

10/9/92 JSD
3

Conf - 91081-32

SLAC-PUB--5634

DE92 008461

NEW RESULTS IN THE PARTIAL WAVE ANALYSIS OF THE $K^- \omega$ SYSTEM IN THE REACTION $K^- p \rightarrow K^- \pi^+ \pi^- \pi^0 p$ *

D. Aston,¹ N. Awaji,² T. Bienz,¹ F. Bird,¹ J. D'Amore,³ W. Dunwoodie,¹ R. Endorf,³ K. Fujii,² H. Hayashii,² S. Iwata,² W. Johnson,¹ R. Kajikawa,² P. Kunz,¹ Y. Kwon,¹ D. Leith,¹ L. Levinson,¹ J. Martinez,³ T. Matsui,² B. Meadows,³ A. Miyamoto,² M. Nussbaum,³ H. Ozaki,² C. Pak,² B. Ratcliff,¹ P. Rensing,¹ D. Schultz,¹ S. Shapiro,¹ T. Shimomura,² P. Sinervo,¹ A. Sugiyama,² S. Suzuki,² G. Tarnopolsky,¹ T. Tauchi,² N. Toge,¹ K. Ukai,⁴ A. Waite,¹ S. Williams¹

¹Stanford Linear Accelerator Center, Stanford University, CA94309, USA

²Dept of Physics, Nagoya University, Nagoya 464, Japan

³Dept of Physics, University of Cincinnati, OH45221, USA

⁴Institute for Nuclear Study, University of Tokyo, Tokyo 188, Japan

ABSTRACT

Preliminary results are presented from the first large-statistics partial wave analysis of the $K^- \omega$ system produced in the reaction $K^- p \rightarrow K^- \pi^+ \pi^- \pi^0 p$ at 11GeV/c observed with the LASS spectrometer at SLAC. The analysis is based on the moments of the joint angular distributions of the decay to the $K^- \omega$ system, with subsequent ω decay to $\pi^+ \pi^- \pi^0$. The resulting $J^P = 2^-, 2^+$ and 3^- amplitudes exhibit resonant behavior, and are discussed in the context of the relevant Breit-Wigner fits.

1. Introduction

Although much has been learned about the spectroscopy of the strange meson sector from amplitude analysis of the $K\pi$, $K\eta$ and $K\pi\pi$ systems, the $K\omega$ system has the potential of providing useful information of a complementary nature, especially concerning states of unnatural spin-parity. For example, precise measurements of branching fractions (BF) to $K\omega$, together with results from the $K\rho$, $K\phi$ and $K^*\pi$ channels should provide precise checks of flavor SU(3) symmetry. In this regard, the present analysis constitutes the first high-statistics study of the $K\omega$ system, and yields the most accurate measurements to date of several such branching fractions.

2. Data and Results

Over 10^5 $K^- \omega p$ events have been reconstructed from the reaction $K^- p \rightarrow K^- \pi^+ \pi^- \pi^0 p$ at 11GeV/c observed with the Large Aperture Superconducting Solenoid

*Work supported in part by the Department of Energy under contract No. DE-AC03-76SF00515; the National Science Foundation under grant Nos. PHY82-09144, PHY85-13808, and the Japan U.S. Cooperative Research Project on High Energy Physics.

^tpresented by Y. Kwon

Extended version presented at the Particles and Fields 91: Meeting of the Division of Particles & Fields of the APS, Vancouver, Canada, August 18-22, 1991.

