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CHAPTER 1. INTRODUCTION

One of the most significant advances in computer systems over the past decade
is parallel processing. Parallel processing has become a common approach for achiev-
ing high performance. However, applications continue to demand more computing
power. Computational problems in areas such as high-speed aircraft design, medical
imaging, and research in advanced structural, electronic and optical materials often
require computers that are at least three orders of magnitude faster than the fastest
computers presently available.

Although computing demands are increasing rapidly, the performance of conven-
tional, sequential computers is approaching the point of diminishing return. High-
performance sequential computers today are already bounded by, among other things,
memory speed. Parallel computers, in which a number of processors can work in par-
allel on a single application, offer the only solution capable of providing orders of
magnitude of improvement in computing performance without excessive costs. Ac-
celerated efforts in the area of parallel processing have resulted in the successful
development of many parallel processing systems. Examples of such machines are
shared memory parallel computers like Alliant, Encore, Sequent, and Cray Y-MP,
Distributed machines such as the Transputer, Warp, and hypercubes and SIMD ma-

chines such as the Connection Machine and the Maspar. Successful use of these



parallel computers has been demonstrated in a number of application areas, includ-
ing scientific computing, signal and image processing, and logic simulation. For some
of these applications, the available parallelism increases as the problem size expands,
making it possible to achieve close to linear speedups on parallel machines.

To be scalable to a large number of processing nodes and to be able to support
multiple levels and forms of parallelism and its flexible use, new parallel machines
have to be multicomputer architectures that have general networking support and
extremely low internode communication latencies. The performance of a program
when ported to a parallel machine is limited mainly by the internode communication
latencies of the machine. Therefore. the best parallel applications are those that
seldom require communications which must be routed through the nodes. Thus the
ratio of computation time to that of communication time is what determines. to a
large extent, the performance metrics of an algorithm. The cost of synchronization
and load imbalance appear secondary to that of the time required for internode
communication and I/0, for communication intensive applications.

To examine the extent to which this is true, consider a hypercube architecture like
the nCUBE 2. All memory is distributed in the nCUBE architecture. Information
is shared in the form of messages between processors by explicit communications
across I/O channels. A message in the nCUBE-1 requires about 0.35 milliseconds to
start and then continues at an effective rate of 2 ¢ seconds per byte [13]. Suppose
an application requires 400 Kbytes for variables on one node (50K 64-bit words). If
distributed over 1024 processors, each node will have only 50 variables in its domain.
For a typical timestepping problem, each variable might involve ten floating-point

operations (120 pseconds) per timestep, for a total of 6 milliseconds before data
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must be exchanged with neighbors. Data exchange might involve four reads and four
writes of 80 bytes each, for a worst-case time of (4 + 4) x (350 + 80 x 2) useconds,
or about 4 milliseconds [13]. Therefore when a single-node problem is distributed
on the entire 1024-processor ensemble, the parallel overhead on the nCUBE will be
about 40 percent.

Since the communication overhead is a significant component of the parallel exe-
cution time, it is important to reduce inter-processor communication time. The inter-
processor communication time consists of two components: message startup time, and
the actual DMA transfer time. The hardware of the communication channels for each
node are, in principle, capable of operating concurrently with the processor itself and
with each other, up to the point where memory bus bandwidth is saturated. There-
fore, there is a possibility of saving communication time by judicious reorganization
of data and computation within the application. However, the DMA channels are
managed by software running on the processor. The software creates overhead that
limits the extent to which the communications can be overlapped. In particular,
the message startup time dominates the parallel overhead, and limits the fine-grained
parallel capability of multiprocessor ensemble. Reducing the startup time is the main
strategy used in the developing the scalar communication call. To send and receive
a message, the actual DMA transfers require 1.2 pseconds per byte [13]. Before a
message can be sent over the DMA channel, however, it is first copied to a location
in system buffer memory where messages are stored in a linked list format. Similarly
after the message is received over a DMA channel, it is copied into a system buffer.
The time for the copy and startup are cut down in the scalar call, and the major part

of the latency of the scalar call is the time for the actual DMA transfer.
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The following thesis is organized in chapters. The first chapter deals with the
communication strategies in various message-passing computers. A taxonomy of
inter-node communication strategies is presented in the second chapter and a com-
parison of the strategies in some existing machines is done. The implementation of
communication in nCUBE Vertex O.S is explained in the third chapter. The fourth
chapter deals with the communication routines in the Vertex O.S, and the last chap-
ter explains the development and implementation of the scalar communication call.

Finally some conclusions are presented.
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CHAPTER 2. COMMUNICATION STRATEGIES IN
MESSAGE-PASSING COMPUTERS

Inter-processor Communication in iWARP Systems

iIWARP, jointly developed by Carnegie Mellon and Intel Corporation, is a private-
memory architecture. An iWARP system can include a large number of building
blocks or cells. Each iWARP cell is a custom VLSI single chip processor, called
iWarp, which contains both a powerful computation processor (20 MFLOPS) and a
high throughput (320 Mbytes/sec), low latency (100-150 ns) communication engine.
Explicit data transfer from one processor to another is the principal form of inter-
processor communication. There are two possible sources for the data when one
processor wants to transfer data to another processor. Either the data have been
computed earlier, stored into memory, and then transferred directly out of memory.
or the data are computed “on-the-fly”, that is the data are sent directly from the
computation engine of the processor. Based on these two sources of data, there are

two styles of communication in iWARP [14].

¢ Memory Communication

In message-passing or memory-to-memory communication, messages are first

built in the local memory of the sending cell and then delivered (as a unit) to




the local memory of the receiving cell. The user program running on the cell
is insulated from communication. In the case of the sending cell, the network
software handles the delivery of the message over the network only after the
complete message has been built in the local memory of the sending cell. Simi-
larly in the cas; of the receiving cell, the user program will operate on the data
in the message only after the entire message has been delivered to the local

memory by the network software. The advantages of memory communication

are

1. Communication is decoupled from computation. While the message is
being delivered and buffered through memory, the program at the sending

or receiving cell can operate autonomously on its local data.

[SV]

Communication protocols can be developed independently from the pro-
gram to handle communication-specific issues such as deadlock avoidance

and recovery from transmission lines.

3. Applications need not have detailed knowledge about intercell communi-

cation.

Systolic Communication

All data sent along each direction in a can be viewed as belonging to one
message. However, instead of waiting until all the data in the message have
arrived, each cell operates on the data items within a message, as they arrive
individually. It then sends the results of the computation to other cells on-the-

fly of outgoing messages.
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The advantages of systolic communication are

1. The message routing and header information overheads are not paid with
each unit of synchronization. This makes it possible for the cells to coop-

erate in fine-grain parallel processing.

2. Incoming and outgoing data need not be buffered in the cell’s local memory
unless required by the computation. Extra transfers to and from memory

are avoided, thus reducing the latency of communication.

3. Systolic inputs and outputs provide additional parallel sources of operands

for instruction-level parallelism.

4. Avoiding the buffering of data in the local memory also reduces the mem-

ory size requirement for some applications.

