the replacement term. (Applies to both para_into and para_from
inference rules.)

6.1.4 Flags for Handling Generated Clauses

(Sec. 6.1.5 describes equality-related flags for handling generated clauses.)

detailed_hisl:ory- default set. This flag affects the parent lists in clauses that
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are derived by binary_res, para_from, or para_into. If the flag is set, tile positions
of the unified literals or terms are given along with the IDs of the parents. See Sec.
15 for examples.

order_history -- default clear. This flag affects the order of parent lists in clauses
that are derived by hyperresolution, negative hyperresolution, or UR-resolution. If

the flag is set, then the nucleus is listed first, and the satellites are listed in the order
in which the corresponding literals appear in the nucleus. If the flag is clear (or if

the clause was de,'ived by some other inference rule), the given clause is listed first.

unil;.deletion -- default clear. If this flag is set, unit deletion is applied to newly

generated clauses. Unit deletion removes a literal from a newly generated clause if
the literal is the negation of an instance of _ unit clause that occurs in usable or
sos. For example, the second literal of p(a,x) [ q(a,x) is removed by the unit

-q(u,v); but it is rot removed by the unit -q(u,b), because that unification causes
the instantiation of x. All such literals are removed from the newly generated clause,

even if the result is the empty clause. (Unit deletion is not useful if all generated
clauses are units.)

delete_identical_nested_skolem _ default clear. If this flag is set, clauses with
the nested Skolem property are deleted. A clause has the nested Sk_I,_m property

if it contains a a Skolem expression that (properly) contains an occurrence of its
leadiag Skolem symbol. For example, if f is a Skolem function, a clause containing

a term f(f(x)) or a term f(g(f(x))) is deleted.

sort_literals -- default clear. If this flag is set, literals of newly generated clauses
are sorted--negative literals, then positive literals, then answer literals. The main
purpose of this flag is to make clauses more readable. In some cases, this flag can
speed up subsumption on non-unit clauses.

for_sub -- default set. If this flag is set, forward subsumption is applied during
the processing of newly generated clauses. (Delete the new clause if it is subsumed

by any clause in usable or sos.)

back_sub -- default set. If this flag is set, back subsumption is applied during

the processing of newly kept clauses. (Delete all clauses in usable or sos that are
subsumed by the newly kept clause.)

factor -- default clear. If this flag is set, factoring is applied in two ways. First,
factoring is applied as a simplification rule to newly generated clauses. If a generated
clause C has factors that subsume C, it is replaced with its smallest subsuming

factor. Second, it is applied as an inference rule to newly kept clauses. Note that
unlike other inference rules, factoring is not applied to the given clause; it is applied

to a new clause as soon as it is kept. All factors are generated in an iterative manner.
Factoring is attempted on answer literals. If factor is set, a clause with n literals

will not cause a clause with fewer than n literals to be deleted by subsumption.

6.1.5 Demodulation and Ordering Flags

demod_history -- default set. If this flag is set, then when a clause is demodulated,
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the ID numbers of tile demodulators are included in the derivation history of tile
clause.

order_aq -- default clear. If this flag is set, equalities are flipped if the right; side

is heavier than the left. See Sees. 8.1_2 and 8.2.2 for the meaning of "heavier".

eq_units_both_ways -- default clear. If this flag is set, unit equality clauses (both

positive and negative) are sometimes stored in both orientations; the action taken
depends on the flag order_eq. If order_eq is clear, then whenever a unit, say

a =/3, is processed, 6 = a. is automatically generated and processed. If order_eq
is set, then the reversed equality is generated only if the equality cannot be oriented
(see Sees. 8.1.2 and 8.2.'2).

demod_linaar -- default clear. If this flag is set, demodulation indexing is disabled,
and a linear searchs of demodulators are used when rewriting terms. With indexing
disabled, if more than one demodulator can be applied to rewrite a term, then the
one whose clause number is lowest is applied; this flag is useful when demodulation is

used to do "procedural" things. With indexing enabled (the default), demodulation
is much faster, but tile order in which demodulators is applied is not under the
control of the user.

demod.out_in -- default clear. If this flag is set, terms are demodulated outside-

in, left-to-right. In other words, the program attempts to rewrite a term before
rewriting (left-to-right) its subterms. The algoritlim is "repeat {rewrite the left-
most outer-most rewritable tel,n} until no more rewriting can be done or the limit
is reached". (The effect is like a standard reduction in lambda-calculus or in com-

binatory logic.) If this flag is clear, terms are demodulated inside-out (all subterms
are fully demodulated before attempting to rewrite a term). (The evaluable con-
ditional term $IF (condition, then-vahle, else-value) is an exception when inside-out
demodulation is in effect. See Sec. 9.)

dynamic_demod -- defaull clear. If this flag is set, some newly kept equalities are

lnade into demoduh_tors (Sees. 8.1.3 and 8.2.3). Setting this flag automatically sets
the flag order_eq.

dynamic_demod_all -- default clear. If this flag is set, OTTER attempts to make all
newly kept equalities lille demodulators (See. 8.1.3). Setting this flag automatically

sets the flags dynamic_demod al_d order_eq.

dynamic_domod_lex_dep .....default clear. If this flag is set, dynamic demodulators
may be lex-dependent er l:l_Po-dependent. See Sees. 8.1.3 and 8.2.3.

back.demod -- defaull clear. If tiffs flag is set, back demodulation is applied to
demodulators, usable, and sos whenever a new demodulator is added. Back de-

modulation is delayed ulltil lhe illfcrence rules are finished generating clauses fi'om
the curreld givetl clause (delayed until post_process). Setting the back_demod flag

aulomatically sets the tlags order_eq and dynamic_domed.

knuth_bendix ..... default clear. If this flag is set, OTTER's search will I>ehave

like a h:nulh-Belidix completion procedure. This tlag is really a metaflag; its

only effect is to alter other flags as follows: set(para_from), set(para_into),
sat(pare_from_left),clear(para_from_right),set(para_into_left),
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clear(para_into_right),set(para_from_vars),set(eq_units_both_ways),

set(dynamic_demod_all),set(back_demod),set(process_input),and
set(irpo).See Sec. 8.3 for more details.

lrpo -- default clear. If this flag is set, then the lexicographic recursive path
ordering (also called RPO with status) is used to compare terms. If this flag is clear,
weight templates and lexicograph_c order are used (Sees. 8.2 and 8.3).

lex_order_vars -- default clear. This flag affects lex-dependent demodulation and
the evaluable functions and predicates that perform lexical comparisons. If this flag
is set, then lexical ordering is a total order on terms; variables are lowest in the term

order, with x -_ y _ z -_ u _ v -_ w -< v6 -< v7 -_ v8 -< -.-. If this flag is clear, then
a variable is comparabl, only to another occurrence of the same variable; it is not

comparable to other variables or to nonvariables. For example, gLLT(f(x),f(y))
evaluates to ST if and only if lex.order_vars is set. lflrpo is set, lex_order_vars
has no effect on demodulation (See. 8.1.1).

symbol.elfin- default clear. If this flag is set, then new demodulators are ori-
ented, if possible, so that function symbols (excluding constants) are eliminated. A
demodulator can eliminate all occurrences of a function symbol if the arguments
on the left side are all different variables and if the function symbol of the left side

does not occur in t!_e right side. For example, the demodulators g(x) = f(x,x)

and h(x,y) = f(x,f(y,f(g(x),g(y)))) eliminate all occurrences of g and h, re-
spectively.

6.1.6 Input

check_arity -- default set. If this flag is set, a warning is given if symbols have
variable arities (different numbers of arguments in different places in the input).
For example, the term f(a,a(b)) would be flagged. (Constants have arity 0.) If
this flag is clear, then variable arities are permitted; in the preceding term, the two
occurrences of a would be treated as different symbols.

prolog_style_variables _ default clear. If this flag is set, a name with no argu-
ments in a clause is a variable if and only if it starts with A through Z (upper case)
or with _.

echo_included_files _ default set. If this flag is set, input files included with
the include(filename) command are echoed in the same way as ordinary input.

simplify_gel -- default set. If this flag is set, then some propositional simplifi-
cation is attempted when converting input first-order formulas into clauses. The

simplification occurs after Skolemization, during the CNF translation. If simplifi-
cation detects a refutation, it will always produce the empty clause gF, but OTTER

will not recognize the proof (i.e., give the proof message and stop) unless the flag
process_input is set.

process_input -- default clear. If this flag is set, input usable and sos clauses

(including clauses from formula input) are processed as if they had been generated

by an inference rule. (See the procedure h)r processing newly inferred clause in Sec.
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2.) The exceptions are (1) the following clause-processing options are not applied
toinputclauses:max_literals,max_weight,delete_identical_nested_skolem,
and max_distinct_vars, (2) clauses input on list usable remain there if retained,
and (3) some output appears even if the output flags (See. 6.1.7) are clear.

6.1.7 Output Flags

very_verbose -- default clear. If this flag is set, a tremendous amount of informa-
tion about the processing of generated clauses is output.

print_kept -- default set. If this flag is set, new clauses are output if they are
retained (if they pass all retention tests).

print_proofs -- default set. If this flag is set, all proofs that are found are printed
to the output file, If this flag is clear, no proofs are printed.

print_new_demod -- default set. If this flag is set, demodulators that are ad-
joined during the search (dynamic_demod) are printed. New demodulators are al-
ways printed during input processing.

print_back_demod -- default set. If this flag is set, clauses are printed as they

are back demodulated. Back-demodulated clauses are always printed during input
processing.

print_back.sub -- default set. If this flag is set, clauses are printed if they are

back subsumed. Back-subsumed clauses are always printed during input processing.

display_terms -- default clear. If this flag is set, all clauses and terms are printed
in pure prefix form (See. 4.3). This feature can be useful for debugging the input.

pretty_prinl; -- default clear. If this flag is set, clauses are output in an indented
form that is sometimes easier to read. The parameter pretty_print_indent (de-
fault 4) specifies the number of spaces for each indent level.

bird_print -- default clear. If this flag is set, terms constructed with the bi-

nary function a are output in combinatory logic notation (without the function
symbol a, and left associated unless otherwise indicated). For example, the clause
a(a(a(S,x) ,y) ,z) = a(a(x,z),a(y,z)) is output as S x y z = x z (y z).
Terms cannot be input in combinatory logic notation.

