an-'m-ln

DE93 007270
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Mllinois 60439

ANL/MCS-TM-173

Accessing Integrated Genomic Data Using GenoBase:
A Tutorial. Part 1

by

Ross Overbeek and Morgan Price

Mathematics and Computer Science Division

Technical Memorandum No. 173

January 1993

This work was supported by the Office of Scientific Computing, U.S. Department of Energy, under Contract

W-31-109-Eng-38. MASTEB Ao

BDiSTRIBUTION OF THIS DOCUMENT 1S uNLIMITER

o). SN eW b A

Contents

Abstract

1 Imntroduction

1.1 Getting Started L e

1.2 More on Attributes and Relationships

1.3 Restricting a Set of Objects with Constraints

1.4 Saving Results in Temporary Variables

2 Intervals and Points

3 More on Sequences and Pattern Matching

4 Codon Usage and Kmer Statistics

5 Searching for Common Subsequences

6 Summary

Appendix: Summary of Expressions That Can Be Evaluated

iii

[S

19

19

21

29

37

39

40

il O

Accessing Integrated Genomic Data Using GenoBase:
A Tutorial. Part 1

by

Ross Overbeek and Morgan Price

Abstract

GenoBase integrates genomic information from many existing databases, offering
convenient access to the curated data. This document is the first part of a two-part
tutorial on how to use GenoBase for accessing integrated genomic data.

1 Introduction

GenoBase is a database that integrates information from a number of existing databases.
Enormous work has gone into developing maay, many carefully curated databases that
contain information relating to genomic sequences. Now, there are a number of efforts
taking place around the world attempting to offer integrated access to this growing body of
valuable information. GenoBase is one of these projects. Our goal in developing the system
is simply to offer more convenient access to the curated data; as such, it builds directly on
the efforts of many individuals. We will not attempt to list *hem all, but we will try to
mention the individuals and groups that have developed the databases that we utilize, as
we cover specific categories of data in later chapters.

GenoBase is an object-oriented database. By this, we mean that the user should think
of GenoBase as containing information about objects. Objects have attributes. All of the
objects that we encounter in the initial stages of this tutorial will be typed objects; that is,
each object will have a fype that categorizes the object (e.g., we will have objects of type
sequence_fragment, cds, peptide, enzyme, and so forth).

GenoBase has been implemented using the logic programming language Prolog, and
many of the details of how to use the system will reflect this fact. We believe that a modest
knowledge of Prolog is probably useful for most scientists, and we would encourage you

[

study the language at some point; however, we will attempt to present the system in a
fashion that will not require yon to understand Prolog at all.

We intend to eventually offer versions of GenoBase on PCs, and we will certainly in-
tegrate it into a graphics interface (our current plan is to use GDE, a freely distributed
X-windows based system). However, for now we believe that many users will be able to
start making effective use of the system using our current, relatively primitive interface.
Initially, our recommendation is that you run GenoBase from within an emacs window on
a Sun workstation; this is not absolutely required, but it is the framework that we use and
the one which will be discussed within this tutorial.

This report constitutes the first of two that develop the basic environment supported
by GenoBase.

1.1 Getting Started

Our database is a collection of objects, each of which has some set of attributes. The
database offers you the ability to find objetcs which meet specified criteria, operate on the
objects, and display the results. To bring up the databases initially you need to position
yourself at the appropriate “home directory”, start Prolog, and initiate the database. On
our current system this would be done using

cd ~/Bacterial/Version3
prolog
[startup].

The startup procedure will prompt you to ask which aspects of the environment you wish
access to (it does take as much as 10-20 minutes to get the entire environment initialized,
so sometimes we do not lcad the entire database). If you simply take the default settings,
you will eventually reach the point where the system prompts you with

and you are ready to begin.

Well, what can you do now? The first step in becoming familiar with GenoBase will be to
explore the different types of objects maintained within the database and the relationships
between them. Let’s start by just looking at the data associated with the enzyme 4.1.3.1:

| ?- eval(obj([type=enzyme,name="4.1.3.1"])).

[’4.1.3.1’,enzyme]

We show what the user typed in with boldface. The system response follows. There are
a number of things to be learned from the previous request. First, the basic structure of
such a request is

eval (TermToBeEvaluated)

where

obj([type=enzyme,name=’4.1.3.1’])

is the term that gets evaluated. This type of term stands for “give me an object with type
enzyme that has the name 4.1.3.1”. The word ’enzyme’ and the name ’4.1.3.1" are atoms.
If an atom begins with a lowercase letter and contains no special characters, it need not be
enclosed by apostrophes; else, they are necessary.

Next, note that we got back only a short term identifying the object. To get a complete
version of the attributes, you would ask that the expression be evaluated and the result
“pretty-printed”:

| ?- evalpp(obj([type=enzyme,name="4.1.3.1"])).

enzyme 4.1.3.1
desc(’ISOCITRATE LYASE’)
alternate_names: [ISOCITRASE,ISOCITRITASE,ISOCITRATASE,ICL]
catalytic_activity:
[1]: ISOCITRATE = SUCCINATE + GLYOXYLATE.

Comments:
1. THE ISOMER OF ISOCITRATE INVOLVED IS (1R,2S)-1-HYDROXYPROPANE-1,2,3-
TRICARBOXYLATE.

Objects like enzyme 4.1.3.1 also relate to other objects (which have been extracted from
a number of other databases). If you wished to see these relationships, you would ask for

3

the object to be pretty-printed, along with the relationships:

| 7- evalppr(obj([type=enzyme,name="4.1.3.1"])).

enzyme 4.1.3.1
desc(’ISOCITRATE LYASE’)
alternate_names: [ISOCITRASE,ISUCITRITASE,ISOCITRATASE,ICL]
catalytic_activity:
(1]: ISOCITRATE = SUCCINATE + GLYOXYLATE.

Comments:

1. THE ISOMER OF ISOCITRATE INVOLVED IS (1R,2S)-1-HYDROXYPROPANE-1,2,3-
TRICARBOXYLATE.

ss=z=s=az=zazx={{ Related To >====z=====z====

==
[aceA,cds,’E.coli’]

enzyme_to_cds -->
enzyme_to_peptide --> [’P25248’ ,peptide]
enzyme_to_peptide =--> [’P20014’,peptide]

enzyme_to_peptide

[’PO5313’ ,peptide]

enzyme_to_peptide --> [’P17069’ ,peptide]
enzyme_to_peptide =--> [’P20699’,peptide]
enzyme_to_peptide ~--> [’P15479’,peptide]

Finally, you could ask for a pretty-print of the object, its relationships, and a pretty-

print of all objects that it relates to (which can produce a prodigious amount of output)
using

| 7- evalpprpp(obj([type=enzyme,name="4.1.3.1"])).

enzyme 4.1.3.1
desc(’ISOCITRATE LYASE’)
alternate_names: [ISOCITRASE,ISOCITRITASE,ISOCITRATASE,ICL]
catalytic_activity:
[1]: ISOCITRATE = SUCCINATE + GLYOXYLATE.

Comments:
1. THE ISOMER OF ISOCITRATE INVOLVED IS (1R,2S)-1-HYDROXYPROPANE-1,2,3-
TRICARBOXYLATE.

= =zz==== << Related To >
enzyme_to_cds --> cds aceA of E.coli
accession(’EG10022’)

desc("isocitrate lyase; utilization of acetate")
swissprot(’P05313°)

enzyme_to.

peptide

id(*ACEA_BRANA’)

desc(’ISOCITRATE LYASE (EC 4.1.3.1) (ISOCITRASE) (ISOCITRATASE) (ICL)’)

-->

data_class(’STANDARD’)
species(’BRASSICA NAPUS (RAPE)’)

classification: [EUKARYOTA,PLANTA,EMBRYOPHYTA,ANGIOSPERMAE,DICOTYLEDONEAE,

CAPPARALES,CRUCIFERAE]

Features:
SITE

peptide sequence

0
50
100
150
200
250
300
350
400
450
500
550

MAASFSVPSM
GHLKQGYASN
IYVSGWQCSS
ARMSMSREER
VHIEDQSSVT
TDAVAATLIQ
LQAIEDQWLS
CLSNEQGREL
QIADLIWMET
DQQMMEFIPR
RIQREERSNG
FKETWTRPGA

mol_wt (64325)
Comments:

1. FUNCTION: INVOLVED IN STORAGE LIPID MOBILIZATION DURING THE GROWTH

574 576 GLYOXYSOMAL SORTING SEQUENCE (POTENTIAL).

peptide P25248

of length 576:

IMEEEGRFEA
EMAKKLWRTL
THTSTNEPGP
AKTPFVDYLK
KKCGHMAGKV
SNIDSRDHQF
SARLMTFSDA
AAKLGVTDLF
ASPDLNECTQ
TARLGYCWQF
VDTLAHQKWS
AGMGEGTSLV

OF HIGHER PLANT SEEDLING.
2. CATALYTIC ACTIVITY: ISOCITRATE = SUCCINATE + GLYOXYLATE.

3. PATHWAY: FIRST STEP IN GLYOXYLATE BYPASS, AN ALTERNATIVE TO THE

EVAEVQTWWS
KSHQANGTAS
DLADYPYDTV
PIIADGDTGF
LVAVSEHINR
ILGVTNPSLR
VVEALKRMNL
WDWDLPRTRE
FAEGVKSKTP
ITLAGFHADA
GANYYDRYLK
VAKSRM

SERFKLTRRP
RTFGALDPVQ
PNKVEHLFFA
GGTTATVKLC
LVAARLQFDV
GKSLSSLLAE
SENEKSRRVN
GFYRFQGSVT
EVMLAYNLSP
LVVDTFAKDY
TVQGGISSTA

TRICARBOXYLIC ACID CYCLE (IN BACTERIA AND PLANTS).
4. SUBUNIT: HOMOTETRAMER.
5. SUBCELLULAR LOCATION: GLYOXYSOME.
6. SIMILARITY: TO THE BACTERIAL AND FUNGAL ENZYME.