However, systolic communication is harder to use than memory communication,
because the local memory of a cell can be accessed randomly, while message
queues in the communication agent can only be accessed sequentially. Therefore
the burden of making sure that the reads and writes of message queues are

properly sequenced falls on the programmer at user level.

i1WARP Networks

The networks supported by the iWARP communication agent can either be pub-
lic or private [13]. A public network allows possibly unrelated processes to transmit
data over this same network, and the issues of network access, resource conflicts and
contention have to be addressed by the software support for the network implemen-

tation. A private network is accessible only by processes participating in the same

o o !
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application. Public networks are suited for general-purpose computations where little
or nothing is known a priori about the communication patterns. Private networks
provide a chance for optimizations since they can be custom-tailored to a specific

application to result in lower overheads and/or higher throughput.

Pathways A connection between two nodes is realized by a pathway, which
establishes a link between these two nodes. Each pathway is unidirectional and data
is transmitted from the source node to the destination node over this pathway. Path-
ways consists of one or more pathway segments, with each pathway segment connect-
ing two adjacent nodes. Pathway segments are implemented by the communication
agent by multiplexing the busses that connect adjacent nodes to create logical chan-
nels. The nodes on the pathway cannot access any data that is transmitted over the

pathway (nor can they use this pathway to send data).

Sending and Receiving Messages At the User level, the program sets up
networks and then gets access to those networks via a port; a port is a local name
that identifies the network and the type of network access (input or output). To
transmit data, the node must specify a destination and possibly a route. Ports are
mapped into gates, an iWARP hardware resource that affects the actual transmission
of data. Gates can be thought of as registers and can be addressed like registers by
the instruction set, and are multiplexed between different ports.

One dimensional networks are built by first creating pathways between the nodes
and then connecting the pathways to form a network. Each node starts by initializing
a variable of type network to allow the local runtime system on the node to initialize

appropriate tables. Then, to create a pathway between Nodel (the source node) and
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Node2 (the destination node), Nodel invokes the function create_pathway.-out, and
Node2 invokes the function create_pathway_in. Both functions return a port that is
then used to send or retrieve data.

In numerous applications, the design of the network is fixed at the time an
algorithm is turned into a program for an iWARP array. In such cases, it is wasteful
to build up the network at runtime, while it could easily be initialized at load time.
Furthermore, in this case a static check is sufficient to determine if any node has
insufficient resources (pathway segment records) to support the network(s) defined
for the application.

The iWARP environment therefore allows the programmer to specify directions
that are interpreted at load time and are turned into network information for each
node, by calling the function create_pathway.

Data transfers are indicated by using variants of send and receive. There are
functions available to either handle a single word or a block of data.

All data is encapsulated in messages, the basic operation is sending or receiving

a message that is stored in memory. The user interface to the data transfer is as

follows [15]

send_msg(port, destination, address, number_of_bytes);

receive_msg(port, address, number_of_bytes);

There also exist more primitive operations to create and receive the message
header as well as the message trailer. These operations are needed for Systolic com-
munication so that the data can be directly generated (consumed) by the computation
unit. The following example illustrates how a pro'gram sends and receives a sequence

of individual words [15].
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port Yout, Yin;
int i, foo, var;
send_msg_open(Xout, destination);
receive_msg_open(Xin);
for (i=0; i<N; i++) {
foo = receive_int(Yin) + var;
send_word(Yout, foo);
}
send_msg_close(Xout) ;

receive_msg_close(Xin);

Data transferred over the network in encapsulated into units called messages.
Each encapsulation unit consists of a header, the data to be transmitted. and a
closing trailer to terminate the message. Data is encapsulated regardless of whether
it is systolic or memory-memory communication.

The four busses (XR, YU, XL, YD) define four directions. For each of the input
busses, there exists a default output bus. If the message header arrives and does
not match the address of the current node, then the header (and the message) is
forwarded to the default output bus. These defaults are X Rin — X Lout, XLin —
X Rout,YUin — Y Dout,YDin — YUout, and they are chosen so that messages
keep traveling in the same direction, e.g from left to right.

If a message wants to change direction (that is, switch to a pathway segment
that is multiplexed over a bus different from the default bus), the first word of the
header is specially marked as “change_direction” [15]. This first word contains the

address of the node where the change of direction is supposed to happen. The next



e,

e a2y (B A

11

word contains additional routing information (either the address of the destination
node or the address of another node for a subsequent change of directions). When
this message header reaches the node where it has to change (this is the node with an
address that matches the address in the in the first header word), then this header
word is removed, and the next word becomes the leading word that determines the
destination (or node for the next direction change). There is no limit on the length
of the header, but each change of direction removes one word from the header.

iWARP uses a variant of wormhole routing; as soon as the first word of the
message header has been assembled in a node, this node can determine if the message
is destined for this node or another node. If the message is destined for another node.
and no change of direction is required, then the header is forwarded immediately. The
testing and forwarding is done in 100 ns. If a change of direction is required, then the
next word is examined to determine the new direction. This operation adds 50 ns.
In both cases, further delay is possible if the outgoing pathway segment is already in
use for the transmission of another message.

Thus iWARP achieves low-overhead communication by separating the set-up of
the communication network from the actual transmission of data. There is a choice
between a general two-dimensional network, that includes all nodes in the torus
and a specialized one-dimensional (or two-dimensional) network. The application
programmer (or program generator) is provided with an opportunity to customize

the communication system to the needs of the application.
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Communication in INMOS Transputer Networks

The INMOS T800 Transputer

The INMOS T800 Transputer contains a CPU, 4 Kbytes of on-chip memory, 1
MFLOPS floating-point unit, and four high-speed communication links, each with
its own DMA Controller [12].

To run concurrent processes efficiently, the transputer maintains one queue each,
for low-priority and high-priority processes. Low-priority processes are time-sliced
automatically; when one is interrupted. it is placed at the tail of the low-priority
queue and the next one is scheduled. High-priority processes are not time-sliced, and
cannot be interrupted, even by other high-priority processes. A high-priority process
runs till it is deschedules itself or is blocked by an 1/O operation.

The transputer’s CPU contains only three general-purpose registers, called Areg,
Breg and Creg, arranged as a stack. The transputer also contains a workspace
pointer register called Wptr which holds the base address of the active process’s
workspace. All local variable accesses are offset relative to this register. When a
low-priority process is descheduled the values of Wptr and the instruction pointer
Iptr are saved, but the contents of the register stack are not.

The instructions in and out are used in implementation of both internal and
external communications in routing software. in takes the address of a data block,
the address of a communications channel, and a byte count as register arguments.
When in is executed to carry out internal communications, the transputer checks the
value in the communications channel word. If this contains mint (the least integer the

transputer can represent), then the other process taking part in the communication
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has not yet rendezvoused. The process doing the in puts its workspace pointer in
the channel word and stores the base address of the data to be transferred in a
reserved location in its workspace. When the other process involved executes an
out, it finds a valid address in the channel word, so it copies its data into the first
process’s workspace and reschedules that process. (If the sending process reaches the
communication first, the reciprocal steps are carried out).

In the case of external communication, the values of the register stack are given
to the controller responsible for the link over which communication is taking place.
When both the link controllers involved have been given their orders, they arrange
for data to be transferred without further CPU intervention, rescheduling the com-
municating processes when the transfer completes. While external communication is
slower than internal communication (as link bandwidth is lower than memory band-

width), it retards other CPU activities slightly by stealing memory cycles for DMA.

