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Modern Integral Equation Techniques for
Quantum Reactive Scattering Theory

Scott Michael Auerbach

Abstract

Rigorous calculations of cross sections and rate constants for elementary gas
phase chemical reactions are performed for comparison with experiment, to ensure
that our picture of the chemical reaction is complete. We focus on the H/D+H; —
H,/DH + H reaction, and use the time independent integral equation technique in
quantum reactive scattering theory.

We examine the sensitivity of H+H; state resolved integral cross sections
oujtwi(E) for the tramsitions (v = 0,7 = 0) to (v' = 1,5’ = 1,3), to the difference
between the Liu-Siegbahn-Truhlar-Horowitz (LSTH) and double many body expan-
sion (DMBE) ab initio potential energy surfaces (PES). This sensitivity analysis is
performed to determine the origin of a large discrepancy between experimental cross
sections with sharply peaked energy dependence and theoretical ones with smooth
energy dependence. We find that the LSTH and DMBE PESs give virtually identical
cross sections, which lends credence to the theoretical energy dependence.

To facilitate quantum calculations on more complex reactive systems, we
develop a new method to compute the energy Green’s function with absorbing bound-
ary conditions (ABC), for use in calculating the cumulative reaction probability. The
method is an iterative technique to compute the inverse of a non-Hermitian matrix
which is based on Fourier transforming time dependent dynamics, and which requires
very little core memory. The Hamiltonian is evaluated in a sinc-function based dis-
crete variable representation (DVR), which we argue may often be superior to the fast
Fourier transform method for reactive scattering. We apply the resulting power se-

ries Green’s function to the benchmark collinear H+H; system over the energy range



0.37 to 1.27 eV. The convergence of the power series is stable at all energies, and is
accelerated by the use of a stronger absorbing potential.

The practicality of computing the ABC-DVR Green’s function in a polyno-
mial of the Hamiltonian is discussed. We find no feasible expansion which has a fixed
and small memory requirement, and is guaranteed to converge. We have found, how-
ever, that exploiting the time dependent picture of the ABC-DVR Green’s function
leads to a stable and efficient algorithm. The new method, which uses Newton in-
terpolation polynomials to compute the time dependent wavefunction, gives a vastly
improved version of the power series Green’s function. We show that this approach
is capable of obtaining converged reaction probabilities with very straightforward
accuracy control.

We use the ABC-DVR-Newton method to compute cross sections and rate
constants for the initial state selected D+H;(v = 1,5) — DH+H reaction. We obtain
converged cross sections using no more than 4 Mbytes of core memory, and in as
little CPU time as 10 minutes on a small workstation. With these cross sections,
we calculate exact thermal rate constants for comparison with experiment. For the
first time, quantitative agreement with experiment is obtained for the rotationally
averaged rate constant ky=1(T = 310K) = 1.9 x 10713 cm? sec™! molecule™!. The
J—shifting approximation using accurate J = 0 reaction probabilities is tested against
the exact results. It reliably predicts k,=1(T") for temperatures up to 700 K, but

individual (v = 1, j)—selected rate constants are in error by as much as 41%.
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Chapter 1

General Introduction

We are interested in the theoretical study of gas phase chemical reactions
from first physical principles. We accomplish this efficiently and with quantitative
accuracy for the reactions studied. This is a remarkable achievement, both in practice

and in principle.

1.1 First Philosophical Principles

We assume that physics can explain all chemical phenomena. This view-
point, tacitly assumed by most modern scientists, exemplifies a philosophy known as
reductionism [1]. The success of reductionism reported in this dissertation has signif-
icant implications for the authority of philosophies opposed to reductionism. To put
these implications in perspective, we discuss here briefly the holisitic philosophical
stance put forth by Aristotle (384—322 B.C.).

The distinction between Aristotelian philosophy and that of modern science
is somewhat subtle, since Aristotle himself helped to define many fields in modern
science, e.g. mechanics and biology. To illustrate this point, we describe some aspects
of his physics [2]. When Aristotle arrived at Plato’s academy, he found that Plato
did not welcome scientific inquiry. Rather, Plato emphasized the reality of abstract
ideals, which one could comprehend only by avoiding sensory perception. Aristotle

developed a more practical ideology by postulating that reality consists in tangible
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objects which have both essential characteristics (comparable to Plato’s ideals) and
accidental characteristics. For example, it is essential that Scott has a brain in order
to philosphize; but, for the same purpose it is only accidental that he has green eyes.
In modern scientific language, Aristotle’s tangible object is our mechanical system;
his essential characteristics correspond to our Hamiltonian and other constants of the
motion; his accidental characteristics translate to particular values of our dynamical
variables. Thus,.Aristotle gave philosophical grounding to the notion of dynamics,
which has inspired our current mechanical ansatz.

Aristotle, whose father was a physician, was also fascinated by the nature of
living organisms. In his seminal contribution to biology (3] Aristotle emphasized the
importance of the structure—function relationship. He postulated that a biological
structure can be understood fully in terms of the function it provides. For example,
we easily understand the structure of a bird’s wing given the bird’s inclination to fly.
However, if birds were to swim rather than to fly, the wing structure would become
mysterious since it is ineffective for this purpose. Furthermore, it does not provide
explanatory value, for Aristotle, to reduce conceptually the wing to bone, muscle,
feathers, etc., because we find these biological structures in organisms which cannot
fly. In short, Aristotle felt that function is philosophically more fundamental than
structure; he thus put forth a holistic biology in which complex structures are under-
stood in terms of the function they provide, rather than in terms of their constituent
parts.

This mode of explanation is ubiquitous in modern biological studies. How-
ever, although this explanatory methodology proves useful to many biologists, their
philosophy differs fundamentally from Aristotle’s. In particular, most biologists be-
lieve that structure is philosophically more fundamental than function. For example,
a modern biologist might analyze the chemistry of wing muscle from a hawk wing and
a chicken wing to explain why the former can fly whereas the latter cannot. In general,
most biologists believe in principle that chemistry can explain biological phenomena,
although this may be difficult in practice, and hence not yet completely achievable.
Taking this reductio ad infinitum, the modern scientist believes that the most com-

plex phenomena can be explained by the most fundamental principles. Thus, the
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reductionism of modern science stands in stark contrast to the holism of Aristotle.

Both philosophical viewpoints have strengths and weaknesses. For example,
Aristotle’s holism provides a stunningly simple explanation for very complex struc-
ture. Unfortunately, in its simplicity it borders on tautology. On the other hand,
developing a reductionist explanation often presents great difficulty. In addition, it
poses the theological dilemma of reducing humanity to collections of fundamental
particles. However, reductionism provides a less tautological explanation of observed
phenomena. Since reductionism presents difficulty in practice, any instance of its
successful implementation is remarkable. In this vein, we note in addition to the
present work, a recent use of chemical physics to explain biological function in pho-
tosynthetic electron transfer [4]. It thus appears that the reductionist viewpoint is
presently in vogue because it provides a mechanical, non-tautological explanation of
natural phenomena.

At this point the author must take a stand. My love for physical chemistry’s
particular version of the reductionist endeavor leads me to believe that chemistry
can be reduced to physics. However, in spite of mounting evidence for biological
reductionism, it is difficult for the author to conceive of himself as nothing more than
a bag of particles. As such, the author must advocate biological holism despite the
burdensome paradox this presents. With these sentiments expressed, we proceed with

physical chemistry.

1.2 Molecular Beams and Collision Theory

Physical chemists have long sought fundamental understanding of how mole-
cules transform during chemical reactions. The development of molecular beam tech-
niques [5, 6] beginning in the 1950’s has facilitated the observation of bimolecular
chemical reactions at the most microscopic, single collision level of detail. The ideal
molecular beam scattering experiment involves a collision between reactants prepared
in a well defined relative momentum and internal state, giving scattered products
whose internal state is detected at a particular scattering angle. Although such a

measurement has never been performed, experimentalists have made great progress
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toward this ideal experiment.
The observable quantity in molecular beam experiments is called the differ-

ential reaction cross section dop,n,(v,$2)/dQ defined by (7]

N(n,, )
df x [dow,n,(v,0)/d| = F((EP_J
where N(n,,) = number of products in state n, detected per

unit time in solid angle range (2,2 + dQ2)
(i.e. spherical flux),

and D(n,,v) = number of reactants in state n, with velocity
v crossing unit area per unit time

(i.e. planar flux). (1.1)

As such, the units of don,n,.(v,2)/d) are area per solid angle. Another important
observable is the integral reaction cross section op,n,(v), which in subsequent chap-

ters is simply referred to as the reaction cross section. This quantity is defined by

[7]
Onpm, (V) = / dQ x [do,n, (v,2)/d9)] (1.2)

where

[da= /_:l dcos @/0" d® = 4r. (1.3)

Experimentalists measure integral reaction cross sections most directly in a bulb ap-
paratus which does not detect the scattering angle dependence of product formation.
A physical interpretation of the integral reaction cross section is the circular area
centered at the target (i.e. one reactant collision partner) which, when crossed by the
projectile (i.e. the other reactant collision partner), leads to a chemical reaction.

To illustrate these definitions, we consider a collision between two hard
spheres (HS) with radii r, and r,, yielding a total hard sphere radius r = r; + 7.
The HS differential reaction cross section is /4, independent of scattering angle.

The HS integral reaction cross section is 7r?, consistent with circular area of radius
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r. Both the HS differential and integral reaction cross sections are independent of
the relative velocity v because the HS interaction has no finite energy scale. The
HS model grossly oversimplifies the collision event because actual molecular collisions
involve continuous, anisotropic forces. Nevertheless, the HS model proves useful for
estimating effective molecular sizes.

Molecular beam and bulb experiments have two goals. First, reaction cross
sections can be transformed into reaction rate constants, which provide important
kinetic information regarding chemical reaction rates. The rate constant with reactant
state selection may be particularly important for technological applications. Indeed,
a chemical mixture which reacts exothermically from one reactant state, and is inert
from all other reactant states might provide a useful energy source to complement
fossil fuels. For more fundamental reasons, we focus on the initial state selected rate
constant for the D+H,; — DH+H reaction in Chapter 5.

Molecular beam and bulb experiments also provide detailed information re-
garding the basic forces which control chemical reactions. Knowledge of these forces
affords more profound understanding of the collision event, and may facilitate study-
ing similar reactions in solution or on solid surfaces. Various authors refer to the
process of surmising force laws from cross section data as inverse scattering or as the
inversion problem. In the simple case of elastic scattering (i.e. collision partners with
no internal structure), we can deduce the underlying force law in a straightforward
manner from cross section data because the force is central. Large velocity cross
sections provide information about steep repulsive walls at small relative separations,
whereas low energy scattering gives information regarding attractive wells and long
range potential tails.

Inverse scattering for more complicated collisions poses the challenge of con-
structing multidimensional potential functions, an arduous task for which no unique
method of choice exists. Nevertheless, physical chemists can infer much of the un-
derlying dynamics by studying how cross sections vary with reactant selection and
product detection. (In this dissertation we focus on integral reaction cross sections,
and hence do not consider the study of angular distributions.) For example, examining

the product state distribution, i.e. on,n,(v) vs. n,, indicates the extent of energy flow
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from reactant vibrations and rotations to those of the products. This analysis may
lead to general principles in reaction dynamics. For example, the collinear Polanyi
rules [7] predict that an early (late) barrier reaction is more efficiently promoted with
translationally (vibrationally) excited reactants, yielding product state distributions
which are vibrationally (translationally) hot. In addition, the dependence of integral
reaction cross sections with initial translational energy indicates the presence of re-
action barriers, and gives qualitative information about reaction timescales. With
regard to the latter, sharp energy dependence signifies the formation of a collision
complex, with the width of the sharp feature inversely proportional to the lifetime
of the complex. Reaction dynamicists strive to observe such features (known as res-
onances), because they elucidate the energy level structure of the reactive transition
state. In Chapter 2 we use both energy dependence and product state distribution
analysis to examine H+para—H,; — ortho—H,+H cross sections at relative velocities
for which a recent bulb experiment has reported formation of an Hj collision complex
[8].

Theoretical reaction dynamics can contribute on many levels to our under-
standing of chemical phenomena. Occasionally, for example, theory can calculate an
observable quantity which cannot be measured accurately. Since most dynamics ex-
periments measure relative populatioﬁs, theory can calibrate them by calculating the
absolute cross section for a particular transition. On a more important level, theory
contributes to our understanding of chemical phenomena by direct comparison with
experiment. Comparisons with approximate calculations are indispensable in deter-
mining which aspects of the underlying physics control the reactivity. Alternatively,
comparisons with accurate calculations help to ensure that our picture of the chemical
reaction is complete. In this dissertation, we develop and apply accurate theoretical
methods for describing electronically adiabatic atom—diatom reactive scattering.

Quantum mechanical reactive scattering theory [9-11] (QRS) provides the
physical principles we use to represent reactive molecular collisions. Implement-
ing QRS for electronically adiabatic collisions involves two steps: solving the elec-
tronic Schrodinger equation for various molecular configurations yielding a Born-

Oppenheimer potential energy surface (PES); solving the resulting nuclear Schrédinger
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equation yielding the stationary scattering wavefunction. We do not focus on the elec-
tronic problem because we study molecular systems (H+H, and D+H;) for which a
very accurate PES is known. Nevertheless, this is a crucial step in the accurate
description of a molecular collision {12].

An asymptotic analysis of the scattering wavefunctio.. demonstrates the re-
lationship between QRS and the differential reactive cross section. To make this
relationship concrete, we define for an /V atom reactive system with chemical arrange-
ments labeled by 7, a set of 3NV dimensional Jacobi scattering coordinates (x, R.,q-)
for each chemical arrangement. We remove the center of mass vector x leaving 3N —3
coordinates. The three coordinates R, are the scattering coordinates, i.e. the vector
which joins the centers of mass of the two collision partners. The radial scattering
coordinate is R, = |R,|. The 3N — 6 coordinates q, define the internal motions,
i.e. the vibrations and rotations of both collision partners. The stationary scattering
wavefunction ¥f;_ is labeled by a collection of quantum numbers N = (k,n) which
defines the initial momentum and internal state, respectively, in reactant arrange-
ment 7. The total system energy E = E, + e, where E; = A%k%/2u, = K*k|?/2u,
is the initial relative translational energy, and ep is the initial internal energy. (We
occasionally denote the total energy by E,, for clarity.) The collision conserves total
energy, which then defines a space (the “open channel space”) of energetically acces-
sible states in which reactants and products can be observed after the collision. These
final states are labeled by N'7’ € open where N’ = (k',n’) satisfies E = k%k2/24..
+ en = BYK'|? /20 + en. The scattering angles O define the rotation from the
initial momentum direction k/k to the final momentum direction k'/k’. With these
definitions, the asymptotic form of the wavefunction is:

lim W T(RT” qf’) = ¢n1"(q‘r') eik.RT' 51-',1-

100
iK' Ry

+ Z ¢n’7"(Qr')

N'+'copen !

FNr N (1.4)

The first term is a plane wave of incoming reactants in channel N7, and the second
term is a sum of outgoing spherical waves in all open channels. The asymptotic

scattering amplitude fNi» N-, which has units of length, can also be expressed as
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furrrne(v, ). Evaluating the numerator and denomerator of Eq. (1.1) using quantum

mechanical fluxes, the QRS differential reaction cross section is given by:
Ao ne (0, Q)/dQ = | faierne (v, Q)2 (1.5)

The task in QRS, then, is to compute the asymptotic scattering amplitudes given the
system masses and the PES.

Before describing strategies for solving the QRS problem, we transform the
scattering amplitude to simplify subsequent discussion. In particular, the scattering
amplitude we compute in practice is an element of the unitary S—matrix for fixed

total angular momentum J. This quantity is related to the usual scattering amplitude
fnlflln»r(v, Q) 'Uid [13]

1 (=<}
furne(0,92) = o= 3(27 +1) Dj x(2,0,8) [Siinr(E) = Suinbrs] ,  (1.6)
J=0

where K, K’ are projection quantum numbers of total angular momentum along the
initial and final propagation directions, respectively, and D%, . (a, 8,7) is the Wigner
rotation matrix (please see Chapter 5 for details). Since the S—matrix is unitary, we

may interpret the square moduli of its elements as probabilities. We define

PnJ,,,'nT(E) = !S,Jl,r,_m(E)‘2 is the state-to-state reaction probability (7' # 7)
P (E) = > Pl.n.(E) is the initial state selected reaction probability
nlfl
N/(E) = Y. P](E) is the cumulative reaction probability. (1.7)
n

[N7(E) can exceed unity and thus is not strictly a probability.] These quantities take
on great importance in the subsequent discussion. We now survey traditional and

modern computational techniques for solving the QRS problem.

1.3 Theoretical Practices Old and New

The QRS problem poses unique challenges which make otherwise useful
quantum mechanical methods fail. This difficulty arises from the multi-arrangement

nature of the reactive collision event (please see Fig. 1.1). For example, although
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the self consistent field (SCF) approximation gives qualitativcly correct results for
electronic energies [14], an SCF reactive scattering wavefunction fails miserably be-
cause translation and vibration exchange roles from one arrangement to the other,
as shown in Fig. 1.1. In addition, perturbation theory [i.e. the distorted wave Born
approximation (DWBA)] is accurate only for uninteresting energy regimes [15], and
requires the calculation of a relatively sophisticated inelastically distorted reference
system [16]. Thus, the QRS problem is recalcitrant to a simple solution.

Solving the QRS problem is also qualitatively more difficult than the sin-
gle arrangement, i.e. inelastic scattering calculation. In this simpler case, we may
use a single coordinate system (R, q) and asymptotic basis {¢n(q)} to represent the
scattering wavefunction, which facilitates the well known coupled channel (CC) ex-
pansion [17]. The radial dependence of the scattering wavefunction is determined by
approximating the second derivative on a grid, using the resulting recursion relation
to propagate the CC equations from small interparticle separations. Propagation
to large interparticle separations gives the scattering amplitudes coupling all open
channels for a given total energy. This is probably the most traditional approach
of calculating numerically exact multichannel scattering amplitudes. A generaliza-
tion of the inelastic CC calculation to the reactive case was proposed by Miller 18],
wherein a simultaneous basis set expansion in all chemical arrangement Jacobi coor-
dinates defines the CC space. Unfortunately, the reactive couplings give an effective
nonlocal exchange interaction which precludes direct propagation of the reactive CC
equations. Thus, the simultaneous use of several coordinate systems within the CC
expansion does not lead to a tractable calculation; hence solving the QRS problem
requires either developing a more general coordinate system, or rethinking the CC
scheme.

The first accurate cross section calculation, performed by Schatz and Kup-
permann [19] in 1976 on the H+H, reaction, involved a sufficiently complicated vari-
ant of CC propagation that its successful implementation was restricted to H+H, at
low energies (i.e. no vibrational excitation). Nevertheless, this work represented a
breakthrough in QRS. Indeed, one may view as an outgrowth of this work a general

coordinate system which allows straightforward reactive CC calculations. This coor-
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Figure 1.1: Contour plot of the Liu-Siegbahn-Truhlar-Horowitz potential energy sur-
face for the H+H; reaction. The coordinate B is the reactant scattering coordinate,
and r is the reactant vibrational coordinate. The portion for large R is the reactant
entrance valley, the portion with both R and r small is the reaction barrier region,
and the portion for large r is the product exit valley. We note that the scattering
and vibrational coordinates approximately exchange roles upon eaction. This strong
coupling presents difficulty to otherwise useful quantum mechanical methods.
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dinate system, called hyperspherical coordinates [20, 21], uses a “vibrational angle”
to smoothly vary from one chemical arrangement to another. The hyperspherical
coordinate propagation (HSP) method has seen the most general use by application
theorists, and hence may be considered the GAUSSIAN of QRS. A technical diffi-
culty with HSP is that, unless the system masses satisfy certain criteria, the basis set
must span vast regions of unimportant space. Indeed, HSP has been applied most
frequently to heavy—light—heavy atom—diatom reactions. For this reason, various
groups continued to search for more flexible solutions to the QRS problem.

A flurry of activity began in 1986 using Miller’s 1969 formulation [18] when
theorists realized how to use scattering variational principles [22-24] reliably to com-
pute the radial function. As a result, accurate cross section calculations were reported
for the H+H,; reaction and its isotopic analogues, in addition to the important F+H,
system, all over a wide range of energies [25]. We perform sensitivity analysis of
H-+H; scattering resonances in Chapter 2 using the S—matrix version of the Kohn
variational principle [22]. We discuss briefly the philosophy behind this approach.

Since the use of multiple arrangement coordinates precludes CC propaga-
tion, the radial function must be expanded in a basis set. The variational principle
simply gives a prescription for choosing the expansion coefficients, in addition to the
helpful property that the variational S—matrix elements are invariant to first order
error in the scattering wavefunction. In general, to expand the scattering wavefunc-
tion in a radial basis set requires the use of both L? basis functions and extended
basis functions. The L? basis functions provide the flexibility to represent the wave-
function in the interaction region, whereas the extended functions enforce the asymp-
totic boundary conditions. Solving the Schrodinger equation with enforced scattering
boundary conditions is tantamount to solving the corresponding integral equation
with a Green’s function [26]. Indeed, we demonstrate in Chapter 2 that the Kohn
variational S—matrix can be expressed in terms of a variational approximation to the
scattering Green’s function [27]. The success of these variational calculations suggests
that the Green’s function approach to QRS, in addition to its formal utility, is an
important computational tool. We pursue this idea in Chapters 3—5 by developing
efficient integral equation techniques for QRS.
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Until now we have discussed only time independent techniques for solving
the QRS problem. This has long been the traditional approach. In the last few
years, though, there has been tremendous progress in solving the time dependent
Schrédinger equation [28, 29). Time dependent wavepacket propagation is now a
well established methed for solving the QRS problem, able to handle challenging
reactions such as the F+H, system [30]. In fact, we borrow ideas from the time
dependent approach throughout this dissertation.

As we have shown, several approaches for exact reactive scattering calcula-
tions are currently available. By construction, all of those discussed involve deter-
mining the state-to-state scattering amplitudes. In extending exact theory to larger
systems (i.e. four or more atoms), it may not be appropriate (or possible) to study
chemical reactions in such detail. Indeed, a theoretical framework based on the direct
calculation of averaged reaction probabilties should be more applicable to larger sys-
tems. Transition state theory provides a very useful, albeit approximate framework
for calculating averaged reaction probabilities [31]. To quote a 1976 review article
[32] on “quantum transition state theory,” we wish ...

... to use the fundamental assumption of transition state theory to sim-
plify quantum mechanical scattering calculations by imposing boundary

conditions on the scattering equations that take advantage of the “direct”
nature of dynamics in the saddle point region.

In Chapters 3—5, we develop and apply a new Green’s function formulation of QRS
which fulfills this 17 year old wish. We augment the physical Hamiltonian with a
negative imaginary potential to absorb outgoing flux emanating from the saddle point
region. The absorbing boundary condition (ABC) formulation of QRS allows the
direct calculation of the cumulative, initial state selected, and state-to-state reaction
probabilities, with concomitant amounts of computational effort.

The ABC method reduces the scattering problem to the determination of
the ABC Green’s function (G), a matrix inverse. Although formally this is just as
computationally demanding as full diagonalization, the initial state selected formalism
only requires a single column of G. Iterative methods, which require very little core

memory, can be used to compute a single column of G rapidly. We develop an iterative
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method especially suited for the calculation of G in Chapters 3 and 4, which evaluates
G as the half-Fourier transform of the propagator. As we will show in Chapter 5, we
are able to converge initial state selected reaction cross sections for D+H, using the
new method in 10 minutes on an IBM RS/6000.

1.4 Looking Ahead

We use in Chapter 2 the Kohn variational S—matrix formalism to probe
the sensitivity of H+H; cross sections to small changes in the PES, to help resolve
a discrepancy between experiment and theory over a possible H3 collision complex.
We find the reactive scattering calculations to be very robust, and thus trust their
predictions.

We develop in Chapter 3 a time dependent calculation of the ABC Green’s
function on a grid, called the power series Green’s function (PSG). We compute the
cumulative reaction probability for the collinear H+H, test problem. The similarity
of our approach in Chapter 3 to modern path integral methods is also discussed.

We discuss thoroughly in Chapter 4 the feasibility of time independent ap-
proaches for computing the ABC Green’s function. We eventually come full circle,
in the end developing a technique called the Newton algorithm similar in spirit to
the PSG, but vastly improved in efficiency. We test the Newton algorithm on the
calculation of initial state selected reaction probabilities for the three dimensional
D+H; reaction, and find both rapid convergence and strict accuracy control.

We apply in Chapter 5 the ABC-Newton machinery to calculating the D+H,
(v =1,7) initial state selected cross sections and rate constants. We find remarkably
rapid convergence of the quantum calculations, and for the first time obtain quanti-
tative agreement with experiment for the initial vibrationally excited rate constant
kv=1(T = 310 K).

Finally, we conclude the dissertation in Chapter 6 with a summary of the

research reported, and with suggestions for future work.
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Chapter 2

Sensitivity Analysis for H4H,

2.1 Introduction

The last few years have seen dramatic advances in the rigorous theoreti-
cal description of elementary chemical reactions, i.e. in exact quantum mechanical
reactive scattering calculations [1-6]. These theoretical developments are especially
timely because of parallel advances in experimental studies of elementary reactions
[7-12]. Several groups have reported new studies of the H+H,, D+H,, and H+D, re-
actions, and this makes possible comparisons of unprecedented detail between theory
and experiment. Most intriguing are the integral cross section results of Nieh and
Valentini {10, 11] for the reaction

H + para—H,(v = 0,5 = 0) — ortho-H,(v' =1,;' =1,3) + H (2.1)

which show significant discrepancies with the theoretical results [13]. Figure 2.1, for
example, clearly shows that for the (v = 0,7 = 0) to (v = 1,5’ = 1) transition,
Nieh and Valentini report a prominent scattering resonance at 1.2 eV, in significant
disagreement with the theoretical results. The experimental findings are the first
of their kind, and therefore are in need of confirmation. The theoretical results, on
the other hand, have been confirmed independently by two other groups [14, 15]
and have been performed on what is thought to be a very accurate potential energy

surface (PES) for this reaction — the Liu-Siegbahn-Truhlar-Horowitz [16, 17] (LSTH)
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PES. Nevertheless, the discrepancies are so large that they may indicate anomalous
sensitivity in the quantum calculations to the accuracy of the PES. The goal of the
present Chapter is thus to begin to analyze our reactive scattering calculations for
such extreme sensitivity to features in the PES.

A general goal of such analysis, generically referred to as sensitivity anal-
ysis [18], is to relate features in the PES to the resulting dynamical properties. To
this end, several general methods may be considered. A simple type of sensitivity
analysis involves brute force comparisons, in which dynamical calculations are car-
ried out with different potentials [19-22]. One then relates the difference between
the dynamical results (e.g. state-to-state cross sections) to the difference between the
potentials (e.g. near the barrier heights) in order to characterize the sensitivity. The
brute force method has the benefit that the full effect on the dynamics from changing
the potential can be observed. However, this sensitivity is determined by the par-
ticular PESs chosen for study, and is therefore a function only of those potentials.
A complementary method is functional sensitivity analysis [23] in which the effect
on the dynamics of a first order functional variation to a reference PES is studied.
The sensitivity is approximated by the first order functional derivative of the cross
section with respect to the PES. Since this sensitivity function depends upon molec-
ular coordinates, it indicates (to first order) which molecular configurations are most
important for a given dynamical process.

In the present Chapter, we begin to probe the sensitivity of the quantum
scattering calculations to the accuracy of the PES using a brute force comparison.
In particular, we wish to know how a small change in the PES near the barrier will
affect the integral cross sections for the transitions in Fig. 2.1. To determine this,
we have calculated representative partial cross sections for the (v = 0,5 = 0) to
(v = 1,5 = 1,3) transitions over a wide range of energies using the LSTH and
double many body expansion [24] (DMBE) ab initio PESs. The DMBE PES is an
interesting surface for comparison because, for the present purposes, it differs from
the LSTH PES most significantly in the barrier height regions of both collinear and
noncollinear Hj configurations. The quantitative details of the difference between the

two PESs are discussed below. The calculations were carried out using the S—matrix
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Figure 2.1: Experimental and theoretical integral cross sections for the H+H, transi-
tions (v = 0,7 = 0) to (v = 1,7’ = 1,3) in reaction (2.1) as a function of total energy.
The solid curve and open points are for the final state (v' = 1,;' = 1), and the bro-
ken curve and solid points for final state (v’ = 1,;' = 3). The experiment measured
absolute cross sections, for which there is good agreement with theory. However, the
sharp features in the experimental energy dependence are not matched by theory.
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Kohn variational method that has been described in detail in previous publications 5,
25, 26]. We briefly review this approach for quantum reactive scattering below [27].
In addition, we demonstrate how to apply functional sensitivity analysis within the
S—matrix Kohn framework. We report the cross section calculations resulting from
the two PESs for total angular momenta J = 0 and 10. We find that the theoretical
cross sections do not change significantly when the LSTH PES is replaced by the
DMBE [28]. This suggests that the theoretical prediction — that there is no sharp

resonance in the H4+H, integral cross section — may be correct.

2.2 S—matrix Kohn Formulation

We introduce the S—matrix version of the Kohn variational principle (KVP)
for a reactive system with chemical arrangements labeled hy 7. For each arrangement
we have a radial scattering coordinate R, and internal coordinates q,. A simple way to

start is by writing a reactive S—matrix element in the distorted Born representation:

Swrne(E) = Snirne(E)
7~ . .
+ +(anlH - ElYL,)
?

t o3

((H = E)pg|GH(E)(H - E)pt,). (2.2)

In Eq. (2.2), G*(E) = lim_o+(E + ie — H)~1 is the scattering Green’s function with
outgoing wave (i.e. “+”) boundary conditions. Also, &I,(R,,q,) i1s a trial wave-
function which can be anything from a free wave to the exact reactive scattering
wavefunction, as long as it has the following boundary conditions:

lim, 97, (Rr,qr) = 0

R, —0%

lim 3 (Rrq) = 3 feldd)
Rr-+00 n'r'€open Un'y!