01-MAY-1992: (REL. 22, CREATED)
01-MAY-1992: (REL. 22, LAST SEQUENCE UPDATE)
01-MAY-1992: (REL. 22, LAST ANNOTATION UPDATE)

YTARDVVALR
VTMMAKHLDT
QQYHDRKQRE
KLFVERGAAG
MGTETVLVAR
GMAVGNNGPA
EWLNHARYEN
AAVVRGWAFA
SFNWDASGMT
ARRGMLAYVE
AMGKGVTEEQ

keywords: [[GLYOXYLATE BYPASS,TRICARBOXYLIC ACID CYCLE,LYASE,GLYOXYSOME]]
References:
[1]: PLANT CELL 1:293-300(1989).
COMAI L., DIETRICH R.A., MASLYAR D.J., BADEN C.S., HARADA J.J.;

Cross reference to PIR [JQ1105,JQ1105]

Cross reference to PROSITE [PS00161,ISOCITRATE_LYASE]
Cross reference to PROSITE [PS00342,PEROXISOMAL]

Here, we deleted most of the output, since it displays a complete version of all of the
related peptides. You need not get at the related objects in this “shotgun” fashion; rather,
you might just use evalppr/! (which means the version evalppr that takes one argument)
to get a listing of the relationships, and then pursue individual related objects with more
queries:

| 7- evalppr(obj([type—=enzyme,name="4.1.3.1"])).

enzyme 4.1.3.1
desc(’ISOCITRATE LYASE’)
alternate_names: [ISOCITRASE,ISOCITRITASE,ISOCITRATASE,ICL]
catalytic_activity:
[1]: ISOCITRATE = SUCCINATE + GLYOXYLATE.

Comments:

1. THE ISOMER OF ISOCITRATE INVOLVED IS (1iR,2S)-1-HYDROXYPROPANE-1,2,3-
TRICARBOXYLATE.

===z==s======¢< Related To > =
enzyme_to_cds -=> [aceA,cds,’E.coli’]
enzyme_to_peptide =--> [?’P25248’,peptidel
enzyme_to_peptide =--> [’P20014’,peptide]
enzyme_to_peptide ~--> [’P05313’,peptide]

enzyme_to_peptide =--> [’P17069’,peptide]
enzyme_to_peptide ~--> [’P2)699’,peptidel
enzyme_to_peptide --> ['P15479’,peptide]

| 7- evalppr(obj([type=peptide,name="P05313°])).

peptide P05313
id(?ACEA_ECOLI’)
desc(’ISOCITRATE LYASE (EC 4.1.3.1) (ISOCITRASE) (ISOCITRATASE)?)

data_class(’STANDARD’)
species(’ESCHERICHIA COLI’)
gene name(s): ACEA
classification: [PROKARYOTA,GRACILICUTES,SCOTOBACTERIA,
FACULTATIVELYANAEROBICRODS ,ENTEROBACTERIACEAE]

Features:

CONFLICT

(IN REF. 2).
CONFLICT
CONFLICT

peptide sequence

0
50
100
150
200
250
300
350
400

MKTRTQQIEE
AKMWRLLHGE
LAASMYPDQS
FLPIVADAEA
KVLVPTQEAI
EFITGERTSE
FAQAIHAKYP
TLAGIHSMWF
QEVGTGYFDK

mol_wt(47521)
Comments:
1. CATALYTIC ACTIVITY: ISOCITRATE = SUCCINATE + GLYOXYLATE.

2. PATHWAY: FIRST STEP IN GLYOXYLATE BYPASS, AN ALTERNATIVE TO THE

101

215 215
338 338

A->P (IN
Q -> E (IN

of length 434:

LQKEWTQPRW
SKKGYINSLG
LYPANSVPAV
GFGGVLNAFE
QKLVAARLAA
GFFRTHAGIE
GKLLAYNCSP
NMFDLANAYA
VITIIQGGTS

EGITRPYSAE
ALTGGQALQQ
VERINNTFRR
LMKAMIEAGA
DVTGVPTLLV
QAISRGLAYA
SFNWQKNLDD
QGEGMKHYVE
SVTALTGSTE

REF. 2).
REF. 2).

DVVKLRGSVN
AKAGIEAVYL
ADQIQWSAGI
AAVHFEDQLA
ARTDADAADL
PYADLVWCET
KTIASFQQQL
KVQQPEFAAA
ESQF

TRICARBOXYLIC ACID CYCLE (IN BACTERIA AND PLANTS).
3. SUBUNIT: HOMOTETRAMER.
4. SUBCELLULAR LOCATION: CYTOPLASMIC.

5.

01-NOV-

1988:;

01-NOV-1988:

01-FEB-

1991:

(REL.

(REL. 09, CREATED)
(REL. 09, LAST SEQUENCE UPDATE)
17, LAST ANNOTATION UPDATE)

SIMILARITY: TO THE PLANT AND FUNGAL ENZYME.

117 LAASMYPDQSLYPANSV -> WRPACIRISRSIRQTRC

PECTLAQLGA
SGWQVAADAN
EPGDPRYVDY
SVKKCGHMGG
ITSDCDPYDS
STPDLELARR
SDMGYKFQFI
KDGYTFVSHQ

keywords: [[GLYOXYLATE BYPASS,TRICARBOXYLIC ACID CYCLE,LYASE]]
References:
NUCLEIC ACIDS RES. 16:10924-10924(1988).
BYRNE C.R., STOKES H.W., WARD K.A.;
STRAIN=K12;
medline=89083515

[1]:

[2]:

[3]:

NUCLEIC ACIDS RES. 16:5689-5689(1988).

RIEUL C., BLEICHER F., DUCLOS B., CORTAY J.-C., COZZONE A.J.;

STRAIN=K12;
medline=88262573

J. BACTERIOL. 170:2763-2769(1988).

KLUMPP D.J., PLANK D.W., BOWDIN L.J., STUELAND C.S., CHUNG T.,

LAPORTE D.C.;
medline=88227861

Cross reference to EMBL [X12431,ECACEB]

Cross reference to EMBL [X07543,ECACEA]

Cross reference to EMBL [M20714,ECIDHKPA]

Cross reference to PIR [S00931,WZECIC]

Cross reference to PIR [S05692,505692]

Cross reference to ECOGENE [EG10022,ACEA]

Cross reference to PROSITE [PS00161,ISOCITRATE_LYASE]

------------- << Related To >====sz========
peptide_to_cds =--> [aceA,cds,’E.coli’]
peptide_to_enzyme --> [’4.1.3.1’,enzyme]
peptide_to_prosite(’F’) --> [’PS00030’,prosite]
peptide_to_prosite(’T’) =--> [’PS00161’,prosite]

?- evalppr(obj([type=cds,name=aceAl)).

cds aceA of E.coli
accession(’EG10022°)
desc("isocitrate lyase; utilization of acetate")
swissprot(’P05313’)

object_to_piece(1,14191,15495,direct) =-->
[hdeecoM,sequence_fragment,’E.coli’]

cds_to_enzyme =--> [’4.1.3.1’,enzyme]
gene_to_map(90.942) =--> [’Bachmann’,map,’E.coli’]
cds_to_peptide --> [’P05313’,peptidel

One small detail is worth noting in this list set of queries: some of the relationships
included data fields. Note the following lines (where the first two appeared as relationships
from peptide P05313, and the last from cds aceA):

peptide_to_prosite(’F’) --> [’PS00030’,prosite]
peptide_to_prosite(’T’) =--> [’PS00161’,prosite]
gene_to_map(90.942) --> [’Bachmann’,map,’E.coli’]

The meanings of the data fields in relationships depend on the particular relationship.
The field in a peptide_to_prosite relationship indicates whether or not the occurrence of the
prosite pattern in the peptide is a “real positive” or a “false positive”, and the field in the
gene_to_map relationship gives the position of the gene in the corresponding map.

Here, we have started exposing you to some of the basic types of objects included in the
system:

¢ genome objects represent an entire genome (and relate to the chromosomes, plasmids,
etc.) for specific orgainisms.

o chromosome objects represent specific chromosomes for specific organisms.

o sequence.fragment objects represent a section of DNA sequence that has been cap-
tured. This data comes from GenBank.

¢ enzyme objects represent an “abstract enzyme” in they can relate to many distinct
peptides and genes (from many organisms). The data associated with this type of
object comes from the Enzyme Data Bank created by Amos Bairoch.

e peptide objects represent specific peptide sequences, and most of this data currently
comes from the Swiss Protein Data Bank (again, developed by Amos Bairoch) and
the Protein Identification Resource (PIR).

e prosite objects represent the peptide motifs compiled by Amos Bairoch.

o Objects of type cds, rRNA, tRNA, and misc_RNA represent specific genes (from
specific organisms). Much of the data associated with these types of objects comes
directly from GenBank.

e map objects are used to represent physical or genetic maps (and most of the infor-
mation one gets from accessing these objects will be through relationships to the
objects contained in the map). The system includes a map of the E. coli chromosome
published by Barbara Bachmaan, as well as maps of several other bacterial organisms.

¢ Objects of type ecoZdbase capture the data provided by Fred Neidhardt’s project to
develop data relating to expression of E. coli genes.

o rebase_entry objects describe the sites cut by restriction enzymes. This data comes
from the database distributed by Rich Roberts.

¢ pdb_entry objects contain data relating to the coordinates of atoms within a specific
peptide for which the crystal structure has been determined. This data has been
extracted from the Protein Data Base distributed by Brookhaven National Laboratory.

e peptide_alignment objects contain alignments of peptides. Most of the currently avail-
able alignments were acquired from the Protein Identification Resource.

o nucleotide_alignment ob jects contain alignments of DNA or RNA sequences. These
have come from several sources including those distributed by the Ribosomal Database
Project and the Berlin Data Bank.

e Objects of type compound and reaction are used to encode the reactions in metabc.ic
pathways. The compound information is largely from Peter Karp’s database, and the
metabolic pathway information was assembled by Murali Raju (who started from a
set of reactions provided by Ray Ochs).

This is only a partial list, and we find that we add new object types frequently, since
the body of curated data is expanding so rapidly. If at any point you wish to know what
types of objects are accessible, you can use

eval(help(types))

to get help with exactly what is being represented by a particular type, you would use
eval(help(SomeType))

where SomeType is a specific type (like eco2dbase or «ds) to get a short summary of what a
given type of object represents. To see what topics help is available for, use

eval(help(help))

That is, ask for help about help!

There are some details that need to be explained about expression evaluation. First, an
expression can often be successfully evaluated to any of a set of acceptable objects. Thus,

| 7- evalpp(obj([type=cds,name=gap])).

cds gap of E.coli
desc("glyceraldehyde-3-phosphate dehydrogenase")

cds gap of Salmonella
codon_start(1)
product("glyceraldehyde-3-phosphate dehydrogenase")

yes
I ?-

10

LT TN

if you were to run the preceding query, GenoBase would respond with one acceptable
object (gap of E.coli) and then pause waiting for you to respond If you were to hit a carriage
return, that would end the query (and the system would rep... with “yes”, meaning that
it had successfully processed yvour query): or the other hand, responding with a semicolon
causes GenoBase to attempt to produce an alternative response. We have glossed this
aspect of the interaction over in our previous discussion - the system always pauses after
presenting an answer, and the user responds indicating whether or not GenoBase should
attempt to find alternative solutions.

If you had wanted only the gene in Salmonella, the appropriate expression would have
been

i 7. evalpp(obj([type=cds,name=gap,genome="Salmonella’])).