6.1.8 Indexing Flags

index_for_back_demod -- default set. If this flag is set, all nonvariable terms in
all clauses are indexed so that the appropriate ones can be quickly retrieved when

applying a dynamic demodulator to the clause space (back demodulation). This
type of indexing can use a lot of memory. If the flag is clear, back demodulatio_
still works, but it is much slower.

for_sub_fpa -- default clear. If this flag is set, _PA indexing is used for forward

subsumption. If this flag is clear, discrimination tree indexing is used. Setting
this flag can decrease the amount of memory required by OTTER. Discrimination
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tree indexing can require a lot of memory, but it is usually much faster than r'P^
indexing.

no.fapl -- default clear. If this flag is set, positive literals are not indexed for unit
conflict or back subsumption. This option should be used only when no negative
units will be generated (as with hyperresolution), back subsumption is disabled, and
discrimination tree indexing is being used for forward subsumption. This option can
save a little time and memory.

no_fanl -- default clear. If this flag is set, negative literals are not indexed for unit
conflict or back subsumption. This option should be used only when no positive

units will be generated (as with negative hyperresolution), back subsumption is
disabled, and discrimination tree indexing is being used for forward subsamption.
This option can save a little time and memory.

6.1.9 Miscellaneous Flags

control_memory -- default clear. If this flag is set, then tile automatic memory-
control feature is enabled (See. 16).

order_hypor -- default set. If this flag is set, then the inference rules hyper_res

and neg_hyper_res are constrained by an ordering strategy. A literal in a satellite
is allowed to resolve only if it is maximal in the satellite. (A literal is maximal in

a clause if and only if there is no larger literal.) The ordering uses only the lexical
value (as in the lox command or the default, Sec. 5.5) of the predicate symbol.

(This flag is irrelevant for positive hyperresolution with a l{orn set.)

propositional -- default clear. If this flag is set, OTTER assumes that all clauses
are propositional, and it makes some optimizations. The user should set thisflag only
when all clauses are propositional; otherwise OTTER may make unsound inferences

and/or crash.

real:ly_dolete_clau.qes -- default clear. If this flag is clear, clauses that are
deleted by back subsumption or back demodulation are not really removed from
memory; they are retained in a special place so that they can be printed if they

occur in a proof. If the job involves much back subsumption or back demodulation
and if memory conservation is important, these "deleted" clauses can be removed

from memory by setting this flag (and any proof containing such a clause will not
be printed in full).

atom_wt_max_args _ default clear. If this flag is set, the default weight of an atom

(the weight if no template matches the atom) is 1 plus the maximum of the weights
of the arguments. If this flag is clear, the default weight of an atom is 1 plus the
sum of the weights of the arguments.

term_wt_max_args _ default clear. If this flag is set, the default weight of a term
(the weight if no template matches the atom) is 1 plus the maximum of the weights

of the arguments. If this flag is clear, the default weight of a term is 1 plus the sum
of the weights of the arguments.

free_all_morn -- default clear. If this flag is set, then at the end of the search,
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most dynamically allocated memory is returned to the memory managers. This flag !

is used mainly for debugging, ill particular, to help find memory leaks. Setting this
flag will not cause OTTER to use less memory.

6.2 Parameters

Parameters are integer-valued options. In the descriptions that follow, n is the
vMue of the parameter, and MAX_INT iS a large integer, usually tile size of the

largest normal integer on the user's computer.

6.2.1 Monitoring Progress

report -- default -1, range [--1..MAX_INTl. If n > 0, then statistics are output

approximately every n cPv seconds. The time is not exact, because statistics will
be output only after the current given clause is finished. This feature can be used

in conjunction with UNiX programs such as grop and awk to conveniently monitor
OTTER jobs.

6.2.2 Placing Limits on the Search

max.seconds -- default -1, range [--1..MAX_INTl. If n # -1, the search is termi-
nated after about n cPv seconds. The time is not exact, because OTTER will wait

until the current given clause is finished before stopping.

max_gen -- default -l, range [--I..MAX=INT]. If n # --1, the search is terminated
after about n clauses have been generated. The number is not exact, because OTTER

will wait until it is finished with the current given clause before stopping.

max_kept -- default -1, range [--1..MAXANT]. If n # -1, the search is terminated
after about n clauses have been kept. The number is not exact, because OTTER will

wait until it is finished with the current given clause before stopping.

max_given -- default -l, range [-1 ..MAX._INT].If n # --1, the search is terminated
after n given clauses have l)een used.

max_mere ..... default - l, range [- I..IUAX._INT].If n _ -- l, OT'I'EIt will terminate the
search before more than 7_kilobytes have been dynamically allocated (mal;loc).

6.2.3 Limits on Properties of Generated Clauses

max_literals ..... default -1, range [--1..MAX/NT]. If n _ -1, new clauses are
discarded if they contain more than n literals.

max_weight ..... default MAX_INT, range [--MAXANT..MAX_INT]. New clauses are
discarded if their weiglLt is more than n. The weight list purge_gen or the weight

list pick_and_purge is used to weigh clauses (both lists may not be present; see
Sec. 10).
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max.distinct_vars -- default -1, range [--1..MAX_INT]. If n _ -1, new clauses
are discarded if they contain more than n distinct variables.

6.2.4 Indexing Parameters

fpa_literals -- default 8, range [0..100]. n is the I_PAindexing depth for literals.
(rPA literal indexing is used for resolution inference rules, back subsumption, and

unit conflict. It is also used for forward subsumption if the flag for_sub_fpa is
set.) If n = 0, indexing is by predicate symbol only; if n = 1, indexing looks at the
predicate syrabol and the leading symbols of the arguments of the literal, and so on.

Greater indexing depth requires more memory, but it can be faster. Changing this
parameter will not change the clauses that are generated or kept.

fpa_terms m default 8, range [0..100]. n is the _PA indexing depth for terms. (FPA
term indexing is used for paramodulation inference rules and back demodulation.)

If n = 0, indexing is by function symbol only; if n = 1, indexing looks at the
function symbol and the leading symbols of the arguments of the term, and so on.

Greater indexing depth requires more memory, but it can be faster. Changing this
parameter will not change the clauses that are generated or kept.

6.2.5 Miscellaneous Parameters

pick_given_ratio -- default -1, range [--1..MAX.JNT]. This parameter causes
some given clauses to be selected by weight and others in a breadth-first manner.

If n _ -1, n given clauses are are selected by (smallest pick_given) weight, then
the first clause in sos is selected as given clause, then n given clauses are selected

by weight, etc. This method allows heavy clauses to enter into the search while

focusing mainly on light clauses. It combines breadth-first search (flag sos_queue)
and best-first search (default selection by weight). If n is -1, then the clause with
smallest pick_given weight is always selected.

interrupt_given- default -1, range [--1..MAX__INT]. If n > 0, then after n given
clauses have been used, OTTErt goes into its interactive mode (See. 14).

demod_limit -- default 1000, range [--1..MAX_]NT]. If n _ --1, n is the maximum
number of rewrites that will be applied when demodulating a cbtuse. The count
includes $ symbol evaluation. If n is -1, there is no limit. A warning message is
printed if OTTER attempts to exceed the limit.

max_proofs -- default 1, range [--1..MAX_INT]. If n -- 1, OTTEa will stop if it finds

aproof. Ifn > 1, then OTTEa will not stop when it has found the first proof; instead,
it will try to keep searching until it has found n proofs. (Some of the proofs may
in fact be identical.) (Because forwa,'(l subsumption occurs before unit conflict, a

clause representing a truly different proof may be discarded by forward subsumption
before unit conflict detects the proof.) If n - -1, OTTEa will find as many proofs

as it can (within oiher constraints).

rain_bit_width-- default bits-per-long, range [O..bits-pcr-long]. When the evaluable

bit operations (Sec. 9) produce a new bit string, leading zeros are suppressed under
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the constraint that n is tile minimum string length.

neg_ueight .... default 0, range [--MAXANT..MAX_INT]. n is the additional weight
(positive or negative) that is given to negated literals. Weight teml)lates cannot be

used for this purpose, because the negation sign on a literal ca.nnot occur in weight
templates. (Atoms, not literMs, are weighed with weight templates; see Sec. 10.)

pretty_print_indent ..... default 4, range [0..16]. See [lag pretty_print, Sec.
6.1.7.

stats.level.... default 2, range [0..4]. This indicates tile level of detail of statistics
printed in reports and at the end of the search. If n = 0, no statistics are output;
if n = 1, a few important search and time statistics are output; if n = 2, all search
and time statistics are output; if n = 3, search, time, and .lemory statistics are

output; and if n = 4, search, time, and memory statistics and option values are
output. This parameter does not affect the speed of OTTErt, hecause all statistics
are always kept.

7 Demodulation

Basic demodulation is straightforward, but there are many variations and eahance-
rnents whose (lescriptions are scattered throughout this manual. '['his section (whi('h

is mostly redundant) lists some overall comments on demodulation a.d points the
reader to the approl)ri_d,e sectio.s o. wtriatio.s and enhancenlents.

The Equality Symbol. The binary symbol - (which can be used as an iniix

fu.ctor) and any name that starts with oq, EQ,or Eq, when used as a binary predicate
syml)ol, is recog.ized as an equality pre(licate by demodulation.

When and How It Is Applied. l)emo(lulation is ai,l,lie<l, using e(lu_dil,ies in

the list demodu].ators, to every clause that is generated by an inference rule. Also,
when the flag demod_inf (See. 6.1.2)is set, demo(iulation is, in effect, treated as
an illference rule.

Demodulation of Atomic Formulas. Atoltlic foi'llilllas (litera/s with aay hege-
l,ion sign reln<)v(,<l)can be ill,modulated. Useful exami>les are

(x*y = x,z) --- (y - z). X one form of cancellation

D(x,y) = D(y,x). Y, lex-depondent atom demodulator

P(junk) = ST. Z trick to get rid of a literal

Tile a l)l)rol)riate clause si_ni)liti('ati(,, occurs if tlw right side of an atom demodulator

is one of the l|()olean ('onsta.l|ts ST or SF. Nega,t(,<l literals ('allllOt be demodulate(I,
bill, the atom of a t,egative literal ca l_ I)e delnodul_te(l.
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Inside-out or Outside-in. The user has the option of having terms rewritten

inside-out or outside-in. (See the description of the flag demod_out_in in Sec. 6.1.5.)
Although the choice makes little difference for many applications, I nearly always
recommend inside-out. Outside-in can be much faster in cases where the left side of

the demodulator has a variable not in the right side.