X {_e""’kn’r’Rr' n’,nér’,f + eiknlrerl g’n'r’,nT(E)} 3 (23)

where §n:,"m(E) is a unitary reference S—matrix. That is, .S:n:.,:,n,.(E) 1s the reference

asymptotic amplitude associated with the trial wavefunction J)K,(R,,qf). In Eq.
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(2.3), #n-(q-) is an eigenfuction for the internal motions of the system in arrangement
T, vnr 1s the asymptotic translational velocity for total energy E in channel nr,
and the sum is over all open channels at total energy E. If ¢} (R,,q.) is exact,
Eq. (2.2) trivially gives the exact S—matrix, since Snirn-(E) is exact and (H —
E)|i,) vanishes. In general, as long as G*(E) is exact and ¥ (R., q,) satisfies the
boundary conditions in Eq. (2.3) with Spi nr(E) being unitary, the distorted Born
representation of Sp/r n.(E) is exact regardless of the quality of the reference system.

The computational challenge in quantum scattering theory can be discussed
in terms of Eq. (2.2). As mentioned above, the trial wavefunction can be anything
from a free wave to the exact scattering wavefunction. If one devotes the compu-
tational effort to make &;,(R,,,q,) exact, then no effort is required to evaluate the
Green’s function in the third term in Eq. (2.2), since that term does not contribute.
Alternatively, if IZ,*;,(R,,q,) is a free wave, i.e. 5'nr,:,n,(E) =0 or 5’n/,,,n,.(E) =
6n'nbr1», the Green’s function is required over a relatively large region of space. An
intermediate case, which may be the most practical, is where a partially distorted
wave and the Green'’s function over a small region are used to obtain the S—matrix.
We will pursue the free wave — Green’s function approach later in this dissertation.

The philosophy behind the KVP is to variationally optimize 97 (R.,q,)
based on making the first two terms in Eq. (2.2) stationary, and neglecting the Green’s
function term. In addition to giving a prescription for obtaining ¥ (R,,q.), this
gives an approximate S—matrix which is invariant to first order error in IZ);:,,(R,, q-).
The KVP gives

. ~ 7, . . .
Sl]':’v"/'f;lr(E) = ext Sﬂ""vnf(E) + 'ﬁ'(w;’r'lﬁ - El’l/);;.)} ’ (24)

where “ext” means extremize (not minimize because SKVE (E) is complex) with
respect to first order variations in J);{,,(R,.,q,). To apply the extremum condition,
we assume an ansatz for 1/;;{,(R,,q,) with some variational parameters. Although
in general these may be nonlinear, we will use only linear variational parameters to
simplify the resulting algebraic equations. The KVP wavefunction is thus

i ¢nw(Q' )
,‘/)+T RT’ q_r = ————— AT ~Uon's! R,rl (S ‘ 61” r + Uin'+' RTI Cin'r'nr
el ) n"r%pen V' Un'r! [ on'r (R Yo ' e ( Jein o]
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Mg
burr(ar)
+ Z Z e '(Ry)eemir nr (2.5)
n’r'copcl t'=2 \/vn'r’
where {cimrr/n-} for ' =1,..., N are the linear variational coefficients. The uo term

provides incoming wave boundary conditions in channel n7, the u; term gives outgo-
ing wave boundary conditions in all energetically accessible channels, and the u, for
t = 2,...,N terms (which vanish asymptotically) provide the flexibility to represent
the wavefunction in the interaction region. We note that, with the present notation,
Snirinr(E) = cinrrinr. The first channel sum in Eq. (2.5) is over only open chan-
nels (open) because this part of the wavefunction is meant to satisfy the asymptotic
boundary conditions in Eq. (2.3). In addition, the channel space in this first sum de-
fines the active index space for the KVP S—matrix. The second channel sum in Eq.
(2.5) is over open and closed channels (opcl), because this part of the wavefunction
is just a basis set expansion. Furthermore, we note that it is not necessary to use the
asymptotic eigenfunctions to represent the internal motions in the interaction region.
Indeed, in the remainder of this dissertation we pursue the use of grid methods to
represent all degrees of freedom in the interaction region. The calculations presented
in this Chapter did, however, use the asymptotic eigenfunction basis.

Using this trial wavefunction in the Kohn variational expression yields the
following stationary S—matrix element:

= [Moo - MI - M- M

S'KVP (E) — =

n’+’ ’nr

(2.6)

]n"r’,n'r ’

where

[Moo]n:,:,m = <u0n'r'¢n’f’|ﬁ - E|U0m¢nf)

Molygriny = (temrdurlH = Eluonséns) ¢ =1,...,N

Mlynrine = (woneéne|H = Elumeén,)  t,t=1,..,N.  (27)
We note that the incoming wave boundary conditions in the bra state in Eqs. (2.2)
and (2.4) can be enforced by not complex conjugating radial functions in bra states

of Eq. (2.7). This inner product is called the biorthogonal inner product [29], and

is formally related to the use of complex scaled coordinates and absorbing boundary

conditions.
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As we have shown, the KVP reduces the quantum scattering problem to
choosing basis functions, computing matrix elements of the Hamiltonian, and per-
forming a linear algebra calculation to obtain M~! - M,. Before proceeding with the
discussion of sensitivity analysis, we make some qualitative remarks concerning the
KVP.

The KVP resembles the Rayleigh-Ritz variational principle [30] (RRVP). In-
deed, if the scattering variational formulation were applied to a bound state problem,
for which SEYA (E) = 0 = Syt nr(E), the KVP reduces to

0 = ext (5| H — Elyg)| . (2.8)

This is precisely the RRVP. As such, the KVP can be seen as the prope: generalization
of the RRVP for case of scattering boundary conditions.

The KVP also looks similar to the distorted wave Born approximation [31]
(DWBA), which is a perturbative approximation. That the KVP is capable of arbi-
trary accuracy can be seen from expressing the KVP S—matrix in a way which re-
sembles Eq. (2.2). By performing integration by parts to rearrange the MZ -M~1. M,

term, one can write the KVP S—matrix as:

SEVE (B) = e
+ %<u0n'r’¢n’f"ﬁ - Eluonf¢nr>
+ = (wonrdwol(H = E)6XVP(E) (H - E)luonrénr),  (29)

where the Kohn variational approximation to the Green’s function is given by [32]

N
GKPE)==3Y ¥ |wwréns) M7

t'.t=1 n'rt' nré€opcl

(UtnrPnr|- (2.10)

t'n'r'tnr

Since the sums over ¢, ¢ begin with 1, GKVP(E) has only outgoing asymptotic waves.
Equations (2.4), (2.9), and (2.10) demonstrate the close relationship between pertur-
bation theory and variational theory in quantum scattering. That is, one can view
the KVP S—matrix as perturbation theory with a very good reference system, or

as variational theory with a purely incoming, free wave reference state. Although it
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is not standard to use purely incoming wave reference scattering states, we use this
approach in Chapters 4 and 5 inspired by its success in the KVP. We also note that
as the basis set {u;n-on-} becomes complete, the second term identically cancels the
third in Eq. (2.10), while ¢jn/r nr approaches the exact S—matrix.

This completes our discussion »f the KVP. In closing this Section, we note
that although the KVP has made quantum reactive scattering calculations straight-
forward in principle, its implementation can be very computationally demanding in
practice. As discussed in Chapter 4, this is due to the fact that the KVP Green’s
function requires explicit construction of all outgoing asymptotic waves. This level of
detail may not be attainable in treating the reactivity of complex systems. For this
reason, alternative methods are pursued in the subsequent Chapters of this disserta-

tion.

2.3 Functional Sensitivity Analysis

Functional sensitivity analysis is an attempt to locate which regions of the
PES are most important for determining particular dynamical events [18, 23], i.e.
transitions from n’'r’ to n7 at energy E. Some function of molecular coordinates,
called the “sensitivity coefficient” (SC), is required to indicate which configurations
are important. In general, this function is not known. An approximation to the
SC, however, is obtained from computing the first functional derivative of Spis n,(E)
with respect to V(I, q) (we suppress arrangement channel indices on (R, q) to avoid
confusion, and suppose a particular coordinate system for the present discussion).
The KVP SC is obtained by differentiating Eq. (2.4), giving
5—“:—%%‘—”%2 = %&5',:(1& Q) 4. (R, q). (2.11)
As such, once the scattering calculation is performed, the SC is easily constructed for
a particular collision event. We see that the KVP SC places importance in regions
where the scattering wavefunctions have large amplitude.
An interesting application of functional sensitivity analysis is in determining

which portion of a one dimensional barrier potential is most important for tunneling
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(23]. One suspects that the region near top of the barrier will be most important. The
width of the important region, however, is unclear. To determine this, we focus on the
deep tunneling regime, for which the energy dependent tunneling probability T'(E) is
well approximated by the Wentzel-Kramers-Brillouin result [33] (WKB), given by

T(E) = ¢~ %0(%)

6(E) /(S)%"ﬁ om[V(z) — B, (2.12)

where [z,(E),z,(F)] are the total energy and potential energy dependent classical

turnir = points. The corresponding SC is given by

8T(E) 80(E)

_ oo\E) 2.13
i) - T E) X o (2.13)
The functional derivative of §( F) has three terms, because of the potential dependence

of the turning points. Differentiation gives

§9(E) 1 §2o(E
5V(z)  V2mlV(z:) - E) 5V (z)

~—

1 bz1(E)
+ @[V(z‘) — E"Y2, (2.14)

2h

The first two terms in Eq. (2.14) vanish by the definition of turning points. The WKB
SC thus becomes

§T(E)  2T(E)
§V(e) ~  hu(z)’

(2.15)

where v(z) = \/Q[V(x) — E]/m is the magnitude of the imaginary velocity in the
tunneling region. Equation (2.15) indicates that the WKB SC is largest (i.e. blows
up) at the turning points. The exact quantum SC, which is finite for all z [cf. Eq.
(2.11)], is also largest at the classical turning points. Thus, functional sensitivity
analysis illustrates the fact that tunneling is determined by a large portion of the
barrier, extending at least to the classical turning points.

Some practical problems associated with the functional sensitivity analysis

strategy are worth mentioning. First, it is only first order. This is a severe problem.
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Indeed, the case where sensitivity is most interesting is for resonant processes. That
is just the situation where the scattering wavefunction has large amplitude in the
interaction region. However, at a resonance, perturbation theory (i.e. the Born ex-
pansion) breaks down because the Green’s function is nearly singular. As such, first
order results may not have much meaning in this case. Another problem pertains to
the amount of information contained in the SC. It is a function of evérythjng: total
energy, initial and final quantum states and arrangements, and molecular coordinates.
It may be difficult to digest all this information when functional sensitivity analysis
is applied to complex (i.e. noncollinear) reactions.

We do not pursue functional sensitivity analysis further. Instead, we proceed

with the results of the brute force comparison.

2.4 The Potentials: LSTH vs. DMBE

We have performed a brute force comparison of the energy dependent cross
sections for reaction (2.1) calculated from the LSTH and DMBE potentials. These
are different functional representations of the ab initio PES calculated by Liu and
Siegbahn in Ref. 16, although the DMBE PES is fitted to more noncollinear points
than in Ref. 16. The potentials differ most significantly in two general regions — in
the noncollinear saddle point regions and in the long range van der Waals complex
regions. Since the energy region of interest for the comparison in Fig. 2.1 is quite
high, long range van der Waals attractions should not be important. Thus the relevant
difference is in the bending potential of the Hj transition state. Figure 2.2 shows a
contour plot of the LSTH PES for 180° fixed angle geometries, including contours of
the difference potential (Visry — VpmeEr) for those geometries near the saddle point.
Here the LSTH barrier height is 0.15 kcal/mol greater than that of the DMBE PES.
Figure 2.3 is the same as Fig. 2.2 except that the internuclear angle is fixed at 90°.
In this case the difference at the saddle point is up to 0.51 kcal/mol, a reasonably
significant quantity. Table 2.1 summarizes the saddle point differences for four fixed
angle cuts of the surfaces. This shows that the greatest absolute difference is for

90° geometries, and the greatest difference relative to the LSTH PES is for 120°
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6 veP AVER, AVER [VER (%)
90° 30.0 0.51 1.7%
120° 16.1 0.36 2.2%
150° 11.5 0.16 1.4%
180° 9.8 0.15 1.3%

Table 2.1: Summary of relevant differences between the LSTH and DMBE potentials.
The units of energy are kcal/mol. The angle 6 is in valence coordinates, and as such
is the angle included by the three H atoms. The relative difference between the two
potentials is ca. uniform, but the absolute difference is more than a factor of 3 greater
in the L—shaped configuration (90°) than in the collinear configuration (180°). Thus,
the LSTH PES has a tighter bend potential in the transition state region than does
the DMBE PES.

geometries with the LSTH potential being larger in all cases. The percent difference
is between 1.3% and 2.2% for all fixed angle surfaces considered.

2.5 The Dynamics: Results and Discussion

The transition state bending potential primarily determines the extent of
rotational transitions. Therefore, we wish to analyze the sensitivity of the rotational
product state distribution to these small changes in the bending PES. To do this
we have calculated partial cross sections, i.e. cross sections for fixed total angular

momentum J given by

valET) =  F =0 S ISusaastl B D (2.16)
for J =0, 1 and 10. We considered J = 10 because it is one of the largest terms in
the sum over J. We considered low J partial cross sections because the least energy
reaction path is on the collinear surface. The transition state and collision complexes
are collinear species. Since low values of J roughly correspond to low impact param-
eters, i.e. head on collisions, these partial cross sections will be most important for

a sensitivity study of scattering resonances presumably caused by collinear species.
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Figure 2.2: Contour plot of the LSTH potential energy surface at fixed internuclear
angle 180°, cutoff at 2.0 eV. Also shown are the contours of the difference potential
(Vistar — Vpmse) at 180° where dotdash = 0.1, dash = 0.2, and dot = 0.3 kcal/mol.
The two surfaces differ by 0.15 kcal/mol (LSTH is higher) at the classical barrier

geometry.
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Figure 2.3: Contour plot of the LSTH potential energy surface at fixed internuclear
angle 90°, cutoff at 2.0 eV. Also shown are the contours of the difference potential
(Vist — VpmaE) at 90° where dotdash = 0.1, dash = 0.3, and dot = 0.5 kcal/mol.
The two surfaces differ by 0.51 kcal/mol (LSTH is higher) at this fixed angle saddle
point geometry.
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We present the results for J = 0 and 10 below (J = 0 and 1 results are essentially
identical except for the 2J + 1 degeneracy).

Figure 2.4 shows the energy dependence of the partial cross sections (J = 0)
for the transitions (v = 0,5 = 0) to (v’ = 1,j' = 1, 3) resulting from the two potentials
over the total energy range 0.8 — 1.5eV. First, note the sharp resonance in the
(v=0,7 =0) to (v = 1,5/ = 1) partial cross section at 1.0 eV. In general, partial
cross sections show resonance structure while the full cross section does not [25]. That
is, as J increases, features in the partial cross section move to higher energy and also
broaden out (see below), so that the sum over partial waves (i.e. J values) tends to
produce a cross section with less structure than the individual partial cross sections.

The second important result seen in Fig. 2.4 is that for each transition, the
partial cross sections for J = 0 are qualitatively, and for most energies quantitatively
identical for the LSTH and DMBE potentials. Figure 2.4, then, indicates very weak
sensitivity to the difference in the bending PES for these transitions. Figure 2.5
shows the final vibrational and rotational product state distribution for J = 0 at 1.2
eV, the energy of the largest experimentally observed resonance. Here we also see
insensitivity to the difference PES being considered. We conclude that low J results
are insensitive to these specific small changes in the bending potential.

Figures 2.6 and 2.7 show the same quantities as Figs. 2.4 and 2.5, except
for J = 10, over the energy range 0.9 — 1.3eV. Focusing on the (v = 0,5 = 0) to
(v =1,7" = 1) transition in Fig. 2.6, one sees that the resonance has been broadened
by about a factor of 3, and shifted up to 1.2 eV. Also, although one now detects a
somewhat greater degree of sensitivity to the difference PES, the energy dependencies
of the two cross sections have the same topology. The DMBE cross section is higher
than the LSTH cross section because the two potentials differ most in the barrier
heights, with DMBE having a smaller barrier height. Other than that, Figs. 2.6 and
2.7 show no qualitatively significant sensitivity, from which we conclude that high J

results are fairly insensitive to the difference between the two potentials.
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Figure 2.4: Partial cross sections for H+H, transitions (v =0,; = 0) to (v' = 1,5’ =
1,3), resulting from LSTH and DMBE PESs. The (v = 1,3’ = 1) curve demonstrates
a resonance at £ = 1.0 eV, which is washed out in the partial wave expansion. These
partial cross sections are insensitive to the difference between the LSTH and DMBE
PESs, although there are quantitative differences.
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Figure 2.5: Product state distributions for H+H,(v = 0, = 0) resulting from LSTH

and DMBE with J =0, E = 1.2 ¢V. This product state distribution is quantitatively
insensitive to the difference between the LSTH and DMBE PES:s.
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Figure 2.6: Partial cross sections for H+H, transitions (v = 0,5 = 0) to (v/ =
1,7 = 1,3). The resonance is broadened by a factor of ca. 3, and is shifted to E =
1.2 eV. This J~dependent resonance energy shift is responsible for washing out the
sharp resonant feature when performing the partial wave expansion. The partial cross
sections are slightly more sensitive to the difference between the LSTH and DMBE
PESs for J = 10 than for the J = 0 case. The energy dependence predicted by LSTH
is qualitatively identical to that from DMBE.
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Figure 2.7: Product state distributions for H4+H,(v = 0,5 = 0) resulting from LSTH
and DMBE with J = 10, E = 1.2 eV. This product state distribution is quantita-
tively insensitive to the difference between the LSTH and DMBE PESs. The product
distribution peaks at j' = 5 for this case of non-zero total angular momentum.
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2.6 Concluding Remarks

We outlined the derivation of the S—matrix version of the Kohn variational
principle, and demonstrated how to apply functional sensitivity analysis within this
computational framework. In addition, we discussed the complementarity of brute
force and functional sensitivity analysis. We applied brute force sensitivity analysis
to the H+H; reaction, comparing partial cross sections resulting from the LSTH and
DMBE PESs. We found that the theoretical cross sections shown in Fig. 2.1 do
not change significantly when the LSTH potential is replaced by the DMBE. The
computed cross sections are thus fairly insensitive to changes in the potential energy
surface. We conclude that the theoretical cross sections are accurate.

After these results were published (28], an experiment was performed by
Kliner et al. [34] which measured the energy dependence of relative cross sections for
reaction (2.1). When these relative cross sections are normalized to the theoretical
cross sections in Ref. 13, the energy dependence shown in shown in Fig. 2.8 results.
The abscissa in Fig. 2.8 is translational energy, corresponding to total energies in the
range 1.15 — 1.28 V. This is the energy range for which Nieh and Valentini [10, 11]
observe the sharpest resonance structure, as seen in Fig. 2.1. The results of Kliner et
al. show no resonance structure, and agree quantitatively with theory over the entire
energy range. Although this is not a proof that the Kliner et al measurement is
more reliable than that of Nieh and Valentini, the agreement shown in Fig. 2.8 is
truly impressive. Indeed, the detection scheme employed by Kliner et al. is (2 + 1)-
resonance enhanced multiphoton ionization (REMPI) followed by time of flight mass
spectrometry. On the other hand, the detector used by Nieh and Valentini is based
on coherent anti-Stokes Raman scattering spectroscopy (CARS), which requires more
and stronger lasers than in REMPI. The implication here is that the product state
distribution observed by Nieh and Valentini may not be nascent, but rather, the result
of interference with a strong laser field [35]. A third independent measurement of this
product state distribution may be required to establish the results of Kliner et al. as

definitive.

The results shown in Fig. 2.8 are both disappointing and exciting. It is
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Figure 2.8: Experimental (points) and theoretical (curves) cross sections for the H+H,
transitions (v = 0,7 = 0) to (v’ = 1,3’ = 1,3), where the final state j* = 1 is the solid
points and the solid curve, whereas ;' = 3 is the open points and the dashed curve.
The abscissa is translational energy relative to the Hy(v = 0,5 = 0) energy level.
These translational energies span a total energy range £ = 1.15 — 1.28 eV, where
Nieh and Valentini observed resonance structures. The ordinate is the rate constant
for a very sharp energy distribution, which is a velocity times a cross section. The
experiment observes smooth energy dependence, in quantitative agreement with the
(appropriately averaged) theoretical results. This agreement ushers in the era of ab
wnitio reaction dynamics.
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intriguing that a collision complex of neutral Hj in its ground electronic state might
be observable. That the truth seems to be contrary is disappointing [36, 37]. On
the other hand, the level of detail and agreement in Fig. 2.8 is unprecedented. The
agreement indicates that the cross sections for this reaction are not extraordinarily
sensitive to errors in the PES. If there were such extreme sensitivity, considering
the accuracy of the LSTH PES, quantum reactive scattering calculations would be
completely unreliable! That reactive scattering calculations are reliable ushers in the
exciting era of ab initio reaction dynamics.

The computational effort required by the scattering calculations shown here
is not small. When attempting to treat more complex systems, i.e. systems with
higher translational energies, heavier masses, greater exoergicities, stable intermedi-
ates, or more atoms, the added computational expense in both time and memory
may make the calculation intractable. To a large extent, that is becasue the present
methodology requires explicit construction of the outgoing wave Green’s function.
The remainder of this dissertation is devoted to developing alternative techniques in

quantum reactive scattering theory which can be applied to more complex reactive

systems.
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Chapter 3

Power Series Green’s Function

3.1 Introduction

The computational effort required by an exact quantum calculation grows
exponentially with the size of the system. Accordingly, the amount of information
obtained from a quantum calculation grows exponentially as well. The most extreme
case is encountered when one studies the dynamics of a pure state in which all the rel-
ative phase information is required. It therefore seems reasonable that the treatment
of mixed states, which provides less detailed dynamical information, should be less
computationally demanding and thus more applicable for the study of larger chemical
systems. For example, the canonical rate constant for a bimolecular chemical reaction

can be expressed as
K(T) = [2rhQ.(T)]™ / ~ dE ¢ PE N(E) (3.1)

where § = (kgT)™!, kp is Boltzmann’s constant, and Q.(T) is the reactant partition
function including relative translational motion, per unit volume. In Eq. (3.1) N(E)
is the microcanonical cumulative reaction probability, which in turn is defined by [1]

N(E) =Y |Supm. (B)

n, n,

: (3.2)

where {Sp,n.(E)} is the S—matrix for total energy E. The sums in Eq. (3.2) are
over all energetically allowed states of the reactants and products, denoted by quan-
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tum numbers n, and n,, respectively. Since the S—matrix elements contain the most
detailed dynamical information, they are most computationally demanding. A for-
mally exact approach to obtain k(7T') or N(E) which circumvents the need to carry
out exact S—matrix calculations should in principle be more economical, since the
information content in the former quantities is manifestly independent of system size.
Two such formulations were given in terms of the analysis of reactive flux correlation
functions by Yamamoto [2] and by Miller et al. [3, 4]. In the present Chapter we will
use the latter formulation to calculate the cumulative reaction probability.

Considerable theoretical effort has been devoted to evaluating the thermal
rate constant k(T') by the flux correlation formalism of Miller et al. [3-18]. Less at-
tention, however, has been given to the direct calculation of the cumulative reaction
probability N(E) [19-21]. The theory for directly computing N(E) depends upon
the microcanonical density operator §(E — H ), which is formally obtained from the
outgoing wave energy Greens’s function [22]. Recently, Seideman and Miller [23]
showed how to use absorbing boundary conditions (ABC) to construct a convenient,
well-behaved representation of the energy Green’s function for use in N(E) calcula-
tions. ABC have been used in the past, primarily in wave packet propagations, for
the study of laser-induced dissociation [24, 25] and reactive scattering [26, 27]. In the
context of a wavepacket propagation, absorbing boundary conditions facilitate the
use of smaller spatial grids by eliminating spurious reflection from grid boundaries.
In the present context, they are used to enforce outgoing wave boundary conditions
in the Green’s function, without explicitly constructing the outgoing waves (please
see the next Chapter for a detailed discussion of ABC in reactive scattering). In
fact, in their study of H+H, reaction probabilities, Seideman and Miller were able to
compute N(E) by focusing only on the strong chemical interaction region, making
no explicit reference to the asymptotic reactant and product states that would be
necessary in a full S—matrix calculation. As such, their work represents significant
progress in the search for an efficient calculation of the microcanonical cumulative
reaction probability.

The calculation of N(E) by an absorbing boundary condition Green’s func-

tion relies on the construction and inversion of a non-Hermitian Hamiltonian matrix.
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We first discuss efficient inversion algorithms. The most straightforward inversion
technique is LU decomposition [28], which requires storage of the Hamiltonian ma-
trix. Iterative methods [29], which don’t necessarily require such storage, are an
important alternative to LU decomposition for the solution of large systems. The
Lanczos algorithm [30-32}, in which a Hermitian matrix is reduced to tridiagonal form,
can be used to diagonalize [31] or invert [32] a matrix with minimal storage. This
technique has been used extensively to treat chemical systems with real Hamiltonians
(33-43]. Whether the Lanczos algorithm is readily applicable to complex symmetric
matrices is an open question (31, 39, 44-47]. The generalized minimum residual [48]
method (GMRES), however, is an algorithm applicable for the solution of arbitrary
linear systems. Although it has given impressive results [49, 50], when used with
preconditioning [51], GMRES can be memory intensive (please see the next Chapter
for a detailed discussion of iterative methods in linear system solving). With the
intention of extending N(E) calculations to larger systems, we have developed a new
iterative method for matrix inversion which is especially suited for Hamiltonians with
absorbing boundary conditions. The method is stable, requires very little memory (as
opposed to GMRES), and can readily be preconditioned (as opposed to the SYMMLQ
[32] algorithm). It is based on Fourier transforming the time-dependent wavepacket
dynamics to obtain the energy-dependent reaction probabilities, and gives, in the
present implementation, a power series energy Green’s function [52].

Forming the matrix representation of the Hamiltonian operator and manip-
ulating the Hamiltonian matrix to obtain the observable of interest can be computa-
tionally intensive. A discrete variable representation [53-55] (DVR) can ameliorate
both of these difficulties. That is, the construction of the Hamiltonian matrix is
particularly simple in a DVR because no multidimensional integrals involving the po-
tential function are required. Also, the resulting matrix is sparse because the potential
1s diagonal, which expedites an iterative solution [37, 38]. In the present research we
use a sinc-function based DVR (vide infra) first developed by Colbert and Miller [56)
for use in the S—matrix version of the Kohn variational principle (57, 58], and used
subsequently for S—matrix calculations (37, 38] in addition to N(E) calculations [23].

This 1s a uniform grid DVR which is constructed from an infinite set of points. It is
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then truncated [59] to the shape of the potential by deleting grid points where the
wavefunction or Green’s function is vanishingly small. The uniform distribution of
grid points inherent in this DVR has demonstrated significant efficiency in treating
the gross anharmonicity of potential functions in reactive scattering.

Thus, the present theory includes wavepacket propagation on a grid as a
basic component. McCullough and Wyatt [60] performed the first such study over
twenty years ago on the H+H, system. Since then Kosloff and co-workers [61] have
incorporated many improvements to augment the efficiency of exact wavepacket prop-
agations, such as the Fourier representation [62] of the kinetic energy operator. This
is a uniform grid over a finite interval, as opposed to sinc-function DVR which in-
volves a uniform grid over an infinite interval. It would be interesting to determine
whether the efficiency of wavepacket propagation is equivalent based on these two uni-
form grid representations. That is, one might ask for which physical systems would
one grid method be superior to the other. We will present a qualitative analysis,
concluding that sinc-function DVR is preferable for the representation of a molecu-
lar reactive scattering system when a large number of grid points, necessary for the
Fourier method, can be deleted from the sinc-function DVR basis.

We perform wavepacket evolution by propagating over many small time
steps, where each short-time evolution is effected by matrix multiplication on a grid.
For many years, matrix multiplication was deemed an inappropriate method for such
propagation because of the highly oscillatory nature of the short-time coordinate
propagator. This problem has been addressed by several workers [63-76] who incor-
porate, in one guise or another, a filter to damp the very high frequency components
in the propagator that cause numerical problems and are usually unimportant to the
dynamics. For example, Coalson [65] computed real time correlation functions via
matrix multiplication by adding a small imaginary part to the time. Alternatively,
Makri [69] deleted momenta greater than some py,,, from the propagator to yield a
well behaved effective kernel. This approach was shown to be useful for both matrix
multiplication and Monte Carlo [77] evaluation of the time evolution operator. It is
interesting to note that this latter approach will turn out to be mathematically identi-

cal to the sinc-function DVR of the short-time coordinate propagator. Inspired by the
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success of this effective propagator, we will present a generalization of Makri’s effec-
tive kernel which might be more useful in a path integral [78] Monte Carlo evaluation

of the real time propagator.

3.2 General Methodology

We begin the calculation of the cumulative reaction probability with an
expression derived from the analysis of reactive flux correlation functions [4], given
by

1

N(E) = 5(2xh)’ Tr [F8(E - H)F§(E - H)], (3.3)

where “Tr” denotes a quantum mechanical trace. The reactive flux operator F in
Eq. (3.3) is most generally defined by

1 s .
F=—[h(f),H], (3.4)
where h is the step function
1 ¢£€>0
h(€) = , 3.5
(€) { 0 <0 (3.5)

and f(q) defines, via the equation f(q) = 0, a dividing surface which separates
reactants from products. Here q denotes all the internal molecular coordinates. The
microcanonical density operator §(E — H) is formally obtained from the outgoing

wave energy Green’s function via the relation [22]

S(E - H) = —-71; ImGH(E), (3.6)

where G*(E) is defined by [79)]
GH(E) = lim (B+ie-H) (3.7)
= 11% ;% 0°° dt ei(E+ie=H)t/h (3.8)

In Egs. (3.7) and (3.8), adding an infinitesimal imaginary part to the energy E pro-
vides the outgoing wave boundary conditions, and, in Eq. (3.8) can be viewed as

providing a factor which ensures the convergence of the time integral [23].
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Seideman and Miller recently showed [23], in the definition of G*(E), that
subtracting a coordinate dependent operator ie(q) from the Hamiltonian H can be
equivalent to adding a constant ie to the energy E, so long as €(q) is negligible in
the chemical interaction region. This technique, analogous to the use of absorbing
potentials in the field of time-dependent wavepacket propagation [24-27], leads to the
definition of an absorbing boundary condition (ABC) Green'’s function. The following

alternative, but formally exact expression results for N(E):

N(E) = 4Tr [Gpc(E) & Ganc(E) &) (3.9)
where
A N Ay -1
Gusc(E) = (E+ié—H) (3.10)
1 00 . U
- - z(E+te—H)t/ﬁ. 3.
= /0 dt e (3.11)
and
& = ¢éh
& = &(1—h). (3.12)

Here ¢ is a coordinate dependent operator, and A is the coordinate dependent step
function operator which defines the reactive flux in Eq. (3.4). If Eq. (3.9) is evaluated
in a discrete variable representation [23,53—56, 80] (DVR) in which case the absorbing
potentials, €, and €, are diagonal, N(E) becomes

N(B) = 4 ¥ e,(ay) |Gaso(ay a5 B)| exl(y), (3.13)
ii
where {q;} are the grid points and j is a multidimensional grid point index. Equation
(3.13) is the working formula used in the present Chapter. In what follows, we remove
the “ABC” subscript from the ABC Green’s function, with G(E) denoting the ABC
Green’s operator and G(E) the finite dimensional ABC Green’s matrix.
The computational challenge involved in Eq. (3.13) is clearly the evaluation

of the matrix elements of G(E) which connect the reactant and product regions of
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configuration space. In previous applications [23], these were computed as the solution

of the complex symmetric linear system
(E+1ie - H)G(FE) = (3.14)

by LU decompsition [28]. We call this the direct method of solution. For most chem-
ically realistic systems, direct solution would require the storage and manipulation of
matrices larger than can be held in the central memory of modern computers. One
of the most fruitful approaches, however, in the solution of large linear systems is
the use of a grid representation for the Hamiltonian in conjunction with an iterative
solution of the resulting sparse linear system [29]. This is because iterative methods
do not require storage of the Hamiltonian, and are especially rapid when used to solve
sparse systems.