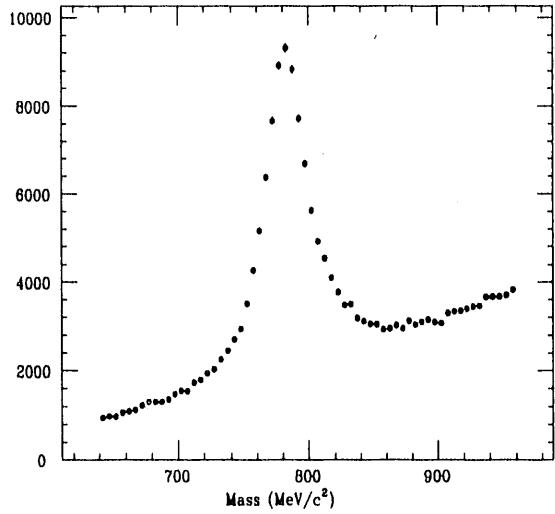


Figure 1: The $\pi^+\pi^-\pi^0$ mass

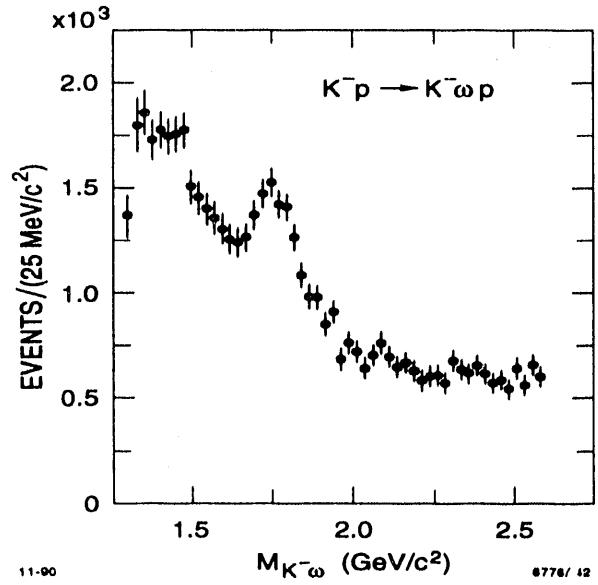


Figure 2: $K\pi^+\pi^-\pi^0$ mass

(LASS) spectrometer¹ at SLAC. Initially, events with 4 charged tracks and net charge zero from the primary vertex were chosen. These events were then subject to geometric and kinematic fits (MVFit). Four-constraint (4C) kinematic fits are used to exclude the $K^-\pi^+\pi^-p$ events; events with good 4C confidence level ($CL_{4C} > 10^{-10}$) are thus removed. Also, the events with bad 1C confidence level ($CL_{1C} < 10^{-2}$) are removed. Particle identification methods using the cylindrical chambers (dE/dx), a time of flight hodoscope and two threshold Cerenkov counters are applied to further purify the data sample. The 4-momentum transfer squared between the target proton and the recoil proton, $t' = |t_{p \rightarrow p}| - |t_{p \rightarrow p}|_{min}$ is restricted to $0.1 < t' < 2.0(\text{GeV}/c)^2$ to select events containing a peripherally produced $K^-\omega$ system; the lower cut-off is made since, for $t' \lesssim 0.08(\text{GeV}/c)^2$, the resulting slow proton almost always does not escape the target.

The $\pi^+\pi^-\pi^0$ mass spectrum shows a clear ω signal (Figure 1), with signal to background ratio about one to one in the signal region ($0.72 - 0.84 \text{ GeV}/c^2$). To remove the effect of the background, the events in the side-band regions ($0.64 - 0.70 \text{ GeV}/c^2$ and $0.86 - 0.92 \text{ GeV}/c^2$) are given weight of -1 in the moments calculation, while those in the ω signal region are given $+1$. The uncorrected weighted moments, representing the joint decay moments of the $K^-\omega$ and subsequently ω into 3π 's, are given by

$$H(LMlm) = \sum_i w_i [D_{Mm}^L(\Omega_1) D_{m0}^l(\Omega_2)]_i.$$

$0 \leq L \leq 6$
$0 \leq M \leq 2$
$l = 0, 2$
$-2 \leq m \leq 2$

Table 1: The double moments indices

The solid angle Ω_1 describes the ω direction in the $K^- \omega$ rest frame, Ω_2 describes the normal to the ω decay plane, and w_i is the above-mentioned weight for the i th event. This background subtraction procedure assumes that there is no interference between the ω and the non- ω 3π background contributing to the moments $H(LMlm)$, and that the background is a linear function of $\pi^+\pi^-\pi^0$ mass; this appears to be a good approximation in general. However, for the $H(0000)$ moment, which describes the $K^- \omega$ mass spectrum, the background is not well described by a linear function. For this moment, the background is parametrized by a quadratic function, and the ω lineshape is fitted to measure the signal contribution. The $K^- \omega$ mass spectrum reconstructed by this method is shown in Fig. 2.

