
ANIJMCS-TH--173

ZE93 OO727O
ARGONNE NATIONAL LABORATORY

9700 South Cass Avenue

Argonne, Illinois 60439

ANL/MCS-TM- 173

Accessing Integrated Genomic Data Using GenoBase:

A Tutorial. Part 1

by

Ross Overbeek and Morgan Price

Mathematics and Computer Science Division

Technical Memorandum No. L73

January 1993

This work was supported by the Office of Scientific Computing, U.S. Department of Energy, under Contract

W-31-109-Eng-38. MASTER
'_STRIBUTIONOF'THISOOC_,..*..'q.EHTIS IJNL!_!TEOn

J

Contents

Abstract 1

1 Introduction 1

1.1 Getting Started '2

1.2 More on Attributes and Relationships 15

1.3 Restricting a Set of Objects with Constraints 16

1.4 Saving Results in Temporary Variables 19

2 Intervals and Points 19

3 More on Sequences and Pattern Matching 21

4 Codon Usage and Kmer Statistics 29

5 Searching for Common Subsequences 37

6 Summary 39

Appendix: Summary of Expressions That Can Be Evaluated 40

tool

III

Accessing Integrated Genomic Data Using GenoBase:
A Tutorial. Part 1

by

Ross Overbeek and Morgan Price

Abstract

GenoBase integrates genomic information from many existing databases, offering

convenient access to the curated data. This document is the first part of a two-part

tutorial on how to use GenoBase for acccssing integrated genomic data.

1 Introduction

GenoBase is a database that integrates information from a number of e_sting databases.
Enormous work has gone into developing many, many carefully curated databases that
contain information relating to genomic sequences. Now, there are a number of efforts
taking piace around the world attempting to offer integrated access to this growing body of
valuable information. GenoBase is one of these projects. Our goal in developing the system
is simply to offer more convenient access to the curated data; as such, it builds directly on
the efforts of many individuals. We will not attempt to list 'hem all, but we will try to

mention the individuals and groups that have developed the databases that we utilize, as
we cover specific categories of data in later chapters.

GenoBase is an object-oriented database. By this, we mean that the user should think

of GenoBase as containing information about objects. Objects have attributes. All of the
objects that we encounter in the initial stages of this tutorial will be typed objects; that is,

each object will have a type that categorizes the object (e.g., we will have objects of type
sequence_fragment, cds, peptide, enzyme, and so forth).

GenoBase has been implemented using the logic programming language Prolog, and
9 many of the details of how to use the system will reflect this fact. We believe that a modest
_- knowledge of Prolog is probably useful for most scientists, and we would encourage you
q

il

II

study the language at some point; however, we will attempt to present the system in a
fashion that will not require yo, to understand Prolog at all.

We inCend to eventually offer versions of GenoBase on PCs, and we will certainly in-

tegrate it into a graphics interface (our current plan is to use GDE, a freely distributed
X-windows based system). However, for now we believe that many users will be able to
start making effective use of the system using our current, relatively primitive interface.

Initially, our recommendation is that you run GenoBase from within an emacs win(low on
a Sun workstation; this is not absolutely required, but it is the framework that we use and
the one which will be discussed within this tutorial•

This report constitutes the first of two that develop the basic environment supported
by GenoBase.

1.1 Getting Started

Our database is a collection of objects, each of which has some set of attributes. '['he

database offers you the ability to find objetcs which meet specified criteria, operate on tile
objects, and display the results. To bring up the databases initially you need to position

yourself at the appropriate "home directory", start Prolog, and initiate the database• On
our current system this would be done using

cd "/BacteriallVersion3

prolog
_s_ar_upJ.

The startup procedure will prompt you to ask which aspects of the environment you wish

access to (it does take as much as 10-20 minutes to get the entire environment initialized,
so sometimes we do not lcad the entire database). If you simply take the default settings,
you will eventually reach the point where the system prompts you with

and you are ready to begin.

Well, what can you do now? The first step in becoming familiar with GenoBase will be to

explore the different types of objects maintained within the database and the relationships
between them. Let's start by just looking at the data associated with the enzyme 4.1.3.1:

I ?" eval(obj([type--enzyme,name--'4.1.3.1'])).

['4. i.3.1 ',enzyme]

We show what the user typed in with boldface. The system response follows. There are

a number of things to be learned from the previous request. First, the basic structure of

such a request is

eval (TermToBeEvaluaZed)

where

obj ([type=enzyme, name=' 4. I.3.1 '])

is the term that gets evaluated. This type of term stands for "give me an object with type

enzyme that has the name 4.1.3.1". The word 'enzyme' and the name '4.1.3.1' are atoms.

If an atom begins with a lowercase letter and contains no special characters, it need not be

enclosed by apostrophes; else, they are necessary.

Next, note that we got back only a short term identifying the object. To get a complete

version of the attributes, you would ask that the expression be evaluated and the result

"pretty-printed":

I ?- evalpp(obj([type--enzyme,name--'4.1.3.1'])).

enzyme 4.1.3.1

dosc('ISOCITRATE LYASE')

alternaze_names: [ISOCITRASE,ISOCITRITASE,ISOCITRATASE,ICL]

catalytic.activity:

[1]: ISOCITRATE = SUCCINATE + GLYOXYLATE.

Comments :

1. THE ISOMER OF ISOCITRATE INVOLVED IS (1R,2S)-I-HYDROXYPROPANE-1,2,3-

TRICARBOXYLATE.

Objects like enzyme 4.1.3.1 also relate to other objects (which have been extracted from

a number of other databases). If you wished to see these relationships, you would ask for

the object to be pretty-printed, along with the relationships:

I ?- evalppr(obj([type--enzyme,name--'4.1.3.1'])).

enzyme 4.1.3.1

desc('ISOCITRATE LYASE')

alternate_names: [ISOCITRASE,ISUCITRITASE,ISOCITRATASE,ICL]

catalytic_activity:

[1]: ISOCITRATE = SUCCINATE + GLYOXYLATE.

Comments:

1. THE ISOMER OF ISOCITRATE INVOLVED IS (1R,2S)-I-HYDROXYPROPANE-I,2,3-

TRICARBOXYLATE.

==-==-==-=ffi==<<Related To >=ffi=ffi=====ffi====

enzyme_to_cds --> [aceA,cds, 'E.coli']

enzyme_to_pepr ide --> ['P25248 ',peptide]

enzyme_to_peptide --> ['P20014' ,peptide]

enzyme_to_peptide --> ['P05313 ',peptide]

enzyme_to_peptide --> ['P17069' ,peptide]

enzyme_to.peptide --> ['P20699' ,peptide]

enzyme__o_pept ide --> [_P15479' ,peptide]

Finally, you could ask for a pretty-print of the object, its relationships, and ,_ pretty-

print of all objects that it relates to (which can produce a prodigious amount of output)

using

I ?" evalpprpp(obj([type--enzyme,name--'4.1.3.1'])).

enzyme 4.1.3.1

desc('ISOCITRATE LYASE')

alternate_names: [ISOCITRASE,ISOCITRITASE,ISOCITRATASE,ICL]

catalytic.activity:

[1]: ISOCITRATE = SUCCINATE + GLYOXYLATE.

Comments:

1. THE ISOMER OF ISOCITRATE INVOLVED IS (1R,2S)-I-HYDROXYPROPANE-1,2,3-

TRICARBOXYLATE.

_fffif==fffffffi=<<Related To >ffiffiffif=ffifff===--

enzyme_to_cds --> cds aceA of E.coli

accession('EGlO022 _)

desc("isocitrate lyase; utilization of acetate")

swissprot('P05313')

enzyme_to_peptide --> peptide P25248

id('ACEA_BRANA')

desc('ISOCITRATE LYASE (EC 4.1.3.1) (ISOCITRASE) (ISOCITKATASE) (ICL)')

data_class('STANDARD')

species('BRASSICA NAPUS (RAPE)')

classification: [EUKARYOTA,PLANTA,EMBRYOPHYTA,ANGIOSPERMAE,DICOTYLEDONEAE,

CAPPARALES,CRUCIFERAE]

Features:

SITE 574 576 GLYOXYSOMAL SORTING SEQUENCE (POTENTIAL).

peptide sequence of length 576:
0 MAASFSVPSM IMEEEGRFEA EVAEVQTWWS SERFKLTRRP YTARDVVALR

50 GHLKQGYASN EMAKKLWRTL KSHQANGTAS RTFGALDPVQ VTMMAKHLDT

I00 IYVSGWQCSS THTSTNEPGP DLADYPYDTV PNKVEHLFFA QQYHDRKQRE

150 ARMSMSREER AKTPFVDYLK PIIADGDTGF GGTTATVKLC KLFVERGAAG

200 VHIEDQSSVT KKCGHMAGKV LVAVSEHINR LVAARLQFDV MGTETVLVAR

250 TDAVAATLIQ SNIDSRDHQF ILGVTNPSLR GKSLSSLLAE GMAVGNNGPA

300 LQAIEDQWLS SARLMTFSDA VVEALKRMNL SENEKSRRVN EWLNHARYEN

350 CLSNEQGREL AAKLGVTDLF WDWDLPRTRE GFYRFQGSVT AAVVRGWAFA

400 QIADLIWMET ASPDLNECTQ FAEGVKSKTP EVMLAYNLSP SFNWDASGMT

450 DQQMMEFIPR IARLGYCWQF ITLAGFHADA LVVDTFAKDY ARRGMLAYVE

500 RIQREERSNG VDTLAHQKWS GANYYDRYLK TVQGGISSTA AMGKGVTEEQ

550 FKETWTRPGA AGMGEGTSLV VAKSRM

mol_wt(64325)

Comments:

I. FUNCTION: INVOLVED IN STORAGE LIPID MOBILIZATION DURING THE GROWTH

OF HIGHER PLANT SEEDLING.

2. CATALYTIC ACTIVITY: ISOCITRATE = SUCCINATE + GLYOXYLATE.

3. PATHWAY: FIRST STEP IN GLYOXYLATE BYPASS, AN ALTERNATIVE TO THE

TRICARBOXYLIC ACID CYCLE (IN BACTERIA AND PLANTS).

4. SUBUNIT: HOMOTETRAMER.

5. SUBCELLULAR LOCATION: GLYOXYSOME.

6. SIMILARITY: TO THE BACTERIAL AND FUNGAL ENZYME.

OI-MAY-1992: (REL. 22, CREATED)

01-NAY-1992: (REL. 22, LAST SEQUENCE UPDATE)

OI-MAY-1992: (REL. 22, LAST ANNOTATION UPDATE)

keywords: [[GLYOXYLATE BYPASS,TRICARBOXYLIC ACID CYCLE,LYASE,GLYOXYSOME]]
References:

[1]: PLANT CELL 1:293-300(1989).

