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Abstract

This dissertation describes nuclear magnetic resonance experiments and theory

which have been developed to study quadrupolar nuclei (those nuclei with spin greater

than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning is

extensively reviewed and expanded upon in this thesis. Specifically, the improvement in

both the resolution (two-dimensional pure-absorptive phase methods and DAS angle

choice) and sensitivity (pulse-sequence development), along with effective spinning

speed enhancement (again through choice of DAS conditions or alternative multiple pulse

schemes) of dynamic-angle spinning experiment were realized with both theory and

experimental examples. The application of DAS to new types of nuclei (specifically the

87Rb and 85Rb nuclear spins) and materials (specifically amorphous solids) has also

greatly expanded the possibilities of the use of DAS to study a larger range of materials.

This dissertation is meant to demonstrate both recent advances and applications of the

DAS technique and by no means represents a comprehensive study of any particular

chemical problem.
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Chapter 1
Introduction

Nuclear magnetic resonance (NMR) spectroscopy is one of the most important

techniques used in chemistry today. The use of liquid state IH spectra to identify organic

compounds, along with infra-red spectroscopy, mass spectrometry and x-ray diffraction,

has essentially replaced the chemical techniques used in previous decades. In addition,

the use of NMR to examine large biologically active peptides, proteins, nucleic acids and

sugars has greatly enhanced the speed and accuracy of structure determination, as well as

giving site specific dynamical information. Finally, the use of magnetic resrm_nce to do

medical imaging has significantly improved the diagnostic capability of the medical

community. Magnetic resonance imaging has provided a tool to do non-invasive exami-

nation of patients without the use of harmful high-energy radiation (i.e. x-rays) or ra-

dioactive chemical isotopes (i.e. positron emission tomography). However, all of these

techniques primarily deal with molecules in solution. The application of magnetic reso-

nance to solid state samples has been limited mostly to chemical physics and physical

chemistry laboratories at large research institutes. The last ten years have seen an explo-

sion in the use of solid state NMR. Primarily this has come about due to advances both in

multiple-pulse techniques ,and in sample reorientation experiments. The single most im-

portant solid state NMR technique to be developed is cross-polarized magic-angle spin-

ning (CPMAS). This experiment allows routine rapid collection of proton decoupled

carbon-13 spectra with nearly liquid-like resolution. The last five years have seen the

further advances of multi-dimensional solid state experiments which have continued to

enhance information content in solid state NMR spectra.

Throughout this thesis, I will discuss experiments I carried out in the laboratory of

Prof. A. Pines at the University of California, Berkeley. In particular, I will describe the

advances we made with the technique of dynamic-angle spinning NMR. This technique



was designed to obtain high-resolution liquid-like spectra of solid samples containing

quadrupolar nuclei. In this work, I will show the application of this technique primarily

to 87Rb and 170 containing compounds. This is by no means a complete or systematic

study of all such compounds, but merely a demonstration of the possibilities for the ulti-

mate use of dynamic-angle spinning experiments once these experiments become as rou-

tine as CPMAS.



Chapter 2

Theory of Nuclear Magnetic Resonance

To understand the techniques of nuclear magnetic resonance spectroscopy which I

will discuss throughout this thesis, I will first need to introduce some of the fundamentals

of quantum mechanics which will be used to describe the application of static and rotat-

ing frame magnetic fields to a system composed of a large number of spins. There are a

large number of good fundamental and more advanced texts on quantum mechanics.l'5

Also I would direct the reader to additional books written specifically about nuclear mag-

netic resonance which provide the basis for much of the theory presented in this chapter. 6"

13 Finally the doctoral theses of Sun, Mueller and Chmelka all provide additional de-

tailed information about the techniques presented here. 14-t6 Before doing a complete de-

scription of NMR in terms of quantum mechanics, I will first introduce the classical mag-

netization vector picture.

Classical Magnetization Description

The magnetization picture assumes that an ensemble of spins may be treated as an

overall macroscopic magnetization which rotates about the axis of the applied magnetic

field at a characteristic Larmor frequency. This description may adequately characterize

some simple single- and multiple-pulse experiments. The Larmor energy splitting is

given by the formula

AE l = h_tn 0 = h(.Ol (2.1)

where h is Planck's constant, y is the gyromagnetic ratio and B0 is the static magnetic

field. A useful concept in describing NMR experiments i_ the rotating frame of the Lar-

mor frequency. Mathematically we transform from a fixed laboratory frame to a frame

which is rotating at the Larmor frequency about the Zlab axis defined by the static mag-



netic field. In this frame the Cartesian coordinates (Xtab, Ytab,Ztab) will be transformed

according to the following relationships:

Xro t = Xla b COS COlt + Ylab sin COlt

Yrot= YtabCOSCOlt- Xlab sin COtt (2.2)

Zrot= Zlab

where (xrot ,Yrot, Zrot ) axe the rotating frame coordinates and tot is the Larmor frequency.

First, in this frame the effective Zrot axis magnetic field is exactly canceled for on reso-

nance spins and appears as a much smaller field Boffset= Bo - (-_) to spins off reso-

nance by 8. Second, in the rotating frame a magnetic field oscillating about the labora-

tory x-axis (i.e. the applied radio frequency pulse) will appear as the sum of two oscillat-

ing magnetic fields. One oscillates at a frequency (Deflectiv e = (Dapplied- COl and the other

at a frequency coeffective = -(Dapplied- O_l" Only the former, low frequency, rotating

frame magnetic field can affect the net magnetization of the sample. In the presence of a

strong radio frequency (RF) pulse, the net z magnetization will begin to process about the

effective magnetic field which is the vector sum of the Boffset along the Zrot axis and BI

along the Xrot axis. For on-resonance spins, a _2 pulse consists of RF field applied for a

time such that { = 7'Beffectivet. For spins which are only slightly off resonance

(B1 > Boffset ), this RF pulse will effectively be a "90* pulse" to a good approximation and

the Zrot magnetization will rotate about the Xrot axes to generate a large Yrot magnetiza-

tion. When the strong RF pulse is turned off, the effective magnetic field returns to the

purely Boffset state along the Zrotaxis. At this point, the net Yrot magnetization will begin

to process about the Zrot axis. This rotating magnetization will appear as an oscillating

magnetic field in the laboratory frame and can be detected with the same coil used to

generate the RF pulse. The detected signal called a free induction decay (FID) contains

the Fourier sum of all the frequencies present in the sample. The rotating frame Bloch

equations describe this magnetization evolution in classical terms and are shown below.



=_rMr +M0-at

dMx Mx (2.3)

dt T2

These equations show the excitation and free induction decay behavior described. In ad-

dition, they include relaxation terms not yet discussed. The T1 (longitudinal) and T2

(transverse) relaxation rates are described more completely in some of the basic NMR

texts. For the purpose of this thesis, they will always be treated classically, meaning, an

irreversible exponential loss of coherence of both transverse (Mx and My) and longitudi-

nal (Mz) magnetization components. In quantum mechanical terms, they will lead to an

overall exponential damping of density matrix elements (such as Ix, ly or lz) to equilib-

rium (/z).

Quantum Mechanical Description

Any discussion of NMR will ultimately be limited if only the Bloch equations are

used to describe the system. To this end, the quantum mechanical fundamentals will be

discussed in the next section.

Rotations and Tensors

One of the most fundamental concepts in NMR is that of rotations. Many rather

complex problems in NMR spectroscopy (and other physical sciences) are greatly simpli-

fied by judicious choice of reference frame. The use of Wigner rotation matrices to sim-

plify the mathematics of rotations has been well described in books by Rose 17,

Edmonds is and Zare 19. Figure 2.1 shows the definition of the three Euler angles

(ct,fl, ?') as used in Wigner rotation matrices D(0 (ct,fl, y) One use of Wigner rotation/7/,/'1

matrices is to rotate an object with tensor properties between frames of reference.



Suppose we have a tensor A of rank I with elements At,,,which we wish to rotate into a

Z

")
Xlab

PAS ,.. LAB
|

(X, Y,Z) " (Xt,,b,yt,,b,Z_k,)

Figure 2.1 Euler Angle Definitions. The first rotation is of size tx about the Z ,axis,

followed by a rotation of size fl about the rotated Y axis and finally a rotation of size 7'

about the rotated Z axis to arrive at the new Xlab, Ylab and Zlabaxes.

new frame. In this new frame, the resulting tensor Rl will have elements Rz,n given by

the following expression.
l

Rim= ___D(tn_)(ot, fl, y)aln (2.4)
n=-l

This expression may be numerically simplified by expressing v;zm(a, fl, 7') in terms of

exponentials and reduced Wigner rotation matrix elements, d_ (fl).

..-i(raO_+nr)a(l)
O_ (a,fl, _') = = ".m (fl) (2.5)

The expressions for each of the reduced Wigner rotation matrices can be found in any of

the previously mentioned sources. For most of the work in this thesis, I will deal primar-

ily with second rank tensors in both spin and spatial coordinates. Therefore, for refer-



ence, I include a table (2.1) of second-rank reduced Wigner matrices, but this is by no

means a complete set of matrices for all possible applications.

m

n 2 1 0 -1 -2
i iI i II1_ii, ii iMimi 1 _1 i

2 (l+2°s fl )2 l+cos2/3Sin fl _-_,.,sin2, fl 2 "----"

l-cos/_ _3 l+cosfl 1-cos#
1 l+cos# sin fl cos 2 fl -_/_ sin 2fl cos2 fl sin fl2 2 2 2

, ..,,,. ,..1 , ., |,

0 _ sin 2fl _f_ sin 2fl 3c°s2# -1 -_/'_ sin 2fl _-_ sin 2 fl

l-cos# sin fl l+cos# _-1 2 _--COS 2 fl _o sin2fl COS2 fl_ .1-c°s#2 --_nmfll+c°s/3_:_

-2 (1-2°s#)2 1-cos,2sin fl _/'_sin2fl -1+c°s02sin fl (l+2os#)2

Table 2.1 Second-rank reduced Wigner rotation matrix elements d(2)(fl). Thesenm

elements may be used in conjunction with equation 2.4 and 2.5 to facilitate rotation of
tensors.

Perturbation Theory

To analyze the effect of adding a small internal Hamiltonian, like chemical shift,

to the overall system described by a large external Hamiltonian, I will use standard static

perturbation theory. Perturbation theory has been described previously in a large number

of locations; any good quantum mechanics text will include a section on this topic.

Briefly, I will sketch the basics and their application to NMR. Given an arbitrary

Hamiltonian which is the sum of two parts, one large (for example the Zeeman interac-

tion) and the other small (the chemical shift or quadrupolar interactions), a starting point

is to assume that the eigenvalues and eigenstates are those of the large Hamiltonian only

and then add correction terms, as in a Taylor series expansion. Shown below is the

derivation of the correction to both the eigenvalues and eigenstates for a general

Harniltonian (equation 2.6) which is very similar to that found in Baym. I

H = Ho + V (2.6)



where the eigenstates In) and eigenvalues e,, of Ho, the dominant interaction, are known

exactly

Holn)= e,,In). (2.7)

It is assumed that the actual eigenvalues and eigenstates will be very similar to those of

the large Ho Hamiltonian. This assumption will be analytically true as the size of the

perturbation V goes to zero. Therefore, we will arbitrarily redefine our Hamiltonian with

a parameter which may be varied between 0 and 1 (ultimately we will let Z go to 1).

H = n o + ZV (2.8)

Now we can confidently expand the actual eigenvalues EN and eigenstates IN) below.

(2.9)
_3_(3) _,_eN=e. +,_e_)+,_:tr_)+ ._,._ T...

Now we assume that the eigenstates of H0 are normalized to 1 ((nln) = 1) and we will

choose the normalization of IN) so that (nlN) = 1 also.

<.iN>=_=<.l.>+_(.IN'"/+_(-IN'_')+_(.I_')+... _10,
This implies that for an arbitrary Z each correction term IN(i))is orthoganal to the origi-

nal basis state In).

(nlN(i') = 0 for i = 1,2,3,... (2.11)

Now we can write the Scht_dinger equation for the complete Hamiltonian.

HIN ) = (H 0 + _,V)IN ) = ENIN ) (2.12)

Collecting terms on both sides :ff the equation with the same power of _, yields the fol-

lowing set of equations.



A,1 -..>HolN(I)>-I- VIn)= e)ln)+ en[N (I))

To determine the first order eigenvalue correction E_ ) , we need to take the scalar product

of the second equation with <n I. By our previously defined orthogonality and normaliza-

tion equations, this produces the eigenvalue correction term•

e,n(nlN(l)>+<nIVIn)= E(_)(nln)+en(n[N (I)) (2.14)

<lvl >= )

This result states that to first-order in perturbationtheory, we need merely to calculate the

eigenvalues using the original basis set. This is equivalent to simply ignoring the non-di-

agonal matrix elements of V. For most NMR calculations we perform, this rather crude

approximation is sufficient. In some cases where V is large, however, higher order terms

may be needed (for example the second-order quadrupolar shift). To calculate the higher

order eigenvalue corrections, we take the scalar product of the/1,/<equation with(n[. This

produces the following result.

= (2.,5)

This expression shows that once we know the (k-1)th correction to the eigenstate, we can

calculate the kth correction to the eigenvalue. The first step in calculating the correction

to the eigenstates is to expand the kth correction eigenstate in terms of the complete basis

set of H0. Note that the sum excludes the m = n state but includes all other possible

eigenstates of Ho, as this state is defined as orthogonal to the correction eigenstate.

IN (k,): _lm)(m[ N (k,) (2.16)
m#n



Now to calculate the second order correction (higher-orders are calculated in a similar

fashion) we take the scalar product of the _,1equation with a basis state (mI (but not (hi).

(mlHolN(I)) + (mlVIn) = (mlEO)ln) + (mle,,IN('))

e.m(mlN (1)) + (mlVln) = EO) (mln ) + en(mlN(l) )
(2.17)

(mlVIn) = (e n - era)(miN(l) )

(mlVln) _. (raIN(I))

Finally, we insert this result into equation 2.16 and take the scalar product with (nlV.

E(_) =(n[V[N(I))= _ (n[V[m)(mlV[n) (2.18)
m:_n En -- F-'m

At this point, a word of warning in general, accidental degeneracy in the em

eigenvalues can lead to problems and special precautions must be taken under those co_l-

ditions (this actually happens when this type of theory is applied to nuclear quadrupole

resonance (NQR) experiments13). However, for most NMR problems, this will not pre-

sent any difficulties. An alternative way of writing our result is that the original

Hamiltonian (H 0 + V) may be approximated by a diagonal Hamiltonian, in which the

higher order energy correction terms appear on the diagonal.

H = ___(en + E(_)+ E(,v2)+'")ln)(n[ (2.19)
/I

In summary, the results of perturbation theory show that to first-order it is correct

to truncate Hamiltonians, such as the chemical shift Hamiltonian in the presence of the

Zeeman interaction, by ignoring all terms which do not commute with the basis (Zeeman)

Hamiltonian (this is often refered to as dropping the non-secular terms). In cases where

the first-order correction is very large, second-order (and possibly higher) corrections

must be considered, but these must be considered using the entire perturbing Hamiltonian

(as the truncated first-order Hamiltonian would actually give a zero result for any higher

order correction, as it is entirely diagonal in the unperturbed basis set).
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Zeeman Interaction

In nuclear magnetic resonance, the single most important Hamiltonian is the nu-

clear Zeeman Hamiltonian. This is expressed in the laboratory frame below in equation

2.20.

Hz = -hYBol o = -broil o (2.20)

The magnetic field, BO, defines the ztab axis, h is Planck's constant, 7is the gyromagnetic

ratio of the nucleus of interest and to/is the Larmor frequency. The spin operator, I0, is

defined below, as well as the two other spherical operators which make up the complete

Zeeman spin operator set.

t0=t

l±l = +_(ix + iiy ) (2.21)

The most fundamental aspect of the Zeeman interaction in high magnetic field is that it is

always (for the purposes of this dissertation) the largest nuclear spin interaction present in

a system. This effectively means that the eigenvalues and eigenstates of the Zeeman

Hamiltonian will act as a basis set for the perturbative expansion of the other important

interactions. The rn spin states (the Zeeman eigenstates) for an isolated I spin nucleus are

[l,m). The matrix elements in this basis set for the various operators are given below.

lo[l,m)=mll, m)
+1 (2.22)

l±lll, rn) = -_ 4( I -T-m)( l + m + 1)l l,m +_1)

In this description any state with ]m] > I is equivalent to the null state. For many of our

applications, however, we will also use a density matrix formulation of quantum mechan-

ics. In this formalism, operators can be represented as matrices which operate on a den-

sity matrix which describes the system. Matrices which represent operators are defined

below.

II



i

Ik= ___[l,m)(l, mllkll, n)(l,n[
m,n-" -- I

I

= _._Cm,n[l,m)(l,n [ (2.23)
m,n=- I

Cm,n=(I,m]IklI, n)
i

A brief description of the density matrix formulation of quantum mechanics is

merited here. Suppose we have a linear superposition state V(t) (in Hilbert space) of

the Zeeman Harniltonian given below with complex coefficients am(t).
1

W(t)= _,am(t)lZ, m) (2.24)
m=-i

This state will evolve under a time-independent Hamiltonian according to the

Schr/Sdinger equation.

ih d_(t) = H Ilt(t )dt

(2.25)

II/(t ) = e-iHt/h Iv(O)

Alternatively, the same information may be presented in a density matrix formulation

(Liouville space), where the density matrix which defines the system is given in equation

2.26.

i

p(/)= _(/)_t(t)= __am(t)atn(t)ll, m)(l,n[
m,n=-t (2.26)

= e-lilt h ilt(O) tit?(O)e iHt/h = e-iHt/h p(O)eittt/_

It is in this form that most NMR experiments will be described throughout this and other

works.

The initial density matrix at thermal equilibrium in a high magnetic field can be

shown to be

1 exp{_Hz/kT } _- 1 {1 + Hz/kT }
P°='Z (2I+1) (2.27)

Z = tr{exp{-Hz/kT}} = (21 + 1)

12



where k is Boltzmann's constant, 1 is a (21 + 1 x 21 + 1) unit matrix, and T is the spin

temperature. It can be shown that only the second term is observable in an NMR experi-

ment and therefore the unit matrix may be dropped from the expression leaving the re-

duced density matrix Pr that will be used throughout this work. (It may be noted that this

represents a very small net population difference of only about 10-4.)

hr 0
P0 = (21 + 1)kT I° "-) Pr = Io (2.28)

The evolution of a density matrix under a time-dependent Hamiltonian will be governed

by the Liouville-von Neumann equation, which may easily be derived from the

Schr&linger equation 2.25.

dt = -_[ H(t)'pr(t)] (2.29)

This may be solved analytically, where T is the Dyson time-ordering operator. 2°'21

pr(t)=U(t)PoUt(t)

Through out the remainder of this work, the subscript r will be dropped from the reduced

density matrix and the reader should assume that all density matrices are in the reduced

form.

The final element needed to look at NMR problems is the transformation to a

frame which is rotating at the frequency-09rot, as in the classical case. This may be ac-

complished by the following transformations. First, the rotating frame wavefunction may

be related to the laboratory frame wavefunction below and may be inserted into the

Schrtidinger equation.

lit(t) = e itOrotlOtliOrrot (t )

ih dv/!t)= Hz (2.31a)dt

d{ ei<°'°'t°ilV'°i(t)} 'o'
ih = -hohl 0 ei_°'°' I//rot (t)dt

13



Expanding the various derivatives and simplifying yields the effective Hamiltonian,/_z,

below.

ilieiCO,o,iot dlllrot( t!_ hOrotloeiOJro,lo, yrrot ( t ) = --_(.Dll 0 e ifar°'iOt I_ro, ( t )dt

ihdVr°t(t) =-h(_Ol-COro')lo Vror(t) (2.31b)dt

"rot ( t ) = e irar°'lOt p( t )e -iOJr°'lOt

Since the Zeeman Hamiltonian commutes with I0, we have merely an offset Hamiltonian

in the rotating frame, just as in the classical case. The concept of transforming

Hamiltonians into an interaction frame will prove essential to simplify calculations later.

In this rotating frame, the Zeeman energy splitting has been effectively removed, how-

ever it will show up as an energy offset on all rotating frame measurements or calcula-

tions, since these must always be performed in the stationary laboratory frame. In prac-

tice, spectra are usually collected over a narrow bandwidth centered at the rotating frame

energy and therefore the actual Zeeman splitting energy doesn't appear in most spectra.

Radio frequency irradiation

The application of radio frequency pulses to a spin system was discussed earlier in

the classical description. The quantum mechanical description is very similar in all re-

spects. We express the oscillating magnetic field created at the (Drot frequency with in-

tensity BI in the Hamiltonian, HRF. Here, the RF is applied to the system through a coil

which defines the X/abaxis perpendicular to the static magnetic field B0.

HRF =--h_, 1COS((.Orott + d_)Ixlab (2.32)

This Hamiltonian may then be transformed into the rotating frame, as in equation 2.31

and the new RF Hamiltonian is shown below.

14



cos -,,sin
"_[COS(2(,Orott + _)) I x -sin(2OOrott + d?) ly] (2.33)

-_--_[IxcosO-lySinO l

'l/_is shows how the single oscillating RF field is converted into two RF fields, one at

zero frequency and the other at 2(.Orot. In addition, this shows that by using a standard

single coil in the laboratory frame, fully one half of the useful RF power is lost in the ro-

tating frame. This second field averages to zero in the interaction frame and cannot affect

the density matrix, just as a high frequency oscillating magnetic field cannot pick up a

piece of iron in the laboratory frame. The rotating frame RF Hamiltonian is now the

dominant Hamiltonian in the interaction frame, as long as the offset, (COrot- COl), is small

compared to .._.L. Now suppose we allow the equilibrium density matrix to evolve for a

time zunder the RF Hamiltonian (assuming no offset and ¢= 0 ). In this case, the density

matrix after a pulse will be described by the following equation.

p("r) = e-it°l rlxp( O)e it°l rlx

= e -it°! "fixlz eic°!"fix (2.34)

= I z cos COI"t"- ly sin CO1z

This shows the same features as the classical description. In fact, including a phase or

offset term leads to identical results as the classical results. As a final note on the RF

Hamiltonian, by controlling the phase 0 of the RF, the researcher can effectively apply

fields along both the Xrot and Yrot axes, which proves essential in the case of multiple

pulse experiments.

Chemical Shift Anisotropy

The chemical shift interaction is a good starting point to look at the major features

of the internal NMR Hamiltonians. Chemical shifts arise from the interaction of the

magnetic dipole moment of the nucleus and local magnetic fields generated by both the

15



motion of electrons in the large magnetic field (diamagnetic effects) and paramagnetic ef-

fects due to excited state electrons 22. I will not discuss the theoretical schemes used to

calculate these shifts and will suffice it to say that they exist and are often anisotropie

(dependent on orientation of the molecule). The form of the chemical shift Hamiltonian

is given below in equation 2.35a.
2

HCSA h_,Siso,csBOlo + h¢ocsa___(_1)mACS .rcs---- ta2,-m _ 2,m
m_-2

¢Ocsa= _3 Y8CS

T_,cs = BOIo (2.35a)
CS

r_.+l= 8ot±l
CS

T_,_=0

Where A2,CSmis defined below.
2

A2,CSm- Z (2) (o_CS cs\ csO_,,.m ,#cs,- 'g )P2,m'
m'=-2

,cs=
CS IT

P2,o= _/_ (2.35b)
CS

P2,+1= 0

cs (,_=-Syy)
p2._=½Vcs= 2(8,,-,_,0._,)

The principal values of the chemical shift tensor (sometimes reported instead of

8iso,cs,8 cs and tics) are arranged such that 18zz - _iso,cs[>- I_yy -- l_iso,csl >- I¢_xx -- '_.o,csl.

The values of these principal values are very small and are usually reported in units of

parts per million (ppm). For 13C, for instance, the range of possible chemical shifts is

from about -20 to 250 ppm which is about 27 kHz at a Larmor frequency of 100 MHz.

The Euler angles, (orcs, _cs, ?,cs), refer to the orientation of the principal axis system of

the chemical shift tensor relative to the laboratory frame (see definition of Euler angles in

16



figure 2.1). This Hamiltonian, while appearing quite complex on the outside, actually can

be greatly reduced when transformed to the rotating frame.
2

f-_CSA _i]/_iso,caBO ]0 4- _lcocsa X (-1)m aCS _rCS-'- t_2,-m • 2,m
m=-2

"¢$
T_,o = Bolo (2.36)
"CS
T_,+I = Bo( l+l cos corott- ill sin corott)
-CS
T:_,_!= B0(/_ 1COScorott- il+! sin (Orott)

"CS
In the rotating frame Hamiltonian, all of the oscillating terms, T_.,+l, may be ignored

(alternatively an identical result comes from first-order perturbation theory), leaving the

simple chemical shift Hamiltonian.

HeSA = hSiso,csCOlIo + hCOcsaBOA2,cs I0 (2.37)

Another way of thinking about the truncating effect of transforming to the rotating frame

is to say that any terms in any Hamiltonian which do not commute with the Zeeman

Hamiltonian will oscillate rapidly in the rotating frame and average to zero. In terms of

energy level splittings, the chemical shift may be expressed below.

Z_EmTM --(l,mlHcsall, m)-(l,m- ll:-Icsalt, m- 1)•-.*m-I --

_xcsacs (2.38)
= ttCO,(_i_o,_ + _'_ ; ,',2,o1

Quadrupolar Interaction

The first discussion of the quadrupolar interaction was by Casimir in an essay on

the nuclear-electric hyperfine interaction in 1936.23 Additionally, one of the more com-

plete early treatments of the quadrupolar interaction is the work by Cohen and Reif. 24

More modern information on this subject may be found in additional sources. 6.12.15The

basic Hamiltonian has the same form as the chemical shift anisotropy Hamiltonian.
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2

HQ 8COQ__:(-l)mAQ T,Q--" 2,-m 2,m
m=-2

e:qQ

(o(2= 21(21-1)h

T_0 = _6 (31g - 12) (2.39)

+
T_+_=I_I

Where A_m is defined below.
2

A_m -- _ D(m2'!m(O_Q,_Q' _/Q)PQ2,m'
m'=-2

eq m Vzz

Q
P2,o = (2_ (2.40)

Q
P2,±1= 0

(,':-,',,)Q
P2,:F.2= ½ r/Q= 2v,,

Again, as in the previous section, the values of the electric field gradient (EFG) in the

principal axis frame are defined such that Iv=l >-t_=l anOt_o _u,or refer to

the orientation of the EFG axis system relative to the laboratory frame. Additionally,

since the quadrupolar tensor is traceless, there is no net isotropic shift due to this interac-

tion (at least to first order in perturbation theory). As before, we can truncate this

Hamiltonian by eliminating the non-commuting (7"_±!,_Q2.+_2)terms" The remaining

Harniltonian is expressed in equation 2.41.

8(o(2
/YQ= _ a_0(312 -I(I + 1)) (2.41)

This first-order perturbation result illustrates an example where higher order corrections

are needed. To show the necessity, we look at the eigenvalues for the 21+1 energy levels

of the Zeeman basis states.