Sometimes. vou will wish GenoBasc to collect an entire set of ohjects; in this case, you
shouid use the all/! operator:

- 2- evalpp(all(onj({type=cds,name=gap}))).

C
cds gap of E.coli
desc("glyceraldehyde-3-phosphate dehydrogenase")

z==
»

cds gap of Salmonella
codon_start(1)
product(“glyceraldehyde-3-phosphate dehydrogenase")

1

You may well find that typing evalpp becomes a bit tiring. To ease the pain slightly,
you can simply type it once, and GenoBase will prompt you for objects to be evaluated:

| ?- evalpp.

|: obj([type=compound]).

compound (-)o-acetylcarnitine
Stochiometry C9H17N104
Molecular Weight = 203.238
Sources: [’AEPCO’,’BOEMAN’]
Generalizes to [’COMPOUNDS’]

1

Built from [’CARNITINE’]

|: obj([type=rebase_entry]).

rebase_entry Aaal
organism(’Acetobacter aceti ss aceti’)
enzyme_type ([
,Rz)
D
sites([
cuts_at("CGGCCG",1)
n
References:
references("[1]

Tagami H., Tayama K., Tohyama T., Fukaya M., Okumura H., Kawamura Y.,

Horinouchi S., Beppu T.;

FEMS Microbiol. Lett. 56:161-166(1988).
u)
=

|: all(obj([type=misc.RNA ,genome="E.coli’])).

C

misc_RNA ssrA of E.coli
accession('EG30100’)

misc_RNA ffs of E.coli
accession(?EG30027’)
desc("4.55 RNA")

misc_RNA micF of E.coli
accession(’EG30063’)
desc("regulatory antisense RNA affecting ompF expression")

=== N

misc_RNA rnpB of E.coli
accession(’EG30069°’)
desc("RNase P; RNA subunit; M1 RNA")
s8R N
misc_RNA spf of E.coli
accession(’EG30098°’)
desc("Spot 42 RNA")
==

»

12

Lol i

Y R R L e e IR

misc_RNA ssr of E.coli
accession(’EG30099°’)
desc("Stable 6S RNA")

|: quit.

yes
| ?-

Note that you end your sequence of prompts with quit. If you find that you wish to see
all of the solutions, rather than typing in a semicolon at the pause, you can just type in the
character 'a’ and GenoBase will automatically display all of the alternatives.

Just as evalpp/0 is nsed to process a sequence of evaluations, pretty-printing the results,
versions of eval/0, evalppr/0, and evalpprpp/0 also exit.

Now, let us proceed to the topic of traversing relationships between objects. Suppose,
that you knew that the F.coli gene gap wei2 related to an eco2dbase object. Then, the
expression

obj ([type=cds,name=gap,genome="E.coli’]) * cds_to.eco2dbase

evaluates to the eco2dbase object related to the gene. Thus,

| 7- evalpp(obj([name=gap,ger ome="E.coli’]) * cds_to_eco2dbase).

eco2dbase 515

spot id: HO034.3

mol. wt. = 35376

pl as predicted from seq = 7.07

X coordinate in gel in Fig. 1 = 0.0
coordinate in gel in Fig. 1 = 0.0
coordinate in gel in Fig. 2B = 77
coordinate in gel in Fig. 2B = 76
coordinate in gel in Fig. 3B = 83

o Bd <

13

Y coordinate in gel in Fig. 3B = 78

protein name = Glyceraldehyde-3-phosphate dehydrogenase
spot identified by comigration with purified protein

donor: D. Fraenkel

’EC’(’1.2.1.12%)

’SWISSPROT’ (*G3P1_ECOLI’)

'GENE’ (gap)

’GENBANK’ (’Ecogap’)

*SEQREF’ (*EJB150;61’)

location on genetic linkage map: 39.3

’DIR’(’F’)

occurs in Kochara clone 330

Here, the exact meanings of the attributes will make sense only if you have read the
paper describing the 2-d protein gel system being used to explore expression of E. coli genes
or are familiar with the widely distributed database. To help, we provide summaries of the
attributes for each type of object in appendicies to this tutorial (or yvou could try the help
facility and see if it contains a summary of the possible attributes).

You may occasionally wish to traverse several relationships. For example, to get a listing

of the alignments that contain at least one peptide corresponding to a gene in E. coli, one
might use

| 7- eval.

: all(obj([type=cds,genome="E.coli’]) * cds_to_peptide * peptide_to_alignment).
g -

C
[?FA0293’ ,,alignment],
[*FA0500’ ,alignment],
[’FA0016°’ ,alignment],
[’FA0302’ ,alignment],
E’FAOZSQ’,alignment%,
'FA0072’ ,alignment],
E’FA0268’,alignmentg.
'FAQ361°’ ,alignment],
[’FA0381’,alignment],
[’FA0402’ ,alignment],
[’FA0380° ,alignment]
]
l:

14

i

At this point, you have seen the basic mechanisms for accessing objects and for traversing
relationships between objects. We will return to these topics in later sections, exploring
some of the more advanced options. However, before continuing, we recommend that you
simply try to become fluent with these few features; then, once you can at least migrate
through the available data, it will be appropriate to continue and learn how to gain access
to much broader capabilities.

1.2 More on Attributes and Relationships

In the last section, you learned how to locate objects and traverse relationships to other
objects. Now let us fill in two small details - how to ask for the set of attributes of an
object and the relationships for an object. At this point, these are minor embellishments,
since you can get this information using evalppr as discussed before.

The term

attributes(Object)

evaluates to the list of attributes associated « 't%: i:e object, and the term

relationships(Object)

evaluates to the list of relationships associated with the object.

To illustrate,

| ?- eval(attributes(obj([type=cds,name=aceA ,genome="E.coli’}))).

C

accession(’EG10022°),

desc("isocitrate lyase; utilization of acetate"),
swissprot(’P05313’)

]

?. eval(relationships(obj([type=cds,name=aceA ,genome="E.coli’]))).

15

Jin

L

annotate([hydGecoM,sequence_fragment,’E.coli’],
object_to_piece(1,14191,15495,direct)),

annotate(([’4.1.3.1’,enzyme], cds_to_enzyme),

annotate([’Bachmann’,map,’E.coli’], gene_to_map(90.942)),

annotate([’P05313’,peptide], cds_to_peptide)

]

To cause an expression to evaluate to the value of just one specific attribute, one would
use

| 7- eval(attribute(obj([type=cds,name=aceA ,genome="E.coli’}),desc)).

“"isocitrate lyase; utilization of acetate"

As we compose more complex expressions, we will find this ability to get at specific
attributes to be critical.

1.3 Restricting a Set of Objects with Constraints

Often, one wishes to access a set of objects based on the value of one or more specific
attributes. For example, suppose that you wished to access the set of genes within E.coli
that are expressed during heat shock. Since the eco2dbase ob jects have encoded within them
attributes that relate to expression, this is a reasonable goal. In particular, the attribute
'"46C’ gives “Cellular abundance of the protein spot at 13.50C relative to cellular abundnace
at 460C (J. Bacteriol. 139:185-194).” Thus, we might reasonably wish to see all genes that

have a value greater than (say) 2.0 in the attribute 46C’. To do these, one would evaluate
the expression

require(obj([tyne=eco2dbase]), X in attribute(X,’46C’) > 2.0) * eco2dbase_to_cds.

Here, the subexpression
require(obj([type=eco2dbase]), X in attribute(X,’46C’) > 2.0)

evaluates to an eco2dbase object with the desired property. The general form of the
require/2 operator is

16

1l

require(ObjectExpression,Requirement)

which will find an object satisfying the ObjectExpression for which Requirement evalu-
ates to true. The format of the Requirement expression is

X in ExpressionInX

That is, X indicates a variable that takes on the value of the desired object, and then
X appears in the condition that gets evaluated.

Think of the overall form of require/2 as saying “find an object X such that Expression-
InX is true”.

Finally, in the complete expression, GenoBase finds such an object and then traverses
the relationship to the desired gene. The cutcome of such a query looks like

| 7- eval.

|: require(obj([type=eco2dbase]),X ix: attribute(X,’46C’) > 2.0) * eco2dbase_to_cds.

[grpE,cds,’E.coli’] a
[mopA,cds,’E.coli’] ;
[dnaK,cds,’E.coli’] ;
[(htpE,cds,’E.coli’] ;
(mopB,cds,’E.coli’]
[recA,cds,’E.coli’] ;
[htpG,cds,’E.coli’] ;
[lysU,cds,’E.coli’] ;
[glpK,cds,’E.coli’] ;
[carB,cds,’E.coli’] ;
[ompA,cds,’E.coli’] ;
[ilvE,cds,’E.coli’] ;
[sucB,cds,’E.coli’] ;
[sdhA,cds,’E.coli’] ;
[c1pB,cds,’E.coli’] ;
{carA,cds,’E.coli’] ;
[glyA,cds,’E.coli’] ;

You can use multiple constraints within a require/2 expression by using the and/2 op-
erator. Thus,

17

i S OTEMNSI ,ic o EN n i A

require(obj([type=eco2dbase]) ,X in and(attribute(X,’46C’) > 2.0,
attribute(X,’46C’) < 3.0)).

evaluates to objects in which the 46C attribute has a value between 2.0 and 3.0.

If you do not really care what value an attribute has, but only wish to ensure that the
object actually has the attribute, you should use the has_attribute operator. For example,
had we defined “heat shock gene” as one for which there was a '50C’ attribute in the
eco2dbase object, we would have used an expression of the form

require(obj([type=eco2dbase]),X in has_attribute(X,’50C’)).

Now, before proceeding, let us briefly summarize the key points that have been discussed
so far:

¢ Expressions evaluate to one of a set of values.
e One uses expressions that evaluate to objects to access objects within the database.

e Objectl * Relationship is an expression that evaluates to an Object2 that stands in
the given relationship to Objectl. That is, one uses the asterisk operator (which is
called an “infix operator”) to traverse relationships.

¢ You can constrain the set of objects that a given expression E evaluates to by using
require(E, X in Condition). Here X is an arbitrary name of a variable that is bound
to an object that results from evaluating E (i.e., you could use any uppercase letter
in place of X).

e When evaluating expressions, GenoBase attempts to find a single suitable value. If
you then request alternative values, it will try to locate those, as well.

At this point, you have access to the basic tools to locate sets of objects from the
database. However, this basic notion of obtaining answers by “evaluating expressions” can
be used in far more powerful ways. They may well seem a bit unnatural to you, until
you get the hang of what is going on, but it is a paradigm that supports a very strong
expressive power. In later sections we will dramatically expand the expressive capabilities
by introducing numerous specialized operators. However, before you go on to those points,
you really do need to get comfortable with the basic operations used to navigate among the
objects in the database.