COMAI L., DIETRICH R.A., MASLYAR D.J., BADEN C.S., HARADA J.J.;

Cross reference to PIR [JQ1105,JQ1105]

5

Cross reference %0 PROSITE [PSOOI61,1SOCITRATE_LYASE]

Cross reference to PROSITE [PSOO342,PEROXlSOMAL]

mmmmmm

Here, we deleted most of the output, since it displays a complete version oi all of the

related peptides. You need not get at the related objects in this "shotgun" [ashion; rather,

you might just use evalppr/! (which means the version evalppr that takes one argument)

to get a listing of the relationships, and then pursue individual related objects with more

queries:

I ?- evalppr(obj([type----enzyme,name='4.1.3.1'])).

enzyme 4.1.3. I

desc ('ISOClTRATE LYASE ')

alternate_names : [ISOCITRASE, ISOCITRITASE, ISOCITRATASE, ICL]

catalytic_activity:

[I]: ISOCITRATE :,SUCCINATE + GLYOXYLATE.

Comment s:

i. THE ISOMER OF ISOCITRATE INVOLVED IS (1R,2S)-t-HYDROXYPROPANE-1,2,3-

TRICARBOXYLATE.

====-========<< Related To >===ffi=====

enzyme_Zo_cds --> [aceA,cds, 'E.coli ']

enzyme_to_peptide --> ['P25248' ,peptide]

enzyme_%o_pepZide --> ['P20014' ,peptide]

enzyme_to_peptide --> ['P05313' ,peptide]

enzyme_to_peptide --> ['P17069' ,peptide]

enzyme__o_peptide --> ['P20699' ,peptide]

enzyme_to_peptide --> ['Pl 5479' ,peptide]

I ?" evalppr(obj([type--peptide,name--'P05313'])).

peptide P05313

id('ACEA_ECOLI')

desc('ISOClTRATE LYASE (EC 4.1.3.1) (ISOClTRASE) (ISOClTRATASE)')

data_class('STANDARD')

species('ESCHERICHIA COLI')

gene naune(s): ACEA

classification: [PROKARYOTA,GRACILICUTES,SCOTOBACTERIA,

FACULTATIVELYANAEROBICRODS,ENTEROBACTERIACEAE]

Features:

CONFLICT 101 117 LAASMYPDQSLYPANSV -> WRPACIRISRSIRQTRC

(IN REF. 2).

CONFLICT 215 215 A -> P (IN REF. 2).

CONFLICT 338 338 O -> E (IN REF. 2).

peptide sequence of lenEth 434:

0 MKTRTQQIEE LQKEWTQPRW EGITRPYSAE DVVKLRGSVN PECTLAQLGA

50 AKMWRLLHGE SKKGYINSLG ALTGGQALQQ AKAGIEAVYL SGWQVAADAN

100 LAASMYPDQS LYPANSVPAV VERINNTFRR ADQIQWSAGI EPGDPRYVDY

150 FLPIVADAEA GFGGVLNAFE LMKAMIEAGA AAVHFEDQLA SVKKCGHMGG

200 KVLVPTQEAI QKLVAARLAA DVTGVPTLLV ARTDADAADL ITSDCDPYDS

250 EFITGERTSE GFFRTHAGIE QAISRGLAYA PYADLVWCET STPDLELARR

300 FAQAIHAKYP GKLLAYNCSP SFNWQKNLDD KTIASFQqQL SDMGYKFQFI

350 TLAGIHSMWF NMFDLANAYA QGEGMKHYVE KVQQPEFAAA KDGYTFVSHQ

400 QEVGTGYFDK VTTIIQGGTS SVTALTGS'fE ESQF

mol_wt(47521)

Comments:

1. CATALYTIC ACTIVITY: ISOCITRATE = SUCCINATE + GLYOXYLATE.

2. PATHWAY: FIRST STEP IN GLYOXYLATE BYPASS, AN ALTERNATIVE TO THE

TRICARBOXYLIC ACID CYCLE (IN BACTERIA AND PLANTS).

3. SUBUNIT: HOMOTETRAMER.

4. SUBCELLULAR LOCATION: CYTOPLASMIC.

5. SIMILARITY: TO THE PLANT AND FUNGAL ENZYME.

01-NOV-1988: (REL. 09, CREATED)

01-NOV-z988: (REL. 09, LAST SEQUENCE UPDATE)

01-FEB-1991: (REL. 17, LAST ANNOTATION UPDATE)

keywords: [[GLYOXYLATE BYPASS,TRICARBOXYLIC ACID CYCLE,LYASE]]
References:

[1]: NUCLEIC ACIDS RES. 16:10924-10924(1988).

BYRNE C.R., STOKES H.W., WARD K.A.;

STRAIN=K12;

medline=89083515

[2]: NUCLEIC ACIDS RES. 16:5689-5689(1988).

RIEUL C., BLEICHER F., DUCLOS B., CORTAY J.-C., COZZONE A.J.;

STRAIN=K12;

medline=88262573

[3]: J. BACTERIOL. 170:2763-2769(1988).

KLUMPP D.J., PLANK D.W., BOWDIN L.J., STUELAND C.S., CHUNG T.,

LAPORTE D.C. ;

medline=88227861

Cross reference to EMBL [X12431,ECACEB]

Cross reference to EMBL [XO7543,ECACEA]

Cross reference to EMBL [M20714,ECIDHKPA]

Cross reference to PIR [SOO931,WZECIC]

Cross reference to PIR [S05692,S05692]

Cross reference to ECOGENE [EG10022,ACEA]

Cross reference to PROSITE [PSOO161,ISOCITRATE_LYASE]

•_<< Rela%ed To >============--

peptide_to_cds --> [aceA,cds, 'E.coli']

peptide_to_enzyme --> ['4.1.3. i' ,enzyme]

peptide_to_prosite ('F') --> ['PSO0030' ,prosite]

peptide_to_prosite ('T') --> ['PS00161' ,prosite]
--mm

I?-evalppr(obj([type=cd s,name--aceA])).

cds aceA of E.coli

accession('EGI0022 ')

desc("isocitrate lyase; utilization of acetate")

swissprot ('P05313')

==<< Related To >==============

obj ect_to_piece (I,14191,15495, direct) -->

[hydGecoM, sequence_fraEment, 'E.coli ']

cds_to_enzyme --> ['4.1.3.1 ',enzyme]

gene_to_map (90.942) --> [_Bachmann' ,map, 'E.coli']

cds_to_peptide --> ['P05313' ,peptide]

One small detail is worth noting in this list set of queries: some of the relatio.ships

included data fields. Note the following lines (where the first two appeared as relationships

from peptide P05313, and the last from cds aceA):

peptide_to_prosite ('F') --> ['PSO0030' ,prosite]

peptide_to_prosite ('T') --> ['PS00161 ',prosite]

gene_to_map (90.942) --> ['Bachmann' ,map, 'E.coli']

The meanings of the data fields in relationships depend on the particular relationship.

The field in a peptide_to_prosite relationship indicates whether or not the occurrence of tile
prosite pattern in the peptide is a "real positive" or a "false positive", and tile field in the

gene_to_map relationship gives the position of the gene in the corresponding map.

Here, we have started exposing you to some of the basic types of objects included in the
system:

• genome objects represent an entire genome (and relate to the chromosomes, plasmids,

etc.) for specific orgainisms.

• chromosome objects represent specific chromosomes for specific organisms.

• sequence_fragment objects represent a section of DNA sequence that has been cap-
tured. This data comes from GenBank.

• enzyme objects represent an "abstract enzyme" in they can relate to many distinct

peptides and genes (from many organisms). The data associated with this type of
object comes from the Enzyme Data Bank createci I)y Amos Bairoch.

• peptide objects represent specific peptide sequences, and most of this data currently

comes from the Swiss Protein Data Bank (again, developed by Amos Bairoch) and
the Protein Identification l_esource (PIR).

• prosite objects represent the peptide motifs compiled by Amos Bairoch.

• Objects of type cds, rRNA, tRNA, and misc_RNA represent specific genes (from
specific organisms). Much of the data associated with these types of objects comes
directly from GenBank.

• map objects are used to represent physical or genetic maps (and most of the infor-
mation one gets from accessing these objects will be through relationships to the
objects contained in the map). The system includes a map of the E. coli chromosome
published by Barbara Bachmaan, as well as maps of several other bacterial organisms.

• Objects of type eco2dbase capture the data provided by Fred Neidhardt's project to

develop data relating to expression of E. coli genes.

• rebase_entry objects describe the sites cut by restriction enzymes. This data comes

from the datab_ se distributed by Rich Roberts.

• pdb_entry objects contain data relating to the coordinates of atoms within a specific

peptide for which the crystal structure has been determined. This data has been
extracted from the Protein Data Base distributed by Brookhaven National Laboratory.

• peptide_alignment objects contain alignments of peptides. Most of the currently avail-
able alignments were acquired from the Protein Identification Resource.

• nucleotide_alignment objects contain alignments of DNA or RNA sequences. These
have come from several sources including those distributed by the Ribosomal Database

Project and the Berlin Data Bank.

9

• Objects of type compound and reaction are used to encode the reactions in metab(_iic

pathways. The compound information is largely from Peter Karp's database, and the

metabolic pathway information was assembled by Murali Raju (who started from a

set of reactions provided by Ray Ochs).

This is only a partial list, and we find that we add new object types frequently, since

the body of curated data is expanding so rapidly. If at any point you wish to know what

types of objects are accessible, you can use

eval (help (types))

to get help with exactly what is being represouted by a particular type, you would use

eval (help (SomeType))

where Some Type is a specific type (like eco2dbase or ,_ds) to get a short summary of what a

given type of object represents. To see what topics help is av,'filable for, use

eval (help (help))

That is, ask for help about help!

There are some details that need to be explained about expression evaluation. First, a_

expression can often be successfully evaluated to any of a set of acceptable objects. Thus,

I ?" evalpp(obj([type--cds,name--gap])).

cds gap of E.coli

desc ("glyceraldehyde-3-phosphaze dehydrogenase")

cds gap of Salmonella

codon_st art (1)

product ("glyceraldehyde-3-phosphate dehydrogenase")

I0

if you were to run the preceding query, GenoBase would respond with one acceptable
object (gap of E.coli) and then pause waiting for you to respond Ii"you were to hit a carriage
return, that would end the query (and the system would ret_,:, with "yes", meaning that
it had successfully processed your query): on the other hand, responding with a semicolon
causes GenoBase to attempt to produce an alternative response. We have glossed this
aspect of the interaction over in our previous discussion - the system always pauses after

presenting an answer, and the user responds indicating whether or not GenoBa.se should
attempt to find alternative solutions.

If you had wanted only the gene in Salmonella. tile appropriate expression would have
been

['?- evnlpp(obj([type=cds,name=gap,genome='Salmonella'])).