Tiny: An Example Routing Kernel

An example processor-resident router called Tiny is explained in the following
pages [12]. To users, Tiny is a kernel running on each processor, connected to one
or more clients by channels. Each process in the network has a unique user-assigned
client identifier (CID).

Since the networks using transputers have low number of interprocessor con-
nections, and these connections are the ones with the least bandwidth, each link
controller is given its own pair of processes (one each for input and output). Each
client process (i.e. user process doing the communication) is connected to the router

through its own input and output handlers, to decouple the interface procedures from



client uni-directional bi-directional
routing agent link

Figure 1: Structure of processes in a router of Tiny

the underlying router. These various output link handlers are buffered with FIFO
queues to avoid head-of-line blocking problem. Each routing process is either a multi-
plexer or a demultiplexer, and is referred to as an agent. Through routing of messages
has greater priority over the user’s calculations. The demultiplexing agents have the
routing logic which decides where to send messages. Thus the process structure in

Tiny is as shown in Figure 1.
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Internal Structure of Tiny Tiny is made up of several interacting agents on
each processor. Each handles the input or output half of a link. or a single input or
output channel connecting Tiny to a client user process. Each agent’s workspace, or
A-page, contains space for certain transputer instructions and an agent handle used
directly by Tiny. Agents manipulate buffers, represented by B-pages which contain
routing and ownership information and a pointer to the message’s data. The part of

B-page manipulated by Tiny is called its handle.

Typing of Messages In Tiny, messages are typed by sending them on dif-
ferent channels. The channels connecting the process to the router have different
types and thus the process has a multi-channel interface. When there are multi-
channel interfaces, agents handling traffic from clients to Tiny are the same as those
in single-channel interfaces. An intermediate agent called agent_multi_man is used.
All messages to a client C are sent to its agent_multi_man, which forwards the mes-
sage to the subsidiary agent responsible for the channel through which that message

should be d~livered.

Routing Strategies In the routing of point-to-point messages, two strategies

are used [12] which are given as follows.

e sequential

This strategy guarantees that messages arrive in the order in which they were
sent, which is useful for implementing fragmentation of large messages. The
sequential strategy uses the same shortest path from any through-routing node

towards the destination.
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e adaptive

This strategy decides locally at each through-routing node which of the short-
est paths from that node to the destination seems likely to be the quickest.
Using this strategy, Tiny examines the output queues of each of the through-
routing node’s appropriate links, and enqueues the message for the links with

the shortest queue.

Interface The interface to Tiny is called PKT interface, and it copies data
from the user's process into one of Tiny's internal buffers during a send, and copies
back during a receive. The interface provides the user with four functions:

pktRead, pktVrite, pktSeqWrite and pktBroadcast.

The pktRead is a blocking read. and pkt 1 rite and pktSeqlVrite are non-blocking
writes. The input parameters are the channel #, C1D of the source or destination. a
pointer to message buffer, and the size of the message. The functions do not return

any value.

Structure of Agent Processes in Tiny The five different agents used within

Tiny to implement the router are

o agent_multi_man This process demultiplexes messages arriving at a client with
a multi-channel interface, passing those messages to the client’s input agents.

Its main loop dequeues a buffer, then enqueues it for a subsidiary agent.

e agent_router_input

This process accepts messages on the input half of a hard link and routes them.

Its main loop dequeues a buffer, gets a message into the buffer, and routes the
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buffer, putting it in another agent's queue.

e agent_router_oulput

This process handles the output queue for a hard link. Its main loop dequeues
a buffer, sends its contents down the link, then checks if the client has to send
any more messages through any other link, and if not, returns the buffer to its

owner.

o agent_usrrpkt_input

This process accepts messages from a client process and routes them. Its main

loop dequeues a buffer, gets a message into the buffer, makes a header for the

message, then routes the buffer, putting it in another agent’s queue.

o agent_usrpkt_output

This process gives a message to a client process and f{rees the buffer. Its main
loop dequeues a buffer, gives the buffer contents to the user, then checks if any
more messages for that client on any other link, and if not returns the buffer

to the owner.

Routing of Messages During Initialization, each node builds routing tables

whose structure is as shown below:

free_ptr | link indices | routing segments | tables | free space

where

e free_ptr is an index into the free space used during initialization;
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o the link indices are five indices (one for each physical link and another for a
“pseudo-link” representing the user processes) indicating where in the routing
segments the routing table for the messages entering the processor on that link

is located;

e the routing segments contain a status word and a pair of indices into the tables

for each process in the entire network;
e tables are lists of links to which messages are sent.
o free space is that part of the table which has not been used.

Each input link has a pointer to a routing table associated with it. These pointers
may indicate the same routing table, or different routing tables. A fifth routing
table is required for routing messages which originate in the user processes on the

transputer. Each link's index indicates a segment of the form

status | (tzmtg.brdesty) | ... | (txmtn, brdestn)

where status indicates whether the table is bad (i.e. Tiny has not built the table yet).
or in an array/index state (before initialization), or has been converted into pointers.
The remainder of the segment contains pairs of indices into tables area. The table
indicated by the first index is a negative-terminated list of the links through which
messages for a particular processor may be sent; if there are several equally short
paths to a processor, the list will contain more than one entry. The table indicated
by the second index is a negative-terminated list of the links through which broadcast

messages from other processors through this processor must be sent.
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Messages are routed as soon as they arrive in a processor based on a 3-word
message header which Tiny keeps in each buffer page. The three entries in this header
are the message source and message destination CIDs, and the message length (in
bytes).

Tiny’s first action when routing is to check which routing strategy is being used
by testing the two least significant bits in the destination field of the header. If the
strategy is sequential, Tiny adds the CID of the message’s destination to the base
address of the agent’s routing segment to obtain the address at which the pointer
to the routing table entry is stored. The entry found at the routing table segment
corresponding to the pointer is the address of the workspace of the agent responsible
for the link through which the message is to be routed. The current agent puts the
buffer in that agent’s queue.

If the adaptive strategy is to be used. Tiny accesses the routing table segment as
above, but then examines the lengths of the queues of the agents responsible for the
links down which it could send the message. The message is enqueued for an agent
with a shortest queue length.

To analyze the performance of inter-node communication in Transputer net-

works, two strategies of point-to-point communication are tested [12].
e messages which read and sent messages on the link directly
e messages sent from user processes using Tiny

If the T'(1,b) is the time taken for a message of length b to pass over [ links, then

T(,b)=a+ Bl + b+ 6bl
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where « is a constant set-up time, 3 is the overhead per link, v is the time taken to
move message data from the user to the router and back, and 6 is the time to transfer
a single byte through a link;

Tests gave

Method a g v 6

Raw 1.0 16.7 0.0 1.3
Tiny 624 41.0 0.1 1.3

To summarize the results, the significant performance differences between Tiny
and raw hardware are the time taken to communicate header information and the
once-per-message cost of protocol generation, which affect only the source and des-
tination processors. This is shown by parameter a and is independent of message
length. The differences in 3 values between Tiny and raw communications shows the
time taken to enqueue and dequeue buffers, and to make routing decisions. The ad-
ditional CPU impact of Tiny on intermediate nodes, which is the difference between
Braw and ﬁTiny’ is 24.4 ps/node. 7, the multiplier on message size, is very small.