18

1.4 Saving Results in Temporary Variables

You will find that it is sometimes convenient to retain the values of an expression. As an
example of how this is done,

|: $hsg := require(obj([type=eco2dbase]),X in attribute(X,’46C’) > 1.0) *
eco2dbase_to_cds.

[err,cds,’E.coli’] a
(grpE,cds,’E.coli’] ;

evaluates the expression, saving the result in $hsg (all of these “user variables” that play
the role of accumulating temporary sets must begin with a $). The variable takes on the
entire set of returned values for the expression, so

eval($hsg).

would produce the same output as the previous evaluation.

Finally, one can clear a user variable with

eval(clear($hsg)).

2 Intervals and Points

You will often find it useful to be able to refer to subintervals of objects (e.g., the region
preceding a gene, a region of a chromosome, etc.). To do this, one can use an expression of
the form

interval(Object,Begin,End,Direction)

19

Lt

Thus,

interval (obj([name=aceA,type=cds,genome=’E.coli’]),-18,18,direct)

evaluates to a 37-character region starting 18 characters upstream of aceA and continuing
through the 19th character of the gene (i.e., the beginning and ending positions are given

‘as offsets from the first character of the object — 0 corresponds to the first character).

A point is a specific location on an object (i.e., a specific base pair given as an offset
into an object). There are a variety of ways to specify points:

point(obj([name=thrA,type=cds,genome='E.coli’]),10}
start(obj([name=thrA,type=cds,genome="E.coli’])) + 10

are equivalent ways to specify the 11th character of the gene thrA (and, for the record, there
is also an end/! operator that evaluates to the point at the end of an object - i.e., the last
bp in the object).

Firally, before we illustrate these concepts with a specific sequence of operations, we
will introduce the operation that evaluates to the DNA sequence of an object:

dna_sequence(Object)

evaluates to the actual string of characters that make up the sequence of the object (as-

suming that the object has been sequenced - if not, evaluation of the expression will just
fail).

In the following short sequence of commands, we illustrate these notions.

| ?- evalpp.
|: interval(obj([name=aceA,type=cds,genome="E.coli’]),-18,18,direct).
INTERVAL FROM -18 TO 18 ON cds aceA of E.coli
accession(’EG10022?)
desc("isocitrate lyase; utilization of acetate")
swissprot(’P05313’)

20

|: dna_sequence(interval(obj([name=aceA,type=cds,genome='E.coli’]),
-18,18,direct)).
DNA_SEQUENCE of length 37
0 ACTATGGAGC ATCTGCACAT GAAAACCCGT ACACAAC
l: $x := obj([name=aceA,type=cds,genome='E.coli’]).
cds aced of E.coli
accession(’EG10022’)
desc("isocitrate lyase; utilization of acetate'")
swissprot(’P05313’)
|: start($x).
POINT AT O ON cds thrA of E.coli
accession(’EG10998°)
desc("aspartokinase I-homoserine dehydrogenase I")
swissprot(’P00561°)

|: interval(start($x),start($x)+10).
INTERVAL FROM 0 TO 10 ON cds thrA of E.coli
accession(’EG10998’)
desc("aspartokinase I-homoserine dehydrogenase I")
swissprot(’PO0561°)
|: dna_sequence(in:erval(start($x),start($x)+6)).
DNA_SEQUENCE of length 7
0 ATGCGAG

3 More on Sequences and Pattern Matching

In the last section, we introduced an operator (dna_sequence/1) that can be used to get the
actual DNA sequence of an object. There is a corresponding operator to get the sequence
of a protein. For example,

| ?- evalpp.
|: $aceA := obj([name=acel,type=cds,genome="E.coli’]).
cds aceA of E.coli
accession(’EG10022’)
desc("isocitrate lyase; utilization of acetate")
swissprot(’P05313’)

|: protein_sequence($aced).

PROTEIN_SEQUENCE of length 435
O MKTRTQQIEE LQKEWTQPRW EGITRPYSAE DVVKLRGSVN PECTLAQLGA
50 AKMWRLLHGE SKKGYINSLG ALTGGQALQQ AKAGIEAVYL SGWQVAADAN

21

100
180
200
250
300
350
400

LAASMYPDQS LYPANSVPAV VERINNTFRR ADQIQWSAGI EPGDPRYVDY
FLPIVADAEA GFGGVLNAFE LMKAMIEAGA AAVHFEDQLA SVKKCGHMGG
KVLVPTQEAI QKLVAARLAA DVTGVPTLLV ARTDADAADL ITSDCDPYDS
EFITGERTSE GFFRTHAGIE QAISRGLAYA PYADLVWCET STPDLELARR
FAQAIHAKYP GKLLAYNCSP SFNWQKNLDD KTIASFQQQL SDMGYKFQFI
TLAGIHSMWF NMFDLANAYA QGEGMKHYVE KVQQPEFAAA KDGYTFVSHQ
QEVGTGYFDK VTTIIQGGTS SVTALTGSTE ESQF

Less commonly used functions for translating either DN A sequence (or an object .\ for
which dna_sequence(X) can be evaluated to DNA sequence) to a peptide sequence exist.
translate/1 can be used to translate any string of DNA characters that has an appropriate
length (i.e., a multiple of 3); translate_nostop/1 will translate any string in which there are
no embedded stop codons, and it will remove a terminal stop codon. Thus,

|: translate(dna_sequence("ATGTAA")).
protein_sequence(2,"Mx")
|: translate_nostop(dna_sequence("ATGTAA")).
PROTEIN_SEQUENCE of length 2

0

M

|: translate(dna_sequence("ATGTAAATG")).
protein_sequence(3,"M*M")
|: translate_nostop(dna_sequence("ATGTAAATG")).
|: translate($aceAd).
|: translate(dna_sequence($aceA)).
PROTEIN_SEQUENCE of length 435

0
50
100
180
200
250
300
350
400

MKTRTQQIEE
AKMWRLLHGE
LAASMYPDQS
FLPIVADAEA
KVLVPTQEAIL
EFITGERTSE
FAQAIHAKYP
TLAGIHSMWF
QEVGTGYFDK

LQKEWTQPRW
SKKGYINSLG
LYPANSVPAV
GFGGVLNAFE
QKLVAARLAA
GFFRTHAGIE
GKLLAYNCSP
NMFDLANAYA
VTTIIQGGTS

Note that the two requests

EGITRPYSAE
ALTGGQALQQ
VERINNTFRR
LMKAMIEAGA
DVTGVPTLLV
QAISRGLAYA
SFNWQKNLDD
QGEGMKHYVE
SVTALTGSTE

DVVKLRGSVN
AKAGIEAVYL
ADQIQWSAGI
AAVHFEDQLA
ARTDADAADL
PYADLVWCET
KTIASFQQQL
KVQQPEFAAA
ESQFx*

|: translate_nostop(dna_sequence("ATGTAAATG")).
|: translate($aced).

failed to evaluate; the first because the sequence contained an embedded stop codon, and
the second because these operators take dna.sequence as arguments (not objects that can

be evaluated to DNA sequence).

22

PECTLAQLGA
SGWQVAADAN
EPGDPRYVDY
SVKKCGHMGG
ITSDCDPYDS
STPDLELARR
SDMGYKFQFI
KDGYTFVSHQ

[

ol W

Now, let us proceed to discuss the issue of how to search for patterns in either DNA or
peptide sequences. We will begin by talking about how to construct a pattern. A pattern
is composed of a sequence of pattern units. When a pattern is matched against a sequence,
each of the pattern units must successfully match a subsequence. For example, the pattern

AATG 2...4 CATT

is composed of three pattern units; the first and third are just character sequences, and
the second matches any subsequence of 2 to 4 characters. Thus, this simple pattern could
match

AATGCCCATT or
AATGCATTCATT or
AATGTTTCATT

or any of a variety of similar subsequences. In this example, we illustrated just two of the
basic types of pattern units. There is a fairly limited set of types of pattern units, but it is
rich enough to allow you to express a wide variety of possible patterns. Here is a basic set
(we will enrich this basic set substantially as we continue, but it is a good starting point):

e an ezact match pattern unit is just a sequence of characters. For a pattern con-
structed to match nucleotide sequences, the characters must be from the alphabet
{A,C,G,T,UM,R,W,S,Y,K,B,D,H,V,N}, which is the standard set for representing
nucleotides (with the ability to represent ambiguous characters). The meanings of
the ambiguity codes are

means one of {A,C}
means one of {A,G}
means one of {A,T,U}
means one of {C,G}
means one of {C,T,U}
means one of {G,T,U}
means one of {C,G,T,U}
means one of {A,G,T,U}
means one of {A,C,T,U}
means one of {A,C,G}
means one of {A,C,G,T,U}

Z2 << NOODXR<0NE IR

For a pattern used to match peptide sequences, you must select the characters from
the set {A,C,D,E,F,G,H,K,L,M,N,P,Q,R,S,T,V,W,Y}, which are the standard 1-
character codes for amino acids.

23

e An elipses pattern unit is of the form X...Y, and it matches any subsequence of length
X to Y (where X is less than or equal to Y, and X is nonnegative).

e an any pattern unit is used to match any of a set of amino acids. Thus, any(RFY)
matches a single character (which must be R, F, or Y).

e a notany pattern unit matches a single amino acid character, as long as it is not one

of the set given. Thus, notany(RFY) matches any single character that is not an R,
F,orY.

With just this basic set, you can express a fairly wide class of patterns. For example,
the pattern

any(ST) 1...1 any(RK)

can be used to search for the pattern identified by Amos Bairoch in his ProSite collection
as recognizing a protein kinase C phosphorylation site (see the description associated with
PDOC00005, which is a prosite.doc object created from Bairoch’s collection — that is, pretty
print the object that obj(/name="PDOC00005’, type=prosite_doc]) evaluates to).

In fact, this modest set of basic pattern units offers the ability to search for most of
the ProSite patterns. However, there are many types of structural features that cannot be
expressed in this simple set. For example, one would like to be able to look for repeating
sequences or palindromes in DNA sequences, as well as the ability to look for “fuzzy”
matches (where the string matched must be “close”, but not necessarily an exact match).
So, now let us proceed the mechanisms included to support these more advanced types of
pattern matching.

The first capability that we need to introduce is the ability to “name” a pattern unit
and then refer back to the name. Let us illustrate:

pi=6...6 0...20 pi

is a pattern composed of three pattern units. The first is an elipses that matches any 6
characters. Furthermore, the first pattern unit is assigned the “name” p1. The third pattern
unit specifies an exact match against whatever p! matched. Thus, the pattern recognizes
an exact repeat of 6 characters separated by 0 to 20 intervening characters. Names must
be one p0, pl1, p2, p3 ... p9; that is, p followed by a single numeric digit.

