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CHAPTER 1. INTRODUCTION

One of the most significant advances in computer systems over the past decade

is parallel processing. Parallel processing has become a common approach for achiev-

ing high performance. However, applications continue to demand more computing

power. Computational problems in areas such as high-speed aircraft design, medical

imaging, and research in advanced structural, electronic and optical materials often

require computers that are at least three orders of magnitude faster than the fastest

computers presently available.

Although computing demands are increasing rapidly, the performance of conven-

tional, sequential computers is approaching the point of diminishing return. :High-

performance sequential computers today are already bounded by, among other things,

memory speed. Parallel computers, in which a number of processors can work in par-

allel on a single application, offer the only solution capable of providing orders of

magnitude of improvement in computing performance without excessive costs. Ac-

celerated efforts in the area of parallel processing have resulted in the successful

development of many parallel processing systems. Examples of such machines are

shared memory parallel computers like Alliant, Encore, Sequent, and Cray Y-MP,

Distributed machines such as the Transputer, Warp, and hypercubes and SIMD ma-

chines such as the Connection Machine and the Maspar. Successful use of these



parallel computer's has been demonstrated in a number of application areas, includ-

ing scientific computing, signal and image processing, and logic simulation. For some

of these applications, the avail_d)le parallelism increases as the problem size expands,

making it possible to achieve close to linear speedups on parallel machines.

To be scalable to a large number of processing nodes and to be able to support

multiple levels and forms of parallelism and its flexible use, new parallel machines

have to be multicomputer architectures that have general networking _..,._,.....v-.,_o and

• extremely low internode communication latencies. The performance of a program

when ported to a parallel machine is limited mainly by, the internode communication

latencies of the machine. Therefore. the best parallel applications are those that

seldom require communications which must be routed through the nodes. Thus the

ratio of computation time to that of communication time is what determines, to a

large extent, the performance metrics of an algorithm. The cost of synchronization

and load imbalance appear secondary to that of the time required for internode

communication and I/O, for communication intensive applications.

To examine the extent to which this is true, consider a hypercube architecture like

the nCUBE 2. All memory is distributed in the nCUBE architecture. Information

is shared in the form of messages between processors by explicit communications

across I/O channels. A message in the nCUBE-1 requires about 0.35 milliseconds to

start and then continues at an effective rate of 2 # seconds per byte [13]. Suppose

an application requires 400 Kbytes for variables on one node (50I,[ 64-bit words). If

distributed over 1024 processors, each node will have only 50 variables in its domain.

For a typical timestepping problem, each variable might involve ten floating-point

operations (120 #seconds) per timestep, for a total of 6 milliseconds before data



3

must be exchanged with neighbors. Data exchange might involve four reads and four

writes of 80 bytes each, for a worst-case time of (4 + ,t) x (3.50 + 80 x 9) /,seconds,

or about 4 milliseconds [la]. Therefore when a single-node problem is distributed

on the entire 1024-processor ensemble, the parallel overhead on the nCUBE will be

about 40 percent.

Since the communication overhead is a significant component of the parallel exe-

cution time, it is important to reduce inter-processor communication time. The inter-

processor communication time consists of two components: message sta,'tup time, and

the actual DMA transfer time. The hardware of the communication channels for each

node are, in principle, capable of operating concurrently with the processor itself and

with each other, up to the point where memory bus bandwidth is saturated. There-

fore, there is a possibility of saving communication time by judicious reorganization

of data and computation within the application. However, the DMA channels are

managed by software running on the processor. The software creates overhead that

limits the extent to which the communications can be overlapped. In particular,

the message startup time dominates the parallel overhead, and limits the fine-grained

parallel capability of multiprocessor ensemble. Reducing the startup time is the main

strategy used in the developing the scalar communication call. To send and receive

a message, the actual DMA transfers require 1.2 tL.seconds pet" byte [13]. Before a

message can be sent over the DMA channel, however, it is first copied to a location

in system buffer memory where messages are stored in a linked list format. Similarly

after the message is received over a DMA channel, it is copied into a system buffer.

The time for the copy and startup are cut down in the scalar call, and the major part

of the latency of the scalar call is the time for the actual DMA transfer.
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The following thesis is organized in chapters. Tile first chapter deals with the

communication strategies in various message-passing computers. A taxonomy of

inter-node communication strategies is presented in the second chapter and a com-

parison of the strategies in some existing machines is done. The implementation of

communication in nCUBE Vertex O.S is explained in the third chapter. The fourth

chapter deals with the communication routines in the Vertex O.S, and the last chap-
!
i

ter explains the development and implementation of the scalar communication call.

Finally some conclusions are presented.
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CHAPTER 2. COMMUNICATION STRATEGIES IN

MESSAGE-PASSING COMPUTERS

' Inter-processor Communication in iWARP Systems•

iWARP, jointly developed bv Carnegie Mellon and Intel Corporation, is a private-

memory architecture. An iWARP system can include a large number of building

blocks or cells. Each iWARP cell is a custom VLSI single chip processor, called

iWarp, which contains both a powerful computation processor (20 MFLOPS) and a

_. high throughput (320 Mbytes/sec), low latency (100-150 ns) communication engine.
:

. Explicit data transfer from one processor to another is the principal form of inter-
?

processor communication There are two possible sources for the data when onei'_
i

' processor wants to transfer data to another processor. Either the data have been

computed earlier, stored into memory, and then transferred directly out of memory,

or the data are computed "on-the-fly", that is the data are sent directly from the

computation engine of the processor. Based on these two sources of data, there are

two styles of communication in iWARP [14].

i • Memory Communication
In message-passing or memory-to-memory communication, messages are first

built in the local memory of the sending cell and then delivered (as a unit) to
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the local memory of the receiving cell. The user program running on the cell

is insulated from communication. In the case of the sending cell, the network

software handles the delivery of tile message over the network only after the

complete message has been built in the local memory of the sending cell. Simi-

larly in the case of the receiving cell, the user program will operate on the data

in the message only after the entire message has been delivered to the local

memory by the network software. The advantages of memory communication
¢

are

1. Communication is decoupled from computation. While the message is

being delivered and buffered through memory, the program at the sending

or receiving cell can operate autonomouslv on its local data.

2. Communication protocols can be developed independently from the pro-
.

gram to handle communication-specific issues such as deadlock avoidance

. and recovery from transmission lines.

: 3. Applications need not have detailed knowledge about intercell communi-
t

cation.

• Systolic Communication

All data sent along each direction in a can be viewed as belonging to one

message. However, instead of waiting until all the data in the message have

arrived, each cell operates on the data items within a message, as they arrive

individually. It then sends the results of the computation to other cells on-the-

fly of outgoing messages.
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The advantages of systolic communication are

1. The message routing and header information overheads are not paid with

each unit of synchronization. This makes it possible for the cells to coop-

erate in fine-grain parallel processing.

2. Incoming and outgoing data need not be buffered in the cell's local memory

unless required by the computation. Extra transfers to and from memory

' are avoided, thus reducing the latency of communication.

3. Systolic inputs and outputs provide additional parallel sources of operands

for instruction-level parallelism.

4. Avoiding the buffering of data in the local memory also reduces the men:-

ory size requirement for some applications.