Order of Demodulators. By default, demodulation uses an indexing mechanism

to find demodulators that can rewrite a given term; if more than one demodulator
can apply, the user has no control over which one is used. If the user wishes to order
the set of demodulators for application, he or she can set the flag demod_linear

(See. 6.1.5).

Dynamic Demodulation and Back Demodulation. Positive equality units
derived during the search can be made into demodulators (Sees. 6.1.5, 8.1.3, and
8.2.3). Demodulators adjoined during the search can be used to rewrite previously

derived clauses (See. 6.1.5).

Termination. With the default ad hoc ordering, demodulation is not guaranteed

to terminate by itself. Therefore, a parameter (demod_limit) specifies the maximum
number of rewrite steps that will be applied to a clause. With the lexicographic

recursive path ordering (flag lrpo), demodulation will always terminate by itself.
(Even with lrpo, the parameter demod.limit has effect, because demodulation
sequences can have an unreasonable number of steps.)

Introduction of New Variables. A demodulator introduces new variables if it

has variables on the right side that do not occur on the left. The LRPO does not
allow demodulators to introduce new variables. The default ordering allows variable
iutroductions only for input demodulators.

Lex- and LRPO-dependent Demodulation. Ordinary demodulators are used

unconditio_.ally; they usually simplify or canonicalize regardless of the context in
which they are applied. But some equalities that are not normally thought of as

rewrite rules can be used as such and are applied only if the application produces a

"better" term. These are called lex- or LaPo-dependent demodulators (depending
on whether the flag lrpo is set}. For example, commutativity of an operation, say
x+y = y+x, can be used to rewrite b+a toa+bifa+b -< b+a. See Sees.
6.1.5, 8.1.4, and 8.2.4. Do not confuse this type of demodulation with conditional
demodulation.

Demodulation of Evaluable Terms. OTTER has many built-in function and
predicate symbols for doing arithmetic, logic operations, bit operations, and other

operations. The evMuation of terms containing these built-in symbols is done as a
part of demodulation (See. 9).
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Conditional Demodulation. 1)emodulators can be written with conditions as

condition -> c_ =/3.

The demodulator is applied only if tile condition, instantiated with tile matching

substitution, demodulates to ST (meaning true). This is a "fringe feature", and it,

has not been heavily used (Sec. 17.,1).

Demodulation as Equational Programming. OTTEr's demodulation, espe-

cially with tile evaluable symbols, can be used as a general-purpose (although no(

particuhtrly efficient or convenient) equational programming system (See. 9). !
have not seen cases where this is useful in the context of a traditional refutation

search, but I have found it to be very useful for various symbolic programming tasks,

particularly with hyperresolution.

Demodulation to Delete Clauses. Demodulation can be used as a trick to

overcome one of the deficiencies of the weighting mechanism (See. lO) to discard

undesired clauses. Weighting does not implement a true match (one-way unifica-

tion) operation. If the user wishes to discard every clause that contains an instance

of a particular term, say f(x,x), a (lemo(lulator, say f(x,x) = junk, can I)e in-

i)ut aloag with a weight template that gives junk a purge_gen weight higher than

max_weight. (When using this and sitnilar tricks, the user must make sure that

the clauses coataining junk are really discarded by weighting or attother tneans; on

occasion we have fouud l,roofs that are iucorrect because they depend on junk.)

8 Ordering and Dynamic Demodulation

This section contains a nlore comi)h, te exl)hum.lion of the ol)tions lex_order_vars,

order_eq, symbol_elim, dynamic_domed, dynamic_domed_all, lrpo, and

dynamic_demod.lex_dep. It gives all the rules ........l)uilt in and Ol)tional .....for ori-

eatiag equality literals and deciding which equalities will be dynamic demodulators.

(.)'1"I'i,'!1 iIses two kinds of term ordering.

,d hoc onh'ri_,g. This is a colh, ctiotl of orderitlg nwthods that we haw' acvumulated

through tnany years of exl)erimeutatioa. The methods (!o not have a sul)stan-

tial tlteoreti('al foull(lation, but they are useful in many cases. This is the

default ordering; it is l)r(,sente(! in .qec. 8.1.

l,lt Po. This is the Icxicogr, phic rccurMve path erda'ring (also called ili, o with status).

It has nice theoreti('al i)roi)erties and is easier to use than the a(! hoc ordering,

but it is more COml)utatiollally exl)ensive. '['he 1,1_Po ordering is enabh,(! with

tlw [lag lrpo; il is (ios('rilwd in Se(:. 8.2.

lh)tl_ kil_(Is of term oa'deriag use au or(leritlg on constant and function symbols.

Tire lex cotlltllan(I (See. 5.5)is used to assign an or(lerillg el) symbols. For examph,,
the ('ommand
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lex( [a, b, c, d, or(.,_)] ).

specifies a -< b -< c -< d -< or (or is a binary function symbol). If alox com-
mand is given, all constant and function symbols in terms that will be compared

must be included. If a lex command is not given, OTTER uses the following default
ordering.

[constants, high-arity, ..., binary, unary]

Within arity, the lexicographic Ascii ordering (i.e., the C library routine strcomp())
is used.

The methods for orienting equalities and for determining dynamic and lex-
dependent demodulators apply to all inferred clauses; if the flag process.input
is set, they also apply to input usable and sos clauses.

In this section, a and 3 always refer to the left and right arguments, respectively,
of the equality literal under consideration; wt(7) refers to the weight of _/ using

weight_list.terms; vats(7 ) is the set of variables in 7. The symbols _- and 4 are
used for several orderings; the one referred to should be clear from the context.

Table 6 is a quick reference guide to the ordering mechanisms presented in Secs.
8.1 and 8.2.

Table 6: Quick//Referenceto Ordering ......Situation Atl aoc, L,,, , I! LrtPO -
input demods flip? no if a -<3 ....

l lex:dependent? if ident'x-vars if neither is greater
Orienting eqs (order_eq set) flip if sym-elim,

occurs-in, or wt-lex-ord flip if a -< f/
if oriented, var-subsetl .......

d_d_allclear and wt(3) < 1 if o _- 3
Dynamic demod? "'d'd_all set .... iforiented and Vat-subset if a >.-'3' ' -

ff ident:x-vars and if neitlter is greater,lex-dependent?
dynataic_dmaod_all set ..... and, var-subset

Apply lex-depen(le_lt denmd? lex-order(aa, fla) t_a _ j3ct --
Lex' $' evaluation lex-order I lex-order -

8.1 Ad Hoc Ordering

8.1.1 Term Ordering (Ad Hoe)

Two types of ad hoc term ordering are used: lex-order and weight-lex-order. The
user does not have a choice between these two; the one that is applied depends on
the context, as described in the following subsections.

lez-order. This is a basic lexicographic extension of the symbol order. To com-
pare two terms, read them left to right, and stop at the first symbols where
they differ; the relationship of those symbols determines the term order. The

treatment of variables depends on the flag lox-ordor-vars:
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lex_order.vars is set. Variables are the lowest in the symbol ordering, with

x -_ y -_ z -_ u -_ v -_ w -_ v6 -_ v7 -_ v8 -_ .... Since the order on symbols
is total (any two syml)ols are comparable), the lexical order on terms is

total (any two terms are comparable). Note that applying a substitution
to a pMr of terms may change their relative order.

lax_order_rata is clear (the default). A variable is comparable only to it-
self and to a term that contains the variable. The order on terms is

partial. Note that if tl -_ t2, and if a is any substitution, then tta -.<t2cr.

weight-lez-order. In comparing two terms, they are first weighed with

weight_list.terms. If one term is heavier, it is greater in tile order. If
the terms have equal weight, they are compared with respect to the lex-order
as if lex-order-vars is clear.

8.1.2 Orienting Equalities (Ad Hoc)

If the flag ordor.eq is set and lrpo is clear, then equality literals (both positive
and negative) in inferred clauses are processed as follows.

1. If tile symbol_e!im flag is set and if the equality is a symbol-eliminating type

(See. 6.1.5), the equality is oriented in the appropriate direction.

2. If one argument is a proper subterm of the other argument, the equality is
oriented so that the subterm is the right-hand argument.

3. If one argument is greater in the weight-lex-order, say 7 _ $, the equality is
oriented with 7 as the left side.

The preceding steps (lo not apply to equalities input on the list demodula'cors.

8.1.3 Determining Dynamic Demodulators (Ad Hoc)

A dynamic demodulator is a demodulator that is inferred rather than input. If

either of tile flags dynamic_domodor dynamic_demod_allis set, tile flag order_eq
will also be set, and OT'rEil will attempt to make some or all inferred positive

equality units into demo(lulators. If the flag process_input is set, the l)rocedure
applies to input usable and sos equalities. The procedure assumes that equalities
have already been oriented.

1. If the flag symbol_olim is set and if c_= _ is symbol-eliminating, lhe equality
becomes a demodulator.

2. If fl is a proper subterm of _, the equality becomes a demodulator.

3. If c_ >-/3 in the weight-lex-order, and if vars(c_) D vars(#),

(a) if dynamic_domed_all is set, the equality becomes a demodulator;
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(b) ifdynamic.demod_allisclearand ifwt(/3)_<I,theequalitybecomes a
demodulator.

4. Ifdynamic.demod_lex.depand dynamic.demod_allareboth set,ifc_and
/3areidentical-except-variables(See.8.1.4),and ifvars(c_)D vars(fl),the
equalitybecomes a lex-dependentdemodulator.

8.1.4 Lex-dependent Demodulation (Ad Hoc)

Two termsareidentical-except-variablesiftheyareidenticalafterreplacingalloc-
currencesofvariableswithx. An inputor dynamic demodulatorislex-dependent

onlyifc_and lJareidentical-except-variables.(SeeSec.8.1.3fordetermininglex-
dependentdynamicdemodulators.)A lex-dependentdemodulatorappliestoa term
onlyifthereplacementterm issmallerinthelex-order.In particular,OTTER will

applya lex-dependentdemodulatora =/_ ifand onlyifaa >-13ainthelex-order,
where a isthematchingsubstitution.