The next addition to our basic pattern matching repertoire is the ability to match
reverse-complements of previously matched subsequences in a DNA-matching pattern; this

24

T

will be useful for identifying structures like hairpin loops and palindromes. To do this, one
would use a pattern like

pi=8...10 3...15 “p1

which specifies three pattern units. The first is named p! and the third matches an exact
reverse-complement of whatever matched p/ (which allows one to look for hairpin loops
with stems of 8 to 10 characters that bond perfectly). To match a more complex pattern,
like a pseudo-knot, one might use a pattern like

pi=6...6 2...4 p2=6...6 0...6 “p1 8...10 "p2

However, a reader that has actually sought such structures in DNA will find the require-
ment that the reverse complement be precise to be too confining; it is often the case that
a few mismatches can be tolerated, or even insertions and deletions will occur. Hence. our
next extension of the basic set of tools is to generalize some of our pattern units to allow
imprecise matches. Thus, we allow one to append [M,D,I] to an exact match pattern unit
or to a complement pattern unit. Thus,

TATAAGTT[1,0,1]
GATCGATC[0,1,0]

are valid. The three integers give the number of tolerated mismatches, deletions, and
insertions, respectively. A “mismatch” is when a character in the pattern unit mismatches
a character in the subsequence, a deletion refers to a case in which a character in the
pattern is simply omitted in the subsequence, and an insertion is when a character in the
subsequence is omitted in the pnttern. Thus,

CATT[0,1,0]

would match the subsequence CTT (due to the tolerance of a single deletion). Now, one
can relax the requirements for a match and still detect fairly complex structures in DNA.

Finally, we need to intruduce the ability to search for “fuzzy” matches using “weight
matricies”. Suppose that you had aligned all known versions of a given type of feature that
was 5-characters long. Suppose that you counted up the number of times an A, C, G, and
T occurred in each column of the alignment giving

25

ACGT ACGT ACGT ACGT ACGT

1 0 9 1 0o 515 10 0 1 0 11 0 O O 2 5 0 4

Then, to search for an occurrence of such a structure, one might use a pattern of the
form

{¢1,0,9,1),¢0,5,1,5),(10,0,1,0),(11,0,0,0),(2,5,0,4)} > 34

This pattern unit can only match 5-character subsequences. To determine whether or
not it matches a specific subsequence, you simply take the integer corresponding to the
character in the subsequence from each 4-tuple and compute the sum; if the sum exceeds
34, a match has occurred. While it is a bit tedious to type in such a long pattern unit,
and it requires some experimentation to determine the appropriate threshhold, this can be
a powerful tool - particularly when it is embedded with other pattern units in a complex
pattern.

The example that we used to illustrate weight matricies used a pattern unit to search
DNA (i.e., we used 4-tuples). To form a pattern unit to search a peptide string, one uses
20-tuples (where the entries refer to the amino acid codes in alphabetic order). These are
almost impossible to accurately type at a terminal, and this capability is normally used
with patterns that have been encoded as objects. We will defer this discussion to a later
section.

The final comment that we must make concerning the formation of patterns is that one
encloses complete patterns within single apostrophes, as you will see in the examples below.

Now, we need to illustrate the actual use of patterns. Consider the following short
interaction with GenoBase:

| ?- evalpp.
|: protein_sequence(obj([name=’P11447’,type=peptide])).
PROTEIN_SEQUENCE of length 51
O MALWGGRFT(C AADQRFKQFN DSLRFDYRLA EQDIVGSVAW SKALVTVGVL
50 T
matches(protein_sequence(obj([name='P11447’,type=peptide])),’q 0...6 Q’).

AD @ at offset 9,

I:
[
QA

Q RFK Q@ at offset 13
]

l:

matches (obj([name=aceA,type=cds,genome=’E.coli’]), ’ARRYAG 2...8 RR’).

26

'l

i

L
AGGTAG CGGC GG at offset 280,
AGGTAG CGGCG GA at offset 280

]
|: halt.

yes

| 7~ eval.

| : matches(obj([name=aceA,type=cds,genome=’E.coli’]),’ARRYAG 2...8 RR’).
I: C

annotate(dna_sequence(12,"AGGTAGCGGCGG"), vector([280, 286, 290, 292])),
annotate(dna_sequence(13,"AGGTAGCGGCGGA"), vector([280, 286, 291, 293]))
]

Here, we introduce the match/2 operator. Its first argument can be a protein sequence,
a DNA sequence, or a term for which dna_sequence/! can be applied to produce a DNA
sequence (which is what we did in the second use of matches/2. The second argument is a
pa.tern. Evaluation of the term produces a list of annotated objects. To show you what an
annotated object looks like, we reissued the second query under eveal; you should compare
it to what got pretty-printed when we used evalpp. An annotated object is of the form

annotate(Object,Annotation)

In the example above, the annotation is a vector of integers indicating where each pattern
unit matched. The first integer is the offset of where the first pattern unit matched, the
second where the second matched, and so forth (the last integer is the offset just past the
subsequence matched by the last pattern unit). The pretty-printing uses the annotation to
give a more readable presentation of the matched subsequence.

Now, the most common type of pattern matching involves searching through sets of
objects for specific patterns. Creating just the right expression to give you what you want
can be quite tricky, until you become comfortable with the overall paradigm of expression
evaluation. Initially, you will probably need to pattern your attempts after some examples.
We will now present a few, and we intend to build a growing set in the help presentation
for pattern_eramples. So, to begin: suppose that you wished to search for large hairpin
loops in the region around the start of genes that code for proteins (i.e., around the start
of sequenced objects of type cds). To do this, you need an expression that

1. finds an object of type cds,

2. locates the interval centered around the start of the object (let's say 15 characters on
either side, to be specific),

27

[

3. computes the set of hairpins in that region (let’s insist on stems of at least 9 characters,
for now), and

4. displays the results only if the set is nonempty.

Of course, you will wish to iterate over all possible cds objects, and you will wish to see
which objects were used in successfully detecting the hairpins.

The following session illustrates such a search

|: obj([type=cds]) with X in
require(matches(interval(start(X)-15,start(X)+15),
'p1=9...9 3...10 “pi’),Y in size(Y) > 0).

ANNOTATE cds fucK of E.coli

accession(’EG10350’)

desc("L-Fuculose kinase")

swissprot(’P11553°)
=== BY [
TAGCCGGAT AAGCAATGTT ATCCGGCTA at offset 1,
AGCCGGATA AGCAATGT TATCCGGCT at offset 2,
GCCGGATAA GCAATG TTATCCGGC at offset 3
] a
ANNOTATE cds pyrL of E.coli

accession(’EG11278’)

swissprot(’P17776’)
=== BY [
AAGGCGACT GATG AGTCGCCTT at offset 5
1

Note that the overall expression is of the form

Expressionl with X in Expression2

This type of expression has not been covered before. It means “evaluate Ezpressionl!
to get a value and call it X, and then try to evaluate Ezpression2; if Ezpression2 can be
evaluated, then return the value of EFzpressionl annotated with the value of Ezpression2.”
Here, Ezpressionl evaluates to a cds.

Ezpression?2 evaluates as follows:

28

M, il

1. The basic form of the expression is require(Ezpression3,Y in Ezpressionj). As we
discussed earlier, this means “evaluate Ezrpression3 and when you get a value, call
it Y. Then, evaluate Ezpressiond. If the result is true, then the value of the whole
require/2 expression is the value of Ezpressiond; else, try to determine an alternative
evaluation of Fzpressiond, and so forth.”

2. Ezpression3 evaluates to the list of matches for the pattern over an object that can
be evaluated using dna_sequence/2. That is, we could have used the slightly longer
(but equivalent) matches(dna_sequence(interval(start(X)-15,start(X)+15)) ...).

3. Ezpressionj evbaluates to true exactly when the list of matches is nonempty.

The reader should study this example carefully, since many common types of searches
can be made by just altering the interval to be scanned and the pattern.

4 Codon Usage and Kmer Statistics

Occasionally, it will be useful to example codon usage in a single object or a set of objects
(i.e., the cds objects in a given genome). This can be done as follows:

| ?- eval.
| : codon_usage(obj([name=aceA,type=cds])).
annotate(vector([18, 10, 3, 2, 2, 12, 5, 8, 0, 6,
0, 2, 0, 9, 10, 11, 8, 7, 21, 1,
5, 0, 11,1, 0, 4, 1, 11, O, 3,
27, o0, 19, 8, 8, 15, 10, 12, 26, 8,
1, 22, 0, 12, 2, 7, 11, 6, 1, 6,
o, 11, 3, 4, 8, 2, 0, 4, 8, 1,
3, 13, 0, 6 1), codon_usage) ;
annotate(vector([23, 8, 9, 4, 7, 0, 4, 9, 1, 0,
o, 1, o0, 10, 10, 14, 20, 3, 4, 2,
3,0, 4,9,0,7, 0, 10, 3, 1,
o, 12, 26, 7, 7, 13, 12, 5, 10, 15,
10, 5, 1, 10, 7, 3, 7, 4, 1, 8,
0, 5, 2,0,1,7,0,0, 3,0,
8, 10, 0, 7 1), codon_usage) ;
|:

| 7- evalpp.
|: codon_usage(obj([name=aceA,type=cds])).
numter codons = 435

alanine: 56 12.87Y%

29

il

GCA: 10 2.30Y%
GCC: 12 2.76Y%
GCG: 26 5.98Y,
GCT: 8 1.84Y
arginine: 16 3.68Y
AGA: O 0.00Y%
AGG: O 0.00Y%
CGA: O 0.00Y%
CGC: 4 0.92Y%
CGG: 1 0.23%
CGT: 11 2.53%
asparagine: 12 2.76%
AAC: 10 2.30%
AAT: 2 0.46'

aspartic_acid: 23 5.29%

GAC: 8 1.84%
GAT: 15 3.45Y
cysteine: 5 1.18Y%
TGC: 4 0.92%
TGT: 1 0.23Y%

glutamic_acid: 27 6.21%

GAA: 19 4.37%
GAG: 8 1.84Y%
glutamine: 29 6.67%
CAA: 8 1.84Y
CAG: 21 4.83Y
glycine: 35 8.05Y%
GGA: 1 0.23Y%
GGC: 22 5.06%
GGG: O 0.00%
GGT: 12 2.76Y
histidine: 8 1.84Y%
CAC: 7 1.61%
CAT: 1 0.23%
isoleucine: 20 4.60%
ATA: O 0.00%
ATC: 9 2.07%
ATT: 11 2.53%

leucine:
CTA:
CTC:
CTG:
CTT:
TTA:
TTG:

lysine:

AAA:
AAG:

33

w

o Ww o

21
18
3

methionine:

ATG:

phenylalanine: 19
TTC:
TTT:

proline:
CCA:
CcCC:
CCG:
CCT:

serine:

AGC:
AGT:
TCA:
TCC:
TCG:
TCT:

stop: 1

TAA:
TAG:
TGA:

10

13
6

17

o

-

25

N0 WO

1
0
0

threonine:

ACA:
ACC:
ACG:
ACT:

tryptophan: 8
TGG:

tyrosine: 17

2
12
5
8

8

OO0 OO O

Wb

- N

O OO0 O Om ONO W

o O O O

- = NO O

.59Y%
.00Y%
.69%
.21%
.00%
.69Y%
.00Y%

.83Y%
.14Y%
.69Y%

.30%
.30%

.37
.99Y
.38Y%

.91Y%
.15%
.00Y%
.53Y%
.23%

.75Y%
.38Y%
.46
.69Y,
.92%
.84
.46/

.23%
.23Y%
.00%
.00%

.21Y%
.46Y,
.76Y%
.18Y%
.84

.84
.84,

.91%

31

TAC: 6 1.38Y
TAT: 11 2.53%
valine: 26 5.98Y%
GTA: 2 0.46Y%
GTC: 7 1.61%
GTG: 11 2.53Y%
GTT: 6 1.38Y%

| : codon_usage(all(obj([type=cds,genome="E.coli’]))).
number codons = 420695

alanine: 40323 9.58Y,
GCA: 8373 1.99Y
GCC: 10157 2.41Y
GCG: 14780 3.51Y
GCT: 7013 1.67%
arginine: 24668 5.86%
AGA: 590 0.14Y
AGG: 420 0.10Y%
CGA: 1248 0.30Y%
CGC: 9895 2.35%
CGG: 1947 0.46Y%
CGT: 10568 2.51Y

asparagine: 16102 3.83Y%
AAC: 10207 2.43Y%
AAT: 5895 1.40%

aspartic_acid: 22633 5.38)

GAC: 9346 2.22Y%
GAT: 13287 3.16Y%
cysteine: 4721 1.12Y%
TGC: 2764 0.66Y
TGT: 1957 0.47%

glutamic_acid: 26314 6.25%
GAA: 18457 4.39%
GAG: 7857 1.87Y

glutamine: 18248 4.34),

CAA: 5487 1.30%
CAG: 12761 3.03%
glycine: 31641 7.52%
GGA: 2604 0.62Y%
GGC: 13391 3.18Y

32

o Ol O N

N

GGG: 4041
GGT: 11605

histidine: 9688
CAC: 4721
CAT: 4967

isoleucine: 24067
ATA: 1135
ATC: 11558
ATT: 11374

leucine: 42655
CTA: 1247
CTC: 4268
CTG: 23963
CTT: 3920
TTA: 4327
TTG: 4930

lysine: 19526
AAA: 14965
AAG: 4561

methionine: 11567
ATG: 11567

phenylalanine: 15537
TTC: 7725
TTT: 7812

proline: 18615
CCA: 3349
CCC: 1762
CCG: 10929
CCT: 2575

serine: 23143
AGC: 6600
AGT: 2799
TCA: 2441
TCC: 3961
TCG: 3417
TCT: 3925

stop: 1351
TAA: 827
TAG: 85

.96%
.76%

2.30%

[N

NN NO O;

10.14Y%
.30Y%
.01%
.70%
.93%
.03%
7%

- = O 0 =+ O

.12%
.18Y%

.72
.27%
.75%
.70%

.64/,

3.56%

O N O O B

O OO0 OO+ 0

(o]

.08Y%

.75%
.75%

.69%
.84,
.86Y%,

.42Y%
.80%
.42Y%,
.60%
.61Y%

.50Y%
.57%
.67%
.58%
.94Y,
.81%
.93Y%

.32
.20%
.02

33

TGA: 439 0.10%

threonine: 22264 5.29%
ACA: 2217 0.53%
ACC: 10529 2.50%
ACG: 5536 1.32%
ACT: 3982 0.95%

tryptophan: 5677 1.35Y%
TGG: 5677 1.38Y,

tyrosine: 11786 2.80%
TAC: 5711 1.36Y
TAT: 6075 1.44Y%

valine: 30169 7.17%
GTA: 4791 1.14%
GTC: 6092 1.45Y%
GTG: 11133 2.65Y,
GTT: 8153 1.94Y,

|: halt.

There are several points worth mentioning in the last short dialogue:

1. The codon_usage/! operator evaluates to an annotated object. The object is a vector
of 64 integers (representing the number of occurrences of AAA, AAC, AAG, AAT,
ACA,... TTT). The annotation records the fact that the vector represents codon
usage.

2. When the argument of the codon_usage/! operator can evaluate to multiple values
(i.e., there are multiple possible objects that one could apply the operator on to get
a codon usage vector), it will return codon usages for them one-at-a-time.

3. Pretty-printing the annotated vector will produce a more readable report of the codon
usage.

4. To get the codon usage of more than a single gene, one must apply the codon_usage/ |
operator to a list. The all/1 operator can be used to construct the list of all possible
evaluations of its argument. In the last expression evaluated, we used this to construct
the set of all cds genes in E. coli and then took the codon usage of the set.

When a vector giving the occurrence of each oligo of some specified length is desired,
you should use kmers/2. The first argument evaluates to a DNA sequence, and the second

34

LI T 0

Y M L i o L

gives the size of the oligos (in the following example, we used 3, which produces counts for
the 64 possible 3-mers).

| ?- eval.
| : kmers(dna_sequence(obj([type=cds,name=aceA,genome='E.coli’])),3).
annotate(vector([29, 23, 24, 13, 18, 19, 13, 21, 12, 31,
13, 18, 7, 22, 26, 17, 22, 18, 40, 12,
17, 7, 28, 17, 23, 27, 35, 22, 14, 13,
37, 12, 35, 14, 8, 24, 32, 24, 47, 26,
16, 42, 15, 22, 13, 21, 23, 16, 4, 16,
2, 22, 25, 19, 19, 12, 30, 29, 32, 11,
10, 19, 16, 9 1), kmers(3))
|: halt.

| ?- evalpp.
| : kmers(dna_sequence(obj([type=cds,name=aceA,genome="E.coli’])),3).

AAA: 29 2.23%
AAC: 23 1.77%
AAG: 24 1.84Y
AAT: 13 1.00Y%
ACA: 18 1.38%
ACC: 19 1.46Y%
ACG: 13 1.00Y%
ACT: 21 1.61%
AGA: 12 0.92%
AGC: 31 2.38Y%
AGG: 13 1.00%
AGT: 18 1.38Y%
ATA: 7 0.54Y
ATC: 22 1.69Y
ATG: 26 2.00%
ATT: 17 1.30%
CAA: 22 1.69%
CAC: 18 1.38Y
CAG: 40 3.07%
CAT: 12 0.92Y%
CCA: 17 1.30%
ccC: 7 0.54Y
CCG: 28 2.15%
CCT: 17 1.30Y%
CGA: 23 1.77%
CGC: 27 2.07%
CGG: 35 2.69Y%
CGT: 22 1.69Y%
CTA: 14 1.07Y%
CTC: 13 1.00Y%
CTG: 37 2.84Y

35

CTT: 12 0.92Y%
GAA: 35 2.69Y%
GAC: 14 1.07Y
GAG: 8 0.61Y%
GAT: 24 1.84Y
GCA: 32 2.46Y
GCC: 24 1.84Y
GCG: 47 3.61Y%
GCT: 26 2.00Y%
GGA: 16 1.23Y%
GGC: 42 3.22%
GGG: 15 1.15Y%
GGT: 22 1.69Y%
GTA: 13 1.00Y%
GTC: 21 1.61Y%
GTG: 23 1.77%
GTT: 16 1.23%
TAA: 4 0.31Y%
TAC: 16 1.23Y%
TAG: 2 0.15%
TAT: 22 1.69%
TCA: 25 1.92%
TCC: 19 1.46Y%
TCG: 19 1.46Y%
TCT: 12 0.92Y%
TGA: 30 2.30%
TGC: 29 2.23Y%
TGG: 32 2.46Y
TGT: 11 0.84Y%
TTA: 10 0.77Y%
TTC: 19 1.46Y%
TTG: 16 1.23%
TTT: 9 0.69%

It is wise to use some caution when displaying the output of such an evaluation, since a
request for even 8-mers will produce over 64,000 counts in the vector! Most often, one will
wish to compare kmer usage or codon usage from different genes or organisms. In such a
case, one would evaluate the vectors, and then use them in more complex expressions. We
will illustrate the power of this approach later, when we develop operators for processing
vectors. One small point might be worth noting here: if you need the unannotated vector,
use unannotate/1 as in the following example.

| ?- eval.
| : unannotate(kmers(dna_sequence(obj([type=cds,name=aceA,genome='E.coli’])),3)).

36

vector([29, 23, 24, 13, 18, 19, 13, 21, 12, 31,
13, 18, 7, 22, 26, 17, 22, 18, 40, 12,
17, 7, 28, 17, 23, 27, 35, 22, 14, 13,
37, 12, 35, 14, 8, 24, 32, 24, 47, 26,
i6, 42, 15, 22, 13, 21, 23, 16, 4, 16,
2, 22, 25, 19, 19, 12, 30, 29, 32, 11,
10, 19, 16, 9 1)

5 Searching for Common Subsequences

Another common class of queries involves looking for short subsequences that occur several
times within one or more objects. For example, one might reasonably look for all sequences
of length 6 or more that occur more than once in a region just upstream of a gene; or, even
better, one might look for sequences that occur multiple times in {rout of two or more genes
expressed during heat shock. In this section. we will introduce ways to find such sequences.

The basic operator that is used to search for common sequences is common/2, where
the first argument is a list of objects to be scanned, and the second is the minimum size of
common strings that you wish to see. If you want to insist that one of the objects to be
scanned contain multiple occurrences of the common string, then that object is given as

[Object ,NumberOccurrences]

To illustrate,

| ?- eval.

|: common([dna_sequence("ACGTACGTACGT"),dna_sequence("CGTACGTACGT")],3).
L

annotate(dna_sequence(3,"CGT"), [
vector([1, 5, 9 1),

vector([0, 4, 8])

D,

annotate(dna_sequence(4,"ACGT"), [
vector([0, 4, 8 1),

vector([3, 7 1)

D,

annotate(dna_sequence(6,"GTACGT"), [
vector([2, 6 1),

vector([1, 5])

37

n
]

|: common([obj([name=aceA,type=cds,genome='E.coli’]),
obj([name=aceE, type=cds,genome="E.coli’])],11).