We now describe a new iterative procedure to compute G(E) on a grid. The
method is based on Eq. (3.11), that is, the integral representation of the ABC Green’s

function.

3.3 Power Series Green’s Function

We construct a power series representation of the ABC Green'’s function by
taking a finite upper limit T for the time integral in Eq. (3.11), and by using N evenly
spaced quadrature points to evaluate the resulting integral. The former approxima-
tion is valid because the use of ABC to define the Green’s function guarantees the
convergence of the integral in finite time. The latter approximation generates the
power series. Other representations of the ABC Green’s function, which incorporate
more sophisticated quadrature for the time integral, are possible and are discussed in
the next Chapter. These modifications to Eq. (3.11) give the following power serics
Green’s function (PSG)

. At N R
G(E) = Ean M, (3.15)
n=0

where

M = ¢ EHié=H)At/h _ EAt/R f((At). (3.16)
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In Eq. (3.15) At = T/N, and {w,} are quadrature weights, e.g. for the extended
trapezoidal rule wp = 1 — (6no + 8un)/2. In Eq. (3.16), K(At) is the propagator with
absorbing boundary conditions for the duration At. As is common to the study of
wave packet propagation, we have reduced the problem to finding the most accurate
and efficient representation of the propagator [61, 81-83]. We use a simple and flexible
short-time propagator (STP) developed by Feit, Fleck and co-workers [84-86] (also
called [83] the kinetic referenced split-operator propagator) given by

K(t) = Ksrp(t) + O(t*), (3.17)
where
f(s:rp(t) — e—i(f’—ic‘)t/zh e-iTt/h e—i(f’-—ic‘)t/i.’h (3,18)

and H = T + V. This has been used [87-90] extensively in previous time-dependent
calculations, and is a second-order propagator because it incorporates second-order
commutation error in the symmetrization. It has the flexibility of being able to treat
a time-dependent Hamiltonian, e.g. in a mixed quantum-classical time-dependent
self-consistent field [90-92] framework, by taking a time step small enough that the
Hamiltonian is approximately constant. Some al.ernatives to the STP to be consid-
ered for future study will be discussed in the final Section of this Chapter, and in
the next Chapter. We note that implementing propagators which are valid for longer
times is tantamount to preconditioning [51] the system, i.e. making the Hamiltonian

matrix more diagonally dominant.

3.4 The Basis Set

We represent the STP in Eq. (3.18) with sinc-function based DVR (SDVR)
for each degree of freedom, where the sinc function is given by sinc(z) = sin(z)/z. It
was first described by Colbert and Miller [56] for use in the S—matrix version of the
Kohn variational principle, and used subsequently for S—matrix calculations [37, 38)

in addition to N(FE) calculations [23].
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3.4.1 SDVR vs. FFT

Before giving the relevant matrix elements, we compare SDVR to the closely
related Fourier grid method of Kosloff and co-workers {61, 62] which has been used
extensively in previous wavepacket calculations. Both involve uniform grids in con-

figuration space able to represent momenta up to

hrn

-0 3.19
Pmaz = 2, (3.19)

where Az is the uniform grid spacing. In addition, both representations require
roughly (94, 95] N log, N multiplications per propagation step, where N is the size of
the grid. The two methods differ, however, in the actual manner of propagation. The
Fourier method requires multidimensional fast Fourier transforms [28) (FFT) to facil-
itate propagation, whereas SDVR relies on sparse matrix multiplication. As such, the
grid used in SDVR calculations can easily be tailored [59] to the shape of the potential
energy surface (PES), whereas the Fourier method requires the use of rectangular or
L-shaped [96] grids in order to perform the FFT. The implication here is that the
rectangular grids required for the Fourier method may waste points in unimportant or
unphysical regions of configuration space, where the wavefunction or Green’s function
is vanishingly small. We conclude, therefore, that for the study of multidimensional
systems where the relevant region of configuration space is approximately rectangu-
lar, the Fourier grid can be more computationally efficient. This situation can obtain,
for example, in the study of photodissociation to a single fragment arrangement, or
in gas-surface scattering [96]. But, for the study of multidimensional systems where
the relevant region of configuration space is not rectangular, e.g. a gas phase reactive

scattering system, SDVR should be more efficient if enough grid points are deleted

from the basis.

3.4.2 SDVR of the Free Particle Propagator

We now give the sinc-function based DVR of the power series Green’s func-
tion. For simplicity, we restrict our attention to a one-dimensional system. The mul-

tidimensional generalization is straightforward, and will be given afterwards. Letting
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|u;) denote the j** SDVR basis ket, the matrix PSG becomes

¢ N
G(E) = 3— 3w, M", (3.20)
‘lh n=0
where
[M]j’j = eiEAt/h [KSTP(At)]jfj (321)
[KSTP(t)]j:j = e—i(Vyr—iey)t/2k (uj,le—if‘t/h‘uj) e \(Vi—iej)t/2h (3.22)

and T = p?/2m. Equation (3.22) obtains from the fact that the PES and the absorbing
potential are coordinate dependent operators. In Eq. (3.22), V; and ¢; correspond to
the PES and the absorbing potential evaluated at the i** grid point, respectively. The
SDVR of the free particle propagator is given in the fashion outlined by Colbert and
Miller [56] in which one first considers a finite particle-in-a-box DVR. With (N — 1)
functions and grid points and a grid spacing of Az, the free particle propagator

becomes

I

iné N-1 32,2
—iTt/p]finiteDVR _ 2 . . —ihmin?t \ . _
[e ]j,j N nZ;l sin(wnj’/N) exp AN sin(rnj/N). (3.23)

To obtain the SDVR of the free particle propagator, one takes the infinite N limit of
Eq. (3.23) keeping Az fixed, giving [97)

=i Tthp, N — 1 —iT¢/n) finiteDVR
(uyle [us) = Jm g ]j':‘
! g —ihmy?t
- [ar ity e SREEL) 20

With the variable transformation p = kry/Az, the free particle propagator in Eq.
(3.24) takes on the more familiar form

(TP = /+Pma8 Azdp ¢y [h g=ipHt/2mh —ipz;/h (3.25)
—~Pmaz 27rh

where pmas is given in Eq. (3.19) and z; = tAz for i = j, 5.
The matrix element in Eq. (3.25) is noteworthy in three respects. First,
it is *he product of an integration weight and a finite grid spacing representation

of the kernel. This product arises because DVR includes integration weights in the
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transformations. As pma. goes to co (and Az goes to zero), the summation implied

by matrix multiplication goes over into an integral, and the matrix element becomes

im (uple™TMu;) = de (z5]e"T%|2;) eaget, (3.26)

Pmaz—00

recovering the exact kernel of the free particle propagator multiplied by the infinites-
imal integration weight. Second, the SDVR of the free particle propagator is easily
evaluated giving the exact kernel times a smoothing factor that results from the finite

grid spacing. Eq. (3.25) becomes
(uj']e“ift/h|uj) = A:L‘ <:L‘jf18_iTt/h|Z‘j)exact X fsmooth(xj’y .'Ej, t; m, A:L’) (3.27)
where

1
famooth(zj’)xjat;m’Ax) = '2‘ [erf(A + B) + erf(A - B)]

it \/? hr
4 = (2mh> Az
im 1/2
B = (5%) (¢; — z;)- (3.28)

In Eq. (3.28), erf(z) is the error function of a complex variable {98]. The third, and
perhaps most intriguing aspect of Egs. (3.25), (3.27), and (3.28) is that they have
been derived before in a completely different context by Makri [69]. In particular,
she was seeking a well behaved (i.e. less oscillatory) representation of the short-time
kernel for use in real time path integral Monte Carlo calculations [63-68, 70-76) The
advantage gained from the matrix element in Egs. (3.27) and (3.28) derives from the
asymptotic behavior of the smoothing function [69, 81], namely

lim (u,v[e_"j“/h[uj) = sinc[r(z; — z;)/Ax], (3.29)
p—oo

where

il

p=mz; — z;)/t (3.30)

and in the above limit p,,q, (and, hence, Az) is understood to be fixed. Thus, Makri’s

version of the propagator automatically includes the effect of high frequency phase
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cancellation that numerical quadrature and Monte Carlo algorithms have to work so
hard to simulate. This cancellation is manifest in the damping of the free particle
propagator matrix element for large p, i.e. for very high momentum paths. In fact,
Makri found this propagator to be so well behaved, that wavepacket propagation by
straightforward matrix multiplication was efficient and accurate. That is precisely
the type of propagation being done in the present Chapter. It is analogous to the
numerical matrix multiplication scheme of Berne and co-workers [99] used to compute
the canonical density matrix by a discretized path integral in imaginary time. It is
interesting to note that our numerical tests indicate that without the smoothing fac-
tor, the propagation becomes unstable and numerical overflow occurs. It is also worth
noting that Kouri and co-workers [73-76] have developed a different approximation
o the free particle coordinate propagator, similar in spirit to Makri’s propagator,
which neglects high momentum components. Thus, the SDVR of the STP gives the
ezact position representation of the STP, which, when placed on a grid with finite
spacing, automatically filters out high frequency momentum components which are

unimportant and difficult to integrate.

3.5 Multidimensional Generalization

For the multidimensional generalization of Egs. (3.20)-(3.30), we consider

the F'—dimensional Hamiltonian operator given by

F
H = Z Te +V(q) (3.31)
a=1
where
2
: 4
T, = —=% .
2 (3.32)
and q = (¢*,...,¢F) is an F—dimensional point in Cartesian space. We form an

F—dimensional grid defined by

G = JalA°, for  jo=0,%1,%2,... (3.33)
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for each coordinate ¢* and corresponding grid point index j,. The infinite grid is
then truncated by adapting it to the shape of the PES. That is, the points qj are
retained only if they satisfy the energy criterion [59] given by V(q;) < Viuw, where
Veut becomes a basis set convergence parameter. The corresponding ABC-DVR power

series Green'’s function is still given by Eq. (3.20), where the matrix M is now defined
by

Mls; = €F4% [Korp(At))y (3.34)
. . F . _—
[KSTP(t)]j/j _ e-—z(vj/—tej/)t/2h H(“?g,le_tnt/h'“?a) e"(VJ cJ)t/Zh (3'35)
a=1

and j = (j1,...,JjF) is the F—dimensional grid point index alluded to in Eq. (3.13). In
Eq. (3.35) V] and ¢; are the F—dimensional PES and absorbing potential, respectively,
evaluated at q;. Each of the factors in the direct product free particle matrix element

in Eq. (3.35) is Eq. (3.27) evaluated with the appropriate mass and grid spacing, i.e.
<u;—l|€_iTatlh|u?a) = Aqa (q?de-iTat/h'q;a)e:act X fsmooth(qza qz,,t; Mgy, chx)- (336)

In multidimensional SDVR the Hamiltonian matrix is sparse, which leads to N(2 +

FN'YF) multiplications for each application of the matrix M, where N is the size of
the grid [37, 38, 56].

3.6 Summary of the Methodology

To conclude the description of the power series Green’s function (PSG),
we wish to underscore how the recursive calculation proceeds. To compute the j*
column of the ABC Green’s function, denoted by G; with elements given by (Gyy =
G(qj,q;), one forms the dot product of the matrix in Eq. (3.20) with the j** column
of the identity matrix. As such, the j** column of G(E) is

At X
Gy = 5 3 waa, (3.37)

n=0

where the vectors {a,;} are defined by

F
(a0g)y = L)y = &5 = [ 6550 (3.38)

a=1
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and
an+1,j = Manj (339)

with M defined in Eq. (3.35). Equation (3.39) is the recursion relation which defines
the iterative method.
We now present a numerical application of the PSG in the study of the

cumulative reaction probability for the collinear H+H, reactive scattering system.

3.7 Results and Discussion

3.7.1 The Coordinates

We present the results of the calculation of the cumulative reaction prob-
ability for collinear H+H; over the total energy range of 0.37 to 1.27 eV, using the
method described above. The availability of accurate PES’s and dynamics calcula-
tions makes it a good benchmark system to use to study a new method. We use the
Liu-Siegbahn-Truhlar-Horowitz {100, 101] (LSTH) PES for the calculations. The co-
ordinates used for the calculations were the mass-weighted rectilinear normal modes
(56, 102] referenced to the transition state on the LSTH PES. We denote the two
dimensional coordinates by q = (z,y) where z is the reaction coordinate and y is the
perpendicular vibrational coordinate, i.e. the anti-symmetric and symmetric stretch,
respectively.

A primitive DVR grid is first laid down along the coordinates q. We choose
the grid spacings in the manner suggested by Colbert and Miller [56]. That is, given
a mass and energy scale for each degree of freedom, we fix the number of grid points

per de Broglie wavelength, denoted by np. This gives the grid spacing for each degree

of freedom as

For all studies at total energy E, we used Ey = E, m, = 1060 aqu (the mass-weighted

system reduced mass), and np = 4 points per wave for both degrees of freedom.
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Next, the primitive grid is truncated to yield a non-rectangular grid. To avoid an
overabundance of convergence parameters for later discussion we set the energy cutoff

Veur = 3.4 €V for all calculations, which was found to give satisfactory convergence.

3.7.2 The Absorbing Potential

The absorbing potential in the ABC Green’s function simulates the effect of
outgoing wave boundary conditions. It does so by absorbing completely, without back
reflection, any flux from the interaction region that encounters the edge of the grid
in all energetically allowed arrangements. As previously discussed by many authors
[23-27], the optimal form of the absorbing potential is one which absorbs probability
as rapidly (in space) as possible, without reflection. We use one of the forms suggested

by Seideman and Miller (23], a sigmoid function given by

22
@D = o =2/
z(q) = max[R.(q),R.(q)]

Zmazr = R‘rynax’ if z(q) = RY(q) for Y=4a,cC (341)

and R, (R.) is the translational Jacobi coordinate in the reactant (product) arrange-
ment. In the symmetric case of collinear H+H,, we have 24, = R™* = R™% where
we have used zmqe; = 5 au for most of the calculations. A typical grid is shown in Fig.
3.1 including the contours of the absorbing potential ¢(q). The parameters A and
n are optimized by running appropriate convergence tests. For the convergence of
the power series Green'’s function, we single out the parameter A as being especially
important. This is clear from the following analysis. We let ¢(q) = X be a constant
absorbing potential. If one takes a finite upper limit T for the time integral [i.c. a

finite value of N in Eq. (3.20)], the error incurred is given by
G(E)| finiter = G(E) [1 = O(e™T/™)] | (3.42)

Thus, we expect to see exponential convergence in the parameters A and 7. Although
this analysis is complicated by the use of a coordinate dependent absorbing potential,

it seems plausible that to converge the PSG with as few iterations as possible, it may
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be beneficial to use larger values of A than in previous studies. Results of this analysis
will be discussed.

3.7.3 Reaction Probabilities

Before stating the results, we wish to comment briefly on the scaling of the
computational expense of the PSG with respect to central memory and CPU time. For
an F—dimensional system with, on average, n grid points per degree of freedom, the
PSG scales as [37, 38, 56] NrusNirgrFnN where Ngys is the number of reactant
grid points for which a vector of G(E) is computed and N;rgr is the number of
iterations per RHS. From our experience, this roughly scales as FnN?. The PSG
requires only three vectors of length N for the essential recursion and summation, in
addition to a very small number of vectors to enhance the speed of each iteration.
Clearly this is where the PSG is favorable over direct methods.

The cumulative reaction probability for collinear H+H,, computed by the
method described above, is shown in Fig. 3.2. The circles represent the reaction
probabilities computed by Bondi et al. [103, 104] using R—matrix propagation on the
LSTH PES. The agreement is excellent over the whole energy range. In the energy
range where there is only one energetically accessible asymptotic vibrational channel
[E € (0.37,0.78eV)], the error is always less than 1%. In the higher energy regime,
the error is always less then 1.6%.

The energy dependence of N(E) in Fig. 3.2 demonstrates the “staircase”
structure given by the quantized vibrational levels of the activated complex. With
only one such level accessible for lower energies, N(E) rises quickly to unity. When the
second level becomes energetically accessible, N(E) makes another jump to ca. 1.6.
The fact that N(E) does notincrease monotonically is the signature of transition state
theory violating dynamics. The sharp (downward) peak at E = 0.87 ¢V indicates a
resonance, i.e. a short lived collisior. complex of Hz. This structure becomes washed
out, however, in the full dimensional treatment (with zero total angular momentum)

(23], because of the “averaging” over bending motions.

i b o g




3.7. RESULTS AND DISCUSSION 57
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Figure 3.1: The configuration space required to converge the cumulative reaction
probability. The contours are the LSTH potential surface as a function of the Jacobi
coordinates (R,r). The other contours show the sigmoid absorbing potential where A
= 1.1 eV and 5 = 0.27 au. The distribution of grid points shown was used for the
convergence tests at E = 0.52 V. This small region of configuration space is all that
is required to obtain an averaged reaction probability such as N(E).
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Figure 3.2: Cumulative reaction probability for the collinear H+H, reaction. The
circles are the R—matrix propagation results (summed over final states) by Bondi
et al., and the line is the power series Green’s function results. Excellent agreement
is obtained over the entire energy range. The “staircase” structure is evident, with
N(E) = 1 when the is one open channel, and & 1.6 with two open channels. The
non-monotonic increase indicates recrossing dynamics, and the peak at F = 0.87 eV
indicates a collision complex for Hj.
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3.7.4 Convergence Tests

The two important convergence parameters introduced by the power series
expansion of the ABC Green’s function are the total propagation time T', and the time
step At. The total time T represents the time required for reaction and absorption by
€(q). The time step At is the duration for which the STP is a faithful representation
of the propagator. These are both a function of the dynamics and the choice of
absorbing potential. We measure At in units of a fundamental small time given by

min grid length  mAz?
max grid velocity wh

Tgrid =

(3.43)

That is, At = f7yria where f is some unitless number. If we choose Az by the criterion
in Eq. (3.40), we also find that

R

Torid =

27k 1
—_—— 3.
Z (3.49)

2t 1
ng E 16
where np is defined in Eq. (3.40). Equation (3.44) shows that this fundamental small
time should, at least, be small enough to integrate the energy dependent oscillations
in the time integral. Whether it is small enough for propagation, i.e. whether f is of
order unity for convergence, is discussed below.

In the context of calculating N(E) by the ABC-DVR approach, the present
work represents a new iterative method to invert a complex matrix with less memory
required than GMRES (48, 51]. The overall computational framework, i.e. Eq. (3.13),
is not new and is not what is being tested here. As such, we gauge the error of the
power series expansion in the following way. First we converge N(E) using the direct
ABC-DVR method. Then, using the same Hamiltonian and grid parameters, we
compute the PSG result. Relative error is therefore defined as
NPSG(E) — NDirect(E)
NDirect (E)

error = x 100%, (3.45)

where the convergence of the dire:t result is based on the calculations of Bondi et al.
(103, 104].

First we study the convergence of N(E) at E = 0.52 ¢V. We use a grid and
absorbing potential (A = 1.1 eV and n = 0.27 au) for which the direct ABC-DVR
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N(E) = 0.242, whereas the R—matrix propagation gives N(E) = 0.244. Figure 3.3
shows the percent error of N(E) from the direct result as a function of the common
logarithm of f where 74,4 = 20.2 au = 0.49 fs. We see very well behaved, monotonic
convergence to the direct result. This is remarkable for the following reason. As the
time step is made smaller in Fig. 3.3, the exact STP becomes more oscillatory and
hence, more difficult to integrate. However, the SDVR of the STP is sufficiently well
behaved that it can be integrated with the same DVR grid while changing the time
step by three orders of magnitude. Taking the first result that remains in the 1%
error band as converged, f = 0.3 or At = 6 au = 0.15 fs is the optimal time step for
the STP. This time step is about 1/50 of the asymptotic H, ground state vibrational
period, which is approximately 8 fs [105]. Such a small time step is necessary to
obtain accurate results for a large value of T'.

Figure 3.4 shows the convergence of N(E) to the direct result for E = 0.52
eV as a function of the total propagation time T. For the calculations in the solid
curve, we set f = 0.05 or At = 1 au = 0.024 fs. For those in the dashed curve f =
1 or At = 20.2 au = 0.49 fs. Both curves show the same very smooth convergence.
In fact, since the rate of convergence with respect to the total time T is independent
of the time step At, optimization of the two temporal parameters can be performed
independently. Using the same 1% convergence criterion above, we see the optimal
T = 5000 au = 121 fs. With these parameters the PSG required for N(E) at E =
0.52 eV converges in roughly 800 iterations. The optimal calculation requires ca. 20
CPU seconds on an IBM RS/6000 Model 550.

Now we consider varying parameters in the absorbing potential to effect more
rapid absorption in time. Once again, consider E = 0.52 eV. At this energy, the ABC-
DVR cumulative reaction probability is stable over a range of A up to approximately
1.6 eV. At XA = 1.5 eV, N(E) by direct ABC-DVR gives the value 0.245. In Fig.
3.5 we show the same as Fig. 3.4, except with this elevated value of ), the absorbing
potential strength parameter. In this case convergence of N(E) is obtained with a
total propagation time T = 4000 au = 97 fs. This calculation, requiring roughly
650 iterations, represents a modest savings in computation with fairly little effort in

optimization of the absorbing potential.
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Figure 3.3: Convergence of N(E) at E = 0.52 eV with respect to the split-operator
time step At. The abscissa is logyo(f) where the time step is At = frg,;4, with Tgrid
= 20.2 au = 0.49 fs. Note the smooth convergence obtained with a single DVR grid,
which results from the non-oscillatory effective propagator. The optimal At = 6 qu
= 0.15 fs.
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Similar convergence properties were obtained at higher energies, in which
more than one asymptotic vibrational channel is open. In general, f = 0.3 is suffi-
cient with this STP to give results accurate to about 1%. The total time T required
for convergence can be easily estimated given the size of the grid and the available
translational energy. In addition, grid sizes and total propagation times can be re-

duced by using stronger absorbing potentials.

3.8 Concluding Remarks

We have described a new method to compute the absorbing boundary con-
dition energy Green’s function on a sinc-function DVR grid using a power series
expansion. This is an iterative procedure for inverting the non-Hermitian matrix
(E + ie — H) which requires very little memory. We have demonstrated the accuracy
and convergence properties of the PSG method by applying it to the calculation of the
cumulative reaction probability for collinear H+H,. In addition, we have qualitatively
discussed the numerical efficiency of SDVR relative to the FFT method. We have
concluded that both approaches have their proper regime of efficient application, and
in particular, that SDVR should be superior when many grid points can be deleted
from the rectangular grids required for the FFT. We believe that the computation of
N(E) by the PSG method has the basic ingredients necessary for the realistic study
of larger chemical systems. First, by computing the microcanonical reaction proba-
bility, an averaged quantity, relatively small grids can be used which focus points in
the interaction region where the chemical dynamics takes place. Second, by using an
iterative solution for the Green’s function, we avoid having to store the Hamiltonian
matrix, and can in principle treat larger systems.

There are several avenues for future study suggested by the present results.
In this Section we consider the following: first, possible improvements to the iterative
calculation of reaction probabilities by an ABC Green’s function on a grid; and second,

a generalization of Makri’s effective free particle propagator.
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3.8.1 Reactive Scattering

The present calculation uses a uniform grid in space and time to integrate
the Schrédinger equation. The uniform (spatial) grid DVR provides a simple matrix
representation of the Hamiltonian operator. The uniform (temporal) grid short time
propagator gives a power series expansion of the ABC Green’s function. This is surely
not the most sophisticated approach. We now discuss possible improvements to the
method.

We conjectured above that, for the study of reactive scattering, the SDVR
uniform grid would be more computationally efficient than the Fourier uniform grid
because of the ease of basis truncation with SDVR. However, a non-uniform grid
DVR, e.g. Gauss-Hermite DVR, would also have all the advantages that were at-
tributed to SDVR. In addition, a non-uniform grid DVR might in principle be more
efficient because it originates from adaptive quadrature. For example, the H+O; sys-
tem, which has a deep well in the interaction region, is represented more efficiently
in Gauss-Hermite DVR than in SDVR [106]. A uniform grid would also be very in-
efficient in the case of strongly exoergic systems, e.g. the F+H, reaction. In general,
treating complicated systems will require that the grid be adapted to the shape of the
PES. In the case of collinear H+H,, which has no deep wells and is thermo-neutral,
the uniform grid defined in SDVR is sufficient.

Using the trapezoidal rule and the split-operator propagator gives conver-
gence which is second order in At. le. reducing the time step by a factor of ten
gives two more converged digits in the Green’s function. There are many modern
methods of solving linear systems which give higher order convergence. Such rapid
convergence may obviate the need to perform some of the convergence tests shown in
this Chapter. As discussed briefly above (and in detail in the next Chapter), many of
these high order methods utilize the Lanczos reduction algorithm. This approach is
(in)famous for being highly sensitive to the effects of numerical roundoff error. Pow-
erful methods for controlling this error have been developed for Hermitian systems,
but unfortunately are much less reliable for non-Hermitian systems. Since numerical

roundoff error is manifested only after several Lanczos iterations are performed, it is
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plausible that an algorithm "»ased on a low order complex symmetric Lanczos method
may be more stable.

A low order Lanczos algorithm for unitary short time propagation has been
developed by Park and Light [41]. We have successfully adapted this for propaga-
tion with absorbing boundary conditions [107, 108]. However, we have found that
this is not useful for the Green’s function calculation. That is because the sign of
the imaginary part of the complex eigenvalues tends to converge very slowly. Some
of the eigenvalues have positive imaginary parts, which precludes the possibility of
converging the time integral which gives the Green’s function. This instability is
due to additional roundoff error in the non-Hermitian calculation. To stabilize the

calculation, we split off the absorbing poteatial from the Hermitian Hamiltonian via

e~ H=i/h _ —it/2h ~iHt[h ~ét[2h | O(t%). (3.46)

This gives a stable algorithm, and is moderately efficient [108] (although not as effi-
cient as the original split-operator based algorithm). However, this is an unacceptable
compromise because the convergence is again second order in ¢.

In the following Chapter, we discuss native to the Lanczos based
algorithms, called the Newton polynomial expa. This is a high order method
which is stable and has very straightforward accuracy control. The Newton expansion
1s a generalization of the well known Chebyshev expansion, and is the method of choice

for the remainder of this dissertation.

3.8.2 Path Integration

We consider the generalization of Makri’s effeciive free particle kernel. We
will not pursue these ideas in this dissertation, but rather, offer them for contem-
plation. For simplicity we consider a one dimensional system with mass m. The
success of Makri’s propagator is based on the filtering of high frequency momenta
which are unimportant and difficult to integrate. To this end, we denote a general

momentum filter by w(p) with the property that it goes to zero as p — +oo. This
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gives a generalized effective free particle kernel given by

. +oo ., . )
(xlle-th/fi‘x)eff = / %ﬁ e'PT /h e—ap"’t/th e—zp:r:/ﬁ w(p) (3'47>
—00

By the convolution theorem [109] one can show that the asymptotic form of this

effective kernel is given by

lim (2'|e™T/*g) sy = W(a' - z), (3.48)
p—oo
where
p=m(z' —z)/t (3.49)
and
v [ _di ipz/h
W(z) _/_m 57 € w(p) (3.50)

is the Fourier transform of the momentum filter. In the trivial case where w(p) =
1, i.e. no filter, then Eq. (3.47) gives the exact kernel. If we set w(p) = 1 if |p|
< Pmaz and zero otherwise, we recover Makri’s effective kernel, which we have used in
a uniform grid DVR. Its asymptotic form, Eq. (3.29), is trivially obtained from Eqgs.

(3.48)-(3.50). Now consider the case where w(p) has a Gaussian form
w(p) = e7P/24P%, (3.51)
Then the effective propagator is
(@)e" T a) s = (2'1e"TM|2)epact X Gomooth (25 2, t;m, A), (3.52)

where

P » X TN B 2 .
Gsmooth (', Z,t;m, Az) = {exp[ 1B(e’ — x) ]exp[i tan~! (E)]}

A? 4+ B? 2 A
y {( A2 )1/4exp[__z-ABz(m/_x)2}}
A’ + B? A? + B?
A = 1/2Az?
B = m/2kt

AzAp = k. (3.53)
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This effective propagator has three remarkable features. First, it is clear from Eq.
(3.53) that the phase factor in gsmootn identically cancels the very rapid oscillations in
the exact free particle kernel as ¢ goes to zero, i.e. B > A. This is crucial to the stabil-
ity of the effective propagator. Second, the form of the filtering function, a Maxwell-
Boltzmann distribution, suggests that we are imposing an artificial temperature for
which kgTfier/2 = Ap?/2m. This is analogous to the approach of Coalson [65] in
which an artificial temperature was used to compute dipole autocorrelation functions.
Imposing an artificial temperature in the propagator is tantamount to propagation
in complex time, which Doll [64] showed is stable even with numerical matrix mul-
tiplication (NMM). In addition, Thirumalai and Berne [63] have carried out NMM
calculations of the propagator in complex time in the study of (non-artificial) temper-
ature dependent correlation functions. Using Ap = pjna, for the N(E) calculations at
E =0.52 eV, the artificial temperature is T;;er = 50,000 K. Clearly this temperatufe
is not low enough to interfere with the microcanonical density operator, but might
be low enough to filter out the high momentum components which are unimportant
to the dynamics.