For example,illthe presenceofthelex command and the(lex-dependent)de-
modulators

lex([a, b, c, d, or(..,_)]).

list(demodulators).

or(x,y) = or(y,x).
or(x,or(y,z)) = or(y,orCx,z)).

end_of_list.

theterm or(or(d,b),or(a,c))willbe demodulatedtoor(a,or(b,or(c,d)))(in
severalsteps).

8.2 LRPO

8.2.1 Term Ordering (LRPO)

The lezicographie recursive path ordering (LRPO, or RPO with status) [5, 8, 10] is a
method for comparing terms. The important theoretical property of LRPO is that it
is a termination ordering. That is, let R be a set of demodulators in which in each

demodulator, the left side is LRPO-greater than the right side; then demodulation
(applying the demodulators left to right) is guaranteed to terminate.

To use LRPO one typically uses the lex command (Sec. 5.5) to assign an ordering
on constant and function symbols. If the lex command is not present, OTTER

assigns an ordering (which is frequently ineffective). (OTTER Uses a total ordering
on symbols that is fixed at input time. Other implementations of LRPO use partial

orderings or dynamically changing orderings.)

With respect to LaPO, function symbols can have either left-to-right status (the

default) or multisct status. The command lrpo_multiset_status (symbol_list) gives
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symbols multiset status.

LRPO comparison is used when orienting equality literals, deciding whether an
equMity should be a demodulator or an LRpo-dependent demodulator, and deciding
whether to apply all LRPo-dependent demodulator. Lapo comparison is never used

when evaluating the functions/predicates that perform lexical comparison ($LLT,
SLGT, etc.).

8.2.2 Orienting Equalities (bRPO)

If the flag order.eq is set and if one argument of the equality literal (positive or
negative) is greater in tile LRPO order, the greater argument is placed on the left
side. This rule applies to input demodulators, to inferred clauses, and, if the flag

process_input is set, to input usable and sos clauses.

8.2.3 Determining Dynamic Demodulators (LRPO)

If the flag dynamic,demod is set, OTTER attempts to make all equalities into de-
modulators (dynamic_demod_all is ignored when lrpo is set). If a _- fl in the
[,RPO order, the derived equality becomes a demodulator (c_ is not LRPo-less-than
/3, because orieuting has already occurred). If dynamic_demod_lex_dsp is set, if

neither argumeut is LRpo-less-than the other, and if every variable that occurs in
also occurs in c_, the derived equality becomes an LRPo-dependent demodulator.

8.2.4 Lapo-dependent Demodulation (LRPO)

An Lapo-dependent demodulator is allowed to rewrite a term if and only if its
application produces an Laeo-less-than term.

8.3 Knuth-Bendix Completion

The I(nuth-Bendix completion procedure [12] attempts to transform a set E of
equalities into a terminating, canonical set of rewrite rules (demodulators). If it

is successful, the resulting set of rewrite rules, a complete set of reductions, is a
decision procedure for equality of terms in the theory E. There are many variations
and refinements of the h:nuth-lh, n(lix procedure.

Setting the flag knuth_bendix causes OTTF_R to automatically alter a set of
options so that its search will behave like a Knuth-Bendix completion procedure. If

OTTER'S search stops because its sos list is empty, and if certain other conditions are
met, then the resulting set of e(lualities is a complete set of reductions. (OTTER was

zlot designed to ilnl)lement a completion procedure, and it has not been oi)timized
tbr corn pletion.)

Claim. If (1) the set E of equalities, along with x=x, is input in list sos, (2) flag

knuth_bendix is set, (3) other ot)tions that are changed from the defaults do not
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affect the search, (4) OTTER stops with "sos empty", and (5) other than x=x, the
final usable list is the same as the final demodulators list, then the demodulators

list is a complete set of reductions for E.

Itere is an input file that causes OTTER to search for and quickly find a complete

set of reductions for f,'ee groups. Note that the predeclared (right associative) infix
operator * is used.

set(knuth_bendix).

set(print_lists_at_end).
lex([e, _*., g(_)]).

list(sos).
X-- X.

e*x = x. _.left identity

g(x)*x = e. X left inverse
(x*y)*z = x*y*z. _ associativity
end.of_list.

The critical issue in most applications of the Knuth-Bendix completion procedure

is the choice of ordering scheme and/or the specific ordering on symbols. Note, in
this case, that if the lex command is absent, the default symbol ordering suffices

because it is essentially the same as the one specified.

The knuth-bendix flag is also very useful when trying to prove equational the-
orems. (Many open problems have been solved at Argonne in this way; see, e.g.,

[17]). When using knuth.bendix to search for proofs, we are not bound by the
conditions listed in the above claim; in fact, we usually apply additional strategies

such as limiting the size of retained equalities, being more selective about making

equalities into demodulators, and disabling LRPO ordering.

With the following input file, OTTER uses the knuth-bendix option to prove
the difficult half of a group theory theorem of Levi: The commutator operation is

associative if and only if the commutator of any two elements lies in the center of

the group. (A textbook proof can be found in [13].) Note that, contrary to common
practice, the symbol order does not cause the definition of the commutator operation
h(_,.) to be used as a rewrite rule to eliminate commutator expressions in h.

Note also that weight templates are used to eliminate clauses containing terms with

particular structures; this decision is purely heuristic, derived from experimentation
and intuition. OTTER finds a proof in about half an hour on a SPARCstation 2 and

uses about 6 megabytes of memory.

set(knuth_bendix), lex([a,b,c,e,h(_,_),f(_,_),g(_)]).
assign(max_weight,20). assign(pick_given_ratio,8).
assign(max_mem,8000).
clear(print_kept),clear(print_new_demod),clear(print_back_demod).
assign(report,300).

list(usable).
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X z X,

f(o,x) = x. X complete sot of reductions for groups
fCx,e) = x.
:(gCx)ox) = e.
:(x,gCx)) = e.
f(:Cx,y),z) = :(x,fCy,z)).

gCe) = e.
gCgCx)) = x.
f(g(y),f(y,x)) = x.
f(y,f(gCy),x)) = x.
g(f(y,x)) = f(g(x),g(y)).
end_of_list.

list(sos).

f(g(X),f(g(y),f(x,y))) = h(x,y). _ definition of commutator
hCh(x,y),z) = h(x,h(y,z)). _ commutator is associative

denial: there are teo elements whose commutator is not in the center
f(_(a,b),c) != f(c,h(a,b)).
end_of_list.

weight_list(purge_gen).

weigh_(h($(O),f($(O),h($(O),$(O)))), I00).
weightChCf($CO),hCS(O),$(O))),$(O)), I00).
weightChC$CO),fCh($(O),$(O)),$(O))), 100).
ueight(h(f(h($(O),$(O)),$(O)),$(O)), I00).
weightChC$CO),hC$(O),h($(O),$(O)))), 100).
weightCh($CO),f($CO),fC$(O),$(O)))), I00).
wexgh_(h(f($(O),f($(O),$(O))),$(O)), 100).
end_of_lis_.

9 Evaluable Functions and Predicates ($SUM, $LT, ...)

OTTER can be used in a "programmed" mode that is quite different from normal

refutational theorem proving. When using the programmed mode, one generally has

in mind a particular method for solving a problem; and when writing clauses for the

programmed mode, one generally knows exactly how they will be used by OTTER.

The programmed mode frequently involves a set of evaluable function and pred-

icate symbols known as the S-symbols (because each starts with $). Examples are

$SUM and SLT for integer arithmetic and SAND for Boolean operations.

The evaluable symbols operate on four types of OTTER term: integer constants,

bit-string constants, the Boolean constants ST and $F, and arbitrary terms. The

symbols that evaluate to type Boolean can occur either as function symbols or as

predicate symbols. The integer and bit operations behave the same as the under-

lying C operations applied to the data type "long int" and "unsigned long int",

respectively. Table 7 lists the evaluable functions and predicates by type.

Additional notes on the operations (unless otherwise stated, the term in question

evaluates if all arguments demodulate/evaluate to the appropriate type):
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Table 7: Evaluable Functions and Predicates
int × int --, int $SUM,$PROD,$DIFF,$DIV,$MOD

int × int --_ bool $EQ, $NE, $LT, $LE, $GT, $GE

bits x bits -., bits $BIT_AND,$BIT_0R,$BIT_XOR
bits x int _ bits $SHIFT_LEFT,$SHIFT_RIGHT

bits ---*bit_ $BIT.NOT
int _ bits $INT_TO_BITS

bits --* int $BITS_T0_INT

term X term ---, bool (lexical) $ID, $LNE, $LLT, $LLE, $LGT, SLGE
bool ST, $F

bool × bool _ bool SAND,$0R

bool --, bool $TRUE, $NDT
term ---,bool SATOMIC,$INT,SBITS,$VAR,SGROUND
-_ int $NEXT_CL_NUM

bool × term X term ---, term $IF

• int × int _ int. Tile symbol $SUMis addition, $PRODis multiplication, $DIFF
is subtraction, $DIV is integer division, and $MODis remainder.

• Jut x int ---, bool. These are the ordinary relational operations on integers.
The symbol $Efl is =, $NE is #, $LT is <, $LE is <, $GT is >, and $GE is >_.

• bits x int --, bits. The shift operations $SHIFT_LEFT and $SHIFT_RIGHT shift

the first argument by the number of places given by the second argument.

• bits x bits _ bits. The symbols SBIT_AND, $BIT_DR, and SBIT.XOR are the

bitwise conjunction, disjunction, and exclusive-or operations.

• bits --, bits. The symbol $BIT_NOT is the one's complement operation on bit
strings.

• Jut _ bits. The symbol $INTS_T0_BITS translates a decimal integer to a bit
string.

• bits --, int. The symbol $BITS_T0_INT translates a bit string to the corre-
sponding decimal integer.

• term > term --, bool. The term always evaluates. These operations are analo-
gous to the six operations in int x int --_ bool, except that the comparisons are
lexical instead of arithmetic. The symbol $ID tests identity of terms. The lex-

ical comparison is the same as in lex-depe_dent demodulation; in particular,
the flag lex_order_vars (Sees. 6.1.5 and 8.1.1) has effect.

• -- bool. The symbols ST and $F represent true and false. When they appear as
literals or atomic formulas in clauses, the clauses are simplified as appropriate.

