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Abstract

Double-difference waveform inversion is a potential tool for quantitative monitoring for geologic carbon
storage. It jointly inverts time-lapse seismic data for changes in reservoir geophysical properties. Due
to the ill-posedness of waveform inversion, it is a great challenge to obtain reservoir changes accurately
and efficiently, particularly when using time-lapse seismic reflection data. Regularization techniques can
be utilized to address the issue of ill-posedness. The regularization parameter controls the smoothness
of inversion results. A constant regularization parameter is normally used in waveform inversion, and an
optimal regularization parameter has to be selected. The resulting inversion results are a trade off among
regions with different smoothness or noise levels; therefore the images are either over regularized in some
regions while under regularized in the others. In this paper, we employ a spatially-variant parameter in the
Tikhonov regularization scheme used in double-difference waveform tomography to improve the inversion
accuracy and robustness. We compare the results obtained using a spatially-variant parameter with those
obtained using a constant regularization parameter and those produced without any regularization. We
observe that, utilizing a spatially-variant regularization scheme, the target regions are well reconstructed
while the noise is reduced in the other regions. We show that the spatially-variant regularization scheme
provides the flexibility to regularize local regions based on the a priori information without increasing
computational costs and the computer memory requirement.

1 Introduction

Monitoring changes of CO2 reservoirs using time-lapse seismic data will play a crucial role for ensuring safe,
long-term storage of carbon dioxide in geologic formations. Conventionally, reservoir changes are obtained
from differences of independent inversions time-lapse data. Full-waveform inversion can be implemented in
both the time domain (Tarantola 1984; Mora 1987) and the frequency domain (Pratt et al. 1998; Sirgue and
Pratt 2004). In recent years, many new full-waveform inversion schemes were developed based on regular-
ization (Hu et al. 2009; Burstedde and Ghattas 2009; Ramirez and Lewis 2010), a priori information (Ma
et al. 2010), preconditioning (Guitton and Ayeni 2010; Tang and Lee 2010) and dimensionality reduction
(Moghaddam and Herrmann 2010). Images of the conventional approach for time-lapse seismic data usually
contain significant noise and artifacts. Watanabe et al. (2004) proposed a differential waveform tomography
method in the frequency domain for time-lapse crosswell seismic data, and clearly showed its improvement
compared to the conventional method. Denli and Huang (2009) introduced a double-difference elastic-
waveform tomography method in the time domain for time-lapse surface seismic reflection data. These
methods jointly invert time-lapse seismic data for reservoir changes.

To improve the robustness of double-difference waveform inversion, we develop a spatially-variant
Tikhonov regularization scheme in combination with a priori information on space. Regularization tech-
nique is often used in inverse problems (Vogel 2002; Tarantola 2005). The most often used regularization
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methods are L2 norm based regularization (Tikhonov) and L1 norm based regularization (total variation or
compressive sensing). The spatially-variant regularization can improve inversion results for medical imag-
ing, image restoration and other applications (Strong 1997; Guo and Huang 2009). We explore the use of the
spatially-variant Tikhonov regularization scheme in double-difference full-waveform inversion. We solve
the minimization of the misfit function using the block coordinate descent (BCD) scheme (Bertsekas 1999)
in combination with the nonlinear conjugate gradient (NCG) approach (Nocedal and Wright 2000). The
gradient of the misfit function is obtained using an adjoint method (Tarantola 1984; Tromp et al. 2005). We
use a synthetic time-lapse model to verify the advantages of the spatially-variant regularization scheme for
double-difference waveform inversion, and demonstrate that our new method can produce more accurate
results of reservoir changes compared to those obtained using a constant regularization parameter.

2 Theory

2.1 Full-Waveform Inversion

2.1.1 Forward and Inverse Problems

The acoustic-wave equation in the time-domain is given by[
1

K(r)

∂2

∂t2
−∇ ·

(
1

ρ(r)
∇
)]

p(r, t) = s(t), (1)

where ρ(r) is the density, K(r) is the bulk modulus, s(t) is the source term, and p(r, t) is the pressure field.
The solution to (1), which is usually termed as forward modeling, is

p = f(K,ρ, s), (2)

where the function of f is a given nonlinear operator. Numerical techniques such as finite difference and
spectral element methods can be used to solve (2). Let the model parameter be

m =

Kρ
s

 ,
we can rewrite (2) as

p = f(m). (3)

The inverse problem of equation (3) is usually posed as a minimization problem such that

E(m) = min
m

{
||p− f(m)||22

}
, (4)

where E(m) is the misfit function, and || · ||2 stands the L2 norm. In the inverse problem, p corresponds
to observed waveforms. The minimization of (4) is to find a model m that yields the minimum difference
between observed and synthetic waveforms.

2.2 Double-Difference Waveform Inversion

Conventionally, two independent inversions in (4) are carried out to obtain the time-lapse changes in reser-
voir, that is

δmconv = f−1(ptime 2)− f−1(ptime 1), (5)

where f−1 means the general inverse of waveform data, and ptime 1 and ptime 2 are data collected at two
different times.