However, systolic communication is harder to use than memory communication,

because the local memory of a cell can be accessed randomly, while message

: queues in the communication agent can only be accessed sequentially. Therefore
¢

the burden of making sure that the reads and writes of message queues are

i properly sequenced falls on the programmer at user level.

iWARP Networks

i The networks supported bv the iWARP communication agent can either be pub-
)

lic or private [15]. A public network allows possibly unrelated processes to transmit

data over this same network, and the issues of network access, resource conflicts and

contention have to be addressed by the software support for the network implemen-

tation. A private network is accessible only by processes participating in the same
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application. Public networks are suited for general-purpose computations where little

or nothing is known a priori about the communication patterns. Private networks

provide a chance for optimizations since they can be custom-tailored to a specific

application to result in lower overheads and/or higher throughput.
r

Pathways A connection between two nodes is realized by a pathway, which

establishes a link between these two nodes. Each pathway is unidirectional and data

-_ is transmitted from the source node to the destination node over this pathway. Path-
i

} ways consists of one or more pathway segments, with each pathway segment connect-

i ing two adjacent nodes. Pathway segments are implemented bv tile communication
i

agent by multiplexing the busses that connect adjacent nodes to create logical chan-

nels. The nodes on the pathway cannot access any data that is transmitted over the

pathway (nor can they use this pathway to send data).

Sending and Receiving Messages At the User level, the program sets up

networks and then gets access to those networks via a port; a port is a local name

that identifies the network and the type of network access (input or output). To

transmit data, the node must specify a destination and possibly' a route. Ports are

mapped into gates, an iWARP hardware resource that affects the actual transmission

of data. Gates can be thought of as registers and can be addressed like registers by

the instruction set, and are multiplexed between different ports.

One dimensional networks are built by first creating pathways between the nodes

and then connecting the pathways to form a network. Each node starts by initializing

a variable of type network to allow the local runtime system on the node to initialize

appropriate tables. Then, to create a pathway between Nodel (the source node) and
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Node2 (the destination node), Nodel invokes the function create_pathway_o'ut, and

Node2 invokes the function create_pathway_in. Both functions return a port that is

then used to send or retrieve data.

In numerous applications, the design of the network is fixed at the time an

algorithm is turned into a program for an iWARP array. In such cases, it is wasteful

to build up the network at runtime, while it could easily be initialized at load time.

Furthermore, in this case a static check is sufficient to determine if any node has

insufficient resources (pathway segment records) to support the network(s) defined

for the application.
!
i The iWARP environment therefore allows the programn_er to specify directions!.

i that are interpreted at load time and are turned into network information for each

node, by calling the function create_pathway.!

Data transfers are indicated by using variants of send and receive. There are

functions available to either handle a single word or a block of data.

All data is encapsulated in messages, the basic operation is sending or receiving

a message that is stored in memory. The user interface to the data transfer is as

follows [15]

send_msg(port, destination, address, number_of_bytes);

receive_msg(port, address, number_of_bytes);

There also exist more primitive operations to create and receive the message

header as well as the message trailer. These operations are needed for Systolic com-

munication so that the data can be directly generated (consumed) by the computation

unit. The following example illustrates how a program sends and receives a sequence

of individual words [15].
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port Yout, Yin;

int i, foo, var;

send_msg_open(Xout, destination) ;

receive_msg_open (Xin);

, for (i=O; i<N; i++) {

! foo = receive_int(Yin) + var;

send_word(Your, foo);

, }

send_msg_close (Xout);

receive_msg_clo se(Xin);

Data transferred over the network in encapsulated into units called messages.

Each encapsulation unit consists of a header, tile data to be transmitted, and a

closing trailer to terminate the message. Data is encapsulated regardless of whether

:i it is systolic or memory-memory communication.

The four busses (XR, YU, XL, YD) define four directions. For each of the input

! busses, there exists a default output bus If the message header arrives and does

not match the address of the current node, then the header (and the niessage) is
!

i forwarded to the default output bus. These defaults are .gRin -+ XLout, XLin ---+
t

XRout, YUin --+ YDout, YDin --+ YUout, and they are chosen so that messages

keep traveling in the same direction, e.g from left to right.

If a message wants to change direction (that is, switch to a pathway segment

that is multiplexed over a bus different from the default bus), the first word of the

header is specially marked as "change_direction" [15]. This first word contains the

address of the node where the change of direction is supposed to happen. The next
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word contains additional routing information (either the address of the destination

" node or the address of another node for a subsequent change of directions). When
i

I this message header reaches the node where it has to change (this is the node with an

address that matches the address in the in the first header word), then this header
I

I word is removed, and the next word becomes the leading word that determines the
f
l destination (or node for the next direction change). There is no limit on the length

of the header, but each change of direction removes one word from the header.

iWARP uses a variant of wormhole routing; as soon as the first word of the

message header has been assembled in a node, this node can determine if the message
t
I is destined for this node or another node. If the message is destined for another node.

; and no change of direction is required, then the header is forwarded immediately. The
!

i' testing and forwarding is done in 100 ns. If a change of direction is required, then the
i

i next word is examined to determine the new direction. This operation adds .50 ns.

In both cases, further delay is possible if the outgoing pathway' segment is already in
t
i use for the transmission of another message.

t Thus iWARP achieves low-overhead communication by separating the set-up of

i the communication network from the actual transmission of data. There is a choice

i between a general two-dimensional network, that includes all nodes in the torus

and a specialized one-dimensional (or two-dimensional) network. The application

programmer (or program generator) is provided with an opportunity to customize
I the communication system to the needs of the application.
t
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Communication in INMOS Transputer Networks

The INMOS T800 Transputer
t
i
i The INMOS T800 Transputer contains a CPU, 4 Kbytes of on-chip memory, 1l

!
{ MFLOPS floating-point unit, and four high-speed communication links, each with
i

its own DMA Controller [i2].

; To run concurrent processes efficiently, the transputer maintains one queue each,

for low-priority and high-priority processes. Low-priority processes are time-sliced

automatically; when one is interrupted, it is placed at the tail of the low-priority

queue and the next one is scheduled. High-priority processes are not time-sliced, and

cannot be interrupted, even by other high-priority processes. A high-priority process

runs till it is deschedules itself or is blocked by an I/O operation.

The transputer's CPU contains only three general-purpose registers, called Areg,

Breg and Creg, arranged as a stack. The transputer also contains a workspace

pointer register called _Vptr which holds the base address of the active process's

workspace. All local variable accesses are offset relative to this register. When a

low-priority process is descheduled the values of _Vptr and the instruction pointer

Iptr are saved, but the contents of the register stack are not.

The instructions in and out are used in implementation of both internal and

external communications in routing software, in takes the address of a data block,

the address of a communications channel, and a byte count as register arguments.

When in is executed to carry out internal communications, the transputer checks the

value in the communications channel word. If this contains mint (the least integer the

transputer can represent), then the o_her process taking part in the communication
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i has not yet rendezvoused. The process doing the in puts its workspace pointer in
t

I the channel word and stores the base address o[ tile data to be transferred in a

! reserved location in its workspace. When the other process involved executes an

out, it finds a valid address in the channel word, so it copies its data into the first

process's workspace and reschedules that process. (If the sending process reaches the

communication first, the reciprocal steps are carried out).

In the case of external communication, the values of the register stack are given

to the controller responsible for the link over which communication is taking place.When both the link controllers involved have been given their orders, they arrange

for data to be transferred without further CPU intervention, rescheduling the com-

municating processes when the transfer completes. While external communication is

slower than internal communication (as link bandwidth is lower than memory band-

width), it retards other CPU activities slightly' by" stealing memory cycles for DMA.

Tiny: An Example Routing Kernel

An example processor-resident router called Tiny is explained in the following

pages [12]. To users, Tiny is a kernel running on each processor, connected to one

or more clients by channels. Each process in the network has a unique user-assigned

client identifier (CID).