• bool --, bool. The symbol STRUE is essentially a "no operation" on Boolean

constants. It is used to trick hyperresolution into evaluating literals (see be-
low).
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• term --, bool. A term is SATOMIC iff it is a constant (including integer and bit

string), a term is a $INT if[ it is an integer, a term is a SBITS iff it is a string of

{0,1}, a term is a $VAR iff it is a (unbound) variable, and a term is a SGROUND

iff it does not contain any variables.

• --. int. The term SNEXT_CL_NUM (no arguments) evaluates to the next integer

that will be assigned as a clause identifier (this is useful for placing the [D of

a clause within the clause).

• bool × term × term _ term. The $IF function is the if-then-else operator.

When inside-out (the default) demodulation encounters a term $IF(condition,

tl, t2), demodulation takes a path different from its normal inside-out behav-

ior. The term condition is demodulated (evaluated); if the result is ST, the

value of the $IF term is the result of demodulating tl; if the r(:sult is SF,

the value of the $IF term is the result of demodulating t2; if the result is

neither ST nor SF, demodulation returns to its normal behavior. Note that

if the condition evaluates to a Boolean value, demodulation deviates from its

inside-out behavior, because just one of tl and t2 is demodulate(l. (If demod-

ulation were ahvays outside-in, $IF would not need to be built in, because

it could be ef[icieutly defined with the two demodulators if (ST,x,y) =x and

if($F,x,y)=y.)

Evaluation occurs as part of the demodulation process. In particular, if de-

modulation collies across an evaluable term, say $SUM(2,3), it tries to convert the

arguments into the appropriate type (integers for $SUM); then if the arguments have

the correct type, it, rewrites the term to the result of the operation, in this case,

just as if the demodulator $SUM(2,3)=S had been present. The evaluation mech-

anisms, along with ordinary demodulation, form a reasonably complete (although

not particuhu'ly speedy or convenient) equational programming subsystem.

Evaluation/demodulation can also occur, ill a very particular way, during hy-

perresolution. (Recall that hyperresolution takes a clause, the nucleus, with some

negative literals, tile conditions, and resolves each negative literal with a positive

clause, producing a clause with no negative literals.) .lust as evaluation during de-

lnodulation can be thought of as rewriting with an implicit demodulator, evaluation

during hyperresolution can be thought of resolving with the implicit positive unit

clause ST (meaning "trtle"). Tile mechanism is this: if hyperresolution encounters

a negative literal tlmt has an evalual)le predicate symbol, then it demodulates the

atom (the literal without the sign); if the result of the demodulation is ST, then the
literal is considered to llave been resolved.

During hyperresolution, demodulation/evaluation is triggered by the l)resence of

an evalual)le literal. Ill tnatly cases, l,owever, the user defines a Boolean function

that he or she wishes to trigger the mechanism. Consider the following (lefiziition of
list membership, written as demo(lulators:

member(x,[]) = SF.

member (x,[y]z] ) = $IF($1D(x,y),

ST,

member(x,y)) .

37



Because the symbol member is not evaluable, the demodulation/evaluation mecha-
nism will not be activated; however, the unary evaluable predicate STRUE can be

used in the following way to trigger demodulation/evaluation.

-L1 I "'" I -$WRUE(member(elernent, list)) I ". I -Ln I 114.

Evaluable functions and predicates are useful to implement forward-chaining rule-
based systems, for example, state-space search problems (See. 9.2).

Hyperresolution operates on the conditions (negative literals) in order, left to
right. (The preceding sentence is not quite true, because the first step is typically

resolution of a positive given clause with any one of the conditions, but for this
paragraph, we may assume that it is true.) If a literal resolves or evaluates, tile next

literal is considered. If nothing more can be done with a literal, then hyperresolution
backtracks to the preceding literal in search of an alternative. When a nucleus
contains evaluable conditions, the order of the conditions is important both for

efficiency and for actually deriving hyperresolvents. Evaluable conditions typically
have variables that must be instantiated when nonevMuable literals are resolved.

If an evaluable literal is too far to tile left, its variables will not be sufficiently

instantiated when hyperresolution encounters it, evaluation will fail, and possible
paths to hyperresolvents will be blocked. If an evaluable literal is too far to the
right, then hyperresolution can explore many paths that are sure to fail.

Technical Note and Advice. The evaluable symbols are an add-on feature rather than
an integral part of OTTER. In particular, the objects that are manipulated (integers,

bit strings, etc.) in most cases are stored by OTTER as character strings rather than
as the appropriate data type. To evaluate a term, say $SUM(2,3), OTTER must
find the strings "2" and "3" in a hash table, translate them to integers, add them,

translate the result to the string "5", then look up "5", and possibly insert it into
the hash table. This procedure is obviously much slower than it needs to be. If the
user has a problem that requires a hundred million evaluations, he or she should

consider using something else, including writing a special-purpose C program.

Warning. The evaluable symbols should not be thought of as theories "built in" to

OTTER. As theories, they are very incomplete, and OTTER uses them only in very
constrained ways.

9.1 Using More Natural Expressions for Evaluation

Writing complex evaluable expressions with S-symbols can be quite tedious. There-
fore, a feature was added that allows more natural expressions. The command

make_evaluable copies the evaluation properties from a S symbol to any other
symbol of the same arity. The form of the command is

make_eva:luable (any-symbol, evaluable-symbol).

The symbols in the command are given dummy arguments to specify the arity. The

following list contains typical examples for integer arithmetic (assuming the symbols
on the left are already known to be infix).
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make_evaluable(_+_, $SUM(.,.)).

make_evaluable(_-_, $DIFF(_,_)).

make_evaluable(_>_, gGT(_ ,_)).

make_evaluable(_>=_, $GE(_,_)).

Warning I. If a binary symbol that is recognized by paramodulation or demod-

ulation as an equality symbol is given evaluation properties, it will no longer be

recognized by paramodulation or demodulation. For example, if tlle command

make_evaauabla (_=_, gEQ (_,_)) is issued, paramodulation and demodulation will

not recog,ize a-b as an equality. The convention is to use == for evaluation.

Warning 2. This is not an "alias" mechanism; the symbols remain distinct for

unification, matching, and identity testing.

9.2 Evaluation Examples

Equational Programming. The evaluable functions and predicates enable the
use of equalities with demodulation as a general-purpose equational programming
language. Here are some examples.

gcd(x,y) = 7.greatest common divisor for nonnegative integers
$IF($EQ(x,0),

Y,
$IF($EQ(y,0),

X,

$IF($LT(x,y),

gcd(x,$DIFF(y,x)),
gcd(y,$DIFF(x,y))))).

factorial(x) = Y,factorial for nonnegative integers
$IF($EQ(x,0),

l,
gPROD(x,factorial($DIFF(x,!)))).

quick_sort([]) = []. _,naive quicksort

quick_sort([xly]) = append(quick_sort(le_list(x,y)),

[xlquick_sort(gt_list(x,y))]).
le_list(z,[]) = [3.

le_list(z,[xJy]) = $1F($LLE(x,z),

IxIle_list(z,y)],

le_list(z,y)).

gt_list(z,[]) = [].

gt_list(z, [xly]) = $IF($LGT(x,z),
[xIgt_list(z,y)],

gt_list(z,y)).

A State-Space Search. llere is a COml)lete OTTER input file for a simple state-

space search.

Z We have a 3-gallon jug and a 4-gallon jug, both empty, and a well.
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r
J

Our goal is to have exactly 2 gallons in the 4-gallon jug. We

can fill a jug from the well, empty a jug onto the ground, and

carefully pour ,ater from one jug into the other.
X

j(m, n) is the state in which the 3-gallon jug contains m gallons,

and the 4-gallon jug contains n gallons.

set(hyper_res).

make_evaluable(_+_, $SUM(_,_)).

make_evaluable(_-_, SDIFF(_,_)).

make_evaluable(..<=_, SLE(_,_)).

make_evaluable(_>_, $GT(_,_)).

list(usable).

-j(x, y) j(3, y). _ fill the 3-gallon jug

-3(x, y) j(O, y). _ empty the 3-gallon jug

-3(x, y) j(x, 4). _ fill the 4-gallon jug

-3(x, y) j(x, 0). _ empty the 4-gallon jug

-j(x, y) -(x+y <= 4) l j(O, y+x). _ small -> big; it all fits

-j(x, y) -(x+y > 4) l j(x - (4-y), 4). Z small -> big, until full

-3(x, y) -(x+y <= 3) l j(x+y, 0). Z big -> small; it all fits

-j(x, y) -(x+y > 3) [ j(3, y - (3-x)). Z big -> small, until full

-j(x, 2). _ goal state --- 4-gallon jug containing 2 gallons

end_of_list.

list(sos).

j(O, 0). _ initial state --- both jugs empty

end_of_list.

I0 Weighting

OTTER recognizes four lists of weight templates. (See Sec. 5.4 for input of weight
template lists.)

weight_list(pick_giwn). This list is used for selection of given clauses from list

sos. When the weight of a clause is printed, it is the pick.given weight.

weight_list(purge.gen). This list is used in conjunction with the max_weight
parameter to discard generated clauses.

weigh¢_ist(pick_and_purge). In many cases, one can use the same weighting
strategy for both selecting given clauses and purging generated clauses. The

pick_and_purge list serves the purposes of both the pick_given and the
purge_gen lists. If the pick_and_purge list is present, then neither the

pick_given nor the purge_gen list may be present.

weight_list('cerms). This list is for calculating the weight of terms when using

the weight-lex-order (See. 8.1.1) to compare terms. This occurs when the flag
lrpo is clear when orienting equality literals (Sees. 8.1.2 and 8.1.3).
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10.1 Weighing Clauses and Literals

The weight of a clause is always the sum of the weights of its literals (excluding
any answer literals). Tile weight of a positive literal is the weight of its atom. The

weight of a negative literal is the weight of its atom plus the value of the neg_welght
parameter (See. 6.2.5).

10.2 Weighing Atoms and Terms

Atoms and terms are weighed top-down. To weigh a given term, OTTER searches

the appropriate weight list (ill the order input) for the first matching template. If a
match is found, then the subterms of the given term that match the integers in lhe

template are weighed. The weight of the given term is the sum of the products of
each integer and the weight of its corresponding subterm, plus the second argument
of the weight template. For example, the template

weighl;(f(g($(2)),$(-3)), -50).

matches the given term

f (g(h(a))0f(b,x)).