Finally, an approximation to the coordinate propagator containing the same
real Gaussian as in Eq. (3.53) has been previously obtained in the context of “dis-
tributed approximating functions” by Kouri, Hoffman and co-workers [74-76]. They
were also seeking a more well behaved coordinate free particle propagator. To this
end, they analytically propagated a Hermite polynomial fit to an initial wave packet,
and observed what effective propagator would have evolved the exact wavepacket to
obtain the same result. It is clear, from the present analysis, that their approach
is tantamount to filtering out high frequency components in the propagator from
the start, without the need to fit an initial wavepacket. The intriguing aspect of
this propagator, as Kouri, Hoffman and co-workers correctly point out [74-76], is
the possibility of performing a path integral Monte Carlo evaluation of the real time
propagator using the real Gaussian in Eq. (3.53) as the sampling distribution. How-
ever, there are some potential problems that may arise from this strategy. First,
importance sampling based on free particle dynamics may require very small time

slices, and may not be able to anticipate the details of long time dynamics. Second,
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a Gaussian filter, which is characterized by only one parameter, may not be flexible
enough to damp the high momentum components while giving the small components
unit weight. Nevertheless, the possible success of this approach bears further thought
and numerical testing.

There is another perspective with which we can generalize Makri’s effective
propagator. Most studies of path integration begin with an ezact propagator for
some reference system, including the coupling with the split-operator expression. By
using an exact reference propagator, infinite frequencies have implicitly been included,
which then have to be filtered. The art is in constructing a convenient filter which
does not also filter out the interesting dynamics.

On the other hand, conventional basis set quantum calculations begin with
very low frequencies, and try to build in higher frequencies if necessary and if possible.
The finite basis set already has an implict “filter,” in that only finite frequencies are
included. That these two approaches can be equivalent was demonstrated in this
Chapter.

To build on this idea, we consider a Hamiltonian H partitioned as H = H,
+ H;, where Hj is a simple reference system whose eigenvalues {¢,} and eigenvectors
{vn} are known. The propagator is then approximated as:

e~iHt/h o~ e-—iHot/Zh e—iﬂlt/h e-—iHot/Zf'z

N N
Z Vo e—zcn:t/Zﬁ VI‘, . e—lH)_t/ﬁ. . vn] e-—tEnt/Zﬁ vl.’ (3.54)
1

n'=1n=

1’

where the first approximation is in the splitting, and the second is in the finite basis
representation. The use of a finite basis automatically filters out high frequencies.
This is precisely the form used in the present Chapter, where Hy = V — j€ and H, =
T. Furthermore, the eigenvectors are DVR states, and the eigenvalues are V, — ic,.
Equation (3.54) offers the possibility of using a different, more adapted reference
system. For example, a vibrational problem may be better represented using harmonic
oscillator states than free particle states. The key is not to use the ezact harmonic
oscillator propagator, but rather, its finite basis approximation. Topaler and Makri

[110] use this approach as their method of choice in path integral calculations of
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the rate constant flux autocorrelation function and of the intramolecular vibrational

relaxation wavefunction correlation function.
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Chapter 4

The Newton Algorithm

4.1 Introduction

In the previous Chapter, we described a new computational approach for
reactive scattering calculations on large systems. There are two basic ingredients in
this approach. First, the use of absorbing boundary conditions (ABC) to compute di-
rectly averaged reaction probabilities allows numerically exact scattering calculations
while only sampling the localized chemical interaction region. Second, the use of a
grid basis coupled with iterative methods provides the solution to the ABC system
without the need to store the Hamiltonian matrix. The relatively small and sparse
Hamiltonian matrix which results from these two components is crucial to extending
theory to larger systems. In the present Chapter, we extend both of these aspects,
yielding a powerful computational algorithm for treating the reactivity of complex
chemical systems. '

In Chapter 3 we focused on the cumulative reaction probability, using the
ABC formulation of quantum reactive scattering theory. As emphasized, the calcu-
laticn of averaged reaction probabilities should be more economical, and thus more
applicable to larger chemical systems. However, many revealing measurements of
chemical reactivity involve scattering cross sc.tions [1, 2], which involve reaction
probabilities weighted by the initial translational energy [3]. Thus, to compute cross

sections, we need reaction probabilities with initial state selection. In this Chapter,
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we derive the ABC formulation of the initial state selected reaction probability [4].
In addition, we demonstrate that this quantity is obtained more economically than
the state-to-state probability, while offering interesting details about the chemical
reaction.

The direct calculation of the initial state selected reaction probability relies
on the ABC Green’s function. We proposed an iterative method in Chapter 3 called
the power series Green’s function (PSG). In the present Chapter we extend this
method for two reasons. First, the short time propagator implicit in the PSG requires
optimization of the time step. Although we showed that this optimization gives
smooth convergence due to filtering out high momentum components, a superior
method would avoid the need for these convergence tests. Second, the split operator
short time propagator is based on exponentiating the kinetic energy. While this is
straightforward for rectilinear coordinate systems, it is extremely inconvenient for
curvilinear kinetic energy terms such as Coriolis coupling. Thus, we seek an iterative
calculation of the ABC Green’s function which is more automated and flexible than
the PSG, for use on complex systems.

In the field of time dependent wavepacket propagation, a method exists
with many of the attributes we seek. The Chebyshev polynomial expausion [5] of the
unitary time propagator is extremely accurate, easy to automate, and only requires
applying the Hamiltonian on a vector. This expansion has been used extensively
to study photodissociation, gas surface scattering, and gas phase reactive scattering
[6]. Inspired by the success of the Chebyshev algorithm, we are led to ask: Does an
analogous polynomial expansion exist for the ABC Green’s function? Much of this
Chapter is devoted to answering this question.

We derive a convenient and well behaved expression for the initial state
reaction probability in the ABC formulation. After analyzing various polynomial ex-
pansions for the ABC Green’s fucntion, we discover that no direct expansion yields
a tractable algorithm for large systems. We eventually advocate a method, called
the Newton algorithm, which is quite similar in spirit to the PSG. However, the
Newton algorithm is a vast improvement over the PSG, providing the flexibility and

convenience of the Chebyshev method. We illustrate the Newton algorithm on the
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calculation of three dimensional reaction probabilities for the D+H;(v,j) -DH+H
initial state selected reaction. These calculations demonstrate that the Newton algo-

rithm is capable of arbitrary accuracy with a very modest amount of computational
effort [7].

4.2 Quantum Reactive Scattering Formulation

We outline the formal scattering theory required to define a direct calculation
of the IRP. In addition, the ABC modifications to the formal theory are discussed in

this Section.

4.2.1 Formal Theory

The IRP at total energy E is defined by
Pa(E) = Y Py, (), (4.1)
np

where Py, n.(E) is the state-to-state reaction probability from reactant state n, to
product state n,. This quantity has been of interest to many groups, most recently
Neuhauser and Baer [8] and Thompson and Miller [4], because it is less computation-
ally intensive than the fully state-selected reaction probability Py, n.(E). Based on
the analysis of the reactive flux operator F' (see below), Miller [9] has shown that the
IRP can be obtained directly vie

Po (E) = (T4, (E)| F |5 (E)), (4.2)

where | ¥} (E)) is a scattering eigenstate of the Hamiltonian operator H = K +V. As
such, the problem is reduced to determining the scattering wavefunction. Although
at first sight this seems like very little progress, below we show that the use of ABC
allows us to accurately compute the IRP without a complete determination of the
wavefunction. In the present study, as well as in Ref. 4, we evaluate |¥f (E)) with an
integral equation. For the purpose of seeing how to correctly use ABC, it is instructive

to show the derivation of the integral equation we use.
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We comnsider a one dimensional radial system with coordinate R. The mul-
tidimensional generalization is extremely straightforward. The time independent
Schrodinger equation for a scattering system at energy E with outgoing waves (de-
noted by “+”) in all open channels and an incoming wave in reactant channel n, is
given by:

(B - |9 () = 0. (43)

The state ket can be written in integral equation form wvia the Lippmann-Schwinger
equation [3]

9%, (E) = |2n,(E)) + GF(B) V |T% (E)), (4.4)

where G (. ) is the unperturbed Green’s function given by

Gi(E) = lim (E +ie— K)™. (4.5)

e—0t

In addition, |®y,(F)) is the corresponding unperturbed scattering state satisfying the

conditions

(E — K)|@n,(E)) =0
= 0.

(R|®n,(E)) (4.6)

e
The first condition demonstrates that |®y,(F)) is indeed a free wave, and the second
chooses the physically important “regular” solution.

Equation (4.4) is not immediately useful because it represents the unknown
ket in terms of itself. However, it can be solved formally by the method of successive
approximations (3], which is based on the fact that |¥f (E)) & |®p,(E)) when V
weakly perturbs K. The first step, then, is to replace |¥t (E)) on the right hand

side cf Eq. (4.4) with |®,,(E)), yielding the so-called first Born approximation:
[95N(E)) = |80, (E)) + GF (E) V |&n,(E)). (4.7)

Substituting the first Born wavefunction into the right hand side of Eq. (4.4) gives

the second Born approximation:

G3(E)V |&a,(E))

[URNE)) = |®n(E)) + GE(B)V |@n,(E)) + G} (E) (4.8)
(E)| V |®n,(E)).

= |®n.(E)) + |G (E) + GE(B) V G (B)]
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Iterating this procedure ad infinitum yields the Born expansion for the state ket:

05 (E)) = |8, (E)) +{GH(E) T, [VGE(E)]"} V |@n, (B))

- . \ (4.9)
= |%n,(E)) + C*(E) V|, (E)).

Assuming convergence of the geometric expansion 3.2 2" = (1 — z)~! in Eq. (4.9),
the fully perturbed Green’s function satisfies

. s A -1
GH(E) = GI(B)[i- VG (E)]

lim, o+ (E +ic — K)™' [1 = V(E +ie — k)~1] ™

. A e (4.10)
= limeor {[1 - V(E+ie— K)Y) (B +ie- K)}™
= lim._,o0+(E + 1€ — I:I)“l.
Next, making the observation that
the state ket becomes:
%5, () = [1+ G*(B) (H ~ B)] |, (B)). (411)

This is almost the final form of the desired integral equation. Before proceeding,
though, we make three general points regarding Eq. (4.11).

First, there is no longer any explicit reference to the coupling term V in
the Hamiltonian which is disregarded in defining |®5,(E)). Although the Lippmann-
Schwinger equation defines |®n,(E)) as a free wave, Eq. (4.11) does not require that
choice. Indeed, |®y,(E)) is only really required to satisfy two boundary conditions.
First, it is required to be an eigenstate of H with energy E for large R, i.e. when the
colliding particles are well separated. Second, |®n,(E)) is regular at the origin, i.e. it
is required to vanish in the limit that the colliding particles coincide.

The second point is that Eq. (4.11) allows us to split our effort in determin-
ing the reaction probabilities. That is, the closer |®y,(E)) is to |¥F (E)), the less
dynamical information is required from C§'+(E )- We can see this by considering a two
dimensional reactive system with reactant/product translational coordinates R,/R,.

The reactant interaction region is where xn,(R,, E) = (R.|H — E|3y.(E)) # 0.
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Clearly, xn,(R,, E) must vanish in the limits of small and large R,. The same applies
for the product interaction region defined by the function xn,(R,, F). In terms of

these quantities, the reactive transition amplitude Ty, n.(E) is given by:

Topn (E) = (20, (E)|V|T4,(E))
= ((H - B)on,(E)|[1+G*(E)(H - B)| |80, (E))  (4.12)
= (x0,(E)|@n.(E)) + (Xn,(E)IG*(E)|xn.(E)).
Thus, it is clear that to determine the reactive transition amplitude, one only needs to
know the Green’s function elements which couple the reactant and product interaction
regions.

The total interaction region (TIR) is the portion of configuration space where
a square integrable (L?) basis set would be used to expand G*(E). The computational
effort of such a calculation would depend very strongly on the size of the L? basis set
required. If |®, (E)) were “distorted” to contain the effects of long range interac-
tions (i.e. elastic and inelastic scattering), the L? basis set used to represent the TIR
where only reactive events take place would be much smaller than if |®n, (E)) were
a completely undistorted wave. Inelastically distorted waves have been used in both
time dependent [10] and time independent [4, 11] reactive scattering calculations.
Although inelastically distorted waves are not explicitly constructed in this disser-
tation, we nevertheless attempt to include the effect of any long range interaction
in [®n,(E)). For example, in Chapter 5 we show how a certain angular momentum
coupling scheme can reduce the TIR.

The third point, which is a corollary of the second, is pursued in the ABC
formulation. Namely, the form of G+(E) in the region where xn, (R,, E) £ 0, i.e. the
asymptotic region, does not affect the reaction probabilities. Therefore, we are free to
alter the nature of the Green’s function in the asymptotic region, as long as the TIR
elements are correct. This point is fully exploited in the next Section, in discussing
the use of absorbing boundary conditions.

The final modification to the integral equation is not absolutely crucial, but

rather is a matter of convenience. Defining the pre-limit Green’s function by

A A

G(E) = (E +ie— H)™?, (4.13)
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we can write Eq. (4.11) as

|0 (E)) = lm._o+ |1+ G(E)(H — E)| |®x,(E))
= limo+ G(E) [(E +ie— H) + (H — E)| |2n,(E)) (4.14)
= lim_o+ G(E)ie|®n, (E)).

This integral equation for the state ket is convenient for two reasons. The first
point is somewhat trivial: it is easier to construct ie|®n,.(E)) than it is to obtain
(H — E)|®p,(E)). The second reason, which is more important, will become clear
after introducing the absorbing boundary conditions.

Much of the formal analysis given above relies on defining the Green’s func-
tion in terms of the Born expansion. As such, these arguments seem to depend on
the convergence of the Born expansion. However, the state kets in Eqs. (4.4), (4.9),
(4.11), and (4.14) formally solve the Schrédinger equation provided that the following
Green’s function relations hold:

i = (E-K)G{(E)
= (E - H)G*(E) (4.15)
= (E +ie— H)G(E).
That is, the integral equations derived above are well defined regardless of the con-
vergence properties of the Born expansion.

Thus far in this Chapter, we have shown how to obtain the IRP directly
from the scattering wavefunction, for which a convenient integral equation was con-
structed. We have emphasized that only the TIR portion of the Green’s function
contributes directly to the reaction probability. However, we have not yet shown how
to determine the Green’s function. In principle, the TIR portion of G‘(E) 1s correct
only if € is made small enough, i.e. only if the boundary conditions are properly en-
forced. As e — 01, G‘(E) develops outgoing waves in all open channels extending
over an infinite region of asymptotic space. Thus, the reaction probabilities is correct
only if the asymptotic region is sampled in some fashion in determining é*(E) In
previous L? variational Green’s function calculations [12], the outgoing waves have
been represented by including infinitely delocalized functions in the basis set. Unfor-

tunately, this gives rise to an awkward structure in the resulting Hamiltonian matrix.
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For technical reasons discussed below, this structure makes it very difficult to perform
IRP calculations on large chemical systems. To solve this problem, we outline the
ABC version [13, 4] of the Green’s function in Eq. (4.13) and the integral equation
in Eq. (4.14), which facilitates IRP calculations on large chemical systems.

4.2.2 Absorbing Boundary Conditions

The basic principle behind the ABC formulation is that accurate reaction
probabilities can be determined while only sampling a finite region of space. This is
achieved by replacing the infinitesimal energy € in Eqgs. (4.13) and (4.14) with a finite,
coordinate dependent function €(q) > 0. This modification gives the ABC analogues
of Eqs. (4.13) and (4.14),

GABC(E) = (E +14¢— H)™ (4.16)

and

|UABC(E)) = GABC(E) it

®n,(E)). (4.17)

The kernel of GABC(E) is an L? function which decays exponentially where €(q) is
non-zero. In what follows, we omit the “ABC” superscript with the understanding
that we are using the ABC formulation.

To obtain accurate reaction probabilities in an efficient manner with the
ABC formulation, the absorbing potential e(q) must satisfy three criteria. The first
and second pertain to accuracy, and the third to efficiency. First, e(q) should be
negligible in the TIR, where the Green’s function directly contributes to the reaction
probabilities. Second, the absorbing potential should not be so strong that it reflects
amplitude back into the interaction region, effectively contaminating the outgoing
wave character with incoming waves. Third, the absorbing potential should be strong
enough to absorb the ABC Green’s function as fast (in space) as possible, thereby
reducing the L? basis set size required to represent it. The optimal absorbing poten-

tial, determined by the competition between accuracy and efficiency, is found through

empirical testing.
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As an aside, we note that since €(q) = 0 in the strong chemical interaction
region, the product é/®n, (E)) projects onto the asymptotic portion of |®y, (E)) only.
Thus, it is not necessary to explicitly regularize |®5, (E)) at the origin. This is
the second convenient aspect of the integral equation in Egs. (4.14) and (4.17), as
discussed in the previous Section.

We now turn our attention to the calculation of averaged reaction proba-
bilities (e.g. the IRP) with the ABC formulation. This is perhaps its most impor-
tant application, because one can determine averaged reaction probabilities with only
partial information about the scattering wavefunction. In particular, since the IRP
contains only initial state selection, the TIR which determines this quantity is larger
on the reactant side than it is on the product side. That is because state selection is
determined by inelastic scattering, which is usually a longer ranged interaction than
is reactive scattering. The absorbing potential in all product chemical arrangements
can be brought very close to the chemical exchange region, withoug losing accuracy
in the IRP. Consequently, the size of the L? basis on the product side is greatly re-
duced by calculating the IRP. Thus, the ABC formulation facilitates more economical
calculations for more averaged reaction probabilities.

The ABC analog of the IRP in Eq. (4.2) is obtained by representing the
reactive flux operator F' as the following commutator [13, 14],

P {lﬁ[ﬁ(f),ﬁ ~ E], (4.18)
where h(z) is the step function, i.e. h(z) =1 for z > 0 and h(z) = 0 otherwise. Also,
f is some function which, via the equation f = 0, defines a dividing surface between

reactants and products. Using the fact that [cf. Eq. (4.16)]
(H - E)G(E) = -1+ e G(E),
the IRP becomes:

Po(E) = ¢GY(E) ¢, G(E) €|®n, (E)) +

2 (@, (E)|ép ImG(E) |2, (E)). (4.19)

>
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In Eq. (4.19), ¢, = eh( f) is the absorbing potential in the product region of con-

figuration space. In practice, the magnitude of the vector é,|®yn,.(E)) is vanishingly

small. [An exception to this occurs when |®p, (E)) is eztremely vibrationally excited.

We do not consider such initial conditions.] As such, the second term in Eq. (4.19) is

negligible, and the final form for the ABC version of the IRP is given by

_2
k

where |¥y, (E)) is given by Eq. (4.17). In the ABC formula for the IRP, the op-

erator 2¢,/% has replaced the reactive flux operator ¥, and the ABC wavefunction

Po, (E) = - (Un,(E)| & |¥n,(E)), (4.20)

has replaced the exact one. Equation (4.20) is the working formula for the reactive
scattering calculations reported in the remainder of this dissertation.

To complete the discussion of the ABC formulation, we make two general
comments. First, the formal Green’s function involves an infinitesimal “absorbing
potential” € — 0% over an infinite region of space. The ABC Green’s function, on
the other hand, is defined by a finite absorbing potential over a finite region of space.
With some care (and some convergence tests), the reaction probabilities obtained
from both should be identical. Second, all methods which obtain the Green’s func-
tion must simulate the outgoing wave boundary conditions. Previous L? variational
methods enforce the boundary conditions directly in the basis set, giving the problems
mentioned above. The ABC formulation, on the other hand, effectively enforces the
boundary conditions in the Hamiltonian. Although this latter procedure is somewhat

more ad hoc than the former, it has a distinct advantage which we exploit in the next

Section.

4.3 Polynomial Expansions
A finite basis representation of Eq. (4.17) gives
U (E) = G(E)ie &y, (F) (4.21)
which is the solution to the non-Hermitian linear system of simultaneous equations:

(E +ie — H)®p (E) = ie®y (E). (4.22)
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As the strength of € goes to zero and the spatial extent of the basis becomes complete,
Eq. (4.22) approaches the time independent Schrodinger equation with scattering
boundary conditions in Eq. (4.3). As such, appropriate convergence tests are required
to ensure that € is not too strong and that the basis samples a sufficiently large region
of configuration space. Figure 4.1 illustrates, for a simple collinear reaction system,
the space required to obtain a typical IRP accurately. We notice that the grid size
on the product side (upper left) where no state selection is obtained, is smaller than
that on the reactant side (lower right). In addition, the absorbing potential on the
reactant side must be more gentle than that on the product side. This demonstrates
the computational economy of directly calculating the IRP.

The ABC method reduces the quantum reactive scattering problem to solv-
ing the linear system in Eq. (4.22). The most straightforward method of solution is
LU decomposition [15], which requires storage of the Hamiltonian matrix. In LU
decomposition, the system matrix is initially factorized into the product of a lower
triangular and an upper triangular matrix, requiring N3/3 operations where N is the
system size. If solution vectors are computed for a small number of right hand side
vectors (i.e. initial reactant states n,), this factorization is the most time consuming
step. Given the specific right hand side vector and the results of the factorization,
the solution vector is obtained rapidly with back substitution. This is the method of
choice for small systems (i.e. one or two dimensions), or for larger systems in which
L? basis set contraction schemes allow the Hamiltonian matrix to be stored. These
contraction schemes are somewhat system dependent, and have only been tested on
three dimensional scattering systems [16, 17]. A more general approach, however,
for performing scattering calculations on large systems is the use of a grid represen-
tation for the Hamiltonian in conjunction with an iterative solution of the resulting
sparse linear system. This is because iterative methods do no require storage of the
Hamiltonian and are especially rapid when used to solve sparse systems.

The power of a grid representation derives from the simplicity of the kinetic
energy - usually a sum of one dimensional terms. As such, a basis representation
which is diagonal in coordinate space gives a simple form for the Hamiltonian matrix.

In particular, constructing the Hamiltonian is simple with a grid because no multi-
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Figure 4.1: Configuration space required to determine the IRP accurately, for collinear
H+Hz(v=1)at E = 0.99eV. The solid contours denote the potential energy surface,
the dashed contours show the absorbing boundary regions, and the dots are the centers
of basis functions used for the calculation. The jagged line between the two absorbing
potentials is the dividing line between reactants (below) and products (above). We
note that the grid is much smaller on the product side, where there is no state
selection, than on the reactant side. Also, the absorbing potential can be much

stronger on the product side. This demonstrates the economy of directly calculating
the IRP.
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dimensional quadratures over the potential function are required. Also, the resulting
matrix is sparse because the potential is diagonal. To appreciate the sparsity, we
consider a two dimensional system with rectilinear coordinates (z,y). The coupling
is contained in the kinetic energy — we consider the = dependent term. Labeling the

z grid with (¢,7') and the y grid with (7, j), the (ij,7's") element of T is

GiT=li5"y = (ij]E® @ 1v)d'5)

= (ili"l1") 8- 2

Since in most cases the factor §; ; = 0 and the potential is diagonal, the Hamiltonian is
sparse. We suppose now that an F' dimensional system has n grid points per degree of
freedom, yielding a total grid size N = nf. To multiply the grid Hamiltonian into an
arbitrary vector requires (nF'+1) N multiplications, as opposed to N? for a full matrix.
On the down side, any localized basis set has large kinetic energy components. As
discussed below, the time required by most iterative methods is roughly proportional
to the spectral range of the system. An important area of active research is, thus, the
development of grid methods which retain sparsity while reducing the spectral range
[18].

The two most frequently used grid methods to solve the Schrodinger equation
are the discrete variable representation [19-21] (DVR), and the fast Fourier transform
method [6, 22] (FFT). [Please see Chapter 3 for a critical comparison between the
two grid methods.] In this dissertation, we exclusively use DVR because it allows
us to tailor the grid, in a simple fashion, to the shape of the physical and absorbing
potentials.

A method of solving linear systems is usually called “iterative” if it in-
volves several steps (i.e. iterations) of a matrix multiplying a vector. [We note that
all numerical wavepacket propagation schemes fall into this class (see also Chapter
3).] Most iterative methods involve applying a linear function of the Hamiltonian
matrix, thereby forming the solution vector as an expansion in powers of the Hamil-
tonian. The number of operations required by such an iterative method would be
Niter(nF + 1)N, where Nj, is the number of iterations required for convergence.

For the reasons stated in the Introduction, namely numerical convenience and effi-
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ciency, we ask the question: Can the ABC wavefunction be reliably obtained with
such a polynomial expansion? Several possible pulynomial based iterative schemes

are analyzed to answer this question.

4.3.1 Direct Expansion

We define a direct polynomial expansion of the ABC Green’s function (and
equivalently the ABC wavefunction) by anything having the form:

G(E) & f: cn(E) Po(H — ie), (4.24)

n=0

where P,(z) is a polynomial in z, and ¢, is an energy dependent coefficient.

The Distorted Born Expansion

The distorted Born expansion [3] (DBE) is a simple example of a polynomial
expansion for the scattering Green’s function. The form is not strictly that given in
Eq. (4.24), but is close enough to be seriously considered. Defining Hy as a reference
system (whose ABC Green’s function is easy to construct), and H; = H — Hj as the
perturbation, the DBE is

G(E) = Go(E) ff [H,Go(B)", (4.25)
where
Go(E) = (E + 1€ — Ho)—l. (426)

This converges only if the eigenvalues of [H;Go(E)] all have modulus less than one.
Clearly, in the limit that H; is small (and Go(E) approaches the full ABC Green'’s
function), the convergence of the DBE is guaranteed. Thus, a sufficiently good ref-
erence Green’s function is required for the DBE to be useful. For this reason, the
DBE has been used mostly has a means of obtaining first order corrections to the
dynamics of reasonable reference systems, i.e. the distorted wave Born approximation
(DWBA). An important example of a sophisticated implementation of the DWBA is

the S-matrix version of the Kohn variational principle [23].
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For small systems, the matrix [H;Go(E)] in the ABC formulation can be
diagonalized and its eigenvalues inspected to test for convergence of the DBE. We
show the results of such an exercise for two different systems. The first, in Fig.
4.2, is for collinear H+H, at total energy E = 0.99¢eV, using a two dimensional
grid basis. In this case, H; is the off-diagonal portion of the Hamiltonian matrix,
and Go(F) is the ABC Green’s function for the remaining diagonal part. In Fig.
4.2, the interior of the unit circle defines the convergence regime. Since there are
eigenvalues of [H;Go(E)] with modulus greater than one, the DBE would diverge.
A more sophisticated reference system is required. The second system considered is
the three dimensional H+0O; reaction at E = 3.0¢eV, represented in an adiabatically
contracted basis set [18]. In this latter case, Go(E) is the inverse of the portion of the
Hamiltonian which is diagonalized in the contraction, and H; the remainder. Figure
4.3 shows that even with this more sophisticated reference system, the DBE would

diverge. Thus, we seek a more generaily reliable alternative.

The Krylov Space

Two popular methods for solving the N x N linear system Ax =b are
based on constructing the Krylov representation of A [24, 25]. The Krylov space of
dimension p is defined as the span of the set of vectors

{b,Ab,A%,... , AP b}, (4.27)
where p < N and usually p € N. We can define an orthonormal basis V,, for the
Krylov space spanned by (4.27), with the properties

Vp = {vo,v1,va,++,Vpu1}, (4.28)

and
(V,’,Vj) = Vj "V; = 5,‘_,'. (429)

This basis can be generated using Gram-Schmidt orthogonalization, yielding the re-
cursion relations:
Bovo = b

| | (4.30)
Bixivier = Avi— Y% o (vj,Avy)v,, fori=0,...,p—2
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Figure 4.2: The eigenvalue spectrum of [H; Go(E)] for collinear H+H, at total energy
E =0.99¢V, using a two dimensional grid basis. In this case, H; is the off-diagonal
portion of the Hamiltonian matrix, and Go(E) is the ABC Green’s function for the
remaining diagonal part. Since there are eigenvalues of [H;Go(E)] with modulus
greater than one, the DBE would diverge.
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Figure 4.3: The eigenvalue spectrum of [H;Go(E)] for three dimensional H4O; at
total energy E = 3.0V, using a three dimensional grid basis. In this case, Go(E) is
the inverse of the portion of the Hamiltonian which is diagonalized in the contraction,
and H; the remainder. Since there are eigenvalues of [H; Go(FE)] with modulus greater

than one, the DBE would diverge.
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where ; is chosen so that || v; | = /(vi,Vvi) = 1. The matrix A in the V, basis is
the p X p matrix A defined by:

A= (V;‘,AV,,)U = (vi,Av;). (4.31)
Since Av; € spaﬁ(Vj+1), and v; € span(V, ;1) only if 1 < 741, A has the important
property that A;; = 0 for ¢ > j+1. This kind of matrix, known as upper-Hessenberg,
is usually much easier to manipulate than A because A is almost upper triangular.
Thus, the philosophy behind the Krylov space based methods (KSM) is to transform
the original linear system into the simpler form A% = b where x = V;x and b = V;',b,
which can be solved more easily. The computational effort is usually dominated by the
construction and orthogonalization of the transformation matrix V,, which requires
a matrix vector multiply at each iteration.

The KSM are particularly useful in two cases. To discuss the first, we define
the eigenvalues of A by {A1,As,...,An} such that |A| < |X;] < ... < |An]. The
KSM converges rapidly when the condition number C = |Ay|/|A;| is small. That is
because the KSM tend to span the eigenvectors of A from both ends of the spectrum
first, filling in the intermediate spectral region only after several iterations have been
performed. The second case in which the KSM are useful is when A is Hermitian. In
that case, A is also Hermitian, and thus tridiagonal. The recursion relations in Eq.

(4.30) simplify to the following three term recursion relation:

A\ = b
Bovo | (4.32)
Bivivisr = (A —a)vi—fivioy, fori=0,...,p—2
where
Ay = o = (vi,Av)
Ay = B = (Visn, AVY) (4.33)

= || (A —ai)vi = Bvi1 || .

This is known as the Lanczos recursion formula [26), first developed for computing
eigenvalues of Hermitian matrices. The vectors so obtained are called the Lanczos

vectors. The tridiagonal linear system can be solved almost trivially with the LQ
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method [{15]. This is the basic approach behind the SYMMLQ algorithm of Paige
and Saunders [27]. SYMMLQ only requires the storage of three Lanczos vectors,
in addition to the {a;} and {B:} values, and thus is applicable to the solution of
large systems. It is used in the S-matrix Kohn variational scattering calculations of
Groenenboom and Colbert [11].