Since the networks using transputers have low number of interprocessor con-

nections, and these connections are the ones with the least bandwidth, each link

controller is given its own pair of processes (one each for input and output). Each

client process (i.e. user process doing the communication) is connected to the router

through its own input and output handlers, to decouple the interface procedures from
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Figure 1: Structure of processes in a router of Tiny

the underlying router. These various output link handlers are buffered with FIFO

queues to avoid head-of-line blocking problem. Each routing process is either a multi-

plexer or a demultiplexer, and is referred to as an agent. Through routing of messages

has greater priority over the user's calculations. The demultiplexing agents have the

routing logic which decides where to send messages. Thus the process structure in

Tiny is as shown in Figure 1.
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Internal Structure of Tiny Tiny is made up of several interacting agents on

each processor. Each handles the inp,tt or output half of a link, or a single input or

output channel connecting Tiny to a client user process. Each agent's workspace, or

A-page, contains space for certain transputer instructions and an agent handle used

directly by Tiny. Agents manipulate buffers, represented by B-pages which contain

routing and ownership information and a pointer to the message's data. The part of

B-page manipulated by Tiny is called its handle.

Typing of Messages In Tiny, messages are typed bv sending them on dif-

ferent channels. The channels connecting the process to the router have different

types and thus the process has a multi-channel interface. \Vhen there are multi-

channel interfaces, agents handling traffic from clients to Tiny are the same as those

in single-channel interfaces. An intermediate agent called agelzt_mtdti_rnan is used.

All messages to a client C are sent to its agent_multi_man, which forwards the mes-

sage to the subsidiary agent responsible for the channel through which that message

should be d qivered.

Routing Strategies In the routing of point-to-point messages, two strategies

are used [12] which are given as follows.

• sequential

This strategy guarantees that messages arrive in the order in which they were

sent, which is useful for implementing fragmentation of large messages. The

sequential strategy uses the same shortest path from any through-routing node

towards the destination.

, I ! i i
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• adaptive

This strategy decides locally at each through-rollt, ing node which o[ tile short-

est paths from that node to the destination seems likely to be the quickest.

Using this strategy, Tiny examines the output queues of each of the through-

routing node's appropriate links, and enqueues the message for the links with

the shortest queue.

Interface The interface to Tinv is called PI(T interface, and it copies data

from the user's process into one of Tiny's internal buffers during a send, and copies

back during a receive. The interface provides the user with four functions'

pktRead, pkt Write, pktSeq_Vdte and pktBroadca.st.

The pktRead is a blocking read, and pkt l_'rite and pkt,S'eqlI"rite are non-blocking

writes. The input parameters are the channel #, CID of the source or destination, a

pointer to message buffer, and the size of the message. The functions do not return

any value.

Structure of Agent Processes in Tiny The five different agents used within

Tiny to implement the router are

• agent_multi_man This process demultiplexes messages arriving at a client with

a multi-channel interface, passing those messages to the client's input agents.

Its main loop dequeues a buffer, then enqueues it for a subsidiary agent.

• agent_router_input

This process accepts messages on the input half of a hard link and routes them.

Its main loop dequeues a buffet', gets a message into the buffer, and routes the
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buffer, putting it in another agent's queue.

• agent_router_output

This process handles the output queue for a hard link. Its main loop dequeues

a buffer, sends its contents down the link, then checks if the client has to send

any more messages through any other link, and if not, returns the buffer to its

owner.

• agent_usrrpkt_input

This process accepts messages from a client process and routes them. Its main

loop dequeues a buffer, gets a message into the buffer, makes a header for the
!

message, then routes tile buffer, putting it in another agent's queue.

• agent_usrpkt_output

This process gives a message to a client process and frees the buffer. Its main

loop dequeues a buffer, gives the buffer contents to the user, then checks if any

more messages for that client on any other link, and if not returns the buffet"

to the owner.

Routing of Messages During Initialization, each node builds routing tables

whose structure is as shown below:

] free-ptr ] link indices l routing segments l tables l free space !

where

• free_ptr is an index into the free space used during initialization;
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• the link i'ndices are five indices (one for each physical link and another for a

"pseudo-link" representing the user processes) indicating where in the routing

segments the routing table for the messages entering ttle processor on that link

is located;

• the routing segments contain a status word and a pair of indices into the tables

for each process in the entire network;

• tables are lists of links to which messages are sent.
!

• free space is that part of the table which has not been used.

Each input link has a pointer to a routing table associated with it. These pointers

may indicate the same routing table, or different routing tables. A fifth routing

table is required for routing messages which originate in the user processes on the

transputer. Each link's index indica;es a segment of the form

statusl(tzmto, brdcsto) l...[(txmtn, brdcstr_) I

where stat_,.s indicates whether the table is bad (i.e. Tiny has not built the table yet),

or in an array/index state (before initialization), or has been converted into pointers.

The remainder of the segment contains pairs of indices into tables area. The table

indicated by the first index is a negative-terminated list of the links through which

messages for a particular processor may be sent; if there are several equally short

paths to a processor, the list will contain more than one entry. The table indicated

by the second index is a negative-terminated list of the links through which broadcast

messages from other processors through this processor must be sent.
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Messages are routed as soon as they arrive in a processor based on a 3-word

message header which Tiny keeps in each buffer page. The three entries in this header

are the message source and message destination CIDs, and the message length (in

bytes).

Tiny's first action when routing is to check which routing strategy is being used

by testing the two least significant bits in the destination field of the header. If the

strategy is sequential, Tiny adds the CID of the message's destination to the base

address of the agent's routing segment to obtain the address at which the pointer

to the routing table entry is stored. The entry found at the routing table segment

corresponding to the pointer is the address of the workspace of the agent responsible

for the link through which the message is to be routed. The current agent puts the

buffer in that agent's queue.

If the adaptive strategy is to be used, Tiny accesses the routing table segment as

above, but then examines the lengths of the queues of the agents responsible for the

links down which it could send the message. The message is enqueued for an agent

with a shortest queue length.

To analyze the performance of inter-node communication in Transputer net-

works, two strategies of point-to-point communication are tested [I21.

• messages which read and sent messages on the link directly

• messages sent from user processes using Tiny

If the T(l,b) is the time taken for a message of length b to pass over l links, then

T( I, b) = a +/3l + 7b + 5bl



20
.$

where a is a constant set-up time,/3 is the overhead per link, 7 is the time taken to

move message data from the user to tile router ,xnd back, and _5is the time to transfer

a single byte through a link"

Tests gave

Method a /3 -_ _5

Raw 1.0 16.7 0.0 1.3

Tiny 62.4 41.0 0.1 1.3

To summarize the results, the significant performance differences between Tiny

and raw hardware are the time taken to communicate header information and the

once-per-message cost of protocol generation, whicll a[[ect only the source and des-

tination processors. This is shown by parameter a and is independent of message

length. The differences in d values between Tiny and raw communications shows the

time taken to enqueue and dequeue buffers, and to make routing decisions. The ad-

ditional CPU impact of Tiny on intermediate nodes, which is the difference between

/3raw and [JTiny' is 24.4 #s/node. _/, the multiplier on message size, is very small.

The time is in microseconds and the tests made were for medium-sized messages

(256 bytes).

Communication in iPSC/2 and iPSC/860

iPSC/860, also known as the Intel Touchstone Gamma Prototype is a MIMD

supercomputer in which numerous computational nodes are connected in a hypercube

network. Each computational node in the iPSC/860 consists of an Intel i860 processor

plus memory and communication components. The maximum configuration available

is a dimension 7 hypercube. Each computational node has 8 Mbytes of memory and
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each i860 processor features an integer core unit, pipelined floating point units for

addition and multiplication, a graphics unit, memory-management support, a large

register set, separate instruction and data caches, and 64-bit data paths. With a

clock rate of 40 Mhz, each i860 processor has a peak execution rate of 80 Mflops

(32-bit) and 60 Mflops (64-bit).