Let wt(t) be the weight of term or atom t. Then

wt(f(g(h(a)) ,f(b,x))) = 2, wt(h(a)) + (-3), wt(f(b,x)) + (-50).

If a matching weight template is not found, then the weight of the given term is

1 plus the sum of the weights of the subterms. (See the flags atom_ut_max_args
and 1;erm_ut_max_args, Scc. 6.1.9, for overrides.) Note that this weighting scheme
implies that if no weight templates are present, the default weight of a term or atom
is the number of variable, constant, function, and predicate symbols (the symbol
count).

Variables in weight teml)lales are generic. A variable in a weight template will
match any variable, and only a variable, in the given term. As a consequence, it

is never necessary to use different variable names in a weight template. For exam-

pie, ueight(f(x,x),-7) matches the term f(u,v), and ueight(x ,32) matches all
variables.

lVavnin 9. The two occurrences of symbol f in tile term f(f,x) are treated by

OT'rEn as different symbols because they have different arities. The weight template
weight(f, 0) applies to the second occurrenco but not to tile first.

The default weight of an answer literal is 0, but templates can be used to assign

weigllts to answer literals. The parameter neg_weighl; never applies to answer
[iterals.

If one wishes to have a weight template containing a Skolem function or constant
that is generated by OTTER, on(; must first make a short trial run to find out how
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the formulas are Skolemized, then return to the input file and insert the weight list
containing the Skolem symbol after tile formula lists.

11 Answer Literals

Tile main use of answer literals is Io record, during a search for a refutation, instanti-

ations of variables in input clauses. For example, if tile theorem under consideration
states that an object exists, then tile denial of the theorem contains a variable, and

an answer literal containing the variable can be appended to the denial. If a refuta-
tion is found, then the empty clause has an answer literal that contains the object
whose existence has just been proved.

Any literal whose predicate symbol starts with Sans, $hna, or $hl_; is an answer
literal. Most routines--including the ones that count literals and decide whether a

clause is positive or negative--ignore any answer" literals. The inference rules insert,
into the children, the appropriate instances of any answer literals in the parents. If

factoring is enabled, OTTER does attempt to factor answer literals.

12 The Passive List

Either clauses or formulas can be input to list passive. After input, the passive
list is fixed for the rest of the run. Clauses in the passive list are used for exactly

two purposes: forward subsumption and unit conflict. If forward subsumption is
enabled, a newly generated clause will be deleted if it is subsumed by any clause in
usable, sos, or passive, and newly kept unit clauses are checked for unit conflict

against unit clauses in usable, sos, or passive.

The passive list has been most useful for monitoring the progress of a search.
Suppose we are trying to prove a difficult theorem, we have some lemmas in mind,

and we would like to know whether OTTER has proved the lemmas. Then denials

of the lemmas can be placed in the passive list, and OTTER will report proofs if
it proves any lemmas, but the denials of the lemmas will not interfere with the

search for the main theorem. (Recall that an appropriate value must be assigned to
max_proofs; otherwise OTTER will stop at the lirst proof.)

13 Completeness and Soundness

13.1 Completeness

If the clause set does not involve equality, or if it involves equality and includes the

equality axioms, then many of tl_e common refutation-complete resolution search

strategies can be easily achieved with OTT_'.R. For example, hyperresolution anti
factoring, with positive clauses ill the list sos and nonpositive clauses in the list

usablo, is coml)lete. If tile input clause set is llorn, then factoring is not required.
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The default method of selecting the given clause (take one with the fewest symbols)

does not interfere with completeness, and neither forward nor back subsumption, as
implemented in OTTER, interferes with completeness of the basic inference rules.

Completeness issues are more complex when paramodulation is the inference

rule, especially when the set of support strategy is considered. A simple and com-
plete paramodulation strategy for OTTER is (1) paramodulate from and into the

given clause, (2) paramodulate from and into both sides of equality literals, (3)
paramodulate from (but not into) variables, and (4) place all input clauses in the
list sos. The equality x_x is required, but the functionally reflexive axioms are not
required.

Completeness of the basic inference rules is important, but incomplete restric-
tions and refinements are frequently required to find proofs. For example, I almost

always use the max_weight parameter; strictly speaking, it is incomplete, but it
saves a lot of time and memory, and careful use of it does not prevent OTTER from

finding proofs in practice. For paramodulation, I generally use a search based on
some variation of the Knuth-Bendix completion procedure; some versions are known
to be incomplete, and others have not been analyzed. I sometimes use UR-resolution

on nonHorn sets, which is incomplete. And I make extensive use of weighting to
purge "uninteresting clauses" and the options deleta_idontical_nosted_skole_a,
max_distinct_vats, and max_literals, all of which interfere with completeness.

13.2 Soundness

As far as I know, no part of OTTER has been formally verified in any way. If it

finds a proof, it can print the proof line by line (excluding individual demodulation
steps), so the user has the option of checking it. If anything depends on the proof, I

recommend at least scanning tile proof for obvious errors. The few soundness bugs
in previous versions of OTTER have surfaced in ways that are easy to spot in proofs,
for example, deriving x = y from a nontrivial equational theory.

I won't jump off a bridge (even a small one) if someone finds a bug that makes
OTTER unsound, but ] will tell everyone about the the bug and try to fix it promptly.

14 Interaction during the Search

OTTEIt has a primitive interactive feature that allows the user to interrupt the

search, modify the options, and then continue the searcii. The interrupt is trig-
gered in two ways: (1) with OTTER running in the foreground, the user types
the "interrupt" character (often DELETE or cc_:trol-C), or (2) if the parameter

interrupt.given is set to n, the search is interrupted after every n given clauses.
When interrupted, OTTER immediately goes into a simple loop to read and execute
commands. The accepted commands are listed in Table 8.

The following notes elaborate on the i_lteractive feature.

• The flag inzeractivo_given (See. 6.1.1) can be useful with the interactive
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T_ble 8: Interaction Commands
help. Give simple help.
set(flag-name). Seta flag.
clear(flag-name). Clear a flag.

assign(param.name,value). Assign a value to a parameter.
stats. Send statistics to std. output and the terminal.
usable. Print list usable on the terminal.

sos. Printlistsos on theterminal.
demodulators. Printlistdemodulatorson theterminal.

passive. Print list passive on the terminal.
fork. Fork and run the child process;

resume parent when child finishes.
continue. Continuethesearch.

kill. Send statistics to standard output, and exit.

feature. For example, if the user thinks the search is going to fail, he or she
can interrupt it, print list sos, set the interactive_given flag, then continue,
selecting given clauses interactively.

• The fork command creates a separate copy, called a child, of the entire OT-

TER process. Immediately after the fork, the child is running (waiting for
more commands) and the original process, the parent, is waiting for the child
to finish. When the child finishes, the parent resumes (waiting for more com-
mands). Changes that the child makes to the clause space, options, etc., are

not reflected in the parent; when the parent resumes, it is in exactly the same
state as when the fork occurred. (The timing statistics are not handled cor-
rectly in child processes; CPU times are from the start of the current process;

wall-clock time is correct; other timings are not reliable.)

• The interactive routine is an area where a user who is also a C programmer
can easily add features. For example, most of the ordinary input commands
could be made available in the interactive mode.

Warning. Do not interactively change any option that affects term or literal index-
ing.

15 Output and Exit Codes

OTTER sends most of its output to "standard output", which is usually redirected by
the user to a file; I'll just call it the output file. The first part of the output file is an
echo of most of the input and some additional information, including identification

numbers for clauses and description of some input processing. Comments are not
echoed to the output. The second part of the output file reflects the search. Various

print flags determine what is output. Given clauses, generated clauses, kept clauses,
and several messages about the processing of generated and kept clauses can be

printed. Both statistics from the parameter report and proofs can also be printed
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during the search. Tile final part of the output file lists counts of various events

(such as clauses given and clauses kept) and times for various operations.

Whenever a clause is printed, it is printed with its integer identifier (ID) and a

justification list, which is enclosed in brackets. Examples:

4 [J -j(x,y)Ij(x,0).1

. 13 [hyper,ll,8,eval,demod] j(3,1).

41 [31,demod] p([a,b,b,c,c,c,d,e,f]).

14 [new.demod,13J f(y,f(y,f(y,x)))=x.

71 [back_demod,58,demod,70,14,55,11,34,11] e!,,e.

12 [demod,9] f(a,fCb,f(gCa),gCb))))!=e.

77 [binary!,57,3,30.2] smlmml -sl.

33,32 [para.from,28.1.1,15.1.1.2,demod,21] g(x)=f(x,x).

36 [hyper,31,2,26,30,unit_del,19,18,20,19] p(k,g(k)).

4 [factor_simp,factor_simp] p(x) Jp($f1(x))i -q($f2(y))J -q(y) Ip($c6).

199 [binary, 198.1,191.1,factor_simp] q($c14).

If tile justification list is empty, tile clause was input. Other_" e, the .first item ill

the justification list is one of the following.

An inference rule. The clause was generated by an inference rule. The IDs of the

parents are listed after the inference rule with the given clause ID listed first

(unless order_history is set).

A clause identifier. The clause was generated by the demod_inf rule.

neu_demod. The clause is a dynamically generated demodulator; it is a copy of the
clause whose ID is listed al'ter new_domed.

back_demod. The clause was generated by back demodulating the clause whose ID
is listed after back_domed.

demod. The clause was generated by back demodulating an input clause.

factor_simp. The clause was generated by factor-simplifying an input clause. For

example, p(x)[p(a) factor-simplifies to p(a).

The sublist [demod, idl, id2,...] indicates demodulation with idl, id2, .... The sublist

[unit_del, idl,id2,...] indicates unit deletion with idl,id2, .... The symbols eva1

indicates that a literal was "resolved" by evaluation (See. 9) during hyperresolu-

tion. The sublist [factor_simp, factor_simp,...] indicates a sequence of factor-

simplilicatiol_ steps (See. 6.1.4).

In proofs, some clauses are printed with two (consecutive) IDs. In such a case,

the clause is a dynamically generated demodulator, and the two IDs refer to different

copies of the same clause: the first ID refers to its use for inference rules, and the
second to its use as a demodulator.