18



<l, ml__tQll, m ) .-.(IQ) htooA2Qo(I,m[(312_ I(1+ 1))[l,m )- e,;. =--4"d-

E(_mlQ)= _6 A_0(3m 2- I(I + 1)1

E(IQ) = -_6 AQo( I(l + 1)) (2.42)
or

eopl-:/3 I(l+l))±3 2,ok_ -

The last two energies are for the two distinct cases where the spin is either an integer

(1 = 1,2,3,...) or half-odd integer (I = ½,-_,_,...). Also, it is notable that in the spin 1/2

case, only the final E_IQ)energy levels exist and are analytically zero, as is expected since

a spin 1/2 has no quadrupolar moment of the nucleus. At this point it is valuable to cal-

culate the energy splittings between a variety of single quantum (Am = 5:1)transitions.

AE(IQ) - E_Q) E(ml_ = _6 A_ 0(2m 1) (2.43)m-.-_m-I -- --

The first feature which is immediately visible is that for m = ½, the splitting is analyti-

cally zero. In fact for any other value of m, this splitting will depend on both the size of

the quadrupolar coupling and the orientation of a given crystallite. Only half-odd integer

spins have a central transition (½ _ -½)which is unaffected by the quadrupolar interac-

tion to first order. In addition, if we calculate the energy splitting for a multiple quantum

(m _->-m) transition (for both integer and half-odd integer spins), we find that these also

have no first-order quadrupolarenergy splitting correction. For both the central transition
J

and multiple quantum transition, it is crucial to calculate the second-order contribution to

the energy splitting since this becomes the dominant energy splitting correction.

Additionally, when the quadrupolar coupling is large, the second-order quadrupolarcor-

rection will make significant changes to the satellite transition energy splittings. For the

remainder of this thesis, I will describe experiments and theory pertaining primarily to the

central transition of half-odd integer spins. For more information on the study of multi-

19



1

pie-quantum overtone spectroscopy or integer spin spectroscopy, I direct the reader to the

original NMR references and references therein. 6.7,12,25"28

To calculate the second order correction to the energy splittings in a quadrupolar

system, we need to return to equation 2.18 where now the sum is over the additional 21

Zeeman states (all except for the m state) for a quadrupolar spin I.

E(_Q)_ _ (l,mlHQll,n)(l,nlnQll,m)
- n_m hfOl(m - n) (2.44)

Rather than calculate this for a general m, I will instead look only at the central transition

second-order quadrupolar energy splitting expression.

ae½2Q)= Z ][(l'_lH°l/'½f- Z [I(/'_IHQI/'-½)II_
"+-½ n,½ hOJt(½-n) n,-½ blot(-l-n)

fll,i II(l,n }-l)*AgkT_ll, i }
Z .m,m

= htO.._ n,½ (/_ n) (2.45)

° I! LI(z,,,I2(-1/*AgkrfklI,-½}
E k=-2

.,__ (-½-n)

These sums may be simplified by realizing that the T_ spin operators produce non-zero

results for only very specificbra-ket pairs. For example, (I,jIT_II,m)* 0 only when j

and m are the same. In fact, below are shown the only non-zero matrix elements involv-

ing the 1+½) ket, which will be used to simplify equation 2.45.

<z,-+,lr_lz,+½)=_(k-i(z + 1))

(I,_1r?_,11,-+½)-o
(t,±3lTf±,lt,+-½)=4(t-½)(I+_) (2.46)

(1+,)
(/,• _lr_=lz,+-_>=-r- _(i-½)(i + 3)

(I,+__IT_±2II,+_½)=½_(l-½)(1-3)(1+3)(1+ 5)
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Also, because the sums over n are limited to n _ + ½ and n g -½ respectively, the first of

these relationships will not be used at all. The second shows that in fact all n _ + ½ may

be ignored. Additionally, if the spin is I = 3/2, then the final relationship will also disap-

pear (as evident in the fourth formula of 2.46 and in the fact that there is no 5/2 state for a

spin 3/2 nucleus). Now performing the sums in equation 2.45 we arrive at the following

formula for the second-order central transition energy splitting correction. Equation 2.47

was simplified using the complex conjugate relationship (AQm)? = (-1)m aQ_m which is

correct in this case, while not generally true for all tensors.

3 Q O A Q A Q-..(2Q) _mO_{l(l+l)___)(2A21A2_! + 22 2-2) (2.47)A/_l . t- tot

This result is now in a form which may be used to calculate actual NMR line positions,

which we will do in the next section.

Dipole-Dipole Interaction

The homonuclear and heteronuclear dipolar coupling Hamiltonians are some of

the most well studied in NMR. The basic form for a Hamiltonian describing the coupling

between two spins i and j is given in equation 2.48.
2

HD=--21iO_Di j X(-1)ma2D,,iJ_.mT?_
j;_i m=-2

T?g = _6 (3'i,O'j,o - li " 'j) (2.48)

Z_l -'-_2 ('i,O'j.+l + 'i,+l'j,O )

r?: h = li,+llj,+l

Where A?_ is defined below.
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2
A2D n¢2)

""m',m _"ij , , lij ] 2,m
m%-2

pO# .o# =o2,±I- _"2,:I_.

As usual, the Euler angles refer to the orientation of the principal axis of the dipolar

coupling (corresponding to the vector connecting the two nuclei) relative to the laboratory

frame. It is immediately apparent upon substitution of the principal axis components into

the formula for the spatial tensor A_, that only fli_, which corresponds to the angle

between the internuclear vector and the static magnetic field, affects the overall

Hamiltonian. Secondly, truncation of this Hamiltonian by the Zeeman Hamiltonian is

more difficult because there are two cases, the homonuclear (i and j have similar Larmor

frequencies) and the heteronuclear (i and j have different Larmor frequencies). In any

case, only the m = 0 term will remain, giving the following Hamiltonian.

(2) n
HI) = -Z hO_D# l (31i,olj.o - I i • lj )d_.o(fli j ) (2.50)

I will return to this formula in chapter 3 when discussing the homonuclear dipolar cou-

pling contribution to dynamic-angle spinning linewidth. In addition, I will use this

Hamiltonian when discussing the theory of cross-polarization in chapter 5. In all other

cases, the dipolar coupling may be thought of as an irreversible relaxation mechanism

whichleadsto aGaussian decay.

Truncation of RF Hamiltonian by the Quadrupolar Hamiltonian

The quadrupolar Hamiltonian is often times the second largest interaction present

in a system (in most cases only the Zeeman is larger) even in the presence of RF irradia-

tion. As such, when both radio frequency irradiation and quadrupolar Hamiltonians are

present, it is important to evaluate the relative sizes of these two parts, 29"34just as the

Zeeman offset term affects the RF effectiveness. To compare the RF and quadrupolar
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Hamiltonians, we need only examine the first-order contributions, since the second-order

quadrupolar interaction will rarely be larger than 100 kHz in the systems we study. The

total RF and quadrupolar Hamiltonian which is present in the rotating frame is given be-

low.

h°_OaQo(31g - I(I + 11) (2.51)"- h ( fDl - fDro' ) l O + "--_" 2,

+-_-L[/x cos ¢ -/, sin* l

In order to simplify this Hamiltonian, we may rewrite it in terms of fictitious spin I/2 op-

erators. These are spin operators which involve only two states and look like the tradi-

tional spin 1/2 operators. Given below are the basic definitions which have been outlined

previously.25,26,35

lYzk = ½(Ij>{jl-lk)<kl) Ijk = -I kj

lYxk = ½(IJ)(kl+lk)(jl) I_k = Zkxj (2.52)

¢ - ½(-Ij>(kl+}k>(jl) I_k = -f/

Within the jk manifold, these operators obey the usual spin 1/2 commutation rules

i,¢
where o_,fl, ?' = x, y, z and cyclic permutations. For commutators between different sub-

manifolds, the following commutation rules apply.

[/xjk,/_k 1= ._ _t, [lJyk,l_' ]= "_Ixjk (2.54)

[e, l=o
The last is the most important, since this states that all fictitious spin-1/2 operators com-

mute between unconnected manifolds. Using these relationships, the normal/z, Ix and ly
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may be redefined in the Hamiltonian given by equation 2.48 (where the spin I is a half-

odd integer spin) using the following relationships.

- + . •
+n(21-(n-1))(Iz 'n+l + 12zt+l-n'21+2-n)+ "'' (2.55a)

Ix = x/27(llx '2 + Ix2,'2'+' )+ #2(2l-1)(, 2'3 + lxZt-l'2')+ ...

+4n(Zt-(n- l))(Ix n'n+l + 121+l-n'21+2-n)+ ... (2.55b)

+(,+
21-1,21)+...ly = 'ff27(11'2 + -y121'21+1) + 42(21_ 1)(12.3 + ly

+4n(21_(n_ 1))(ly.n+l + "Y12'+l-n'21+2-n)+"" (2.55C)

Additionally, the (3 Ig - I(I + 1)) term may also be reduced.
2,3 21-1,21

(312-,(I+1)1=½(212-1)(I_'2-12z1"21+'1+½(412-8,+31(1 z -I z )

+ .....+ 2nl 2 E(6i+1)I+3 i2 12"n.l Iz21+l-n'21+2-n)(2.56)
i=0 i=0

( 2l+1 21.3)
+ ""+ (0) Iz-f-"--T-

The last term is of particular importance, as this is the central transition contribution of

the first-order quadrupolar Hamiltonian. As expected, this is zero and this makes the

central transition manifold different from all of the other fictitious spin 1/2 manifolds for

this Hamiltonian. The Hamiltonian from equation 2.51 may be divided into a sum of jk

sub-manifold Hamiltonians _jk below with all other Hamiltonian elements (J - k ;e ±1)

zero
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/'_lrJ'j+l + _'In'n+l =hJ(OOl--OOrot)(21--J+ 1)( lj'j+I + -z/'n'n+l) +

S_Q AQ2,02J12 + (3i2 -(6i + 1)I) Ij'j+'- -zln'n+')+ (2.57)i=0

J+ +L(¢" + -y,n,n+l'-:'n+l)c°s*) sin, -]

where we define n = 21 + 1- j. These Hamiltonians may be truncated to first-order us-

tOQ
ing our knowledge about the size of the interactions, (to t - (,Orot ) < _ << "_ A2Q0.

/._j,j+l + [_In,n+l =hj((.Ol_(.Orot)(21_J+ 1)(IzJ'J+l + "z[n'n+l)+

6 AQ ( _(3i2 (6i+ 3( )i--0 (2.58)
.._1+1 21+3 2 21+! 21+3

,,-,, ro,)(1+½)Iz+
.[" 21+I 21+3 21+I 21+3 q

',,'-,<,, J
This shows that the application of an RF pulse to a quadrupolar system produces distinc-

tively different results that when applied to a spin 1/2 system. First, the Hamiltonians

under RF irradiation for the outer transition sub-manifolds (the upper equation in 2.55)

are all identical and are equivalent to free precession without RF irradiation. Second, the

Hamiltonian for the central transition (the lower equation in 2.55) corresponds to the

same Hamiltonian as a spin 1/2 under RF irradiation, with the change by a factor of I + ½

in the effective rotating frame magnetic field. Thus, a 90* pulse for a quadrupolar nu-

cleus will be shorter than for a comparable spin 1/2 system by a factor of I + ½ since the

RF precession frequency is scaled by this factor. The effect of quadrupolar truncation of

the RF Hamiltonian will be more thoroughly discussed later when we look at cross-polar-

ization of quadrupolar nuclei under Hartmann-Hahn matching conditions (see Chapter 5).
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Coherence Pathways

Having briefly described both the Hamiltonians present in most solid systems and

the effect of truncation, it may now be useful to describe evolution and detection of NMR

signals. For most of the experiments in this thesis, I will look at simple two level systems

(either spin 1/2 or the central transition of a half-odd integer quadrupolar nucleus). In the

absence of dipolar coupling, there are only three different coherent states that the density

matrix can evolve into or from; they are Iz, ly and Ix (for quadrupolar nuclei, the central

transition superscripts have been dropped). Alternatively, the density matrix may be ex-

pressed in terms of spherical tensor operators I0, l+l, and l-l. Our detector will always be

a single coil capable of collecting data in quadrature (both the real and imaginary compo-

nents in the induced FID). Therefore the observable in our experiments will be I+1 (or I-1

but never both). However, the phase of the receiver (#r) may be controlled (by adding

the real and imaginary data from each scan differently in the computer acquisition system

to form the FID) to arbitrary accuracy in the computer. That is to say our observable may

be written in equation 2.59 as

S(t) = tr[p(t)l+l e-iCr ]. (2.59)

This has the property of extracting only the 1-1 components from the density matrix; all

other components will have a zero trace. The response of the system to pulses and free

evolution can be characterized by the Hamiltonians below (where the pulse is applied

with phase _).

Aef
f-lful = he°_dlz °9.ae= h

(2.60)

fflRF = hfORF[IxCOSqb--lySin_] fORF=-_-(I + 1)

The response of each of the possible states of the density matrix to each Hamiltonian is

given below.
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-oxp[-i = cos-,ysin (2.61a)

=
URvlzU_F = I z cos coR_.t+ sin tORFt[Ix sin O - ly cos O]

URFIxU*RF= Ix (cos 2 ¢+sin 2 ¢cos _Rvt) + ly _(1 - cos tORFt) -

1z sin ¢sin toaFt (2.61b)

URFIyU*Rr= ly (sin2 ¢ + cos 2 ¢cos tORFt)+ Ix si22---2'(1- cos (.ORpt)+

Iz COS0 sin WRFt

=,,
UfutlxUTM= lx COS_fidt + lySin _ f.utt (2.61c)

U futlyU_u I - ly cos ¢ofutt - 1x sin ¢Ol_dt

These equation are more useful when expressed in the spherical operator basis set.

URFIOUtRF -- 10 COSO)RFt + isin tORFt,f_ [l+le-i¢+l-I ei¢ ]

URFI+IUtRv= 1 I+,(1 +COStORFt)-I I;,(1--COStORFt)e +-'2i¢+ (2.62a)

i..i_1oe+i¢sin tORFt4_

Ufu_l°U_Ld= I° (2.62b)

Ufutl+lUt_ = i+le;iw: ,a'

These equations may now be used to show the importance of coherence pathways in

NMR. As an initial example, we will look at an experiment consisting of a 90 ° pulse with

phase Ol followed by a delay tl followed by a 90° pulse with phase 02 followed by a de-

lay tl and then acquisition with phase _r. The observed signal may then be calculated us-

ing the above equations (2.62). Our initial density matrix will be I0. This evolves during

the first pulse into the following coherences (or states).

i0.__._..+.._2 (I+1e-i¢, + I_,e i¢, ) (2.63)

This state will continue to evolve under the FID Hamiltonian for a period tl giving the

following result.
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,/'+_e"_+'_e'_)_'°'_('+_e'_0+°_')+__e'_0+°_')1
The 900 pulse is then applied, which gives the result below.

_ I., .-'(_'+_")-e'(_'._"''-2_)

!9...+--_2 l-lei('l+('°futll) ' + 2-_ I-1( ea(_i+t°f_t' -

_½,,o(e-_C"+_r''''-'_)+e_(_',+_,,,,',-_'_))j

This density matrix will then evolve for a second tl + t2 period, at which point we can

calculate the observable signal in t2 (as detection occurs from t2 = 0 on). Since evolution

under the FID Hamiltonian does not result in any transfer of coherence between different

density matrix states (for example/-z to I+l), the only coherence we need consider is the

/-l contribution (all others produce a trace of zero with our observable).

" [e2it°lidtl ei(¢l-¢r) -1\SC_,,_:_)-_/e_,l_,__,_.,pr)ei_'_':_tr[1_,I+_] (2.66)

. [ e2it° fultl ei( tPl-gPr ) _ )"- " 4_2 _e_i(_l_2,2+_r) e it°r_t2

This signal shows two components. The upper component is the signal coming from di-

rect evolution after the initial 90* pulse (notice that the tl dependence is identical to one

where there is no second pulse). The lower component is the echo signal (notice it has no

tl dependence) coming from the second pulse. If we try to acquire a spectrum which

contains only the echo signal, using only a single set of pulse and receiver phases will not

cancel the unwanted component. Suppose now, we add together the signal from four dif-

ferent experiments where the phases of the pulses and receiver (#l, _2, _r ) consist of the
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following four sets {(0,0,0),(90,0,270),(180,0,180),(270,0,90)} (given in units of

degrees). Adding together the four signals will produce the following result.

S(tl't2)=-4-_2 e'Wr_'2L(e° +e -2i_ +e -2in +e -2in) (2.67)

These phases choose only the coherence pathway that we desire, that is the echo signal.

The phase cycle was arrived at by setting the net phase of the evolved signal equal to

zero, which for this sequence was _l - 2 92 + _r - 0. This equation tells us the mathe-

90tN 90_1 _r

Ht, Rt, t2
+1(/.0

o (to)

_l (L,) \ I

Figure2.2 90-90Echo CoherencePathway. The bold line is the desired signal. The
dashedline is the mainartifactwewishto remove.

matical relationship between the phases. However, it does not tell us how many different

phases each pulse must be cycled through to remove artifacts. This is actually an old and

difficult question which I will not answer completely. The partial answer to this question

can be seen in the formula for the signal. The upper signal came from a density matrix

element that is proportional to/-1 in both tl periods while the lower signal came from a

density matrix that was proportional to I+] in the first tl period and /-l in the second.

Graphically, this is shown in figure2.2 where the bold line denotes the coherence path-

way of the echo signal and the dashed line represents the coherence pathway of the un-
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wanted one pulse signal. This formalism was first put forth by both Bain 36 and

Bodenhausen et al. 37 and is discussed quite thoroughly in Ernst's book on multi-

dimensional NMR. 7 In figure 2.2, the density matrix elements are labeled as coherences,

in this case +1, 0 and -1; these are often assigned the variable name p and a transfer of

coherence between levels is written as Ap. The coherence pathway for an experiment

may be written as a vector Ap = (zip1, ZIP2,Ap3,..., Zip, ) of n Zipielements where n is the

number of pulses. The 900-900 echo experiment may be written (+1, -2). It has been

shown in the above references that when a pulse is independently cycled through m

phases __,[n2.1_tm' 2.2_m'""--g--2(m-l)_)_'this cycle leads to selection the selection of
a specific

Zipi and additionally ZiPi+-(m - 1), ZiPi+-2(m - 1), etc. In our experiment, the

quadrature of our receiver will automatically select only the -1 pathway in t2. Therefore

by guaranteeing that the first evolution period is a + 1 coherence, we can assure that we

observe only the signal we want. It is obvious that using only 2 phases for the first pulse

will leave both ZiP1of +3, +1,-3 and-1. The +3 and -3 coherence transfers are harm-

less since the density matrix can only have coherence between +1 and -1 for our system.

The -1 coherence transfer is a serious problem and indicates that the unwanted (-1,0)

pathway will survive. However, a phase cycle of 3 will result in ZiP1of +4, +1, and -2.

None of the unwanted (+4 and -2) coherence transfers will produce any observable

signal. In the phase cycle for the experiment given earlier, we could have used

{(0, 0, 0), (120, 0,240), (240, 0,120)}, (2.68)

however this would necessitate 120" phase shifts which can be difficult on some spec-

trometers (especially in the receiver phase cycle). This same son of analysis can be ap-

plied to more complex pulse sequences and at the appropriate locations, I will point out

the reasoning behind the phase cycles for the experiments used in this thesis. For further

information on phase cycling, the previously mentioned references will provide a good

starting point as well as additional references contained therein.
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Eigenvalues from static samples

The eigenvalues from both the chemical shift and quadrupolar Hamiltonians have

already been discussed. However, all of our expressions are in terms of zero and second

rank spatial tensors A_. These spatial tensors are highly dependent on the orientation of

the principal axis system (PAS) of a crystallite with respect to the magnetic field (see

equations 2.35 and 2.40. Under static (time-independent) conditions, both the quadrupo-

lar and chemical shift energy levels can be calculated explicitly as functions of PAS ori-

entation. Looking first at the chemical shift interaction, we expand AC2os below.
2

aCS Z D(2) lacs'flcs ycs) p2csm-- m,ot, ,
m--2

rlcs o_2iotCS 4(2)(flCS 1= af_ nCSe2iaCSd(2) (flcs (2.69)W -20 )

=_-__ 3c°s2#cs-12 + ._ cos 2 o_CSsin 2 tics]

This yields energy eigenvalues given below.

_rn--_m-1 = h('Ol 2 + cos sin 2 tiCS

For a quadrupolar nucleus, the first-order quadrupolar eigenvalues are derived in a

similar fashion, since they are proportional to A_. The final result for the first-order

quadrupolar contribution to the energy splitting is given below in equation 2.62.

(IQ) 3e2qQ _ 1)[3cos2/_a-I _0._cos 2 ctt2 fit21AE_m_ 1 - (2m + sin 2-- 4/(2/-1) 2

h3CQ (2m_l)[3c°s2flQ-1 0_cos aQ flQ]-- 41(2/-I"""'--_ 2 +-- 2 sin 2 (2.71)

eEqQcQ= h

Figure 2.3 shows the energy level diagram for a spin 3/2 nucleus for a single orientation

of the quadrupolar PAS in the absence of chemical shift anisotropy. As was pointed out
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earlier, for the central transition (where m = 1/2 in the above expression) there is no first-

order quadrupolar contribution to the energy splitting.

First-Order Second-Order
Zeeman

Quadrupolar Quadrupolar

"" ' T """ I

ii i ii

AEL+RE lq AEI +_EIQ+AE2Q

T" I 1
m AE 1 +AE 2Q

AE l ._AF)Q AEl +AE1Q+AE2Q

Figure 2.3 Zeeman and Quadrupolar Energy Splitting for I=3/2 nucleus.

In the case of the central transition, we must also include the second-order quadru-

polar correction to the energy splitting as well. This is more difficult to calculate, as the

spatial dependence is the sum of two terms. We can first look at the product A Q,4Q by21 2-1

explicitly calculating A_ and A__l .
2

AQ = _ D(2)(m,10_Q, flQ, _/Q )P2Q,m
m=-2

F,4(2)[RQ_,,-i) 'Q m tlQ rt(2){RQ_o-iTQ-2ia Q ]

.r_-_3/ _'O,l _/-" }_ 7- w'*2,1 _H }_. +

= 31_ | _10.a(2) [aQ _.,-ir p"+2iOtQ
L_"-2,1 w /_ (2.72)

(_83-sin 2fl Q + _6 isin 2ct Qsinfl Q

=_e-iY'QL_6cos2otQcosflQsinflQ -]
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I _f_ sin 2flQ - cosflQsinl_Q_6/sin2 o_Qsin flQ ]- °L_ J (2.73)

Multiplying these together gives AQAQ21 2-1"

! r9sin22flQ + rl_ cOs2 20_Qsin2 2flQ - 1A2QAQI =-_L3rlQCOS2OtQsin22flQ + 4r/_ sin2 2¢xQsin2 flQ._ (2.74)

Likewise, we can calculate the product A Q A Q from AQ and AQ2 .22 2-2

[_sin2flQ-_2"_6isin2°tQc°sflQ+ 1+ c°s2 flQ)_ =_e-_',Qt_,;os2_Q(_ (2.75)

A2Q2=3f_e2i,o.[_/_sin213Q+__66 isin20tQcos[JQ +1 (2.76)

2o_Q(1 + cos2 +

AQAQ aQ(l + cos2 )sin 2 + (2.77)522-2=½ r/Qcos2 /_Q _Q

_-@sin22ctQ cos2flQ+ 3sin4flQ+

A QA Q may be writtenintermsofproductsof cos2ia andThe sum, 2AQ21AQ_1 + 22 2-2,

cos 2jfl where the coefficients aij are given in table 2.2.
2 2

2 A_AQ_I +A_A2Q_2=_.__aijcos2iaQcos2jfl Q (2.78)
i=0j=o

The energy splitting correction from the second-order quadrupolar effect is then given by

equation 2.70.

2 2

Z_, . 1 = 3212(21_l)2htot Z _'_aij c°s2it_Qc°s2jflQ-_-, - -_

i=Oj=O (2.79)
2 2

_ t'CO2(l(t+l)-¼)Z _ aij cos2ictQ cos2jfl Q
-- 3212(21-1)2_l i=0j=0

This energy splitting is shown for a single crystallite orientation in figure 2.3.
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ill i i ill,, ii i , i i i i i ,,H iii ii i , i i

.... i j aq ..... i j , a_ .........

0 0 -'_(18 + r/_) 1 2 _2_ r/Q

0 1 -_(1-_r/_) 2 0 _r/_ !

0 2 3_(18 + r/_2) 2 1 --_ r/_

I 0 _r/Q 2 2 _r/_

3
1 I -_r/Q

i i i

Table 2.2 Cosine Expansion Coefficients. The aij coefficients are used in the expansion
of the anisotropic portion of the second-order quadrupolar interaction in equation 2.70.

The total energy splitting, including both chemical shift and quadrupolar contributions,

under free precession in a high magnetic field may then be given by equation 2.80.

AFCSA AE(IQ) + A w(2Q)Z_Em.-._m-I -_(DI + m..-_m-I "4- m_l_m_! z.l_m..._m_ 1 (2.80)

It is important to note that in a powder sample, where all orientations of crystallites are

present, there exists a continuous distribution of energy splittings corresponding to each

individual PAS orientation. This is in contrast to a liquid sample where the rapid motion

averages out all orientational dependence of the energy splitting.

Eigenvalues from Rotating Samples

In the previous section, the expression for the free precession energy splitting was

derived. This expression has multiple terms which have anisotropic (orientational) de-

pendences. One of the primary goals of solid state NMR is to acquire spectra which look

like liquid-state spectra. The goal of high-resolution isotropic spectra has been ap-

proached primarily from two direction. The first is the averaging of anisotropic interac-

tion by averaging the spin operator tensors with multiple-pulse schemes. These tech-

niques work quite well for dipolar interactions (see Haeberlen's book for a more complete

review of this subject3S). However, for Hamiltonians such as the truncated chemical shift

and quadrupolar interactions, multiple-pulse experiments can only average the anisotropic
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contribution by averaging the isotropic contribution as well (for example, the CPMG

pulse sequence39.4°). The second and more popular averaging technique involves

Z

Bo
0

X

(a,_,7) _(_rt,o,o)
PAS _ROTOR ..... _ LAB

(x,Y,z) (x',y',z') (x,y,z)
Figure 2.4 PAS to ROTOR to LAB rotations. The Euler angles used in moving from a

sample fixed PAS coordinate system to the laboratory system are indicated. This in-
volves multiple rotations.

removing the spatial tensors with time dependent spatial trajectories which approximate

isotropic motion. The technique of magic-angle spinning is the most important of these

time dependent trajectories. In the magic-angle spinning (MAS) experiment, the sample

is rotated rapidly (>4 kHz) about an axis oriented at the angle

0m = cos -! (l/'_) = 54.74 ° with respect to the magnetic field. This has the effect of in-

troducing a time dependence for a general spinning angle to the spatial tensors A_ given

in equation 2.72.
l l

=y_,y_,
n=-l m'=-I
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The ;t, in this expression refers to either the chemical shift, quadrupolar or dipolar inter-

actions. The Euler angles which define the first rotation are 0, the spinning axis angle

and tOrt, the time dependent rotation angle. These rotations, along with the usual PAS

rotations are shown in figure 2.4. When rotation is sufficiently rapid

(i. e. tot > tot8csA or tor > to_/t°t), the time dependent (n _ 0in equation 2.81)terms

may be ignored (since they will average to zero) and only the time independent terms re-

main.

1

A_ = d(0/m)(o) z__VO(t)m,,o(°ta,_ a , Va )P_n' (2.82)
m'=-I

For the chemical shift interaction, the important spatial tensor is ACs. In this case, equa-

tion 2.82 may be expanded below.