The processors in the iPSC/860 communicate to each other via "wormhole"

routing. Hardware is employed to provide efficient message routing between non-

adjacent processors. The network essentially provides circuit-switching (as opposed

to packet-switched, store-and-forward message routing), thus resulting in very little

penalty for nonlocal communication. The peak data transfer rate across hypercube

interconnection network between any two nodes is 2.S ;lbytes per second.

In addition to the 12S complltational nodes, the maximum configuration iPSC/S60

has four I/O nodes each of which has an Intel S0386 processor to access the disks

across the interconnection network. The iPSC/S60 requires a host machine to serve

as its interface to the outside world for program development, resource management,

and external network access. The host machine or System ResozLT'ceManager (SRM)

is an Intel 301 microcomputer which has an Intel S0386/387 pa.ir rttnning at t6 X+lhz.

The link between the SRM and the hypercube network provides a peak transfer rate

of over 1 Mbyte per second.

The computational nodes in the iPSC/860 system run a simple operating system

kernel called NX that supervises process execution and provides buffered, queued mes-

sage passing. Like other MIMD hyercubes, the programming model for the iPSC/860

is based on adding explicit communication calls (send/recv) to serial code written in

conventional programming language (C or Fortran).
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Intel Paragon/Touchstone Delta

In conjunction with a consortium of institutions led bv Caltech, Intel has devel-

oped a massively parallel, distributed memory parallel processor called the Touch-

stone DELTA system. The Intel Touchstone DELTA system is a mesh-connected

parallel processor, consisting of 528 i860 compute nodes, 32 80386 I/O nodes, two

80:186 network interface nodes, six service nodes, and two tape nodes. The Delta

Mesh is shown in Figure '2. Each cornplite node has 16 Nlbytes or" memory and is

connected to a ._Iesh Routing chip (.x,IRC)through a .X,lesh Interface Xlodule (NIINI).

Each MRC channel is S-bits wide and the peak data rate of the communication sys-

tem is 22 Xlbvtes per second. The largest mesh available to an application is 16 x :_;2

[161.

Communication in Intel Touchstone DELTA

Information moves over the interconnection network in the form of messages

contained in fixed length packets. Each packet contains routing information, data,

and an end-of-packet flag. If a messa,,,'_. ,.;_to,) lon,,._for one packet, it is divided up

among a number of packets and is transmitted over the network interleaved with

messages from other nodes.

Mesh Interface Module

The MIM connects the node processor to the associated MP.C. It includes 2048

byte transmit and receive FIFOs and associated logic that provide an &bit interface

to the MRC and a 32-bit interface to the i860 compute node.



Figure 2: Intel DELTA mesh and nodes

The MIM can transfer data to the comptlte node i860 at a rate ot" 26.7 ._lbvtes

per second. The MI.Xlalso provides 32-bit CRC generation and error detection.

Mesh Routing Chip

The Mesh Routing Chip routes messages moving through the mesh at high speed.

There are five ports on each MRC (see Figure 3). Four of them route messages

between routers in the X and Y directions of the mesh. The fifth port attaches

to the node. Each MRC port consists of two byte-wide communication channels.

One channel is for communication into the MRC, and one is for communication out.

Logically, the MRC is self-timed, to avoid distributing a high-speed synchronous clock

over a physically large area.

A sending node transmits one or several packets that contain a message by
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moving the data for each packet fronl tlw no,le's memory to the MR('. Address infor-

mation at the head of each packet is examine_l to determine how to route the packet

through the network depending on the direction bit in the routing information. The

MRC tries to route the packet in the X-direction (east-west). If the X displacement

specified in the first byte of routing information is zero, the MRC strips off that byte

and examines the second byte for Y displ_cement. If the Y displacement is also zero.

the bIRC strips off the second byte of routing information and transfers the packet

to the node connected to the MRC.

If the MRC finds the X displacement specified in a packet to be nonzero, it

routes the packet to the next _llR(' in the X direction. Rollting in the X direction

continues until the X displacement goes to zero. then '_" routing begins. Routing in

the Y direction continues until the '_"displacement goes to zero. then the MR.C rolltes

the packet to the node.

If for any reason the destination node or any of the intermediate MRCs cannot

take a packet, its progress stops. The packet remains queued within the mesh until

the blockage or the condition at the destination clears and the packet can continue.

By the time the packet reaches its destination, the MRC_'s have stripped off its

first two bytes. As the end of packet indicator passes through an MRC_', it releases

the channel that was reserved for the packet.

Each MRC channel has a bandwidth of 65 *{bytes per second. The latency

of the MRC is 75 nanoseconds for messages moving in the same direction and 150

nanoseconds for messages that change direction.
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CHAPTER 3. TAXONOMY OF COMMUNICATION METHODS

Every message-passing multicomputer supports a set of inter-node communi-

cation methods. It is basically the set of supported inter-processor commllnication

methods that make one multicomputer differ from another. A classification of inter-

node communication is based on five dimensions Ill]. The major alternatives with

respect to each dimension are defined below and shown in Figure 4.

1. Communicating nodes. In an application program, a given node may" communi-

cate directly with a number of other nodes. The node may communicate with

either a restricted set of nodes (such as its neighboring nodes) or any arbitrary

node in the system.

2. Connection setup. A conm.'¢:tion is a physical routing path on the network

allocated to carry out one or more communications required by the application

during program execution. A connection may be set up either statically before

program execution or dynamically during program execution.

3. Routing path selection. To build a connection for a given communication be-

tween two nodes, there could be multiple choices for the physical routing path.

The routing path selection can be either deterministic or adaptive. In the de-

terministic case, the route is totally determined by the source and destination
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Figure 4: Taxonomy of Inter-processor Communication Strategies
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address of the connection. In the adaptive case, the route can be selected by the

source node, which originates the con_munication, or by' tile network to avoid

congested nodes on-the-fly.

4. Network flow control. During transmission a message packet may not be able

to proceed to the next node while the next node is busy. Network flow control

is concerned with methods to avoid network queue overflows and underflows in
I

the presence of the possibility that messages may be blocked inside the network.

There are at present four known methods to avoid messages being blocked

• Naive Message blocking can be totally avoided by" starting transmission

only after the entire connection has been set up and the destination node

has acknowledged :,ts readiness to accept a packet. This method has a

relatively long communication latency" (to set up the connection and to

wait for acknowledgment from destination).

• Store-and-forward When arriving at each intermediate node, the com-

plete packet is first stored in the system memory of the node, and then

sent forward to a selected neighboring node when the neighbor is not busy.

Implementation of this method is relatively easy since at any time, at most

two nodes are involved in transmitting a packet. However, the buffering

of the packet consumes memory space and bandwidth of the intermediate

nodes and introduces communication delays.

• Virtual cut-through When the header of a message arrives at an in-

termediate node whose selected output channel is free, the packet will be

directed to the next node immediately. Therefore a message packet is
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buffered at an intermediate node only when its selected outp_lt channel is

busy.