Sometimes. you will wish GenoBasc to collect an entire set of objects; in this case, you

should use the all/l operator:

?- evalp p(all(oi)j([type=eds,name=gap]))).

E
cds gap of E.coli

desc("glyceraldehydo-3-phosphatedehydrogenase")

eds gap of Salmonella
codon_ st art (1)

product ("glyceraldehyde-3-phosphate dehydrogenase")

3 ;

You may well find that typing evalpp becomes a bit tiring. To ease the pain slightly,

you can simply type it once, and GenoBase will prompt you for objects to be evahtated:

[?- evalpp,

l: obj([type=compound]).

compound (-)o-acetylcarnitine
Stochiometry C9H17N104

Molecular Weight = 203.238
Sources: ['AEPCO','BOEMAN']

Generalizes to ['COMPOUNDS']

!

Built from ['CARNITINE']

I: obj([type=rebase_entry]).

rebase_entry AaaI

organism('bcetobacter aceti ss aceti')

enzyme_type ([
'R2'

])
sites([

cuts_at ("CGGCCG", 11

]1
References :

references(" [1]

Tagami H., Tayama K., Tohyama T., Fukaya M., Okumura H., Kawamura Y.,

Horinouchi S., Beppu T. ;

FEMS Microbiol. Left. 56: 161-166(1988).

"1

]: all(obj([type=misc_RNA,genome--'E.coli'])).

[
misc_RNA ssrA of E.coli

accession('EG30100' 1

misc_RNA ffs of E.coli

accession('EG30027')

desc("4.5S RNA")

_SZ

misc_R_A micF of E.coli

accession('EG30063 ')

desc("regulatory antisense RNA affecting ompF expression")

IZW

misc_RNA rnpB of E.coli
accession('EG30069 ')

desc("RRase P; RNA subunit; Ml RNA")

mmm

misc._A spr of E.coli

accession('EG30098')

desc("Spot 42 RNA")

8Sm

12

mist_RNA ssr of E.coli

accession(' EG30099 ')

desc("Stable 6S RNA")
===

]

[: quit.

Note that you end your sequence of prompts with quit. If you find that you wish to see

all of the solutions, rather than typing in a semicolon at the pause, you ca. just type in tile

character 'a' and GenoBase will automatically display ali of the alternatives.

Just a.s evalpp/O is ,sed to process a sequence of evaluations, pretty-printing the results,

versions of eval/O, evalppr/O, and evalpprpp/O also exit.

Now, let us proceed to the topic of traversing relationships between objects. Suppose,

that you knew that the E.coli gene gap weLe related to an eco2dbase object. Then, the

expression

_- obj ([type=cds ,name=gap, genome=' E.coli']) * cds_to_eco2dbasei

i

|

-z_ evaluates to the eeo2dl_se object related to the gene. Thus,.li
.li

[?-evalpp(obj([name=gap,ger ome='E.eoli']) * eds_to_eco2dbase).
i

eco2dbase 515

spot id: H034.3
mol. wt. = 35376

4 pi as predicted from seq = 7.07

X coordinate in Eel in Fig. 1 = 0.0
= Y coordinate in gel in Fig. 1 = 0.0

X coordinate in gel in Fig. 2B = 77
I

Y coordinate in Eel in Fig. 2B = 76

X ¢o_ordinate in Eel in Fig. 3B = 83

I

| 13
=

Y coordinate in gel in Fig. 3B = 78

protein name z Glyceraldehyde-3-phosphate dehydrogenase

spot identified by comigration with purified protein
donor: D. Fraenkel

'EC'('1.2.1.12')

'SWISSPROT '('G3P I_ECOLI ')

'GENE' (gap)

'GENBANK '('Ecogap ')

'SEQREF '('EJB150 ;61')

location on genetic linkage map: 39.3

'DIK'('F')

occurs in Kohara clone 330

Here, the exact meanings of the attributes will make sense only if you have read the

paper describing the 2-d protein gel system being used to explore expression of E. coli genes

or are familiar with the widely distributed database. To help, we provide summaries of the

attributes for each type of object in appendicies to this tutorial (or you could try the help

facility and see if it contains a summary of tile possible attributes).

You may occasionally wish to traverse several relationship._. For example, to get a listing

of the alignments that contain at least one peptide corresponding to a gene in E. coli, one

might use

I ?" eval.

I: all(obj([type=cds,genome='E.coli']) * cds_to_peptide * peptide_to_alignment).

[
['FAO293',alignmenZ],

['FAOSOO',alignmenZ],

['FAOOl6',alignment],

['FAO302',alignmenZ],

['FAO299',alignmenZ],

['FAOO72',ali&n_menZ],

['FAO268',alignment],

['FAO361',aliEnment],

['FAO381',alignmenZ],

[_FAO402_,alignment],

['FAO380_,aliEnmenz]

]
I:

14

At this point, you have seen the basic mechanisms for accessing objects and for traversing
relationships between objects. We will return to these topics in later sections, exploring
some of the more advanced options. However, before continuing, we recommend tbat you

simply try to become fluent with these few features; then, onceyou can at least migrate

through the available data, it will be appropriate to continue and learn how to gain access
to much broader capabilities.

1.2 More on Attributes and Relationships

In the last section, you learned how to locate objects and traverse relationships to other
objects. Now let us fill in two small details - how to ask for the set of attributes of an

object and the celationships for an object. At this point, these are minor embellishments,
since you can get this information using evalppr as discussed before.

The term

attributes(Object)

evaluates to the list of attributes associated _'t',. _-e object, and the term

relationships(0bi ect)

evaluates to the list of relationships associated with the object.

To illustrate,

I ?- eval(attributes(obj([type--cds,name--aceA,genome--'E.coli']))).

[
accession('EGIO022'),

desc("isocitrate lyase; utilization of acetate"),

swissprot('P05313_)
]

[?- eval(relationships(obj([type--cds,name--aceA,genome--'E.coli']))).

15

[
annotate ([hydGecoH, sequence_fragment, 'E.coli '],

object_to_piece (1,14191,15495, direct)),

annotate([_4.1.3. I' ,enzyme], cds_to_enzyme),

annotate(['Bachmann ',map, _E.coli _], gene_to.map(90.942)),

annotate([_P05313' ,peptide] , cds_to_peptide)

]

To cause an expression to evaluate to the value of just One specific attribute, one would
use

I ?-eval(attribute(obj([type=eds,name=aceA,genome='E.eoli']),desc)).

"isocitrate lyase; utilization of acetate"

As we compose more complex expressions, we will find this ability to get at specific
attributes to be critical.

1.3 Restricting a Set of Objects with Constraints

Often, one wishes to access a set of objects based on the value of one or more specific

attributes. For example, suppose that you wished to access the set of genes within E.coli

that are expressed durirLg heat shock. Since the eco2dbase objects have encoded within them

attributes that relate to expression, this is a reasonable goal. In particular, the attribute

'46C' gives "Cellular abundance of the protein spot at 13.5oC relative to cellular abundnace

at 46oC (J. Bacteriol. 139:185-194)." Thus, we might reasonably wish to see ali genes that

have a value greater than (say) 2.0 in the attribute '46C'. To do these, one would evaluate

the expression

require(obj ([1;)_e=eco2dbase]), X in attribute(X, '46C') > 2.0) * eco2dbase.to_cds.

Here, the subexpression

require(ohi ([type,,eco2dbase]), X in attribute(X, '46C') > 2.0)

evaluates to an eco2dbase object with the desired property. The general form of the

require/2 operator is

16

require (ObjectExpres sion,Requirement)

which will find an object satisfying the ObjectExpression for which Requirement evalu-

ates to true. The format of the Requirement expression is

X in ExpressionInX

That is, X indicates a variable that takes on the value of the desired object, and then

X appears in the condition that gets evaluated.

Think of the overall form of require2 as saying "find an object X such that Expression-
InX is true".

Finally, in tile complete expression, GenoBase finds such an object and then tr;ivorses

tlle relationship to the desired gene. The c,utcome of such a query looks like

I ?- eval.

I: require(obj([type-'eco2dbase]),X in at_,ribute(X,'46C') > 2.0) * eco2dbase_to_cds.

[grpE,cds,'E.coli'] a

[mopA,cds,'E.coli'] :

[dnaK,cds,'E.coli'] ;

[htpE,cds,'E.coli'] ;

[mopB,cds, 'E.coli'] :

[recA,cds,'E.coli'] ;

[htpG,cds,'E.coli'] ;

[lysU,cds,'E.coli'] ;

[glpK,cds,'E.coli'] ;

[carB,cds,'E.coli'] ;

[ompA,cds,'E.coli'] ;

[ilvE,cds,'E.coli'] ;

[sucB,cds,'E.coli'] ;

[sdhA,cds,'E.coli'] ;

[clpB,cds,'E.coli'] ;

[carA,cds,'E.coli'] ;

[glyA,cds,'E.coli'] ;

You can use multiple constraints within a require/2 expression by using the and/2 op-

erator. Thus,

17

require(obj ([type=eco2dbase]) ,X in and(attribute(X, '46C') > 2.0,
attribute(X,'46C') < 3.0)).

evaluates to objects in which the 46C attribute has a value between 2.0 and 3.0.

If you do not really care what value an attribute has, but only wish to ensure that tim

object actually has the attribute, you should use the has_attribute operator. For example,
had we defined "heat shock gene" as one for which there was a '50C' attribute in the

eco2dbase object, we would have used an expression of the form

i require(obj([_ype=eco2dbase]) ,X in has_attribute(X,'50C')).

i Now, before proceeding, let us briefly summarize the key points that }lave been discussedso far:

i • Expressions evaluate to one of a set of values.

'i . One uses expressions that evaluate to objects to access objects within the database.
|

• Object1 * Relationship is an expression that evaluates to an Object2 that stands inlm

ii the given relationship to Object1. That is, one uses the asterisk operator (which is
called an "infix operator") to traverse relationships.

• You can constrain the set of objects that a given expression E evaluates to by using

require(E, X in Condilion). Here X is an arbitrary name of ,_ variable that is bound
to an object that results from evaluating E (i.e., you could use any uppercase letter

in place of X).

• When evaluating expressions, GenoBase attempts to find a single suitable value. If
you then request alternative values, it will try to locate those, as well.

|

At this point, you have access to the basic tools to locate sets of objects from thedatabase. However, this basic notion of obtaining answers by "evaluating expressions" can
be used in far more powerful ways. They may well seem a bit unnatural to you, until

you get the hang of what is going on, but it is a paradigm that supports a very strong
expressive power. In later sections we will dramatically expand the expressive capabilities

by introducing numerous specialized operators, tIowever, before you go on to those points,
you really do need to get comfortable with the basic operations used to navigate among the
objects in the database.