To remove the background due to baryon resonance production, events with $M_{p\omega} < 2.28\text{GeV}/c^2$ or $M_{pK} < 2.0\text{GeV}/c^2$ are eliminated. Monte Carlo samples are used to compute the acceptance correction matrix $A_{L'M'l'm'}^{LMlm}$ in order to obtain the acceptance-corrected moments $H_c(LMlm) = (A_{L'M'l'm'}^{LMlm})^{-1} H(L'M'l'm')$. Using the expressions for the moments in terms of the amplitudes as in the paper by Martin and Nef,² a χ^2 -minimization fit to the $H_c(LMlm)$'s is made to obtain the real and imaginary parts of the partial wave amplitudes. The range of the indices L, M, l, m , are shown in Table 1. The 1^+ wave is dominant in the $K^- \omega$ threshold region and also present in the $1.7 - 1.8\text{GeV}/c^2$ region; its structure is not well-understood at present and will not be discussed further in this preliminary report. Resonant structures are observed for the 2^- and 3^- waves in the $1.7 - 1.8\text{GeV}/c^2$ region, and for the 2^+ wave in the $1.4 - 1.5\text{GeV}/c^2$ region; these correspond to the production of $K_2(1770)$, $K_3^*(1780)$ and $K_2^*(1430)$, respectively. Breit-Wigner lineshape fitting has been performed for these waves.

Figure 3 shows the amplitudes of the 2^- waves. Models using one B-W resonance (solid curve) and two B-W resonances (dotted curves) with the same width value, which was determined from the 1 B-W fit, have been applied to simultaneously fit the three 2^- waves showing peaks, i.e. 2^-0^+P , 2^-0^+F and 2^-1^+F . The results of both fits are shown in Table 2.

The productions of $K_2^*(1430)$ and $K_3^*(1780)$ are compared with the other reactions ($K\eta p$,³ $K\pi p$ ⁴) in the same experiment. Figures 4 and 5 show the intensities of the 2^+1^+D (or D_+) and 3^-1^+F (or F_+) waves in the various decay channels, corrected for the unseen decays. The solid curves represent the B-W resonance fits with the same

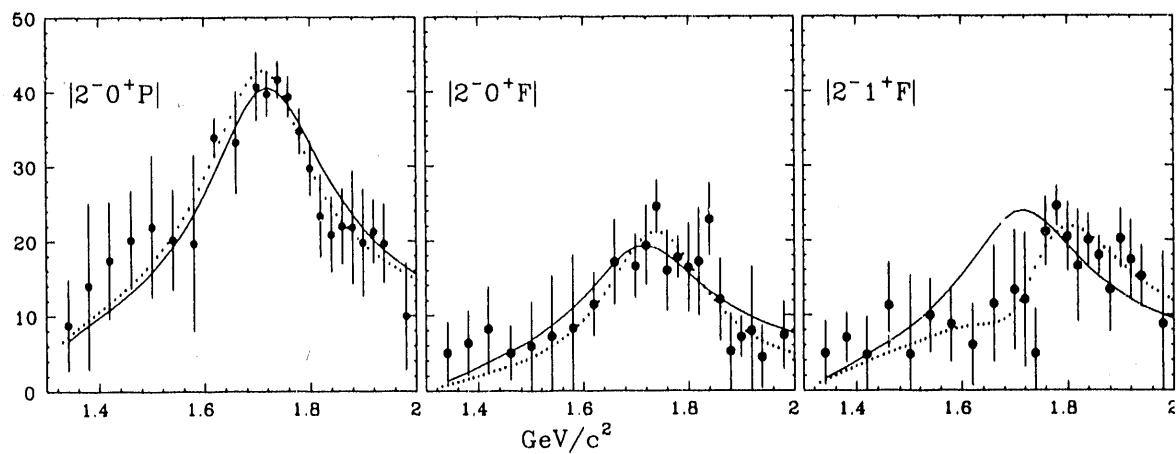


Figure 3: The 2^- wave amplitudes

Fit	Resonance	Mass (MeV/c ²)	Width (MeV/c ²)	$\chi^2/\text{dof.}$
one B-W		1721 ± 9	212 ± 23	53.0/49
two B-W's	1	1731 ± 23	212 ± 23	23.6/43
	2	1770 ± 25		