The time is in microseconds and the tests made were for medium-sized messages

(256 bytes).

Communication in iPSC/2 and iPSC/860

iPSC/860, also known as the Intel Touchstone Gamma Prototype is a MIMD
supercomputer in which numerous computational nodes are connected in a hypercube
network. Each computational node in the iPSC/860 consists of an Intel 1360 processor
plus memory and communication components. The maximum configuration available

is a dimension 7 hypercube. Each computational node has 8 Mbytes of memory and



21

each 1860 processor features an integer core unit, pipelined floating point units for
addition and multiplication, a graphics unit, memory-management support, a large
register set, separate instruction and data caches, and 64-bit data paths. With a
clock rate of 40 Mhz, each 1860 processor has a peak execution rate of 80 Mflops
(32-bit) and 60 Mflops (64-bit).

The processors in the iPSC/860 communicate to each other via “wormhole”
rcuting. Hardware is employed to provide efficient message routing between non-
adjacent processors. The network essentially provides circuit-switching (as opposed
to packet-switched, store-and-forward message routing), thus resulting in very little
penalty for nonlocal communication. The peak data transfer rate across hypercube
interconnection network between any two nodes is 2.8 Mbytes per second.

In addition to the 128 computational nodes, the maximum configuration iPSC/360
has four I/O nodes each of which has an Intel 80386 processor to access the disks
across the interconnection network. The iPSC/860 requires a host machine to serve
as its interface to the outside world for program development, resource management,
and external network access. The host machine or System Resource Manager (SRM)
is an Intel 301 microcomputer which has an Intel 80386/337 pair running at 16 Mhz.
The link between the SRM and the hypercube network provides a peak transfer rate
of over 1 Mbyte per second.

The computational nodes in the iPSC/860 system run a simple operating system
kernel called NX that supervises process execution and provides buffered, queued mes-
sage passing. Like other MIMD hyercubes, the programming model for the iPSC/860
is based on adding explicit communication calls (send/recv) to serial code written in

conventional programming language (C or Fortran).
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Intel Paragon/Touchstone Delta

In conjunction with a consortium of institutions led by Caltech, Intel has devel-
oped a massively parallel, distributed memory parallel processor called the Touch-
stone DELTA system. The Intel Touchstone DELTA system is a mesh-connected
parallel processor. consisting of 528 1860 compute nodes, 32 80386 1/0 nodes. two
80386 network interfacé nodes, six service nodes. and two tape nodes. The Delta
Mesh is shown in Figure 2. Each compute node has 16 Mbytes of memory and is
connected to a Mesh Routing chip (MRC) through a Mesh Interface Module (MIM).
Each MRC channel is 8-bits wide and the peak data rate of the communication sys-

tem is 22 Mbytes per second. The largest mesh available to an application is 16 x 32

(16).

Communication in Intel Touchstone DELTA

Information moves over the interconnection network in the form of messages
contained in fixed length packets. Each packet contains routing information. data.
and an end-of-packet flag. If a message is too long for one packet. it is divided up
among a number of packets and is transmitted over the network interleaved with

messages from other nodes.

Mesh Interface Module

The MIM connects the node processor to the associated MR It includes 2043
byte transmit and receive FIFOs and associated logic that provide an 8-bit interface

to the MRC and a 32-bit interface to the i360 compute node.
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The MIM can transfer data to the compute node i860 at a rate of 26.7 Mbvtes

per second. The MIM also provides 32-bit CRC generation and error detection.

Mesh Routing Chip

The Mesh Routing Chip routes messages moving through the mesh at high speed.

There are five ports on each MRC (see Figure 3). Four of them route messages

between routers in the X and Y directions of the mesh. The fifth port attaches

to the node. Each MRC port consists of two byte-wide communication channels.

One channel is for communication into the MRC, and one is for communication out.

Logically, the MRC is self-timed, to avoid distributing a high-speed synchronous clock

over a physically large area.

A sending node transmits one or several packets that contain a message by
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moving the data for each packet from the node’s memory to the MRC. Address infor-

mation at the head of each packet is examined to determine how to route the packet
through the network depending on the direction bit in the routing information. The
MRC tries to route the packet in the X-direction (east-west). If the X displacement
specified in the first byte of routing information is zero, the MRC strips off that byte
and examines the second hyte for Y displacement. If the Y displacement is also zero.
the MRC strips off the second byte of routing information and transfers the packet
to the node connected to the MRC.

If the MRC finds the X displacement specified in a packet to be nonzero, it
routes the packet to the next MRC in the X direction. Routing in the X direction
continues until the X displacement goes to zero. then Y routing begins. Routing in
the Y direction continues until the Y displacement goes to zero. then the MR rontes
the packet to the node.

If for any reason the destination node or any of the intermediate MRCs cannot
take a packet, its progress stops. The packet remains queued within the mesh until
the blockage or the condition at the destination clears and the packet can continue.

By the time the packet reaches its destination, the MRC's have stripped off its
first two bytes. As the end of packet indicator passes through an MRC. it releases
the channel that was reserved for the packet.

Each MRC channel has a bandwidth of 65 Mbytes per second. The latency
of the MRC is 75 nanoseconds for messages moving in the same direction and 150

nanoseconds for messages that change direction.




CHAPTER 3. TAXONOMY OF COMMUNICATION METHODS

Every message-passing multicomputer supports a set of inter-node communi-

cation methods. It is basically the set of supported inter-processor communication

methods that make one multicomputer differ from another. A classification of inter-

node communication is based on five dimensions [11]. The major alternatives with

respect to each dimension are defined below and shown in Figure 4.

1.

[SV]

Communicating nodes. In an application program, a given node may communi-
cate directly with a number of other nodes. The node may communicate with
either a restricted set of nodes (such as its neighboring nodes) or any arbitrary

node in the system.

Connection setup. A connection is a physical routing path on the network
allocated to carry out one or more communications required by the application
during program execution. A connection may be set up either statically before

program execution or dynamically during program execution.

Routing path selection. To build a connection for a given communication be-
tween two nodes, there could be multiple choices for the physical routing path.
The routing path selection can be either deterministic or adaptive. In the de-

terministic case, the route is totally determined by the source and destination
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address of the connection. [n the adaptive case, the route can be selected by the
source node. which originates the communication, or by the network to avoid

congested nodes on-the-fly.

4. Network flow control. During transmission a message packet may not be able
to proceed to the next node while the next node is busy. Network flow control
is concerned with methods to avoid network queue overflows and underflows in

the presence of the possibility that messages may be blocked inside the network.

There are at present four known methods to avoid messages being blocked

e Naive Message blocking can be totally avoided by starting transmission
only after the entire connection has been set up and the destination node
has acknowledged its readiness to accept a packet. This method has a
relatively long communication latency (to set up the connection and to

wait for acknowledgment from destination).

e Store-and-forward When arriving at each intermediate node, the com-
plete packet is first stored in the system memory of the node, and then
sent forward to a selected neighboring node when the neighbor is not busy.
Implementation of this method is relatively easy since at any time, at most
two nodes are involved in transmitting a packet. However, the buffering
of the packet consumes memory space and bandwidth of the intermediate

nodes and introduces communication delays.

e Virtual cut-through When the header of a message arrives at an in-
termediate node whose selected output channel is free, the packet will be

directed to the next node immediately. Therefore a message packet is
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buffered at an intermediate node only when its selected output channel is

busy.