,| 18

1.4 Saving Results in Temporary Variables

You will find that it is sometimes convenient to retain the values of an expression. As an

example of how this is done,

I: $hsg :-- requlre(obj([type:eco2dbase]),X in attribute(X,'46C') > 1.0) *
eco2dbase_to_cds.

[crr,cds,'E.coli"] a

[grpE,cds,'E.coli'] ;

evaluates the expression, saving the result in Shsg (all of these "user variable_" that play
the role of accumulating temporary sets must begin with a $). The variable takes on the

entire set of returned values for the expression, so

eval($hsg).

would produce the same output as the previous evaluation.

Finally, one can clear a user variable with

eval (clear($hsg)).

2 Intervals and Points

You will often find it useful to be able to refer to subintervals of objects (e.g., the region

preceding a gene, a region of a chromosome, etc.). To do this, one can use an expression of
the form

interval(Objec_,Begin,End,Direction)

19

Thus,

interval (obj([name=aceA, type=cds, genome= 'E.coli ']),-18,18,direct)

evaluates to a 37-character region starting 18 characters upstream of aceA and continuing

through the 19th character of the gene (i.e., the beginning and ending positions are given

as offsets from the first character of the object - 0 corresponds to the first character).

A point is a specific location on an object (i.e., a specific base pair given as an offset

into an object). There are a variety of ways to specify points:

poinr (obj ([name=thrA, type=cds, genome='E. coli']),10"

start (obj ([name=thrA, type=cds, genome=' E. coli '])) + 10

are equivalent ways to specify the llth character of the gene thrA (and, for the record, there

is also an end/1 operator that evaluates to the point at the end of an object - i.e., the last

bp in the object).

Fir ally, before we illustrate these concepts with a specific sequence of operations, we

will introduce the operation that evaluates to the DNA sequence of an object:

dna_sequence(Object)

evaluates to the actual string of characters that make up the sequence of the object (as-

suming that the object has been sequenced - if not, evaluation of the expression will just

faD.

In the _llowing short sequence of commands, we illustrate these notions.

|) ?- evalpp.

I: interval(obj([name=aceA,type=cds,genome='E.coli_]),-18,18,direct) •

i INTERVAL FROM -18 TO 18 ON eds aceA of E.coli
accession('EG10022')

l desc("isocitrate lyase; utilization of acetate")
i s,issprot(_P05313 _)

i ===

! 20
I

i

I: dna_sequence(interval (obj([neune=aceA,type=eds ,genome= 'E.coli ']),

-18,18 ,direct)).

DNA_SEQUENCE of length 37
0 ACTATGGAGC ATCTGCACAT GAAAACCCGT ACACAAC

l: $x := obj([narae=acaA,type=cds,Eenome='E.coli']).
eds aceA of E.coli

access ion ('EG I0022 ')

desc("isocitrate lyase; utilization of acetate")

swissprot ('P05313')

J : start($x).
POINT AT 0 ON eds thrA of E.coli

accession(' EG10998')

desc (" aspartokinase I-homosez'ine dehydrogenase I")

swissprot ('P00561')

I: interval(start($x),start($x)+lO).

INTERVAL FROM 0 TO 10 ON cds thrA of E.coli

accession(' EG10998')

desc (" aspart_kinase I-homoserine dehydrogenase I")

swisspro_ (' P00561')

I: dna_sequence(in;erval(start($x),s_ar_($x)+6)).

DNA_SEQUENCE of length 7
0 ATGCGAG

3 More on Sequences and Pattern Matching

In the last section, we introduced an operator (dna_sequence/l) that can be used to get the

actual DNA sequence of an object. There is a corresponding operator to get the sequence

of a protein. For example,

I ?- evalpp.

i: SaceA := obj([name=aceA,_ype=cds,genome=*E.coli']).
eds aceA of E.coli

accession('EG10022 _)

desc("isocitrate lyase; utilization of acetate")

swissprot('P05313 _)

I: protein_sequence($aceA).

PROTEIN_SEQUENCE of length 435

0 MKTRTQOIEE LQKEWTQPRW EGITRPYSAE DVVKLRGSVN PECTLAQLGA

50 AKMWRLLHGE SKKGYINSLG ALTGGQALQQ AKAGIEAVYL SGWOVAADAN

21

I00 LAASMYPDQS LYPANSVPAV VERINNTFRR ADQIQWSAGI EPGDPRYVDY

150 FLPIVADAEA GFGGVLNAFE LMKAMIEAGA AAVHFEDQLA SVKKCGHMGG

200 KVLVPTQEAI QKLVAARLAA DVTGVPTLLV ARTDADAADL ITSDCDPYDS

250 EFITGEKTSE GFFKTHAGIE QAISRGLAYA PYADLVWCET STPDLELARR

300 FAQAIHAKYP GKLLAYNCSP SFNWQKNLDD KTIASFQQQL SDMGYKFQFI

350 TLAGIHSMWF NMFDLANAYA QGEGMKHYVE KVQQPEFAAA KDGYTFVSHQ

400 QEVGTGYFDK VTTIIQGGTS SVTALTGSTE ESQF

Less commonly used flmctions for translating either DNA sequence (or an object X for

dna_sequence(X) can be evahtated to DNA sequence) to a peptide sequence exist.

translate1 can be used to translate any string of DNA characters that has an appropriate

(i.e., a multiple of 3); translate_nostop/1 will translate any string in which there are

embedded stop codons, and it will remove a terminal stop codon. Thus,

_ranslate (dna_sequence ("ATGTAA")).

ein_sequence (2,"M*")

translate_nos_op(dna_sequence("ATGTAA")).

PROTEIN_SEQUENCE of length 2
OM

translate(dna_sequenc_("ATGTAAATG")).

protein_sequence (3,"M*M")

translate_nos_op (dna_sequence ("ATGTAAATG")).
translate ($aceA).

translate(dna_sequence($aceA)).

PROTEIN_SEQUENCE of length 435

0 MKTRTQQIEE LQKEWTQPRW EGITRPYSAE DVVKLKGSVN PECTLAQLGA

50 AKMWRLLHGE SKKGYINSLG ALTGGQALQQ AKAGIEAVYL SGWQVAADAN

100 LAASMYPDQS LYPANSVPAV VERINNTFRR ADQIQWSAGI EPGDPRYVDY

150 FLPIVADAEA GFGGVLNAFE LMKAMIEAGA AAVHFEDQLA SVKKCGHMGG

200 KVLVPTQEAI QKLVAARLAA DVTGVPTLLV ARTDADAADL ITSDCDPYDS

250 EFITGERTSE GFFRTHAGIE QAISRGLAYA PYADLVWCET STPDLELARR

300 FAQAIHAKYP GKLLAYNCSP SFNWQKNLDD KTIASFQQQL SDMGYKFQFI

350 TLAGIHSMWF NMFDLANAYA QGEGMKHYVE KVQQPEFAAA KDGYTFVSHQ

400 QEVGTGYFDK VTTIIQGGTS SVTALTGSTE ESQF,

Note that the two requests

translate_nostop (dna_sequence ("ATGTAAATG")).

translate($aceA).

to evaluate; the first because the sequence contained an embedded stop codon, and

second because these operators take dna_sequence as arguments (not objects that can

evaluated to DNA sequence).

22

Now, let us proceed to discuss the issue of how to search for patterns in either DNA or

peptide sequences. We will begin by talking about how to construct a pattern. A pattern

is composed of a sequence of pattern units. When a pattern is matched against a sequence,

each of the pattern units must successfully match a subsequence. For example, the pattern

AATG 2...4 CATT

is composed of three pattern units; the first and thild are just character sequences, and

the second matches any subsequence of 2 to 4 characters. Thus, this simple pattern could
match

AATGCCCATT or

AATGCATTCATT or

AATGTTTCATT

or any of a variety of similar sub_enuences. In this example, we illustrated just two of the

basic types of pattern units. There is a fairly limited set of types of pattern units, but it is

rich enough to allow you to express a wide variety of possible patterns. Here is a basic set

(we will enrich this basic set substantially as we continue, but it is a good starting point):

• an exact match pattern unit is just a sequence of characters. For a pattern con-

structed to match nucleotide sequences, the characters must be from the alphabet

(A,C,G,T,U,M,R,W,S,Y,K,B,D,H,V,N}, which is the standard set _r rcpresenting

nucleotides (with the ability to represent ambiguous characters). The meanings of

the ambiguity codes are

M means one of _A,C}

R means one of _A,G}

W means one of _A,T,U}

S means one of _C,G}

Y means one of {C,T,U}

K means one of (G,T,U}

B means one of (C,G,T,U}

D means one of (A,G,T,U}

| H means one of (A,C,T,U}
V means one of (A,C,G}
N means one of _A,C,G,T,U}

For a pattern used to match peptide sequences, you must select the characters from

i the set {A,C,D,E,F,G,It,I,K,L,M,N,P,Q,R,S,T,V,W,Y}, which are the standard l-

i character codes for amino acids.
23

|
.

|

• An elipses pattern unit is of the form X...Y, and it matches any subsequence of length

X to Y (where X is less than or equal to Y, and X is nonnegative).

• an any pattern unit is used to match any of a set of amino acids. Thus, any(RFY)

matches a single character (which must be It, F, or Y).

• a notany pattern unit matches a single amino acid character, as long as it is not one

of the set given. Thus, notany(RFY) matches any single character that is not an lt,
F, or Y.

With just this basic set, you can express a fairly wide class of patterns. For example,

the pattern

any(ST) 1...1 any(RK)

can be used to search for the pattern identified by Amos Bairoch in his ProSite collection

as recognizing a protein kinase C phosphorylation site (see the description associated with
PDOC00005, which is a prosite_doc object created from Bairoch's collection - that is, pretty

print the object that obj([name= 'PDOCO0005', type=prosite_doc]) evaluates to).

In fact, this modest set of basic pattern units offers the ability to search for most of
the ProSite patterns. However, there are many types of structural features that cannot be
expressed in this simple set. For example, one would like to be able to look for repeating
sequences or palindromes in DNA sequences, as well as the ability to look for "fuzzy"

matches (where the string matched must be "close", but not necessarily an exact match).
So, now let us proceed the mechanisms included to support these more advanced types of
pattern matching.

The first capability that we need to introduce is the ability to "name" a pattern unit
and then refer back to the name. Let us illustrate:

p1=6...6 0...20 pl

is a pattern composed of three pattern units. The first is an elipses that matches any 6
characters. Furthermore, the first pattern unit is assigned the "name" pl. The third pattern

unit specifies an exact match against whatever pl matched. Thus, the pattern recognizes
an exact repeat of 6 characters separated by 0 to 20 intervening characters. Names must

be one pO, pl, p2, p3 ... pg; that is, p followed by a single numeric digit.