If the flag detailed_history is set, then for the inference rules binary_res,

para_from, and para_into, the positions of the unified literals or terms are listed
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along with tile parent IDs. For example, [binary, 57.3,30.23 means that tile third
literal of clause 57 was resolved with the second literal of clause 30. For paramod-

ulation, the "from" parent is listed as ID.i.j, where i is the literal number of the

equality literal, and j (either 1 or 2) is the number of the unified equality argument;
the "into" parent is listed as ID.i.jl.....jn, where i is the literal number of the
"into" term, and jl.'".J, is the position vector of the "into" term; for example,

400.3.1.2 refers to the second argument of the first argument of third literal of
clause 400. If tile flag para.all is set, then the paramodulation positions are not !

listed.

When the flag sos_queue is set, the search is breadth first (level saturation},

and OTTER sends a message to the output file when given clauses start on a new
level. (Input clauses have level 0, and generated clauses have level one greater than
the ma_ximum of the levels of the parents. Since clauses are given in the order ill

which they are retained, the level of given clauses never decreases.)

Exit Codes. When OTTER stops running, it returns with an exit code that gives
the reason for terminatiou. The codes are useful when another program or system
calls OTTER. Table 9 lists the exit codes, Note that we do not follow the unix

convention of returning zero for normal and nonzero for abnormal termination.

Tab!e 9: Exit Codes
101 Input error(s)

102 Abnormal end (compile-time limit or OTTER bug)
103 Proof(s) found (stopped by tnax_proofn)
104 sos list empty

105 max_given parameter exceeded
106 max.seconds parameter exceeded

107 max_gen parameter exceeded
108 max_kept parameter exceeded
109 max_mereparameter exceeded

110 Operating system out of memory
111 I,_teractive exit

112 Memory error (probable OTTER bug)

16 Controlling Memory

In many OTTER searches, the sos list accumulates many clauses that never enter
the search, possibly wasting a lot of memory. The normal way to conserve memory
is to put a maximum on the weight of kept clauses. It can be difficult, however,

to find an appropriate maximum. OTTER has a feature, enabled by the command
sot(conl;rol_memory), that attempts to automatically adjust the maximum.

The memory-control feature operates as follows. When one third of available

memory (max_mora parameter) has been filled, OTTER assigns or reassigns a maxi-

mum weight. The new maximum, say n, is such that 5% of all clauses in sos have
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weight< n. From thenon,at everytenthiterationofthemain loop,OTTER calcu-

lates a prospectivenew maximum n_inthesame way.Ifnt<zn,thenthemaximum

isresetto n_.I arrivedat tilevalues1/3and 5% by trialand error.Perhapsthese
valuesshouldbe parameters.

17 Fringe Features

Thissectiondescribessome featuresthatarenew,not welltested,and/ornotwell
documented.

17.1 Autonomous Mode

Iftheflagauto isset,OTTER willscantheinputclausesforsome simplesyntactic

propertiesand decideon inferencerulesand a searchstrategy.We thinkoftheau-
tonomous mode as providinga built-inmetastrategyforselectingsearchstrategies.
The searchstrategythatOTTER selectsfora particularsetof clausesisusually

refutationcomplete(exceptfortheflagcontrol_memory),b,t theusershouldnot
expectittobe especiallyeffective.Itwillfindproofsformany easytheorems,and

evenforcasesinwhichitfailstofinda proof,itprovidesa reasonablestartingpoint.

Intheinputfile,thecommand set(auto)must occurbeforeany inputclauses,
and allinputclausesmust be inlistusable;itisan errortoplaceinputclauseson

anyoftheotherlistswhen inautonomousmode. OTTER willmove some oftheinput
clausesto sos beforestartingthesearch.When OTTER processesthe set(auto)
command, italterssome options,even beforeexaminingthe inputclauses.Ifthe

userwishesto augment theautonomous mode by includingsome ordinaryOTTER
commands (includingoverridingOTTER'S choices),thecommands shouldbe placed
aftersel;(auto)and beforelist(usable).

Afterlist(usable)hasbeenread,OTTER examinestheinputclausesforseveral

syntacticpropertiesand decideswhichinferencerulesand strategiesshouldbe used,
and whichclausesshouldbe moved tosos.The usercannotoverridethedecisions

that OTTER makes at thisstage.

OTTER looksforthefollowingsyntacticpropertiesofthesetofinputclauses:(I)

whetheritispropositional,(2)whetheritisIIorn,(3)whetherequalityispresent,
(4)whetherequalityaxiomsarepresent,and (5)themaximum number ofliterals
ina clause.The program thenconsiderssixbasiccombinationsof theproperties:

(I)propositional,(2)equalityin which allclausesare units,and (3-6)the four
combinationsof {equality,Horn}. To see preciselywhat OTTER does forthese
cases,thereadercan setup and run some simpleexperiments.

Pleasebe aware thatthe autonomous mode reflectsmy own experienceswith

I OTTER; other users would certainly formulate different metastrategies. For example,
Larry Wos prefers UR-resolution to hyperresolution or in addition to hyperresolution
in rich Horn or nearly-llorn theories, and he prefers to add few or no dynamic
demodulators for equality theories.

47



17.2 The Hot List

The hot list is a strategy that can be used to emphasize particular clauses. It was
invented by Larry Wos in the context of paramodulation, and it has been extended

to most of OTTER's inference rules. To use ttm strategy, the user simply inputs one
or more clauses in the special list named hot. Whenever a clause is generated and

kept by O'rTEIt's ordinary mechanisms, it is immediately considered for inference
with clauses in the hot list.

Which Clauses Should Be Hot? Clauses input in tile hot list are usually copies
of clauses that occur also in sos or usable. They are usually clauses that the user

believes will play a key role in the search for a proof, for example, the special
hypothesis.

Managing Hot-List Clauses. Input to the hot list is the same as input to other
lists and can be ill either clause or formula form, for example,

list(hot).

f(x,x) m x. m(m(x)) ffi x.
end_of.list.

Tile flag process_input has no effect on hot-list clauses; they are never altered
during input, llot-list clauses are never deleted, for example by back subsumption
or back demodulation. Even if a hot-list clause is identical to a clause in another

list, it has a unique identifying number, and proofs that use hot-list clauses generally
refer to two copies (with different ID numbers) of those clauses.

Hot Inference Rules. The inference rules that are applied to newly kept clauses
and hot-list clauses are the same as the rules in effect for ordinary inference, with

the exceptions demod.inf, geometric_rule, and linked_ur_res, which are never
applied to hot-list clauses.

Applying Hot Inference. When hot inference is applied, the newly kept clause
is treated as the given clause, and the hot list is treated as the usable list. (Note

that the newly kept clause is not in the hot list, so it will not be considered for
inference with itself, as hal)pens with the given clause i,i ordinary inference.) For

i,ference rules such as hyperresolution or UR-resolution that can use more than two
parents, all of the other parents must be in the hot list; this generally means that
the ,mcleus and other satellites must be in the hot list. l[ot inference is not applied
to clauses that are "kept" durir.g processing of the input.

Level of Hot Inference (Parameter heat). To prevent long sequences of hot

inferences (i.e., hot inference applied to a clause generated by hot inference, and
so on) we consider the heat level of hot inference. The heat level of an ordinary
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inference is 0, and tile heat level of a hotly inferred clause is one more than the heat

level of the new-clause parent. The parameter heat, default l, range [0..100], is the
maximum heat level that will be generated. When a clause is printed, its heat level,

if greater than 0, is also printed.

Dynamic Hot Clauses (Parameter dynamic_heat_weight).Clausescan be

added to the hot listduringa search.Ifthepick_given weightof a keptclause
islessthan or equalto theparameterdynamic_heat_weight,default--MAX_.INT,

range[--MAX_INT..MAXANT], thentheclausewillbe added tothehot listand used
forsubsequenthotinference.Inputclausesthatare"kept"duringprocessingofthe

inputarenevermade intodynamic hotclauses.Dynamic hotclausescan be added
toan empty hotlist(i.e.,no inputhot list).

17.3 Linked UR-Resolution

OTTER has an inference rule, linked_ur_res, that is an application of the linked

inference principle [27] to UR-resolution. As this manual is written, there is not
yet any documentation. The inference rule is still evolving and is highly experimen-
tal. l%r current information on the status of linked UR-resolution, send e-mail to

wos_,mcs.anl,gov and veroff_)cs.unm.edu.

17.4 Conditional Demodulation

A conditional demodulator has the form

co_dition-> equulity-litcr.l.

The equality is applied as a demodulator if and only if the instantiated conditionJ

evaluates to ST. The equality of a conditional demodulator is not subjected on
input to being flipped or to being flagged as a lex-dependent demodulator, and
conditional demodulators are never back demodulated. In other ways, conditional

demodulators behave as ordinary demodulators. Examples are (member and gcd are
defined in Sec. 9.)

SATOMIC(x) -> conjunctive_normal_form(x)=x.

member(gcd(4,x),y) -> Equal(f(x,y), g(y)).
SGT($NEXT_CL_NUM,IO00)-> e(x,x) = junk.

17.5 Special Unary Function Demodulation

A feature, activated by the special_unarycommand, allows OTTER to avoid one
of the l)roblems caused by lhe lack of associative-commutative matching during
demodulation. The f(,aitlre is useful when an associative-commutative function and

all inverse are present, as in rings. Without this feature, the following lex command
and demodulators
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lex( [o, a,b,c,d,e,g(_),_(-,_3]).

list(demodulators)•

f (x,y) = f(y,x).
_(x,_(y,z)) = f(y,f(x,z)).

f(x,g(x)) = 0.
_(x,f(g(x),y)) = _(0,y).
f(O,x) = x.

end_of_list.

will cause the expression

f (f (f (g(b), a), c) ,f (b ,g(c) ) )

to be sorted into

f(a,f(b,f(c,f(g(b),g(c))))).

One wouldhke b and g(b) tobe nexttoeachothersothattheycouldbe canceled

by one of the inversedemodulators.The special-unaryfeatureaccomplishesjust
that.The command

special_unary([g(x)] )

causesg to be ignoredduringterm comparisons,and theexpressionwould be de-
modulatedtoa. Tilespecial_unarycommand hasno effectiftheflagIrpo isset.
This is an experimental feature. Its behavior has not been well analyzed.