• Wormhole If the blocked messages remain in the network while waiting

for the selected output channel to become available, then the method is

l/Vormhole method. The channels along the route of the blocked message

do not become free for transmission of other messages, but in Virtual cut-

through, they do. Thus wormhole method totally avoids the overhead of

buffering packets in system memories of intermediate nodes. In Wormhole

routing, a message is serialized into a sequence of parallel data units that

we refer to as flow control digits or (flits). A ]tit is tile smallest unit of

information that a queue can accept or refuse [2]. As soon as a node

examines the header flit(s) of a message, it selects the next channel on

the route and begins forwarding flits down that channel. As the fits

are forwarded, the flits of one message may be spread out among several

nodes as the message moves. The communications in a node consists of

a set of queues-one for each channel. The queue of an input channel is

connected to an output channel, and the message flits flow through the

connection, in a pipeline fashion until the entire message has passed. Then

the connection can be broken and other connections made. Since most

flits have no routing information, the fits in a message must remain in

contiguous channels of the network and cannot be interleaved with the

flits of other messages.
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] Network Latency The network latency for both virtual cut-throughI

and wormhole routing [4] is

TfD + LIB = (L f/B)D + L/B,

where Tf is the delay of the individual routing nodes on the path, D is

the number of nodes on the path (distance), and LIB is the time required

for the message of length L to pass through the channels of bandwidth

B, and Lf is the length of each flit. If Lf << L, th distance D has a

negligible effect on the network latencv. Thus cut-throl:gh and wormhole

routing have network latencies which result in a .sum of two terms, one of

which depends on the message length L, and the other of which depends on

the number of communication channels traversed. D. Store-and-forward

routing, on the other hand, gives a latency that depends on the product of

L and D.

Wormhole routing has low network latency' and requires small amount of

dedicated buffers at each node, and therefore is adopted in Symult 2010,

nCUBE-2, iWARP, and Intel's Touchstone project. It is also being used in

some fine-grained multicomputers, such as MIT's J-machine and Caltech's

MOSAIC [41.

5. Buffering at end nodes. For some communication methods, message packets

need to be buffered in the system men:ory at the sending or receiving node, or

at both ends. Some buffering schemes in use are given as follows:

,, When packets can be sent and received only from system buffers, messages

have to be buffered at both ends. At the sending end, packets built in the

i
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user space have to be copied to the svstenl buffer before they can be sent.

Correspondingly, at the receiving end, packets received into tile system

buffer have to be copied to the user space before they can be read. This

type of communication is called station-to-station communication.

• When packets are sent and received from user spaces directly, the commu-

nication is called door-to-door communication. This has smaller commu-

nication latency than station-to-station communication.

• When the application program is allowed to send or consume individual

data items as they are computed or received respectively, the communi-

cation is called program-to-prograHz or systolic communication. Thus the

sending program does not have to build a complete packet before sending

out a single data item, and the receiving program does not have to re-

ceive the complete packet before reading a single item in the packet. This

method has the minimum possible latency since individual data items can

be sent out as soon as they become available at the sending end, and can

be used as soon as they are received at the receiving end. The drawback of

this method is that it requires careful synchronization between the sending

and receiving programs.

Classification of the iWARP, transputer networks, iPSC/860, Intel Touchstone DELTA

and the nCUBE '2, on the basis of the above taxonomy is given in Table a.t. Since

iWARP uses two different types of inter-node communication modes, we have classi-

fied iWARP in two different architectures for the purpose of comparing the commu-

nication methods used. It is interesting to note that every architecture other than

transputer networks uses wormhole routing as a strategy for network flow control.
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Table 3.1' Communication-l>ase(l classification of sotne architectures

C'ommu- Connection Routing Network Buffering "

Architecture nicating setup path flow atend
nodes Selection control nodes

iWARP, '" Restricted Static Deterministic Vvbrmhole_Program-to

Systolic -Program

iWARP, Arbi[rarv Dynamic Deter'ministic Wormhole Station-to

Message-passing or Adaptive -Station

Transputer N/ws Arbitrary Static Deterministic Store-and Door-to

(with Tiny) -forward -Door

iPSC/2, Arbitrary Dynamic Deterministic Wormhole Station-to

iPSC/860 (C lrclllt-S\' ' ) -Station,,,

IntelDELTA Arbitrary Dynamic Deter in_nistic Worn ahole Station-to

(Circuit-S\V) -Station......

nCUBE 2 Arbitrary Dynamic Deterministic \,\"ornahole Station-to

(Circuit-SW) Station...............

The transputer networks use conventional store-and-forward routing.
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CI[APTER 4. IMPLEMENTATION OF COMMUNICATION IN

nCUBE VERTEX O.S

System Architecture

"l'lle topology of the nCUBE '2 supercomputer is an n-dimensional cube in which

tile v_,rt.ices are node processors and the neighboring nodes are linked along the edges

by nl,.ssage-passing communication channels. The nCUBE 2 supercomputer consists

of tll_' t\)llowing basic parts:

. Nodes (Processing Elements)- Tile nCUBE '2 supercomputer is a network of

illdependent CPUs, each with its integrated floating-point unit, local memory,

and communication hardware [10]. Each node runs a complete copy of the

IICUBE '2 Vertex operating system. When executing an application, each node

r_lns a program element, or a local program; the parallel program comprises

all the program elements running on all the nodes allocated for the program.

'l'he nCUBE 2 computer can run several parallel programs simultaneously, with

,,ach program allocated a different collection of nodes. Each node is a sequential

computer operating at 2.5 MFLOPS. The number of nodes is scalable.

• Communication Channels- Each node is linked to the other nodes by hardware-

routed, DMA communication channels. Direct hardware exists only between



34

°$

nearest neighbors in the network, but the communication between distant nodes

is done by wormhole routing techniqtm which makes it possible for the rotlting

to continue without affecting the performance of the intermediate (:PUs.

• I/O Processors- Separate DMA I/O Channels are provided to each node for

transfers to and from I/O processors.

Communication Hardware of nCUBE Processor

The Network Communication Unit (: (.U) built into the n UBE processors

hardware implements automatic cut-through message routing. Messages from one

processor node to another non-neighboring processor node pass through the interme-

diate nodes without interrupting the intermediate node CP[.Ts.

The Network Communication Unit or NCU consists of 28 unidirectional, in-

dependent, direct memory access (D._IA) I/O channels. Each I/O channel can be

directly connected to a corresponding I/O channel in another processor.

The maximum number of processors in an nCUBE 2 hypercube is 8192, which

is a dimension 13 hypercube. This implies that a processor in the highest dimension

hypercube is directly connected to I/O channels (ports) of la other processors.

The 9 _.,8 DMA channels are arranged in pairs Fourteen channels handle input

and fourteen channels handle output, thus providing fourteen full-duplex I/O ports.

Thirteen I/O ports handle communication with other processors in a hypercube of

maximum dimension 13,and one I/O port (called SI port) handles communication

with other hypercube spaces or foreign (non-hypercube) systems.

Each DMA I/O channel has two registers. The DMA address register and

the DMA Count register. The DMA Address and Count Registers are loaded by
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specific instructions in routines in the Vertex O.S. servicing the DMA channel.

Interface between the User and Vertex O.S.

Communication in the nCUBE Architecture is based on message passing. This

is accomplished in a User program by making calls to the nCUBE communication

library.

The nwrite() call is used to send a message, and the nread() to receive a mess;_ge

[9]. The parameters with which nwrite() and nread() are called are processed by the

library call for error and validity. The library call then executes a trap instruction

which directs the program to execute the corresponding trap handling routine within

Vertex O.S. The trap routine psend() buffers the message, creates a header with the

available information from user and the system, and determines the channel through

which the data has to be sent. It then places the message into the queue of messages

for the corresponding channel. The trap routine for the receive checks for a valid

message, if any, in the "received messages" queue for that process, and if the message

has arrived, copies the message into the buffer specified in the parameter of the call.

