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Abstract 
 
 

Multivariable Robust Control of a Simulated Hybrid 

Solid Oxide Fuel Cell Gas Turbine Plant 
 

Alex Tsai 

 
This work presents a systematic approach to the multivariable robust control of a hybrid 
fuel cell gas turbine plant.  The hybrid configuration under investigation built by the 
National Energy Technology Laboratory comprises a physical simulation of a 300kW 
fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine.  The public 
facility provides for the testing and simulation of different fuel cell models that in turn 
help identify the key difficulties encountered in the transient operation of such systems.  
An empirical model of the built facility comprising a simulated fuel cell cathode volume 
and balance of plant components is derived via frequency response data.  Through the 
modulation of various airflow bypass valves within the hybrid configuration, Bode plots 
are used to derive key input/output interactions in transfer function format.  A 
multivariate system is then built from individual transfer functions, creating a matrix that 

serves as the nominal plant in an H∞ robust control algorithm.  The controller’s main 
objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode 
airflow, and the turbo machinery states of temperature and speed, under transient 
disturbances.  This algorithm is then tested on a Simulink/MatLab platform for various 
perturbations of load and fuel cell heat effluence.                   
 
As a complementary tool to the aforementioned empirical plant, a nonlinear analytical 
model faithful to the existing process and instrumentation arrangement is evaluated and 
designed in the Simulink environment.  This parallel task intends to serve as a building 
block to scalable hybrid configurations that might require a more detailed nonlinear 
representation for a wide variety of controller schemes and hardware implementations. 
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Pray, hope, and don’t worry.  Do not worry over things that generate anxiety. Only one 
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1 Introduction 1

1 Introduction 

 
Fuel cell technology has fast advanced in the field of power generation, and is currently 

sought as one viable alternative for the replacement of conventional power systems, as an 

efficient and clean source of electricity.  As the research in this field progresses, it is 

more evident that existing technologies must be incorporated in the design of these 

systems in order to achieve the highest possible efficiency without sacrificing 

performance or cost.  It is therefore convenient to utilize the synergy of current power 

producing methods with power generating fuel cells.  However, the resulting coupling 

difficulties of fuel cells and gas turbines are yet to be successfully mastered.   

 

One of the most promising technologies for hybrid power generation systems is the 

coupling between Solid Oxide Fuel Cells and gas turbines.  Siemens-Westinghouse and 

the National Fuel Cell Research Center or NFCRC for example, have recently built and 

tested one such system, capable of producing 220kW of power with more than 50% 

electrical efficiency based on the LHV of natural gas fuel.  It is estimated that enhanced 

configurations of similar types of hybrid systems can deliver more than 70% efficiencies.  

This is far greater than systems running on coal or natural gas alone, for equivalent sized 

plants.  In addition, fuel cells may offer advantages over conventional power plants in the 

area of carbon sequestration.      

 

Despite the success of the NFCRC in proving the practical implementation of the 

conceptual hybrid design, the resulting system was meant to serve only as a test bed for 

future designs.  There are still many issues to address, before a fully integrated and 

functional configuration is ready for commercialization.  One such concern is the ability 

to safely control the plant in the presence of disturbances, as defined by sudden load 

demands.  An inherent difficulty of the fuel cell – gas turbine assembly, is that 

interactions between the high-pressure gas turbine flow and the fragile fuel cell material 

can lead to severe equipment damage, and malfunction.  This constitutes the essential 

control problem of hybrid systems, to successfully regulate and follow load demands in a 
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1 Introduction 2

system that exhibits a wide mismatch between component time constants, and large 

differences between their structural strengths.   

 

Researchers have sought to find the solution to these problems mostly with the use of 

analytical models that are subsequently incorporated into various control methodologies.  

To date, hundreds of models have been based on the first principles of energy and mass 

conservation, and presented in various degrees of complexity, ranging from lumped 

parameter, to one and two-dimensional models.  This limited form of characterization can 

be primarily attributed to the lack of any test facility large enough to faithfully duplicate 

the effects of a real hybrid plant.  An experimental facility robust enough to test the 

operational limits was simply not available, and for most, cost prohibitive.  Without an 

alternate way in which to physically model the system, the analytical models could not be 

validated, nor their accuracy measured.   

 

In face of these challenges, the National Energy Technology Laboratory, or NETL has 

designed and constructed a test facility that allows for the simulation of a hybrid system, 

under a particular hybrid configuration.  The facility simulates with hardware a 300kW 

Solid Oxide Fuel Cell coupled to a gas turbine.  Hardware control of this system has been 

partially achieved for quasi-steady state scenarios.  However, centralized control has yet 

to be implemented for transient occurrences and other quasi-steady state conditions.   