2 TENTH ANNUAL CONFERENCE ON CARBON CAPTURE AND SEQUESTRATION - May 2-5, 2011



For double-difference waveform inversion, the data misfit in the cost function is replaced by

δd ≡ (ptime 2 − ptime 1)− (psim time 2 − psim time 1), (6)

where the first term is the time-lapse difference in data, and the second term is the difference in synthetic
time-lapse data. The method uses time-lapse seismic data to jointly invert for changes in reservoir geophys-
ical properties.

3 A Priori Information and Spatially-Variant Regularization

3.1 The Roles of A Priori Information

A priori information plays an important role in the inverse problems. The usage of a priori information
is usually to avoid the instability during the inversion of data (Tarantola 1984). It can be some reasonable
initial guess of the solution, the smoothness of the desired reconstruction or the spatial information on the
solution. In general, the a priori information is functioning as a guide to the true solution. More details on
the effects of a priori information to inverse problem can be referred to (Hansen 1998; Vogel 2002; Tarantola
2005). In our work, we utilize both the spatial information and smoothness of the desired model as our a
prior information.

There are different methods to incorporate the a prior information into inversion algorithms (Ma et al.
2010). We use a regularization technique in combination with the a prior information.

3.2 Spatially-Variant Regularization

Tikhonov regularization is a well-known technique for ill-posed problems, which is posed as a non-constrained
minimization problem,

E(m) = min
m

{
‖ p− f(m) ‖22 +λ ‖ Lm ‖22

}
with λ > 0, (7)

where λ is the regularization parameter and L is the regularization matrix. Another equivalent form of
Tikhonov regularization is given as a constrained minimization problem (Egger et al. 2006; Modarresi 2007,
Section 1.2), that is,

min
m

{
‖ p− f(m) ‖22

}
subject to ‖ Lm ‖22 ≤ ε,

(8)

where the parameter ε plays the same role as λ in (7) to control the degree of smoothness of the desired
Tikhonov solution.

To incorporate the spatial information into (8), we modify (8) as

min
m

{
‖ p− f(m) ‖22

}
subject to ‖ Lmi ‖22 ≤ εi, mi ∈ Ωi,

(9)

where Ωi is a spatial region, and εi is a spatially-variant parameter.
To incorporate the initial model, equation (9) is modified as

min
m

{
‖ p− f(m) ‖22

}
subject to ‖ L[mi − (m0)i] ‖22≤ εi, mi ∈ Ωi,

(10)

where m0 is the initial model. The a priori information about the spatial characteristics of the model is used
to determine spatial regions Ωi.
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3.3 How to Obtain the A Priori Information?

For the inverse problem based on equation (10), we need to know both the initial model m0 and spatial
regions Ωi. The starting model m0 may be obtained from ray tomography. Waveform inversion consists of
two parts: migration and tomography (Mora 1989). Migration yields the shapes (or edges) of the anomalies
and can be obtained in the first a few iterations during inversion. Therefore, migration results can provide the
information about the spatial regions Ωi. For double-difference waveform inversion, the target monitoring
regions are the a priori information to be used.

4 Numerical Algorithm and Implementation

Equation (10) is the object function for our spatially-variant regularization scheme. It can be solved by
converting it into an equivalent non-constrained expression. Using the Lagrange multiplier (Nocedal and
Wright 2000), we have

E(m) = min
m

{
‖ p− f(m) ‖22 +

∑
i

λi ‖ L[mi − (m0)i] ‖22

}
,

with λi > 0, andmi ∈ Ωi.

(11)

The role of λi’s is the same as εi’s in (10) to control the smoothness of the reconstruction. Golub (1973)
described how to compute λ for a given ε.

We employ a nonlinear conjugate gradient (NCG) based line search approach (Nocedal and Wright
2000) to solve equation (11). The gradient of equation (11) varies for different spatial regions. We use
the block coordinate descent (BCD) approach that has been proved to be quite efficient for such a situation
(Bertsekas 1999; Wu and Lange 2008; Li and Osher 2009).

4.1 Block Coordinate Descent

Analogous to the Gauss-Seidel matrix solver algorithm in optimization, BCD partitions the coordinates into
N blocks, and improves the estimation of the solution in each block by minimizing along one direction with
all the other blocks fixed. The order in which the blocks are visited is called “sweep pattern.” The order of
the blocks visited does matter in BCD algorithm. In our algorithm, we use a “cyclic pattern,” which means
all the blocks are visited sequentially. It has been illustrated that using different visiting orders may help in
improving the convergence rate of the algorithms (Wu and Lange 2008; Li and Osher 2009).

To ensure the convergence as in the line search algorithm, the search direction dk along each block
needs to be a descent direction. In the other words, for the function E(m), dk needs to satisfy

cos θ =
∇ET

k dk

||∇Ek|| ||dk||
< 0, (12)

where θ is the angle between the search direction and ∇Ek. We use the conjugate-gradient direction as the
search direction for each block.

After obtaining the search direction for a particular block, the line search with the Armijo criteria is
further utilized for the optimal step size. We then update the block with the search direction and its step size
without affecting other blocks:

m
(k+1)
i = m

(k)
i + α

(k)
i d

(k)
i , (13)

where the superscripts stands for the iteration number and the subscript stands for the block index.