L

annotate(dna_sequence(11,"CTACATCAACA"), [

vector([191 1),

vector([176 1)

1, :

annotate(dna_sequence(11,"GTCGAAAAAAG"), [

vector([179 1),

vector([290])

D,

annotate(dna_sequence(12,"ATCTGGAACTGG"), [

vector([880]),

vector(l 223])

D

]

|: common([obj([name=aceA,type=cds,genome="E.coli’]),
[obj ([name=aceE, type=cds,genome='E.coli’]),2]

1,8).

L

annotate(dna_sequence(8,"AGCAGCTG"), [

vector([1012]),

vector([481, 2219])

D,

annotate(dna_sequence(8,"CGAAAGAT"), [

vector([1168 1),

vector([979, 2236 1)

D,

annotate(dna_sequence(8,"CTACATCA"), [

vector([191 1),

vaector([176, 2060 1)

D,

annotate(dna_sequence(8,"CTTCGAAG"), [

vector([851 1),

vector([842, 2519])

D,

annotate(dna_sequence(8,"TCGAAAAA"), [

vector([180 1),

vector([291, 1297 1)

D,

annotate(dna_sequence(8,"TGGGCGGC"), [

vector([592 1),

vector([310, 1833 1)

D,

38

et

annotate(dna_sequence(9,"ATCTUZAAC"), [
vector([880 1),

vector({ 223, 631 1)

D

]

These examples illustrate the basic techniques of how to search for common subse-
quences.

6 Summary

This tutorial is actually an evolving dralt that we give to our friends to help them got
started. We have found it impossibie to keep up with the tasks required to integrate new
databases, update the documentation on GenoBase, and also tc adequately describe the
basic features and technology used to create the syster.. Qur current nlan is to publish this
document as a technical report, and then to begin work en Part 2, .hich will attempt to
fill in the missing pieces.

We hope that the tasic view of data extraction via evaiuation has been conveved to the
reader. Once a firm grasp of this approach has been achieved, it dces become possible to
experiment with a much wider range of operators fairly quickly. To support those adven-
turous souls that are willing to make such an effort, we iuclude a verv brief description of
most of the current operators in the Appendix.

&)
<

oo adliw

Appendix

Summary of Expressions That Can Be Evaluated
You can evaluate expressions with
eval(Expression, Value).

There are a number of more convenient user interfaces based on this predicate, including

The expressions that fullow can be evaluated at the Prolog prompt with four basic types of
pred:cates - eval, evalpp, evalppr, and evalpprpp . Each of these predicates takes an optional
single argument. The 0-ary versions cause the user to be prompted for an expression, which
is evalur:ted and displayed (actually, the user is repeatedly queried, until he indicates that
no more expressions are to be evaluated). The l-ary versions take the input argument as
the expression to be evaluated. eval prints out a fairly minimal description of the output of
evaluation. evalpp pretty-prints the evaluated expression, evalppr pretty-prints the resulting
ok xct(s) and displays relationships to other objects, evalpprpp pretty-prints the evaluated
expression, along with any related objects. Finally, eval/2 allows a user to evaluate an
expression and bind the second argument to the result. Thus, we summarize this with

eval/0,1 print value as Prolog term

evalpp/0,1 pretty print the value

evalppr/i pre*cy print the value plus its relationships

evalpp:pp/t pretty prirt the value and pretty print its
relatad >bjects

eval/2 bind the second argument to the result

The arity one versions of the predicates accept an expression as an argument; the arity zero
versions read an expression from the user, process it, and loop. Once a value has been printed
out, the programs prompt the user for one of RETURN; (which means accept the value),
" (which means try to backtrack for another), or "a” (which means backtrack through
all remaining values). When there is no remaining value or the user hits RETURN}, the
predicate terminates or prompts the user for another expression.

SEMANTICS OF EXPRESSIONS

Expressions are Prolog terms. Various operators are defined which evaluate their arguments
as expressions and then produce a value. There are also various meta-operators, which do
things like get all values for an expression or substitute a value into an expression containing
a variable.

There is a special notion of VariableEzpression (described below in FILE variable.pl) that
allows substitution of a value into an expression.

The predicates that evaluate operations and meta-operations succeed, backtrack, and fail
like any other Prolog predicate. If a term is not described by any operation or meta-

40

operation clause, it evaluates to itself. There is one special meta-operator, val/1, which

returns its argument without evaluating it
Here is a session with eval/0 demonstrating a few examples of simple expressions involving
\ .

the operators '+’ and member and the meta-operators val, obj, all, and [}. The lines starting
are prompts for the user to type in an expression; the lines ending with " ;" are

with "—: "
prompts where the user typed ”;” to look at additional values

| ?- eval.
|: asdf.
asdf ;

I: -1.
-1

l: 3.0.

O

—H RO R =R b = — W
- o

+ .
w

-e

2+0.
val(2+3).

(2 3) ;
: all(val(4)).

: member([4,5,2+3]).

-e

: all(member([4,5,2+3])).

-

~e

: obj([name=araA,type=cds]).

[araA cds,’E.coli’] ;
[araA,cds,'Salmonella’]
all(obj([name=araA,type=cds]))

L
[araA,cds,’E.coli’],
{araA,cds,’Salmonella’]

1
|: exit.

yes
I ?-

41

Ll

1)

[T

THE STRUCTURES PRODUCED BY EVAL

atoms and numbers evaluate to atoms and numbers, which are printed out in fairly standard
fashion. Operations that produce Boolean output produce the atoms true and false.

An arbitrary Prolog term that may or may not be a legitimate structure for use with eval
is called a Value. Any Prolog term can be printed out by eval/[0,1], evalpp/[0,1], etc.

A Prolog list of values of arbitrary type is referred to as a list, and is printed out as either

“abcdefg”

or

[Valuel, . . ValueN]

A list of two objects may have the special meaning of being a pair of objects.

obj(Object) is the structure used to store an object. It is printed out as [Name, Type,
optional Genome]. Qbject is currently of the form Name(Type, optional Genome), but that
may change. Terms that are built out of Objects always include the object as obj(Object).

annotate(Value, Associated Value) is the structure used to hold a value together with asso-
ciated information. It is printed out as annotate(Value, Associated Value)

interval(Object, Integer Beginning, Integer End, Atomic Direction) is the structure used to hold
an interval on an object. Beginning and End are inclusive, counted from 0 at the start
of the object, and Beginning should always be =; End. AtomicDirection is one of di-
rect,complement, unknown.

intervals(List) is a structure used to hold a sequence of intervals on an object. List should
be nonempty. Each element of List should be a directed interval, that is, an interval such
that Direction is not unknown. intervals(List) is printed out as intervals(List).

dna_sequence(Length, ListOfCharaclers) is the structure that represents a DNA or RNA
sequence. A dna_sequence is printed out as dna.sequence(Length,ListOfCharacters).

protein_sequence(Length,ListOfCharacters) is the structure that represents a peptide se-
quence. A protein_sequence is printed out as protein_sequence(Length, ListOfCharacters).

mask(Length, ListOfCharacters) is used to store simple information relating to a sequence.

For example, a mask showing secondary structure for a peptide sequence typically includes
the characters

“." No info at this position

No info at this position due to alignment
"H" This position is in an alpha-helix

"S" This position is in a beta-strand

"T" This position is in a turn.

point(Object, Offset) is the structure that represents a point. The Offset is relative to the
start of the Object (counting from zero). A point is printed out as point(Object, Offset) .

42

vector(ListOfNumbersOrVectors) is a structure that represents a vector or an array. A
Vector is printed out like vector(ListOfNumbersOrVectors) but in a more compact form.

SOME OF THE CURRENTLY IMPLEMENTED OPERATIONS AND META-
OoPS

FILE: simple.pl

simple operations are operations that act on a single number or atom or on a pair of num-
bers, and have been definzd so that they extend to vectors and arrays. For example,
Vector*Number means convert Number to a vector and do a pairwise multiply. Simple oper-
ations are "typed”, and, if they return numeric results, then ListOfValues will be returned
as vector(ListOfValues) and ListOfVectors will be returned as vector(ListOfVeciors). In
additon, a vector on input is always converted to a list.

Here is a complicated example using the simple numeric operator *:

vactor([vector([1,2]),vector([2,3])]) * [3,4]
[vector([1,2]),vector([2,3]1)] = [3,4]

=> [vector([1,2]) * 3, vector([2,3]) * 4]
-> [[1,2] * 3, [2,3] * 4]

=> [[1%3,2+3], [2%4,3%4]]

-> [vector([4,6]), vector([8,12])]

-> vector([vector([4,6]), vector([8,12]) 1)

v

and with the Boolean operator and

and([true,false], true) =>
(and(true,true), and(false,true)] ->
{true, false]

Simple operations perform type checking - * expects its arguments to be numberic, mod
expects its arguments to be integer, not expects its argument to be boolean, etc. If the types
are not as expected, the evaluation will fail, otherwise it should always succeed. Therefore,
expressions like 2+o0 or and(true,3) or 2.0 mod 3.0 or lowercase(-1) fail to evaluate.

The simple operations are

boolean(Term)

is_integer(Term)

number(Term)

and(Booll, Bool2) % logical and
or(Booll, Bool2) % logical or
xor(Booll, Bool2) % exclusive or
not(Bool) % not

43

il

\+ Bool % not

Numberl == Number2 % numerical equality
Numberi =:= Number2 ’ numerical equality
Numberi < Number2

Numberl =< Number2

Numberi > Number2

Number1i >= Number2

Numberl =\= Number2 % numerical inequality
Numberi + Number?2

Numberi - Number2

-Number2

Numberi*Number2

Number1/NonzeroNumber

integer(Number) % rounds towards 0
abs(Number) % absolute value
min(Number1,Number2)

max (Number1i ,Number2)

Integerl << Integer?2 | binary shift left
Integerl >> Integer2) binary shift right
Integerl // NonzeroInteger % integer divide
Integerl div NonzerolInteger Y integer divide, same as //
Integerl mod Nonzerolnteger
lowercase(Character)

uppercase(Character)

FILE: toplevel.pl

val(Term) evaluates to Term
once(Ezpr) evaluates Ezpr and cuts (eliminating backtracking).

Term1=Term2 returns true and unifies the two terms if Term! will unify with Term?2, else
returns false.

require(Value, Variable Ezpression) returns Valueif Variable Ezpression returns true on it and
fails otherwise.

FILE: variable.pl
variable(Value, Variable Ezpression) returns Variable Ezpression with Value substituted into

it. A VariableEzpression can be a normal expression or it can be of the form

PrologVar in ExpressionContainingPrologVar

44

FILE: list.pl

list(ListOfEzpressions) returns ListOfValues, one for each Ezpression. It uses get_vals to do

a "Cartesian product”, so you needn’t worry about the subexpressions being re-evaluated
unnecessarily.

all(Ezpr) returns all values of Ezprin a list.
all(Ezpr, Requirement) means all(require(Ezpr, Requirement)).
sort(List) sorts List.

foreach(List, Variable Ezpression) returns a list of values of Variable Ezpression on members
on List, one for each member of List.

member(List) runs list/! on List and returns members.

size(List) runs list/1 on List and returns the number of members.