 

The main objectives of this research are:  

 

- To make use of the existing NETL hybrid facility for the generation and 

subsequent analysis of frequency response data useful for control development 

-  To derive a set of mathematical equations stemming from the aforementioned 

frequency response tests that more realistically predict the hybrid component 

interactions 

- To develop and implement a control methodology based on the derived 

empirical multivariate model that can robustly regulate fuel cell and turbo-

machinery critical parameters  
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1 Introduction 3

A successful completion of these tasks will result in the following original contributions 

of this work, primarily:   

 

- The availability of real frequency response data of a hybrid system as given in 

magnitude and phase Bode plots 

- The derivation of empirical Transfer Functions never before obtained for a 

hardware hybrid configuration 

- The design of a centralized state space robust controller for a hybrid system 

based entirely on an experimental model 

- The validation of existing analytical multivariate models with the use of the 

empirical Transfer Function matrix  

 

The scope of this work thus lays in the development of a centralized robust controller that 

can manage flow to maintain fuel cell operational constraints under multivariate transient 

disturbances.  A robust controller is necessary for the safe and stable implementation of 

such a hybrid system.  This is especially the case when detailed models are unattainable 

due to the complexity of the system itself, like that of a coupled gas turbine compressor 

assembly, or a system having combustion dynamics as it is in the present case.  

Robustness, as defined by the ability to sustain control in the presence of model 

uncertainty, is also preferred in a system required to dismiss low frequency perturbations.  

Random loss of electrical load is, for the most part, a real life low frequency occurrence.  

Such events could impose the possible destructive forces on a fuel cell, when they are not 

dealt with accordingly, because of the inevitable rise in turbine speed, and hence mass 

flow that accompanies a loss of electrical load.  Thus, a controller that can mitigate both, 

high and low frequency phenomena is desired for the early stages of the hybrid design.  

Frequency domain loop shaping techniques are suitable to achieve these goals.  System 

identification can provide empirical transfer functions for the linear window of fuel cell 

operation, while more insight into system coupling effects can be gained by examination 

of Bode plots.  These transfer functions are in turn used in the design of an H∞ controller, 

which can be tested offline with a high fidelity model of the hybrid configuration. 
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1 Introduction 4

Online testing of the resultant controller design will provide a means of quantifying the 

applicability of the abovementioned control methodology to new assemblies of the hybrid 

configuration.  With the use of every available input, including electrical load, bypass 

valves and fuel, such a design can be accomplished with maximum thermal management 

capability under a stable envelope of operation for any system disturbance.   

 

An analytical nonlinear model of the hardware facility at NETL has also been developed 

in the MatLab/Simulink environment.  This model serves as a complementary tool to the 

aforementioned empirical analysis.  Although originally intended to predict steady state 

behavior, ongoing work aims at incorporating full system dynamics to more accurately 

predict transient system behavior.  Adjustment and tuning of the model is necessary if 

controller performance is to be evaluated prior to its real time implementation on the 

physical facility.   
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2 Literature Review 5

2 Literature Review 

 
Hybrid power generating systems of the fuel cell type are mainly categorized according 

to the energy management strategy used. Whether the process is a recuperated heat 

process, a heat of compression configuration or a steam turbine bottoming cycle, the 

performance is generally based on the power produced per unit fuel consumed with 

respect to the lower heating value LHV of the fuel utilized.  Following is a description of 

the existing and suggested hybrid configurations in literature as well as the different types 

of controllers being adapted to each assembly. 

 

2.1 Solid Oxide Fuel Cell 

 
Fuel cells have been described as replenishable batteries that operate continuously under 

a constant fuel supply.  These electrochemical devices are able to produce power as a 

result of the ionic interaction between hydrogen and oxygen.  A fuel cell thus has cathode 

and anode electrodes, an electrolyte, and conductive interconnections that allow for the 

transport of electrons through a resistive load from cathode to anode sides.  In principle, 

hydrogen is supplied at the anode side and oxygen at the cathode side.  The overall 

reaction in the fuel cell can be summarized as that of Eq.2.1.1, where electrons and heat 

are released as a consequence of the exothermic reaction. 

OHOH 222
2

1
→+                                             Eq.2.1.1 

Power electronics coupled to a resistive load can then convert this generated DC voltage 

to AC, when the fuel cell is used in stationary power generating applications.   

 

For the most part, fuel cells are distinguished by the type of electrolyte used.  The solid 

oxide fuel cell electrolyte has a Yttria-Stabilized Zirconia YSZ ceramic solid structure 

that allows ionic transport while remaining impermeable to electrons.  The cathode and 

anode sides are composed of a mixture of ceramic and metals, mainly a Zirconia cermet 

that allows high temperatures and high electronic conductivity.  The interconnects 

between cathode and anode sides are made of Lanthanum Chromite, a ceramic that can 
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increase conductivity when mixed with compatible alkaline materials (Larminie et al. 

2003).  These components combined together can withstand temperatures of up to 

1000°C, and produce as much as 250MW of power, when assembled in compounding 

stacks (Carlson et al. 2004).  It is because of these characteristics that the solid oxide fuel 

cell SOFC is the favorable candidate for large power applications.   

 

A simplified schematic of the SOFC is shown in Figure 2.1.  As noted earlier, electrons 

are expelled from the hydrogen molecules when the H2 reacts with two oxygen anions to 

produce water and heat.  The anode and cathode half reactions are accordingly: 

 

      −= +→+ eOHOH 4222 22                                      Eq.2.1.2 

=− →+ OeO 242                                              Eq.2.1.3 

A graph showing cell performance based on voltage/current density data is shown in 

Appendix A.   