The actual sending and receiving of the data occur asynchronously by the input and

output message ready interrupts for that channel when generated. These channel

interrupts are generated asynchronously and independent to the CPU.

As soon as the DMA Output Channel has nothing more to send, at the end of

a transmission, the Output Message Ready Interrupt for that channel is generated,

indicating to the CPU that the DMA channel is ready to transmit more messages.

The Interrupt service routine handling the Output message ready interrupt corre-

sponding to that channel then checks if there are any more queued messages to be
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sent along that channel, and if there are any. sends them along that channel.

As soon as the DMA Inp,lt Channel has nothing more to receive, when it receives

an EOT packet, the Input X ,.... .l:ssage Ready Interrupt for that channel is generated

indicating to the CPU that the DMA channel is ready to receive further messages. I

The Interrupt handler then initializes the DNIA Input channel to receive the header

of the next transmission along that channel.

A message at the user level can be divided into more than one message packet in

a transmission. The Vertex O.S. handles each user message as two message packets

in one transmission" a header message packet and a data message packet.

The first 32 bits of the header co,llltin the destination address and destination

mask which are encapsulated by hardware into an address packet. The rest of the

header message packet and the data message packet is encapsulated by hardware as

data packets containing 32 bits of data information in one packet. A communication

path is established by sending an address packet over a channel. The address packet

is then routed from node to node along the channels determined by the following

process. Each processor compares the masked node address with its own processor

ID and sends the address packet out the port number corresponding to the [)it position

of the first difference, starting at bit n + l, where n is the number of the port on

which the message was received. Thus messages are always sent out on a port which

has a number higher than the port on which the message was received. An example

of routing a message through the hypercube is shown in Figure 5.

Once a communication path (consisting of a sequence of channels along a path)

is established, it is reserved for f, lrther data or command packets until an EOT

packet clears the path for other messages. The Vertex O.S. takes care of sending
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Destination = 10l
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Figure 5: Routing in a 3-Dimensional Hypercube

EO_[ packets at the end of each message packet, and sends an EOT packet, once a

transmission is over, by using different instructions to initialize the DMA registers in

each case.

The sending and receiving of data by" D_IA channels is done independent of the

CPU. The DXIA channel starts functioning independently of the CPU execution as

soon as its Count Register is loaded with a non-zero value. The Address register of

the sending DMA channel is loaded with the pointer to the least significant byte of

the next word to be transferred. In the case of a receiving DMA channel, the address

register contains the pointer to the location at which the next word received on the

channel will be stored. The DMA Count register in the output channel is loaded

with the number of bytes to be sent. The instruction used for loading the DMA

Count register determines whether an EOM packet (LPCNT), or an EOT packet
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(LCNT), will be sent after the message packet is sent. As the data is sent, the output

channel DMA Address Register is incremented by the number of bytes transferred,

(olnt e_'- _ . .and the corresponding DMA " _ r._lSt(.r is decremented bv the number of bytes

transferred. When the count reaches zero, an End of Message (EOM) packet or an

End of Transmission (EOT) packet is sent to the receiver, and an Output message

ready interrupt is generated, if enabled. As data is received, the input channel DMA

Address register is incremented bv the number of bytes transferred. Vv'hen an EOM

packet or EOT packet is received, the Inp_lt _Iessage Ready" interrupt is generated,

if enabled.
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CHAPTER 5. COMMUNICATION ROUTINES IN VERTEX O.S.

The fundamental message-passing system provided with nCUBE hypercubes.

., Vertex, handles process loading, execution, file system access, debugging, and statis-

tics on the nCUBE '2 processor. It also handles all interrupts, system calls, and

interprocessor and I/O communication.

The basic message-passing implement, ation in the nCUBE '2 system consists o[

two trap routines, one for send and the other for receive. The actual asynchronous

sending and receiving of the data is imple,nented in two interrupt service routines

handling the Output Message Ready and Input Message Ready Interrupts.

Trap Routines for Send and Receive

The nCUBE 2 Processor uses automatic cut-through message routing to achieve

communication across hypercube without interrupting intermediate nodes CPUs.

This usage of vectored Interrupts for communication reduce the load on the CPU.

The User program calls a communication library routine which executes a trap

instruction psend primarily to enqueue the message into the "send queue" of the

channel along which it has to be transmitted. The Output Message Ready Interrupt

corresponding to that channel, when generated, sends the next message on the queue.

Similarly, the trap instruction for the receive precv is executed primarily to read
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the message, if it has arrived, into the user-specified b,lffer. Tile Input Message

Ready Interrupt for a channel when *en,-'rated enq,mues tile incoming message into

tile process object comrnunication bllffer, which the trap routine scans for the message

specified by the user.

When the above trap instructions are executed by the user program, the current

Program Status Word (PSW) and the Program Counter (PC) are pushed on the

stack (in the given order). The physical vector address (VPC) of the trap handling

: routine occupies the first four bytes at the physical address equal to eight times the

argument of the trap instruction, and the next four bytes are occupied by the new

PSVv' (VPS'_V) for the trap handling ro,ltine. The PS\V register is loaded with the

PS 'v and the VPC is written into the PC. The new PS\V has all interrupts enabled

and the mode bit set to Supervisor mo,te. Thus the instructions in the trap handler

are executed in the supervisor mode.

psend()

When the sending trap instruction is executed, the PC ! jumps to the correspond-

ing VPC which is the address of t).,e,_,t routine. The inptLt parameters for p.se,)d

routine at entry are user-specified and are preserlt ill the registers R0 through R4.

They are in the following order:

• R0: length of message in bytes

• RI: pointer to message data

• R2: pointer to message status byte

• R3: message type
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• R,I: destination

The trap handler does tile following for a single node-to-node message:

• The user-specified pointer of the message data which is really an offset into the

data space of the user process is converted to absolute physical address.

• A user buffer is allocated for the message and a header is constructed (in _ertex

Header Format). The header and the message data are copied into the allocated

buffer.

• The correct channel over which the message has to be sent is calculated, and

all inte,'rupts are disabled.

• The pointer to the allocated b_lffer is q_u__ued at _d_lress corresponding to

sendq(channel), where ctzanttel corresponds to the channel number along which

the message packet is to be physically sent.

• If the channel is idle, then the trap sends the header and sets the state of the

Interrupt handler routine to where it should be after it has sent the header of

a message and has to send the data.

• Interrupts are enabled and the process returns to the user program.

Vertex Queue for Send

The Vertex Communication Area includes a linked list for send messages corre-

sponding to each of the 14 channels. Each linked list entry consists of two words.

The first word stores the pointer to the most recent message put on the queue. The
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second word contains the pointer to the next message on the list. Both are initial-

ized during Vertex initialization to the address of the first word in the linked list,.
i

The Vertex communication area also provides one word per inp_lt DMA channel for

storage of the pointer to the buffered received message.

precv()

The messages arriving over any channel are queued by the Input Message Ready

Interrupt service routine into the process object commltnication buffer. The process

object communication buffer is a linked list of pointers of the. "'received but not yet

read" messages for that process. The trap routine for the receive basicallv does the

following for a single node-to-node message.

• First the entire linked list, of pointers is checked for a valid message (by a call

to plook( ) ),

• If the call to the routine plook() does not find a message of valid type and

source id, then process state is set to "msgwait" that is, the process blocks till

a valid message is found.

• When the valid message is found, the data is copied into the user-specified

buffer, and the source id of the sending node and the type (of message) are

returned in registers.