]
(2.83)

l cos,s]/
The only difference between this expression and the previous static expression is the sec-

ond-order Legendre polynomial (P2[cos 0]) scaling factor. The choice of the magic-an-

gle is now apparent, since this angle is the one which makes the second-order Legendre

polynomial zero and eliminates the anisotropic portion of the chemical shift interaction.

Likewise, it can be shown that magic-angle spinning can also remove the effects of both

homonuclear and heteronuclear dipolar coupling (both of which have a spatial depen-

dence which can be represented as a single second-order tensor). For the quadrupolar

interaction, this same analysis holds for the first-order effect when the spinning rate is

larger than the quadrupolar coupling constant.

A L-,(IQ) 3e2qQ (2m _ 1)( 3co82 o- ! )[ 3cos213Q -I flQ]_h,--,,n-I = 4t(2t-l) 2 2 + -0"_"c°s2ctQ sin2 (2.84)
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In practice, this may only be observed for nuclei in highly symmetric environment (for

example 23Na in NaCl or 79Br and 81Br in KBr) or with a very small nuclear quadrupolar

moment (such as the spin 3/2 nuclei 7Li and 133Cs). Even for these nuclei, spinning l

sidebands which arise from the time dependent terms are often observed. For quadrupo-

lax nuclei with a large quadrupolar coupling only the central transition is observable (and

excitable as well), which has no first-order quadrupolar contribution to the orientation

dependence of the energy splitting. The second-order quadrupolar correction does, in

fact, show strong orientational dependence. Under fast spinning conditions, just as be-

fore, the time dependent contribution to the AQAg and A QAQ products may be ig-21 2-1 22 2-2

nored. As before we may calculate the individual contributions AOAQ and AQAQ21 2-1 22 2-2"

2 2

A2_A2Q-m= _, E D(2) (tOrt'O'O) D(2) ' YQ
j=-2 k=-2

2 2 (2.85)

Z Z -.,m/')(2)(09rt,O,O)D(2)(otQ,flQ,p,n?'Q)PQp
n---2 p=-2

The removal of the time dependent terms is more difficult, since the product must be ex-

panded completely before dropping the time dependent terms. This eliminates all of the

terms except those where j + n = 0. As has been shown earlier by Mueller 15, the spatial

sum may be written as a sum of cosines of the PAS Euler angles a Q and flO in equation

2.77.

2 2

2A2QIA2Q-I+ AQ22A2Q-2= _ Z _ a_ cos 2/0_0 cos 2 jfl O
i=0j=0

lJ. (2.86)

AE(2Q) hC_(l(I.l)-¼) 2 2! I = _ Z ab cos 2i_ Qcos 2jflO
-_-o-_ 3212(21-1)2t°t i=0 j=0

t

Note that the coefficients aij are now defined as

ab = a!0) + a(2)V2[cosO]+ al:)P4[cosO] (2.87)q

where the fourth-order Legendre polynomial (,°4[ cos 0 ]) is given in equation 2.88.
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p,tco_el--_(35_os"o-30_o,_0+3) (2.88)

Each component of a_/is defined in table 2.3.

The formulas for the energy eigenvalues under rapid spinning conditions given in

equations 2.84 (first-order quadrupolar), 2.86 (second-order quadrupolar) and 2.83

(chemical shift anisotropy) all show both spinning angle and orientational dependence.

These dependences manifest themselves in the form of inhomogeneous broadening of the

NMR line for powder samples. In the next section, the actual lineshapes resulting from a

powder average for the various interactions will be shown. The effect of incomplete av-

eraging due to spinning will be discussed in a later section (see chapter 3).
m , ,,,

i j al?) al/) ab4)

-- _,(18+_)o o ._,(1+-_) -_(1-_) .._
o _ o -_-_(_--_),_6(1_+,_1
o 2 o o _(18+,_)
1 0 0 24 81T rlQ 5"-6rlQ

1 1 0 24 277 T/Q 1"4"1'7Q

1 2 0 0 --2-8-_ _Q

2 0 0 0 -_27r/_

2 1 o 0 -_

l 2 2 o 0 _._Tal ,le 2.3 Coefficients in Anisotropic Cosine Expansion for the 2nd-Order Quadrupolar

Correction Under Fast Spinning Conditions.

Lineshape simulations

In the absence of spinning, the static eigenvalue equations may be used to obtain

the theoretical spectra observed from both spin 1/2 and quadrupolar nuclei. In all cases

where a powder sample is simulated the assumptions are the same. First, all orientations
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of the crystaUite PAS are equally probable (there is no sample alignment or preferential

geometry of the crystallites in the powdered sample). Second, all orientations of the crys-

tallite PAS are present in the sample. Third, the contribution from each crystallite to the

spectrum will be equal. With these three rules, we can construct a powder averaged

spectrum for a static or rotating sample. Mathematically, the process of calculating the

intensity at a given frequency (or energy) is equivalent to doing the following integration

over the sample.
2_t _t

I(0_)= _ _tS(hto-Ae(a,fl))sinfldfldot (2.89)
0 0

In this expression, the sin fl scaling factor is included when converting an integral over a

unit sphere in Cartesian coordinates to spherical coordinates, to maintain a constant

dfl dot solid angle. Also, the Dirac delta function is defined below.

{_---_a_b
t_(a - b) = (2.90)---_a=b

This formula may then be used to create a spectrum by performing the integrals for each

frequency within the sweepwidth of the spectrum. (We will also use equation 2.90 later

in chapter 3 when calculating spinning sideband positions and intensities.) Spectra simu-

lated in this fashion are shown in figure 2.5 for static spin 1/2 nuclei and quadrupolar nu-

clei.

It may be seen that the central transition goes off scale in the first-order

quadrupolar spectrum in figure 2.5. This is because, in the absence of chemical shift

anisotropy or dipolar broadening, the central transition has no first-order broadening. In

the second order quadrupolar spectrum, none of the satellite (outer) transitions are shown,

as they are of negligible intensity in the sweepwidth shown.
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1
!

This method of simulating spectra works equally well for spinning samples. In

figure 2.6, the high speed magic-angle spinning spectra of samples with identical parame-

c)

' ' I '" ' ' ' I ' ''" ' ' I' ' 'i .
-.... -I0 0 I0 ..-"

_' _ ,_ ._ ,p_. d'¢"

r"-'---

-2000 0 20OO

a)

' ' I ' ' ........' ' I ' ' ' ' I.... ' '
-I0 0 I0

Frequency (kHz)

Figure 2.5 Static CSA (._), Ist Order(b) and 2nd Order (c) Quadrupolar Lineshapes. For

the chemical shift anisotropy simulation, to/was I00 MHz, 8iso,cs was I0 ppm, _CS was

50 ppm and r/CS was 0.3. For the Ist Orderand 2nd Order Quadrupolar lineshapes the oJI

was 100 MHz, ¢_iso,cs was 10 ppm, I was 3/2, o_Qwas 3.0 MHz, r/Q was 0.2.

ters as in figure 2.5 are simulated. The spectrum of the spin 1/2 nucleus is completely

averaged into a single narrow line under MAS. This is expected, as all of the anisotropic

contribution to the energy splitting is averaged to zero. The second-order quadrupolar

MAS spectrum, however, is still quite complex and only about a factor of 3 narrower than

the static spectrum. This is expected as well since the second and fourth-order Legendre
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polynomials never simultaneously approach zero. In fact, this demonstrates the basic

b)

"l _ I I J J _ I I ........I i i I i I

-10 0 10

a)
,L_

ii ii i i

i i I ; I i i I i I i I I J I

-10 0 10

Frequency (kHz)

Figure 2.6 MAS CSA (a) and 2nd Order (b) Quadrupolar Lineshapes. The simulation

parameters are identical to those in figure 2.6. Notice that while the chemical shift

anisotropy is completely averaged by MAS, the 2nd order quadrupolar interaction is only

slightly reduced (about a factor of 3) from the static simulation.

problem in observing the central transition of quadrupolar nuclei. There is no single

spinning axis which completely removes all of the anisotropic broadening to yield a

liquid-like spectrum (analogous to MAS for spin 1/2 nuclei). In figure 2.7, variable-angle

spinning (VAS) spectra are shown for a variety of spinning angles and quadrupolar

asymmetry parameters r/Q showing the range of both shoulder and singularity locations.
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A problem with the previously mentioned simulation scheme is the speed at

which spectra can be simuLtted. If we wish to use a least squares minimization approach

to simulating chemical shift and quadrupolar broadened spectra, the aforementioned

method is too slow. A slightly faster method is to divide the overall sweep width into N

Tl ---0.00 _ -- 0.25 rI -- 0.50 11- 0.75 11= 1.00

Figure 2.7 Quadrupolar VAS Spectra. All spectra are simulated assuming fast spinning

limit and constant CQ and variable angle 0 and r/Q.

bins. The angles a and fl are then looped over their integration limits in small step sizes

and the frequency at each point is calculated. The scaling factor, sin fl, intensity is then

added to the appropriate frequency bin for this point. In this method, a large number of

steps (often over 200 for each angle) must be taken for both ct and fl to obtain spectra
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with correct intensities across the spectrum. Using interpolation to divide the intensity

between bins for frequencies which fall between two bin positions fails to give signifi-

cantly better results (this type of interpolation can reduce the number of steps by perhaps

factor of 2).

A second method developed by Alderman et al. 41 is a much more efficient

scheme for calculating powder spectra. In this approach, the surface of a unit sphere

(over which integration is performed) is collapsed onto an enclosed octahedron. The ad-

vantage of an octahedron is that the face may be divided into a large number of triangles

(rather than curved rectangles on a sphere). The first advantage is that it is much easier to

interpolate over three points (arising from the division of the surface into triangles) than

four (which occurs when the two euler angles ct and fl are stepped in regular steps as in

the first method). The second advantage is that the surface may be parameterized into

three rational numbers (by dividing each edge of the octahedron into some integer num-

ber of segments and counting with integers along each edge) representing the x, y and z

coordinates. The formula for these coordinates are linear rather than quadratic in the case

of a sphere. The third advantage is that the calculation of sines and cosines is simplified,

as it merely ratios of surface coordinates rather than actual calculation of trigonometric

functions. Computer programs which utilize these algorithms are discussed and shown in

the appendix.
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Chapter 3

Dynamic.angle spinning DAS

In the previous chapter, the orientational dependences of the chemical shift inter-

action and the second-order quadrupolar interaction were derived. It was shown that

there exists no single spinning angle which averages the second-order quadrupolar inter-

action completely. Dynamic-angle spinning (DAS) was developed simultaneously by

both Pines et al. 42 and Virlet et al. 43 This technique is useful for obtaining high resolu-

tion isotropic spectra of quadrupolar nuclei in powdered samples. Specifically, DAS

does average both the first-order chemical shift anisotropy and the second-order

quadrupolar interaction. Previously, this technique has been used to study 11B44 ' 17045-

48, 23Na42,49.50, 27A151 and 87Rb49"52"54in a variety of compounds. In most of these

cases, the technique of DAS provides orders of magnitude improvement in overall resolu-

tion in the isotropic dimension over MAS or static experiments. In the next section, I will

review some of the theory and history of the DAS experiment.

History of DAS

The roots of dynamic-angle spinning lie in the frequency formula for a second or-

der quadrupolar interaction. It can be seen (after recombining terms in equation 2.86)

that there are three terms for a crystallite of an arbitrary orientation spinning rapidly about

an axis oriented at 0 with respect to the magnetic field.

fo(2Q)(otQ,flQ , o ) = O_(is2oQ)+ A2(otQ,flQ )P2[cos O] + A4 (oIQ,flQ )P4 [cos O]

-- 4Owll2(21_l)_.CQ2 1 +_

The first term represents the second-order quadrupolar isotropic shift. The other two, A2

and A4, represent the orientationally dependent coefficients of the second and fourth-or-

der Legendre polynomials. Figure 3.1 shows both the second and fourth-order Legendre
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polynomials. It is immediately apparent that the fourth order roots (30.56* and 70.12") do

not correspond to the second order root (54.74*). This demonstrates the futility of spin-

ning about a single axis to achieve high resolution quadrupolar spectra.

The solution is to use two different spinning angles in the averaging of the

quadrupolar interaction. Dynamic-angle spinning is just one of these solutions.

1.0

o.8 (o)]
0.6

0.4 _k30.56*N 54-74° 70.12"_

0.0 ..............

-0.2 , ,

-0.4 t
I, , I , I , , I

0° 20 40 60 80

Spinning Angle 0

Figure3.1 2nd and4th OrderLegendrePolynomials.There is nosingleangleat which
both the 2nd and 4th order polynomialsare zero. Therefore,multipleangleswill be
neededto averagethe second-orderquadrupolarinteraction(equation.3.1).

Alternative solutions such as dynamic-angle hopping and double rotation will be dis-

cussed in chapter 6 of this thesis. 55'56 In this experiment, the sample is allowed to un-

dergo free precession following a 90* pulse at a first angle 01 for a time tl/(k + 1). A z-

filter is used to store the magnetization during a hopping period, in which the rotor spin-

ning axis is changed from 01 to 02. At a time ktl/(k + 1) following the second pulse of

the z-filter, a dynamic-angle spinning echo will appear. This is shown below schemati-

cally in figure 3.2. The evolution of the density matrix will be the product of two unitary

]
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operators given by the evolution at each angle. The unitary evolution operators are

shown below in equation 3.2.

(-,_<,_,(=_,_,o,1,,,,,/(,+,>)+]
p(t,,t_)=u(0_)u(0,)p(0)u+(o,)u+(o_)

The assumption made in equation 3.2 is that the z-filter does not change the density ma-

trix at all. In any single scan, this of course is impossible, however by proper choice of

the phase cycle, the density matrix can be reconstructed over multiple scans so that this

equation is true. The coherence pathway needed to accomplish this is shown in

Boz Boz

Y

X X

vd2 rd2 _2

,,,<,+,>H H,,,,,+1>A, ,.,,. ,..,A A,.,.
V_ - _ _VV_ -

Figure 3.2 DAS Experiment and Pulse Sequence. In this experiment, the value of tl is
incremented in a two dimensional fashion. The tl dimension signal gives the isotropic

DAS spectrum while the second dimension contains information about the anisotropy of

both the chemical shift and quadrupolar interactions.

figure 3.3. Note that the coherence is -1 both before and after the z-filter, indicating that

the density matrix is unaffected by the z-filter (except for relaxation which merely scales

the size of the density matrix uniformly). The minimum phase cycle needed to select this

coherence pathway (assuming good receiver quadrature) is given below.
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(0, 0, 0, 0), (90, 0,0, 90),

(180,o,o, 180),(230,o,o, 230),

(@1,@2,@3,@r)=_ (180,180,0,0),(270,180,0,90), (3.3)

(0,180,0,180),(90,180,0,270)

This cycle is arrived at by noticing first that we need to guarantee a -1 coherence after

the first pulse and therefore cycle this pulse through 4 independent phases. The second

pulse is cycled through 2 independent phases, giving either a zip of + 1 or - 1. Only the + 1

rd2 rd2 rd2

A ,,.,.. ^ AIIIA ,.,
V -vvv -

+I

0

, ,\_l\ / ,,
Figure 3.3 DAS Pulse Sequence Coherence Pathway. The initial -1 pathway may be
selected by phase cycling the first pulse through 4 independent phases. The +1 zip at the

second pulse may be achieved by cycling through 2 independent phases (since the -1 Ap

would produce a net -2 coherence, which cannot be present in this system). This indi-

cates that a complete phase cycle of 8 is needed to get artifact free spectra (since the

quadrature of the receiver selects the final -1 zlp).

coherence transfer is meaningful and puts the coherence at 0, which is equivalent to

Zeeman order. This coherence will relax with rate TI during the rotor axis reorientation

period, after which an uncycled 90° pulse is used to bring the coherence to the -1 level

again (the +1 and 0 coherences will be unobservable with our receiver). The equation

which describes the relationship between the phases is given below.

--@1 + 42 -- 43 + 4r -" 0 (3.4)

The observed signal may then be calculated, knowing that the initial density matrix is

p(0) =/-1 following the first 90 ° pulse.
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I

S(fl ''2 ) = tr{p(fl ,t2 )/4.1 }

F o,),, / ]
= exp -i (k +

oxp[-i:o)(oo,:,]
The key to the entire DAS experiment may be seen clearly in equation 3.5. If the q-de-

pendent part can be made to be purely isotropic through proper choice of 0! and 02, then

the entire problem is solved. To do this we set the q-dependent sum of two terms in this

exponential equal to (k + l)co}_)tl for all values of both orientation and time.

- (2Q)t. = (.0(2Q) , k(.o(2Q) ,_O, (:.: o,),,. (:
(3.6)

0= A2(otQ,[3Q)P2(cosO)+ A4(otQ,_Q)P4(cosO)+

a2(o_Q,p Q)kP 2(COS0)+ m4 (otQ,_ Q)kP 4(cos 0)

In this final expression, we know that the Legendre polynomials will not both simultane-

ously be zero (from figure 3.1). Also, the orientationally dependent coefficients will

likewise be non-zero for most orientations. The only absolute solution is for the follow-

ing pair of equations to be true.

P2(cos 01) = -kP 2(cos 02) (3.7)
P4(cosO,) = -kP4 (cos 02)

This guarantees that for all orientations, the anisotropic terms will cancel in the tl evolu-

tion, leaving a purely isotropic evolution.

S(,,,t2)=exp[-ico_Q't,]exp[-ico(2Q'(otQ,[3Q,o2)t2] (3.8)

Equation 3.7 is a system of two equations with three unknowns. This means that there

will be a continuous distribution of solutions which may be parameterized by k. These

angles are shown below in figure 3.4. The usual pair of angles used for DAS experiments

are the k = 1 pair (37.38* and 79.19 °) and the k = 5 pair (0.00" and 63.43*). The reasons
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for the choice of k = 5 or k = 1 will be discussed later, however, any other angle pair

meeting the criterion of equation 3.7 will work as well. The solutions (as a function of k)

8O

._,60 ......

el

20

1 2 3 4 5

Time Constant k

Figure 3.4 DAS Angle Pairs. The angles 01 and 02 are solutions to equation 3.6 as

parameterized by k given in equation 3.9. It is interesting to note that the magic-angle

(shown with a dotted line) is not included in the possible solutions to the DAS equations.

to the pair of equations 3.7 are given below and were used to generate the curves in figure

3.4.

cos 01 = I 1+ 2_
3 (3.9)

cos 02 = 3

One of the first samples for which a DAS spectrum was collected was from the

23Na nucleus in sodium oxalate (Na2C204). 42 The spectrum in figure 3.5 represents the

Fourier transform of the DAS echo tops which corresponds to the signal at t2 = 0. This

spectrum was taken at a magnetic field strength of 11.7T (132.7 MHz for 23Na) with a

homebuilt DAS probe which has was designed by Mueller et al. 15'51 The angle pair for

this experiment is the k ---1 set of 37.38* and 79.19*. This represents a total of 512 scans
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for each of the 128 t! points which have been zero filled to 512 points before Fourier

transforming. The Z3Na _t2 central transition selective pulses were 5.0/_s while the

'_ • _ it • • • I[ • m • '|' i

-10000 -5000 0 5000 10000

Frequency (Hz)

Figure 3.5 Example ID DAS Spectrum of Sodium Oxalate. This spectrum was acquired

at 11.TT by Fourier transforming the DAS echo tops taken at t2 = 0.

hopping time was 30.0 ms. The magic-angle was set using the usual method of maximiz-

ing the number of SlBr spinning sidebands present in an internal KBr angle standard (2H

in deuterated HMB or DMB will also work equally well) as has been discussed previ-

ously. Is The overall linewidth of the isotropic site is about 700 Hz. This is significantly

narrower than the approximately 3-4 kHz wide line seen in variable-angle spectra of

sodium oxalate. The theory for the limiting linewidth of DAS peaks such as this will be

described in the last section of this chapter.

Dynamic-angle spinning data may alternatively be processed by Fourier trans-

forming with respect to both dimensions. The resulting two-dimensional DAS spectrum

has phase twist lineshape (see chapter 4) and to make the data presentable, it is viewed in

magnitude mode (where this operation is performed by calculating the magnitude of each

complex point in the spectrum). The 2D DAS spectrum is shown for sodium oxalate in

figure 3.6. This experiment has 128 points in tl (the isotropic DAS dimension) and 128

points in tz (the anisotropic VAS dimension). Other parameters are identical to the previ-

50



ous spectrum. The spectral width in each dimension is indicated on the plot. The projec-

tions onto both axes are shown on top and to the right of the contour plot. Notice that

-1_
i

• . i • 'I " " " " I " " =' " i " • " " '

-5000 0 5OOO

C01Frequency (Hz)

Figure3.6 Example2DDAS Spectrumof SodiumOxalat¢. Thisspectrumwasacquired
at 11.7Tby performinga 2D Fouriertransformof the DAS data set. The data is pre-
sentedin magnitudemode to avoid the phase twist lineshapes. Asterisksindicate
spinningsidebands.

two spinning sidehands on either side of the isotropic peak are indicated with asterisks.

The theory describing both their intensity and position will be presented in the next sec-

tion. Also, it is apparent that the presentation of the data in magnitude mode leads to

much broader lines than the absorption mode 1D spectrum seen in figure 3.5 (compare to

the isotropic projection onto the col dimension in figure 3.6). A method for acquiring

pure-absorption phase spectra in two dimensions will be discussed in chapter 4. These

spectra demonstrate the potential of DAS to successfully average second-order

quadrupolar interactions.
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SpinningSidcbands

The appearanceofspinningsidebanclsintheDAS spectrashown infigure3.7

leadsusdirectlyintoa discussionoftheirlocationandintensityinNMR experiments.

Shown belowinfigure3.7aretheslowspinningMAS simulation_ofbotha spinI/2and

spin3/2nucleus.The simulationparametersareidenticaltofigures2.5and2.6,withthe

w . _ il • • • • D w i • • | • • • . II • w • • | e- • -

-I0000 -5000 0 50oo I0000

_

i[ _ [ i II• • • w l • lw w • l • • • w I • • • • I IF •

-100oo -5000 o 5000 10000

Frequency(kHz)

Figure3.7 Sidebandsin MASSpectraof CSAandSecond-OrderQuadrupolarBroadened
Sites. Simulationparameterswereidenticalto figure2.5and2.6(Siso,cs= 10ppm,b"Cs=
50ppm, tiCS= 0.3andCQ= 3.0MHz,r/Q= 0.2) withtheaddedparameterof aspinning
speedof 2.0kHz.

spinning speed given as 2.0 kHz. It is immediatly noticeable that slow spinning produces

additional lines not observed in the spectra in figures 2.5 and 2.6. In the case of a spin

1/2 nucleus, the additional spinning sidebands do not significantly hinder interpretation of

the spectrum. The only major difficulty in this case comes in integration and identifica-

tion of the isotropic chemical shift. The integration problem is overcome by adding to-

gether the integrated intensity from families of spinning sidebands in the case of multiple

sites, s7 The problem of identifying isotropic sites may be overcome by performing the
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experiment at two spinning speeds and the peaks which do not shift will be the isotropic

sites. In the case of a spin 3/2 nucleus, the spinning sidebands make the spectrum even

more difficult to interpret than in the high speed limit. The sidebands overlap and leave

almost no gaps in the overall spectrum. Additionally, the total number of singularities,

whose positions normally help to estimate the quadrupolar parameters, is greatly multi-

plied and cannot be used for this purpose as easily. Finally, in the case of multiple sites,

spinning sidebands will make interpretation of quadrupolar spectra virtually impossible.

The source of the spinning sidebands lies in the assumption to drop the time de-

pendent terms from the expressions for the spatial tensor under sample rotatiGi-_(equation

2.82). This assumption, while simplifying the calculation, in many cases proves to be

2uite bad. There are a large number of papers in the literature which deal with spinning

sidebands. Specifically the works by both Maricq and Waugh 58 and Herzfeld and

Berger s9 are illuminating for the case of spin 1/2 nuclei. For quadrupolar problems the

papers by Jakobsen eta/., 60,61 Samoson eta/., 55,62,63 and others 64"76 provide good

reference material. For the case of DAS in particular, the papers by Grandinetti et al. 52

and Sun et al. 49 both give a good description of the spinning sideband problem.

"i'odescribe spinning sidebands in spin 1/2 systems, it is necessary to return to our

original equation for the chemical shift anisotropy energy eigenvalues under spinning

conditions.

z_E TM = _t(Dl_iso,cs +

CS 2 2 2 (3.10)
h(.Ol_ _ ___ _ O(m2)O(fDrt + _r,O,O)O(n2)(aCS,flCS, _,CS'_)P2nCS

m=-2 n=-2

This expression may be written alternatively below

53



2 (acs,/:s=hZ Wm ,0):'m(''"+*'.:s)
m---2

, .[-__,.., .gCS.4(2) _ "-inolcs"4(2)(j_CS)p2CS. (3.11)Wo(o:s,f:_ o)=oo:,,o.,+"v_'," -oo(o)z..,o -,o
n---9_

2

2 cs (2) -i,,o:s (2)(tics
Wm(OICS,[_CS,o) _O.)ll_ d)£o(O ) Z= e d_ ,- )p2cs

n--2

This expression allows us to write the time domain free induction decay following a

pulse.
t2

0

=

Wm(otCS,/JCS,e) (e-im(OJrt2+Or+ yCS) e-im(gPr+ yC') )m_'_O T'm'_rr

S(t2 ) = e-iOcs(t2)

= e_iWo(otcs,#cs,o)t2 (3.12)

xexp| L _ e-im(O_rt2+_)r+yCS) e-im(_r+}'CS)
\ m_O

Now we may use Dirac delta functions _(z) (see chapter 2) to rewrite 3.12 below.

S(t2)=e-iWo(cxcs,#cs,o)t2

1 2. ' (_" wm(_cs'_cs'o) IX "_ I ¢_( _ - ('Ort2 - _r - _,C' )exp| 2.., m_'_ e -imp d t/f
0 \m_0

X -- -- m

2 n" 0 m_:0
oo

&('Z) = _ Z exp(-imz)
m_

The alternative series expansion definition of delta functions (given in equation 2.90) al-

lows us to write S(t 2) in a different fashion (3.14).
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o)t)

l'!/ /x_-_ exp iNl(IV-COrt2-_r-TCS)+ _.wm moo, e -imv/ dip' (3.14)
Ni m_O

1 7c s e_im_ dillm_0

This expression may be simplified by reversing the summation over N2 and pulling the N

independent terms out of the integrals.

• e-i(N, oo,t2+(N,-N2)(_,+rcs))S(t 2 ) = e-iw°(acs'#cs'O)'2 ___AN,AN2
NI ,N2 j

2! l wm(_cs'#cs'O)e-im_ldlf (3.15)
1 exp iNllf + _ mCOt

AN = 2""_ m,O

• = 1._ ! exp -iN,f- ___w'(acs'#cs'°)e -im_ dll/AN 2 _ m.O mco,

Since all possible crystallite orientations are present in a powder sample, the signal may

be simplified by averaging over the (dpr+ 7 cs) variables.

(Sf ,2 ))(¢,+rcs) = e _., AN,AN e -iNl°_''2 (3.16)
N I =-.o

The final step is to do the powder average over the remaining two Euler angles,

(otCS,tics) (see section at the end of chapter 2 for a discussion powder averages). In the

case of magic-angle spinning, the first exponential term has no orientational dependence,

and the signal is given below.