The next addition to our basic pattern matching repertoire is the ability to match
reverse-complements of previously matched subsequences in a DNA-matching pattern; this

24

will be useful for ide-tifying structures like hairpin loops and palindromes. To do this, one
would use a pattern like

plffi8...10 3...15 "pl

which specifies three pattern units. The first is named pl and the third matches an exact
reverse-complement of whatever matched pl (which allows one to look for hairpin loops
with stems of 8 to 10 characters that bond perfectly). To match a more complex pattern,
like a pseudo-knot, one might use a pattern like

pi=6...6 2...4 p2ffi6...60...6 "pl 8...10 "p2

However, a reader that has actually sought such structures in DNA will find the require-
ment that the reverse complement be precise to be too confining; it is often the case that
a few mismatches can be tolerated, or even insertions and deletions will occur. Hence. our

next extension of the basic set of tools is to generalize some of our pattern units to allow

imprecise matches. Thus, we allow one to append [M,D,[] to an exact match pattern unit
or to a complement pattern unit. Thus,

TATAAGTT[1,0,I]
GATCGATC[0,i,0]

are valid. The three integers give tile number of tolerated mismatches, deletions, and
ir_sertions, respectively. A "mismatch" is when a chare.cter in the pattern unit mismatches

a character in the subsequence, a deletion refers to a case in which a character in the
pattern is simply omitted in the subsequence, and an insertion is when a character in the

subsequence is omitted in the p,_.ttern. Thus,

cA'rr[o,

would match tl, e subsequence CTT (due to the tolerance of a single deletion). Now, one
can relax the requirements for a match and still detect fairly complex structures in DNA.

Finally, we need to introduce the ability to search for "fuzzy" matches using "weight
matricies". Suppose that you had aligned ali known versions of a given type of feature that
was 5-characters long. Suppose that you counted up the number of times an A, C, G, and
T occurred in each column of the alignment giving

-- 25

A C G T A C G T A C G T A C G T A C G T

1 0 9 1 0 5 1 5 10 0 i 0 11 0 0 0 2 5 0 4

Then, to searchforan occurrenceofsuch a structure,one might use a patternofthe
form

{(1,0,9,1),(0,5,1,5),(10,0,1,0),(11,0,0,0),(2,5,0,4)]- > 34

TMs pattern unit can only match 5-character subsequences. To determine whether or
not it matches a specific subsequence, you simply take the integer corresponding to the
character in the subsequence from each 4-tuple and compute the sum; if the sum exceeds

34, a match has occurred. While it is a bit tedious to type in such a long pattern unit,

and it requires some experimentation to determine the appropriate threshhold, this can be
a powerful tool - particularly when it is embedded with other pattern units in a complex
pattern.

The example that we used to illustrate weight matricies used a pattern unit to search

DNA (i.e., we used 4-tuples). To form a pattern unit to search a peptide string, one uses
20-tuples (where the entries refer to the amino acid codes in alphabetic order). These are

almost impossible to accurately type at a terminal, and this capability is normally used
with patterns that have been encoded as objects. We will defer this discussion to a later
section.

Tile final comment that we must make concerning tile formation of patterns is that one

encloses complete patterns within single apostrophes, as you will see in the examples below.

Now, we need to illustrate the actual use of patterns. Consider the following short
interaction with GenoBase:

I ?- evalpp.
I : protein_sequence(obj([name='P11447',type=pepride])).
PROTEIN_SEQUENCE of leng%h 51

0 MALWGGRFTC AADGRFKQFN DSLRFDYRLA EQDIVGSVAW SKALVTVGVL
50 T

I: matches(protein.sequence(obj([name=,PI1447',%ype=peptide])),'Q O...6 Q').
[
Q AAD Q at offset 9,
Q RFK G at offset 13

]
[: matches(obj([name=aceA,type=cds,genome='E.coli']),'ARRYAG 2...8 RR').

_6

[
AGGTAG CGGC GG ar offset 280,
AGGTAG CGGCG GA at offset 280

]
[: halZ.

yes

I ?- eva1.

I: matches(obj([name-aceA,type=cds,genome='E.coli']),'ARRYAG 2...8 RR').
I:[
annoZaZe(dna_sequence(12,"AGGTAGCGGCGG"),vector([280, 286, 290, 292 3)),

annotaZe(dna_sequence(13,"AGGTAGCGGCGGA"),vector([280, 286, 291, 293]))
]

Here, we introduce the match/2 operator. Its first argument can be a protein sequence,
a DNA sequence, or a term fer which dna_sequence1 can be applied to produce a DNA

sequence (which is what we did in the second use of matches/2. The second argument is a
pattern. Evaluation of the term produces a list of annotated objects. To show you what an

annotated object looks like, we reissued the second query under eval; you should compare
it to what got pretty-printed when we used evalpp. An annotated object is of the form

annotate(Objecl:, Annotation)

In the example above, the annotation is a vector of integers indicating where each pattern
unit matched. The first integer is the offset of where the first pattern unit matched, the
second where the second matched, and so forth (the Inst integer is the offset just past the

subsequence matched by the last pattern unit). The pretty-printing uses the annotation to
give a more readable presentation of the matched subsequence.

Now, the most common type of pattern matching involves searching through sets of

objects for specific patterns. Creating just the right expression to give you what you want
can be quite tricky, until you become comfortable with the overall paradigm of expression

evaluation. Initially, you will probably need to pattern your attempts after some examples.
We will now present a few, and we intend to build a growing set in the help presentation

for pattern.examples. So, to begin: suppose that you wished to search for large hairpin

loops in the region around the start of genes that code for proteins (i.e., around the start

of sequenced objects of type eds). To do this, you need an expression that

1. finds an object of type eds,

2. locates the interval centered around the start of the object (let's say 15 characters on

either side, to be specific),

27

3. computes the set of hairpins in that region (let's insist on stems of at least 9 characters,

for now), and

4. displays the results only if the set is nonempty.

Of course, you will wish to iterate over ali possible cds objects, and you will wish to see

which objects were used in successfully detecting the hairpins.

The following session illustrates such a search

I: obj([type=cds]) with X in

require (matches (interval (start (X)-15,start (X)+15),

'pi=9...9 3...I0 "pI'),Y in size(Y) > 0).
ANNOTATE cds lucK of E.coli

accession('EG10350')

desc("L-Fuculose kinase")

swissprot('Pl1553')

=== BY [

TAGCCGGAT AAGCAATGTT ATCCGGCTA at offset I,

AGCCGGATA AGCAATGT TATCCGGCT at offset 2,

GCCGGATAA GCAATG TTATCCGGC at offset 3

]a

ANNOTATE cds pyrL of E.coli

accession('EG11278')

swissprot('P17776')

=_= BY [

AAGGCGACT GATG AGTCGCCTT ar offset 5

];

Note that the overall expression is of the form

Expressionl with X in Expression2

This type of expression has not been covered before. It means "evaluate Expression l

to get a value and call it X, and then try to evaluate Expression2; if Expression2 can be

evaluated, then return the value of Ezpressionl annotated with the value of Expression2."

Here, Expressionl evaluates to a cds.

EzpressionZ evaluates as follows:

28

4

1. The basic form of the expression is require(Expression3, Y in Expression4). As we
discussed earlier, this means "evaluate Expression3 and when you get a value, call

it II. Then, evaluate Expression4. If the result is true, then the value of the whole

require/2 expression is the value of Expression& else, try to determine an alternative

evaluation of Expression3, and so forth."

2. Expression3 evaluates to the list of matches for the pattern over an object that can

be evaluated using dna_sequence/2. That is, we could have used the slightly longer

(but equivalent) matches(dna_sequence (interval(start(X)-15,start(X)+ 15)) ...).

3. Expression4 evbaluates to true exactly when the list of matches is nonempty.

The reader should study this example carefully, since many common types of searches

can be made by just altering the interval to be scanned and tile pattern.

4 Codon Usage and Kmer Statistics

Occasionally, it will be useful to exarnple co(ion usage in a single object or a set of objects

(i.e., the eds objects in a given genome). This can be done as follows:

I ?- eval.

I : codon_usage(obj ([namefaceA,typefcds])).
annotate(vector([18, 10, 3, 2, 2, 12, 5, 8, 0, 6,

O, 2, O, 9, 10, 11, 8, 7, 21, I,

5, O, 11, I, O, 4, 1, 11, O, 3,

27, O, 19, 8, 8, 15, 10, 12, 26, 8,

1, 22, 0, 12, 2, 7, 11, 6, 1, 6,

0, 11, 3, 4, 8, 2, 0, 4, 8, 1,

3, 13, 0, 6]), codon_usage) ;
annotate(vector([23, 8, 9, 4, 7, O, 4, 9, 1, O,

0, 1, 0, 10, 10, 14, 20, 3, 4, 2,

3, O, 4, 9, O, 7, O, 10, 3, I,

O, 12, 26, 7, 7, 13, 12, 5, 10, 15,

10, 5, I, i0, 7, 3, 7, 4, i, 8,

0, 5, 2, 0, 1, 7, 0, 0, 3, 0,

8, 10, O, 7]), codon_usage) ;

I:

I ?- evalpp.

I: codon_usage(obj ([name=aceA,typefficds])).
number codons = 435

alanine : 56 12.877,

29

=-

q

GCA: 10 2.30Z

GCC: 12 2.76Z

GCG: 26 5.98Z

GCT: 8 1.84Z

arginine: 16 3.68_
AGA: 0 0.00_

AGG: 0 0.00_

CGA: 0 0.00_

CGC: 4 0.92_

CGG: 1 0.23_

CGT: 11 2.53_

asparagine: 12 2.76_
AAC: 10 2.30_

AAT: 2 0.46_

aspartic_acid: 23 5.29_

GAC: 8 z.84_

GAT: 15 3.45_

cysteine: 5 1.15_

TGC: 4 0.92_

TGT: 1 0.23_

glutamic_acid: 27 6.21_
GAA: 19 4.37_

GAG: 8 1.84_

glutamine: 29 6.67_
CAA: 8 1.84_

CAG: 21 4.83_

glycine: 35 8.05_
GGA: 1 0.23_

GGC: 22 5.06_

GGG: 0 0.00_

GGT: 12 2.76_

histidine: 8 1.84_

CAC: 7 1.61_

CAT: I 0.23_

isoleucine: 20 4.60_

ATA: 0 0.00_

ATC: 9 2.07_

ATT: 11 2.53_

3O

leucine: 33 7.59%

CTA: 0 0.00%

CTC: 3 0.69%

CTG: 27 6.21%

CTT: 0 0.00%

TTA: 3 0.69%

TTG: 0 0.00%

lysine: 21 4.83_
AAA: 18 4.14%

AAG: 3 0.69%

methionine: 10 2.30%
ATG: 10 2.30%

phenylalanine: 19 4.37%
TTC: 13 2.99%

TTT: 6 1.38%

proline: 17 3.91%
CCA: 5 1.15X

CCC: 0 0.00%

CCG: 11 2.53%

CCT: 1 0.23%

serine: 25 5.75%

AGC: 6 1.38%

AGT: 2 0.46%

TCA: 3 0.69%

TCC: 4 0.92%

TCG: 8 1.84%

TCT: 2 0.46%

stop: i 0.23%

TAA: 1 0.23%

TAG: 0 0.00%

TGA: 0 0.00%

threonine: 27 6.21%

ACA: 2 0.46%

ACC: 12 2.76%

ACG: 5 1.15%

ACT: 8 1.84%

tryptophan: 8 1.84%
TGG: 8 1.84%

tyrosine: 17 3.91%

31

TAC: 6 1.38_.