Wormbhole If the blocked messages remain in the network while waiting
for the selected output channel to become available, then the method is
Wormhole method. The channels along the route of the blocked message
do not become free for transmission of other messages, but in Virtual cut-
through, they do. Thus wormhole method totally avoids the overhead of
buffering packets in system memories of intermediate nodes. In Wormhole
routing, a message is serialized into a sequence of parallel data units that
we refer to as flow control digits or (flits). A flit is the smallest unit of
information that a queue can accept or refuse [2]. As soon as a node
examines the header flit(s) of a message, it selects the next channel on
the route and begins forwarding flits down that channel. As the flits
are forwarded, the flits of one message may be spread out among several
nodes as the message moves. The communications in a node consists of
a set of queues-one for each channel. The queue of an input channel is
connected to an output channel, and the message flits flow through the
connection, in a pipeline fashion until the entire message has passed. Then
the connection can be broken and other connections made. Since most
flits have no routing information, the flits in a message must remain in
contiguous channels of the network and cannot be interleaved with the

flits of other messages.
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Network Latency The network latency for both virtual cut-through

and wormhole routing [4] is
T¢D+L/B=(Lg/B)D+L/B.

where Tf is the delay of the individual routing nodes on the path, D is
the number of nodes on the path (distance), and L/B is the time required
for the message of length L to pass through the channels of bandwidth
B, and Lf is the length of each flit. If Lf << L. th distance D has a
negligible effect on the network latency. Thus cut-through and wormhole
routing have network latencies which result in a sum of two terms, one of
which depends on the message length L, and the other of which depends on
the number of communication channels traversed. D. Store-and-forward

routing, on the other hand. gives a latency that depends on the product of
L and D.

Wormbhole routing has low network latency and requires small amount of
dedicated buffers at each node, and therefore is adopted in Symult 2010,
nCUBE-2, iWARP, and Intel’s Touchstone project. It is also being used in

some fine-grained multicomputers, such as MIT’s J-machine and Caltech’s

MOSAIC [4)].

5. Buffering at end nodes. For some communication methods, message packets
need to be buffered in the system memory at the sending or recciving node, or

at both ends. Some buffering schemes in use are given as follows:

e When packets can be sent and received only from system buffers, messages

have to be buffered at both ends. At the sending end, packets built in the
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user space have to be copied to the system buffer before they can be sent.
Correspondingly, at the receiving end, packets received into the system
buffer have to be copied to the user space before they can be read. This

type of communication is called station-to-station communication.

e When packets are sent and received from user spaces directly. the commu-
nication is called door-to-door communication. This has smaller commu-

nication latency than station-to-station communication.

e When the application program is allowed to send or consume individual

data items as they are computed or received respectively. the communi-
cation is called program-to-program or systolic communication. Thus the
sending program does not have to build a complete packet before sending
out a single data item, and the receiving program does not have to re-
ceive the complete packet before reading a single item in the packet. This
method has the minimum possible latency since individual data items can
be sent out as soon as they become available at the sending end, and can
be used as soon as they are received at the receiving end. The drawback of
this method is that it requires careful synchronization between the sending

and receiving programs.

Classification of the iWARP, transputer networks, iPSC/860, Intel Touchstone DELTA
and the nCUBE 2 on the basis of the above taxonomy is given in Table 3.1. Since
iWARP uses two different types of inter-node communication modes, we have classi-
fied iWARP in two different architectures for the purpose of comparing the commu-
nication methods used. It is interesting to note that every architecture other than

transputer networks uses wormhole routing as a strategy for network flow control.
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Table 3.1: Communication-based classification of some architectures

Commu— | Connection | Routing Network | Buffering
Architecture nicating | setup path flow atend
nodes Selection control nodes
iWARP, Restricted | Static Deterministic | Wormhole | Program-to
Systolic -Program
iWARP, Arbitrary | Dynamic Deterministic | Wormbhole | Station-to
Message-passing or Adaptive -Station
Transputer N/ws | Arbitrary | Static Deterministic | Store-and | Door-to
(with Tiny) -forward -Door
iPSC/2, Arbitrary | Dynamic Deterministic | Wormhole | Station-to
IPSC/SGO (Circuit-SW) -Station
Intel DELTA Arbitrary | Dynamic Deterministic | Wormhole | Station-to
(Circuit-SW) -Station
nCUBE 2 Arbitrary | Dynamic Deterministic | Wormhole | Station-to
(Circuit-SW) Station

The transputer networks use conventional store-and-forward routing.
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CHAPTER 4. IMPLEMENTATION OF COMMUNICATION IN
nCUBE VERTEX O.S

System Architecture

The topology of the nCUBE 2 supercomputer is an n-dimensional cube in which
the vertices are node processors and the neighboring nodes are linked along the edges
by message-passing communication channels. The nCUBE 2 supercomputer consists

of the following basic parts:

o Nodes (Processing Elements)- The nCUBE 2 supercomputer is a network of
independent CPUs, each with its integrated floating-point unit, local memory,
and communication hardware [10]. Each node runs a complete copy of the
nCUBE 2 Vertex operating system. When executing an application, each node
runs a program element, or a local program; the parallel program comprises
all the program elements running on all the nodes allocated for the program.
'I'he nCUBE 2 computer can run several parallel programs simultaneously, with
cach program allocated a different collection of nodes. Each node is a sequential

computer operating at 2.5 MFLOPS. The number of nodes is scalable.

¢ Communication Channels- Each node is linked to the other nodes by hardware-

routed, DMA communication channels. Direct hardware exists only between
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nearest neighbors in the network, but the communication between distant nodes
is done by wormhole routing technique which makes it possible for the routing

to continue without affecting the performance of the intermediate CPUs,

e I/O Processors- Separate DMA [/O Channels are provided to each node for

transfers to and from I/O processors.

Communication Hardware of nCUBE Processor

The Network Communication Unit (NCU) built into the nCUBE processor’s
hardware implements automatic cut-through message routing. Messages from one
processor node to another non-neighboring processor node pass through the interme-
diate nodes without interrupting the intermediate node CPUs.

The Network Communication Unit or NC'U consists of 28 unidirectional. in-
dependent, direct memory access (DMA) /O channels. Each I/O channel can be
directly connected to a corresponding I/O channel in another processor.

The maximum number of processors in an nCUBE 2 hypercube is 8192, which
is a dimensior, 13 hypercube. This implies that a processor in the highest dimension
hypercube is directly connected to I/O channels (ports) of 13 other processors.

The 23 DMA channels are arranged in pairs. Fourteen channels handle input
and fourteen channels handle output, thus providing fourteen full-duplex I/O ports.
Thirteen I/O ports handle communication with other processors in a hypercube of
maximum dimension 13, and one I/O port (called SI port) handles communication
with other hypercube spaces or foreign (non-hypercube) systems.

Each DMA I/O channel has two registers. The DMA address register and
the DMA Count register. The DMA Address and Count Registers are loaded by
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specific instructions in routines in the Vertex O.S. servicing the DMA channel.

Interface between the User and Vertex O.S.

Communication in the nCUBE Architecture is based on message passing. This
is accomplished in a User program by making calls to the nCUBE communication
library.