• The message is then removed from the "receive queue" in the process com-

munication buffer and is deallocated from memory and becomes free for other

incoming messages.
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Input and Output Message Ready Interrupt handlers

Output Message Ready Interrupt (Outrdy)

The Output Message Ready Interrupt corresponding to a port is generated only

under the following conditions:

• The Global Interrupt Enable bit (IE) in tile PSW must be I. (This bit is always

true except in the case when the process executes the Interrupt handlers for

Inprdy, Outrdy and Badecc interrupts)

• The Enable Output Interrupt bit, ([O) in the PSVv" must be l. (This bit is

always true except when the process executes the Inprdy, Outrdv and Badecc

interrupt handlers)

• Output Interrupt Enable Register bit corresponding to the port in use must

be 1. (The trap routine lo,send() or the interrupt handler for Outrdy interrupt

for that port executes an LCNT or an LPCNT instruction and then sets the

corresponding bit to 1, if it isn't already set)

• The Output Message Ready flag corresponding to the port ill use must be 1.

The bit in the Output Message Ready Register corresponding to this port is

set to 1 on processor reset, at the end of a message (EOM), o," at the end

of a transmission (EOT). It is cleared on an LCNT or LPCNT instruction

corresponding to the port number.

The handler for the Output Message Ready Interrupt for a particular Output

port can be in one of the three following states as shown in Figure 6.
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Figure 6: Outrdy Interrupt States
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• sndstO This state is an idle state, which is the state o[ the interrupt handier

when it has no more messages, to send. The. interrllpt handler thus z:_et,_',,"_ '

interrupts, and sets new state to arzd,stO. When tile state of the interrupt

handler is 8ndatO, the only way' the state can be changed to any other state

is when the user tries to send another message which has to be sent over this

channel. In such a case, the trap routine psend() sends the header of the

message over the channel (because the channel was idle anyway), and sets the

new state to and_qtl, so that at the end of transmissioil of the header, when an

Outrdy interrupt is generated, then the iIlterrupt exec_ltes in state .srz(l.stl.

• sndstl If the header of a message is already sent, (either by the trap p.send()

or by the interrupt handler in state snd_t2), then the generation of the next

Outrdy interr_lpt on that channel will direct the Interrupt handler to this state.

In this state, the data of a message is sent from the buffer which is at, the top of

the queue of the messages to be sent, pointed by sendq(channel #). The new

state of the interrupt handler is set, to aTzdat2.

• sndst2 The Service routine for Outrdy Interrupt on e_ particular channel is

entered in state and,st2 when a complete message is sent over the channel.

Therefore, the interrupt handler in this state dequeues the message from the

sendq(channel #). The buffer used for queueing the message is also deallo-

cared, so that it becomes free for buffering other communication messages.

The interrupt handler then checks for any more messages to be sent from the

sendq(channel #). If there is a message to be sent, then the header of that

message is sent along that channe.1, and the new state is set to and_stl. Oth-
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erwise, if there are no more messages to be sent, then the new state is set to

sndstO, which is an idle state, i

Input Message Ready Interrupt (Inprdy)

The Input Message Ready Interrupt corresponding to a port is generated only

under the following conditions:

• The Global Interrupt Enable bit (IE) in the PSW must be l. (This bit is always

true except in the case when the process executes the lnterrupl hancllers for

Inprdy, Outrdy and Badecc interrupts)

• The Enable Input Interrupt bit (II) in the PSW nlust be 1. (This bit is always

true except when the process executes the Inprdy. Outrdy and Badecc interrupt

handlers)

• Input Interrupt EnabLe Register bit corresponding to the port in question must

be 1. (The trap routine prect'() or the interrupt handler for Inprdy interrupt

for that port executes an LCNT or an LPCNT instruction and then sets the

corresponding bit to 1. if it isn't already' set)

• The Input Message Ready flag corresponding to the port in question must be

1. The bit in the Input Message Ready Register corresponding to this port

is set to 1 on processor reset, at the end of a message (EOM), or at the end

of a transmission (EOT). It is cleared on an LCNT or LPCNT instruction

corresponding to the port number.

The message header when received over a particular channel is automatically

transferred to a 'Vertex communication space called "recvbuf" which provides a buffer
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space of 16 bytes of header per inp_tt channel. The interrupt handler for the Inp_lt

Message Ready Interrupt then b,lirers this header in a user bllffer _md all dztta packets

arriving over the channel henceforth until the arrival of the EOT packet are directly

transferred to this user buffer. The pointer to this user buffer then is queued into the

process object communication buffer. The Interrupt handler also prepares the D_IA

input channel to receive the next header transmitted over the channel, by loading

the address of the "recvbufl' corresponding to that channel into the D.klA Address

register.

The handler for the Input _Xlessage Ready Interrupt for' a p_rticular ixll)llt port

can be in one of the two following states as shown in Fig_lx'e 7.

• revst0 _v\:hen the header of a messag_ is completely t'ec_:l_'vedover a channel, l.'e

when the EO_I packet at the end of a header triggers an Inp_lt _lessage Ready

Interrupt corresponding to that channel, the interrupt handler is entered in

rcvstO. Since the header of a message is already received, the interrupt handler

first determines whether the message is a Vertex command messa,,e_._., and it" it

isn't, it gets a buffer from user space. It then butf t_ the header, and sets

the DMA input channel to receive the message data directly into the allocated

buffer, and the new state for the interrupt handler is set to rct'.stl.

• revstl When the complete message is received over _ ch_mnel, the EOT packet

at the end of the message transmission generates an Inprdy Interrupt for that

channel, and the interrupt service routine is entered in the rct,.stl state. The

handler first initializes the corresponding D:klA iilput chemnel to receive the

next header which arrives over the channel, then sets the next state to rcvstO.

If the recently received message was a Vertex control message, then appropriate
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header just received,

EOM interrupt

buffer the header _
tup DMA so that data is

rectly buffered........,, .-'_
i

Complete msg received

/ EOT interrupt

{ Setup DMA to receive next ')

_._ header, if not control msg, queue _/'
_......_e msg in process Q

Figure 7: Inprdy Interrupt States
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] action is taken, otherwise the received message is (llleue(t int,o a '_received hilt

not read" queue whose hea_l is at, offset poj(:omb in the process object tableI

of the current process.

, I
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CHAPTER 6. THE SCALAR COMMUNICATION CALL

User Interface to the Scalar Call

The User program exec"llt_s_"a call to ,c_er_,t(). to send a scalar data to a desti-

nation node. In a C program, the call wollld look like

_,csend( _._end_.str71ct )"

w here

send_struct is a structure of tile; type

struct {

shortil_t sendid; /* destination nodeid _/

shortint sendm.asl,,: /* destination mask */

shortint my_id: /_ source nod(:,id _'/

shortint lype_._TId: /_" type of message */

int dat.(z_scalar: /_' scalar data for send */

}send_struct:

The User program executes a call to screcv() to receive a scalar data from a source

node. In a C program, the call would look like

!
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sc'recv( &recv_struct ).

where

recv_struct is a structure of the type

struct {

shortint sou r,_e_id; /" source node of expected message "/

shortint tgpe_recv" /* expected type of the message */

, int data_scalar: /_" the scalar data for the receive */

}recv_struct"

scsen d ( )

The algorithm equivalent of scse_d() is given below.

scsend()

convert input parameter pointer into real address"

adjust destination in subcube to destination in hypercube:

calculate channel # over which message is to be sent:

i if (channel is idle)
; send complete message structure of 1"2bytes"

set next state for Outrdy interrupt handler of corresponding channel to snd.stO"

enable corresponding interrupt bit in Output Interrupt Enable Register:

restore registers;

return from interrupt;

else

restore registers;

return from interrupt'
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screcv()

The pseudocode for sc'recv 0 is given below.

convert input parameter pointer into real address;

go to step 5;

step 4" decrease sc_co_Ln.t:(count of "received but not read" scalar messages)

if (sc_count == 0)

indicate message not found"

return from trap:

else

step 5: if (source specified = -1)

go to step '2;

else

go to step 6:

step 2: if (type = -1)

read next data in scalar buffer into user-provided buffer;

else

go to step 3;

step 3: if (type of next message in buffer == specified type)

copy next data in scalar buffer into user-provided buffer;

else
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go tostcp4"

step 6: if (source of next message in buffer == specified source)

go to step '2;

else

go to step 4:

!