The accuracy of the Lanczos recursion formula is notoriously sensitive to
the finite precision arithmetic used in actual numerical calculations. This is because
the Lanczos vectors which are not explicitly orthogonalized to eachother (e.g. v.i;
and v;_7) can become numerically linearly dependent. As such, altliongh the solution
vector must converge in no more than N iterations in infinite precision, such con-
vergence is not guaranteed for SYMMLQ if it is numerically implemented with the
Lanczos recursion formula. In addition, although the two equations for $;4+; in Eq.
(4.33) are mathematically identical, the second is better behaved in finite precision.
Lanczos based algorithms which stablilize the effect of round off error have been de-
veloped (28], which make them powerful methods for diagonalizing or solving sparse,
Hermitian systems. Of course, the ABC formulation of quantum reactive scattering
gives a non-Hermitian matrix A = (E + te — H). To use the KSM for the ABC
system, there are three basic approaches one may take.

The simplest approach is to convert the non-Hermitian linear system in Eq.
(4.22) into a Hermitian one by premultiplying both sides by (E — ie — H), yielding

the following linear system:
{(BE-H)*+€ +i[E~H,e]} n,(E) = (E — ie — H)ie®y, (E), (4.34)

where [A,B] = AB — BA is the commutator. One could then use the SYMMLQ
algorithm to find the ABC wavefunction. Although this approach should work in
principle, it is not advised because the condition number of the Hermitian system
is roughly the square of that from the original system. That usually spells disaster
for an iterative scheme, because the number of iterations required for convergence
depends quite strongly on the condition number.

The second approach forces the Krylov representation of the ABC linear

system to be complex symmetric, and uses a somcwhat inferior version of SYMMLQ
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to solve the resulting equation. Although A is complex symmetric with real basis
functions (e.g. a grid representation), A is non-symmetric because the V,, basis is
complex when computed for the ABC system. However, for any basis representation,
using a biorthogonal inner product (BIP) forces A to be complex symmetric. The BIP
uses the transpose rather than the Hermitian adjoint to compute the inner product,

i.e.

We note that the BIP is the inner product for which the eigenvectors of a complex
symmetric matrix are orthogonal, which is the mathematical grounding for its use.

With this modification, the Lanczos recursion formula becomes

= b
Povo (4.36)
Biv1vin = (A —o)vi—fivioy, fori=0,...,p—2
where
A = o = (vi,Avi)gsp
Aipii = Bir1 = (Visr, AVi)gpp (4.37)

= || (A~ ai)vi— Bivi-1 ||BIP -

Now A is complex symmetric, and the {e;} and {B;} values are in general complex.
Unfortunately, since a vector space with this inner product does not have a meaningful
norm, it can be difficult to gauge the convergence of the approximate solution vector
to the actual one. In fact, the convergence properties of the complex symmetric
Lanczos algorithm are known to be much worse than the Hermitian one [29, 30].
Presumably, this is because the instabilities due to numerical round off error are
greatly exacerbated using the BIP. In addition, it is much more difficult to stabilize
the complex symmetric Lanczos algorithm than it is the Hermitian one [31]. For these
reasons, we sought a more reliable alternative.

To avoid the difficulties outlined above in applying the KSM to the ABC
problem, it is clear that one should implement the KSM as originally outlined in
Eqgs. (4.29)-(4.31). That is, one simply uses the usual inner product for which a
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meaningful norm exists, obtaining a non-symmetric upper-Hessenberg form for A.
The Gram-Schmidt orthogonalization procedure is no longer a three term recursion
relation, but rather requires explicit orthogonaliztion to all the previously computed
Lanczos vectors. This is the basic approach of the generalized minimum residual
method (GMRES) of Saad and Schultz [32], which obtains its added generality and
stability at the expense of having to store all the computed Lanczos vectors. We wish
to make three general comments about its use. First, since explicit orthogonaliztion
is performed, GMRES is guaranteed to converge in no more than /V iterations. If this
is required, LU decomposition is again the method of choice since storing N Lanczos
vectors is tantamount to storing the Hamiltonian matrix, and LU decomposition
can give solution vectors for all right hand sides at total energy E. GMRES is the
method of choice, however, when the Hamiltonian matrix can not be stored, while the
Lanczos vectors required for convergence can be (i.e. many fewer than N iterations
are required). Therefore, we believe that GMRES is the first iterative method to try
when LU decomposition is not possible.

The second remark concerns the numerical procedure known as precondi-
tioning. This is a general name given to reducing the number of iterations required to
solve a linear system. [Theoretical chemists think of “preconditioning” in the broader
sense of choosing a better reference system, i.e. choosing coordinates, basis functions,
or asymptotic states which better describe and decouple the system dynamics. All
these would change the size of the linear system to be solved. Therefore, although
this broad sense of preconditioning is clearly quite important, we restrict ourselves to
the more narrow notion of preconditioning to be discussed below.] We suppose that
an N x N matrix P, which is close to A in some sense, is known and easily invertible.
Then the preconditioned linear system is given by P~!Ax = P~'b. Of course, in the
limit that P — A, the preconditioned system becomes 1x = A~'b, and the system is
solved. That this limit is not practically attainable is the subject of this Chapter. A
preconditioner intermediate between 1 (i.e. no preconditioming) and A (i.e. complete
preconditioning) can, however, be quite useful.

Preconditioning can affect the linear system in two somewhat distinct ways.
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First, it makes the system more diagonally dominant, i.e. the spectral dispersion is
reduced. In the limit of complete diagonal dominance, the linear system is diagonal
and solution is trivial. Second, preconditioning reduces the spectral range of the
system. In the limit of complete preconditioning, the new system has IV eigenvalues
equal to unity, and the spectral range is zero. Consequently, the condition number
C = |An|/|M1| = 1 and solution is again trivial. One may think of preconditioning
the ABC linear system as similar to choosing a better reference Green’s function in
the distorted Born expansion. Alternatively, in the time domain, preconditioning is
tantamount to choosing a better reference system in the Interaction Picture [33].
Preconditioning is especially relevant to GMRES because it both allows
and requires preconditioning. The SYMMLQ algorithm can only be successfully
preconditioned when used to solve a positive definite system. That is because the

preconditioner must be applied symmetrically via
[P~1/2AP~/2] P+1/2¢ = P~1/2p, (4.38)

The resulting system [P‘l/ ZAP-Y 2] is Hermitian only if A is Hermitian and P is
positive definite. But P is close to A only if A is also positive definite. However,
GMRES is able to handle arbitrary systems with arbitrary preconditioners. This
fact, coupled with the storage requirements of GMRES, make preconditioning an
important component of any attempt to use GMRES to solve large systems.

In all preconditioning schemes, it is important that the system Py = c be
relatively easy to solve, because such a system is solved at each GMRES iteration.
Two particularly simple preconditioners are P = diagA and P = tridiagA, both
of which only require O(N) operations to solve Py = c. The tridiagonal precon-
ditioner has demonstrated extremely impressive results for one dimensional elastic
scattering systems [34]. That is presumably because the tridiagonal preconditioner is
tantamount to using a three point finite difference formula for the second derivative
kinetic energy coupling. Unfortunately, such an approximation to the kinetic energy
for a multidimensional system gives rise to a matrix which is more complicated than
tridiagonal. Accordingly, the tridiagonal preconditioner in multidimensional reactive

systems has not given such impressive results [34]. Manolopoulos et al. have devel-
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oped a powerful preconditioner for performing inelastic atom surface scattering cal-
culations with the log derivative version of the Kohn variational principle [35]. They
construct a one dimensional average potential, and use multiple copies of this refer-
ence system for the various internal states that comprise the total L? basis, yielding a
block diagonal preconditioner. Manolopoulos et al. were able to converge the solution
vector to eight digit accuracy after 23 preconditioned GMRES iterations, whereas 50
unpreconditioned GMRES iterations gave only one digit accuracy. Unfortunately, no
such dramatic results have been reported for reactive scattering systems. In fact, the
many arrangement nature of a reactive system may make successful preconditioning
very difficult, because there are several different reference (i.e. asymptotic) systems.
Nevertheless, this is an important and active field of research [36].

When LU decomposition is not possible, and preconditioned GMRES runs
out of memory before converging, what alternatives remain for solving the ABC
system? One may “restart” GMRES, in which the solution vector is constructed
from the available Lanczos vectors. Denoting this unconverged solution as xo, one
then defines the exact solution as x = x¢ + 6x, and solves for éx viea Aéx = b — Axg.
If memory runs out again, the approximate solution vector is updated xo — Xo + X,
and the procedure repeated. This iterative refinement may converge if xo is in the
neighborhood of x, i.e. if the number of Lanczos vectors that can be stored is not too
far from the total number required. Thus, the question remains: Does any algorithm
exist which is accurate, has a fixed and small memory requirement, and is guaranteed

to converge. To pursue such a method, we consider next the Newton polynomial

expansion.

Newton Polynomial Expansion

We may be able to make some progress in solving the ABC system by appeal-
ing to the Newton polynomial expansion, which is a useful method for approximating
scalar functions. A special case is the Chebyshev polynomial expansion, which is
widely used in commercial algorithms for evaluating special functions [37, 38]. Based

on the Chebyshev expansion for u(z) = e™*** for z real, Tal-Ezer and Kosloff [3]
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have developed a very powerful method for solving the time dependent Schrédinger
equation by expanding the unitary propagator in Chebyshev polynomials. We seek
an analogous method for the ABC Green’s function by defining the non-Hermitian
matrix Z = H — ie. The ABC Green’s function is then g(Z) = (E — Z)™, a function
of the complex (matrix) variable Z. The central idea behind the work of Tal-Ezer
and Kosloff is that the convergence properties of the matrix expansion for g(Z) can
be understood in terms of the scalar expansion for g(z), as long as z is in the eigen-
value spectrum of Z. Therefore, we examine the convergence properties of the scalar
function g(z) = (E — 2)71.

The Newton polynomial expansion arises from the theory of interpolation
in the complex plane [39, 40]. Its mathematical background is beautifully discussed
by Berman et al. in Ref. 40. It is more numerically stable than a Taylor expansion
because the interpolation based expansion is referenced to several points, while the
Taylor expansion is referenced to a single point. Among the various formulations
of polynomial interpolation, the Newtonian formulation is most suited to the devel-
opment of iterative methods with small memory requirements. That is because the
Newton expansion builds the higher degree terms from the lower ones. This allows
the successively higher powers to be accumulated recursively, thereby requiring a
minimal amount of core memory. In other interpolation schemes, e.g. the Lagrangian
formulation, this is not possible.

To implement the Newton polynomial expansion, we first suppose a function
f 1s analytic on a compact domain D. Furthermore, defining the boundary of D as
[, f is evaluated at complex sampling points {z;} on I' giving the set of interpolation

support points {(zx, fx)}, where fi = f(2x). An approximate representation of f on

D is given by

f(z) & Pk(z)

where

K
Px(z) = ax Ri(2). (4.39)
k=0
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In Eq. (4.39), Ri(z) is the Newton polynomial of degree k defined by

1 k=0

, (4.40)
M (z—2) k>0

Rk(z) = {

and ai is the k** divided difference coefficient [41], determined by requiring that

Pi(2x) = fx for each k. For example, considering k = 0:

fo = Po(z0) = aoRo(20) = ao. (4.41)
Evaluating for k = 1 gives:

fi = Pi(z1) = aoRo(z1) + a1 Ri(z1)
= ao+ ai1(z1 — zo) (4.42)
= fo+ai(z1 — 20).
As such, the coefficients {ax} are built up iteratively, in a way which can be summa-

rized by
fi—fo _ fk—Pk—-l(zk)‘

a0=f0a A = =, ..., O = Rk(Zk)

, (4.43)
21— 20

It is clear from Eq. (4.43) why the Newton expansion coefficients are called divided

differences. It is also apparent from the definition of the Newton polynomials in Eq.

(4.40) that they are ideal for iterative methods.

The Newton interpolation of a scalar function is very robust numerically,
provided that two stabilizing procedures are followed. These pertain to the particular
way in which the sampling points {2} are chos.n. First, the points should be chosen
uniformly from the unit circle, or some mapping of the unit circle. From complex
analysis, it can be shown [42] that such uniform sampling gives uniform convergence
of the interpolation on D. As such, this expansion is sometimes called the uniform
polynomial approximation. Second, the sampling points must be staggered with
respect to the order in which they are taken. This is to minimize numerical linear
dependence among the functions {Ri(z)}. The theory behind these procedures is
discussed quite thoroughly by Berman et al. in Ref. 40.

If the sampling points are chosen uniformly on the upper half circle and

projected down onto the real axis, they are Gauss-Chebyshev quadrature points. To
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see this, we recall that the Chebyshev polynomials can be written as T,(cosf) =
cos(nf), where 6 € [0,7] is the phase which sweeps out the upper half circle. The
set of n Gauss-Chebyshev quadrature points is obtained by setting Tn(zx) = 0, and
solving for zx = cos ;. From the formula above, it is clear that {6i} satisfy 6 =
7(2k +1)/2n for k = 0,...,n — 1. Since the phases depend linearly with k, they are
uniformly distributed. It can be shown [43] that a Newton expansion with Gauss-
Chebyshev sampling points is identical to the Chebyshev polynomial expansion. The
Chebyshev polynomials are, in fact, the most uniform polynomials. That is, they are
the only classical orthogonal polynomials on D = [—1,+1] with the property that
the maximum absolute value they take is uniform throughout D. This fact is the
origin of their great utility. (E.g. Legendre polynomials peak near the endpoints of
D, and thus would give relatively poor interpolation accuracy near the center of D.)
Thus, the Chebyshev polynomial expansion is a special case of the uniform Newton
interpolation scheme when D is a line segment.

To use the Newton interpolation polynomials for a matrix expansion, one
would shift and scale the matrix so that its eigenvalues fall within the unit circle (or
some mapping of the unit circle), i.e. the domain D. This procedure enhances numer-
ical stability and efficiency. If the unscaled eigenvalues fall outside D, the expansion
would rapidly diverge. The scaling makes the Newton expansion an interpolation
scheme (rather than an extrapolation). If the unscaled eigenvalues fall within D, but
in a very small portion of D, the scaling expands the spectrum to fall just inside
D. This makes the already stable calculation more efficient by interpolating only the
relevant spectral region.

The matrix expansion can be viewed as several simultaneous scalar expan-
sions where the scalars correspond to eigenvalues. The only information required is
the action of the matrix on a vector, and the spectral range of the matrix. The uni-
form polynomial approximation gives uniform accuracy throughout the entire spectral
range. This is in contrast to the KSM, which use not only the matrix but also the
right hand side vector. Indeed, the accuracy of the KSM is not uniform throughout
the spectrum, but rather is greater in the more dynamically relevant region. Dynam-

ical relevance is measured in terms of the overlap of the right hand side vector and
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the Hamiltonian eigenvectors. This means that the Newton expansion is not strictly
the most efficient method, since it does not use the spectral decomposition of the
right hand side vector for importance sampling. However, the Newton expansion can
be more automated. That is, given the spectral range of the system matrix and the
convergence properties of the relevant scalar interpolations, the convergence proper-
ties of the matrix expansion are known. This is not so for the KSM. Thus, although
the KSM may be more efficient in terms of computer time, the Newton expansion is
more automatic and may be more efficient in terms of human time.

We note that there is a version of the Newton expansion which uses non-
uniform sampling, analogous to preconditioning the Newton expansion. It can be
shown [44] that a Newton expansion using sampling points obtained as eigenvalues
from a KSM calculation is mathematically equivalent to using the original KSM to
obtain the solution. If relatively low accuracy is desired, this non-uniform polynomial
approximation, called the residuum method, may be preferable. However, for higher
accuracy, the uniform and non-uniform sampling usually have comparable efficiency
[45], with the uniform sampling being more automated. For this reason, we use the
uniform polynomial approximation exclusively in this dissertati n.

We now discuss the sampling region relevant for solving the ABC system.
The ABC Green’s function is analytic, as a function of the total energy E, in the
upper half plane - as is the formal Green’s function. If the Hamiltonian supports
no bound states, the ABC Green’s function is also analytic on the real energy axis.
Thus, it formally has a polynomial expansion for real total energies. Since the poles
of G(E) are in the lower half plaue, as are the eigenvalues of Z, the sampling points
must enclose a region in the lower half plane. Were we to use a finite, constant ab-
sorbing potential, i.e. €(q) = ¢, the eigenvalues of Z would lie on a line segment in the
lower half plane. With the proper shift and scale of Z, the Chebyshev expansion could
be used to represent the ABC Green’s function. However, once €(q) is coordinate de-
pendent, the eigenvalues of Z have varying imaginary parts. Even if a line segment D
were placed in the densest region of the spectrum, most of the eigenvalues of Z would
lie above or below D. In effect, we would be using an eztrapolation scheme, which

is known to perform poorly at best, and to diverge in most cases. The Chebyshev
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expansion is, thus, strictly inappropriate for the present problem. We must utilize,

instead, the more general prescription provided by the Newton interpolation scheme.
Based on the analyticity of the ABC Green’s function, the sampling points

{zr} are chosen from the lower half circle pushed slightly below the real axis, i.e.

6 — 6, B [0
Z;c:{COSk i, 6x € [0,m] (4.44)

e% — 8, Oy € [r,27]

where 6 must be small enough to include in D the eigenvalues closest to the real axis.

In Eq. (4.44), the staggered angles are chosen by

27 K
— il - .45
0x = mod { e [k + nmgmod(k, n,tag)} ,277} (4.45)

where k = 0,1,...,K — 1. In Eq. (4.45), the parameter n,, determines the amount
of staggering. It is the number of sampling points chosen during each “pass” around
the circle. Setting ns,y = 1 or K produces no staggering. We have found ng,, = 4
or 8 to give the best results in the present calculations. Figure 4.4 demonstrates the
sampling points using K = 64, ng. = 4, and § = 0. The lines in the interior of D
manifest the staggering, in which four points per pass are taken. The points on the
real axis are Gauss-Chebyshev quadrature points.

We now examine the convergence properties of the Newton polynomial ex-
pansion of g(z) = (E — z)~!. We need to choose a typical total energy E, and a
typical eigenvalue z. In this choice there are two distinct limits, namely that |E — z|
is relatively small or large. Clearly in the first case, the polynomial expansion behaves
poorly, and in the second it may behave well. To guide us in making relevant choices,
we recall that the matrix Z is shifted and scaled so that the lower half unit circle just
encloses the spectrum of Z. Thus, all values of E and z are unitless for the present
purposes. Since we plan to use a grid representation which usually contains large
kinetic energy components, E is typically just above —1. We use E = —0.8.

All tests reported in this paragraph use 64 support points, staggered by
Nstag = 4. The abscissa is the number of Newton polynomial terms taken, and the
ordinate is the common logarithm of the relative error from the exact result. For

the first test, we assume that we can use a very strong absorbing potential. In that




4.3. POLYNOMIAL EXPANSIONS 105

Im{z ]

\\§§c\;.-,;’ :-
ASOTISIST A2 77
. SIS

S L]
SKE

-1.0 -0.5 0.0 0.5 1.0

Figure 4.4: The Newton interpolation sampling points used to represent the eigenvalue
spectrum of the ABC linear system. This sampling uses K = 64 points shifted down
from the real axis by § = 0. The lines in the interior manifest the staggering. At
each pass around the circle, ngay = 4 points are taken. The points on the real axis,

which are projected down from the upper half circle, are Gauss-Chebyshev quadrature
points.
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case, the eigenvalues of Z are pushed far below the real axis, and 6 can be quite
large. Using § = 5 and 2z = —5.5i, the convergence of the Newton expansion is
shown as the dashed line in Fig. 4.5. We see that machine accuracy is obtained using
18 Newton terms. The subsequent oscillations are the result of numerical round
off error. Next we consider the effect of a more moderate absorbing potential, in
which § = 0.4 and z = —0.97. In this case, the domain D is closer to the pole at
z = E. Although formally g is still analytic on D, the convergence behavior may
be sensitive to the presence of the pole. The convergence for this case is shown as
the solid line in Fig. 4.5. We see that although the expansion is clearly converging,
it does so less rapidly than in the first case. Also, it shows systematic oscillations,
resulting from the effect that the pole has on every fourth sampling point and Newton
term. Thus, we conclude that the Newton expansion converges more rapidly with a
stronger absorbing potential. This is qualitatively similar to the time domain, in
which a stronger absorbing potential absorbs a wavepacket more rapidly in time (also
see Chapter 3). In additon, we conclude that the pole can perturb the convergence
properties of the Newton expansion of g(z) = (E - z)~%.

To determine whether the Newton expansion of g(Z) = (E — Z)™' is a
feasible solution to the ABC system, we examine the eigenvalue spectrum of Z. If
eigenvalues of Z are not too close to E, a direct expansion is feasible. Otherwise,
an alternative method may be preferable. Figure 4.6 shows the shifted and scaled
eigenvalue spectrum of Z for collinear H+H, at E = 0.99¢eV (cf. Figs. 4.1 and 4.2).
The scaled and shifted total energy, E = —0.789, is marked by the “x” on the real
axis. In this case, the eigenvalue closest to E is 0.0238 scaled energy units from the
pole. Thus, the ABC eigenvalues can be quite close to both the real axis in general
and the pole at z = E.

We note that this eigenvalue spectrum is remarkably similar to those found
in complex coordinate scaling theory [46]. We also see that assignments can be
made at low enough (real and imaginary) energy, but at higher energies meaningful
assignments are difficult to make. The various progressions become mixed by the
anharmonicity and coupling between modes. It is also interesting that, although the

scaling procedure expands the spectrum to approximately fill the lower half circle,
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Figure 4.5: Newton expansion of the function g(z) = (E — 2)™! for £ = —0.8. In
all calculations, 64 support points are used, staggered by nsq, = 4. The dashed plot

corresponds to a strong absorbing potential, using 6 = 5 and z = —5.5¢. Here we
see rapid convergence, obtaining machine accuracy with 18 Newton terms. The solid
plot corresponds to a moderate absorbing potential, using 6 = 0.4 and z = —0.9:. In

this case, convergence is less rapid, presumbaly because the pole at z = E is closer
to D. In addition, the convergence in the second case shows oscillations whenever a
sampling point comes close to the pole.
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Figure 4.6: The scaled and shifted ABC spectrum for collinear H4+H, at E = 0.99 ¢V,
{Ass} are the scaled and shifted eigenvalues of Z = H — ie. The scaled and shifted
total energy, E = —0.789, is marked by the “x” on the real axis. The eigenvalue
spectrum shows structure reminiscent of that found in complex coordinate scaling
theory. Assignments can be made at low enough (real and imaginary) energy, but at
higher energies meaningful assignments are difficult. The eigenvalue closest to E is
0.0238 scaled energy units from the pole.
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there is still much empty space. That is, a more efficient representation of this
reaction would be provided by a sampling domain which is more rectangular [40].
Such optimization may prove beneficial for large scale calculations.

The results in Fig. 4.6 present a potential difficulty in applying the Newton
expansion to solve the ABC system. To solve the ABC system portrayed in Fig.
4.6, the sampling domain must both exclude the pole at z = —0.789 and include the
eigenvalue at z = (—0.789) + ¢(—0.0238). The difficulty pertains to the choice of 6,
the parameter which controls the downward shift of the sampling domain D from the
real axis. In general, if § is too small (a cautious choice), the expansion may converge
too slowly because of the strong influence from the pole. Alternatively, if é is too
large (an adventurous choice), the expansion diverges rapidly because D does not
include the entire spectrum of Z. The proper choice of é is thus absolutely crucial.
The optimal choice would be § = —Im[Aspc], where Aapc is the complex eigenvaluc
closest to the real axis.

To examine the sensitivity of the convergence behavior to the precise place-
ment of the sampling domain, convergence tests are performed with various values
of 6. In what follows, 1024 support points staggered by n,,, = 8 are used to ex-
pand g(z) = (E — z)7! for E = —0.8 and z = (—0.8) +1(—0.024). Figure 4.7 shows
the convergence behavior for three values of 6. The dotted line is the most cautious
choice, § = 0.012. Accordingly, the expansion is stable with slow convergence. The
dashed line is a more optimal choice, § = 0.02. The corresponding convergence is
clearly much more rapid. The solid line is the most adventurous choice, § = 0.07.
The sampling domain excludes z with this choice, and the expansion diverges. Previ-
ous studies have shown that it may be very difficult to determine accurately complex
eigenvalues with small imaginary parts for large systems [29, 30]. Thus, this fact cou-
pled with the extreme sensitivity to the choice of § makes solving the ABC system
with the Newtor. expansion seem unfeasible.

We have shown that the convergence behavior of the Newton expansion for
g(Z) = (E—7Z)7! is extremely sensitive to the eigenvalue of Z closest to the real axis,
denoted by Asapc. This has made it unfeasible to solve the ABC system with the

Newton expansion. We can make great progress, however, by physically analyzing
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the meaning of this numerical result.

In formal scattering theory, the complex energies E,., for which é*(Eres)
diverges correspond to resonances, i.e. collision complexes. The real part of E,,
locates the position of the resonance in energy space, and the imaginary part of E,,
determines the lifetime of the complex. Defining I';., = —2Im([E,.,], the lifetime is
given by 7.5 = h/I'c;. Thus, a resonance energy close to the real axis indicates a long
lived collision complex. In the ABC formulation, all the eigenvalues of Z are complex
energies for which G(FE) diverges. However, most (or all) of these do not correspond
to physical resonances, but rather control how much time is required for reaction and
absorption. The total time for the reaction in the ABC formulation is determined by
the eigenvalue of Z closest to the real axis, i.e. Agpc. Thus, Tupc = i/Tapc is the
total time for reaction and absorption, where I spc = —2Im[) 4p¢].

We use this time dependent picture to construct a useful computational
framework for solving the ABC system. First, we recall the Fourier integral represen-

tation of the ABC Green’s function (see also Chapter 3):
G(E) = (ih)™ / * dt i E-DIA, (4.46)
0

Because the magnitude of € is finite in the ABC formulation, this integral converges
in finite time (as opposed to the infinite time required by formal scattering theory).
Second, we use the Newton expansion to represent the exponential in Eq. (4.46).
Since u(Z) = e~*2*/" is an entire analytic function [i.e. u(Z) has no poles), we can
choose 6 = 0 to define the sampling region.

We still need to determine T4pc, which by the above analysis is tantamount
to determining Agpc. This was the stumbling block discovered above in the time
independent expansion. However, determining Tapc is trivial in the time domain.
It is simply the finite time required to evaluate the ABC Green’s function in Eq. (4.46),
determined by monitoring the exponential decay of the integrand and stopping the
calculation when the integrand becomes negligible. In this way, we can solve the
ABC system with an algorithm which is accurate, has a fixed and small memory
requirement, and is guaranteed to converge. We pursue this “indirect” polynomial

expansion for the ABC Green'’s function in the next Section.
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Before proceeding with the description of the “indirect” polynomial expan-
sion, we pause to ask: Why is there no computationally tractable direct polynomial
expansion for the ABC Green’s function? To answer this, we note that the ABC for-
mulation was originally derived [13] to exploit the fact that a reactive collision results
from forces which are highly localized in space. However, none of the approaches
discussed above for solving the ABC system exploit the fact that the collision event
is also local in time. Indeed, the inverse operator implicitly accounts for infinite time
dynamics [cf. Eq. (4.46)], which physically speaking, is the source of the pole. By
passing to the time domain, we can fully exploit the finite time nature of the collision
event. And by construcing only finite time dynamics, we effectively remove the pole,

yielding a stable and accurate computational framework.

4.3.2 Indirect Expansion

We solve the ABC system by numerical half Fourier transformation of the
Newton expansion for the ABC propagator. This approach introduces certain con-

vergence parameters which we describe below.

Time Decomposition

Beginning with Eq. (4.46), we decompose the time integral into a sum of
terms involving relatively short time propagators, giving:

(n+1)At

G(E) = (1h)71 i / dt e E-Dt/R, (4.47)

= Jnat
Changing integration variables t — ¢ + nAt gives
G(E) = (ik)™ i[eiEAt/h e—iZAt/h]n /OA' dt ' BtIh g=iZt/h (4.48)
n=0
With this decomposition, the infinite time integral in Eq. (4.46) is evaluated exactly
by only explicitly integrating up to At¢. Two criteria determine the optimal choice for
At. First, if At is too large, numerical roundoff error precludes accurate interpolation
of {(zk,ux)} for u(z) = e=*4*. That is because for long time, the {us} for {2} below

the real axis are comparable to machine precision. Roundoff error dominates when
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a small u; is added to a ux of order unity. Second, if At is too small the Newton
expansion is not optimally efficient. Thus, the competition between stability and

efficiency determines an optimal range for At.

Scaling and Shifting

We describe the details of shifting and scaling the matrix Z. In addition to
enhancing the stability and efficiency of the expansion, as discussed above, the shift

and scale also help to determine At. We begin by rewriting the ABC propagator as

eV ZALR _ —Z)AL/R ~iZ,ts (4.49)
where
Z — (Z)
s = . 5
z AZ/Z (4.50)

In Eqgs. (4.49) and (4.50), the following quantities are:

ts = AtAZ/2f’L
(Z) = [Re(Amaz) + Re(Amin)]/2 (4.51)
AZ/Z = max{l/\max - (Z)I» I)\min - (Z)I}’

where Apq, and Aqi, are the eigenvalues of Z with largest and smallest real part,
respectively. In the case of a positive definite Hamiltonian matrix H and a weak
absorbing potential €, |Amin| = 0 and the above relations simplify to (Z) = AZ/2 =
Re(Amaz)/2. In practice, Aynin and A, are determined with a low-order Lanczos
calculation [26).

In actual calculations, e™*%¢** is the matrix which is expanded in Newton

polynomials according to

K
e~ Bt 3 axlts) Ri(Z,), (4.52)

and Egs. (4.39-4.45). The number of terms required for convergence is determined
directly by t,, not by At. Given the spectral range AZ and the optimal scaled time
ts, the optimal time step At is obtained from Eq. (4.51).
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We obtain the relationship between ¢, and the number of Newton terms
required to interpolate to a certain relative error, e.g. 1073. Denoting that function
by Kop(ts), we seek the t, dependence of frewt = Kopt(ts)/ts. The optimal scaled time
is given by the shortest time for which fy.: reaches a minimum value. To obtain
this, we examine the convergence properties of the Newton expansion for the scalar
function u(z) = e~'**s for several values of ¢,. Figure 4.6 shows that a value of z which
is characteristic of the ABC spectrum is z = (—0.5) + ¢(—0.1). All the calculations
reported in this paragraph use 256 support points staggered by ng,, = 8. Figure 4.8
shows the convergence of interpolations using t, = 10, 20, 30,...,100. We see that in
order to attain a certain accuracy, more Newton terms are required for longer times.
That is because more sampling points and polynomial terms are required to represent
the more rapid oscillations in the longer time exponentials. We also see the effect of
roundoff error for longer times, causing the expansion to converge to progressively less
accurate values. The dashed horizontal line marks the 10~3 accuracy level. Using this
accuracy to obtain fne,: as a function of ¢,. frew: reaches the minimum value of 1.6
at t, = 50. Thus, t, = 50 is optimal, requiring Kop(t, = 50) = 80 terms. Based on
these results, we use t, = 50 as the optimal scaled time for all scattering calculations
reported in this dissertation. It is significant that this scaled convergence result is
not dependent on the physical system under study, but rather is a fact of scalar
interpolation. As such, no re-calibration is necessary when applying the method to

different physical systems.