     

 

Figure 2.1 SOFC Operation 

 

For this and any other fuel cell, the voltage produced is a function of the Gibbs free 

energy ∆Gf and thus of the reactant concentrations within the cell.  The Gibbs free energy 

 
 
 
 

 
 
 

PREVIE
W
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is a measure of the amount of useable work that can be extracted from a chemical 

reaction.  This energy is defined as the change in the enthalpy of formation minus the 

heat released as expressed in Eq.2.1.4.  The fuel cell voltage can then be related to this 

available amount of work as that given by Eq.2.1.5. 

 

sThg ff ∆−∆=∆                                          Eq.2.1.4 
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−=                                               Eq.2.1.5 

where EOC is the open circuit voltage, z is the number of electrons and F, Faraday’s 

constant.  In the presence of irreversibilities, the actual voltage per cell is given by the 

reversible Nernst potential cell voltage minus all irreversibilities, as shown in Eq.2.1.6, 
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where the main irreversibilities η’s are those of activation, fuel crossover, ohmic, and 

concentration losses (Larminie et al. 2004).  Equation 2.1.6 assumes that the oxidation 

process produces pure hydrogen to the cell.  Activation losses are attributed to the voltage 

loss due to the driving force required to kick start the ionic exchange of the overall 

chemical reaction.  Fuel crossover losses are those voltage drops observed when the 

electrolyte permits some electrons and fuel to permeate its membrane and mix with the 

cathode side stream.  Ohmic losses are those relevant to the resistance of current flow, 

whereas concentration losses are those due to fluctuations in the stoichiometric quantities 

of the reactants.  Ways in which to minimize these overpotentials are described in more 

detail in (Larminie et al. 2004).  It can be seen from Eq.2.1.6 that the cell voltage is 

dependent on the partial pressures of the reactants, as well as the temperature of the cell.  
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Appendix A also shows how these irreversibilities affect the current voltage relationship 

in the cell.   

 

So far it has been stated that fuel cells produce power by the electrochemical reaction of 

H2 and O2, once the latter is broken into anions.  Hydrogen however, must be produced in 

pure form for the reaction to take place.  With the use of pure H2, power generation can 

result in zero pollutant emissions, having only water as a byproduct.  Various methods to 

produce hydrogen exist, such as the use of primary fossil fuels like natural gas or coal.  If 

coal is used, a gasification process combines high temperatures with water vapor and 

oxygen, while a natural gas fuel would require reforming and hydrogen shift reactions to 

to produce H2.  Equations 2.1.8 and 2.1.9 detail the chemistry for the reforming, and shift 

reaction respectively of methane fuel (Karvountzi et al. 2004).  Typical combustion NOX 

and SOX pollutants are thus eliminated in a fuel cell, having only the carbon dioxide 

capture logistics to handle.   

   224 3HCOOHCH +↔+                                       Eq.2.1.8 

222 HCOOHCO +↔+                                       Eq.2.1.9 

 

Solid Oxide Fuel Cells are most suited to stationary hybrid power generation applications 

because they can operate at high enough temperatures to directly oxidize CO and CH4.  

Proton Exchange Membrane fuel cells for example cannot withstand CO as a fuel or 

byproduct, because carbon monoxide poisons the electrolyte membrane.  Since large 

realistic hybrid plants would require the production of massive amounts of hydrogen 

either by reforming a hydrocarbon or from coal syngas, it is likely that hydrocarbon 

byproducts appear at the anode along with hydrogen.  The versatility of being able to 

withstand a wide variety of fuels, is a highly desirable feature of SOFC that becomes 

especially important if coal based systems are to be mandated.      

 

In order for the fuel cell to maintain performance and operability, the cell’s temperature, 

anode fuel flow, cathode airflow, and reactant partial pressure constraints must be met.  

Each of these parameters plays a major role in the thermal efficiency and the net power 

output of the fuel cell.  Research on ways to optimize the cell’s power production via the 
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synergistic use of its thermal characteristics has led to the successful coupling of existing 

gas turbine technology.  In the following sections it will be seen that simple gas turbine 

cycles for stationary power generation benefit from exhausted fuel cell heat, while fuel 

cells increase in efficiency from recuperation and pressurized air, both byproducts of 

expanders and compressor assemblies.   

 
2.2 The Brayton Cycle 

 
A simple gas turbine cycle using air as the working fluid is illustrated in Fig.2.2.  

Ambient air enters point “1” and is adiabatically compressed to a higher temperature and 

pressure at point “2”.  Heat through a combustor further increases the temperature of the 

compressed air at point “3”, where it is then expanded in a turbine to generate electrical 

power through a generator at point “4”.  The ideal cycle for this configuration is known 

as the Brayton Cycle, and the closed loop version is shown to the right in Fig.2.2.       

 

 

Figure 2.1 Brayton Cycle Schematic (Saad 1997) 
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