TAT: 11 2.53Y,

valine: 26 5.98_

GTA: 2 0.46_

GTC: 7 1.61_

GTG: 11 2.53_

GTr: 6 1.38_

l: codon_usage(all(obj([type=cds,genome='E.coli']))).
number codons = 420695

alanine: 40323 9.58Z

GCA: 8373 1.99_

GCC: 10157 2.41Z

GCG: 14780 3.51_

GCT: 7013 1.67Z

arginine: 24668 5.86Z
AGA: 590 0.14Z

AGG: 420 0.10Z

CGA: 1248 0.30_

CGC: 9895 2.35_

CGG: 1947 0.46Z

CGT: 10568 2.51_

asparagine: 16102 3.83Z
AAC: 10207 2.43Z

AAT: 5895 1.40Z

aspartic_acid: 22633 5.38Z
GAC: 9346 2.22Z

GAT: 13287 3.16Z

cysteine: 4721 1.12Z
TGC: 2764 0.66Z

TGT: 1957 0.47Z

glutamic_acid: 26314 6.25Z
GAA: 18457 4.39Z

GAG: 7857 1.87Z

glutamine: 18248 4.34Z
CAA: 5487 1.30Z

CAG: 12761 3.03Z

glycine: 31641 7.52Z
GGA: 2604 0.62Z

GGC: 13391 3.18Z

32

GGG: 4041 0.96_

GGT: 11605 2.76_

histidine: 9688 2.30_

CAC: 4721 1.12_

CAT: 4967 1.18_

isoleucine: 24067 5.72_

ATA: 1135 0.27_

ATC: 11558 2.75_

ATT: 11374 2.70_

leucine: 42655 10.14_

CTA: 1247 0.30_

CTC: 4268 1.01_

CTG: 23963 5.70_

CTT: 3920 0.93_

TTA: 4327 1.03_

TTG: 4930 1.17_

lysine: 19526 4.64_
AAA: 14965 3.56_

AAG: 4561 1.089

methionine: 11567 2.75_

ATG: 11567 2.75_

phenylalanine: 15537 3.69_

TTC: 7725 1.84_

TTT: 7812 1.86_

proline: 18615 4.42_

CCA: 3349 0.80_

CCC: 1762 0.42_

CCG: 10929 2.60_

CCT: 2575 0.61_

serine: 23143 5.50_

AGC: 6600 1.57_

AGT: 2799 0.67_

TCA: 2441 0.58_

TCC: 3961 0.94_

TCG: 3417 0.81_

TCT: 3925 0.93_

• stop: 1351 0.32_

q TAA: 827 0.20_
e

TAG: 85 0.02_
i

m

| 33
m_

4

TGA: 439 0.10_

threonine: 22264 5.29_

ACA: 2217 0.53_

ACC: 10529 2.50_

ACG: 5536 1.32_

ACT: 3982 0.95_

tryptophan: 5677 1.35_
TGG: 5677 1.35_

tyrosine: 11786 2.80_
TAC: 5711 1.36_

TAT: 6075 1.44_

valine: 30169 7.17_

GTA: 4791 1.14_

GTC: 6092 1.45_

GTG: 11133 2.65_

GTT: 8153 1.94_

l: halt.

There are several points worth mentioning in the last short dialogue:

1. The codon_usage/1 operator evaluates to an annotated object. Tlle object is a vector

of 64 integers (representing the number of occurrences of AAA, AAC, AAG, AAT,

ACA,... TTT). The annotation records the fact that the vector represents codon

usage.

2. When the argument of the codon_usage/1 operator can evaluate to multiple values

(i.e., there are multiple possible objects that one could apply the operator on to get

a codon usage vector), it will return codon usages for them one-at-a-time.

3. Pretty-printing the annotated vector will produce a more readable report of the codon

usage.

4. To get the codon usage of more than a single gene, one must apply the codon_usage/1

operator to a list. The all1 operator can be used to construct the list of all possible

evaluations of its argument. In the last expression evaluated, we used this to construct

the set of ali cds genes in E. coli and then took the codon usage of the set.

When a vector giving the occurrence of each oligo of some specified length is desired,

you should use kmers/2. The first argument evaluates to a DNA sequence, and the second

34

gives the size of the oligos (in the following example, we used 3, which produces counts for

the 64 possible 3-mers).

7- eval.

I: kmers(dna_sequence(obj([type=cds,name=aceA,genome='E.coli'])),3).

annotate(vector([29, 23, 24, 13, 18, 19, 13, 21, 12, 31,

13, 18, 7, 22, 26, 17, 22, 18, 40, 12,

17, 7, 28, 17, 23, 27, 35, 22, 14, 13,

37, 12, 35, 14, 8, 24, 32, 24, 47, 26,

16, 42, 15, 22, 13, 21, 23, 16, 4, 16,

2, 22, 25, 19, 19, 12, 30, 29, 32, 11,

10, 19, 16, 9 3), 1,aners(3))

l" halt.

I ?- evalpp.

I: kmers (dna_sequence (ohi([type=cds ,name=aceA ,genome= 'E.coli '])),3).
AAA: 29 2.23_

AAC: 23 1.77_

AAG: 24 1.84_

AAT: 13 1.00_

ACA: 18 1.38Z

ACC: 19 1.46_

ACG: 13 1.00_

ACT: 21 1.61_

AGA: 12 0.92_

AGC: 31 2.38_

AGG: 13 1.00_

AGT: 18 1.38_

ATA: 7 0.54_

ATC: 22 1.69_

ATG: 26 2.00_

ATT: 17 1.30_

CAA: 22 1.69_

i cAc:Is 1.3SZ
4 CAG: 40 3.07Z

" CAT: 12 0.92Z

i CCA: 17 1.30Z

CCC: 7 0.54Z

CCG:2S 2.1SZ
- CCT: 17 1.30Z

CGA: 23 1.77Z

| CGC: 27 2.07_

CGG: 35 2.69Z

i CGT: 22 1.69Z
CTA: 14 1.07_

4 CTC: 13 1.00_

CTG: 37 2.84_
i
|
| 35

|

i

CTT: 12 0.92_

GAA: 35 2.69_

GAC: 14 1.07Z

GAG: 8 0.61_

GAT: 24 1.84_

GCA: 32 2.46_

GCC: 24 1.84_

GCG: 47 3.61_

GCT: 26 2.00_

GGA: 16 1.23_

GGC: 42 3.22_

GGG: 15 1.15_

GGT: 22 1.69_

GTA: 13 1.00_

GTC: 21 1.61_

GTG: 23 1.77_

GTT: 16 1.23_

TAA: 4 0.31_

TAC: 16 1.23_

TAG: 2 0.15_

TAT: 22 1.69_

TCA: 25 1.92_

TCC: 19 1.46_

TCG: 19 1.46_

TCT: 12 0.92_

TGA: 30 2.30_

TGC: 29 2.23_

TGG: 32 2.46_

TGT: 11 0.84_

TTA: 10 0.77Z

TTC: 19 1.46_

TTG: 16 1.23_

TTT: 9 0.69_

ltiswise to use some cautionwhen displayingthe output of such an evaluation,sincea

requestforeven 8-mers willproduce over64,000countsin tilevector!Most often,one will

wish to compare kmer usage or codon usage from differentgenes or organisms. In such a

case,one would evaluatethe vectors,and then use them in more complex expressions.We

willillustratethe power of thisapproach later,when we develop operatorsforprocessing

vectors.One small point might be worth notinghere:ifyou need the unannotated vector,

use unannotate/l as in the followingexample.

i ?- eval.

[: unannotate(kmers(dna_sequence(obj([type=cds,name=aceA,genome='Z.coli'])),3)).

36

vector([29, 23, 24, 13, 18, 19, 13, 21, 12, 31,
13, 18, 7, 22, 26, 17, 22, 18, 40, 12,

17, 7, 28, 17, 23, 27, 35, 22, 14, 13,
37, 12, 35, 14, 8, 24, 32, 24, 47, 26,
16, 42, 15, 22, 13, 21, 2.3, 16, 4, 16,

2, 22, 25, 19, 19, 12, 30, 29, 32, 11,

10, 19, 16, 9])

5 Searching for Common Subsequences

Another common class of queries involves looking for short subsequences that occur severa.l

times within one or more objects. For example, one might reasonably look for ali sequences

of length 6 or more that occur more than once in a region just upstream of a gene; or, even

better, one might look tbr sequences that occur multiple times ill front of two or more genes

expressed during heat sho(:k. In this section, we will introduce wa.ys to lind such sequellces.

The basic operator that is used to search for common sequences is common2, where

the first argument is a list of objects to be scanned, and the second is the minimum size oi"

common strings that you wish to see. If you want to insist that one of the objects to be

scanned contain multiple occurrences of the common string, then that object is given as

[Objecl;, NumberO ccurrences]

To illustrate,

I ?- eva1.

]: common([dna_sequence ("ACGTACGTACGT"), dna_sequence ("CGTACGTACGT")],3).

[
annotate(dna_sequence(3,"CGT"), [

vecl;or([1, 5, 9]),

vecl:or([O, 4, 8])

"1),
anno_cate(dna_sequence(4,"ACGT"), [
vecl;or([O, 4, 8]),

vecl;or([3, 7])

]),
annotate(dna_sequence(6,"GTACGT"), [
vector([2, 6]),

vec'cor([" 1, 5 "])

37

])
]

I: common([obj([name=aceA ,type:cds ,genome:'E.coli']),

obj ([name=aceE, type=cds, genome=,E.coli '])] ,11).