-io_l_iso cst2 e-iNl O)rt2
(S(t?))MAS =e ' _.SNI

N1=-oo
(3.17)

SN = 4"_ _ I[aNI2sin_CSd_ csd°ccs
0 0

This MAS signal shows that there will exist a set of N spinning sidebands a distance NOgr

from the isotropic peak with intensities given by SN. In practice, the SN will die away
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fairly quickly with increasing N. In fact, once NtOr is outside of the static powder pattern,

Sjv will be nearly zero (but not absolutely zero). This behavior is seen in the slow speed

MAS spectrum for a spin 1/2 nucleus in figure 3.6.

For the case of quadrupolar nuclei, this analysis may again be performed. For the

first-order quadrupolar interaction, the math is entirely identical, except that signal must

be added together for all of the possible single quantum transitions. The second order

quadrupolar interaction presents a more difficult problem. Remember that the expression

for the second-order quadrupolar energy splitting is given below (identical to equation

2.97)

AE(2Q) hoo_ ( 3 O Q a Q A Q ) (3.18)= _t ,I(I+l)-_)(2A21A2_ 1+ 22 2-2

This expression may be simplified using the following tensor relationship for products of

tensor elements (3.19).

A2mA2-m = ___(l,OI2,2,m,-m)alo
l=0,2,4

alo = E O(nl)o(tOrt+ _r,O,O)E O(k_)(Ot,fl,r)Glk (3.19)
n k

(rtk= _ (l,kl2,2,j,k - J)P2:P2k-j
J

Here the al0 tensor has been explicitly written out for rotation from the PAS to the rotor

frame followed by rotation from the rotor frame to the LAB frame. The coefficients

(L, Mll, l',m,M-m) used in the expansion are the usual Clebsh-Gordon coefficients.

For the quadrupolar interaction, this expansion leads to the following formula for the sec-

ond-order splitting.
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AE(2Q) 8oJ_ _ / 1" (l,OI2,2,m,-m)=--_t 2[ (I+ 1) -3) E _ m aQ
/=0,2,4 m>O

3e_(_ +1)

3e2q 2 ./_'_2( _._._ ) eyQ 3e2q2 r/o (3.20)O'Q-" 2 _/7_. 3 -1, 2+2-- _

9e 20 2 ( r/_ ) 3e 2q2 r/Q e2q2 r/_

As previously, we may rewrite the energy splitting in the following fashion (just as in

equation 3.10).

AE (2Q)=h _e-in(t°rt+¢'+_'°')Wn(o_Q,flQ,o )
I n=--4

Wn(otQ,flQ,o) = _t°_2(I(1 + 1)-¼) _.e -in(ta't+g_r+ye)'a(t),,nO(O) (3.21)
l=0,2,4

l<-Inl

X_,-ikotQ_, t*kn'4(l)(flQ)o.iQk _ (l,O[2,2,m.-m)m
k m>0

It is important to note the similarity between this equation and equation 3.11. In fact, the

same analysis may be followed to arrive at a very similar result following the average

over rotor phase.

t2

o (3.22a)

S(t2) = e-i_°( t2)

OlD

-iWo(°tQ'flQ'o)t2 E ANt N,
A* e-iNltOrt2

(S(t2))(¢,+rQ) =e
NI =-00

1 ! wn(:,:.o) e_ina N = _ exp iN V + _._ -_ du/ (3.22b)n_O

lAN* = 2"-_1 exp - iN g - _._ "g"tOr d g
n_O

r.
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This again shows that all of the sidebands will appear at a frequency NtOr from the cen-

terband with positive intensity given by IANi In this case, the averaging over the final

two Euler angles may not be performed analytically, since the second-order quadrupolar

frequencies are anisotropic under all single axis spinning angles. The result of a complete

powder average is to generate spectra much like the slow speed spin-l/2 MAS spectrum

in figure 3.6 except that instead of narrow isotropic lines there will be miniature powder

patterns as seen in the same figure. With the above equations, simulations of spinning

sidebands may be accomplished with methods similar to those described at the end of

chapter 2. There are faster methods, however, for simulating sideband intensities and I

would direct the reader to various papers on this and related subjects. 49,52,58"60,64,74,76"81

Finally, suppose the spinning angle 0 is set to 0°, or parallel to the static magnetic

field. In this case, all of the Wn with n _ 0 will be analytically zero for both the chemical

shift and quadrupolar interactions. This means that spinning the sample parallel to the

magnetic field has absolutely no effect on the spectrum (relative to a static experiment)

and generates no spinning sidebands. This feature will be useful in the next section when

the k = 5 DAS experiment is described, as one of the _pinning angles is indeed 0 °.

The dynamic angle spinning experiment may be analyzed in a very similar man-

ner as the previous two cases. The first step is to redefine the time axes in the normal

DAS experiment. In figure 3.8, the new time definitions are shown along with the origi-

nal DAS sequence. Notice that the only difference is that the evolution between the first

two x/2 pulses is defined as tl rather than tl/(k+ 1) and the t2 evolution begins immedi-

ately following the last _/2 pulse. This definition of time axes differs from the original

DAS experiment only in the application of a shearing transformation following the two-

dimensional Fourier transform. The shearing angle is related to the k value by the follow-

ing equation.

0s = tan -1 k (3.23)
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Shearing transformations are well known in NMR s2"86and will not be discussed at this

point. The two dimensional DAS experiment performed with k = 1 (37.38 °, 79.19") on

r42 rJ2 _2

RF[_ tl/(k+l)_hop_ktl/(k+l)_t2

V - -
_/2 rJ2 _/2

/_,, ^A A,.

V - _ -
Figure3.8 RedefinedDASPulseSequenceforSpinningSidebandCalculation.Thetime
definitionsgivenaboveare usefulforcalculatingsidebandpositionsandintensitiesand
the originalstyleDAS spectrummaybe arrivedat by shearingthe finaltwo-dimensional
Fouriertransformeddataset.

RbC104 is shown in figure 3.9. The tr/2 selective pulse widths were 5.0 gs and the spin-

ning speed was 3.2 kHz. The data was taken at a magnetic field strength of 11.7T and

was sheared with a 45* shearing transformation. Notice, the shearing transformation cre-

ates a spectrum with isotropic peaks and spinning sidebands in the tol (DAS) dimension

and anisotropic 79.19* slow spinning VAS spectra in the _ dimension. The positions of

the spinning sidebands in the projection onto the o9'1 DAS axis in figure 3.9 are at the

isotropic frequency plus or minus one half the spinning speed. The factor of one half,

while initially appearing rather unusual, may be explained by looking at the actual side-

band positions with the same formalism used previously. 52 As a starting point, we will

assume that energy splitting will be determined by only the quadrupolar interaction (no

CSA present for now, however the results may be easily generalized) given in equation

3.20. In this case the evolved phase may be written as the sum of two integrals, given in

equation 3.24.
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Figure 3.9 Sidebandsin k = 1 DAS 2D Spectrumof RbCIO4at l 1.7T. The pulse widths
were 5.0/./s andspinning speed was 3.2 kHz. The datawas shearedwith a 45" shearing
transformationfollowing datacollection andprocessing with the sequence in figure3.6.

tl

_)DAS (t,, 1,2 )__. _ J" z_E(2Q)( o_Q _Q, O, ,t, _)rl )dr

o (3.24)
t2

"I'-_ _ z_E(2Q) ( o_Q , j_ Q , 02,', _r2 )dr
o

The variables in the expressions for the energy splitting indicate that we will consider

both the absolute rotor phase and PAS orientation of the sample. Upon performing these

integrals, the DAS signal may be expressed below.

cDAS(,I,,2)= Wo(otQ,_Q,o)t, + Wo(OtQ,_Q,o)t2

_ ___W',,(eQ"Q'e')(e-im(_rq+¢,,+'Q) e-im(¢,,+TQ) I
_rr - (3.25a)

me0

-_Wm(aO'/30'02)( eT"_co,im(_rt2+¢r2+TO)--e-im(gPr2+YQ))m;eO
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S(tl,t2)= e-i(#DA$ (tl't2)

_e-"o(:.:.o,),,

\m#O

This can again be simplified with the use of delta functions as before to give the follow-

ing equation for the DAS NMR signal.

-i_o(:,:, o,),,-iWo(:,:,o21,2
S(tl,t2)=e

A* A*

Nt ,N2 ,N3 ,N4

_i[ ( NI - N2 + N3 - N4 )(_rI+ _Q )+(N3 - N4 )(f_r2-f_rl)]
(3.26)

L +( NI + N3- N4 )cort I + N3fart 2Xe

'-'( 1AN(O ) = _ ! exp iNt/I + m,OXWm('_Q'BQ'O)mco,e-imV/ all

This may be averaged over the initial rotor phase, (_rl + _:Q), as before.

-iWo(olQ,/JQ,oI )tl-iWo(otQ,/JQ,02 )/2

(S(t,,t2l)#r,,rQ= e

X X aNI ( 01)AN2 (01)AN3 ( 02 )ANt-N2 +N3( 02 ) (3.27)
Nt,N2,N3

X e -i[(N2-NI )(_r2-_rl )+ N2fOrtl + N3fOrt2 ]

In most cases, the relative phase of the rotor (_)r2- _)rl ) between the first and second

evolution periods will be relatively random. In the case of large numbers of scans, these

variables (¢r2 - Crl ) may be averaged over as well.

(S(t1.,2))#,..,,2.7 Q =e
(3.28)

X XIAN, (02)12e -itN'c°rt'+N2°)rt2]
NI ,N2

61



This indicates that the intensity of all of the sidebands in the two dimensional spectrum

will be positive. The peaks will occur at frequencies N Ic.0rfrom W0 (01 ) in the first di-

mension correlated with frequencies at N2cor from 14,'o(02) in the second. When the

spectrum is sheared, the peaks will all remain positive, however their positions will shift.

Transforming the time variables into the sheared time definitions, we will arrive at the

following expression for the DAS signal.

tl = t_k+l
(3.29a)

kt_+t_t2 = k +'-"_

-,(_°(:':'°')._w°(:':'°_))'_
-iWo(:.:.o_),_/ '" "'\,Stt,.t2),=e k+, e

rNl_o,t[ kN2_o,t_. , (3.29b)
2

e I_ k+l g+lx _._]AN, (0,)1 IAN: (02)12 -i/--:---:--.+ _. +N_C0,t2]
N3.N2

The definition of the DAS angle pairs is equivalent to the following equation.

Wo(:.:,o,)+ +
Which reduces equation 3.29 to the form in equation 3.31.

ifo(2Q)t" " )t_
(S(t_,t_)) = e- _o , e-'Wo(a°''#°'°2

i[NlfOrt[+ kN20)rt_+N2fOrt_]

× ZIA..(O.)I_IA._(O_)I=e-:TZV,+1 (3.3 1)
NI ,N2

(S(t_,O))= e- .o ', ELAN,(Ol)l_[A,_:(O:)12e_+,_+,J
Ni ,N2

This equation shows that the isotropic spectrum arrived at by Fourier transforming the

DAS echo tops at t2 = 0 will have sidebands at multiples of two frequencies, kCOr/(k + l)

and O_r/(k + I). The two dimensional spectrum will have sidebands at multiples of the

same two frequencies in fol and at c0rin o)2. Looking again at the two dimensional DAS

spectrum in figure 3.9 we observe exactly these sideband positions. Each of the slices ex-
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tracted on the right corresponds to the isotropic peak and sidebands where NI = 0, +1, :!=2,

:!:3, etc for N2 =-2, 0 and +2 respectively. It is interesting also that the N2 =-1 and + 1

Hz

Hz

Z

6.5 kHz_ _
-io 8 5 1'o

Frequency (kHz)

Figure 3.10 1D87RBCIO4DAS Spectra at a Variety of Spinning Speeds;. The k =1 DAS
spectra are shown over a range of spinning speeds. The intensity of the sidebands may be
described by equation 3.30.

slices have very low intensity as the detection angle (79.19 °) is nearly 90 ° where odd or-

der sidebands may be shown to have no intensity. Also, it may be seen that the most in-

tense peak in each of these slices corresponds to the N1 = 0 peak. The sidebands in each

of the slices are separated by o9r/(k + 1) which in this case is o9,./2.

63



Figure 3.10 shows the one-dimensional DAS spectrum of 87RBCIO4 taken at

11.7T at a variety of spinning rates for the usual k = 1 case just as in figure 3.9. The

sideband intensities are seen to grow more numerous and intense as the spinning speed is

reduced. The intensity of each sideband is derived from equation 3.31 by adding together

the intensity (see equation 3.33) from each NI, N2 pair which contributes an integrated
2_t x

intensity of _ f flA_, (OI)[2[AN2(02)[2sinflQdflQdo_ Q at a given sideband position

( 00k+l _ from the centerband (keeping in mind that there may be degeneracies

when k is an integer). As is the case with double rotation (DOR, see chapter 6), the

spinning sideband intensities in DAS do not necessarily approximate the static powder

pattern in the limit of very slow spinning as is the case in slow spinning MAS.

When one of the spinning angles is 0°, as in the case of k = 5 DAS, the formula

for the DAS signal is simplified further. Since all Wn(0°) with n _ 0 are zero, the value of

the intensity integrals will be simplified. In the case where 01 is 0°, there will be side-

bands in the _1 dimension of the unsheared spectrum and all sideband intensities with Nl

_ 0 will be zero.

, i','(2Q)t" -iWo(OtQ,flQ,o2)tS

.[kN20_rt_

'+, <3.32)
N2

ikN2tort_
:..,(2Q)t,

k+i
N2

A k = 5 DAS spectrum is shown below in figure 3.11. The unsheared spectrum correlat-

ing the static 0° spectrum with the 63.43* VAS spectrum shows that there are no side-

bands in the (,Oldimension and the sidebands are spaced by O)rin the 092dimension. In

the sheared spectrum, the sidebands in the DAS dimension are spaced by 5¢0r/6 and by

cor in the anisotropic spectrum. This represents the highest possible effective spinning

speed in the isotropic dimension in a DAS experiment.
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In a case where the time ratio k (or alternatively l/k) is not an integer then the one

dimensional isotropic projection becomes more complicated. In the case of a non-integer

k, the sidebands at multiples of the two frequencies ktOr/(k + 1) and tOr/(k + 1) will not

overlap for small integer values of NI and N2. In the full two dimensional spectrum, the

sidebands will appear separated, but will not overlap when projected. This sideband be-

havior may be seen in the k = 0.8 2D DAS spectrum of RbCIO4 in figure 3.12. Notice

also that there are analytically no odd sidebands in the second dimension corresponding

5. 5

)

w't OA-Iz)

.Jo _ .,o.. l

m, Odtz) w', (k_

Figure 3.11 87RBCIO4 Sidebands in k = 5 DAS 2D Spectrum. The acquisition pa-
rameters are identical to those used in figure 3.7, with the exception of the angle pair (0"

and 63.43*) used.

to odd N2. This is a direct result of spinning at 90° since all odd sidebands disappear in a

1D 90* VAS spectrum.
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Figure 3.12 87RBCIO4 Sidebands in k=0.8 DAS 2D Spectrum. The acquisition pa-
rameters again are identical to those used previously, with the exception of the angle pair
(39.23°and90.000)used.

Returning to the case of one-dimensional DAS projections, the positions of side-

bands arc given by equation 3.32. This equation may be integrated over the final two

powder angles, to yield an expression which may be calculated to generate sideband in-

tensifies in a relatively simple manner.

-,r."-,.+ 1,.,,,,r
-:"'(2Q)t" )e Lk+l k+lJ(S(t{,O))powaer = e '<".o I 2 SIVI,N2(0"02

NI'N2 (3.33)
2_

SN,,N2(01,02) = 4"_ S _1AN, (Ol)121aNl (O2)l 2sinflQdflt2d°tQ
0 0
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This expression was used to calculate spinning sideband intensities for RbCIO4 DAS

spectra with k values between 1.0 and 5.0. These simulations are shown next to the ex-

perimental spectra in figure 3.13.

i , , w w _"i w w • w, i"|, w w, i, w, w w i ,i, w ww WlW, w,, i,,, w, i

-12 "6 0 6 12 -6 0 6 12
Frequency(kHz) Frequency(kHz)

Figure 3.13 All k values for fast spinning 87RBCIO4 DAS at 11.7T. These spectra were

collected with experimental parameters identical to those used in the previous spectra.

The simulated spectra assumed only a quadrw,ooiar coupling CQ of 3.2 MHz, an

asymmetry parameter r/Q of 0.10, tar of 6.4 kHz and approximately 300 Hz of Lorentzian
broadening.

The quadrupolar parameters used to simulate the spectra were a CQ of 3.2 MHz, an

asymmetry parameter r/Q of 0.10, and a spinning speed :.Orof 6.4 kHz. Lorentzian broad-

ening was added so that the linewidths of simulated spectra were the same as the experi-

mental spectra. It is important to note that there are basically two frequencies of spinning

sidebands in these spectra, _ o9r and _k for. In the case of k = 1, these two frequencies

are the same Oust as was seen before in figure 3.9) and sidebands appear only at 3.2 kHz.

In the case of k = 5, the former low frequency sidebands are absent, as predicted by the-

67



ory and shown earlier in figure 3.11, and only the high frequency 5.3 kHz sidebands ap-

pear. Because the spinning speed is quite fast compared to the second-order interaction,

only the N1 = +1 or N2 = +_1sidebands appear in these spectra; none of the sum and dif-

ference frequencies show up.

In conclusion, the presence of spinning sidebands in DAS spectra can lead to

greatly complicated spectra, with multiple spinning frequencies present. By choosing the

proper value for the time ratio, k = I or k = 5, the sideband behavior is greatly simplified

and the effective spinning speed is maximized. Additionally, the sideband intensities

contain information which may be used to extract the quadrupolar coupling parameters.

This has not been discussed here and the reader is directed to the thesis of Sun 16 and re-
i

lated papers 49,52for additional information on simulating sideband intensities.
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I
Linewidths in DAS (Homonuclear Dipole-Dipole Interaction)

In this section, the contribution of the homonuclear dipole-dipole interaction to

dynamic-angle spinning spectra will be discussed. Remember, the form of the static

homonuclear dipolar Hamiltonian from equation 2.48.

(2) n
HD = -___ litODo½(3Ii.olj, o - li., j )d_.o(_i j ) (3.34)

j#i

Under rapid spinning conditions, this may be expressed below.
2

no _h_ c.ovo ½(3ii,oij, 0 ii [j) _ n(d)O(O2rt + _r,O,O)D(o2) (OtijO,[ji)O_ _
j#i m=-2 (3.35)

(2) D
=-hd_)(O)_(.ODo. l(3Ii,olj,o- I i • Ij)do,o(J_i j )

j#i

This Hamiltonian will allow the coherence, which until this point has been assumed to be

between -1 and +1, to evolve into higher order bilinear coherences. The homonuclear

dipolar contribution to the isotropic linewidth in a DAS spectrum arises since the storage

pulses used during a hop cannot store bilinear terms. Also, the reduced Wigner matrix

element d_ ) (0) indicates that the spinning merely scales the entire interaction, under the

time independent approximation (and under high speed magic-angle spinning, all dipolar

scaled to zero). Since the sign of P2[cos(Oi)] is reversed (seecouplings are equation

3.7) following a hop from the DAS angle 01 to 02, and if the density matrix describing

the system was the same before and after the hop, all dipolar contributions to the isotropic

spectrum would be refocused at the DAS echo top. Unfortunately, the density matrix is

not the same before and after the hop and the homonuclear dipolar interaction continues

to dephase in the isotropic t_ time domain, rather than refocus. An approximation which

describes the dipolar dephasing of a static on-resonance homonuclear bath of spins is a

Gaussian decay

S(t) = exp(- Mzt 2/2 ), (3.36)
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where M 2 is the second moment as defined by Van Vleck 87. Under fast spinning VAS

conditions, the effective dipolar coupling is scaled by P2[cos(0 i)] and therefore the ef-

fective second moment is M2P22[cos(0)]. The signal function for an on-resonance spin

would then be

S(t) = exp(-M2 P2 (cos O)t2/2). (3.37)

Figure 3.14 shows the dipolar linewidth of both 23Na and 87Rb nuclei in sodium oxalate

and rubidium perchlorate respectively under rapid VAS conditions. The linewidth was

measured from the homogeneously broadened isotropic spectrum collected by Fourier

transforming the echo tops at t2 = tl of a 90* - tl - 180* - t2 experiment (where the dwell

time in tl was equal to the rotor period). The curves in both cases correspond to the

function ICoP2[cos(0)] I. where Co is the static homogeneous linewidth. Notice that the

• 200

150

soo •
°.m ._

400 :350

20 40 60 80 20 40 60 80
Spinning Angle O Spinning Angle O

Figure 3.14 Hornonuclear Dipolar Linewidth versus Spinning Angle. The left set

corresponds to Na2C204 23Na linewidth as a function of angle where the static linewidth
is 1400 Hz. The right set corresponds to RbCIO4 87Rb linewidth as a function of angle
where the static linewidth is 195 Hz.

linewidth goes nearly to zero at the magic angle (54.74*) in both cases. This indicates

that, at a spinning speed of approximately 6 kHz, the homonuclear dipolar coupling is

well described by equation 3.35 and 3.37.

In a DAS experiment, the signal of an on-resonance spin can be expressed as the

product of two Gaussian decays at two different angles.
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ia_ 2 2/ )

For the DAS angle pairs, 01 and 02, the value of P2[cos(0)] can be expressed in terms

of k where P2[cos(01)]=_ and P2[cos(O2)]=-aff/5k. This yields an effective

second moment for the isotropic line in the DAS experiment of M_ff - 2kM2/B(k + 1)2

giving a linewidth of approximately 42_Vt2/43(k +1).Thenarrowestline in a conven-

tional DAS experiment should therefore arise when the k - 5 angle pair, 0* - 63.43", is

used and should be about 75% of the linewidth for a k = 1 experiment.

For the isotropic linewidth measurements, samples of sodium oxalate, Na2C2Oa

and rubidium perchlorate, RbCIO4, were obtained from commercial sources while the

deuterated boric acid, D3BO3, was made by exchanging the protons in H3BO3 in D20,

both commercially obtained. The experiments were performed at 11.7T (87Rb frequency

163.623 MHz, 23Na frequency 132.201 MHz, liB frequency 160.446 MHz) with the

same probe as before. The pulse sequence used for DAS was the original sequence. The

selective 90* times were between 4 and 8 Its and the recycle delays were between 1 and

4 s. The spinning speeds were between 5.0 and 7.0 kHz which effectively removed all

spinning sidebands from these spectra. The spectral widths were set to 10 kHz and be-

tween 256 and 1024 scans were acquired for each of 60 t l points at each k value.

The dipolar linewidths for Na2C204, RbCIO4 and D3BO3 are shown in figure

3.15 for a range of k values from 0.8 to 5. It is always true that the linewidth at k = 5 is

about 20% less than at k - 1, in agreement with the theory presented earlier. The solid

curves through these data points are the best fit using the function

A(Dis°tr°pic = A('OT2 + _-_ i) 3.39

where M2is the second moment due to homonuclear dipolar interactions in a static sam-

ple and AOgT2is the intrinsic linewidth due to field inhomogeneity and T2 relaxation.
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The values for M2 extracted in this manner are very similar the those extracted from

static CPMGexperiments. This further confirms that the k = 5 angle pair is the best angle

pair to perform the DAS experiment.

1200 -

N 1000 "-_

800 -

_ 600 -
M

400 -

200 -

0 I I I i I

0 1 2 3 4 5

k (DAS time constant)

Figure 3.15 Dynamic-Angle Spinning Linewidths as a function of k. The solid circles are

for D3BO3, the crosses are for Na2C204 and the solid boxes are for RbCIO4. The lines

through each set of points are the best fit with the linewidth function given by equation
3.39.
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Chapter 4

Pure Phase NMR

In traditional liquid state NMR pure-phase spectra have always been important in

giving the highest signal-to-noise ratios and signal resolution. The basic problem is most
i

easily illustrated with a simple two-dimensional data set of the form S(t i , t2) (notice the

similarity between this equation and equation 3.7).

S(t I ,t 2 ) = e -T[! (h +t2)e-i_dl e -i_2t2 (4.1)

Where 1"21and -02 are the frequencies in each dimension for a single peak in the 2D

Fourier transformed spectrum with linewidth 1/2 T2 . When a 2D data set of this form is

Fourier transformed in the t2 dimension, the result is a data set of the form S(t 1, co2 ).

S (tl , ¢.o2) = e-T21tle-ig21tl(A( o_2,1"22) + iD( 032,aQ2)) (4.2)

Where A(to,_) and D(to,_) in this case are the absorptive and dispersive Lorentzian

lineshape functions respectively with a peak in the codimension at frequency .(2.

A (co,_2) = r2l+(w-a)2r_

(w-a)r_ (4.3)
D(m,£_) = l+(w_a)2r_

It is immediately apparent, that the second Fourier transform will produce a very complex

result, S(o91, CO2 ).

S(COI,¢02)= (A(c0I,_QI)+ iO(o01,I21))(A(o)2,122)+ iD(a_2,I22))

= (A(al 1,.('21)A(099, .(22)- D(O)1,12l)0((.02, .Q2 )) (4.4)

+ i(a(tol,_'-21)D(co2,1"22)+ D((.O1,121)a((.02,122))

This has two terms, one real and one imaginary. If this were completely pure-absorptive

mode, the real term would contain A(c.ol,.Q1)A(co2,122 ) only. The term which leads to

the phase-twist lineshape is the A(ah,121)A(og2,122)-D(t.oi,.QI)D(co2,.Q2) one. Figure

4.1 shows both the pure-absorption mode and phase-twist 2D lineshapes. The next see-
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tion describes three of the methods used to obtain a pure-absorptive mode lineshape in

(a) (b)

Figure 4.1 Pure-Absorption mode and Mixed-Phase 2D NMR Spectra. Spectrum (a) is an

example of a pure-absorption mode line with equal homogeneous broadening in both

dimensions. Spectrum (b) is an example of a mixed-phase line with the same parameters.

Note in (b) the presence of both positive (+) and (-) contours, giving a peak of much

larger effective iinewidth.

2D NMR experiments. Each will be described briefly and in all cases additional infor-

mation may be found in the papers referenced therein and in the classic text on multi-di-

mensionai NMR by Ernst et al.7

Pure-Absorption Mode Acquisition Methods

The three most important methods for achieving pure-absorption phase multi-di-

mensional NMR data, States, TPPI and whole echo acquisition, are described in moderate

detail in the next section. Each section contains references to other more complete de-

scriptions of these experiments and the interested reader is directed there for additional

information.

States Method

The method developed by States et al.88 creates pure-absorption mode spectra by

acquiring a hypercomplex data set. In this type of data acquisition, there are two parts, a
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cosine labeled Se(tl,t2) and a sine labeled Ss(t I ,t2) portion. Thus, twice as many data

points are needed to get the same resolution as a comparable phase-modulated experi-

ment. The hypercomplex data is collected such that the cosine portion is quadrature in t 2

and amplitude modulated by cos(.O:l ) in tI while the sine portion is amplitude modu-

lated by sin(.O:l ) in tI. Mathematically, the two signals are expressed in equation 4.5.

Sc(tI,t2)= cos(g'21tl)e-ri'(t,+t2)e-m2,2
(4.5)

Ss(tl,t2)= sin(.f21tI)e-Tfl(tl+t2)e-i_ztz

To processthistypeofdata,thet2Fouriertransformisperformedseparatelyoneachdata

set.Thisyieldstwonew signalfunctionsSc(tI,coe)andSs(tI,o 2)givenbelow.