FILE: vector.pl

vector(List) produces Vector if Listis a list of numbers. vector(Vector) produces the Vector
if it is a valid one (a list of numbers).

list(Vector) produces a List of the elements in Vector.
min(Vector) produces the smallest element in Vector.
maz(Vector) produces the largest element in Vector.
total(Vector) produces the sum of the elements in Vector.

average(Vector) produces the average of the elements in Vector (the empty vector’s average
is 0).

FILE: annotate.pl

Ezpr with Variable Ezpressionreturns annotate(ValueOfEzpr, Value Of Variable EzpressionOn Value)
with full backtracking.

annotate(Value, Variable Expression) returns annotate(Value, Value Of Variable EzpressionOn Value)
with full backtracking if Variable Ezpression succeeds on Value and Value otherwise.

unannotate(annotate(Value, Annot)) returns Value. In all other cases, unannotate(NotAnnotation)
returns NotAnnotation.

annotation(annotate(Value, Annot)) returns Annot.

45

FILE: obj.pl

id(Atom) returns any object of name Atom. id(List) returns any object whose Id unifies
with List

obj(List) returns an object satisfying the restrictions in List, where each element of List is
one of

name = Expression
type = Expression
genome = Expression

where the Ezpression evaluates to an atom. For example,

obj([]) returns any object, obj([name=member([thrA,thrB])]) returns any object with name
thrA or thrB, and obj([name=thrA,genome="E.coli’]) returns any object of name thrA in
genome E.coli.

pathway(Object) returns Object if Object is a pathway, and fails otherwise. pathway([])
returns any pathway Object with backtracking.

attributes(Object) returns the list of attributes of Object.
has_attribute(Object, Atom) returns true if Object has attribute Atom, false otherwise.
attribute(Object, Atom) returns the value of attribute Atom for Object, fails otherwise.

attribute_length(Object, Atom) returns the length of the string attribute Atom for Object,
and fails otherwise.

name(Object) returns the name of Object (as an atom).
type(Object) returns the type of Object (as an atom).
genome(Object) returns the genome of Object (as an atom).

length(Object) returns the length of an object by calculating it from its binding or from a
length attribute.

related(Object, Atom) returns annotate(RelatedObject, Term). related(annotate(Object, Annot), Atom)
returns annotate(RelatedObject, Term).

Object*Atom returns a RelatedObject such that Object relates to RelatedObject by a Term
with functor Atom.

Object*Term returns a RelatedObject such that Object relates to RelatedObject by Term.
relationships(Object) returns a list of all related annotate(RelatedObject, Term).

FILE: point.pl

Point+Number returns NewPoint with the offset increased by Number.

46

Point-Number returns NewPoint with the offset decreased by Number.

prelower(Point) returns (by backtracking) any point which can be generated from Point by
following precise bindings. The first one returned is always Point.

locatic:ii{Point) returns a point which can be g=nerated from Point by following all precise
bindings {going all the way down).

FILE: interval.pl

complement(Direction) returns the complement of Direction (direct -> complement, com-
plement -> direct, unknown -> unknown).

interval(Object) returns interval(Object,0, LengthOfObjMinus1,direct).
interval(Object, Direction) returns interval(Object,0, LengthOfObjMinus1, Direction).
interval(Point1, Point2) returns the same thing as interval(Pointl, Point2,direct).
interval(Object, Beg, End) returns the same thing as interval(Object, Beg, End, direct).

interval(Pointl, Point?2, Direction) prelowers Point! and Point2 to be on the same object
and returns the corresponding interval with direction Direction. If the resulting interval
has Beq ; End then Beg and End are reversed and the Direction is complemented.

interval(Object, Beg, End, Direction) returns interval(Object, Beg, End, Direction).

Interval ;4 Number shifts the "right” end of a directed Interval (the left end if its direction
is complement) by Number. A positve Number increases the length of the interval.

Interval j; Number shifts the “left” end of a directed Interval (the right end if its direction
is complement) by Number. A positve Number decreases the length of the interval (which
is intuitively suspect and will probably be reversed at some point).

length(Interval) returns the length of Interval.

start(Interval) returns the point which is the beginning of a direct interval, the end of a
complement interval.

start(Object) returns start(interval(Object)).

end(Interval) returns the point which is the end of a direct interval, the beginning of a
complement interval.

end(Object) returns end(interval(Object)).
complement(Interval) returns Interval with the direction complemented.

prelower(Interval) returns (by backtracking) any Intervals which can be generated from
Interval by following precise bindings. The first one returned is always interval([Interval]).

location(Interval) returns an Intervals which can be generated from Interval by following
all precise bindings (going all the way down).

47

FILE: intervals.pl

intervals(Intervals) returns Intervals.

intervals(List) returns the Intervals structure containing members of List. Each element of
List must be a valid Interval with known direction.

binding(Object) returns the precise binding of Object as an Intervals structure.
location(Object) returns location(binding(Object)).

location(Intervals) finds the location of each element of Intervals and appends the results
into an Intervals.

list(Intervals) returns the List consisting of members of Intervals.
interval(Intervals, Beginning, End, Direction) returns the Sublntervels of Intervals.
complement(Intervals) returns the reverse complement of Intervals.
length(Intervals) returns the total length of Intervals.

start(Intervals) returns the start of the first element of Intervals.

end(Intervals) returns the end of the last element of Intervals.

prelower(Intervals) applies prelower to each member of Intervals and appends the result
into an Intervals structure.

FILE: dna_sequence.pl

dna_sequence(Object) returns the DN A sequence of Object, either by looking at its dna_sequence
attribute if its a sequence_fragment, or by following its binding and finding the dna_sequence
of its binding.

dna_sequence(Interval or Intervals) prelowers Interval or Intervals to a list of intervals on
sequence fragments, builds the substrings, and appends them to produce the dna_sequence.

dna_sequence(Dna_Sequence) returns Dna_Sequence.
dna_sequence(ListOfChars) returns Dna_Sequence corresponding to ListOfChars.

complement(Character) interprets Character as a DNA character and returns its comple-
ment.

complement(Dna._Sequence) returns the complement of Dna_Sequence.
protein_sequence(Dna_Sequence) returns translate(Dna_Sequence).

protein_sequence(Object) either calculates translate(dna_sequence(Object)) or looks at the
peptide_sequence or protein_sequence attribute of Object.

48

translate(Dna_Sequence) returns the result of translation on Dna_Sequence as a peptide.sequence
using translate/3.

translate(Charl,Char2,Char3) interprets [Charl,Char2,Char3] as a codon and returns the
appropriate protein character. If any of the Chars are ambiguous, the character “X” is
returned. The stop codon is “*”.

no_stop_codons.in(Protein_Sequence) returns true if there are no stop codons (“*” charac-
ters) in Protein_Sequence until the last character, false if there is one before that.

ok_start_codon(Protein_Sequer:¢) returns true if the first character of Protein_Sequence is
Met, Leu, or lle (one of “MLImli").

FILE: sequence_ops.pl

matches(Value, AtomicPattern) evaluates Value to a Dna_Sequence or a Protein_Sequence
and searches for hits to the punit pattern AtomicPattern in it. Returns a list of hits, each
of which is of the form annotate(Dna_or_Protein_Sequence, VectorOfStartPosOfPunits).

common(List,Integer)evaluates each member of List to a Dna_Sequenceor a Protein_Scquence
and finds subsequences of length [nteger that are common to each of them. List must have

at least two members. Returns a list of annotate(CommonSequence, ListOfVectorOfPosi-
tions).

common(List,ListOfIntegers, Integer) is like common/2 but ListOfIntegers is interpreted as
a list of minimum numbers of occurrences in each sequence. List and ListOfIntegers should
be of the same length with at least one element.

FILE: adjacent.pl

adjacent(Object Expression, Base Expression) produces [Object!,Object2] such that Object!
and Object? are values for Object Ezpression that are adjacent on a value of BaseExpression.

adjacent(Qbject Ezpression, Base Type, Genome) produces the same thing as
adjacent(Object Ezpression,obj([type=Base Type,genome=Genome])) but is more efficient.

divergent(Type,Genome) produces all objects of type Type in genome Genome that are
adjacent on an object of type sequence_fragment and are divergent.

divergent([Object1,Object2])is trueif Object! and Object2are divergent, and false otherwise.

convergent(Type, Genome) produces all objects of type Type in genome Genome that are
adjacent on an object of type sequence_fragment and are convergent.

convergent([Object1,Object2]) is true if Objectl ad Object2 are convergent, and false other-
wise.

49

parallel(Type, Genome) produces all objects of type Type in genome Genome that are adja-

cent on an object of type sequence_fragment and are parallel (parallel meaning in the same
direction).

parallel([Object1,Object?]) is true if Object! ad Object2 are parallel, and false otherwise.
between([Object1,Object?]) returns an interval between Object! and Object?.

FILE: structure.pl

has_direct_structure(Object) is true if Object has directly attached features delineating a
secondary structure, false otherwise.

structure(Object) attempts to generate a secondary structure mask for an object by one of
the following methods:

e getting it directly from the features attribute of the Ob ject,

e getting it through an alignment from the relationship peptide-to_alignment and its
inverse,

e getting it through an alignment from the relationship cds_to_alignment and align-
ment_to_peptide.

FILE: variants.pl

In this file Sequence means one of Dna_Sequence, Protein_Sequence, or Mask.
change_by(Sequence, ListOfChanges) returns a new Sequence operated on by ListOfChanges.

change_reverse(Sequence, ListOfChanges) returns a new Sequence operated on inversely by

ListOfChanges.

changes_to(ListOfChanges,Sequence 1,Sequence?) returns true if ListOfChanges converts Se-
quencel to Sequence2; false otherwise.

FILE alignment.pl:

align_seq(Object, Entry) returns the sequence of entry Entry (without dashes) in alignment
Object by looking for Name-CharList in the aligned_seqs attribute.

aligned_seq(Object, Entry) is the same as align_seq(Object, Entry) but it leaves the dashes in.

align_by(Sequence, Object, Entryl, Entry2) treats Sequence as a mask or other sequence relat-
ing to Entryl (i.e, of the same length if the dashes in Entry! are removed) and converts it
to something relating to Entry2. Objectis an alignment.

50

align_by(Sequence, Object, Entry) inserts dashes in Sequence wherever there is a dash in Entry

to produce a mask of the same length as the alignment Object. unalign_by(Sequence, Object, Entry)
assumes that Sequence relates to the alignment Object and removes characters wherever En-

try has a dash to produce a Sequence that relates to Entry.

51