[
annotate (dna_sequence (11,"CTACATCAACA"), [

vector([191]),

vector([176])

]),
annotate (dna_sequence (I1,"GTCGAAAAAAG"), [

vector([179]),

vector([290])

]),
annotate(dna_sequence(12,"ATCTGGAACTGG"), [

vector([880]),

vector([223])

])
]

I: common([obj([name=aceA ,type=cds ,genome='E. coli']),

[obj([name=aceE, type=cds, genome=,E.coli']),2]

],8)•
[
annotate(dna_sequence(8,"AGCAGCTG"), [

vector([1012]),

vector([481, 2219])

]),
annotate(dna_sequence(8,"CGAAAGAT"), [

vector([1168]),
vector([979, 2236])

]),
annotate(dna_sequence(8,"CTACATCA"), [

vector([191]),

vector([176, 2060])

]),
annotate(dna_sequence(8,"CTTCGAAG"), [

vector([551]),

vector([842, 2519])

]),
annotate(dna_sequence(8,"TCGAAAAA"), [

vector([180]),
vector([291, 1297])

]),
annotate(dna_sequence(8,"TGGGCGGC"), [

vector([592]),

vector([310, 1833])

]),

38

annotal;e(dna.sequence(9,"ATCTG_'AAC"), [

vector([880]),
vector([223, 631])
3)

:

These examples illustrate the basic techniques of how to search for common subse-

quences.

6 Summary

This tutorial is actually an evolving draft that we give to our friends to help them _,,t

started. We have found it impossible to keep up with the tasks required to integrate, new

databases, update the documentation on GenoBase, and also tc adequ_._tely de:_crib,e the

basic features and technology used to create the systerr,. Our current Man is to Dubli_lt this

document as a technical report, and then to begin _ork on Part 2, ,hich will a ttem0t to

fill in the missing pieces.

We hope that the basic view of data extraction via evaiuatiort has bee.n convey, cd to the

reader. Once a firm grasp of this approach has been achieved, it doez become possil_le to

experiment with a much wider range of operators fairly quickly. To support those adven-

turous souls that are willing to make such an effort, we iuclude a very brief description of

most of the current operators in the Appendix.

Appendix

Summary of Expressions That Can Be Evaluated

You can evaluateexpressionswith

eval(Expression, Value).

There are a number of more convenient user interfaces based on this predicate, including

The expressions that fullow can be evaluated at the Prolog prompt with four basic types of
predicates - eval, evalpp, evalppr, and evalpprpp. Each of these predicates takes an optional
single argument. The 0-ary versions cause the user to be prompted for an expression, which
is e_-_lu:_ted and displayed (actually, the user is repeatedly queried, until he indicates that
no more expressions are to be evaluated). The 1-ary versions take the input argument as
the expression to be evaluated, eval prints out a fairly minimal description of the output of
evaluation, evalpp pretty-prints the evaluated expression, evalppr pretty-prints the res,lting
ob _.ct(s) and displays relationships to other objects, evalpprpp pretty-prints the evaluated
expression, along with any related objects. Finally, eval/2 allows a user to evaluate an
expression and bind the second argument to the result. Thus, we summarize this with

eval/0,1 prin¢ value as Prolog term

evalpp/0,1 pretty print the v_lue
evalppr/1 pre_:'c¥print the value plus irs relationships
evalpprpp/._ pretty pri_,r_he value and pretty print irs

related _bjeccs
eva1/2 bind the second argument to the result

The arity one versions of the predicates accept an expression as an argument; the arity zero
versions read an expression from the user, process it, and loop. Once a value has been printed
out, the programs prompt the user for one of iRETURN/. (which means accept the value),
";" (which means try to backtrack for another), or "a" (which means backtrack through
ali remaining values). When there is no remaining value or the user hits iRETURN/., the

predicate terminates or prompts the user for another expression.

SEMANTICS OF EXPRESSIONS

Expressions are Prolog terms. Various operators are defined which evaluate their arg, ments
as expressions and then produce a value. There are also various meta-operators, which do
things like get ali values for an expression or substitute a value into an expression containing
a variable.

There is a special notion of YariableEzpression (described below in FILE variable.pl) that
allows substitution of a value into an expression.

The predicates that evaluate operations and meta-operations succeed, backtrack, and fail
like any other Prolog predicate. If a term is not described by any operation or meta-

IN

d0

operation clause, it evaluates to itself. There is one special meta-operator, val/l, which

returns its argument without evaluating it.

Here is a session with eval/O demonstrating a few examples of simple expressions involving
the operators '+' and member and the meta-operators val, obj, all, and []. The lines starting
with "--: " are prompts for the user to type in an expression; the lines ending with " ;" are

prompts where the user typed ";" to look at additionaJ values.

I ?- eva1.
I: asdf.
asdf ;

I: -1.
-1 ;
I: 3.0.
3.0 ;
I: 2+3.
5 ;
I: 2+0.
I : val(2+3).

+(2,3) ;
I: all(val(4)).

[
4

];
I: member([4,5,2+3]).
4 ;
5 ;
5 ;

i: all(member([4,5,2+3])).
[
4,
5,
5

] ;
I: obj([name=a_aA,type--cds]).
[araA,cds,'E.coli'] ;

[araA,cds,'Salmonella'];

I: all(obj([nameaaraA,typeacds])).
[
[araA,cds,'E.coli'],

[araA,cds, 'Salmonella']
];
I: extl:.

41

THE STRUCTURES PRODUCED BY EVAL

atoms and numbers evaluate to atoms and numbers, which are printed out in fairly standard

fashion. Operations that produce Boolean output produce the atoms true and false.

An arbitrary Prolog term that may or may not be a legitimate structure for use with eval

is called a Value. Any Prolog term can be printed out by eval/[0,1], evalpp/[0,1], etc.

A Prolog list of values of arbitrary type is referred to as a list, and is printed out as either

"abcdefg"

or

[Value1, . . ValueN]

A list of two objects may have the special meaning of being a pair of objects.

ohi(Object) is the structure used to store an object. It is printed out as [Name, Type,
optional Genome]. Object is currently of the form Name(Type, optional Genome), but that
may change. Terms that are built out of Objects always include the object as obj(Object).

annotate(Value, Ass_iatedValue) is the structure used to hold a value together with asso-
ciated information. It is printed out as annotate(Value, Ass_iatedValue)

interval(Object, IntegerBeginning, IntegerEnd, A tomicDirection) is the structure used to hold
an interval on an object. Beginning and End are inclusive, counted from 0 at the start
of the object, and Beginning should always be =i End. AtomicDirection is one of di-
rect, complement, unknown.

intervals(List} is a structure used to hold a sequence of intervals on an object. List should
be nonempty. Each element of List should be a directed interval, that is, an interval such

that Direction is not unknown, intervals(List) is printed out as intervals(List).

dna_sequence(Length, ListOfCharacters) is the structure that represents a DNA or RNA
sequence. A dna_sequence is printed out ms dna_sequence(Length,ListOfCharacters).

protein_sequence(Length, ListOfCharacters) is the structure that represents a peptide se-
quence. A protein_sequence is printed out as protein_sequence(Length, ListOfCharacters).

mask(Length, ListOfCharacters) is used to store simple information relating to a sequence.
For example, a mask showing secondary structure for a peptide sequence typically includes
thecharacters

"." No info ai;this position

"-" Ho info ai;this position due to alignment
"H" This position is in an alpha-helix

"S" This position is in a beta-strand
"T" This position is in a turn.

point(Object, Offset) is the structure that represents a point. The Offset is relative to the
start of the Object (counting from zero). A point is printed out as point(Object, Offset).

42

vector(ListOfNumbersOrVectors) is a structure that represents a vector or an array. A
Vector is printed out like vector(ListOfNumbersOrVectors) but in a more compact form.

SOME OF THE CURRENTLY IMPLEMENTED OPERATIONS AND META-
OPS

FILE: simple.pl

simple operations are operations that act on a single number or atom or on a pair of num-

bers, and have been defined so that they extend to vectors and arrays. For example,
VectorS'Number means convert Number to a vector and do a pairwise multiply. Simple oper-
ations are "typed", and, if they return numeric results, then ListOfValues will be returned
as vector(ListOfValues)and ListOfVectors will be returned as vector(ListOfVecwrs). In

additon, a vector on input is always converted to a list.

Here is a complicated example using the simple numeric operator *:

vector([vector([1,2]),vector(J2,3])]) * [3,43
-> [vecror([1,2]),vector([2,33)3 * [3,43
-> [vector([1,2]) * 3, vector([2,33) * 4 3
-> [[1,2] * 3, [2,3] * 4]
-> [[1.3,2.3], [2*4,3*43 3

-> [vector([4,6]), vector(J8,12])]
-> vector([vector([4,6]), vector([8,12])])

and with the Boolean operator and

and([true,false], true) ->
land(true,true), and(false,true)] ->
[true, false]

Simple operations perform type checking - * expects its arguments to be numberic, mod
expects its arguments to be integer, not expects its argument to be boolean, etc. If the types

are not as expected, the evaluation will fail, otherwise it should always succeed. Therefore,

expressions like 2+o or and(true,3) or 2.0 mod 3.0 or lowercase(-1) fitil to evaluate.

The simple operations are

boolean(Term)

is_integer(Term)
number(Term)

and(Booll, Boo12) _ logical and

or(Boo11, Boo12) X logical or
xor(Boo11, Boo12) X exclusive or
nor(Bool) X nor

43

-I

o

\+ Boo1 _ not

Numberl -- Number2 _ numerical equality

Numberl =:s Number2 Y.numerical equality

Number1 < Number2

Numberl -< Number2

Number1 > Number2

Numberl >- Number2

Numberl ,\m Number2 Y.numerical inequality

Number1 + Number2

Number1 - Number2

-Number2

Number 1,Number2

Number 1/NonzeroNumber

inteEer(Number) Y.rounds towards 0

abs(Number) Y.absolute value

min (Number 1.Numb er2)

max (Number I.Number2)

InteEerl << InteEer2 _.binary shift left

Integerl >> InteEer2 Y.binary shift riEht

Inteserl // NonzeroInteger Y.inteEer divide

InreEerl div NonzeroInteEer _ inteEer divide, same as //

Integer1 mod NonzeroInteEer
lowercase (Character)

uppercase (Character)

FILE: toplevel.pl

val(Term) evaluates to Term

once(Expr) evaluates Expr and cuts (eliminating backtracking).

Term1=Term2 returns true and unifies the two terms if Terml wiU unify with Term2, else

returns false.

require(Value, VariableExpression) returns Value if VariableExpression returns true on it and
fails otherwise.

FILE: variable.pl

variable(Value, VariableExpression) returns VariableExpression with Value substituted into

it. A Variable Expression can be a normal expression or it can be of the form

PrologVar in ExpressionConeainingPrologVar

44

q

FILE: list.pl

list(ListOfExpressions) returns ListOfValues, one for each Ez,pression. It uses get_vals to do

a "Cartesian product", so you needn't worry about the subexpressions being re-evaluated
unnecessarily.

all(Ezpr) returns all values of Ez,pr in a list.

all(Ezpr, Requirement) means all(require (Ez.pr, Requirement)).

sort(List) sorts List.

foreaeh(List, VariableEz,pression) returns a list of values of VariablcEzpres.sion on members
on List, one for each member of List.

member(List) runs list/l on List and returns members.

size(List) runs list/l on List and returns the number of members.