Sc(tl,C02)= cos(.f2:1)e-r[',,(A(co2,.Q2)+ iD(co2,.Q2))
(4.6)

Ss(tl, OJ2) = sin(I21tl )e -Tf''' (A(¢02,.(22)+ iD(f02,£22))

These are then combined to form a data set St,t,(t1, 092 ) whose real components are the

9rtion of Sc (t1,092) and whose imaginary components are the negated real portion

of ss(tl, co2).

Spp( tI , 092) = A( 092, 0 2 )e-T_'q (cos(t21tl) -/sin( I21t1))
(4.7)

= A(t02, .Q 2 )e -T_ltx e -it21t'

This data set is now ready to be Fourier transformed with respect to tl. Notice that there

is no dispersive D(_2,.f22) term in the Seg(h,o 2) expression. In fact the final

Set, (coI, co2 ) will have no dispersive contribution to the real channel (which is what nor-

mally is displayed).

Spp( tOl, fO2) = A( fOl,_21)a( fo2,ff22 ) + iO( OOl,_'21)a( f02,_'22 ) (4.8)

This will yield a truly pure-absorption mcde lineshape, such as in figure 4.1. To imple-

ment a phase cycle to co!_ect this type of hypercomplex data set, the data must be col-

lected with both the +1 and -1 coherence pathways in tl. When summed together they

yield a cosine pathway and when subtracted they yield a sine pathway. A simple method
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for deriving a phase cycle for a hypercomplex data set is to take a phase cycle which
i

chooses only the-1 or +1 pathway in tl and split this cycle into two phase cycles. One

will be made up of those cycles which generate cosine in tl and the other will have those

which generate sine in tl. This is a little more difficult when tl is split between two dif-

ferent evolution periods (such as the original DAS experiment), but can still be accom-

plished with proper phase cycling and pulses (see Mueller et aL50)

Time Proportional Phase Incrementation

The technique of time proportional phase incrementation (TPPI) 89,9°is mathemat-

ically equivalent to the method derived by States, Again, twice as many data points must

be collected as in a phase-modulated experiment with the same resolution. The basic dif-

ference between States method and TPPI arises in the data acquisition and processing.

To acquire TPPI data, a Srppt(tl ,t 2 ) data set is collected where the dwell time Atl is one

half and the number of tl points is twice what would be normally used in a phase modu-

lated experiment, giving both the same spectral width and digital resolution in tl. In

addition, all the pulses immediately before the tl evolution period begins are incremented

by 90* after each t l point.

7ft I _ i_22t 2
STeel(tl,t2 ) =e -T_l(tl+t2) cos(.Qlt 1+ _37_-1)e (4.9)

This data is Fourier transformed with respect to t2 exactly as a usual phase modulated

data set to yield Srept ( t1,o72).

STeei(tl,o72 )=e -r£1t' cos((K21 + "_tl )tl )(A(o72,-Q2 )+/D(o72, _2 ))

=e_r£,t,[A(o72,£22)cos((l'_i + 2-_tl)tl) + / (4.10)_/D(o72, _2)c°s(('Ql + 2-_tlIt,)

The imagir,ary portion of this data set is then thrown out and the remaining real portion is

Fourier transformed with a real Fourier transform in tl (rather than the usual complex
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Fourier transform). This type of Fourier transform has no quadrature and peaks show up

at both the positive and negative frequencies. This is where the phase inerementation

"trick" can be seen. Each term has a o_1 frequency of DI + _ rather than just _2I.

Therefore the signal will be given by equation 4.11.

j (4'''
The resulting spectrumis symmetric aboutzero frequency and the negative side may now

be thrown out. The remaining positive frequency data set is pure-absorption mode and

may be made equivalent to the States result by setting the center of the spectrum to zero

frequency (a shift of 2-'_ )" The phase cycle for this type of spectrum is identical to the

phase cycle for the cosine portion of the hypercomplex data set from the previous section

with the addition of the time proportional phase incrementation of the pulses before the

start of tl.

Whole Echo Acquisition

Whole echo acquisition 91 has been less popular than the other methods of obtain-

ing pure phase spectra. This is primarily because in the case of liquid spectra, it is diffi-

cult to obtain whole echoes in t2 since the lines are so narrow. In fact, when only a frac-

tion of the echo is collected phase twist components will enter into the final 2D spectrum.

In the case of solids, where the inhomogeneous broadening is usually much larger than

the homogeneous broadening, whole echo acquisition can actually be better than the other

methods. To understand why two-dimensional whole echo acquisition works, first it is

useful to look at a one-dimensional case. Suppose you generate a Gaussian-shaped time-

domain echo with a 90 °-180* (_/2 - te - zc- acq) sequence which has a signals e (t 2 ) given

by equation 4.12.
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Se(t2) =e-T22(t2-t" )2e-i_22(t2-t") (4.12)

When this signal is Fourier transformed, a spectrum of the form given by equation 4.13

will be generated, assuming that the signal is shifted far enough out in time and is zero at

both the first and last t2 points.

(0J2-_2)2 T 2

Se(co2):e ' eica" = Ae(cO2,-0z) (4.13)

This appears at first glance to be much worse than if we had only collected from the echo

top on, due to the phase factor. However, by effectively shifting the time origin by apply-

ing a first-order phase correction of te (which multiplies each point in the spectrum by

e-lax, ), the spectrum is greatly simplified.

Sse(c.o2)=e 4 = ase (092,-02) (4.14)

This shifted-echo (hence the se subscript) spectrum has no dispersive imaginary compo-

nents. This can be quite useful in a two-dimensional experiment where the signal is of

the form.

Se(tl,t2 ) =e -T_2(t2-te)2 -il22 - .e (t2-t¢)e-T21tle-tOltl (4.15)

This is a constant time echo experiment and the first Fourier transform is done as usual in

the t2 dimension. The resulting signal function has the form given in equation 4.16.

Se(tl, o_2 ) = Ae (¢02,.0 2)e-r_'t, e-in,,, (4.16)

A first order phase correction of te is then applied to the ¢o2dimension which yields sig-

nal with the function given in equation 4.17 (note the se subscript on the absorptive one-

dimensional Ase (¢o2, .09 ) function).

Sse( tl ,_2 ) = Ase (CO2, .02 )e-T2't' e -iOn'' (4.17)

A Fourier transform is then applied to the tl dimer -;on giving a pure-absorption mode 2D

spectrum as the result (see equation 4.18).
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Se(col,_o2)---AseCco2,02)(ACogl,al)+ iD(_I ,,O1)) (4.18)

This result is particularly important because data of this sort doesn't require the factor of 2

additional tl points like the States or TPPI methods, thus it will have a _ improvement

in signal-to-noise over States or TPPI data. However, this is only true in situations where

the entire echo may be collected for every tl point, which in general will only be the case

for solids with a strong inhomogeneous broadening. The phase cycle necessary to collect

a whole echo is not any different than collecting a standard phase-modulated data set. In

fact, in some cases TPPI or States methods may be applied in concert with whole echo

acquisition to gain an additional _" improvement in signal-to-noise ratio. 53

Pure Phase DAS

The original DAS experiment as described by both Mueller et al.42 and Llor and

Virlet 43 was a phase modulated experiment (w'_th the phase cycles given in the papers)

and gave phase-twist lineshapes in two dimensional spectra which necessitated magni-

tude mode display (see fig_,re 3.6). To obtain higher resolution, pure-phase two dimen-

sional DAS experiments were first developed by Mueller et a/. 42'47 In this work, they

viewed the DAS experiment in a non-sheared fashion and used either a z-filter or a 90*

pulse after the total tl evolution period to give pure-absorption mode spectra. As will be

discussed below, we have been able to obtain higher signal to noise ratio pure-absorption

mode DAS spectra by redefining our time axes. 53 Also, further sensitivity improvements

have been made by shifting the DAS echo in time using 7rpulses,

Pulse Sequences

The original DAS pu!se sequence has been discussed earlier but will be reviewed

to show the differences between it and the new pulse sequences. In figure 4.2 we see a

simulated DAS spectrum acquired with the original DAS sequence. The mixed-phase ar-

tifacts are seen in the upper right and lower left side of the spectrum as broad negative re-
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gions. This overall phase twist will make the slices through the isotropic peaks difficult

to interpret.
-2

{I 12)at (xl 2)a_ (x / 2)a, (l_D)a_(a) n n n ....... (b)
rf , I[ ,,._.n., .., .,,,tk._J_ ,_ ., "\
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-I ii llm
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2xi xl 0 -x, -2x,
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Figure 4.2 Original DAS Experiment. The pulse sequence and coherence pathway (a) is

shown to the left of the simulated spectrum (b). The phase cycle used to implement this

pathway was given earlier. Dashed contour lines indicate negative contours.

Figure 4.3 shows the modified DAS experiment where the time axes have been

redefined, very similar to the time definitions in a 2D exchange experiment (and identical

to those definitions discussed in the description of spinning sidebands in chapter 3). in

this experiment, the evolution at the first angle is defined as tl and the evolution after the

hop is defined as t2. This definition will place a shifting DAS isotropic echo in the t2 di-

mension. In fact, this echo will appear at a time k tl. When this data is processed without

modification, we observe a diagonal peak which is the correlation between anisotropic

patterns in both dimensions. A conventional 2D DAS spectrum may be obtaiv_-d by

shearing this spectrum by an angle 0s (as was mentioned earlier in the spinning side-

bands section of chapter 3).

0s = tan -1 k (4.19)

Another method for shearing the ,,ata is to apply a t) dependent first-order phase correc-

tion of _(fi, to2) to the data set between the first and second Fourier transforms.

co2): 1,co2
(4.20)

8O



uluillll-iilll

Illil_IIIIl_LUII-_LIIII-_Ilu1_





This method of acquisition produces a phase-twist spectrum, but because an entire echo is

collected for the later tl points, the negative contours are much smaller, giving effectively

higher resolution in both dimensions.
-2 '

(x/2)_l (x / 2)_z (n/ 2)_ (PSD)¢_

<a, li"

rotor el / co2 0-

1 f-_'t

-1

2 l i i

2 I o -I -2

COI

Figure4.3ModifiedDASExperiment.The (a) pulsesequenceandcoherencepathwayare
shownto the left of (b) the unshearedsimulatedspectrum. The dashed line coherence
pathwayindicatesthe anti-echoDASexperiment.The phasecycle usedto implement
this pathwayis identicalto the originalDASexperiment. Dashedcontourlines indicate
negativecontours.

A second modification to the DAS experiment may be made by using either the

method of States et al. 88 or TPP189,9°to acquire pure-absorption mode spectra using the

same tl and t2 definitions. To accomplish this, we need to merely change the way the

data is collected. Rather than collecting a single data set as a function of tl and t2, we

collect a hypercomplex data set as a function of tl and t2. As mentioned previously, a

hypercomplex data set separates the sine and cosine evolution in tl. Each of these data

sets is Fourier transformed with respect to t2. This produces a data set with absorptive

lineshapes in the real channel and dispersive lineshapes in the imaginary channel. The

real portion of the cosine data set is combined with _ times the real portion of the sine

data set. Thus there are only absorptive lineshapes in 092which are modulated by e -iolq

in the tl dimension. Applying the same tl dependent first-order phase correction from

equation 4.2, we then can perform the tl Fourier transform. This yields pure-absorption

mode 2D DAS spectra. There are no mixed-phase artifacts to make interpretation diffi-

cult. The phase cycle and coherence pathway for this experiment are given in figure 4.4.
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(c) ¢1 02 03 OR
90 0 0 0

270 0 0 180

90 180 0 0

270 180 0 180

Figure 4.4 Hypercomplex DAS Experiment. The pulse sequence (a), coherence pathway,
and phase cycle are given above. Cycle (b) is the cosine data set and cycle (c) is the sine
data set.

An alternative method of sensitivity improvement in dynamic-angle spinning ex-

periments comes from shifting the isotropic DAS echo in t2. This is accomplished by

applying anr pulse after a n tr delay following the final _2 read pulse. This shifted echo

DAS (SEDAS) pulse sequence is detailed in figure 4.5. This sequence has the advantage

of shifting the DAS echoes in time by n tr. For all t 1 values, an entire DAS echo may be

collected which leads to a higher signal-to-noise ratio than the hypercomplex DAS which

takes twice as long to effectively collect whole echoes in tl. This is especially important

in cases where the broadening is primarily inhomogeneous and anisotropic in the (o2 di-

mension.
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(b) 01 02 03 04 OR
0 0 0 0 0
90 0 0 0 90
180 0 0 0 180
270 0 0 0 270
0 0 90 0 270
90 0 90 0 0
180 0 90 0 90
270 0 90 0 180
0 0 180 0 180
90 0 180 0 270
180 0 180 0 0
270 0 180 0 90
0 0 270 0 90

90 0 270 0 180
180 0 270 0 270
270 0 270 0 0

Figure 4.5 Shifted-Echo DAS Experiment. The pulse sequence (a), coherence pathway,

and phase cycle (b) are given above.

In cases where the broadening is inhomogeneous in both the o.)2and COldimen-

sions of a DAS experiment, further advantage may be had by collecting hypercomplex

data in concert with a shifted echo experiment. This hypercomplex SEDAS experiment

is shown schematically in figure 4.6. The phase cycle for both the cosine and sine por-

tions of the data set are indicated as well. In both the SEDAS and HyperSEDAS experi-

ments, both the first and third pulses are phase cycled through four steps each. This ef-

fectively chooses only a -1 (or both +1 and -1 in the hypercomplex division of the phase

cycle in figure 4.6) coherence after the first pulse and guarantees a + 1 coherence follow-

ing the third pulse. This sequence effectively collects both the echo and anti-echo DAS
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signals. In the case of a crystalline sample, the anti-echo signal will shift to the left in t2

as tl increases while the echo signal will shift to the right in t2 as tl increases.

(x / 2)0t (Tt/ 2)¢2 (n; / 2)¢3 (It)04 (PSD)¢R

<a) rf, I']tt ', H h°P _ n','l-[ i '2 i

I V V
81 /

rotor

] .....
t %

p 0
-1

(b) 01 ¢2 03 04 OR
0 0 0 0 0
180 0 0 0 180
0 0 90 0 270

180 0 90 0 90

0 0 180 0 180
180 0 180 0 0

0 0 270 0 90

180 0 270 0 270

(C) 01 02 03 04 OR
90 0 0 0 0

270 0 0 0 180
90 0 90 0 270

270 0 90 0 90

90 0 180 0 180
270 0 180 0 0

90 0 270 0 90

270 0 270 0 270

Figure 4.6 Hypercomplex Shifted-Echo DAS Experiment. The pulse sequence (a),

coherence pathway, and phase cycle for the cosine data set (b) and sine data set (c) are

given above. Two echos are shown in the above figure since the signal will have an echo
contribution from both the echo (solid line) and anti-echo (dashed line) pathways which

may not necessarily occur at the same point.

In this case, the anti-echo will often shift out of the window before decaying to zero in-

tensity in tl. In most cases (assuming enough points are taken in t2) the echo signal will

always remain in the observation window. If the n tr decay is chosen long enough so that
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both the echo and anti-echo data remain in the acquisition window for all tl points, the

total intensity will be nearly zero (in analogy to collecting long delay times in a constant

time experiment).

In the case of a sample with a broad inhomogeneous distribution of sites in both

dimensions, the echo will decay away much faster in t l. In addition, if the distribution in

tl is continuous, the anti-echo will not shift to the left in t2 as rapidly in tl. Likewise, the

echo will not shift to the right in t2 as quickly in tl. For the case of an amorphous solid,

the hypercomplex SEDAS is the best pulse sequence, since it combines the signal-to-

noise enhancements of an echo in t2 with hypercomplex data in tl. Chapter 8 gives spe-

cific examples of glasses with distributions of isotropic shift, for which acquisition with

HyperSEDAS gave significant improvements in sensitivity.

Experimental Examples

The following figures (figs. 4.7, 4.8, and 4.9) show examples of various types of

DAS spectra. All of these spectra were taken with k =5 (the angle pairs were 63.43* and

0.00") and the magnetic field strength was 11.7T. The sample used was a standard

reagent grade RbClO4 sample. The pulse sequences for each experiment are indicated in

each figure caption. The 90* and 180* selective pulses were 3.35 ps and 6.70 #s respec-

tively, the axis reorientation time was 50 ms, the spinning rate was 5.8 kHz, the echo time

in SEDAS and HyperSEDAS experiments was 1.029 ms and the number of acquisitions

for each tl point was 128 scans for both the sine and cosine data sets. The hypercomplex

sine and cosine data sets were combined to produce the normal phase modulated data in

tl. The dwell time in the t2 dimension and in the tl dimension following proper shearing

was 50 _ts for both. The acquisition length in the second dimension was 256 complex

points while it was 128 points in the first dimension.

Figure 4.7 shows the normal phase modulated DAS data set acquired with the

pulse sequence in figure 4.2 showing the usual phase-twist lineshape. The phase-twist
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lineshape greatly increases the effective linewidth in the anisotropic dimension. In this

spectrum (and in figs. 4.8 and 4.9), contours were placed at-12, 14, 41, 68 and 95

percent of the maximum. The negative contours appear to the lower left and upper right

of the center of the main peak, just as they occur in figs 4. lb and 4.2.
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Figure4.7 OriginalDASSpectrum.This spectrumwastakenwiththe parametersgiven
in the textaboveand withthe pulsesequencein figure4.2.

Figure 4.8 shows the echo DAS spectrum collected with the pulse sequence in

figure 4.3. Note that a 41.67 #s tl dependent first-order phase correction was required to

shear the two-dimensional spectrum. This spectrum is not quite completely pure-absorp-

tive phase. However, the dispersive contributions are of small enough size that they do

not change the overall appearance of this spectrum in reference to the completely pure-

absorptive phase spectrum in figure 4.9.

Figure 4.9 shows the pure-absorptive spectrum acquired with the hypercomplex

DAS pulse sequence (figure 4.4). The spectra acquired with SEDAS and HyperSEDAS

look virtually identical and are not shown. The lineshape shows no phase-twist disper-

sive components in the two-dimensional spectrum above.
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Figure 4.8 Echo DAS Spectrum. This spectrum was taken with the pulse sequence given
in figure 4.3.
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Figure 4.9 Hypercomplex DAS Spectrum. This spectrum was taken with the pulse se-
quence given in figure 4.3.
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SignaMo-Noise Ratio Enhancements

In the case of one-dimensional DAS spectra, the signal-to-noise enhancement will

be independent of the enhancement in the anisotropic dimension. In practice, the shifted

echo experiments will provide better signal-to-noise, since the complete DAS echo signal

can be collected for short tl points. For short tl points in the non-shifted DAS experi-

ments, the echo top intensity may be complicated by ringing of the probe. This ringing

can significantly reduce the signal-to-noise ratio in the one-dimensional projections.

Also, by doing only a partial projection of the signal in the two dimensional spectrum

(rather than a complete projection) by adding only regions with strong signal, significant

improvements in signal-to-noise ratio in the one dimensional DAS spectra may be

achieved. This may distort the overall intensities in the final DAS spectrum and in some

cases it is not possible to eliminate any region of the two dimensional spectrum for pro-

jection.

In table 4.1, the two dimensional signal-to-noise ratios are tabulated for each of

the various DAS pulse sequences. These numbers are arrived at by measuring the RMS

noise in a region of the 2D spectrum which is devoid of signal and comparing this to the

highest point (largest signal) in the complete 2D spectrum. The experimental examples

shown in the previous section were used to generate these ratios. As has been predicted

by theory, the hypercomplex SEDAS experiment has the highest signal-to-noise ratio.

This should in theory be a factor of x/2 -- 1.4 better than the SEDAS experiment. In this

case, the factor was indeed achieved, but in practice this may not be always be true, since

the DAS anti-echo may shift out of the acquisition window too rapidly. The SEDAS sig-

nal-to-noise ratio should also be a factor of _ = 1.4 better than both the echo DAS and

hypercomplex DAS experiments.
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Sequence Pure Phase S/N Ratio

z-Filter DAS yes 15.8

DAS (fig. 4.2) no 20.6

Hypercomplex DAS (fig. 4.4) yes 31.3

Echo DAS (fig. 4.3) no 31.6

Anti-echo DAS (fig 4.3, dashed pathway) no 10.9

Shifted-echo DAS (fig. 4.5) yes 43.4

Hypercomplex Shifted Echo (fig. 4.6) yes 67.0

Table4.1Signal-to-NoiseRatioEnhancementsFor a Varietyof PulseSequences.These
measurementswereall performedwith equalacquisitiontime foreachexperiment.

Again, this enhancement seems to hold quite well. The hypercomplex DAS should be

better by a factor of -_ --.1.4 than the original DAS experiment, which also is true.

Finally the z-filter pure phase method signal-to-noise ratio should be comparable to the

original DAS experiment, since the z-filter sacrifices a factor of _ -- 1.4 which is re-

stored by the hypercomplex data collection. In practice, the z-filter will have worse sig-

nal-to-noise ratios than the original phase modulated data, since relaxation during the z-

filter will further reduce the signal-to-noise in this type of experiment. Therefore, theory

predicts that the signal to noise of the hypercomplex SEDAS will be at least a factor of

-- 2.8 better than the older z-filter method of acquiring pure-phase data. A final

comment about pure-absorption phase DAS is to warn the reader that in some cases

SEDAS or hypercomplex DAS may actually work better than the full hypercomplex

SEDAS. This will occur when the apparent T2 of a sample is too fast to allow long n tr

echo times. In most cases throughout this thesis, the SEDAS pulse sequence will be

used.
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Chapter 5

Cross Polarization

The use of cross polarization in solid-state nuclear magnetic resonance has lead to

the rapid advance of experiments on spin 112 nuclei such as 13C and 15N. Both of these

nuclei are very important in biological samples, especially peptides and proteins. The pi-

oneering work with CPMAS by researchers such as Waugh and Griffin at MIT and

Schaeffer at Washington University has opened the door for a variety of high resolution

studies of these types of samples. A brief history of some of the theory behind cross po-

larization will be discussed below. Following that introduction, I will describe some of

the difficulties in applying the technique of CP and CPMAS to quadrupolar nuclei and

one solution to this problem.

History

The technique of cross polarization was first discovered over 30 years ago by

Hartmann and Hahn. 92 This represents one of Hahn's many contributions to the field of

magnetic resonance. In these experiments, magnetic polarization is transferred from one

type of nuclear spin to another. This is accomplished by applying strong rf fields along

the rotating frame x axis to both types of spins following a 90* excitation pulse along the

y axis. In this case, the transverse magnetizations of both spins are "spin-locked" along

the rotating frame x axis. In this rotating frame, the precession rate of each spin about the

spinlocking magnetization will be determined by the respective strengths of the rf fields

and gyromagnetic ratios. When the Hartmann-Hahn condition is achieved, the precession

frequency of both types of spins will be equal, that is to say the rf amplitude is set to a

level such that the 90" pulse lengths are identical for both spin systems. Mathematically,

this is expressed as ),tBlt = ),sBls for spin 1/2 nuclei. This condition is quite sharp and

appears much like other resonance phenomena. The reason that this allows polarization
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to be exchanged is that the flip-flop terms in the homonuclear dipolar Hamiltonian (those

which mutually flip two different spins) are now zero energy processes. This greatly en-

hances the dipolar coupling and allows energy to be transferred between the two spin

baths. The spin temperature of the two baths will rapidly come to equilibrium with the

higher gyromagnetic ratio spins giving energy to the lower gyromagnetic ratio spins.

This may be applied to systems such as IH-13C to gain approximately a factor of 3-4 in

13C polarization or to IH-15N to gain a factor of 9-10 in 15N polarization. Additionally,

since the 1H bath is high abundance, the T 1 rela.xation time will often be much faster than

15N or 13C and the experimental repetition rate may be increased significantly 93.

Combining cross polarization with magic-angle spinning has the added advantage of

giving high resolution spectra for nuclei like carbon-13 and nitrogen-15. 94 In this re-

spect, 13C CPMAS has become a standard and routine experiment in most laboratories.

In the next section, the use of cross polarization to study quadrupolar nuclei under VAS

conditions will be discussed. Previously, CP has been applied to a number of different

quadrupolar systems, with polarization usually being transferred from the abundant IH

spins to the specific quadrupolar nucleus. 28'60'65'73'95"!06 I would direct the reader to

these references for additional information on this subject.

Spinning Effects on CP of Quadrupolar Nuclei

Significant increases in NMR sensitivity can be achieved by transferring high nu-

clear spin polarization between inequivalent nuclei using cross polarization (CP) tech-

niques. In addition, selective CP transfer can be applied as a useful tool for spectral

editing. While CP is a very effective technique for static samples, the combination of CP

with high-resolution solid-state NMR techniques that require sample rotation suffers from

a number of difficulties. One of these difficulties is that the dipolar spin interactions that

mediate the CP transfer become time dependent under magic-angle spinning (MAS)

making the Hartmann-Hahn matching conditions more complicated and also reducing the
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efficiency of the polarization transfer. Another difficulty arises when cross polarizing the

central transition of half-integer quadrupolar nuclei. In this situation the time-dependence

of the large first-order quadrupolar interaction interferes with the Hartmann-Hahn match-

ing. Remember that even though the central transition is unaffected to first-order by the

quadrupolar interaction, the energy levels themselves are affected.

Dynamic Angle Spinning (DAS) NMR was designed to provide high resolution

isotropic spectra for the central transition of half-integer quadrupolar nuclei that are

broadened due to second-order effects. DAS achieves this line narrowing capability by

making the angle of the spinner axis a time-dependent variable. This additional degree of

freedom aids not only in providing high-resolution spectra, but, as we show here provides

a solution to the problem of combining cross-polarization with high-resolution solid-state

NMR techniques. This solution exploits the time independence of the spin eigenvalues

when spinaing at 0° (parallel) to the external magnetic field direction. By performing the

CP step while spinoing at 0 °, the full static CP intensity can he obtained and used in an

MAS, variable-angle spinning (VAS), or DAS experiment.

Theory

The theory of spin locking and cross polarization of the central transition of half-

odd integer nuclei has been described in detail by Vega 96,105. In this section, we present

a condensed treatment of this problem.

In the CP experiment involving polarization transfer from a spin I = 1/2 to the

central transition of a quadrupolar spin of S = 3/2, the observable of interest,(S+(t)), is

obtained from the relation

(S+(t)) = Tr{cr(/)S. }. (5.1)

Here o'(t) is the density operator whose evolution is given by
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a(t)=v(t)a(o)v'(t) (5.2)

where

U(t)= Texp[-i ! H(s)ds 1, (5.3)

T is the time ordering operator, and H(t) is the Hamiltonian. The secular Hamiltonian in

the rotating frame is given by

H(t) = HRF + HD(t ) + HQ(t), (5.4)

where

HRF = --he0111:,-- tieOlSSx , (5.5)

HD(t ) = hOgoA2Oo(t)2IzS z , (5.6)

and

1 2
H12(t) = 110912A_(t)-_(3S_ - S(S + 1)), (5.7)

where 091/and Otis are the rf-field strengths for I and S spins, respectively, and A2°o(t)

and AQ2o(t)are irreducible spherical tensors for the dipolar and quadrupolar interactions

defined in chapter 2, respectively. It is convenient to rewrite this Hamiltonian in the fic-

titious spin-1/2 formalism 26,35 (see chapter 2) as

H(t) = -h(,Olll x - Nt'3h0)lS (Sx12 + $34) - 2h¢-01s $23

+_J-6hC012A_(,) (S_2 - $34)+ 3hWDAD(t) 2lzS_4 (5.8)

+ooag(t)21:

We assume Io_,1, Iosl>> Icool, and transform into a time dependent frame 27 that diago-

nalizes HRF + Ha (t) using

W(t)=exp(-i_Iy)exp(i2Sly4)exp(-i2S23)2 (5.9)

x exp(i2 ¢1(t)Sly3)exp(i2¢2 (t)Sy24)
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where O_<{_1(t),_2(t)}<_. (l(t) is related to the rotating frame propagator by

U(t) = W(t)U(t)W ?(0). Equation 5.1 can be rewritten

(S.(t)) = Tr{O(t)_r(O)O*(t)S+}, (5.21)

where S+ = Wt(t)S+ W(t) and _r(0) = W'(0)_r(0)W(0). The transformed observable S+

is

S+ = Sz23cos2 _l(t)cos 2 _2(t) + S_3 sin 2_1 (/)

-S_ 4 sin2 _1(t)sin 2 _2(t)-Sz 24 sin 2_2(t )

-S_ 2 sin2 _1(t)cos 2 _2 (t)-Sz 34 cos 2 _1(t)sin 2 _2(t)

+Sx13{cos _1(t) sin _1(t) - cos 2_1 (t)}

+Sx24{cos _2(/) sin _2(t)+ cos 2_2 (t)}

+iS1y2{sin¢i(t)cos¢2(t)+ cos(el(t)- ¢2 (t))}

+iS34{cos(_, (t)- _2 (t))- cos _1(t) sin _2 (t)} (5.22)

+iSly4 {sin ¢1(t) sin ¢2 (t)- sin(C1(t)- ¢2(/))}

+iSy23{cos ¢1(t)cos ¢2(t)- sin(C, (t)- ¢2 (t))}.