Time Integration

The time dependent picture requires evaluating the time integral which
Fourier transforms the time Green’s function to the energy Green’s function. This
is a very small price to pay. This integration can be performed with essentially no
approximation or additional effort. Indeed, after representing the ABC propagator
with the Newton expansion, the integral factor in Eq. (4.48) becomes

At y ) K
/O dt 'BUR = 2R 2 S b (B At) Ri(Z,) (4.53)
k=0
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Figure 4.8: Convergence of the Newton expansion for u(z) = e~**** using z = (—0.5)+
1(—0.1), and for several values of t,. More terms are required for longer times to
represent the more rapid oscillations in the exponential function. Roundoff error
is more prevalent for longer times, giving progressively less accurate results. The
optimal time is t, = 50, the shortest time for which f,c.: reaches the minimum value
of 1.6.
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where t
be(E, 1) = / dr & E=ENTIhg, (r AT [28). (4.54)
0

The integral in Eq. (4.54) must be evaluated numerically. Once the expansion coef-
ficients {ax(t,)} are known, Gaussian quadrature with Ngy.s points can be used to

obtain the energy dependent coefficients exactly.

Summary and the Residual

Using the same polynomial expansion for the other exponentials in Eq.
(4.48), the ABC Green’s function becomes

0o K n K
G(E) = (ih)' Y. |Y «l(E,At)Ri(Z,)| x > bw(E,At) Ru(Z,) (4.55)
n=0 Lk=0 k'=0
where
c(E,t) = /B~ ENt/hg, (¢ AZJ2R). (4.56)

Eqs. (4.55) and (4.56) give the working expressions in the time dependent solution of
the ABC system.

To summarize, we construct the RHS vector of the linear system in Eq.
(4.22). Next, we choose sampling points {2} in the region where the eigenvalues of
Z, are likely to be [cf. Eqgs. (4.44) and (4.45)]. A set of scalar interpolations is then
performed using u(z) = e™***, each for a different time as required to converge the
integral in Eq. (4.54). With the energy dependent coefficients {b;(E, At)} computed,
we apply the matrix in Eq. (4.53) (i.e. the Fourier transform up to At) to the starting
vector. This is done in the standard fashion, in which the successively higher powers of
Z, are accumulated recursively, thereby requiring a minimal amount of core memory.
This yields a new vector, to which the remaining exponential matrices are applied.

Convergence of the first sum in Eq. (4.55) is monitored by examining the
modulus of the vectors being summed. We define the partially summed ABC wave-

function as

N — (;5\—1 o
O, (E) = (ih)7" 3 va

n=0
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where the summand vector is given by

K n K
Vo= |3 (B, A R(Zs)| x 3 b(E,At) Re(Z,) ie®n, (E).  (457)
k=0 k'=0

The residual is defined as
oo vwl
ey (E)l

When ry falls below the input accuracy tolerance denoted by 6 (not to be confused

(4.58)

with the downward shift of the sampling domain, which is now set to zero), the
calculation is stopped and the reaction probability computed using Eq. (4.20) in the
finite basis. The resulting total propagation time gives an operational definition for
TaBc, as discussed above. This procedure is not only straightforward, but also gives
the desirable feature that the input accuracy tolerance é is almost identical to the

resulting error in the reaction probability.

4.4 Quantum Reactive Scattering Calculations

We illustrate the accuracy and convergence properties of the time dependent
solution to the ABC system by performing IRP calculations for three dimensional
D+H;(v,j) — DH+H with zero total angular momentum. We defer all discussion of
the basis set, asymptotic state, and absorbing potential used for the present calcu-
lations. Thorough descriptions of these are given in the following Chapter. Instead,
we wish to focus on the convergence properties of the time dependent solution with
respect to the three convergence parameters: frewt, Nguad, and 6. As such, when
reporting error in scattering calculations, the error is measured from an ABC calcula-
tion which is well converged with respect to the parameter in question. By measuring
error in this way, we subtract out the error from the ABC approximation and focus

only on the error incurred by using the time dependent solution.

4.4.1 Reaction Probabilites

To measure error in this way, we must first be sure that the ABC reaction

probabilities are converging to the correct reaction probabilities. Figure 4.9 shows
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the IRP for the D+H,(v, ) at E = 0.9¢V for all the 14 energetically accessible initial
states. The solid lines are obtained using the ABC Green’s function method. The
data in the dashed lines are from Groenenboom and Colbert [11], who used the S-
matrix version of the Kohn variational principle [23] to obtain the entire S-matrix
at this energy. The large probabilities are from the v = 0 reactant vibrational state,
and the smaller probabilities (multiplied by 20) are from v = 1. The agreement is
excellent for all initial states, even those for which the reaction probabilities are quite
small, which are more difficult to converge with the ABC formulation.

The initial state j = 1 reaction probabilities are the largest for both v = 0
and 1. This phenomenon is also observed in studies of the Ho(v,7) + OH — H +
H,O reaction [47]. This can be explained by considering the role of orbital angular
momentum and its classical counterpart, the impact parameter. For zero total angular
momentum, the initial orbital angular momentum quantum number ! must equal the
initial rotational quantum number j. The ;7 = 0 collision involves mostly low impact
parameters, including the energetically unfavorable “T shaped” configuration of the
three particles. The j = 1 collision, on the other hand, couples most strongly to
impact parameters greater than zero, avoiding the “T shaped” configuration and
involving near collinear geometries more than j = 0. Since these collinear geometries
are more reactive, the j = 1 state gives a larger reaction probability. Larger j
values couple to larger impact parameters, which give progressively smaller reaction
probabilities as shown in Fig. 4.9.

These ABC calculations use frew: = 1.6, Nyyaa = 40, and § = 4 x 1074, We

study the convergence with respect to these parameters below.

4.4.2 Convergence Tests

Degree of Expansion

Using the optimal scaled time ¢, = 50 determined above, we demonstrate
convergence of the reactive scattering calculations with respect to frew:. Figure 4.10
shows the convergence of IRP calculations for the D+H(v, j) system with the follow-
ing initial states: [E = 0.9¢eV (v,7) = (0,0),(0,4)], [E = 1.0eV (v,5) = (0,6),(1,4))
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Figure 4.9: The initial state selected reaction probability for D+H;(v, ) =DH+H at
the total energy £ = 0.9 ¢V, from all energetically accessible initial states. The solid
lines are the present calculation, and the dashed lines are from the S-matrix Kohn
variational principle calculations of Groenenboom and Colbert, in which the state-
to-state reaction probabilities are summed for comparison. The larger probabilities
are from the v = 0 vibrational state, and the smaller (multiplied by 20) are from the
v = 1 vibrational state. Excellent agreement is obtained for all initial states, even
those with small probabilities which are most challenging for the ABC method.
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and [E = 1.1eV (v,j) = (0,2),(1,2)]. We note that for these calculations, frewt = 1.5
corresponds to 75 Newton terms and fpewe = 2.0 to 100 terms. We see rapid conver-
gence for all IRPs. In fact, the convergence is roughly independent of the system, i.e.
energy and initial condition, being studied. In these examples, three digit accuracy
can be obtained using fpew: = 1.6, which is completely consisitent with the results of
the scalar interpolations. This is our optimal convergence criterion for the IRP, since
the use of ABC typically introduces error of that order. Figure 4.10 also shows that
very modest amounts of additional effort would be required to attain higher levels of
accuracy. Thus, the Newton expansion convergence is sufficiently rapid and system
independent, that very accurate calculations can be performed with minimal effort in

convergence tests.

Order of Time Quadrature

The convergence of the reaction probability Py—o;=4(E = 0.9¢eV) is exam-
ined with respect to the order Ng,qq of the time quadrature. The solid line uses Gauss-
Legendre quadrature, the squared line uses the trapezoidal rule, and the dashed line
uses Gauss-Chebyshev quadrature (of the first kind). The Gauss-Legendre quadra-
ture is clearly the most efficient, attaining machine accuracy with N,..q = 28 points.
The trapezoidal rule shows second order convergence, i.e. the slope of the log(relative
error) vs. log(Nyueq) plot is = —2. The Gauss-Chebyshev quadrature demonstrates
second order convergence as well. This indicates that the integrand does not resemble
the weight function in Gauss-Chebyshev quadrature, w(z) = (1 — z?)~1/2, We use
Nquad = 40 for all subsequent scattering calculations to ensure that exact integration
is obtained (provided that t, = 50). We note that Gauss-Legendre quadrature with 40

points exactly integrates a polynomial of degree ~ 80, which is precisely the Newton

polynomial used.

Total Propagation Time

Thus far we have shown how to control the error introduced by the time

dependent solution of the ABC system. The remaining source of error comes from
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Figure 4.10: Convergence of initial state reaction probabilities for various energies and
initial states of the D+Hy(v, j) system with respect to the Newton polynomial con-
vergence parameter fnewe. The systems studied are [E = 0.9V (v, ;) = (0,0),(0,4)],
[E = 1.0€V (v,5) = (0,6),(1,4)] and [E = 1.1V (v,35) = (0,2),(1,2)]. Rapid con-
vergence is seen for all systems studied. Three digit accuracy can be obtained reliably
using fnewt = 1.6, consistent with the results of scalar interpolations. Higher levels of
accuracy can be obtained with very modest amounts of additional effort.
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Figure 4.11: Convergence of the initial state reaction probability P,—o ;=4(E = 0.9eV)
for the D+Hz(v,j) system with respect to the order N,u,q of the time quadrature.
The solid line uses Gauss-Legendre quadrature, the squared line uses the trapezoidal
rule, and the dashed line uses Gauss-Chebyshev quadrature (of the first kind). The
Gauss-Legendre quadrature is clearly the most efficient, attaining machine accuracy
with Nyyeq = 28 points. For all subsequent scattering calculations, we use Nyuaa = 40.
This choice for N,y,q is consistent with exact Gaussian integration of an 80** degree
Newton polynomial.
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using a finite total propagation time T4pc. We control this error by monitoring the
residual ry defined in Eq. (4.58), and stopping the calculation when ry < §, an

input convergence parameter. We expect to see exponential decay of the integrand

~T(N+1)At/h - which defines an effective absorption rate I'. By definition,

~ITapc/h

VA TN = €
then, we have § = e . Therefore, the total propagation time satisfies Tapc
—log,, 6. Although specifying either Tygc or § as the input convergence parameter is
formally equivalent, é is more convenient. Figure 4.12 demonstrates the convergence,
with respect to —log,q6, of the initial state reaction probabilities studied in Fig.
4.10. The thick solid line is what would occur if é§ perfectly controlled the error in
the reaction probabilities. The solid line with squares is the average of the error, and
the dashed line with circles is the maximum error from the systems studied; all as a
function of 6. We see the remarkable result that, even in the worst case of maximum
error, 6 reliably controls the error in the reaction probability. Thus, even if we were
studying a system in resonance (i.e. a small effective absorption rate I') requiring
a larger Tupc, 6§ would not change. This kind of control is an important aspect of
any numerical method, i.e. that one be able to determine a priori how accurate the

calculation is and consequently how much computational effort is required.

4.5 Concluding Remarks

We have derived the ABC formulation of quantum reactive scattering theory,
and applied it to the calculation of the initial state selected reaction probability. By
exploiting the highly localized nature of forces in reactive scattering, the ABC formu-
lation facilitates the direct calculation of detailed or averaged reaction probabilities
while sampling only a finite region of space.

We have not been able to find a direct polynomial expansion which is accu-
1ate, has a fixed and small memory requirement, and is guaranteed to converge the
ABC Green’s function. We have attributed this to the fact that none of the direct
expansions considered above exploit the finite time nature of the reactive collision. By
implicitly containing the effects of infinite time dynamics, the direct expansions suffer

from numerical instability by attempting to represent a nearly singular function.
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Figure 4.12: Convergence of initial state reaction probabilities for various energies
and initial states of the D+Hj(v,j) system with respect to the total propagation
time convergence parameter 6. The systems studied are the same as in Fig. 4.10.
The thick solid line is what would occur if § perfectly controlled the error in the
reaction probabilities. The solid line with squares is the average of the error, and
the dashed line with circles is the maximum error from the systems studied; all as a
function of §. We see the remarkable result that, even in the worst case of maximum
error, 6 reliably controls the error in the reaction probability.
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We have found that exploiting the time dependent picture of the ABC
Green’s function leads to a stable and efficient algorithm for solving the ABC system.
The new method is based on half Fourier transforming the ABC propagator, which is
accurately represented i~ a Newton polynomial expansion. We have shown that this
approach, called the Newton algorithm, is capable of obtaining converged reaction
probabilities with very straightforward accuracy control.

The Newton algorithm was applied to calculating initial state selected reac-
tion probabilities for three dimensional D+H,(v, j) — DH+H with zero total angular
momentum. We found that the probabilities with initial j = 1 were the largest, and
attributed this effect to a small amount of orbital angular momentum helping to focus
the system into more reactive geometries.

Although not stated in the body of this Chapter, we discuss the computa-
tional effort required by these reactive scattering calculations. The three dimensional
grids contained ca. 4000 points, using no more than 3 Mbytes of core memory. In
addition, for each energy and initial reactant state, the entire calculation required ca.
35 seconds on an IBM RS 6000/Model 550. The scaling of CPU time from the two
dimensional scattering case (collinear reaction—data not shown) to the three dimen-
sional case is very encouraging. Our preliminary findings suggest that the scaling is
roughly N'. This scaling law is highly system dependent, however. The most extreme
case where deviations from this scaling law would arise are systems with eigenvalues
close to the real axis (resonances) in which the CPU time would be roughly propor-
tional to the inverse of the imaginary part of the resonant eigenvalue. In the case of
D+H;, where a broad resonance has been observed at E = 0.95¢V [48], we a find
negligible effect on the CPU time. As such, in cases where very sharp resonances are
not important, this gentle scaling law should hold.

To speculate on the requirements for larger systems, we recall that the op-

eration count for the Newton algorithm is Ny, (nF + 1)N, where

Jviter = (TABC/At)I{opt(ts)
= TABCAZ/h X fnewt/2 (459)
TipcAZ /b,

11
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This result is ubiquitous in time dependent studies, and is closely related to the
condition number of the ABC system. To estimate the CPU time required to perform
a six dimensional (6D) reactive scattering calculation with 10° grid points, we assume
that Tapc, n, and frew: are unchanged in the 6D system. Furthermore, assuming
that the spectral range in the 6D system is doubled from the 3D case, the CPU
time is roughly 10 hours on the IBM RS 6000/Model 550. Thus, with the present
assumptions, the 6D calculation is now feasible.

We discuss the relationship between the time dependent solution to the
ABC system and conventional wavepacket propagation methods. There are two es-
sential differences. First, in the ABC formulation the starting vector is energy de-
pendent, whereas typical wavepacket calculations use an energy independent starting
vector. Second, we perform the Fourier transform at the beginning of the propaga-
tion, whereas most wavepacket calculations transform after propagation. Our method
is expected to perform most efficiently for direct reactions, i.e. those which do not
involve complex formation.

In the next Chapter, we apply the Newton algorithm to the calculation
of numerically exact cross sections and rate constants for the vibrationally excited
reaction D+H,(v = 1,7) — DH+H. We show that the ABC Newton method is the

most direct route to date for accurate reaction cross sections.
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Chapter 5

The D+H,(v =1) Rate Constant

5.1 Introduction

In the previous Chapter, we developed a theoretical formalism using ab-
sorbing boundary conditions (ABC) to compute efficiently the initial state selected
reaction probability (IRP). The ABC formulation derives its efficiency from focusing
on the highly localized region of space where reactive forces are important. We de-
scribed a numerical solution of the ABC system, called the Newton algorithm, which
is ideal in many ways. First, it only requires locating the region in energy space where
the eigenvalues of the ABC system are likely to be. Second, once the proper spectral
range is determined, the Newton algorithm gives rapid convergence with automated
accuracy control. Finally, the Newton algorithm has a fixed and small memory re-
quirement, making it applicable for larger chemical systems. The Newton algorithm
derives its efficiency from exploiting the time dependent picture of the ABC Green’s
function, which removes problematic poles encountered in other solution algorithms.
In the present Chapter, we apply the ABC Newton method to demonstrate its com-
putational efficiency. As we will show, we are able to converge initial state selected
reaction cross sections in as little CPU time as 10 minutes on an IBM RS/6000.

An important and non-trivial application of the ABC initial state selected
formalism is the calculation of the D+H,(v = 1) —» DH+H rate constant. This quan-

tity has received much attention in an attempt to resolve a fairly large discrepancy
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between experiment [1-4] and theory [5-12] with the experimental results typically
being one or two orders of magnitude larger than the theoretical ones. Surprisingly,
the experimental rate constants varied much more from group to group than did the
theoretical ones. For the following discussion, we report the rate constant ky-=;(7") in
units of 10713 c¢m® molecule™! sec™!.

Early experimental measurements of this rate constant were obtained by
determining the concentration of the product H atoms with electron paramagnetic
resonance (EPR). The first published experimental value, measured by Keuba et al.
[1]in 1979 is ky=1 (T = 300 K') = 120 =+ 50. This value is reasonable for an activation-
less reaction, and thus generated excitement regarding the efficiency of vibrational
excitation in promoting chemical reaction. This experiment was followed by two the-
oretical calculations, a distorted wave Born approximation (DWBA) by Sun et al. [5]
in 1980 yielding k,=1(T = 300 K') = 5.0, and a quasiclassical trajectory calculation
(QCT) by Mayne and Toennies (6] in 1981 giving k,=1(7 = 300 K) = 1.7. From pre-
vious tests. it is known that the DWBA is accurate in the threshold energy region but
overestimates reaction probabilities for higher energies, and thus overestimates the
rate constant. Also, since the QCT calculation lacks the contribution from tunneling,
it underestimates the exact rate constant. In principle, then, the two theoretical re-
sults bracketed the exact rate constant for the potential energy surface (PES) used in
these calculations. The ab initio surface was computed by Siegbahn and Liu [13] and
fitted by Truhlar and Horowitz [14, 15]. The Liu-Siegbahn-Truhlar-Horowitz (LSTH)
PES is the most accurately known PES for a neutral molecular reactive scattering
system. Thus, this discrepancy between experiment and theory is quite significant.

Glass and Chaturvedi [2] performed a measurement in 1982 which accounted
for one order of magnitude in the discrepancy. As opposed to the Keuba experiment,
Glass and Chaturvedi prepared H,(v = 1) without recourse to vibrationally excited
HF". Using vibrationally excited HF" was thought to contribute indirectly to the
detected population of products through the following mechanism:

D+HF* - HD + F

F+H, — HF + H.

EPR detection of the H atoms produced by the reactions above gives a rate con-
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stant which is too large. Indeed, by avoiding this source of contamination, Glass
and Chaturvedi obtained ky=1(T = 297 K) = 9.8 &+ 3.0. A similar experiment was
performed by Rozenshtegn et al. [3] in 1984 yielding ky,—; (T = 297 K) = 16.1 £ 4.9.
Since the error bars of these two measurements overlap, this order of magnitude for
ky=1(T = 300 K') was thought to be correct. A variety of calculations were performed
between 1983 and 1985, yielding results between 0.9 and 2.9 (a prediction of 10.0
was made by Pollack et al. [10] which was based on some theoretically ill-defined
“reinterpretations.”) Thus, a smaller but persistent discrepancy remained.

Dreier and Wolfrum [4] accounted for roughly another order of magnitude
by using coherent anti-Stokes Raman scattering (CARS) spectroscopy to monitor
directly most of the reagents in the system. They obtained k,=;(7T" = 310K) = 1.9
+ 0.2. This measurement should be more reliable than the previous ones because of
the direct observation of all reagent concentrations. We speculate why the previous
measurements gave larger values for the rate constant. The Glass and Rozenshtegn
experiments both involved a great excess of D atoms over Hy(v = 1) molecules. These
experiments might have detected H atom contamination from the reaction D+HD —
D; + H, where HD is the nascent product from the D+H, under study. Thus, the
Glass and Rozenshtegn experiments might not have detected nascent populations.
Based on the direct and thorough nature of the Dreier measurement, we take their
result for comparison.

The most accurate theoretical treatment of this rate constant is by Zhang
and Miller [16] in 1989, using the S-matrix version of the Kohn variational principle.
Their result is ky—; j=o(T = 300 K) = 1.63. However, they reported the rate constant
for D+Hz(v = 1,7 = 0), and the experiment by Dreier and Wolfrum involved a ther-
mal distribution of reactant j-states. With the extreme importance of fundamentally
understanding the role of vibrational excitation in chemical reactions, we undertook
the calculation of this rate constant with the present initial state selected formalism.
We will show that quantitative agreement has now been obtained [17].

As important as exact reactive scattering calculations may be, approxima-
tions are indispensable in developing useful tools for estimating the reactivity of com-

plex systems. An important model is the J—shifting approximation [18-20] (JSA),
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which allows one to estimate observables such as cross sections and rate constants
when only J = 0 calculations are possible. It does so by ignoring the Coriolis coupling,
and by assuming that the centrifugal coupling is only important near the transition
state geometry. In this way, a vibration rotation decoupling approximation is made,
which allows the total energy to be partitioned into a contribution from the J = 0
Hamiltonian (the “vibrational” part), and a contribution from the overall rotational
Hamiltonian.

The accuracy of the JSA was tested by Bowman [18], who examined the
J = 4 partial cumulative reaction probability for H+H,. He found excellent agree-
ment with the exact results of Chatfield et al. [21] up to total energy E = 1.2¢V. In
addition, Takada et al. [22] used the JSA to compute cross sections and rate constants
for D+Hy(v = j = 0). Comparing to the exact results of Zhang and Miller [16], they
too found excellent agreement for low enough energy. However, the JSA has never
been tested in the important case of an initial state selected reaction with rovibra-
tionally excited reactants. This is particularly significant in developing estimates of
reaction rates to compare with the state and bond selected experiments of Crim and
co-workers [23], and Zare and co-workers [24]. In the present study, we test the JSA
in the calculation of D+-H,(v = 1,5) rate constants. We will show that the JSA
is qualitatively correct when selecting individual j—states, and is semi-quantitative

once the rate constants are thermally averaged over the j—states.

5.2 General Methodology

We now discuss the formalism used in the present Chapter to obtain the ini-
tial state selected rate constant for an atom-diatom reaction. We briefly review the
general rate constant formulae and the ABC method of obtaining reaction probabili-
ties. The Newton algorithm for the ABC Green’s function was thoroughly discussed

in the previous Chapter.
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5.2.1 General Rate Constant Formulae

The quantity of experimental interest is the thermal rate constant with ini-
tial vibrational state selection, k,(T'). This corresponds to a rate measurement of the
total yield of a reaction where all the motions of the reactants are in thermal equilib-
rium at temperature T', except for the diatomic vibration. The latter is promoted to
a non-equilibrium state by laser excitation. This rate constant can be obtained from

averaging the more detailed (v, j)—selected rate constant via
ko(T) = 3 poi(T) ku(T) (5.1)
=0

where

(25 + 1) w; e~cvilksT
%0 (25 + 1) wy e~cvi/keT

pui(T) = (5.2)

is the rotational distribution of reactant diatomics in vibrational state v. In Eq. (5.2),
€y,5 15 the reactant diatomic rovibrational energy, kp is Boltzmann’s constant, and w;,
accounts for any symmetry statistics of the reactant diatomic (e.g. for Hy, w; = 1 for
even j, and 3 for odd j). We note that there is also an average over K, the projection
quantum number of j, which is discussed below.

The reaction of a diatomic molecule in state (v, j) with an atom approaching

with a distribution of velocities has a rate constant given by [25]

kvyj = (Ut av,j(v,)), (5.3)

where v; is the translational velocity, o, ;(v;) is the initial state selected reaction
cross section, and (---) denotes an average over the velocity distribution. If the
velocity average is determined by Maxwell-Boltzmann distribution, the rate constant

is labelled by the temperature of the distribution, and is given by [25]

8EaT o
ko s(T) = 4/ WZC (kgT)? /0 dE, Ey e B/%sT 5 (B,), (5.4)

where E, = y,v?/2 is the initial translational energy of the reactants, and i 1s the

translational reduced mass. The initial state selected reaction cross section can be
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obtained from quantum mechanical reaction probabilities by partial wave expansion
[25], in which

oJ +1 It
- } ) S P 5.5
UvJ Et ktz ~ 2 l 1 . IJ ]l v J, ( )

where k; is the translational wave vector associated with F, and u;. We perform the
average over K by averaging the space-fixed (SF) reaction probabilities over [, the
orbital angular momentum quantum number. In Eq. (5.5), P;/;;(E:) is the initial

state selected reaction probability defined by

le (Er) = Z ’l’e—u]l (E) (5.6)
{v'.3' '}

where {v/,j',1'} is the open channel space of products at total energy E = E;+¢,,;, and
P} i1y i(E) ate the state-to-state reaction probabilities. The reaction probability
in Eq. (5.6) is the fundamental quantity of interest which we obtain with the ABC

formalism reviewed below.

5.2.2 ABC Formulation of Quantum Reactive Scattering

The ABC approach to quantum reactive scattering was originally derived
to compute the cumulative reaction probability [26, 27]. It was then applied to
the calculation of initial state selected and state-to-state reaction probabilities [28].
Thorough discussions of the theory can be found in these references. For completeness,
a brief outline of the formulae relevant for atom-diatom reactions is provided below.

We use ABC to achieve two related goals [29-32]. First, by absorbing all
outgoing flux the scattering problem is converted into an effective non-Hermitian
bound state problem, in which standard L? basis set techniques may be used. Second,
by placing the absorbing potentials very close to the interaction region, some [29, 28]
or all [26] of the asymptotic state information can be implicitly averaged, facilitating
more economical calculations. In this spirit, the ABC initial state selected reaction

probability is given by [28]

P (B) = = (W 50(E)

v, 7,0

:n-lto

€p|\I’le( )) (5.7)
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where €, is the absorbing potential operator in the product region of configuration

space. In Eq. (5.7), | UM (E,)) is the ABC scattering wavefunction defined by:

|UIM (E,)) = G*BC(E)i¢ |}, (Ey)), (5.8)

vvjvl U,j,l

where the ABC Green’s function is given by
GABC(E) = (E +1e— H)™. (5.9)

In Eq. (5.8), ¢ is the absorbing potential operator for all chemical arrangements and
‘@{,ﬁ"l (E:)) is a refereuce scattering state with incoming-wave boundary conditions in
channel (v, j,l,J, M, E;). The reaction probabilities are independent of the quantum
number M, to be defined below. In what follows, we omit the “ABC” superscript
with the understanding that we are using the ABC formulation.

We note that use of an absorbing potential in Eq. (5.9) in the definition
of the Green’s function is tantamount to replacing the infinitesimal energy e that
arises in formal scattering theory with a coordinate dependent function €(g). This

replacement is valid as long as €(q) is negligible in the strong chemical interaction

region, and absorbs all flux by the edge of the L? basis.

5.3 Defining the Linear System

We define the precise linear system to be solved for the D+H, quantum
reactive scattering calculations. This entails the choice of system coordinates, basis
set, asymptotic state, and absorbing potential. We note that, with respect to the
coordinates and basis set, much of our work parallels that of Choi and Light [33] in
their calculations on the Ar-HCl van der Waals complex.

5.3.1 The Coordinates

We use the mass-scaled (MS) body-fixed (BF) center of mass Jacobi coordi-
nates of the reactant D+H; to define the differential Hamiltonian operator. The two
Jacobi vectors are R for the scattering coordinate, and r for the vibrational coordi-

nate. The internal coordinates are q = (r, R,~) where r = |r| is the MS bond length
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of Hy, R = |R/| is the MS scattering coordinate, and v = cos™![r- R/rR] is the bend-
ing angle. This choice seems reasonable because the initial state selection requires
that more grid points be placed in the reactant region. Also, the use of body-fixed
coordinates allows for more economical exact calculations (vide infra) [34, 35]. The
coordinates which define the plane of the three particles are the Euler angles to be
defined below. Figure 5.1 demonstrates the lab-fixed (LAB), SF and BF coordinate
frames. The six dimensional Hamiltonian operator in the center of mass translational

frame and body-fixed rotational frame is given by

a

~ ~ ~ A A p— : 2 2 ~
BG Ry =T+t 82 L I v Ry, (5.10)
2uR? 2ur?

where J is the total system angular momentum vector operator, j is the diatomic

molecule angular momentum vector operator, and the system mass is

_ ( MpMyMy

1/2
= 1298.796 au.
Mp + My + MH> au

In Eq. (5.10), the following quantities are:

) 2 g2
Froo O
2u Or?
(5.11)
Fr - _F 9
2u 8R?’

and V(r, R, ~) is the LSTH PES.