The nwrite() call is used to send a message, and the nread() to receive a message
[9]. The parameters with which nwrite() and nread() are called are processed by the
library call for error and validity. The library call then executes a trap instruction
which directs the program to execute the corresponding trap handling routine within
Vertex O.S. The trap routine psend() buffers the message, creates a header with the
available information from user and the system. and determines the channel through
which the data has to be sent. It then places the message into the queue of messages
for the corresponding channel. The trap routine for the receive checks for a valid
message, if any, in the “received messages” queue for that process, and if the message
has arrived, copies the message into the buffer specified in the parameter of the call.
The actual sending and receiving of the data occur asynchrenously by the input and
output message ready interrupts for that channel when generated. These channel
interrupts are generated asynchronously and independent to the CPU.

As soon as the DMA OQutput Channel has nothing more to send, at the end of
a transmission, the Output Message Ready Interrupt for that channel is generated.
indicating to the CPU that the DMA channel is ready to transmit more messages.
The Interrupt service routine handling the Output message ready interrupt corre-

sponding to that channel then checks if there are any more queued messages to be
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sent along that cl;annel. and if there are any. sends them along that channel.

As soon as the DMA Input Channel has nothing more to receive, when it receives
an EOT packet, the Input Message Ready Interrupt for that channel is generated.
indicating to the CPU that the DMA channel is ready to receive further messages.
The Interrupt handler then initializes the DMA Input channel to receive the header
of the next transmission along that channel.

A message at the user level can be divided into more than one message packet in
a transmission. The Vertex O.S. handles each user message as two message packets
in one transmission: a header message packet and a data message packet.

The first 32 bits of the header contain the destination address and destination
mask which are encapsulated by hardware into an address packet. The rest of the
header message packet and the data message packet is encapsulated by hardware as
data packets containing 32 bits of data information in one packet. A communication
path is established by sending an address packet over a channel. The address packet
is then routed from node to node along the channels determined by the following
process. Each processor compares the masked node address with its own processor
ID and sends the address packet out the port number corresponding to the bit position
of the first difference, starting at bit n + 1. where n i1s the number of the port on
which the message was received. Thus messages are always sent out on a port which
has a number higher than the port on which the message was received. An example
of routing a message through the hypercube is shown in Figure 5.

Once a communication path (consisting of a sequence of channels along a path)
is established. it is reserved for further data or command packets until an EOT

packet clears the path for other messages. The Vertex O.S. takes care of sending
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EOM packets at the end of each message packet. and sends an EOT packet once a
transmission is over, by using different instructions to initialize the DMA registers in
each case.

The sending and receiving of data by DMA channels is done independent of the
CPU. The DMA channel starts functioning independently of the CPU execution as
soon as its Count Register is loaded with a non-zero value. The Address register of
the sending DMA channel is loaded with the pointer to the least significant byte of
the next word to be transferred. In the case of a receiving DMA channel, the address
register contains the pointer to the location at which the next word received on the
channel will be stored. The DMA Count register in the output channel is loaded
with the number of bytes to be sent. The instruction used for loading the DMA

Count register determines whether an EOM packet (LPCNT), or an EOT packet
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(LCNT), will be sent after the message packet is sent. As the data is sent, the output
channel DMA Address Register is incremented by the number of bytes transferred,
and the corresponding DMA Count register is decremented by the number of bytes
transferred. When the count reaches zero, an End of Message (EOM) packet or an
End of Transmission (EOT) packet is sent to the receiver, and an Output message
ready interrupt is generated, if enabled. As data is received, the input channel DM A
Address register is incremented by the number of bytes transferred. When an EOM
packet or EOT packet is received, the Input Message Ready interrupt is generated,

if enabled.
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CHAPTER 5. COMMUNICATION ROUTINES IN VERTEX O.S.

The fundamental message-passing system provided with nCUBE hypercubes.
Vertex, handles process loading, execution, file system access. debugging, and statis-
tics on the nCUBE 2 processor. It also handles all interrupts, system calls, and
interprocessor and [/O communication.

The basic message-passing implementation in the nCUBE 2 system consists of
two trap routines, one for send and the other for receive. The actual asynchronous
sending and receiving of the data is implemented in two interrupt service routines

handling the Output Message Ready and Input Message Ready Interrupts.

Trap Routines for Send and Receive

The nCUBE 2 Processor uses automatic cut-through message routing to achieve
communication across hypercube without interrupting intermediate nodes CPUs.
This usage of vectored Interrupts for communication reduce the load on the CPU.

The User program calls a communication library routine which executes a trap
instruction psend primarily to enqueue the message into the “send queue” of the
channel along which it has to be transmitted. The Output Message Ready Interrupt
corresponding to that channel, when generated, sends the next message on the queue.

Similarly, the trap instruction for the receive precv is executed primarily to read
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the message, if it has arrived, into the user-specified buffer. The Input Message
Ready Interrupt for a channel when generated. enqueues the incoming message into
the process object communication buffer, which the trap routine scans for the message
specified by the user.

When the above trap instructions are executed by the user program, the current
Program Status Word (PSW) and the Program Counter (PC) are pushed on the
stack (in the given order). The physical vector address (VPC) of the trap handling
routine occupies the first four bytes at the physical address equal to eight times the
argument of the trap instructiou, and the next four bytes are occupied by the new
PSW (VPSW) for the trap handling routine. The PS\V register is loaded with the
PSW and the VPC is written into the PC. The new PSW has all interrupts enabled
and the mode bit set to Supervisor mode. Thus the instructions in the trap handler

are executed in the supervisor mode.

psend()

When the sending trap instruction is executed, the PC jumps to the correspond-
ing VPC which is the address of psend routine. The input parameters for psend
routine at entry are user-specified and are present in the registers RO through R4.

They are in the following order:
e RO: length of message in bytes
e R1: pointer to message data
e R2: pointer to message status byte

¢ R3: message type
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e Ri: destination
The trap handler does the following for a single node-to-node message:

o The user-specified pointer of the message data which is really an offset into the

data space of the user process is converted to absolute physical address.

o A user buffer is allocated for the message and a header is constructed (in Vertex

Header Format). The header and the message data are copied into the allocated

buffer.

e The correct channel over which the message has to be sent is calculated. and

all interrupts are disabled.

e The pointer to the allocated butfer is queued at address corresponding to
sendq(channel), where channel corresponds to the channel number along which

the message packet is to be physically sent.

e If the channel is idle, then the trap sends the header and sets the state of the
Interrupt handler routine to where it should be after it has sent the header of

a message and has to send the data.

o Interrupts are enabled and the process returns to the user program.

Vertex Queue for Send

The Vertex Communication Area includes a linked list for send messages corre-
sponding to each of the 14 channels. Each linked list entry consists of two words.