17.6 Ancestor Subsumption

OTTER does not necessarily prefer short or simple proofs--it simply reports the

proofs that it finds. An option ancestor_subsume extends the concept of subsump-
tion to include the derivation history, so that if two clause occurrences are logically

identical, the one with fewer ancestors is preferred. The motivation is to find short

proofs.

ancestor_subsume -- default clear. If this flag is set, the notion of subsump-

tion (forward and back) is replaced with ancestor-subsurnption. Clause C ancestor-
subsumes clause D iff C properly subsumes D or if C and D are variants and

size( ancestorset( C )) <_size( ancestorset( D )).

When setting ancestor_subsume, we strongly recommend not clearing the flag

back_subsume, because doing so can cause many occurrences of the same clause to
be retained and used as given clauses.
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17.7 Reducing max_weight on the Fly

In many searches, the number of kept clauses grows much faster than the number
of given clauses. In other words, the list sos is very large, and most of those clauses •

never participate in the search. To save memory, one can use the max_weight
parameter to discard many of the clauses that will (probably) -ever become given
clauses.

A few searches and proofs show a phenomenon we call the complexity hump. To

get a search started, one must use complex clauses; then one can continue the search
using simpler clauses. That is, the first few steps in the proof are complex, and the

remaining steps are simpler. If one needs to carefully conserve memory when a
complexity hump is present, one can use tile parameters change_limit_after and

now_max_weight to change the value of max_weight after a specified number of
given clauses.

change_limit_after -- default 0, range [0..MAXANT]. If n (the value) is not 0,
this parameter has effect. After n given clauses have been used, the parameter

max.weight is automatically reset to the value of the parameter new_max_weight.

new_max_weight -- default MAX_IN'r, range [--MAXANT..MAXANT]. See the descrip-
tion of the preceding parameter.

Note that the memory-control feature (See. 16) can also address the complexity
hump phenomenon.

17.8 The Invisible Argument

OTTER recognizes a built-in unary function symbol SIGNORE(_).l"orward substtmp-
tion treats each term that starts with SIGNOREas the constant SIGNORE,completely

ignoring its argument. For example, p(a, SIGNORE(b)) subsumes p(a ,SIGNORE(c)).
All other operations (in particular, inference rules, demodulation, and back sub-

sumption) treat SIGNOREas an ordinary function symbol.

The purpose of SIGNOREis to record data about the derivation of a clause with-
out having that data prevent the forward subsumption of clauses that would be

subsumed witllout that data. The SIGNOREterm is the term analog of the answer
literal. For example, one can use SIGNOREterms in the jugs and water puzzle (See.

9.2) to record the sequence of pourings that leads to each state.

17.9 Floating-Point Operations

Table 10 lists a set of floating-point evaluable functions and predicates that are
analogous to the integer arithmetic operations listed in Sec. 9. They operate in the

same way as the integer operations.

The floating-point constants, however, are a. little peculiar, both in the way they
look and in the way they behave. They are written as quoted strings, using either

single or doui)le quotes. (Otht:rwise, they would not be able to contain decimal
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Table 10: Floating-Point Operations
float x float _ float I SFSUM,SFPROD,SFDIFF, SFDIV, $FMOD

.float × float _ bool [ $FEQ, $FNE, $FLT, $FLE, $FGT, $FGE

points.) Other than the quotation marks, the form of the floating-point constants
accepted by OTTER is exactly the same as the form accepted by the C programming

language (actually the C library used by the compiler). Examples are "1.2", "10e6",
"-3.333E-5". A floating-point constant must contain either a decimal point or an
exponent character o or E.

The peculiar behavior comes from the fact OTTER stores the floating point

numbers as character strings instead of directly as floating point numbers. To apply
a floating-point operation, OTTER starts with the operand strings, translates them

to true floating-point numbers (the C data type "double" is used), performs the
operation, then translates the result into a string so that it can be an OTTER

constant. As well as being inefficient, this scheme also has a problem with precision,

because a fixed format is used to translate the results back into strings. The default
format is "7,. 12f", and it can be changed with a command such as

floaf_format("X17.8f")

Cautioi_. OTTER does not check tlt_t the _tth_g i,i the float_formatcommand is

a well-formed format specification. This is the user's responsibility.

To fully understand how this works, see the standard C language reference Ill,

Appendix B]_ in particular, the C library functions sscanf and sprintf are used
to translate to and from strings.

17.10 Foreign Evaluable Functions

OTTER provides a general mechanism through which the user can create his or

her own evaluable functions and predicates. The user (1) declares the function, its
argument types, and its result type, (2) inserts a call to the function in the OTTI?R

source code, (3) writes a C routine to implement the function, and (4) recompiles
OTTER. The user must have his or her own copy of the source code to use this

feature. See the source code file foreign.h for step-by-step instructions, examples,
templates, and test files.

lmport_lnt note. Many times you can avoid having to do all of this by just writing
your function with demodulators and using existing built-in functions. For exam-
ple, if you need the maximum of two doubles, you can just use the demodulator

float_max(x,y) -" $IF($FGT(x,y), x, y).

17.11 Sequent Notation for Clauses

There are two flags that enable the use of sequent notation for clauses.
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input_sequent-- default clear. If this flag is set, clauses in the input file must be
in sequent notation.

output_sequent -- default clear. If this flag is set, then sequent notation is used
when clauses are output.

Syntax:

• All sequent clauses have an arrow.

• The negative literals (if any) are written on the left side of the arrow, are
written without the negation sign, and are separated by commas.

• The positive literals (if any) are written on the right side of the arrow and are

separated by commas.

Table 11 lists some examples.

Table 11: Examples of Sequent Clauses
Ordinary Clause Sequent Clause
-p i -q i -r i s I t p,q,r->s,t
p(a,b,c) -> p(a,b,c)
a!=b a=b ->

$F (the empty clause) ->

Note that p, q->r, s is ordinarily thought of as (p and q) implies (r or s).

Sequent clauses are treated as (parsed as) a special case, because they can't be
made to fit within OTTER's ordinary syntax.

17.12 The Inference Rule gL for Cubic Curves

Based on work of R. Padlnanabhan and others, a new inference rule, gL ("geo-
metric Law", or "Local to global"), was added to OTTER. The rule implements a
local-to-global generalization principle that has a geometric interpretation for cubic

curves. The article [18] contains a description of the rule, some details about its
implementation in OTTER, and several new results obtained with its use.

The rule gL applies to single positive unit equalities, and it is implemented in
two ways: as all inference rule, with unification, and as a rewrite rule, for when the

target _erms are already identical. The following flags, usually used together, enable
the rule.

gooraotric_rulo -- default clear. When this flag is set, gL is applied as an inference
rule (along with any other inference rules that are set) to each given clause. The
rule gL applies to single positive unit equalities.

geometric_rewrite -- default clear. When this flag is set, gL is applied as a rewrite
rule, after ordinary demodulation, to each generated clause.
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Our experience has shown that given two equalities of equal weight, one the result

of gL and the other not, the gL result is usually more interesting. The following
parameter can give preference to gL results.

gee_given_ratio-- default 1, range [--1..MAX_IN'r]. When this parameter is not
-1, it affects selection of tile given clause in a way similar to pick_given_ratio.
If the ratio is n, then for each n given clauses selected in the normal way by weight,
one given clause is selected because it is the lightest gL result available in sos.

If pick_given_ratio arid gee_given_ratio are both in effect, then clashes are

resolved in favor of gee_given_ratio.

18 Limits, Abnormal Ends, and Fixes

OTTER has several compile-time limits. If a limit is exceeded, a message containing
the name of the limit will appear in the output file and/or at the terminal. To raise
the limit, find the appropriate definition (#define)in a .h or .c file, increase the

limit, and recompile OTTER. (Of course, one must have his or her own copy of the
source code to do this.) Some of the limits arc as follows.

MAX_NAME--- Maximum number of characters in a variable, constant, function, or

predicate symbol.

MAX_BUF Maximum nurttl, er of characters in an input string (clause, formula,

command, weight template, etc.).

MAX_VARS-- Maximum number of distinct variables in a clause.

MAX_FS.TERM_DEPTH- Maximum depth of terms in the forward subsumption dis-
crimination tree.

MAX_AL.TERM_DEPTH-- Maximum depth of left-hand arguments of equalities in the
demodulation discrimination tree.

Conserving Memory. Several steps can be taken if OTTL'R is using too much
memory.

• Use max.weigh'c to discard (more) generated clauses. This is a very effective
way to save memory (and time).

• Set the flag control_memory (See. 6.1.9), or use the parameters

change_limit.after and now_max_weight (See. 17.7).

• Decrease (down to 0) the value of the fpa_literals and fpa_terms parame-
ters.

• Set the for_sub.fpa flag to switch forward subsumption indexing froln dis-
crimination tree to FP^ indexing.

• If the inference rules being used are binary resolution or pararnodulatiorl, clear

tile flag detailed_history.
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• If a lot of back subsumption or back demodulation is expected, set the flag

really_delete_clauses(See. 6.1.9).

• If applicable, set no_lap1 or no_fan1 (See. 6.1.8).

• If back demodulation is being used, clear the flag index_for_back_demod.

• Run an OTTER job until memory runs out, collect interesting lemmas from the
output file, then rerun the job including the lemmas as input clauses. Repeat.

(This call be a good strategy even when memory is not a problem.)

19 Obtaining and Installing OTTER

OTTER 3 is free, and there are no restrictions on copying or distributing it. The

main means of distribution is anonymous FTP from info.mcs.anl.gov. See the
file READMEin the directory pub/0ttor for information oil tile current state and
versions of OTTER 3.

Once you have a copy of the OTTER 3 distribution directory, you can compile
OTTER. (There may be Macintosh and DOS binaries available; see below.) The
directory source contains all of the source code and a UNiX-style makefile. Oil

many UNiX-like operating systems, including Linux 99.p113, SunOS 4.1.3, AIX 3.2.2,
NeXTStep 3.1, and IRIX 4.0.5, simply tyl)ing "make otter" should compile OTT_;r_.

If compilation fails, see comments in the file makefile for hints on getting OTTER
to compile on your system.

Once you have O'rTEIt compiled, go to the directory test and see the file README.

You can then run the test and example input files in that directory.

As I write this manual, OTTER 3 has not been compiled for DOS or Macintosh

computers; I hope that those versions will soon become awtilable in binary as well
as in source forln. Inquiries on OT'rFR 3 for DOS or Ma(,intosh systems can be sent
to the author.
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