The receiving of data incoming over the channel into a buffer reserved for each channel

in the Vertex communication are_ is done by tile Inprdv Interrupt Service Routine

for that channel. Since

• the actual arrival of the data ow__ra channel is asynchronous with the execution

of the user program reading the incoming message.

• the channel number over which a particular message is scheduled to arrive is

often not known prior to its arrival.

The actual reception of scalar data over the channel is done by modifying the

Inprdy Interrupt Service Routine to take care of the scalar message when it comes

over the channel.
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NIodifications to Inprdy Interrupt Service Routine

The Inprdy Interrupt Handler for an input DNIA port in the state rcvstl sets

up the channel to receive the header of a message directly into a 16-byte per channel

buffer reserved in the Vertex communication data space. This header buffer is at

an offset recvbuf(channel# × 16) from the start of the Vertex communication data

area. On the arrival of an EOM packet over the channel after the address and data

packets of the header of a message, the Input _lessagc Ready Interrupt (Inprcly)

corresponding to the channel if enabled, is generated. Oil generation of tile Inter-

rupt, the process executes the Service handler of the Inprdy interrupt corresponding

to that channel in the state rc_.,.st0. In this state, the modification to the Inprdv

Interrupt Service Routine takes care of the case of the arrival of a scalar message.

It accomplishes this by looking for a specific sequence of bits in tile halfword at an

offset of 4 from the start of any header arriving on the channel.

In the standard communication header format, tile hMfword at an offset of 4

from the beginning of the header contains the destination process id for the message.

Since there is only one process on every nCUBE processor node in the existing com-

munication call on tile nCUBE, the halfword at, an offset of 4 from the start of the

I header always has 0. Therefore a bit sequence of l's in the highest 14 bits of the

halfword will not have any effect on the normal handling of the Inprdy interrupt.

The Inprdy Interrupt Service Routine for a channel looks for the specific bit

sequence in the halfword at an offset of ,1 from the beginning of any header arriving

on the channel. If the bit sequence is found, a branch is taken to code at recv_sc_int

which specifically takes care of reading in the scalar data into a scalar communication

buffer area reserved in the Vertex communication data area. This is done so that
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the channel can be prepared to receiw_ the next header arriving on the channel.

The scalar commttnication btlffer area coilsist, s of two words per scalar message. A

total of 64 scalar messages can be bllffered before the user program actually executes

a trap to read in the scalar message into the user-specified buffer. The two-word

buffer per message consists of a word for the scalar data, a hal rword for the type

of message, and a halfword for the source nodeid of the message. A halfword in

the scalar communication buffe," (so_count) keeps count of the "received-but-not-vet-

read" scalar messages.

The actions taken by recr_sc_il_t are listed as the following steps.

recv_sc_int"

1. load the pointer to the recently received header into register R0

2. calculate the offset of firsl, enlpty b_ltfer using sc_co_trzt

3. copy scalar data into the empty buffer corresponding to count

4, copy the type and source of the scalar message into the buffer

5. increment sc_count

6. set up the DMA input channel to receive the next header arriving on the channel

7. set next state of [nprdy Interrupt handler for that channel to rc_'st0

8. Set the corresponding bit in the Output Interrupt Enable Register

9. restore the registers

10. return from interrupt

i r I;
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CHAPTER 7. RESULTS AND CONCLUSIONS

In the preceding chapters, we have described various communication methods in

message-passing architectures and their implementation. Tile nlaitl concern during

the development of the low-latency scalar communication call is tile time taken for

execution by the call. In order to mini_nize tile latency of tile scalar communicatiorl

call, first we tried to identify the components of tile call and analyze the time taken

in each of the components.

The user code invokes the functions to send and receive a scalar data by call-

ing sc_send and sc_recv. Both functions take an address parameter which is passed

through the stack. The Vertex scalar send trap handler scsend() takes the address

parameter in register R0. Therefore, it is necessary to execute an instruction to copy

the parameter from the stack to the register R0 before executing the appropriate trap

instruction.

Some experimental execution statistics showed a call and a return on an nCUBE

processor takes 1 to ,3#seconds. A move instruction from stack to register R0 takes 0

to i #seconds. An empty trap instruction takes 2 to :3#seconds. Thus the noa-Vertex

overhead for the scalar call (both send and receive) is 6 FLseconds.

The actual execution of the scalar send and receive from user code takes 27

#seconds and 20 #seconds respectively. Therefore the time taken by Vertex to execute
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Table 7.1' Break-up of latencv of sc.send()

Component N umberof cycles " ' 'l& o,'st6, aseC ycles

to save registers 36 44
in stack

to convert user address 107 1'2'2

to real address

to find actual destination 40 46

id in hypercube
to find the channel 15 i5

number to send on

to check if 'channel 1T lT

is active or not

set up for send 20 26
on DMA channel

to restore interrupts aT 50

to restore registers :36 44

TOTAL .... .30_',_ 36-1

(15.4 #seconds (18.2 izseconds)

the trap routines scsend() and screcv() is 21 #seconds and 1,1 tLseconds respectively.

The component-wise breakup of the latency for the trap handler scsend() is shown

in Table 7.1. The component-wise breakup of the latency for the trap handler

screcv() is shown in Table 7.2.

The discrepancy of the average timings for the scsend may be because of the

following reason. The DMA channel and CPU can both be masters of the bus con-

necting to the memory. When the CPU sends some data through the DMA channel,

the DMA is in control of the bus. During that time, if the CPU has to do any

data transfer, it has to arbitrate for the control of the bus. This arbitration is asyn-

, F,,TI_
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Table 7.2: Break-lip of lat.encv of s,:ser_,t()

.,,

Corrzponent "Vumberofc.!lcles l,l,'orst(_i'a.seCycles
to save registers 40 50
in stack

,, ,,

to convert user address 107 1'22
to real address

to check type and source and 105 125
find which buffer data goes
'i0 restore registers 40 50

..

T OTA L '29'2 34 7

( 1-1.6#seconds (17.3 /Lseconds)

chronous and may take as much as 3 to 5 ttsecon(ts. This discrepancy is not seen in

the timings for screcv because ,screcv does nol, exec_lte any instructions which give

bus control to the DMA.

The temporal overhead involved within Vertex for using scsend() and screcv()

is about 1 /.,second (4 instructions including a branch which is taken) in the Inprdy

Interrupt service routine. The Spatial overhead within Vertex is about ,514 bytes of

Vertex data area for buffering the scalar data when it arrives and before it is read by

the user.

Thus,

• by reducing the header size, so that overhead time for processing the extra

header information is eliminated

• by eliminating the queuing of buffers in the sending processor

• by avoiding the passing of parameters on the stack, and passing parameters
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through registers instead,

• by making the trap routine speciticallv for point-to-point communication

• by not checking for the validity of the user-specified parameters, thus making

the call dangerous

we achieve low latencies in sending and receiving scalar data between any two nodes

in a hypercube, with a message-passing architecture.

i
1

, i i H
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