The first word stores the pointer to the most recent message put on the queue. The
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second word contains the pointer to the next message on the list. Both are initial-
ized during Vertex initialization to the address of the first word in the linked list.
The Vertex communication area also provides one word per input DMA channel for

storage of the pointer to the buffered received message.

precv()

The messages arriving over any channel are queued by the Input Message Ready
Interrupt service routine into the process object communication buffer. The process
object communication buffer is a linked list of pointers of the “received but not yet
read” messages for that process. The trap routine for the receive basically does the

following for a single node-to-node message.

e First the entire linked list of pointers is checked for a valid message (by a call

to plook()),

o If the call to the routine plook() does not find a message of valid type and
source id, then process state is set to “msgwait” that is. the process blocks till

a valid message is found.

e When the valid message is found, the data is copied into the user-specified
buffer, and the source id of the sending node and the type (of message) are

returned in registers.

o The message is then removed from the “receive queue” in the process com-
munication buffer and is deallocated from memory and becomes free for other

incoming messages.
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Input and Output Message Ready Interrupt handlers

Output Message Ready Interrupt (Outrdy)

The Output Message Ready Interrupt corresponding to a port is generated only

under the following conditions:

e The Global Interrupt Enable bit (IE) in the PSW must be 1. (This bit is always
true except in the case when the process executes the Interrupt handlers for

Inprdy, Outrdy and Badecc interrupts)

e The Enable Output Interrupt bit (IO) in the PSW must be 1. (This bit is
always true except when the process executes the Inprdy, Outrdy and Badecc

interrupt handlers)

o Output Interrupt Enable Register bit corresponding to the port in use must
be 1. (The trap routine psend() or the interrupt handler for Outrdy interrupt
for that port executes an LCNT or an LPCNT instruction and then sets the

corresponding bit to 1, if it isn’t already set)

e The Output Message Ready flag corresponding to the port in use must be 1.
The bit in the Output Message Ready Register corresponding to this port is
set to 1 on processor reset, at the end of a message (EOM), or at the end
of a transmission (EOT). It is cleared on an LCNT or LPCNT instruction

corresponding to the port number.

The handler for the Output Message Ready Interrupt for a particular Output

port can be in one of the three following states as shown in Figure 6.
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e sndstO This state is an idle state. which is the state of the interrupt handler

when it has no more messages to send. The interrupt handler thus resets
interrupts, and sets new state to sndst). When the state of the interrupt
handler is sndst0, the only way the state can be changed to any other state
is when the user tries to send another message which has to be sent over this
channel. In such a case, the trap routine psend() sends the header of the
message over the channel (because the channel was idle anyway), and sets the
new state to sndstl, so that at the end of transmission of the header. when an

Outrdy interrupt is generated, then the interrupt executes in state sndstl.

sndst1 If the header of a message is already sent, (either by the trap psend()
or by the interrupt handler in state sndst2), then the generation of the next
Outrdy interrupt on that channel will direct the [nterrupt handler to this state.
In this state, the data of a message is sent from the buffer which is at the top of
the queue of the messages to be sent, pointed by sendq(channel #). The new

state of the interrupt handler is set to sndst2.

sndst2 The Service routine for Outrdy Interrupt on a particular channel is
entered in state sndst2 when a complete message is sent over the channel.
Therefore, the interrupt handler in this state dequeues the message from the
sendq(channel #). The buffer used for queueing the message is also deallo-
cated, so that it becomes free for buffering other communication messages.
The interrupt handler then checks for any more messages to be sent from the
sendq(channel #). If there is a message to be sent, then the header of that

message is sent along that channel, and the new state is set to sndstl. Oth-
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erwise, if there are no more messages to be sent, then the new state is set to

sndst0, which is an idle state.

Input Message Ready Interrupt (Inprdy)

The Input Message Ready Interrupt corresponding to a port is generated only

under the following conditions:

e The Global Interrupt Enable bit (IE) in the PSW must be 1. (This bit is always
true except in the case when the process executes the Interrupt handlers for

Inprdy, Outrdy and Badecc interrupts)

o The Enable Input Interrupt bit (II) in the PSW must be 1. (This bit is always
true except when the process executes the Inprdy. Outrdy and Badecc interrupt

handlers)

o Input Interrupt Enable Register bit corresponding to the port in question must
be 1. (The trap routine precv() or the interrupt handler for Inprdy interrupt
for that port executes an LCNT or an LPCNT instruction and then sets the

corresponding bit to 1. if it isn't already set)

o The Input Message Ready flag corresponding to the port in question must be
1. The bit in the Input Message Ready Register corresponding to this port
is set to 1 on processor reset, at the end of a message (EOM). or at the end
of a transmission (EOT). It is cleared on an LCNT or LPCNT instruction

corresponding to the port number.

The message header when received over a particular channel is automatically

transferred to a Vertex communication space called “recvbuf” which provides a buffer
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space of 16 bytes of header per input channel. The interrupt handler for the Input
Message Ready Interrupt then buffers this header in a user buffer and all data packets
arriving over the channel henceforth until the arrival of the EOT packet are directly
transferred to this user buffer. The pointer to this user buffer then is queued into the
process object communication buffer. The Interrupt handler also prepares the DMA
input channel to receive the next header transmitted over the channel, by loading
the address of the “recvbuf” corresponding to that channel into the DMA Address
register.

The handler for the Input Message Ready Interrupt for a particular input port

can be in one of the two following states as shown in Figure 7.

e rcvstO0 When the header of a message is completely received over a channel. ie.
when the EOM packet at the end of a header triggers an Input Message Ready
Interrupt corresponding to that channel, the interrupt handler is entered in
rcvst0. Since the header of a message is already received, the interrupt handler
first determines whether the message is a Vertex command message, and if it
isn’t, it gets a buffer from user space. It then buffers the header, and sets
the DMA input channel to receive the message data directly into the allocated

buffer, and the new state for the interrupt handler is set to rcvstl.

e rcvstl When the complete message is received over a channel. the EOT packet
at the end of the message transmission generates an Inprdy Interrupt for that
channel, and the interrupt service routine is entered in the rcvstl state. The
handler first initializes the corresponding DMA input channel to receive the
next header which arrives over the channel, then sets the next state to rcvst0.

If the recently received message was a Vertex control message, then appropriate
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Figure 7: Inprdy Interrupt States
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action is taken, otherwise the received message is queued into a “received but
not read” queue whose head is at offset “pojeomb™ in the process object table

of the current process.
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CHAPTER 6. THE SCALAR COMMUNICATION CALL

User Interface to the Scalar Call

The User program executes a call to scsend() to send a scalar data to a desti-

nation ncde. In a C program. the call would look like

scsend(&send_struct):
where

send_struct is a structure of the type

struct{
shortint sendid; /* destination nodeid */
shortint sendmash: /™ destination mask */
shortint my_id: /™ source nodeid =/
shortint type_send: /= tvpe of message */
int data_scalar: /* scalar data for send */

}send_struct;

The User program executes a call to screcv() to receive a scalar data from a source

node. In a C program, the call would look like



}recv_struct;
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|

!

screcv(&recv_struct);

where

i recv_struct is a structure of the type

i

i struct {

|

‘ shortint sour~e_id; /™ source node of expected message */
% shortint type_recv: /= expected type of the message */
{

: int data_scalar; /™ the scalar data for the receive */
i

l

|

!

scsend()

| The algorithm equivalent of scsend() is given below.

| scsend()

convert input parameter pointer into real address:

adjust destination in subcube to destination in hypercube;

calculate channel # over which message is to be sent;

if (channel is idle)
send complete message structure of 12 bytes;
set next state for Outrdy interrupt handler of corresponding channel to sndst0:
enable corresponding interrupt bit in Output Interrupt Enable Register:
restore registers;
return from interrupt;

else
restore registers;

return from interrupt:




[&]]
Lo

screcv()

The pseudocode for screcv() is given below.

screcv()
convert input parameter pointer into real address;
go to step 3;
step 4: decrease sc_count: (count of “received but not read” scalar messages)
if (sc.count == 0)
indicate message not found:
return from trap:
else
step 5: if (source specified = —1)
go to step 2;
else
go to step 6;
step 2: if (type = —1)
read next data in scalar buffer into user-provided buffer;
else
go to step 3;
step 3: if (type of next message in buffer == specified type)

copy next data in scalar buffer into user-provided buffer;

else
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go to step 4

step 6: if (source of next message in buffer == specified source)
go to step 2;
else

go to step 4:

The receiving of data incoming over the channel into a buffer reserved for each channel
in the Vertex communication area is done by the Inprdy Interrupt Service Routine

for that channel. Since

e the actual arrival of the data over a channel is asynchronous with the execution

of the user program reading the incoming message.

e the channel number over which a particular message is scheduled to arrive is

often not known prior to its arrival.

The actual reception of scalar data over the channel is done by modifying the
Inprdy Interrupt Service Routine to take care of the scalar message when it comes

over the channel.
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D4
Modifications to Inprdy Interrupt Service Routine

The Inprdy Interrupt Handler for an iuput DMA port in the state rcvst] sets
up the channel to receive the header of a message directly into a 16-byte per channel
buffer reserved in the Vertex communication data space. This header buffer is at
an offset recvbu f(channel# x 16) from the start of the Vertex communication data
area. On the arrival of an EOM packet over the channel after the address and data
packets of the header of a message, the Input Message Ready Interrupt (Inprdy)
corresponding to the channel if enabled, is generated. On generation of the Inter-
rupt, the process executes the Service handler of the Inprdy interrupt corresponding
to that channel in the state rcrst. In this state. the modification to the Inprdy
Interrupt Service Routine takes care of the case of the arrival of a scalar message.
[t accomplishes this by looking for a specific sequence of bits in the halfword at an
offset of 4 from the start of any header arriving on the channel.

In the standard communication header format, the halfword at an offset of 4
from the beginning of the header contains the destination process id for the message.
Since there is only one process on every nCUBE processor node in the existing com-
munication call on the nCUBE, the halfword at an offset of 4 from the start of the
header always has 0. Therefore a bit sequence of 1's in the highest 14 bits of the
halfword will not have any effect on the normal handling of the Inprdy interrupt.

The Inprdy Interrupt Service Routine for a channel looks for the specific bit
sequence in the halfword at an offset of 4 from the beginning of any header arriving
on the channel. If the bit sequence is found, a branch is taken to code at recv_sc.int
which specifically takes care of reading in the scalar data into a scalar communication

buffer area reserved in the Vertex communication data area. This is done so that
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the channel can be prepared to receive the next header arriving on the channel.
The scalar communication buffer arca consists of two words per scalar message. A
total of 64 scalar messages can be buffered before the user program actually executes
a trap to read in the scalar message into the user-specified buffer. The two-word
buffer per message consists of a word for the scalar data. a halfword for the type
of message, and a halfword for the source nodeid of the message. A halfword in

the scalar communication buffer (sc.count) keeps count of the “received-but-not-yet-

read” scalar messages.
The actions taken by recv_sc.int are listed as the following steps.

recv_sc_int:

1. load the pointer to the recently received header into register RO

2. calculate the offset of first empty buffer using sc_count

3. copy scalar data into the empty buffer corresponding to count

4. copy the type and source of the scalar message into the buffer

5. increment sc.count

6. set up the DMA input channel to receive the next header arriving on the channel
. set next state of Inprdy Interrupt handler for that channel to rcvst0

8. Set the corresponding bit in the Output Interrupt Enable Register

9. restore the registers

10. return from interrupt
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CHAPTER 7. RESULTS AND CONCLUSIONS

In the preceding chapters, we have described various communication methods in
message-passing architectures and their implementation. The main concern during
the development of the low-latency scalar communication call is the time taken ftor
execution by the call. In order to minimize the latency of the scalar communication
call, first we tried to identify the components of the call and analyze the time taken
in each of the components.

The user code invokes the functions to send and receive a scalar data by call-
ing sc_send and sc_recv. Both functions take an address parameter which is passed
through the stack. The Vertex scalar send trap handler scsend() takes the address
parameter in register R0. Therefore, it is necessary to execute an instruction to copy
the parameter from the stack to the register R0 before executing the appropriate trap
instruction.

Some experimental execution statistics showed a call and a return on an nCUBE
processor takes 1 to 3 useconds. A move instruction from stack to register R0 takes 0
to 1 useconds. An empty trap instruction takes 2 to 3 useconds. Thus the non-Vertex
overhead for the scalar call (both send and receive) is 6 pseconds.

The actual execution of the scalar send and receive from user code takes 27

pseconds and 20 pseconds respectively. Therefore the time taken by Vertex to execute
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fable 7.1:  Break-up of latency of scsend()

Component Numberofcycles | WorstCaseCycles
to save registers 36 44
in stack
to convert user address 107 122
to real address
to find actual destination 40 46
id in hypercube
to find the channel 15 15
number to send on
to check if channel 17 i
is active or not
set up for send 20 26
on DMA channel
to restore interrupts 37 50
to restore registers 36 44
TOTAL 308 364
(15.4 pseconds (18.2 useconds)

the trap routines scsend() and screcv() is 21 useconds and 14 pseconds respectively.
The component-wise breakup of the latency for the trap handler scsend() is shown
in Table 7.1. The component-wise breakup of the latency for the trap handler
screcv() is shown in Table 7.2.

The discrepancy of the average timings for the scsend may be because of the

following reason. The DMA channel and CPU can both be masters of the bus con-

necting to the memory. When the CPU sends some data through the DMA channel,
the DMA is in control of the bus. During that time, if the CPU has to do any

data transfer, it has to arbitrate for the control of the bus. This arbitration is asyn-

g
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Table 7.2:  Break-up of latency of sesend()

Component Numberofeycles | WorstCaseCycles
to save registers 40 50
in stack
to convert user address 107 122
to real address
to check type and source and 105 125
find which buffer data goes
to restore registers 40 50
TOTAL 292 347
(146 pseconds (17.3 useconds)

chronous and may take as much as 3 to 5 useconds. This discrepancy is not seen in
the timings for screce because screcv does not execute any instructions which give
bus control to the DMA.

The temporal overhead involved within Vertex for using scsend() and screcv()
is about 1 psecond (4 instructions including a branch which is taken) in the Inprdy
Interrupt service routine. The Spatial overhead within Vertex is about 514 bytes of
Vertex data area for buffering the scalar data when it arrives and before it is read by
the user.

Thus,

e by reducing the header size, so that overhead time for processing the extra

header information is eliminated
o by eliminating the queuing of buffers in the sending processor

e by avoiding the passing of parameters on the stack, and passing parameters
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through registers instead,
e by making the trap routine specifically for point-to-point communication

e by not checking for the validity of the user-specified parameters, thus making

the call dangerous

we achieve low latencies in sending and receiving scalar data between any two nodes

in a hypercube with a message-passing architecture.
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