FILE: vector.pl

vector(List) produces Vector if List is a list of numbers, vector(Vector) produces the Veclor
if it is a valid one (a list of numbers).

list(Vector) produces a List of the elements in Vector.

min(Vector) produces the smallest element in Vector.

max(Vector) produces the largest element in Vector.

total(Vector) produces the sum of the elements in Vector.

average(Vector) produces the average of the elements in Vector (the empty vector's average
is 0).

FILE: annotate.pl

Ez,pr with VariableEzpression returns annotate(ValueOfEz,pr, ValueOfVariableEz,pressionOn Value)
with full backtracking.

annotate(Value, Variable Ezpression} returns annotate(Value, Value OfVariable Ezpression On Value)
with full backtracking if VariableEzpression succeeds on Value and Value otherwise.

unannotate(annotate(Value, Annot)) returns Value. In ali other cases, unannotate(NotAnnotation)
returns NotAnnotation.

annotation(annotate(Value,Annot}) returns Armor.

45

FILE: obj.pl

ld(Atom) returns any object of name Atom. ld(List) returns any object whose Id unifies
with List

ohi(List) returns an object satisfying the restrictions in List, where each element of List is
one of

name = Expression
type = Expression
genome = Expression

where the Expression evaluates to an atom. For example,

obj([]) returns any object, obj([name=member([thrA,thrB])]) returns any object with nam_
thrA or thrB, and obj([name=thrA,genome='E.coli'])returns any object of name thrA in
genome E.coli.

pathway(Object) returns Object if Object is a pathway, and fails otherwise, pathway([])
returns any pathway Object with backtracking.

attributes(Object) returns the list of attributes of Object.

has_attribute(Object,Atom) returns true if Object has attribute Atom, false otherwise.

attribute(Object,Atom) returns the value of attribute Atom for Object, fails otherwise.

attribute_length(Object,Atom) returns the length of the string attribute Atom for Object,
and fails otherwise.

name(Object) returns the name of Object (as an atom).

type(Object) returns the type of Object (as an atom).

genome(Object) returns the genome of Object (as an atom).

length(Object) returns the length of an object by calculating it from its binding or from a
length attribute.

related(Object, Atom) returns annotate(RelatedObject, Term). related(annotate(Object,A nnot),A tom)
returns annotate(RelatedObject, Term).

Object*Atom returns a RelatedObject such that Object relates to RelatedObject by a Term
with functor Atom.

Object*Term returns a RelatedObject such that Object relates to RelatedObject by Term.

relationships(Object) returns a list of all related annotate(RelatedObject, Term).

FILE: point.pl

Point+Number returns NewPoint with the offset increased by Number.

46

Point-Number returns NewPoint with the offset decreased by Number.

prelower(Point) returns (by backtracking) any point which can be generated from Point by
following precise bindings. The first one returned is always Point.

locati_;t(Point) returns a point which can be g_nerated from Point by following all precise
bindings (going ali the way down).

FILE: interval.pl

complement(Direction) returns the complement of Direction (direct -> complement, corn-
plement -> direct, unknown-> unknown).

interval(Object) returns interval(Object, O,LengthOfObjMinus l,direct).

interval(Object, Direction) returns interval(Object, O,Length OfObjMinus I, Direction).

interval(Point1,Point2) returns the same thing as interval(Pointl,Point2,direct).

interval(Object, Beg, End) returns tile same thing ,'ts interval(Object, Beg, End, direct).

interval(Pointl,Point2,Direction) prelowers Pointl and Point2 to be on the same object
and returns the corresponding interval with direction Direction. If the resulting interval
has Beg _ End then Beg and End are reversed and the Direction is complemented.

interval(Object, Beg, End, Direction) returns interval(Object, Beg, End, Direction).

Interval 88 Number shifts the "right" end of a directed Interval (the left end if its direction

is complement) by Number. A positve Number increases the length of the interval.

Interval ii Number shifts the "left" end of a directed Interval (the right end if its direction

is complement) by Number. A positve Number decreases the length of the interval (which
is intuitively suspect and will probably be reversed at some point).

length(Interval) returns the length of Interval.

start(Interval) returns the point which is the beginning of a direct interval, the end of a
complement interval.

start(Object) returns start(interval(Object)).

end(Interval) returns the point which is the end of a direct interval, the beginning of a
complement interval.

end(Object) returns endSnterval(Object)).

complement(Interval) returns Interval with the direction complemented.

prelower(Interval) returns (by backtracking) any Intervals which can be generated from
Interval by following precise bindings. The first one returned is always interval([Interval]).

location(Interval) returns an Intervals which can be generated from Interval by following
all precise bindings (going all the way down).

47

FILE: intervals.pl

intervals(Intervals) returns Intervals.

intervals(List) returns the Intervals structure containing members of List. Each element of
List must be a valid Interval with known direction.

binding(Object) returns the precise binding of Object as an Intervals structure.

location(Object) returns location(binding(Object)).

location(Intervals) finds the location of each element of Intervals and appends the results
into an Intervals.

list(Intervals) returns the List consisting of members of Intervals.

interval(Intervals, Beginning, End, Direction) returns the Subintervals of Intervals.

complement(Intervals) returns the reverse complement of Intervals.

length(Intervals) returns the total length of Intervals.

start(Intervals) returns the start of the first element of Intervals.

end(Intervals) returns the end of the last element of Intervals.

prelower(Intervals) applies prelower to each member of Intervals and appends the result
into an Intervals structure.

FILE: dna_sequence.pl

dna_sequence(Object) returns the DNA sequence of Object, either by looking at its dna_sequcTwc
attribute if its a sequence_fragment, or by following its binding and finding the dna_sequence

of its binding.

dna_sequence(Interval or Intervals) prelowers Interval or [ntervals to a list of intervals on

sequence fragments, builds the substrings, and appends them to produce the dna_sequence.

dna_sequence(Dna_Sequence) returns Dna_Sequence.

dna_sequence(ListOfChars) returns Dna_Sequence corresponding to ListOfChars.

complement(Character) interprets Character as a DNA character and returns its comple-
ment.

complement(Dna.Sequence) returns the complement of Dna_Sequence.

protein_sequence(Dna_Sequence) returns translate(Dna_Sequence).

protein_sequence(Object) either calculates translate(dna_sequence(Object))or looks at the

peptide_sequence or protein_sequence attribute of Object.

48

translate(Dna_Sequence) returns the result of translation on Dna_Sequence as a peptide_sequence
using translate/3.

lranslate(Charl,Char2,Char3) interprets [Charl,Char2,Char3] as a codon and returns the
appropriate protein character. If any oi" the Chars are ambiguous, the character "X" is
returned. The stop codon is "*"

no_stop_codons_in(Protein_Sequence) returns true if there are no stop codons ("*" charac-
ters) in Protein_Sequence until the last character, false if there is one before that.

ok_start_codon(Protein_Sequer_e) returns true if the first character of Protein_Sequence is
Met, Leu, or lie (one of "MLImii").

FILE: sequence_ops.pl

matches(Value,AtomicPattern) evaluates Value to a Dna_Sequence or a Protein_Sequence
and searches for hits to the punit pattern AtomicPattern in it. Returns a list of hits, each

of which is of the form annotate(Dn,__or_Protein_Sequence, VectorOfStarlPosOfPunits).

common(List, Integer) evaluates each member of List to a Dna_Sequence or a Protein_Sequence
and finds subsequences of length Integer that are common to each of them. List must h;tve
at least two members. Returns a list of annotate(CommonSequence, ListOfVectorOfPosi-
tions).

common(List, ListOfIntegers, Integer) is like common/2 but ListOfIntegers is interpreted as
a list of minimum numbers of occurrences in each sequence. List and ListOfIntegers should

be of the same length with at least one element.

FILE: adjacent.pl

adjacent(ObjectExpression, BaseExpression) produces [Object l, Object2] such that Object!
and Object2 are values for ObjectExpression that are adjacent on a value of BaseExprcssion.

adjacent(ObjectExpression, BaseType, Genome) produces the same thing as
adjacent(ObjectExpression, obj([type=Base Type,genome=Genome])) but is more efficient.

divergent(Type, Genome) produces all objects oi" type Type in genome Genome that are
adjacent on an object of type sequence_fragment and are divergent.

divergent([Object1, Object2]) is true if Object1 and Object2 are divergent, and false otherwise.

convergent(Type, Genome) produces ali objects of type Type in genome Genome that are
adjacent on an object of type sequence_fragment and are convergent.

convergent([Objectl,0bject2]) is true if Objectl ad Object2 are convergent, and false other-
wise.

49

parallel(Type, Genome) produces all objects of type Type in genome Genome that are adja-
cent on an object of type sequence_fragment and are parallel (parallel meaning in the same

direction).

parallel([Objectl,0bject2]) is true if Object1 ad Object2 are parallel, and false otherwise.

between([Object1,0bject2]) returns an interval between Objectl and Object2.

FILE: structure.pl

has_direct_structure(Object) is true if Object has directly attached features delineating a.
secondary structure, false otherwise.

structure(Object) attempts to generate a secondary structure mask for an object by one of
the following methods:

• getting it directly from the features attribute of the Object,

• getting it through an alignment ft'ore tile relationship peptide_to_alignment ;tad its
inverse,

• getting it through an alignment from the relationship eds_to_alignment and align-
ment_to_peptide.

FILE: variants.pl

In this file Sequence means one of Dna_Sequence, Protein_Sequence, or Mask.

change_by(Sequence, ListOfChanges) returns a new Sequence operated on by LislOfChange._.

change_reverse(Sequence,ListOfCT_anges) returns a new Sequence operated on inversely by
ListOfChanges.

changes_to(ListOfChanges, Sequencel,Sequence2) returns true if ListOfChanges converts Se-

quencel to Sequence2; false otherwise.

FILE alignment.pl:

align_seq(Object, Entry) returns the sequence of entry Entry (without dashes) in alignment

Object by looking for Name-CharList in the aligned_seqs attribute.

aligned_seq(Object, Entry) is the same as align_seq(Object, Entry.) but it leaves the dashes in.

align_by(Sequence, Object, Entryl,Entry2) treats Sequence as a mask or other sequence relat-
ing to Entry1 (i.e, of the same length if the dashes in Entmjl are removed) and converts it
to something relating to Entry2. Object is an alignment.

50

align_by(Sequence, Object, Entry)inserts dashes in Sequence wherever there is a dash in Entry
to produce a mask of the same length as the alignment Object. unalign_by(Sequence, Object, Entry)
assumes that Sequence relates to the alignment Object and removes characters wherever En-
try has a dash to produce a Sequence that relates to Entry.

51