After an initial _2 pulse on the I spin, the initial density operator is 0"(0)= Ix, and the

transformed initial density operator is

6(0)=w*(o)a(o)w(o)= (5.23)

In the static case, a Hartmann-Hahn matching condition of wit = (S + 1/7)¢OIS is em-

ployed and only those spins where ]COQA2_(a,/3,v,t)l>>Iosl(wh rthe spatial depen-

dence of A2ao(t) is given explicitly in terms of the Euler angles of the principle axis

frame) undergo polarization transfer to the central transition.

In the case of rotating samples under the above matching conditions, only those

spins that satisfy [tOQA2Qo(ot,fl, y,t)[ >> IColSIor pass through this condition during a rotor

period, will undergo CP transfer, as shown by Vega. For these spins the values of _l (t)

and _2(t) have values close to either 0 or _r/2. When _l(t)= _2(t)= 0, tol3(t ) and
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to24(t ) are approximated by -tOQA_(t)+ cols and tOQA_(t)+colS respectively, and

when _1(t)= _J2(t)--. _, are approximated by COQA,2Qo(t) - tols and -tOQA2Qo(t)-colS re-

spectively. In this situation, the Hamiltonian in equation 5.11 can be rewritten so that the

diagonal elements are in terms of single and triple quantum transitions:

/_t(_ _-0)=--ili_l/Iz -- 2ht01S $23 +a/'6tiCOQA2Qo(t)(S_-S_)- (5.24)

6titODAg(t)ixSl4 D 23+ 21itooA2o(t)IxS x

or

H(_ --_)=-broil Iz + 2hi°is S_4-x[-6h°gt2A_(t)(S_-S_)- (5.25)
2htooAg (t) IxS14 + 6htOo AD (t)(t) lxS2x3

.... _l(t)

x/2 _2(t)

! I

_ ' '! !

! | !

I
! !

I !

.... A . , . . i , i , , i ........................ •

0 7t/2 x 3x/2 2x

Rotor Phase (radians)

Figure 5.1 _1 and _2 as a Function of Rotor Phase. The values of both _1 and _2 stay

very near their minimum (0) and maximum (if/2) values for all rotor phases, indicating
that the approximations made for equation 5.24 and 5.25 are quite reasonable.

Figure 5.1 shows the graph of _1 and _2 as a function of rotor phase for a crystallite with

a quadrupolar coupling constant of 11.0 MHz, asymmetry parameter of 0.0 whose PAS is

oriented perpendicular to the rotor which is spinning about an axis oriented 54.74* from
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the magic angle. Notice that the values of stay very close to the minimum and maximum

values at almost all rotor phases. These curves are typical for most crystallite orienta-

tions. The Hamiltonians in equation 5.24 and 5.25 may be transformed into the RF rotat-

ing frame, assuming that Itol/I, Iosl>> !0_01,as has been previously discussed. 92,94

Ix _ Ix cos ¢Olit+ ly sin O)llt
(5.26a)

S23 --, Sx23cos 2colst + S23sin 2COlst

ff1(¢ - O)= htooag(,)(S _ - S_o )

--6htODA2Oo(t)(lxcos COl/t+ Iy sin COllt)S14
(5.26b)

+2htooAg(t)(Ix cos COl/t+ ly sin COllt)

x(S2x3COS2COlst+S2y3Sin2cOlst)

or

Ix --->Ix cos ¢01it + ly sin co1It
(5.27a)

S 14 _ S 14 cos 2(.01s t - S 14 sin 2tOlst

ff-l(¢ = _)= -hogQAQzo(t)(S_ - S_) )

+6hoJoAz°o(t)(IxcosoJl,t+ lysin ¢ol,t)S23
(5.27b)

-2hWoAD(t)(Ix COStOl/t + ly sin tOitt)

×(S 14 cos20)lst-S_ 4 sin 2t01st )

Under the Hartmann-Hahn condition for the central transition, colt = 2 COls,these equa-

tions simplify into terms which oscillate at frequencies of 0, c011or 2(-O11. The time de-

pendent cosine and sine modulated terms that remain will vanish in the time average be-

tween zero crossings when oolt > tor simplifying the Hamiltonians in the doubly rotating

frame further.

H(_ --0)= .q_Iir.oQA_(t)(S_ - S_)+hr.oDAD(t)(IxS2x 3 + lyS2y3) (5.28)

or
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H(_ -__)= -_f6ti_QA_(t)(S_ - S_)- h_ODAD(t)(IxSI4 -1yS 14) (5.29)

Additionally, the transformed observable, S., of Eq. [23] becomes

= S 23 cos 2 _1 (/)cos 2 _2(t)- S_ 4 sin 2 _l(t)sin 2 _2(/)

+S 24 cos2_2 (t) - S13cos2_l (t)
(5.30)

+ iS2y3 cos _1 ( t ) cos _ 2 ( t ) + iS_4 sin _1 ( t ) sin _ 2 ( t )

+iSly2 cos(C1 (t)- ¢2 (t))+ iSy34cos(C1 (t)- ¢2 (t))

In general, the time-ordering operator T makes the derivation of (J(t) in Eq. [20]

complicated since/q(t) and ihl_'t (t)W(t) do not commute with themselves or each other

at all times. There are however certain approximations that can simplify this task. How

the system evolves depends on whether the passage through or near the zero crossing is

adiabatic or sudden. In figure 5.2 the values of a)13(t), o_24(t), 2d_l/dt and 2d_21dt are

shown plotted versus x/go_QA_ (t) for three different spinning rates (5 kHz, 1 kHz and

100Hz). It can be seen that the off diagonal ihW t (t)W(t) terms are only important when

the spinning is rapid and the size of the quadrupolar coupling is small. The simulation

parameters are identical to those used in figure 5.1.

The adiabatic approximation is permitted when >>]¢v'(t)w(t)[at all times

(as in figure 5.2, 100 Hz spinning rate), and the propagator becomes

Ua(t)-exp - tI(s)ds . (5.31)
k 0

Under this propagator, with the Hartmann-Hahn match given above, the time dependent

rotating frame initial density matrix (equation 5.24) becomes

1 23

(la(t)_r(O)Ota(t)= Ua(t)l z Ota(t) _ 7(lz + S_ ) (5.32)

(assuming we start with a crystallite with _l(t)-- _2(t)--0) and polarization is trans-

ferred from the/-spin to the central transition of the S-spin. When the sample rotation

takes the first-order quadrupolar coupling through or near zero, CP transfer from the I-
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spin to the central transition of the S-spin continues, since the system is under adiabatic

conditions.
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Figure 5.2 Matrix elements in cross-polarization of quadrupolar nuclei. The spinning

rates are 5 kHz, 1 kHz and 100 Hz which produce adiabaticity parameters of 0.11, 0.55

and 5.5 respectively. Notice that the off-diagonal terms dominate only in the small

quadrupolar coupling region and in cases of rapid spinning

Before the zero-crossing, _l(t)= ._2(t)= 0 and the effective observable is therefore

_23.= S_3+ iS_3(as can be seen from equation 5.23) resulting in a large observable signal.

After the zero-crossing, _l(t)=_2(t)=_: and the effective observable is
• 14

_3 _ _S_4 + _S_. Therefore, the cross-polarized central-transition observable intensity

(S_3(t)) goes to zero. However, since _l(t)= _2(t)=-_, the effective adiabatic
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Hamiltonian is changed to Eq. [30] and the polarization will transfer from the/-spin to

the triple quantum S-spin coherence in the transformed frame. Any central coherence

polarization will remain spin locked and unchanged.

This evolved coherence is exactly of the same form as our observable operator, and leads

to observable intensity identical to immediately prior to the first zero crossing. After the

next zero-crossing, the effective observable is transformed back into _$2+3 = S_3 + iS_, and

the central-transition begins to cross polarize again while the triple quantum coherence

remains spin locked. After multiple zero-crossing cycles in the thermodynamic limit, the

central and triple quantum transitions will be equally polarized from the/-spin as shown

by Vega 105. The state of the observable does not matter for observable intensity at this

point. The overall CP intensity will be identical to that observed for a static spin in the

thermodynamic limit, however the overall rate will be half as fast, since both the central

and triple quantum transitions are being polarized simultaneously. In the presence of a

short rotating frame relaxation time, this will lead to a reduced overall CP intensity from

adiabatic spins.

The sudden approximation is permitted when (as in figure 5.2, 5 kHz spinning

speed) at the zero-crossing, [H(,)I << [Wt(t)W(t)[. The propagator is then

0,(t) = exp W'(s)W(s)ds. (5.34)

This propagator transforms the S_3 and S_4 in the following manner:

!

Os(t)S_30*(t) _ S_4 . (5.35)

Os(t)S_40*(t) _ S2z3 (5.36)

The transformed initial density operator before the first zero-crossing is still given by

equation 5.32. However, during the first zero-crossing, the S_3 term is transformed to S_4.
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In the sudden reversal of the first-order quadrupolar coupling, the cross-polarized central-

transition is transferred to the triple quantum transition after the reversal. The observable

intensity after the zero-crossing is therefore identical to that immediately before the zero-

crossing. After the first zero-crossing, the CP transfer from the/-spins to the triple quan-

tum coherence will continue according to equation 5.33. Therefore the observable opera-

tor will always match the cross polarizing transition. After multiple zero crossings, one

of the two transitions will be completely polarized while the other/will be unpolarized.

The polarized intensity will always remain observable and the CP efficiency and rate

should be identical to the static case.

For crystallites which pass through the zero crossing in neither an adiabatic or

sudden regime fall into the intermediate regime (see figure 5.2, 1 kHz spinning speed).

This type of evolution is the most difficult of the three cases to calculate. To determine

the evolution of the density matrix in the intermediate regime, we need to include both

the diagonal H(t) and the off diagonal ff,t (t)W(t) contributions to the unitary evolution

propagator. These two terms do not commute with each other and the time ordering op-

erator may not be easily removed. The solution to this problem is to rediagonalize the net

Hamiltonian at each time step. There does not appear to be an easy method for doing this

diagonalization. Vega has shown with numerical simulations that spins undergoing an

intermediate regime zero crossing evolve into non-spin locked states 96,1°5. Therefore, the

contribution these spins make will only be prior to their first zero-crossing, after which

their contribution to the overall observed cross polarization intensity will decay rapidly.

We have performed variable spinning angle cross-polarization experiments which

may be approximately described with the above results. For a powdered sample, we may

classify each spin according to its PAS orientation with respect to the rotor in one of five

categories. These categories are:

i
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1. Spins with large COQA_(t) which undergo no zero crossings (essentially

static spins, alternatively spins which have _1 and _2 approximately equal to either 0 or

rd2 for all time),

2. Spins which have a small _QA_ (t) for the majority of a rotor period

(alternatively those spins which only have small oscillations in _1 and _2 about _4),

3. Spins which have a large COQA_(t) for most of the rotor period and un-

dergo adiabatic regime zero crossings (alternatively those spins for which _! and _2 oscil-

late between 0 and _2),

4. Spins which have a large rOQA_(t) for most of the rotor period Oust as in

3) and undergo sudden regime zero crossings,

5. Spins which have a large r.OQA_(t) for most of the rotor period Oust as in

3 and 4) and undergo intermediate regime zero crossings.

For spins which fall into the first and fourth categories, the cross polarization contribu-

ti.ans are simple, as they will contribute full intensity with normal polarization build up

rates. For the spins in the fifth category, the Cross polarization contribution is also simple

to calculate, since in the limit of long contact times, they will contribute no cross polar-

ization intensity. For spins in the second category, the Hartmann-Hahn match condition

will not be met for a significant portion of the total contact time and the contribution will

again to zero to the overall cross polarization intensity. For spins in the third category,

the cross polarization contribution will be identical to the static or sudden spins, however

the build up rate will be half as fast.

The only difficulty remaining is to determine mathematically the definition for

each of these five categories. The first category is the most easy to define, as this consti-

for which [4coQa (/)l>5c0sat all times (corresponding to ¢1 and ¢2
tutes spins

within :rdl2 of the minima and maxima of 0 or zr/2). The extent to which the quadrupolar

coupling must be larger than the radio frequency strength is difficult to define exactly, but
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generally a factor of five or more is probably sufficient to fully truncate the radio fre-

quency portion of the Hamiltonian. The second category is likewise simple in definition,

this represents the spins for which 5O,sfor more than one third of aas

rotor period. The factor of one third is an arbitrary number which seems to work well in

practice. This in general will represent only the spins whose PAS z-axis lies near the

magic-angle under sample rotation. The third, fourth and fifth categories relate to spins

which spend a majority of their time (more than two-thirds of a rotor period) with

I>5O,s.To differentiate between these three cases, the ratio of the sizes of
_ w

and IVe*ft)Wft)[ at the zero crossing must be considered. This leads to the defi-

nition of an adiabaticity parameter a below.

1,0(/)l=  3co?s+ (a/6o)Qm_ (t ) - (.Ois )I 2

IIV*(t)W(t)[= 2 d¢l (/) = _i-8°°is°)e dAg(t)
dt 3¢_?S+(._['_COQA2Qo(t)_(.OIS)2 dt

( 309]s +(_/-600Qa_(to)-OOlS)2) _ (5.37)
Oe=

dt

This is then evaluated at the zero crossing where _-6OgQAQ (to) = COls. At this point the

value of _1 goes through _4 and the adiabaticity parameter is then

3COsa = (5.38)

,goQaag('/I,°dt

Alternatively one could define an adiabaticity factor based on o924and 2d_21dt, however

this gives an identical result at the 2d¢2/dtresonance where ,_-6wQAQ(to)---wlS.

Explicitly evaluating this derivative yields
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2 2

(e)4#(#):".E 2° "mo
m=-2 n:-2

-i(m°Jrt+n°t+mY)'4(2 ) ( O )d(2m ) (fl )P2ndAg(t) :(Dr _ _-ime t_mO
dt mf-2n:-2 (5.39)

: co, (t)
3COs

:  QO.'rSg('O)
This definition of adiabaticity parameter is proportional to the one used by Vega in his

description of cross polarization 1°5, however, now there is an additional orientation de-

pendence as well which comes from the time derivative of AQ (t). When the value of ct

is much larger than one, then the diagonal terms dominate in the evolution and the spin

will be categorized in group three (adiabatic). When the value of ct is much less than

one, then the off-diagonal terms dominate at the zero crossing and the spin will be cate-

gorized in group four (sudden). When ct is of the order of one, then the spins are classi-

fied as group five (intermediate). To calculate the approximate cross polarization effi-

ciency at a given spinning angle, we merely calculate the number of spins in each cate-

gory and add the cross polarization intensity proportionally for each category. The adia-

batic contribution is the most difficult to estimate as the build up rate is half as fast and

therefore may not be fully cross polarized before rotating frame relaxation begins to im-

pede the buildup. In any case the adiabatic contribution should lie somewhere between

the 50% and 100% intensity contribution levels.

The theory for the dynamic-angle spinning experiment has been described previ-

ously in chapter 3. Remember that in the DAS experiment, there exists a continuous dis-

tribution of angle pairs which lead to high resolution isotropic spectra. Specifically, the k

= 1 and k = 5 angle pairs will be evaluated under CP conditions. I have done experiments

which compare CP efficiency at a variety of spinning angles.
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Experiments on Sodium Pyruvate and Sodium Hydroxide

The cross polarization experiments were performed on a home built spectrometer

based on a Techmag acquisition system at 7.04 T (IH NMR frequency of 301.200 MHz

and 23Na frequency of 79.671 MHz).

(rJ2h SL_, (rJ2).,

'"_!1 II , *1 0 90 180 270
(a) (_2),_AO4_:w

X N lid _ t2j.__-_ (_rcvr 0 90 180 270

(_v2),l st_ .... (rJ2).,,
'" II II ,, 0 180

(b) SL, AQ¢,_ ¢2 90 270

x I c_ I_lx'2....
¢rcvr 0 180

ZH(_/2)x SL_ (rd2).x (n/2)x SL_ (rd2).xII It iJ II
(C) (g/2)x SLy(g/2).x (r,./2)¢1AQcro,

x II cP II + n _ k...t2_ -_ I_1 0 90 180 270

_rcvr 0 90 180 270

0(t) 0° / 02

(r,J2)x SLy (r./2).x (n/2)x SL_ (rJ2)-x
'" II II ii II

(d) (rJ2b, ira2), (rj2)¢3 n, AOO,_v,

x rl ,,,<,+,>I! .+ N_ [-! ,,,,,,+,,I..,_ A ,__

O(t) O_ / 02

(r,./2)ll Sl._ (rJ_)i¢' (_2)x SLy {n/2).xIH Jl ,, 11 ![
(e) (rJ2)¢,SL_ (lr./2)x (rd2_3 nx AOt,o,,

x ll"'c, l','<++'>l'l"<+....rl,+.+r-I _,,,<_+,,i _, A,__
- - v v - -

0(t) O! / 0 2

Figure 5.3 Cross-Polarization Pulse Sequences. Phase cycles are indicated for the one

dimensional _xperiments (a-c) which are one pulse with decoupling, cross polarized with

decoupling and zero-polarized with decoupling and sample spinning axis reorientation.

The (d-e) pulse sequences are the normal and CP two dimensional DAS experiments re-

spectively. The phase of the 90 ° pulses on X are identical to those in the SEDAS experi-

ment. The spin lock pulse is always set to the phase of the first pulse plus 90 ° .
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The DAS probe was home built with a stationary 0.75" diameter coil for both rf-trans-

mission and detection as described by Muelle," et al. 51 The double-tuned resonant circuit

was similar to one described by Doty et al. 1°7 The spinning rate was between 4.0 and 6.6

kHz. The samples of sodium hydroxide, NaOH.xH20, and sodium pyruvate,

CH3OCOONa, used for these experiments were obtained from standard commercial

sources. The pulse programs and phase cycles are given in figure 5.3 below. The DAS

pulse sequence has been described previously in chapter 4. For the CP efficiency exper-

iments, phase alternation of the IH i_ was used (figure 5.3b) to assure ',hat only the in-

tensity due to CP would be measured. For CPDAS and ZPVAS experiments (figure 5.3a

and 5.3c), a 90* pulse was applied on 23Na simultaneously with the initial IH 90* to

achieve the largest final sodium polarization. For the 23Na spectra without CP, recycle

delays of 30s and 16 s were used for NaOH and CH3OCOONa, respectively, while, for

the CP experiments, recycle delays of 10 minutes and 36 s were used, respectively. For

the DAS experiments, we acquired 32 scans plus 1 dummy scan for each of the 90 tl

points while for the CP build up curves and ZPVAS spectra we acquired either 4, 8, or 64

scans plus 2 dummy scans for each different contact time and angle pair respectively. For

the CPDAS and ZPVAS experiments on CH3OCOONa the CP contact time was 20 ms.

The contact time for NaOH 2 ms. The input power of 200W on the 1H channel and

100W on the 23Na channel gave 7/.ts central transition selective 90* pulses. The CP

Hartmann-Hahn match condition was achieved by setting

)'HBI,H =(I+I/2))'NaB1, 2 =2TNaBI,Na which will selectively polarize the central

(1/2_--_-1/2) transition since the central transition nutation frequency is

tOnutation= (S + 1/2))'NaBI,Na in the presence of a large quadrupolar interaction 6,27,28°35.

Methods of simulating powder patterns have been described previously in chapter 2 and

in additional papers 41'76'81.

106



Cross Polarization R_ults and Discussion

The effect of level crossings on CP efficiency can be seen clearly below in figure

5.4, which shows the cross polarization efficiencies of NaOH and sodium pyruvate ver-

sus VAS spinning angle. All intensities are scaled relative to the corresponding single

pulse 23Na VAS and MAS spectra, using the sequence in figure 5.3a.

3.0

0.0 I I I t
0 20 40 60 80

2.0

1,5

1,0

0.5

0.0 I I I i
0 20 40 60 80

Spinning Angle 0

Figure5.4 CP Efficiencyversus SpinningAngle. The upper graph shows the cross
polarizationefficiency(boxes)forsodiumpyruvate.The circlesinthis graphindicatethe
effectivepolarizationunderZPVAS(ratherthanCPVAS). Thelineindicatesthe theoret-
icalcurve fromthe modeldescribedin the previoussection. The lowergraphshowsthe
CP efficiency(diamonds)forsodiumhydroxide. The lineagainrepresentsthe approxi-
matetheoreticalefficiency.
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As expected, only under static (0° VAS) conditions do we achieve the expected CP effi-

ciency maximum of approximately yl/2y2 = 1.9 for sodium hydroxide (NaOH) and

37'1/4 ?'2 -'-2.84 for sodium pyruvate (CH3OCOO- Na+). The factor of 1/2 and 3/4 are

due to the high abundance (basically 100%) of both the IH and 23Na isotopes causing

cross polarization to be controlled by the equilibrium between their respective spin tem-

peratures and heat capacities (related to the number of protons and sodium atoms per

molecule). As the VAS angle increases, CP efficiency decreases dramatically. As seen

in figure 5.4, spinning the sample at an angle greater than approximately 30 ° results in a

CP efficiency that is less than that achieved by a single pulse. This indicates that the

level crossings are significant, even when only a reduced fraction of the spins are under-

going the maximum four crossings per rotor cycle. For DAS purposes, the only angle

pairs which will have an angle less than 30 ° will be those with high k values. This imme-

diately points to the k = 5 experiment, since this has added advantages of fastest effective

spinning rate and narrowest homonuclear dipolar linewidths (see chapter 3).

The dashed theoretical fits in figure 5.4 were obtained by numerically calculating

the curves according to the theory outlined in the previous section. For NaOH and

CH3OCOONa, the values of e2qQIh were 1.8 and 2.36 MHz and r/Q were 0.0 and 0.77

respectively. The parameters for sodium pyruvate were obtained from simulations of the

MAS spectrum while those of sodium hydroxide were taken from Vega. 1°5

Qualitatively, the theoretical CP efficiency curves are approximately what one would ex-

pect, with the greatest CP enhancement for VAS angles near 0 °.

Figure 5.4 also shows CP efficiency for sodium pyruvate at the angle at which de-

tection occurred under ZPVAS. Since CP always occurs at 0°, the observed efficiency is

constant for all angles. However, the efficiency under ZPVAS is less than that observed

under 0° CPVAS because of Ti relaxation processes that occur during the hop from 0 ° to

the detection angle.
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In figure 5.5 we show the IH decoupled MAS spectra of sodium pyruvate ac-

quired with and without CP and with ZPMAS along with the simulation of the MAS

powder pattern. The signal-to-noise is the worst for CPMAS--about 75% of that seen in

the MAS spectrum without CP.

_4 '_

(a) _ (e)_

(b) (f)

(c) (g)

I i I I I I I I
20 l0 0 -10 -20 5 0 -5

Frequency (kHz) Frequency (kHz)

Figure 5.5 Comparison of CPMAS, MAS and ZPMAS Experiments. (a) and (e) show

ZPMAS spectra, (b) and (f) show l-pulse MAS spectra, (c) and (g) show CPMAS spectra
and (d) shows the high speed MAS simulation.

On the other hand, the ZPMAS spectrum has a signal-to-noise ratio about twice that seen

in the MAS spectrum taken without CP. This is expected since very little of the static

cross polarized magnetization should decay by T I processes during the hop from 0* to

54.74* while the cross polarization efficiency under MAS is so poor.

In figure 5.6, the decoupled DAS and CPDAS spectra of sodium pyruvate for the

0*-63.43* (k = 5) and 37.38"-79.19" (k = 1) angle pairs are compared. As can be seen in

figure 5.4, for k = 5, we observe over 2.5 times the signal-to-noise in the spectrum taken
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with CP compared to the spectrum taken without CP. In addition, the CPDAS experi-

ment at k = 5 has a S/N ratio over 4.5 times that of the CPDAS experiment at k = 1. This

demonstrates the importance of 0* cross polarization for DAS. The CPDAS experiment

done at 37.38* (k = 1) has a worse S/N than the same experiment done

x5

x5 x5

' I ' I ' I ' ' I ' I ' I '
10 0 -10 10 0 -10

Frequency(kHz) Frequency (kHz)

Figure 5.6 Comparison of CPDAS (fig 5.3e) versus DAS (fig 5.3d). The spectra on the

right are k=5 DAS spectra while the spectra on the left are k=l. The upper spectra in
both cases are from CPDAS.

without cross polarization. In fact, the CP efficiency under CPDAS at k= 1 is very similar

to that observed under VAS at 37.38 ° (figure 5.2), which is to be expected. Other k val-

ues will also have reduced CP efficiencies, in addition to having spinning sideband pat-

terns which are more complicated than in the k = 1 or 5 cases (see chapter 3). In table

5.1, the absolute signal-to-noise ratios for each the experiments in figure 5.6 are pre-

sented.

We have shown that the efficiency of CP is influenced very little by the choice of

spinning angle until the angle approaches 0°. Therefore, in any VAS or DAS experiment
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it will be difficult to achieve maximum CP efficiency unless one does the magnetization

transfer at 0* as a part of, or before starting the experiment.
i i illll

Experiment Angle Pair Signal to Noise Ratio

CPDAS (fig 5.3e) k=5 (0.00", 63.43*) 123.6

CPDAS (fig 5.3e) k=l (37.38", 79.19") 27.3

Normal DAS (fig 5.3d) k=5 49.1

Normal DAS (fig 5.3d) k=l 32.3

Table5.1 Signalto NoiseRatiosin CPDASandNormalDAS

In addition, for the case of DAS the choice of 0* and 63.43* possesses the additional ben-

efit of giving the largest effective spinning speed, 5¢Or/6, and narrowest residual

homonuclear dipolar linewidth (see chapter 3). These results should prove quite valuable

for systems with low abundance such as 87Rb (27.8% abundant) or where isotopic label-

ing is crucial 170 (0.037% abundant) which could have polarization enhancements of 3.1

and 7.4 respectively leading to large savings in experiment time. In addition, for spin 1/2

systems (such as IH-I 3C or IH-I 5N), where the time modulation of the dipolar interaction

leads to modulations of the Hartmann-Hahn match condition, the use of ZPMAS may

yield better CP efficiencies and reduced CPMAS distortions.
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Chapter 6

Alternatives to DAS

Throughout the preceding chapters both the theory and recent experimental ad-

vances of dynamic-angle spinning NMR have been discussed. This experiment was de-

veloped to produce high-resolution liquid-like spectra from solid samples containing

quadrupolar nuclei such as 170, 23Na and 27A1. Other techniques for averaging both the

quadrupolar and chemical shift interactions have also been developed, including double

rotation 55,1°8, magic-angle hopping 1°9,11°, magic-angle turning111 and dynamic-angle

hopping. 56

Double Rotation (DOR)

Double rotation is the simultaneous solution to the quadrupolar spinning problem

in which at least two angles are required to give narrow isotropic spectra. 55

i o,
O_rl t

Figure 6.1 DOR Rotor & Rotations. A representation of a DOR rotor is shown with the

rotation angles given. These correspond to those shown in equation 6.1. The phase of
the outer rotor is defined to be zero at zero time when the inner rotor makes the smallest

angle with respect to the vertical axis (the magnetic field).