We can use the isotropy of field free space to reduce this six dimensional
Hamiltonian to a set of four dimensional ones. The three dimensional vector operator
J yields three quantum numbers from quantizing the square modulus J2, the space-
fixed z-axis projection Jz,,, and the body-fixed z-axis projection 'jZBF' We define

|JMK) as the simultaneous eigenstate of these three operators, satisfying

JNIMEKY = R2J(J+1)|JMK)
JzerIME) = RM|IMK) (5.12)

JzpplJME) hK|IMK).
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LAB

B

Figure 5.1: The laboratory (LAB) frame, space-fixed (SF) frame, and body-fixed
(BF) frame for the A+BC system in Jacobi coordinates. All are right handed axis
systems. The SF frame originates on the center of mass (CM) of the A+BC system,
and is parallel with the LAB frame, which originates on the experimental apparatus.
The BF frame also originates on the center of mass of the A+BC system, but rotates
in space with the system so that the BF z-axis lies on the Jacobi scattering coordinate
R, and the BF x-axis lies in the plane of the three particles. The transformation from
the SF frame to the BF frame is a three dimensional rotation symbolized by R, s~hich
may be specified in terms of the Euler angles (®,©, ¥). [The two versions of A+BC
in this Figure are identical in every way. The axis systems, however, are different in
the two pictures.] The details and conventions are discussed in the main text.
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The position representation of |JMK) using Euler angles is related to the Wigner
rotation matrix element (sometimes called the element of the irreducible rotation
group). For completeness, we describe our convention for the Euler angles, and for
the three dimensional rotation operator. The Euler angles are (®, ©, ¥), which define
a three dimensional rotation from a space-fixed axis system (Xgsr,Ysr,Zsr) to a
body-fixed axis system (Xpp,Ypr, Zpr) which rotates with the molecular system.
The first angle ® gives a counterclockwise rotation about the Zgr axis, giving an
intermediate axis system (X', Y’, Zsr). The second angle © gives a counterclockwise
rotation about the Y’ axis, giving a second intermediate axis system (X",Y’, Zgr)
The third angle ¥ gives a counterclockwise rotation about the Zgr axis, giving the
final body-fixed axis system. The complete three dimensional rotation is effected by
the quantum mechanical rotation operator 7A2(<I>, O, ¥) defined by

R(®,0,¥) = exp|—iUJz,,/h]exp[~iOJy /k] exp[—i®J 7, /A]. (5.13)

By representing the rotated angular momenta J zpr and Jy+ as the result of rotational
transformations of the original angular momenta in the SF frame, the above expression
for (%, 0, ¥) can be written with the angles in the opposite order, and all rotations

referenced to the original axis system, i.e.
R(®,0,T) = exp[—i®Jy,, /h] exp[—iOJy,,/h| exp[~i¥ Sz, /A]. (5.14)

This latter form is more useful for our subsequent discussion. Based on the eigenstates

|JM) and |JK) of a linear rigid rotor, our convention for the Wigner rotation matrix

element is [36]
Di; x(2,0,0) = (JM|R(®,0,¥)|JK). (5.15)

Many other conventions exist for this matrix element. Our choice is the (we hope)
consistent active convention, which is adapted from the text by Rose [36].

We choose to mount the body-fixed z-axis Zpr along the Jacobi scattering
coordinate R. In so doing, (®,0) are the azimuthal and polar angles of R, respec-
tively, measured from a SF reference frame. In addition, ¥ is the angle which brings

the body-fixed x-axis Xpr into the plane of the three particles, with a non-negative
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dot product with the Jacobi vibrational vector r. The body-fixed y-axis Ygr orthog-
onal to the plane of the particles. Furthermore, this choice of body-fixed quantization
means that orbital angular momentum has no body-fixed projection. Writing these
quantities classically to illustrate the point, we have that Lz, = Zgr - (R x P)
x R-(R x P) = 0. As such, the body-fixed projection quantum number for total
angular momentum is equal to that for the diatomic angular momentum, since the
orbital motion does not contribute along the Zgr direction.

Based on these definitions, we can obtain the four dimensional Hamiltonian
from the six dimensional one by integrating out the Euler angles. We first specify the
Euler angle representation of |JM K). This is

D3, x(2,0,%) = (9,0,¥|JMK) = \/2;—;;1 [DI{J,K(@,@,\I:)]‘. (5.16)

The prefactor gives the proper normalization for integrating Euler angles over fZ" d®
x [1,dcos® x 27 d¥, and the complex conjugate gives the phase convention which
reduces to that used by spherical harmonics in the case where either M or K is
zero. At this point, we could proceed to integrate out the Euler angles with a basis
set of the {DJ{,I‘K(@,@,\II)}. This partially diagonalizes the Hamiltonian, yielding
blocks labelled by J and M = 0,%1,...,4+J. These blocks depend on J, but are
indepedent of M. Thus, the manifold of M states merely contributes a degeneracy
which gives rise to the factor of 2J + 1 in Eq. (5.5). Each block for a given J and M
is a (2J +1) x (2J + 1) matrix labelled by K’ K = 0,%1,...,4+J. K is not conserved
because the axis which defines its projection rotates dynamically in space. We can
further block diagonalize the JM block by exploiting the conservation of overall
parity, i.e. that the system is invariant to inversion through its center of mass. We do
this by integrating out the Euler angles with a parity adapted version of the overall
rotation functions. This reduces by roughly half the computational effort required
for each reaction probability, as we will show. These can be constructed by analyzing
the effect on 15]{,,‘,\»(@, O, ¥) of the overall parity operator. We leave the details as
an exercise to the reader. The parity adapted Wigner functions Bifx(®,©, ¥) with
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parity P are defined by
Bifk(®,0,¥) = Nx [D];(9,0,9) + (-1)"*¥+PD}, ,(2,0,9)], (5.17)

where Nx = [2(1 + 6x,)]~"/2. After integrating out the Euler angles with the parity
adapted Wigner functions {Bjfx(®,©,¥)} the Hamiltonian block with parity P
becomes (33, 36]

HEw(r Ry) = bxox {T7+ TR+ 17+ 255 [J(J + 1) - 2K?) + V(r, R, )}
= bxrken {(1 4 6k0) /2 gl ASi S} (5.18)
~ kiK1 {(1 +0k1) 2 i ATk 3 } :

The inversion symmetry quantum number P determines the range of K’ and K, i.e.
when J + P is even K',K = 0,...,J and otherwise K', K =1,...,J. In Eq. (5.18),
the following quantities are
. 1 71 1Y\ ~
y = (X 2\
T 2u (r2 + RZ) J
(5.19)

Ay = JI(J+1) - K(K £1).

Also, 7% are the usual raising and lowering operators for the diatomic angular momen-
tum in the body-fixed system. The portion which is off diagonal in K, the body-fixed
projection quantum number, is called the Coriolis coupling with the second line in Eq.
(5.18) called the “4+” Coriolis coupling the the third line the “~” Coriolis coupling.
We now describe the basis set used to represent the remaining operators
in the Hamiltonian. The use of a grid for the internal degrees of freedom and a
delocalized basis set for the overall rotation requires that special attention be given

to the Coriolis terms. These involve coupling in both the overall rotation and internal

bending.

5.3.2 The Basis Set

In the present calculations we use a discrete variable representation [37-39]

(DVR) for each internal degree of freedom. The DVR gives a diagonal potential
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matrix, and thus, all the coupling is in the one-dimensional kinetic energy matrices.
This is a poor, but convenient representation because the multi-dimensional Hamil-
tonian matrix is sparse, which facilitates iterative calculations based on the sparse
matrix-vector multiply [40, 41], In practice, we first define a direct prod:ict grid in
four dimensions, called the primitive grid. This is then truncated based on several
criteria to give the final grid used to represent the ABC wavefunction. First, we
discuss the construction of the primitive grid, and the relevant kinetic energy matrix
elements. Then we discuss the truncation algorithm.

For the two radial coordinates, we use the radial sinc-DVR given by Colbert
and Miller [42]. Considering the scattering coordinate first, a grid of R values is
defined by R; = 1AR where i = 1,2,3,.... The point at zero is automatically deleted
because of the Jacobian weight at the origin. The radial kinetic energy matrix element

1S

P L (_1),.,4{ 7[3 —1/2%, i'=1 } (5.20)

T"‘ZQNARz (_'___2‘_)?_(7%72_’ e
The same applies for the r coordinate, except with the vibrational grid spacing Ar. In
practice, we have used the same grid spacing for the two radial coordinates, because
they are associated with the same mass u. The grid spacing is chosen by requiring
that the number of points per de Broglie wavelength (/Ng) is roughly 4, as was found
by Colbert and Miller [42].

For the bending angle, we use an associated Legendre (AL) DVR which
properly removes the singularity in the Hamiltonian for collinear geometries when
K > 0. We symmetrize the AL DVR to exploit the exchange symmetry of the two
identical H atoms, allowing us to use half as many angular grid points.

For simplicity, we use a K-independent grid [43, 44]. That is, we obtain
grid points {z;} and weights {w;} for the K = 0 AL functions (i.e. the usual Gauss-
Legendre DVR). We then use these points and weights to construct the angular
kinetic energy for all values of K in the Hamiltonian. This is to be contrasted with
the treatment of Choi and Light [33] who use different points and weights for each
K-block. Both approaches are valid, and we wanted to keep the basis set as simple

as possible.
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Using N4z symmetrized AL DVR states, and labeling the exchange sym-
metry blocks by p = 0 or 1, the (p, K)—dependent angular kinetic energy matrix

elements are given by

2N, -1
iti(p K) = Nf s;(p) {\/w_i'PjK(ﬂii') [hzj(j + 1)] Pjk (i) \/U)—.} (5.21)
j=
With the phase convention that Pjx(cosv) = V27 Yk (7,0), where Y, (8, 4) is the
usual spherical harmonic [45], the symmetry factor s;(p) is given by s;(p) = 1 +
(_.1)J'+P'

We now discuss the grid representation of the Coriolis coupling. For the
present discussion we consider only the “+4” Coriolis term [i.e. the second line in
Eq. (5.18)], leaving the detailed derivation of the “—” Coriolis term as an exercise
for the reader. In addition, we focus on the W = [6x k41 x 7] portion of the
“+" Coriolis term, since the remaining factors are diagonal in the present treatment.
Before beginning the derivation, we note that the differential operator corresponding
to the body-fixed ;* depends only on the polar angle 4. This may seem strange since
raising and lowering operators usually depend on both the polar and azimuthal angles
which define the rotation. However, our “three angle” [i.e. (®,©, ¥)] definition of the
body-fixed frame replaces the ¥ dependence of j* with K dependence. There is an
analogous “two angle” [i.e. (®, )] definition of the body-fixed frame in which ;7 in
that reference frame does depend on both the polar angle v and the azimuthal angle
U [46].

The finite basis representation (FBR) of the “+” Coriolis term using a sym-
metry adapted AL basis set with symmetry p gives

2N 41 ~1

WiRRk(P) = bkrkan 3 i Phy(wi) [hAfk] Py (@) Vi, (5.22)

=0

where Pfy(z) = /s;(p)Pjk(z). After applying the Sk k41 to the K’ dependence of
the summand, this expression reduces to

Wikrk(p) = 6kik41 655 5;(p) KA. (5.23)
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Now performing the FBR to DVR transformation and applying the éx/ k41 to the
resulting X' dependence, we get WP (p) = 6k k41 % jii(p, K) defined by

2N 4L -1

iKY =Y si(p) { Vo Pixn(e) [BAk] Pz vy, (5.24)

j=K+1
To complete the definition of the basis set, we note that j7;(p, K) = jf(p, K — 1).
The primitive grid is truncated in the following fashion. For each DVR grid
point in the primitive grid, a diagonal element of

. K2
T4
T+ IR

J(J+1)+ V(r,R,7)

is constructed. If that energy exceeds some input V., the point is discarded; oth-
erwise it is retained in the basis [47]. Also, if a point is asymptotic, based on some
convergence criterion related to the definition of the ABC, it is also discarded. In this
way, the grid is tailored to the shape of the PES and the ABC. The sparse matrix-
vector multiply with a truncated DVR grid was first discussed by Groenenboom et
al. (40, 41], and their method is adopted here.

To complete the definition of the truncated basis set, we consider the allowed
values of K, the body-fixed projection quantum number. In principle K = 0,...,J
for even J + P and 1,...,J for odd J + P. With a finite basis for the Jacobi
angle, however, K can not exceed min(J,2N4, — 1). We have found that for the
reaction probabilities considered in the present Chapter, convergence is reached with
Kmaz = 2, in accord with the basis set contraction results of Zhang [35]. This rapid
convergence with respect to K, facilitates exact calculaticns with very modest
increases in CPU time as J increases, and is one of the many useful aspects of the

body-fixed representation.

5.3.3 The Reference Scattering State

The reference scattering state can be chosen as a distorted wave (with any
level of distortion) or as a free wave, as long as it is regular at the origin and is

an eigenstate of the asymptotic Hamiltonian, ffo = limp_ o H. Groenenboom et al.
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'41) and Thompson and Miller [28] have found it very useful to use inelastically dis-
torted waves in their reactive scattering calculations, because they could represent the
chemical reaction by focusing on the local exchange region. For the simplicity of the
present application we use (almost) free waves, including only the centrifugal phase
shift. This is the lowest level of distortion which facilitates practical calculations.
With this level of distortion, the reference scattering state is the product of

a translational state, a vibrational state, and a rotational state:
1277 (Ev)) = |hi(Ev)) |603) | M) (5.25)

For the translational function, we choose the spherical Hankel function of the second

kind {hl(z)(x)} [45]. properly normalized to give unit incoming flux:

(RIW(E)) = ZB @) oy ~ L emithretnsa) (5.26)

7o 7

In Eq. (5.26), k = \/2pE;/k and v, = hk,/u,, where p, and k, are defined in Eqgs. (5.4)
and (5.3), respectively. We note that these are the same incoming-wave boundary
conditions used in many of the S-matrix Kohn variational principle calculations [16].
Also, in Eq. (5.25), |9, ;) is the diatomic rovibrational state.

The rotational state |JMjl) in Eq. (5.25) is a SF coupled eigenstate of J2,
st,m 72, and L?. This asymptotic rotational state is used in most modern reactive
scattering calculations [48]. It is useful for three reasons. First, it exploits the fact that
J is conserved. Second, in the ABC formulation of quantum scattering, the absorbing
potential may be non-zero only for values of R large enough that the asymptotic
state nearly solves the Schrodinger equation. The term in the Hamiltonian which is
responsible for mixing [—~states is the PES, which is typically a much shorter ranged
interaction than the 1/R? term which couples the BF labels {K}. As such, the SF
representation allows the use of smaller L? basis sets. Third, the strength of the
coupling which mixes the {K} monifold increases as A%, ~ J [cf. Egs. (5.18) and
(5.19)], and as such would require re-optimization of the basis set and absorbing
potential for each value of J. Thus, the SF representation allows us to use a single,

relatively small L? basis for all values of J.
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We have argued for the use of an asymptotic state with SF labels. However,
we must represent this state with BF angles since these are used to simplify the
Hamiltonian by integrating out overall rotation. This was done in 1968 by Miller
[48]. We give a detailed derivation of the position representation of the angular state
|JM3l) using BF angles, i.e. (8,0, ¥, ~). This is useful because it demonstrates the
relationship between BF and SF labels. It also indicates how symmetry is used in
the present calculations. The derivation involves three steps. First, we write down
the coupled eigenfunction using SF angles. We then express the SF angles as rotated
BF angles. Finally we use Clebsch-Gordan coefficients and orthogonality relations to
simplify the result. Recalling that (®,©) are the SF angles of R and defining (¢, 6) as
the SF angles of r, we have the well known result for the coupled angular momentum
eigenfunction ijlM(‘I), 0,4,0) = (9,0, ¢,60|JMjl):

J
yﬁM(@aeaqs’e): z y}m(gy ¢)Yi,M—m(®7®)C(j,l’maM_m,j7lv J’M)v (527)

m=—j
where the Clebsch-Gordan coefficient C (jy, j2, m1, m2|j1, j2, j, m) is a vector coupling
coefficient for the addition of angular momenta j; and j2 to yield the total angular

momentum j. For a subsequent step in the derivation, it is convenient to express

Yim-m(©, ®) in terms of a Wigner function via

20+ 1 *
Yiar-m(©,8) = {| == [Dh;_no(®,0,0)]", (5.28)

with the Wigner function defined in Egs. (5.14) and (5.15). Next, we express Y;m (6, ¢)
as a rotated spherical harmonic with BF angles via
J :
y}m(e?é) = Z Y.iK('7’\Il) D;{,m(07—@,——@). (5'29)
K=—j

This follows from the fact that the SF and BF angles of r transform via
16, ) = R(®,0,0)]y, T). (5.30)

It may seem that we are using a two angle rotation, which is inconsistent with the
construction of the BF Hamiltonian. In fact, we eventually use a three angle rotation,

applying the third rotation trivially as the final step in the derivation.
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We can now begin to construct the SF rotational function with BF angles.
To do this we note that given (©, ®), we can take either (6, ¢) or (v, ¥) as the other
two independent angles. As such, whenever we use the angles (v, ¥) as independent
variables, we denote (8, ) as the values taken by the transformation function which
gives the SF angles in terms of the BF angles, i.e. that defined in Eq. (5.30). We
can then define the rotational function XjM(®,0,¥,7) = YjM(®,0,4,6). Using the
unitarity of the rotation operator 1% and Eqgs. (5.28) and (5.29), X/M(®,0,9,7) is
given by

M(2,0,7,7)

I

Z Z }/JK 7’ (]5l’m7M_“m'jaZ’JaM)

m=-3 K=-3

x {DM mo(®,0,0) Dm‘K(@,G,O)} : (5.31)

This simplifies by using the angular momentum coupling relation for Wigner rotation

matrix elements:

—m,o(q)v 0, 0) Dir;,]{(q)’ 9, 0) =
i+l ,
> C(,lLm,M —ml|j,1,J', M) D} (2,0,0)C (j,1, K,0|5,{,J, K) . (5.32)
J'=l5-1
Simplification occurs by plugging in this result and using Clebsch-Gordan orthogo-

nality relations:

2041 <
XJ{M((I)’G’\I/”Y) = + Z Y]I\ /»
K=~j

J+l
x Z D} x(2,0,0)]" € (5,1, K,05,1, 7', K)

=|j-I|

J
X Z C(j7lamaM_mijvlaJ,7M) C'(j,l,m,M—m]j,l,J,M)

m=-—j

= Z )/JK 7,
K=-j

i+l
x 2!; l[D x(2,0,0)]” C(,1, K,005,1, 7", K) x b1,
7~1




5.3. DEFINING THE LINEAR SYSTEM 149

2!
4

] * . .
x 3 Yik(1,¥) [DY«(2,0,0)]" C(5,1,K,00,1,J,K). (5.33)
K=-j

This is almost the final form for the rotational function. To complete the derivation,

1

-}

we note that

1

, * 1
T Yik(7,9) [Di1x(2,©,0)] =

Ve2J +1
where P; (cos ) and D,{,,'K(Q, ©, ¥) are defined in Eqs. (5.21) and (5.16) respectively.
The final form for the rotational function is then

2041 2 .
2J+1 Z PjK(COS7)D;\7/!.K(¢7®7\I’)
K=—j

x C (3,1, K,00j,1,J,K) . (5.35)

Pjk(cos) D x(9,0,9), (5.34)

XM (®,0,0,y) =

This final step completes the three angle rotation used to define the SF function with
BF angles.

We make four general comments about the rotational function in Eq. (5.35),
for which the demonstration is left as an exercise for the reader. First, this rotational
function is an eigenfunction of the parity operator with parity P = j+1[. This is plau-
sible because the sum ranges over positive and negative values of K, as does the sum
which defines the parity adapted Wigner function defined in Eq. (5.17). The Clebsch-
Gordan coefficients have the required symmetry properties [36] to give definite parity.
Second, this rotational function also has definite symmetry when exchanging atoms B
and C [see Fig. 5.1]. Such an exchange maps cosy ~ ~ cos v, giving an overall phase
factor (—1)? from our definition of Pjx(cos~). Thus, the rotational function has ex-
change symmetry p = j. Third, [Pjx(cos~) X DJ{,I‘K(@, 0, ¥)] is a rotational function
with BF labels and angles, whereas the function in Eq. (5.35) has SF labels and BF
angles. Therefore the Clebsch-Gordan coefficients furnish the transformation from SF
labels to BF labels. Indeed, one can say that the coefficients {C (j,[, K, 0|71, J, K)}
transform between the “K™ and “I” representations. Finally, based on the constraints
of vector addition which determine the non-zero Clebsch-Gordan coefficients, the sum

over K has non-zero contribution from only K = 0,+1,+2,...,+min(j, J).
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To complete the discussion of the frame transformation and the use of sym-
metry in the present calculations, we indicate the transformation between a BF ro-
tational state and the SF rotational state. We label the BF rotational state by
|JK Pip) where K P labels a symmetrized Wigner state with inversion symmetry P,
and ip labels a symmetrized AL DVR state with exchange symmetry p. Computing
the transformation element is made easy by inserting unity resolved in BF angles
=(9,0,7,v):

(JMKPip|lIM3l) = / dQ (JMK Pip|)(Q2|J M;1)
= /dﬂ Q/MFPP(8,0,7,7) X/M(2,0,7,7). (5.36)

In Eq. (5.36), X]M(®,0,7,7) is given by Eq. (5.35), and Q] ¥ *(®,0,¥,) is the
BF function given by

Q/i?(®,0,T,y) = APy (cosv) Bif ¢ (8,0,¥), (5.37)

where Bifx(®,0,¥) is the parity adapted Wigner function defined in Eq. (5.17).
Finally, i,K(cos 7v) is the AL DVR basis function with exchange symmetry p, and
corresponding to grid point ¢. By analytically integrating over the Euler angles and

using the angular grid tc integrate over cos+, the transformation becomes:

2l +1
2J+1

1 _q)i+p 1 HAP
{\/5[”( 1)+]}><{ T [1+(-1) +]} (5.38)

The transformation element is completely independent of M, as is the Hamiltonian

(JMK Pip|IMjl) = { /w; PK(z:) } { C (3,1, K,OIj,l,J,K)} x

operator in Eq. (5.18). This demonstrates that the reaction probabilities are indepen-
dent of M. Formally they must be, since our choice of SF z-axis orientation should
not affect the dynamics. The first factor in Eq. (5.38) is the usual DVR-FBR transfor-
mation element [39]. The second factor is the frame transformation. The remaining
factors demonstrate the relationship between the symmetry of the BF rotational state
and the SF rotational state. In particular, since the SF rotational state has both def-

inite exchange and inversion symmetry, it projects onto the block of the Hamiltonian
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with exchange symmetry p = j and inversion symmetry P = j + [. Using the proper
symmetry blocks, these factors are v/2 for K = 0 and 2 for K > 0, multiplying the
reaction probability in Eq. (5.7) by 2 and 4, respectively. Thus, the D+H, initial
state selection allows the calculation of properly symmetrized reaction probabilities
while only explicitly treating ca. ; of the full Hamiltonian.

We summarize our use of different rotational reference frames in reactive
scattering. Our purpose is to choose basis functions for overall rotation which min-
imize coupling in the Hamiltonian. To make the discussion concrete, we define the
orbital angular momentum vector operator L = J — j. The choice of reference frame
is determined by the competition between the PES V and the orbital kinetic energy
L?/2uR?. When choosing basis functions to represent the motion of the system when
the collision partners are strongly interacting, the BF frame is preferable. In this case,
V > [?/2uR?. The BF frame is diagonal in V, and thus diagonalizes most of the
Hamiltonian. Alternatively, when choosing basis functions to represent the motion
of the system when the collision partners are well separated, the SF frame is prefer-
able. In this case, [2/2uR? >> V. The SF frame is diagonal in £2/2uR?, and thus
diagonalizes most of the Hamiltonian in this case. Finally, one may regard the SF
asymptotic rotational function as an analytically distorted wave, with the Clebsch-
Gordan transformation from the K representation to the ! representation providing

the distortion.

5.3.4 The Absorbing Potential

The optimum absorbing potential is one which absorbs all outgoing flux with
negligible back reflection, as fast (in space) as possible. Several studies have sought
reliable guidelines for determining optimal absorbing potentials {32, 49-52]. We have
found excellent convergence behavior with a quartic function:

Z— 20 ]4

Zmazr — 20

ele(a) = A | (5.39)

where z = max[R,, Ry(q), R.(q)], and (a, b, c) label the three chemical arrangements.

The parameters (), 2o, 2maz) are different in different arrangements. They are set to
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give more gentle absorption in the reactant arrangement (Re = a) than in the product
arrangements (Pr = b, c¢), as demanded by the initial state selection. The parameter
Zmar determines the end of the grid in a particular arrangement. It is smaller in the
product arrangements where no state selection is required. Converged values of these

parameters will be reported below.

5.3.5 Summary of the Methodology

With the vector 7€ ®; ;,(E;) now defined, we use the Newton method to ap-
ply G(E), thus giving the ABC scattering wavefunction and the reaction probability.
The partial wave expansion and the Boltzmann average over relative translational

energy and initial rotation give the desired rate constant.

5.4 Results and Discussion

We now present the results of our quantum reactive scattering calculations
on the D+Hjy(v = 1,7) system. As stated in the Introduction, the present Chapter
has two main goals. The first is to demonstzate the efficiency of the present method
in a non-trivial application. For this purpose, we report the D+H, reaction probabil-
ities Py, (E:) and cross sections o, ;(E;), in addition to the typical amounts of core
memory and CPU time required for these calculations. The second objective is to
determine the j and T dependence of k= ;(T), for the purpose of comparison with

both experiment and approximate theory.

5.4.1 Reaction Probabilities and Cross Sections

We have obtained converged reaction probabilities and cress sections ac-
cording to Eqs. (5.7) and (5.5), respectively. There are 13 convergence parame-
ters to optimize. These fall into four roughly independent groups: ABC parameters
(ARe, APr, zfte, 2{") for defining the absorbing potential [cf. Eq. (5.39)], parameters
(NB, N4yr) for constructing the primitive basis; parameters (2B, 2Pr . Viut, Kiaz)

mazx)

for truncating the basis; and, the Newton inversion parameters (frewt, 7s, 6) defined
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Me = 18x E APr=10xE
Absorbing potentials
zfe = 4.54a zF" =3.9a0
Primitive basis set Ng =3.7 Nap =7

zRe =(7.4-104)ao | 2F7, = (5.5 —8.5)ag

mazx mazx

Truncated basis set

Veut = (2.5 —4.2) eV Koz = 2
T, = 50
Newton inversion frewt = 1.6
§=2x10"?

Table 5.1: Optimized convergence parameters for the present quantum reactive scat-
tering calculations. These values are sufficient to give better than 3% accuracy for
0.15eV < E; < 0.37¢V, and better than 6% accuracy otherwise. E = total scattering
energy, Re is reactant, and Pr is product.

in Ref. 53 and in the previous Chapter. Table 5.1 shows the optimized values. These
parameters are sufficient to obtain better than 3% accuracy for the lower transla-
tional energies (0.15eV < E; < 0.37€V), and better than 6% accuracy for the higher
translational energies. We focus attention on the truncation parameters.

The parameters (22, 2P7 | V..:) require careful optimization. For small

Pr

E,, the initial translational energy, z2_ and 277

must be large enough to encompass
the long de Brogiie wavelengths. Alternatively, for larger E;, the parameter V.,
must be set to allow the wavefunction to sample larger portions of the PES. This
competition between small and large translational energies caused the truncated grid
sizes to be roughly independent of the energy, with grid sizes falling in the range

Nyrig = 6500 £ 1500.
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Reaction Probabilities

We demonstrate the convergence of selected reaction probabilities with re-
Re Pr

maz’ mazr

spect to (z ), which control the spatial extent of the grid and the strength
of the absorbing potential. As (2R¢_, 2" ) increase the grid samples more space,
the absorbing potential becomes more gentle, and the reaction probabilities should
converge to the exact values. Since we ultimately compute thermal rate constants,
we need to converge reaction probabilities with small initial translational energies.
For example, the D+Hz(v = 1,7 = 0) channel becomes energetically accessible for
total energy E > 0.786 eV [where V(r = req, R = 00,7) = 0 defines the zero of total
energy|. The threshold for this reaction probability occurs in the total energy range
E € (0.85¢V,0.90eV). Fig. 5.2 demonstrates the convergence behavior of the reac-
tion probabilities Py5°,_,_o(E) for E = 0.85 and 0.88 V. These calculations used
Veur = 2.8eV. Fig. 5.2 shows that large grids are required to represent the long de
Broglie wavelengths for E = 0.85eV. Even a small change in energy from E = 0.85eV
to 0.88 eV allows the use of smaller grids. We also see that the E = 0.85eV prob-
ability is more stable when turning on the absorbing potential slightly farther into
the asymptotic region. Finally, Fig. 5.2 shows that the £ = 0.85¢V probability is
known roughly to within a factor of 2, whereas the E = 0.88 ¢V probability is known
to within 10%. Fortunately, we are not interested in temperatures low enough that
these probabilities give the dominant contribution. In fact, these are the smallest
reaction probabilities used to compute the rate constants reported below.

Reaction probabilities which give dominant contributions to their respective

rate constants at T = 300 K are P50, _o,-o(E = 1.0€V), PJ=5, (E =1.014€V),

v=1,7=1,l=5
and PJ5%._, ;_s(E = 1.104¢V). The convergence of these reaction probabilities with
respect to (2., z]" ) is shown in Fig. 5.3, using V., = 2.8€¢V and (28, 2m) =

(4.5a0,3.9a0). These reaction probabilities can be obtained with significantly smaller
grids than are .equired for the threshold probabilities shown in Fig. 5.2. In addition,
these probabilities are stable to roughly 3% with respect to changes in (2B¢_, 2P" ).

Since these are the most important probabilities for the subsequent rate constant

calculations, we expect the rate constants to be accurate to roughly 3% as well.
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Figure 5.2: Convergence with respect to (2£¢_, 2P" ) of the D+Hy(v = 1,5 = 0,1 = 0)
reaction probabilities at total energy E = 0.85 and 0.88 eV'. Large grids are required
to converge very small reaction probabilities. The convergence is more stable when
the absorbing potentials turn on farther out in the asymptotic region of space. The
E = 0.85¢eV probability is known roughly to within a factor of 2, whereas the F =

0.88 ¢V probability is known to within 10%.
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Figure 5.3: Convergence with respect to (z%¢_, 2P ) of the D+H; reaction proba-

bilities

PJ:O

v=1,7=0,i=0

mazr?’ “mazr

(B = 1.0eV), P58, 1_s(E = 1.014€V), and P _, | ¢(E =

v=1,7

1.104eV). The abscissa z has the same meaning as in Fig. 5.2, i.e. (2%, 25 ) =

mazx’ “max

(2 + 1.9 ag, z). These probabilities give significant contribution to the rate constants
reported below. Small grids can be used to obtain these probabilities, which are at
energies above threshold. These probabilities are known to roughly 3%.
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Converged reaction probabilties for the D+Hz(v = 1,7) system with total
J = 0 are shown in Fig. 5.4. The j = 0 probabilities are compared with the S—matrix
Kohn variational principle (SMKVP) results of Zhang and Miller (16]. The agreement
is generally very good over the entire energy range, and is truly excellent for total
energies E < 1eV. The j = 1 probability increases from threshold most rapidly. This
phenomenon was observed in the previous Chapter, and was attibruted to a small
amount of orbital angular momentum (! = 1) present in the initial state, helping
to focus the system into more reactive geometries. We note that the j = 2 energy
dependence roughly follows that for j = 0, and that the 7 = 3 curve rises to the
same level as that for j = 1. This may be the result of some approximate symmetry
dependent selection rule which determines reactivity. Determining what portion of
the Hamiltonian controls this effect may allow estimates of reactivity for more complex

systems.