Table 2: The Breit-Wigner fits to the 2^- waves

Figure 4: $K_2^*(1430)$ in $K\pi$, $K\omega$ channels

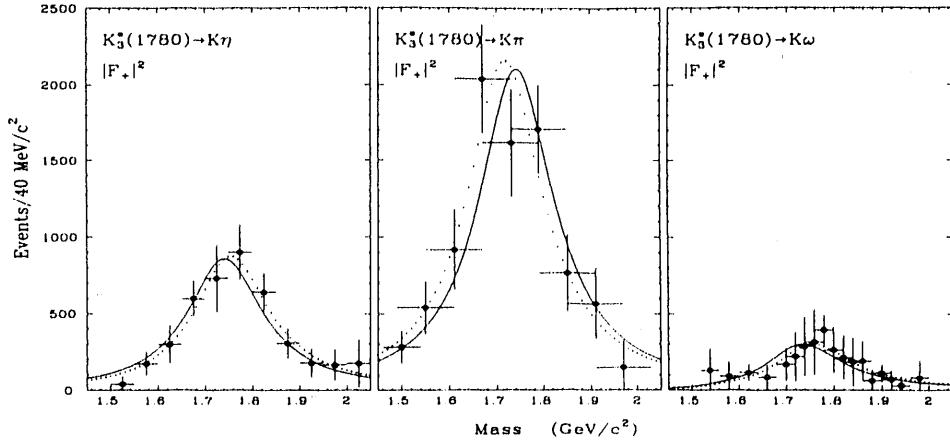


Figure 5: $K_3^*(1780)$ in $K\eta$, $K\pi$, $K\omega$ channels

mode	branching fractions (%)
$K_2^*(1430) \rightarrow K\omega$	1.8 ± 0.3
$K_3^*(1780) \rightarrow K\omega$	2.9 ± 0.4

Table 3: The branching fractions to the $K\omega$ channel

fitting parameters (mass, width and radius factor) for each channel, while the dotted curves show the B-W fits with free mass parameter for each channel. By comparing the peak values of the B-W fits, the branching fractions have been measured to give the following results:

$$\frac{\text{BF}(K_2^*(1430) \rightarrow K\omega)}{\text{BF}(K_2^*(1430) \rightarrow K\pi)} = 3.7 \pm 0.6 \%$$

$$\frac{\text{BF}(K_3^*(1780) \rightarrow K\omega)}{\text{BF}(K_3^*(1780) \rightarrow K\pi)} = 15 \pm 2 \%$$

Then by using the corresponding PDG⁵ values for the absolute branching fractions to $K\pi$, we obtained the absolute branching fractions to $K\omega$ channel as in Table 3.

3. Conclusion

A high-statistics study of the $K^-\omega$ system has been performed using a data sample at least 25 times larger than in any other experiment. Partial wave analysis using 22 partial waves with the $K^-\omega$ system spin up to 3 has revealed $K_3^*(1780)$ decay into $K\omega$ for the first time, and also a clear signal for $K_2^*(1430)$. Branching fractions are measured. The observed resonant structure of the 2^- wave has been studied.

References

1. D. Aston *et al.*, *The LASS Spectrometer*, **SLAC-REP-298** (1986).
2. A.D. Martin and C. Nef, *Nucl. Phys.* **B181** (1981) 61.
3. D. Aston *et al.*, *Phys. Lett.* **B201** (1988) 169.
4. F. Bird, **SLAC-REP-332**, PhD Thesis.
5. M. Aguilar-Benitez *et al.*, *Review of Particle Properties*, *Phys. Lett.* **B239** (1990)

END

DATE
FILMED

4 / 02 / 92