In this experiment, a small rotor is spun about an axis which slowly moves in a conical

fashion about the magic-angle with respect to the magnetic field. Figure 6.1 shows the
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rotations needed to go from the PAS frame to the inner rotor frame then to the outer rotor

frame and finally to the laboratory frame. The expression for the frequency under this

time dependent trajectory is given below in equation 6.1.

601 _ m
l=0,2,4 m>O

l 1

aQ _ D_I)O(Ogrll + (_rl 01'0) Z "(l)(ogr2t +--" ' /'))n _r2' 02 '0 ) (6.1)
n=-I j=-I

1

k=-l

In this expression, 01 is the angle the outer rotation axis makes with respect to the mag-

netic field and 02 is the angle the inner rotation axis makes with respect to the outer rota-

tion axis. The outer rotation rate and absolute rotor phase are given by ogrl and ¢1 while

the inner rotation rate and absolute rotor phase are given by o9,.2and _. The outer rotor

phase is defined as zero when the inner rotation axis makes the smallest angle with re-

spect to the magnetic field. The Euler angles refer to the rotation from the PAS to the in-

ner rotor reference frames. Under the assumption of high speed spinning about both axes,

this expression is greatly simplified.

to! _ m
1=0,2.4 m>0

(6.2)

I e_ikae (l)atOo= d(_ ( Ol)d(_ (02 ) Z Dko(flO )cr_
k=-l
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Much like the ease of high speed magic angle spinning, the appearance of terms propor-

tional to Legendre polynomials leads to the choice of DOR spinning angles. In the above

expression, if 02 is chosen equal to the root of the fourth-order Legendre polynomial

P4[cos 02] and 01 is chosen equal to the root of the second-order Legendre polynomial

1

11.7 T _ _" _"

"i ' ' I ' ' ' ' I .... I ' ' ' ' I _ ' ' ' I ' ' '" ''i'"l "' ' ' ' I' " "'' '

-50 -45 -40 -35 -30 -25 -20

-50 -45 -40 -35 -30 -25 -20

Frequency (ppm from I M STRbNO3)

Figure 6.2 DOR of 87RbNO3 at 9.4T. The two spectra above were taken with short 30*

pulses and a rapid repetition rate. This allowed acquisition of a large number of scans
with random rotor phases, to achieve complete averaging of this variable leading to all

positive sideband amplitudes (see below). The Larmor frequency at 11.7T was 163.628
MHz and 130.886 MHz at 9.4T. The spinning rates were 500 Hz (lower spectrum of

each pair) and 700 Hz (uper spectrum) in these experiments.

P2[c°s 0! ], only the l = 0 terms will be non-zero. Alternatively, the angles may be re-

versed with the same effect. There is only one angle which is the root of P2[cos 01]

which is the magic angle, 54.74*, while two angles are the roots of P4[cos02 ], 30.56*
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and 70.12". Due to the requirements of constructing a DOR probehead, the usual choice

is 54.74* for the outer rotor and 30.56* for the inner rotor. With these angles chosen, the

DOR experiment is a simple single pulse and acquire experiment. Figure 6.2 shows the

DOR spectra for 87RbNO3, a salt with three crystallographically distinct sites. The spin-

ning sidebands (marked with asterisks) arises from the time dependent terms which were

ignored in equation 6.2. The isotropic peaks (marked with vertical arrows) are those

which do not change position when the spinning rate is changed. These correspond to

peaks at -29, -32 and -34 ppm at 11.7T (163.628 MHz Larmor frequency) and -32,-36

and-37 at 9.4T (130.886 MHz Larmor frequency). The time dependent terms which lead

to spinning sidebands may be analyzed in a manner virtually identical to that presented in

chapter 3. First, we expand the energy splitting in equation 6.1 as the sum of oscillating

time dependent terms.

AE(2Q) h2ca_= co'---_(I(I + I)-3) E E (l.Ol2.2.m.-m)malOo
1=0,2,4 m>0

I I l

a_= _.# _._ _-_d!l){O2)d_l)o(Ol_'_(t)(flQ)cr_.ln,,"kj (6.3)
n=-I j=-I k=-t

×e-i[,,(a)rtt+_,t)+J(_,2,+_,2+)'e')+kae]

This expression may then be regrouped according to the dependence on rotation rates.
l

E= njr.
1=0,2,4 n,j=-I

, ) _3 l= _o---'-'z-(l(l+ 1)- 4,1"in (02)d_t)o(Oi)E't(/)(,BQ)o'_'kj (6.4)
k=-!

×e-ik°tQ E (l,OI2,2,m,-m)m
m>0

This may then be simplified by grouping the 1= 0, 2, and 4 terms together for each n,j

pair. This simplifies equation 6.4 even further.
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_E'_Q_--_,w,;'[_c°'''.*''l.jl°'_'.*'_.:)]
,,../=--4 (6.5)

w,- _,wCOnj
l=0,2,4

This may then be integrated to give the evolved phase and signal after a 90" pulse.

4 W, -i[n(fOrlt+C_d)+J(cor2t+C_r2+YQ)]

¢ooR(t)=Woot+ Y. -":
n,j=--4 -i(n(Orl + jO)r2 )
j=n_O

4 -i[nOrl+J(c_'2+TO)] (6.6a)
-W.:

+ X _i(n_rl+jO3r2 )n,j=.-,4
j=n_O

S( t ) = e-i¢'_°% ) = e -iw°°t

4 Wnje-i[n(c°dt+¢'')+j(°''2t+¢r2+_'Q)]
l n,j=-.4
Ljfn=O (6.6b)

xe×p
/.,J--4 ("COrl+jCOr__)
kj=n=O

The use of Dirac delta functions again may be used to simplify this equation.

S(t) = e-iwOOt

_( I11""(Orll- _rl)_( IV'--OOr2t- _r2 - _/Q)

,,, -i[ng+jg']
X -'L- _ _ 4 wnje dll/dO/"

4nx O 0 xexp (n(Orl + jO)r2)In,j=-4
Lj=n*O

1_(IV -- _rl ){_( lift-- ¢r2 -- _YQ) " (6.7)

×_ I , .., -,t._,+J_,'l
o ×exp _ dvdv'

In,j=-4 (nO)rl + jfOr2 )
[.j=n:_O
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Then substituting back the infinite sum expansion for the Dirac delta functions gives

equation 6.8.

S( t ) = e-iw°°'

" • -i[nvl+jql']
4 ,,?n/e

2ff 2It iNl ( lff - O)rlt - {)rl ) + X (.CO d +j(Or2 )

NI,N2 0 0

+iN2 ( _" - OJr2t - dPr2 - _"Q )

4 _Wnje-i[nqt+Jg '] (6.8)
2tr 2_ iN3(llf-t_rl)+ X

X _ X .[ _ exp n.j=-4j=n.O(n0)rl + jcOr2 ) dill dill'
t%.N40 0

The V and V independent terms may be removed from the integrals and the signal may

be expressed below.

• -i[NlWri+N2Wr2]t
S(t) = e -iwOOt X ANI,N2 ANs,N4e

NI ,N2 ,N3 ,N4

X e-i[(N,-N 3)¢., +(N2-N4 )(¢.2 + yQ )]
(6.9)

2_ 2= I ,t W,je-it,_+m'] t

ANt.N2 =4_n _ f exp iNlv+iN2y/+ X vdv'
0 0 n.j=--4(n0)rl + jOJr2)

j=n_O

This expression may then be integrated over the inner rotor phase (N2 = N4) due to the

fact that usually we observe signal from powder samples (all 70 will be present).

• -i[N_'t+N2_'2]te-i[(N_-Ns)_'s] (6.10)(S(t)),,2+ro = e -iw°°t _., AN,.1%AN3,N,e
NI ,N2 ,N 3

The signal may then be averaged over all the powder angles and outer rotor orientations.

-.. (2Q) _i[NlOJr I+N2tOr 2 ]t
(S(t))powd,r = e-"%" ' Z SEt.N2e

Nt .N2

2n n (6.11)

0 0
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I0 0 -I0
Frequency(kHz)

Figure6.3DOR of23Na2C204at9.4T.Thespectraaboveweretakenwiththeusual
shortpulsesanda rapidrepetitionrate.Shownarethesidebandintensitiesandpositions
foravarietyofspinningrates(outerrotorspinningrateindicatedbesideeachspectrum).
Itisimportanttonotethattheintensitiesdo notnecessarilyapproximatethepowder

patternintheslowspinninglimit.

Thisshowsthatspinningsidebandswillshowupatsumsanddifferencesofintegers

timestherotorfrequencies.In general,thestrongestsidebandswillbe thosewithsmall

NI and N2 values.For a more detailedanalysisofDOR spinningsidebandintensities,see

papersby Sun et al.16'49In figure6.3 are shown the experimentalDOR spectraof

sodium oxalateata varietyof spinningrates.The most importantfeaturehereisthat

even intheslow spinninglimit,thesidebandintensitiesdo notapproximatetheshape of

thestaticpattern,as occursin spinI/2systemsunder MAS. The spectrainfigure6.3

were takenby B.Q. Sun and Y. Wu and detailsconcerningtheiracquisitionmay be found

intheirpapers.16,49,112
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In addition, certain symmetry considerations can lead to the cancellation of all of

the odd-order outer frequency sidebands leading to greater sensitivity and resolu-

tion.49,100,108,112-114TO show this effect, we return to equation 6.6 and assume that the

inner rotor is spinning much faster than the outer rotor and average over this motion.

Wno ( e-in( t°rd+CJ, l ) _ e-in_r, )=Woot+
n¢O --inOgri

[ Wno(e_in(_orit+¢rl)_e_in¢rl) ] (6.12)

S(t) = e-iw°°t exp E

n:;e0 t/0')rl

This, of course, now looks similar to the expression for the VAS signal in equation 3.11

or 3.21. There is one major difference, in that now the following substitution may be

made for W_no = -Who. In fact, were this true for the VAS case, it would be possible to

eliminate all odd order sidebands from any one dimensional experiment. This is not the

case, however, and the rotor-synchronized acquisition described below will only give its

effective speed enhancement under DOR conditions.

S(t) = e -iW°°t exp (6.13)
[_n>O rt ('Orl

Signal may now be collected through outer-rotor synchronization such that the outer rotor

phase is only O*or 180°. When this is done, the signal may be written below.

1'1(S(t)) 0"+180"= e-iw°°t exp
[.n=2,4 nO)rl

= e-iW°°t exp[ E[.n=1,2 W2no(cosnO)r3t -1) ]n('Or3 (6.14,

O)r3 = 2 (.Ori

Notice that a redefinition of the spinning rate has been made which changes the indices of

the sum. This may be expanded with delta functions as before.
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(S(t)) 0"+180"= e-iW°°t exp Ln=I,2IZ -w2n°]nC°r3
(6.15)

2_ __[ v w_.0cos._,1×_ J'8C_- _r3')°_._Z_...... ,_
0 Ln=l,2 nf'Or3

Using the series expansion for a delta function we arrive at equation 6.16.

(s(t))°'+'a°'=e-iW°°texp[ZI n-l,2 -w2n°]n_r3
(6.16)

N 0 . n=l,2 n ('Or3

Now we pull out constant terms from the integrals, just as in equation 3.14.

(S(t))°'+18°" =e-iW°°texP[I n=2,4Z -WnOnoJr1 ]_NAN e-2iN_'lt
(6.17)

2n [.o W"° c°s(nv//2 ) ]
AN = "_n [ exp iNIg + _, alp,

n=2,4 nO)rl

This signal may then be averaged over the remaining powder angles, giving the result in

equation 6.18.

._(2Q),

(S( `_hO'+180"= 4-'_e-'wt'° "Ze-2iNt°"tJ I powder
N

(6.18)

X _ _exp AN sinflQdflQda Q
O 0 tn=2,4 nf'Orl

This expression shows immediately that the sidebands will be spaced at twice the outer

rotor spinning speed from the isotropic peak. This is quite useful, since it is difficult to

spin a DOR outer rotor much faster than 1 kHz and there will always be a large number

of spinning sidebands present to complicate spectra. Figure 6.4 gives an example of the

advantages of synchronized DOR when applied to the 23Na spectrcm of Na2C204.
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6 4 2 0 -2 -4 -6 6 4 2 0 -2 -4 -6

Frequency (kHz) Frequency (kHz)

Figure 6.4 DOR of 23Na2C204 at 9.4T. The spectra above were taken with short 30*
pulses and a rapid repetition rate. Absolute rotor phase was monitored using optical
methods and pulses were applied only at the 0*and 180"positions. The outer rotor spin-
ning rate was 604 Hz for the spectra on the left and 800 Hz for those on the right. For the
simulations, the parameters were CQ= 2.43 MHz, r/Q= 0.72 and tol = 105.8 MHz.

Magic-Angle Hopping (MAH)

A different kind of experiment which generates isotropic spectra for spin 1/2 sys-

tems has been described by Bax et al. !°9 In this experiment, a static sample is allowed to

evolve at three different orientations which define the vertices of an octahedron. This is

accomplished by using z-filters to store the evolved magnetization while the sample is

rotated by 90 degrees about two orthogonal axes. The pulse sequence for this experiment

is shown in figure 6.5.
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r42 _/2 vo'2 r,./2 _2

ltl/31 hop ltl/31 hop I t21̂AA^
..... vV v-

Figure 6.5 Magic-Angle Hopping Experiment. Pulses and hops are indicated
schematically. The phase cycle is given in table 6.1. Each tl/3 period is spent with the
magnetic field pointing through each of three vertices of an octahedron attached to the
PAS of a given crystallite.

Alternatively, MAH may be accomplished by rotating the sample about the magic angle

in three discrete 120* jumps using the same pulse sequence. In any case, no spinning ap-

paratus is required, however, the ability to perform rapid jumps may actually be of greater

experimental complexity. Of these two implementations, the second is preferable, as it

only requires rotation about a single axis.

Ol 02,04,05 t_3 1_- Oi _2,_4,_5 03

0 0 0 0 180 0 180 0

0 0 90 90 180 0 270 90

0 0 180 180 180 0 0 180

0 0 270 270 180 0 90 270

90 0 270 0 270 0 90 0

90 0 0 90 270 0 180 90

90 0 90 180 270 0 270 180

90 0 180 270 270 0 0 270

i Table 6.1 Magic-Angle Hopping Experimental Phase Cycle. Phase cycle for MAH where
the phase _n refers to the nth pulse in the pulse sequence. This same phase cycle may
also be used for the MAT experiment (see figure 6.6).

The phase cycle needed to implement this experiment is given in table 6.1. Both the first

and third pulses are cycled through four phases each to select Ap = -1. The A_o= + 1 will
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be selected automatically without phase cycling the second or fourth pulses, since any

non-zero coherences will decay during the hops. Finally, the last dp= -1 will be selected

by the quadrature phase of the receiver and merits no additional phase cycling, unless re-

ceiver quadrature is imperfect.

To show mathematically how the MAH evolution can generate an isotropic spec-

trum in the tl dimension of a two dimensional experiment we have to look at the fre-

quency expression for the chemical shift interaction.

__'_,gCS, aCS
_t_CSA = _iso,cs(.Ol + ._"_t., Wl_2, 0

2 (6.19)
A2,CSo= ___r_(2)(,.,CS f_CS CSX CS•",,..or"" '_ .7 )P2.,.

m=-2

The three Euler angles relate the laboratory frame to the principal axis frame of reference.

In an experiment where the sample is rotated otr°t about an axis oriented flrot with respect

to the magnetic field, this expression is modified as below.
2

f_,CS D(2) otr°t , ] 2,m(I)CSA --'- _,so,c,O) 1 + _0 COl Z re,O( ,flrot o_ACS

m=-2 (6.20)
2

cs (2,) aCS.flcs 7csA_,m= Z D_,m ( , )p2CSm
m'=-2

To examine the experiment where the sample is hopped in three 120 degree jumps about

a given angle _rot with respect to the magnetic field, we only have to sum up the evolu-

tion at each of the three rotor orientations. The three different orientations, expressed in

the Euler angles are given below.

The net evolved phase over a period tl may then be written below
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CMAHitI ) _ 5i_o,_JOttI

D(2)m,0_(o_r°t'_ r°t'O ) "{"

2 CS _ _ (6.22)
+_f_¢_ COl D(mR)o(o_r°t-b'_-,_r°t,o)'}"A2CSm

:.,o, )"m,O_"_ + m

The firsttermistheisotropicportionoftheinteractionwhichwe wishtoretain.The sec-

ond istheanisotropicportionwhichwillbe shown toaveragetozerounderthemagic-

anglehoppingexperiment.The firstsimplificationcomesby setting_rotto themagic-

angle(54.74*).Thisisthezeroofthesecond-orderLegendrepolynomialandforcesall

ofthem = 0 termstobe zero.Secondly,by separatingtheWignerrotationmatricesinto

productsofexponentialsandreducedWignermatricesviaequation6.23,thesum in6.22

may befurthersimplified.

D(_)(O:°t,flr°',O)= e-im_"d(_)(flr°') (6.23)

In this expression, the m = 0 terms have been dropped as they are zero.

L,.,o (6.24)

Cm - l+e 3 +e 3

The sum of exponentials (Cm) inside the sum over m is seen to be zero by using the fol-

lowing expressions.
n n

Z ^A_ 2i_ 2ig_u_ _ = _ sin --n- = 0 for n > 1 (6.25)
i=1 i=1

This effectively removes all of the anisotropic contribution to the evolution and the net

evolution and signal are given below.

_MAH (tl) = ¢_iso.cs(.Oltl
(6.26)

S(tl) = e-iOMAn (t, ) = e-i6iso.cs°Jt t,
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An alternative approach to understanding this type of averaging scheme is to invoke

group theoretical arguments as shown by Sun eta/. 16'!13 This produces an identical result

and will not be discussed here.

An excellent alternative to MAH is an experiment called magic-angle turning

(MAT) first described by Gan. Ill In this experiment, the sample is rotated continuously

about the magic-angle, just as in MAS. However, now the sample is rotated at a very

slow spinning speed (less than 100 Hz). In this fashion, the evolution at each of the ver-

tices of an octahedron may be approximated by interrupting the spinning with z-filters.

This pulse sequence is seen in figure 6.6 below.

":
rd2 rd2 rd2 rd2 rd2

ltl/31 hop 1tl/31 hop It21

I--'--tr/3---_-I-' tr/3 "-I -'v_v-

Figure 6.6 Magic-Angle Turning Experiment. Pulses and hops are indicated

schematically. The pbase cycle is the same as the MAH experiment (see table 6.1). Each

hop is performed by allowing the rotor to shift by 120" degrees. As in the previous exper-

iment, each tl/3 period is spent with the magnetization at a different vertex of the octa-

he&on, giving a shifting isotropic echo.

The theory for this experiment is identical in the limit of very slow spinning (t I_ _'r)" In

the intermediate case, where tl represents is a significant portion of _'r(the period of the

sample rotation), the theory must be written slightly differently. Now instead of the sum

of three evolution periods, the frequency expression will be the sum of three integrals of

the time-dependent frequencies. The expression for the NMR frequency of a sample ro-

tating about an axis oriented at _rot with respect to the magnetic field as a function of

both crystallite orientation (orcs, tics, ycs) and time is given below.
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O,cs_O)=8.o.o.o,_+_8¢so_tRgsct) I

2 _/m(tart+¢ ,)_!(2) (flrot)A2CSm (6.27)Rcs(t)= 2..,e _m0
m=-2

In this expression the ACms term is identical to the A2CSmin equations 2.35 and 6.20. Now

the net evolution following the MAT pulse sequence will be the sum of three integrals

given below.

¢MAr [tl ] = _hiso,cs_ttI +
r" tl l"r+tl

/Io:s(t)e,+ Ros(')
f__scs , / 3 (6.28)N_" LUll 2*r+.

@(,)e,
t. T

Again, the first term is the isotropic chemical shift and the second corresponds to the

anisotropic parts. The integrals themselves are over sums which can be separated into a

larger sum of integrals. The time-independent part is proportional to the second-order

Legendre polynomial of cos flrot. This is analytically zero, since we have chosen flrot to

be the magic-angle, 54.74", which means the sum in equation 6.29 will contain no m = 0

terms. Each of the integrals may performed analytically and regrouped below.

_MAT[t I ]---- _iso,cs(Dlti

exp(-im3t°rt')exp(O)-exp(O)
2 (6.29)

+_f_2= CSto., X i_, moe-°"¢rd(2) (flrot)A2mCS + exp( --im_,tl ) exp[.._...._y_]_._[-imtOrZr _ -exP[ -3"_(-imtOrZr ]
m=-2

+exp(-im_rt')exp(-im3r2Z')--exp(-im3r2Zr

These may be further simplified since fOr't"r = 27r.

¢MAr[t 1]= _iso,cstOltl

+.[____ CSo) 2 (flrot [exp(_/m(.Ort ' )Cm (6.30)3_'3 & ' E e-imOr d(m22imf.or ) A2csm --Cm]
m'--2

The Cm in this expression is identical to that in 6.24. Using the fact that Cm is zero,

yields the same frequency expression as in equation 6.26.
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 MA[tl]=8,o..C0:i

S( tt ) = e -i_mArIt'] = e -iS"°'"c°'`_ (6.31)

Therefore an anisotropic echo in t2 will appear at a time tl13 following the last pulse in

the MAT sequence which has evolved in t l with an isotropic frequency. In both the

MAH and MAT experiments, however, signal is lost due to the z-filters. In fact, if the z-

filters could be eliminated, a factor of 2 signal-to-noise could be recovered.

A possible alternative to the MAH and MAT sequences is the MAT 56 with n_

pulses (MAT-180) sequence which is shown in figure 6.7.

n12 n rt n n n n

ltl/61 _tl/61 ltl/61 I trd t2_%^_till - I

_-tr/3 -4"-tr/3 -4" tr/3 "l tr VlV

Figure 6.7 Magic-Angle Turning Experiment with n" Pulses. Pulses are indicated

schematically. The phase cycle is given in the text below. In this experiment, no storage
pulses are used while rotor shifts by 120". Each of the tl/6 periods is spent at a different

vertex of the octahedron, giving a shifting isotropic echo.

In this experiment, the density matrix is never stored with z-filters. However, now the

sequence has been made into a constant time experiment (as t I is varied, the MAT

isotropic echo will always appear at a point tr after the last n: pulse) which introduces cer-

tain other problems which I will discuss later. The phase cycle needed to implement this

experiment is quite simple, assuming the 7r pulses are accurate. Only the first pulse is

cycled through four phases and the receiver phase is set equal to this phase Oust as in a

standard one pulse experiment with cyclops phase cycling.) To show mathematically

why this experiment works, we use the same approach as earlier. The phase is expressed

below in equation 6.32.
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I t

2tr

I:OOcsA(t)at- COCSA(Oat (6.32)

_+'±2'-z'_ (t )dt - f 2tr
__ ¢OCSA _.,TOJcsA(') dt+ ¢OcsA(t)dt

+

The integral from Zrto 2zr in this sum maybe dividedinto six integralswith the same

limits as the corresponding terms in 6.32 and since ¢Ocsa (t) = COcsa (t + tr), the negative

terms will cancel terms from the expansion of the last integral. The expression for the

CSA frequency may be substituted in 6.32 and the time-independent terms removed from

the integrals as in 6.27 and 6.28.

r ti 2 rr +q

121oRC2oS(t)dt+ 2_-_ RC2oS(t)dt
f-£_cs..,I T

¢_MAT-180[tr]= ¢Siso,csO_ltl+ _13" "t/ 4,,+,, (6.33)

k -"Y" •

Thisintegrationmay beperformedasearlier,yieldingthesamephaseasintheMAH and

MAT experiments.

dpMAT-180 [ tr ] = ¢_iso,csfOltl
(6.34)

S(4)= e-i¢_Ar-'s°[t'l = e-i'_'°'"a""

This shows that all three experiments give the identical result. The difference between

the MAT-180 and the MAT experiment lies in the sensitivity and resolution. In the MAT

experiment, the. resolution is improved by taking more tl points with a corresponding

longer total 2 tr time. The sensitivity, however, is a full factor 2 worse than the MAT-180

sequence (meaning a factor of 4 more scans are needed). In the case of MAT- 180, to en-

hance the resolution, the rotor must be slowed down (since the longest available tl point

is for tl = 2 tr). Since this is a constant-time experiment, there will be more transverse

(T2) relaxation for the same tl point at slower speeds than at faster speeds since each tl

point has identical 2tr transverse relaxation scaling the overall intensity. At some point,
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in attempting to gain further resolution in a MAT-180 experiment, the relaxation intensity

loss will become larger than the factor of 2 loss due to z-filters in the MAT or MAH ex-

periments. At this point, it is more profitable to use the MAH or MAT experiment in fa-

vor of the MAT-180 sequence. Finally, since the MAT-180 sequence is constant time,

there should be no net homonuclear dipolar contribution to a spin-1/2 isotropic spectrum

(as is the case for the MAT sequence). In addition, both the MAT and MAT-180 may be

performed over mort than one or two rotor cycles.

MAT-180

MAT_ ______ ___--_--___ ........

-10 -5 0 5 10

Frequency (kHz)

Figure6.8MAS, MATandMAT-!80 Spectraof 207pbNO3.Allof thesespectrarepre-
sent 64 points in tl zerofilled to 512. The dwell timeswere50/Js and the 90" pulse
widthswere!2 ,us.

In the case of MAT, any number of rotor cycles may be used which is not a multiple of

three, while for MAT-180, any even number of rotor cycles which is not a multiple of

three may be used. (If the number of rotor cycles is a multiple of three, each of the three

evolution periods will have identical starting phase and no averaging will result.) Figure

6.8 shows the MAS, MAT and MAT- 180 spectra of 207pbNO3. Notice, in this case, the
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signal-to-noise ratio of the MAT-180 spectrum is slightly better than in the MAT spec-

trum, since the 2 tr time was chosen to be relatively short. This has the adverse effect of

adding truncation artifacts to the spectrum in the form of "sinc" wiggles.

Dynamic-Angle Hopping (DAH)

In the previous section on magic-angle hopping methods were discussed which

produce sideband-free isotropic spectra. In the case of spin-l/2 nuclei, a number of

techniques are already available which produce sideband free evolution. Iis-t22 The ap-

plication of these methods to central transitions of quadrupolar nuclei is somewhat lim-

ited, especially in the case where sidebands overlap centerband features. The ideas of

MAH, however, may be applied equally well to the quadrupolar problem (DAH). 56.113In

the quadrupolar case the integrals of equation 6.29 will involve a sum from m = ---4to +4.