Cross Sections

In order to obtain the reaction cross section, reaction probabilities with
J > 0 must be obtained to perform the sum over partial cross sections in Eq. (5.5).
Zhang has studied the convergence of partial cross sections with repsect to Kpnqaz [35].
He found that the J = 10 partial cross section for H+H, at total energy E = 0.6 and
1.0eV converges with K., = 3 and 4, respectively. In principle, the optimal value
of Kmaz depends on F and J, in addition to the initial rotational quantum number ;.
To avoid such complication, we examined the convergence of D+H; full cross sections
with Kmg, for various values of E and j. Figure 5.5 shows the convergence of 0,=q,;
at E = 0.85¢eV for j = (0,1,2). We see rapid convergence of these cross sections as
K mas Increases, gaining nearly three digit accuracy with K,,,, = 2. Similar results
were obtained at £ = 1.1eV, which require J as large as 24. Based on these results,
we have used K., = 2 for all subsequent calculations reported in this Chapter.

The partial cross sections required to construct oy,-; j=o(F) are shown in
Fig. 5.6 for various total energies. These were computed using Kpae = 2, based on

the convergence behavior seen in Fig. 5.5. The linear increase for small J results
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Figure 5.4: Reaction probabilities for the D+Hy(v = 1,7) system. Comparison is
made with the S—matrix Kohn variational principle (SMKVP) calculations of Zhang
and Miller [Ref. 16] for the j = 0 transition. Excellent agrecment is seen, especially
for total energies below 1 eV. The j = 1 probability incrcases from threshold most
rapidly, and is matched by the j = 3 curve at high energy. We attribute this rapid
increase in the j = 1 energy dependence to the result of orbital motion.



5.4. RESULTS AND DISCUSSION

3.5 ' . , I
3.3 10 min
— 3.1 IBE_——Z o *
) 2.9 Foo AT TS — e ——
~ i // \
% 2.7 %/ 30 min l
% 2-5 I ;:;_—,..-—-—-.-—-—o-O—*—-—.—‘-""__&
ﬁ 2.3 B /‘.’ \ ® )
= / 50 min r——e J
21t / . I
219 l//' ) :
o L7 ¢ Tl :
1.5 ' : ‘ ‘

max

159

Figure 5.5: Convergence with respect to K, of the D+Hy(v = 0,7) reaction cross
sections at total energy F = 0.85¢V, for 7 = (0,1,2). We see rapid convergence
as Kpma, increases, gaining nearly three digit accuracy for Kpny, = 2. The j = 0

calculation for K., = 2 required only 10 minutes.
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from the product of reaction probabilties weakly dependent on J and the 2J +1
SF projection degeneracy. The exponential decrease for larger J values results from
the repulsive centrifugal force keeping the reactants well separated. The competition
between these two effects gives a different maximum partial cross section for each
energy. This maximum occurs at larger J values as energy increases, which is ex-
plicitly demonstrated by the two partial cross section curves marked at £ = 0.91eV
and 1.35 eV. Qualitatively, Fig. 5.6 suggests that for a given value of J, reaction is
possible only after an energy roughly equal to J(J + 1) is spent in overcoming the
centrifugal barrier. This idea is made more quantitative below in our discussion of
the J—shifting approximation.

The D+H,(v = 1, 5) reaction cross sections are shown in Fig. 5.7, as a func-
tion of total energy. The thick lines show the present calculations for j = (0,1,2,3),
and the thin dotted line is the j = 0 result of Zhang and Miller obtained from the
SMKVP [16]. We see complete agreement for j = 0 between the two methods over
the entire energy range. The discrepancies between the SMKVP and the ABC-DVR-
Newton method for J = 0 and E > 1€V seem to have averaged out in the sum over
orbital and total angular momentum.

The initial state selected reaction cross sections in Fig. 5.7 demonstrate
the very smooth energy dependence that results from averaging over partial waves
and final states. We also see that the cross sections systematically decrease with
increasing j. This contrasts the j dependince of the J = 0 reaction probabilities
shown in Fig. 5.4, in which probabilities for ;j = 1 and 3 are the largest for many
energies. The j dependence of the cross sections in Fig. 5.7 results from computing
the “helicity averaged” cross section. In principle, the cross section depends on the
initial orientation of the diatomic molecular rotation (i.e. BF projection quantum
number K, or helicity in the language of particle physics). Since most experiments
do not prepare reactants with orientational selection, we average over the helicities.
This average over K is performed in the SF representation as discussed above, by
averaging over [. Different [ states have different parities, which can have a large
effect on the magnitude of the reaction probabilities. The j > 0 cross sections involve

an average over even and odd parity, whereas the 7 == 0 cross sections arise from only
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0.60 === E, .= 1.35eV
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Total angular momentum (J)

Figure 5.6: The dependence of the partial cross sections Ut{=1‘j=o(Etotal) on total
angular momentum J, for various total energies. The linear increase for small J
results from the 2J + 1 SF projection degeneracy. The exponential decrease for
larger J results from the centrifugal force keeping the reactants well separated. The
exponential decrease occurs at larger J values for larger initial translational energies,

as demonstrated by the two marked total energies E;,1qr = 0.91€V and 1.35 eV.
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even parity calculations. Since the odd parity block lacks the K = 0 component, the
transition state is not energetically accessible and the reaction probabilities are quite
small.

We now report the computational effort required by these calculations, which
were performed on an IBM RS/6000 Model 550. Total propagation times ranged
from 60 fs (higher E;) to 100 fs (lower E;). This corresponds to the time required for
reaction and absorption. The linear system size (i.e. the dimension of the Hamiltonian
matrix) ranged from 5000 (J = 0, small grid) to 25000 (J > 2, large grid). The
number of Newton expansions performed for each Green’s function calculation varied
from 10 to 20. With Kpewt = frewt X 7o = 80, this corresponds to 800-1600 matrix-
vector multiplies for each reaction probability.

All timings are for the j = 0 cross sections. Timings for higher j values are
roughly obtained by multplying the j = 0 timings by 2j + 1, the number of terms in
the average over orbital angular momentum. The cross sections in Fig. 5.5 required ca.
3% minutes times K., + 1, for a calculation using Kn,.. Thus, converged reaction
cross sections are obtained in 10 minutes. The cross sections in Fig. 5.7 are more
demanding, however, because the total energy is higher, and the initial translational
energy is lower than that in Fig. 5.5. The lower energy cross sections and the very
high energy cross sections in Fig. 5.7 required ca. 60 minutes per energy, and those
at the intermediate energies required ca. 40 minutes per energy. Furthermore, with
respect to core memory, all calculations presented required less than 4.5 Mbyte. This
is possible because the Newton method is an iterative algorithm which is based on
storing only a small number of vectors. Thus, these very modest memory and time
requirements of the ABC-DVR-Newton method suggest that it may be the most direct

route to date for calculating accurate reaction cross sections.

5.4.2 Rate Constants

We now present the results of our rate constant calculations using Eqs. (5.1-
5.4). In this section we wish to emphasize two comparisons: the present theory vs.

experiment, and the present theory vs. an approximate theory.
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Figure 5.7: Reaction cross sections for D+H;(v = 1,7) as a function of total energy
(eV). The thick lines show the present calculations for j = (0,1,2,3), and the thin
dotted line is the ; = 0 SMKVP result of Zhang and Miller [Ref. 16] which agrees
completely with the present calculations over the entire energy range. In contrast
with the J = 0 reaction probabilities, the cross sections decrease systematically with
increasing j because of symmetry.
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The theory we test is the J—shifting approximation (JSA), made popular
in quantum reactive scattering theory by Bowman [18, 54] and Schatz [55]. The
JSA assumes that K is conserved, and further that the centrifugal coupling is only
important near the transition state geometry. Reaction probabilities for J, K > 0 are
obtained by a (J, K')—dependent energy shift from the J = 0 result via [18]

PM(E) = PJS2Ey — ey x). (5.40)

Uy Jy v,5,J

This allows one to estimate observables such as cross sections and rate constants
when only accurate J = 0 calculations are possible. As stated in the Introduction,
Bowman (18] and Takada et al. [22] have examined the accuracy of the JSA, in both
cases finding good agreement with exact results for low enough energy. The former
study tested H+H; cumulative reaction probabilities for J = 4, while the latter
examined :D+H;(v = j = 0) cross sections and rate constants. Our calculation of
exact D+Hyv = 1,5 = (0,1,2,3)] rate constants provides an interesting opportunity
to test this approximation further.

In this Chapter, we use the linear transition state JSA. This assumes con-

tribution from K = 0 only, and gives the following (v, j)—selected rate constant:

EISA(T) = A(T) QT) [ dE, e B/4aT PIS2(E,), (5.41)
where
8kpT o (741 k%
A(T) = kpT)™? | —= ) — 5.42
@) = 22T oy (F21) 3 (5.42)
and
Qi(T) = 3 (27 + 1) e BU+D/ksT, (5.43)
J=0

In Eq. (5.42), the factor of j + 1 counts the number of /-states in the sum over orbital
angular momentum which contain a K = 0 component. In Eq. (5.43), B* is the
rotation constant of the linear transition state species, which is 8.6 cm™! for the
LSTH PES description of D+H,. The above assumptions are expected to be satisfied

at lower temperatures, but less so at higher temperatures.
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Figure 5.8 demonstrates the temperature dependence of exact and JSA rate
constants for the D+Hy(v = 1,5) reaction. The temperature range is 200 — 1000 X,
plotted in inverse Kelvin. The exact rate constants were obtained from Eq. (5.4) and
the cross sections in Fig. 5.7, and the JSA rate constants were obtained from Egs.
(5.41)-(5.43) and the J = 0 reaction probabilities in Fig. 5.4. Very good agreement is
obtained for all j values. In all cases, the JSA predicts the correct Arrhenius activation
energy (i.e. negative of the slope of log ¥(T') vs. 1/kgT), and is qualitatively correct
in predicting the Arrhenius prefactor (i.e. y-intercept). The overall agreement is truly
excellent for j = 1 and 2. However, the JSA systematically underestimates the rate
constant by roughly 40% for j = 0 and 3.

The activation energies obtained from Fig. 5.8 are all ca. 0.17 ¢V. To put this
number in perspective, the activation energy from the D+H,(v = 0,7 = 0) Arrhenius
plot is 0.32 eV (taken from Table XI in Ref. 16). Due to tunneling, this is slightly
less than the classical barrier height on the LSTH PES which is 0.425 eV. On the
other hand, the Hy(v = 0,5 = 0) — Hz(v = 1,j = 0) vibrational excitation energy
is 0.52 eV. As such, only 0.15 eV out of 0.52 eV (29%) is converted into reactive
translational energy. Although the vibrational excitation does enhance reactivity (by
three orders of magnitude), it d es so relatively inefficiently. Thus, the D+H, system
demonstrates a large amount of vibrational adiabaticity.

We now consider experimental results for the D+Hz(v = 1) rate constant.
As discussed in the Introduction, the measured rate constant for this reaction has
been quite sensitive to the particular experimental procedure employed [1-3]. Dreier
and Wolfrum [4] have measured the rate constant by applying CARS spectroscopy to
monitor directly most of the reagents in the system. Since the other experiments have
involved indirect probing of some sort [1-3], we consider the CARS measurement to
be the most reliable. Thus, we take their result, k,=1 (T = 310 K') = (1.940.2) x 10713
cm?® molecule™! sec™!, for comparison.

The most accurate theoretical treatment of this system is by Zhang and
Miller [16], who calculated the exact rate constant for D+H,(v = 1,5 = 0). Their
published result is ky=1j=0(7 = 300 K) = 1.63 x 10 cm® molecule™! sec™!. Al-

though the ; dependence of this rate constant is not expected to be too strong, a full
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Figure 5.8: Exact and approximate (JSA) rate constants for the D+Hy(v = 1,7)
reaction. The JSA predicts the correct Arrhenius activation energy (i.e. slope) in
all cases, and is qualitatively correct in predicting the Arrhenius prefactor (i.e. y-
intercept). Agreement is excellent for j = 1 and 2. However, the JSA systematically
underestimates the rate constant by roughly 40% for j = 0 and 3.
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] EXA SELS Pu=1
0 2.10 1.37 11.9%
1 1.98 2.23 63.6%
2 1.70 2.03 12.5%
3 1.31 0.976 11.2%

Table 5.2: Exact (EXA) and approximate (JSA) theoretical rate constants for
D+Hy(v = 1,5) at T = 310 K (10723 cm® molecule™ sec™!). Both EXA and JSA
employ the ABC-DVR-Newton method. However, the JSA uses only J = 0 reaction
probabilities, and approximates the partial wave expansion. The final column repre-
sents the rotational mole fractions of Ho(v = 1) at T = 310 K. We note that although
the JSA gives noticeable error, it is most accurate for the most populated state.

description of the experiment requires a thermal average over j-states. At T = 310 K,
7 =(0,1,2,3) accounts for 99.2% of the total population. We now present the results
of an ABC-DVR calculation of these rate constants.

Table 5.2 shows ky=1,;(T" = 310 K) with dimensions 10~1® cm® molecule™!
sec™!, for j = (0,1,2,3). Both exact partial wave expansion and JSA are shown
for comparison, in addition to the respective mole fractions of the j-states at T =
310 K. We note that the JSA is very reliable at predicting the order of magnitude
of the rate constants. However, there is noticeable error, ranging from —34.8 to
+19.4%. Furthermore, the JSA is poor at predicting the j dependence of the exact
rate constants at this temperature, decreasing with increasing j. However, the scatter
in error and the fact that the most populated j-state is most accurately treated by
the JSA suggests that it might do well to predict the average rate constant.

Table 5.3 shows the comparison between the CARS experiment, the present
exact theory, and the JSA for the rotationally averaged rate constant at T' = 310 K,
using the same units as in Table 5.2. As hoped (and expected!), the exact theory
agrees quantitatively with the experimental result. Thus, we can truly regard the
determination of the D+Hy(v = 1) rate constant as a solved problem in gas phase

reaction dynamics. What is more intriguing, perhaps, is that the JSA predicts the
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Method ky=1(T = 310 K)
Experiment 1.9 + 0.2

EXA theory 1.87

JSA theory 1.95

Table 5.3: Comparison between experiment, exact theory (EXA), and approximate
theory (JSA) of rate constants for D+Hy(v = 1) at T = 310 K (107!% cm® molecule™
sec™!). The theoretical values are obtained from Table 5.2 by averaging over the
populated j-states. The experimental value is from Dreier and Wolfrum [Ref. 4].
Both the EXA and JSA rate constants agree quantitatively with experiment.

rate constant quantitatively as well. Clearly, from the analysis of Table 5.2, there
is fortuitous cancellation of error in the average JSA rate constant. It is reasonable
to question whether this cancellation obtains at all temperatures, or only in this
temperature range.

To answer this question, we have computed the rotationally averaged rate
constant as a function of temperature, comparing exact theory to the JSA result. The
common logarithm of the resulting rate constants is plotted in thick lines against in-
verse temperature in Fig. 5.9. In addition, the exact and JSA (v = 1,j = 0)—selected
rate constants are plotted in thin lines to demonstrate the systematic error. We see
in Fig. 5.9 that the average JSA rate constant quantitatively predicts the exact one
up to ca. T = 700 K. At higher temperatures, the assumptions inherent in the JSA
naturally tend to break down, as is manifest in Fig. 5.9. Thus, we have shown that
for this system, the JSA gives the correct order of magnitude for the more detailed
[v=1,7 = (0,1,2,3)]—selected rate constants, and is semi-quantitative for the less

detailed (v =1, < j >)—selected rate constant.

5.5 Concluding remarks

We have described what may be the most efficient full dimensional represen-

tation of a quantum reactive scattering system. This involves different representations
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Figure 5.9: Comparison between exact theory (solid) and the J—shifting approxi-
mation (JSA—dash) of D+Hy(v = 1,) rate constants for < j > (thick) and j = 0
(thin) as a function of temperature. With respect to the j = 0 rate constants, the
JSA consistently underestimates the exact rate constant by ca. 35%. However, with
respect to the < j > rate constants, the JSA is nearly exact at the lower tempera-
tures T < 700 K, and is semi-quantitative throughout the entire temperature range.

Noticeable error occurs at the highest temperatures as the assumptions inherent in
the JSA break down.
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for the interaction region and the asymptotic region. In the interaction region, we
use a body-fixed reference frame for the overall rotation and a grid for the internal
motions. In the asymptotic region, we use a space-fixed reference frame for the overall
rotation and an absorbing potential to model outgoing wave boundary conditions for
the internal motions. This approach is used to minimize vibration rotation coupling,
and to allow the use of very efficient sparse matrix techniques to solve the scattering
equations.

The ABC-DVR-Newton algorithm has been applied to the non-trivial prob-
lun of determining accurate reaction cross sections for D+H,(v = 1,5) over a wide
energy range. These cross sections were found to have very smooth energy depen-
dence, and to systematically decrease with increasing j. In favorable circumstantces,
the present method gives converged reaction cross sections in 10 minutes on an IBM
RS/6000 Model 550. In the most challenging cases, the calculations required no more
than 60 minutes per energy (for j = 0). In all cases, the core memory required was
less than 4.5 Mbyte. We believe that the ABC-DVR-Newton method has all the nec-
essary ingredients to move exact quantum reactive scattering calculations past the
three atom problem.

The rate constants ky=1j(T) were computed and thermally averaged over
J =(0,1,2,3) at T = 310 K to model the experiment by Dreier and Wolfrum [4].
Our result is k=1 (T = 310 K) = 1.87 x 107!3 c¢m? molecule™! sec™!, in quantitative
agreement with their value (1.940.2) x 10~!* cm® molecule™ sec™!. We thus consider
the subject of the D+H,(v = 1) rate constant to be solved, with experiment and
theory in complete agreement.

The J—shifting approximation (JSA) was tested against the exact ky=1 ;(T)
and ky=1(T') rate constants for T = 200—1000 K. The [v =1, = (0, 1,2, 3)]—selected
JSA rate constants were qualitatively correct, but were in error by as much as 41%.
The error systematically cancelled for the (v = 1,< j >)-—selected rate constant,
giving .. semi-quantitative description of this averaged quantity for T < 700 K.

Although the most detailed attributes of the D+H, reaction are still under
discussion, e.g. the geometric phase [56], we can confidently say that the average

behavior of this system is well understood.
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Chapter 6

General Conclusions

We conclude by summarizing the results presented in this dissertation, dis-
cussing their impact on the field of reaction dynamics, and suggesting future directions

of research in theoretical chemistry.

6.1 The H/D+H, System

We have analyzed the sensitivity of quantum reactive scattering calculations
for H+H; to small changes in the molecular potential, and find no qualitative changes
and very small quantitative changes in the resulting cross sections. The fact that these
calculations (at least for H+H;) do not show anomalous sensitivity helps to put ab
initio reaction dynamics on firm ground. It is true that the difference between the
potentials considered in Chapter 2 is, in some sense, trivial. Nevertheless, the fact
that the difference in the resulting dynamics is also trivial is an important result.

In addition, we have studied the initial state selected D+H,(v = 1,5) —
DH+H reaction. For the first time, the initial vibrationally excited rate constant
kv=1(T = 310 K) agrees quantitatively with experiment. Based on these D+H; cal-
culations, the H+H, calculations in Chapter 2, and the recent D+H, differential cross
section calculations of Kuppermann and Wu [1] in their study of the gemetric phase
effect, we conclude that many of the quantitative aspects of the H+H, reaction (and

isotopic analogues) on its ground electronic state are well understood.
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A less well known system is the F+H; — HF+H reaction. The potential
for this system is characterized by an early barrier and a large exoergicity, and the
dynamics involve complex formation. The early barrier provides an interesting study
of the Polanyi rules, which predict that reaction is more favorable with translational
energy on the F+H, side, or with vibrational energy of the HF+H side. In addition,
exoergic reactions are important for the development of new sources of fuel. Fur-
thermore, reactions which form collision complexes facilitate the study of transition
state structure (or in the language of particle physics, allow the study of new parti-
cles). Thus, the experimental and theoretical characterization of this reaction is an
important step in reaction dynaniics.

Experimental product state distributions [2-8] observe [HF (v = 2)] in excess
of [HF (v = 3)], whereas the most accurate theoretical descriptions [9-11] predict the
opposite trend in the vibrational branching ratio. The discrepancy is attributed to
error in the F+H, potential, which is known less well than the H+H, potential. In
order to guide quantum chemists as they improve the F+H, potential, it may be useful
to perform a functional sensitivity analysis for this system. This will pinpoint certain
molecular configurations as being most important for determining the vibrational
branching ratio. One hopes that the exisiting F+H, potential is not so inaccurate

that it will point to the wrong configurations.

6.2 Integral Equations

We have developed two main integral equation approaches for quantum re-
active scattering calculations. The physically important scattering solution to the
Schrodinger equation has outgoing wave boundary conditions, which are automati-
cally enforced by the Green’s function—integral equation technique. The two methods
we have discussed differ in how they apply the boundary conditions. The first method,
the S—matrix version of the Kohn variational principle (KVP), constructs the out-
going wave Green’s function by explicitly including in the Kohn basis asymptotically
outgoing functions in all energetically accessible channels for all chemical arrange-

ments. The second method, the absorbing boundary condition (ABC) formulation,
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constructs the outgoing wave Green’s function effectively by absorbing all flux which
leaves the interaction region. This absorption is effected by adding an empirical,
negative imaginary absorbing potential to the physical Hamiltonian. As such, the
KVP enforces the boundary conditions in the basis set, whereas the ABC formula-
tion enforces the boundary conditions in the Hamiltonian operator. Both methods
give a non-Hermitian Hamiltonian matrix, which is closely related to the complex
coordinate rotation technique.

We have found the ABC formulation to be superior to the KVP for two rea-
sons. First, the ABC formulation provides a single theoretical framework for directly
computing the state-to-state reaction amplitude Sy;( E), the initial state selected reac-
tion probability P;(E) = Y4 |Ss:(E)|?, and the cumulative reaction probability N(E)
= ;¥ |S7:(E)|®. That is, by constructing the Green’s function effectively, different
levels of state resolution can be obtained, with concomitant amounts of computa-
tional effort. The second reason pertains to the structure of the Hamiltonian matrix.
Since the ABC formulation enforces boundary conditions in the Hamiltonian, no de-
localized waves need to be included in the basis set. As such, a grid representation of
the ABC Hamiltonian is sparse, which facilitates iterative linear system solving. On
the other hand, because of the outgoing waves in the Kohn basis, a grid representa-
tion of the KVP Hamiltonian is essentially full, which severely limits the scope of its
applicability. [We note that a sparse block of the KVP Hamiltonian can be projected
out, but this requires that all initial conditions be considered, which also limits the
scope of its applicability.] Thus, we advocate the use of ABC in quantum reactive
scattering theory.

The practicality of computing the ABC Green’s function in a polynomial of
the Hamiltonian is discussed. We find no feasible expansion which has a fixed and
small memory requirement, and is guaranteed to converge. We have found, however,
that exploiting the Fourier integral (i.e. time dependent) representation of the ABC
Green’s function leads to a stable and efficient algorithm. We attribute this to the
fact that by passing to the time domain, we can fully exploit the finite time nature
of the collision event. And by construcing only finite time dynamics, we effectively

remove the poles which make direct expansions unfeasible. Following Park and Light
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[12], one can think of the time variable as corresponding to the “number of iterations”
in a Lanczos based method. Thus, the time domain provides a natural representation
for developing iterative methods in quantum mechanics.

All the calculations reported in this dissertation involved relatively short
time propagations (Tapc < 120 fs). One may ask how efficient our scattering algo-
rithm would be for treating reactions with long lived collision complexes (e.g. Tapc >
1 ps). In these cases, the conventional wisdom is to use a time independent method
(e.g. the KVP or hyperspherical coordinate propagation). [In complex forming reac-
tions, these “single energy” methods may give results quickly for each energy, but a
very fine energy grid is required to trace out the energy dependence near the reso-
nance.] However, the purpose of this dissertation is to develop methods for reactions
which are sufficiently complicated (e.g. heavy masses or many atoms) that conven-
tional methods, which obtain state-to-state amplitudes, are intractable. As such, we
must treat the complex forming reaction with the ABC method, directly obtaining
averaged reaction probabilities [13]. If the Hamiltonian can not be stored for LU
decomposition, and GMRES does not converge because the condition number is large
for resonant energies (cf. Chapter 4, Section 4.3.1), we are forced to use the time de-
pendent Newton algorithm. Thus, we have returned to the time dependent picture,
even for the treatment of long lived collision complexes.

Given this situation, is it computationally efficient to perform time depen-
dent propagation on an energy dependent starting vector (ESV)? It does not seem
efficient to run long propagations, each for a single energy only, when a single long
wavepacket propagation provides dynamical information for a band of energies. An
answer in favor of the ESV might claim that the ESV calculation provides the most
direct route to dynamics at a single energy. However, this argument may not be
compelling. Indeed, one can center an initial wavepacket in energy space around
the energy of interest to obtain accurate dynamics for that energy. This wavepacket
calculation may not require more effort than the corresponding ESV calculation. In
addition, the wavepacket calculation contains dynamical information at other ener-
gies, albeit somewhat less accurately. Furthermore, as emphasized by Friesner et al.

[14], the time dependent picture allows one to match the resolution in energy space
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obtained for the dynamical quantities with the amount of error in the underlying po-
tential, or with the energy resolution of a corresponding experiment. The implication
here is that a fully time dependent wavepacket formulation may be optimal.

In principle, time dependent formulations exist for computing the cumula-
tive reaction probability [16, 17] and the thermal reaction rate constant [16]. However,
an efficient implementation which gives results at many energies or temperatures, re-
spectively, is difficult because of the mixed state nature of these dynamical quantities.
On the other hand, efficient time dependent wavepacket ABC formulations exist for
computing the state-to-state reaction amplitude [10] and the initial state selected
reaction probability [15]. Thus, if one is interested in state resolved reaction prob-
abilities for systems which form long lived collision complexes, the time dependent
wavepacket ABC formulation is advocated.

The ESV calculations in Chapters 4 and 5 on the relatively direct D4-H, re-
action demonstrate remarkably rapid convergence. This appears to be an extremely
attractive computational framework for solving the four atom reactive scattering prob-
lem in full dimensionality (i.e. six dimensions with J = 0), allowing the ab initio study
of many reactions of interest to science [18, 19] and technology. Indeed, such studies

are now underway [20].

6.3 And Beyond ...

6.3.1 Quantum Reaction Rate Theory

An important avenue of future research in quantum reactive scattering the-
ory is the development of reduced dimensionality theories [21], which are able to
estimate the reactivity of relatively complex systems by fixing or averaging over spec-
tator modes. The difficult aspect of this work is in determining coordinate systems
for which the spectator modes are indeed globally inert.

The use of quantum reactive scattering theory to predict rate constants for
chemical reactions is presently relegated to the 3 or 4 atom world. It is crucial to ex-

tend reaction rate theory to larger systems. One possibility for this is to use classical
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mechanics. Although classical mechanics is surprisingly accurate for a wide variety
of systems, it clearly lacks tunneling and zero point energy constraints which may be
important for certain portions of the total system. As such, an interesting area of
research involves the development and characterization of mixed quantum-—-classical
methods [22, 23]. A time dependent dynamical formulation is useful here, since clas-
sical mechanics is most efficiently implemented as an initial value problem. The
complicated aspect of this approach is isolating which modes are crucial to the re-
action, and treating them with the appropriate mixture of quantum and classical

mechanics.

6.3.2 Gas Phase Reaction Dynamics

Many exciting questions remain in gas phase reaction dynamics. The goal
of bond and state selective chemistry is still not fully realized, although this type of
control has been observed in the local mode H+H,0 system [18, 19]. An interesting
new approach for chemical control involves preparing reactants in a coherent super-
position of states [24], for which some theory already exists [25]. In applying these
techniques to complex reactive systems, one hopes that the hard won coherence is
not lost before the reaction proceeds.

As stated by Lee [26], using vibrational excitation to promote reactivity
efficiently is difficult because intramolecular vibrational energy redistribution is so
rapid. A fascinating question, then, pertains to the use of electronic excitation to
promote reactivity. This may be important, for example, in studying the chemistry
of nitrogen—oxygen compounds, which often have open shell configurations involving
many interacting electronic states. From the theoretial perspective, performing a
coupled surface quantum reactive scattering calculation remains challenging. Because
the nonadiabatic coupling is singular at curve crossings, perturbation theory is not
useful. The most convenient treatment involves diabatic electronic states, because
diabatic couplings are more smooth. At present, though, surface hopping approaches
are the method of choice [27].
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6.3.3 Physical Chemistry

Physical chemistry is an enormous field, touching practically every form
of matter. However, until now we have only discussed gas phase phenomena. A
fundamental question, then, pertains to the applicability of gas phase principles to
chemistry in liquid solution, on solid surfaces, in bulk solids, and in porous me-
dia. The basic question is: does reactivity drastically change from the effect of the
medium, or is it only gently perturbed such that gas phase principles remain appl-
cable? For example, canonical transition state theory (CTST) can be applied to a
condensed phase system [28] by first isolating certain modes as constituting the “re-
active system,” with the remaining degrees of freedom providing a “bath.” For fixed
system configurations, one thermally averages over the bath, obtaining a free energy
surface describing the adiabatic motion of the reacting system. Variational CTST
rates are then computed by placing the dividing surface at the temperature depen-
dent bottleneck in this free energy function. A very important issue is how to treat
recrossing effects caused by the solvent. Calculating dynamical corrections is usually
not feasible. An interesting new approach involves expanding the space of variational
parameters used to optimize the dividing surface. In particular, Pollak [29] has shown
that the Kramers-Grote-Hynes [30-32] treatment of solvent friction (i.e. recrossings)
is really variational CTST. The challenging aspect of this approach is choosing which
bath modes are most responsible for the recrossings. In any event, the development
of a reliable, predictive model for these effects is of paramount importance.

One of the most important concepts in chemistry is catalysis. The develop-
ment of effective catalysts requires knowledge of reaction paths and transition state
structures. An important component in the future of physical chemistry, therefore, is
the application of principles in reaction dynamics to the development of new materials
with useful catalytic properties. I believe that the remarriage of physical chemistry

and materials science will provide many years of excitement and discovery to come.
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