4.2 Nonlinear Conjugate Gradient

The search directions in BCD are calculated from nonlinear conjugate gradients, as illustrated in Nocedal
and Wright (2000). The method to incorporate BCD with NCG is to replace the updating step (step 3) in
Algorithm 1 with (13).
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Algorithm 1 Canonical NCG to solve min
m

E(m)

Input: m(0), TOL
Output: m(k)

1: Initialize k = 0, E(0) = E(m(0)),∇E(0) = ∇E(m(0));
2: while ||∇E(k)|| > TOL do
3: Compute α(k) and update the solution m(k+1) = m(k) + α(k)d(k);
4: Evaluate∇E(k+1);
5: β(k+1) = <∇E(k+1),∇E(k+1)>

<∇E(k),∇E(k)>
;

6: d(k+1) = −∇E(k+1) + β(k+1)d(k);
7: k ←− k + 1;
8: end while
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(a) Baseline model at time 1
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(b) Time-lapse model at time 2
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(c) Time-lapse difference

Figure 1: The baseline velocity model (a) and the time-lapse velocity model (b) that contains a region with
a decreased velocity shown in (c) due to CO2 injection.

5 Numerical Results

We use synthetic time-lapse surface seismic data for the models in Fig. 1 to demonstrate the improvement of
the double-difference waveform inversion with a spatially-variant Tikhonov regularization scheme. There is
a region in Fig. 1b with a decreased velocity due to CO2 injection and migration, as shown in Fig. 1c. Five
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(a) The difference of two independent inversions
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(b) A vertical profile of the result in (a)

Figure 2: The difference (a) of two independent inversions of synthetic time-lapse seismic data for the
models in Fig. 1 together with a vertical profile (b) at the horizontal position of 875 m of the result in (a).
The red line in (b) shows the true velocity change, and the blue line is the difference of two independent
inversions.
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(a) Reconstructed velocity difference
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(b) A vertical profile of the result in (a)

Figure 3: The result of double-difference waveform inversion with a constant regularization parameter λ =
1.0× 10−13 together with a vertical profile at the horizontal position of 875 m. The red line in (b) shows the
true velocity change, and the blue line is the result of double-difference waveform inversion with a constant
regularization parameter.

common-shot gathers of synthetic time-lapse seismic data with 350 receivers at the top of the models are
used to jointly invert for the reservoir change. The shot interval is 300 m and the receiver interval is 5 m. A
Ricker’s wavelet with a center frequency 25 Hz is used as the source function.

For comparison, we first obtain the velocity change in the target monitoring region using the conven-
tional approach by subtracting the two independent inversions and using the double-difference waveform
inversion with a constant regularization parameter. The result of the conventional approach in Fig. 2 con-
tains significant image artifacts. The vertical profile in Fig. 2b shows that the reconstructed velocity change
in the target region is approximately -120 m/s, significant different from the true value of -200 m/s. In
addition, it contains significant image noise above and below the target monitoring region.

Figure 3 shows the result of double-difference waveform inversion with a constant regularization pa-
rameter λ = 1.0× 10−13. The reconstructed velocity change in the target region is approximately -165 m/s,
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(b) A vertical profile of the result in (a)

Figure 4: The result of double-difference waveform inversion with a spatially-variant regularization param-
eter together with a vertical profile at the horizontal position of 875 m. The red line in (b) shows the true
velocity change, and the blue line is the result of double-difference waveform inversion with spatially-variant
Tikhonov regularization.

which is closer to the true value of -200 m/s compared to that obtained using the conventional approach.
Figure 3 contain fewer noise than Fig. 2.

In order to incorporate the a priori spatial information into the spatially-variant Tikhonov regularization
scheme for double-difference waveform inversion, we determine the target monitoring regions using the
result of the first a few iterations. There are two regions in equation (11) for our time-lapse models in Fig.1,
one within the target monitoring region, and the other outside the target monitoring region. The regulariza-
tion parameter utilized for the target monitoring region is λin = 1.0×10−13, and λout = 1.0×10−10 for the
other region. Figure 4 shows the result of double-difference waveform inversion with a spatially-variant reg-
ularization parameter. The reconstructed velocity change in the target monitoring region is approximately
-200 m/s. Figure 4 contains significant fewer image artifacts outside the target monitoring region compared
to Fig. 2 and Fig. 3.

The computational cost of the double-difference waveform inversion with a spatially-variant Tikhonov
regularization parameter is comparable to that with a constant regularization parameter.

6 Conclusions

We have developed a spatially-variant Tikhonov regularization scheme for double-difference waveform in-
version. The method employs different regularization parameters in different regions in space. It uses the
block coordinate descent and nonlinear conjugate gradient schemes. Our results of synthetic time-lapse seis-
mic data demonstrate that our new method can reconstruct accurate values of velocity changes due to CO2

injection, and produce images of reservoir changes with much fewer image artifacts than those obtained
using double-difference waveform inversion with a constant regularization parameter.
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