The additional m = .'!:3and +4 terms will cause the simple MAH and MAT experiments to

fail, since the value of Cm _ 0 for m = -!-3and +4. To average these as well, five different

evolution windows are needed (in the case of hopping about the magic-angle). In this

case, the expression for Cm is given below (which is zero for all m < 5).

-2imx --4imx --6imx -gimx )
Cm= l+e _ +e -T-+e -T-+e --T- (6.35)

This is still not sufficient to produce isotropic spectra, since five hops about the magic-

angle will only give a sideband free MAS spectrum (not altogether useless). To isotropi-

cally average a quadrupolar central transition, it has been shown that multiple spinning

axes are required. 16.42,43.55,113The solution to the problem is to use two DAS angles and

use five evolution periods at each angle to cancel the time dependent terms. This is a to-

tal of 10 evolution periods, needing a minimum of 9 z-filters to store magnetization dur-

ing hops. This is almost certainly an unacceptable number and therefore a better solution

is to choose the DAS angle pair which simplifies the problem. The k = 5 angle pair of

63.43* and 0.00" is the best angle pair for this sort of experiment, since at 0.00" there are
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no time-dependent terms. Thus, to do the DAH experiment, we merely spin slowly about

the angle 63.430 with respect to the magnetic field, Under these conditions we use 90'

pulses to store the evolution between the five 720 jumps. Following these five evolution

periods, the magnetization is stored as the spinning axis is realigned to 0.00 ° and evolu-

tion is allowed to proceed again. This experiment still needs a total of 5 z-filters for

magnetization storage, but this represents a factor of 4 improvement in signal-to-noise

over the 9 z-filter experiment proposed earlier (unfortunately it is still a factor of 4 worse

than in a conventional DAS experiment).

The phase cycle needed to implement this DAH experiment is quite long, since a

large number of pulses are involved in the sequence. The schematic pulse sequence and

the equation which describes the relationship between the eleven 90° pulses and the re-

ceiver phases are given below. The time t72" indicates the time needed to allow the rotor

to rotate 720 and the time thop indicates the time needed to reorient the spinning axis from

63.43 ° to 0.00 °.

tI tl
90._.K _ 90._t72._ 90o_T _ 90°._t72._ 90o__!6-

tl
90. t72._900 .K_90._t72._90°_t_ o t_6-90-tho r-90°-T-t 2 (6.36)

+ - ¢3+ - + - ¢7+ - + - =

Inthisexperiment,thecoherencealternatesbetween-I (duringthetl/6evolutionperi-

ods)and0 (duringthet72"z-filterstorageperiods).To achievethis,thefirstpulseshould

becycledthroughfourphasestochoosethe-l coherencetransferandthesecondwillbe

uncycled,assumingthatthe72°hoppingperiodwillbe sufficientlylongthatalltrans-

versemagnetizationwilldecayaway.This,intheory,shouldbecontinuedforeachofthe

next8 pulsepairs.The lastpulsemay beleftuncycled,sincethereceiverquadraturewill

selectthe-l pathway.Thisisa totalof45,orI024,stepsinthephasecycle.Inmany

situations,thisistoomany stepstodo a phasecycleoverfora spectrometer(i,e.the

Bruker TM AM-400) or more scans than is possible in a two-dimensional experiment due to
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long relaxation times (remember that the isotropic DAH signal must be collected point by

point in tl just as in DAS). One solution is to use only cycles of pulse phases of three

rather than four. This will still choose only a Ap = -1, however this may be difficult to

implement on some spectrometers. Also, it still requires a total 35, or 243, steps which is

over a factor of four fewer scans. In the case where fewer scans are desired, it is neces-

sary to choose fewer pulses to cycle. It is probably best to cycle pulses closer to the be-

ginning of the sequence, thereby guaranteeing the coherence pathway for most of the

early steps. This can lead to experimental artifacts. Ideally, we should cycle the other

pulses (except the last) through two steps to guarantee no transverse components during

z-filters. This will expand the phase cycle again by a factor of 25 (a total factor of 32).

A final note about the sequence is that the five angles at 63.43* and one at 0.00"

are equivalent to the static magnetic field being rotated to point through the vertices of an

icosohedron (which has the symmetry needed to average first and second order interac-

tions) in the PAS coordinate system.

A second implementation of the DAH experiment is to use 180" pulses (DAH-

180), just as in the MAT-180 sequence. Instead of storing the magnetization with z-fil-

ters, we can instead apply rotor synchronized 180" pulses in the following sequence,

where the time variables have the same meaning as before.

l I II l I
90*-tr 12 180"-t72. - 180"--i_- 180"-t72. - 180*-T_'- 180"-t72. - 180"

t I ll t I

12 180"-t72. - 180"-_- 180"-t72. - 90*-tho p - 90*---6--- t2

(6.37)

--_1 + 2_2 - 2_3 + 2_4 - 2_5 + 2_6 -

2 _7 + 2 08 -- 2 _9 + 2 _10 - ¢11 - ¢12 = - _R

The phase cycle needed to implement DAH-180 is much simpler than for DAH, assum-

ing the 180" pulses are accurate and lead to only a +2 coherence transfer. In this case,

only the first pulse needs to be cycled through four phases and the eleventh through two

Oust as in the original DAS experiment). In fact, the sequence is identical to the original
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DAS experiment with the addition of nine 180* pulses. These may be ignored in this case

for phase cycling purposes. Any of the pure-phase modifications discussed in chapter 4

may be used here to enhance the overall signal-to-noise in the two-dimensional spectrum

(if the we are interested in an isotropic/anisotropic correlation spectrum). Again, both the

DAH and DAH-180 cycles may be implemented over more than two rotor cycles, just as

in the case of MAT and MAT-180. Since the frequency expansion has sines and cosines

up to 4 COr,the number of evolution periods must always be larger than this (we choose

5), and the number of rotor periods the experiment is performed over must not be a mul-

tiple of the number of evolution periods (in this case 5). The mathematics needed to

prove these features for the DAH and DAH-180 are identical to the case of MAT and

MAT-180. These types of experiments have recently been discussed by Gannet al. 56and

Alderman et al.123 and I would direct the interested reader to these papers for additional

information.

iii _j • .... II .... i_ .... g .... II .... gl . - iiLjl| - • . . i_ " II - "

100 0 -100 -200 -300 -400 -500 -600

Frequency (ppm from ! M 87RbNO3)

Figure 6.9 DAS and DAH 1D spectra of 87Rb2CrO4. The upper DAH spectrum shows

no spinning sidebands and the isotropic peaks are easily identified, while in the lower
DAS spectrum the broad site with an isotropic shift at -201 ppm breaks into a large

number of sidebands. A second spinning speed would be needed to identify this as the

isotropic site using this method.
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Figure 6.9 shows the DAS and DAH spectra for rubidium chromate (87Rb2CrO4)

taken at 9.4 T which has two sites. Both sites appear in the DAS spectrum, however the

broad site with an isotropic shift at-201 ppm is greatly reduced in intensity due to the

large number of spinning sidebands. Even the more intense peak at -27 ppm has at least

six spinning sidebands in this spectrum. The appearance of the isotropic peak at -201

ppm in the DAH spectrum shows the power of the DAH experiment. This peak is much

more intense than the same peak in the DAS spectrum. This peak, unfortunately, is

broadened more than the peak at -27 ppm, thereby making the intensity seem much less

than the expected 1:1 ratio. This is probably due to angle errors during the 72" hops

while spinning at 63.43" which result from fluctuations in the spinning rate. Finally, be-

cause of the large number of z-filters, the DAH experiment required over 20 times the

number of scans and therefore 20 times the overall experiment time as the comparable

DAS experiment. This factor negates much of the benefit of DAH, since the same infor-

mation may be attained with just two DAS experiments in a tenth the time.

In figure 6.10 we see the DAS and DAH-180 spectra for rubidium sulfate

(87Rb2SO4) at 9.4 T which also has two sites. Both sites appear in both spectra.
i

However, in the DAH-180 spectrum, there are no spinning sidebands to complicate the

interpretation. Also, the intensities of the two peaks should reflect the populat! a at the

two sites (which is l:l in this case). For the DAS spectrum, intensity measurement ne-

cessitates integration of a large number of spinning sidebands (some of which overlap).

If we compare only the heights of the isotropic centerbands, we arrive at a ratio of 2.8 (-

25 ppm site) to 8.5 (29 ppm site). This 1:3 ratio is much less than expected from the

crystal structure. Taking the heights of each sideband as the integral and adding up the

intensity for each of the sidebands in the DAS spectrum, yields intensities of 9.2 (-25

ppm site) and 10.1 (29 ppm site). These are, as expected, quite close to the 1:1 ratio,

however, in samples with multiple sites, integration of sideband intensity may be impos-
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sible. For the DAH-180 spectrum, we may easily integrate each of the two peaks (2.62

and 2.34 intensities respectively) and get the correct 1:1 ratio.

(b)

(a) *
__ I ! , --1 1 ' ! . • " i ' • • '" i

100 50 0 -50 -100

Frequency (ppm from 1M 87RbNO3)

Figure 6.10 DAS and DAH-180 ID spectra of 87Rb2SO4;. Spectrum (a) shows the 9.4T

DAS spectrum of 87Rb2SO 4 taken at a spinning rate of 5 kHz and with the SEDAS pulse

sequence. Spinning sidebands are indicated with asterisks. Spectrum (b) shows the 9.4T

DAH-180 spectrum of the same compound taken with the 9 n pulse sequence applied

over 8 rotor cycles at 2.4 kHz.

As was mentioned earlier for the MAT-180 sequence, constant-time experiments

may sometimes present sensitivity problems when additional resolution is needed. The

DAH-180 sequence is partially a constant-time experiment since 5/6 of the tl evolution

occurs under constant time conditions. Therefore, as can be seen in figure 6.10, we often

get truncation artifacts in DAH-180 spectra. These sequences, however, show great

promise for studying systems where an inhomogeneous distribution of isotropic shifts ex-

ists, for example in an amorphous solid such as a glasse (see chapter 8). In these cases,

the distribution of isotopic shifts leads to a rapid dephasing in tl (in fact, much more

rapid than the intrinsic T2 linewidth would suggest). This means that many fewer point
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are required in tl before the signal disappears. Therefore a constant time experiment such

as DAH-180 is uniquely well suited for the study of these systems, just as pulse se-

quences such as HyperSEDAS are best suited for giving high-sensitivity pure-phase two-

dimensional spectra. Combining these two ideas should greatly improve the overall

quality of isotropic/anisotropic correlation spectra in amorphous solids.
!
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Chapter 7

Application of DAS to Inorganic Salts

Dynamic-angle spinning has proven quite valuable in the evaluation of the electric

field gradients present at the nuclei in a variety of inorganic salts. Specifically, the alkali

metals are particularly conducive for study with NMR. All of these nuclei are spin-3/2

and possess a manageable quadrupolar moment. In the case of 7Li and 133Cs, the

quadrupolar interactions are generally small enough that MAS is sufficient to achieve

high resolution spectra. The nuclei of 87Rb, 85Rb and 23Na, however, require the more

complete averaging of a technique like DAS or DOR.

Sodium

This nucleus was one of the first evaluated with DAS. The large gyromagnetic

ratio and high natural abundance make this a natural candidate for study with DAS.

However, these two factors conspire to make the homonuclear dipolar interaction quite

strong and therefore highest resolution is only achieved in samples where the sodium is

magnetically diluted, for example in crown ether complexes or with bulky anions in ionic

salts. Unfortunately, the total chemical shift range for this nucleus is quite small, as is the

range of electric field gradients, since this is a fairly small cation. Therefore, the overall

linewidth from the homonuclear dipolar coupling (see chapter 3) renders DAS insensitive

to small variations in the local EFG and chemical shift interaction. Examples of sodium

spectra are shown in both chapter 3 and chapter 5.

I

Rubidium Salts

The application of dynamic-angles spinning NMR has also been extended to other

inorganic salts. 54 Specifically, 87Rb has proven to be an extremely sensitive nucleus for

DAS experiments. 87Rb and alkali metals in general are important in a number of areas,
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they serve as promoters in catalysts, for example, the heterogeneous catalysis of ammonia

synthesis 124and oxidative coupling of methane to yield ethane and ethene.125 Rubidium

is an important component of some glasses, 126and recently, it has been shown that Buck-

minsterfullerene, C60, doped with Rb metal becomes superconducting at 28 K. 127

In order to assess the applicability of DAS to rubidium and its potential to yield

structural information about materials such as those listed above, 87Rb MAS, VAS and

DAS spectra of five inorganic salts were obtained. The salts chosen were RbCI, RbCIO4,

Rb2SO4, Rb2CrO4 and RbNO3 because they had been previously studied with static

NMR experiments 128,129and the crystal structures were well known. 130-135

In the study by Cheng et al.,128 the Ti relaxation times for each of these salts was

measured and all were between 100 and 300 ms. We performed the VAS, MAS, and

DAS experiments using a probe designed by Mueller et al. 51 We used the usual DAS

pulse sequences (see chapters 3 and 4) for both the 1D spectra 42 and for the pure-phase

MAS detected spectra. 5° Our central transition selective 90° pulses were between 4.0 and

6.0/zs. Our hopping times were usually between 30 and 50 ms and our data sets were

128 tl points by 512 complex t2 points. All MAS and variable-angle spinning (VAS)

spectra were acquired with a standard Hahn-echo pulse sequence (_2 - n tr- zc- trd" ac-

quire) where tr is the rotor period, n is an integer and n tr was between 500 and 1500/as.

The trd delay was used to allow collection of the whole echo.

For 87Rb, as with all quadrupolar nuclei, the measured isotropic shift in DAS has

a field dependence because it is the sum of two contributions.

¢_obs = _iso,cs + _.(2Q)_,so (7.1)

These two terms are the isotropic chemical shift and the isotropic second-order

quadrupolar shift, respectively. The isotropic chemical shift is field independent when

expressed in units of ppm while the second-order quadrupolar shift has a strong field de-

pendence given below.
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3x,00t_(2)

"iso = 40 _212 (21 _ 1)2 (7.2)

All constants have their usual meanings. Using equations 7.1 and 7.2, we may calculate

isotropic chemical shifts by measuring isotropic shifts at two field strengths. To do this,

we solve the system of linear equations from equation 7.3 evaluated at two BO fields.

Equation 7.3 (the reduced version of equation 7. l) may be expressed as follows tor 87Rb

in units of ppm.

x j
I

PQ-CQ 1+- T-

It is important to note that it is impossible to extract the CO.from r/Q using only multiple

field experimental 1D DAS results. However, multiple field results do help to minimize

experimental error in the final results.

Figure 7.1 shows the 87Rb VAS spectra and the angles of acquisition. Only the

RbCl is clearly resolved. This is because of the absence of quadrupolar coupling due to

the cubic crystal structure of RbCl. Figures 7.2 and 7.3 show the DAS spectra at 11.7T

and 9.4T respectively. There is an order of magnitude narrowing of the DAS spectra

compared to the VAS spectra. In the cases where multiple lines are present due to spin-

ning sidebands, the isotropic peaks were identified by spinning at multiple spinning rates.

The VAS spectra in figure 7.1 show the resolving power of simple one-dimen-

sional NMR techniques applied to Rb salts. In all cases except RbNO3 and Rb2CrO4, the

individual sites are clearly separated. However, only the RbCl spectrum yields a single

narrow line which may be used to measure the isotropic shift. The other spectra would

all require simulations to extract the actual isotropic shifts, and in the case of RbNO3, the

simulation would be quite difficult due to the extreme overlap of the three sites.
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Figure 7.1 87Rb Salts 11.7T VAS Spectra. (a) RbC! at 54.74*, (b) RbCIO4 at 54.74*, (c)

Rb2SO4 at 79.19", (d) Rb2CrO4 at 54.74*, (e) RbNO 3 at 54.74*.

The DAS spectra at 11.7T reveal the actual isotropic shifts for each site in each

compound (except the broadest site in Rb2CrO4) without the need for simulations. This

has the advantage of greatly improving the accuracy of the measurement of the isotropic

shifts. In the case of Rb2SO4, the DAS spectrum illustrates one of the classic problems

with VAS spectra.
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Figure 7.2 87Rb Salts 11.7T DAS Spectra. (a) RbCI, (b) RbC104, (c) Rb2SO4, (d)

Rb2CrO4, (e) RbNO 3 .

The actual isotropic shifts in this salt (as seen in the DAS spectrum, figure 7.2c) do not

correspond to the highest point in the VAS spectrum (figure 7. lc), rather, the isotropic

shifts in the VAS spectrum fall at the overall centers of gravity of each peak. Low inten-

sity contributions in the wings of the VAS peaks make calculation of the center of gravity

of these peaks difficult.
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Figure 7.3 87Rb Salts 9.4T DAS Spectra. (a) RbCIO4, (b) Rb2SO4, (c) Rb2CrO4, (d)

RbNO3.

Figure 7.3 shows the DAS spectra of the same salts at a lower field strength.

Notice that the spectra all have the same high resolution of the 11.7T spectra in figure

7.2. However, now some of the peaks fall at different isotropic positions because of dif-

ferences in the second order quadrupolar isotropic shifts (see equation 7.2 and 7.3). The

cubic RbC1 does not shift at all, since this salt has zero electric field gradients at the Rb

nucleus (as evidenced earlier by the narrow MAS spectrum in figure 7.1a). All other
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peaks shift slightly down field to more negative ppm values. Also, the number of spin-

ning sidebands for a given site differs between the two fields, due to the fact that the

overall size of the second-order broadening (which appears in the expressions for side-

band intensities in chapter 3) is increased at lower field. Also, since the chemical shift

scales with the field, the CSA contribution to the sidebands will actually be reduced at the

lower field (this is the reason much of the 13C and 31p MAS NMR work is done at lower

field strengths).
i i ii i .i,

_9.4r _1].Tr 8i!cs)Compound "obs (ppm) Uobs (ppm) (ppm) PQ (MHz)....... --150 , ,,

RbCI 127+I 127+1 127+2 0

RbCIO4 -28+1 -23+_1 -14+_2 3.1_+0.3

Rb2SO4 -25+1 -10-&_l 16+_2 5.3_+0.2

29!-_1 34+1 42+_2 3.0-2-0.3

Rb2CrO4 -27+1 -21+1 -11+_2 3.3:L-0.3

-201:t.2 a a a

RbNO3 -32+1 -29+1 -24+_2 2.4_+0.4

-36+ 1 -32+ 1 -25+_2 2.8_+0.4

-37+_1 -34+1 -29+_2 2.4_+0.4

Table 7.1 87Rb lsotropic Shifts and Coupling Products. The isotropic chemical shifts and

quadrupolar products were calculated using equation 7.3. aThis site was too broad for

detection at 11.7"I' with both the DAS and MAS experiments.

In the case of Rb2CrO4, the second broad site at-201 ppm appears in the 9.4 T spectrum

which was absent in the higher field spectrum. Also, the overall number of sidebands

around the -27 ppm peak is greatly reduced at 9.4 T, since the major contribution to the

anisotropic broadening of this site is the chemical shift interaction. This actually may be

seen in the MAS spectrum (figure 7.1d) where the individual sidebands have clearly re-

solved quadrupolar MAS patterns, Normally, when large numbers of sidebands result

from quadrupolar coupling alone, the MAS pattern will be greatly distorted and overlap-
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ping with the sidebands. In the case of Rb2CrO4, this is not observed, showing that the

CSA is quite large for this site. All of the measured isotropic shifts are compiled in table

7.1 below.
!

The two field DAS measurements were used to generate both the quadrupolar

coupling products and isotropic chemical shifts for these salts using equation 7.3. These

values are tabulated in table 7.1. The values of the quadrupolar products and isotropic

shifts in table 7.1 may now be compared to the values arrived at by Cheng et al. 128from

static simulations compiled in table 7.2. For the case of the RbCl, our results agree ex-

actly with those of Cheng et al. 128

Compound 8Ccs).... -/so !.ppm) r/q PQ (MHz)

RbCI 128.0 0 0

RbCIO4 3.8 0.16 3.2

Rb2SO4 3.0 0.13 3.2

46.6 0.89 2.9

Rb2CrO4 -47.4 0.48 5.4

52.8 0.75 12.5

RbNO3 * * *

Table 7.2 Previously Measured 87Rb Isotropic Chemical Shifts and Quadrupolar
Parameters. These parameterswere determinedby simulatingstatic central transition
multi-sitepatternswith both quadrupolarand chemical shift anisotropyparametersby
Chenget al. ForRbNO3,the threesites couldnot beresolved.

For other compounds, the agreement is much worse, indicating the difficulty of relying

only on static simulations (which have a large number of parameters to adjust) in measur-

ing quadrupolar and chemical shift parameters. The rough size of the coupling constants

measured by Cheng et al. 128for the RbCIO4 and Rb2CrO4 are in the correct range. How-

ever, in all cases except for RbCI, the isotropic chemical shifts are quite inaccurate. Also,

in the case of RbNO3, which has the strongest overlap, the static simulations fail com-

pletely.
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improvements from Multiple-Field DAS

To improve the overall accuracy and precision for the measurement of the

isotropic chemical shifts and quadrupolar coupling products, the DAS measurement

should be made at more than two fields. In this case, the system of equations which re-

late the measured isotropic shifts to the isotropic chemical shift and second-order

quadrupolarcoupling products are over-determined.

i

(

,

I I I I I

-10 -30 -50 -70 -90

Frequency (ppm from IM STRbNO3)

Figure 7.4 RbNO3 Spectra at Four Field Strengths. (a) 11.7T, (b) 9.4T, (c) 7.0T and (d)
4.2T.

This opens the possibility of a linear least-squares fit of the isotropic shifts when plotted

versus the reciprocal of the field strength squared. Figure 7.4 shows the RbNO3 spectra

measured at 11.7 T (a), 9.4 T (b), 7.0 T (c) and 4.2 T (d). Notice in figure 7.4 that the
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overall resolution in ppm seems to get worse as the field strength gets larger. In fact the

linewidth will remainapproximatelyconstant in units of Hertz(about 150 Hz in this case)

and will appear larger in units of ppm (normally used in all reported measurements) as

the field is reduced. This means that the errorbars on the lowerfield isotropic shift mea-

surements will become larger and larger. This fact must be accounted for in the linear

least squares analysis of the best fits (see figure 7.5). To do this, the contributionof each

point to the lease-squares chi-squared value must be weighted by the errorin the mea-

surement of that point. Figure 7.5 shows the plot of the measuredisotropic shifts versus

the reciprocal of the field strength squared. The best fits through each of the sets of

isotropic shifts are shown.
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Figure7.5RbNO3LinearRegressionofIsotropicShiftsversus1/B_)

This linear regression gives significant improvements in the overall errors. Figure 7.4

shows the DAS spectra at the four field strengths and Figure 7.5 shows the actual linear

regression best fit. Table 7.3 gives the compiled final results and errors. As observed,

the errors are about half as large as with only two fields (table 7.1). The isotropic shifts

are all given in units of ppm and the quadrupolar coupling product is in units of MHz. In

addition, when these results are compared to those from single site simulations (see next
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section), the values for the quadrupolar and chemical shift parameters are much closer to

the correct values.
- _ ill illl I I ............ _1 I ] i i

_4.2T ._7.0T ._9.4T ._1i.TT _}sCos )_ Oob, _ ,,,oh, "obs....... Oo ,.... • Po _

-48.4:t:3.0 -34.4+2.0 -32.05:1.0 -29.05:1.0 -26.8x'-0.8 1.72:k-0.06

-67.5-1-3.0 -39.8:t.2.0 -36.0-2:1.0 -32.0-2:1.0 -26.8:t.-0.8 2.365.-0.04

-55.3::1:3.0 -40.2::L2.0 -37.0-L-_1.0 -.34.02:1.0 -31.6:£'0.8 1.81:L-0.05
i _- i IIIII i iii I IIIII i iiiiiill II I

Table 7.3 87RbNO3 Multiple Field DAS Results. Isotropic chemical shifts and
quadrupolarproducts,.,werecalculatedfrom a linearregressionanalysisof the isotropic
shiftsversus1/B_ asin figure7.6.

Improvements from MAS-Detected DAS

MAS detected DAS 5° was performed at both 9.4T and 11.7T (figures 7.6 and 7.7

respectively.) These spectra show a high resolution DAS dimension as well as a pure-

phase MAS detected anisotropic dimension. Slices through each DAS peak yield accu-

rate MAS lineshapes for each site. Figure 7.8 shows the simulation of each of the three

sites and table 7.4 gives the most precise (because there is only one external standard) and

accurate (essentially more data points are effectively involved in the calculation than in

multiple field methods) 87RbNO3 quadrupolar coupling and chemical shift parameters

measured. In addition, by using both fields, even greater accuracy may be achieved by

simulating both field spectra at the same time. This approach has been used previously

i for multiple site 170 spectra 48 (see chapter 8). The pulse sequence used to collect thesespectra is the double-hop DAS sequence described by Mueller et al. 5° This sequence

achieves pure-absorption mode spectra by taking a hypercomplex data set in tl. The

overall signal-to-noise ratio is greatly reduced as compared to the hypercomplex SEDAS

experiment (by a factor of 8) due to the second z-filter storage period (used to store mag-

netization while we reorient the spinner between the second DAS angle to the magic-an-

gle 54.74*) and the lack of an echo in the second dimension. However, in the case of
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87RbNO3, the relaxation times and absolute signal intensity make collection of a MAS

detected DAS spectrum quite feasible.
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Figure 7.6 RbNO3 9.4T 2D MAS detected DAS Contour Plot. Single site MAS slices

through each isotropic peak in the DAS dimension have been extracted and are displayed

to the fight of the contour plot.
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Figure 7.7 RbNO3 11.7T 2D MAS detected DAS Contour Plot. Single site MAS slices

through each isotropic peak in the DAS dimension have been pulled out and are displayed

to the fight of the contour plot.

In the 9.4T MAS detected DAS spectrum, figure 7.6, the site with a nearly zero asymme-

try parameter at -32 ppm is clearly separated from the other two sites. The slice through
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this peak may be fit easily with a single high speed MAS pattern. The other two sites

overlap too much and the sum of the slices through these peaks must be simulated with

two patterns. In the case of 11.7T MAS detected DAS, figure 7.7, all three sites are

cleanly separated and may be simulated individually. Figure 7.8 shows each of the three

slices through the isotropic DAS peaks at 11.7T, along with the best fit simulations. The

parameters and error bars for these simulations are given in table 7.4 below.
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Figure7.8 RbNO3SingleSiteMASSlicesandSimulationsat 11.7T.Bestfit parameters
aregivenin table7.3.

The isotropic shifts from these simulations agree quite well with the results from the four

field linear regression fit of the isotropic shifts. The same type of simulation was per-

formed on the 87RBC104 MAS spectrum, yielding the results in table 7.4. The advantage

with the MAS detected DAS method is that in this case, only a single field strength is

needed with only a single experiment. The errors from this method are even less for the

quadrupolar coupling constants than in the multiple field experiments of the previous

section. The errors in the measurement of the isotropic chemical shifts, however, are

larger since these are primarily systematic errors due to the external 1M 87RbNO3 fre-

149



quency reference. The combination of both the multiple field measurements and the

MAS detected DAS experiments leads to the highest overall accuracy and precision in the

determination of these parameters.

Compound 8_cos) (ppm) C_ (MHz) rl

gbCIO4 -16.2+1.0 3.20-!-0.05 0.10-_.05

RbNO3 -26.2+1.0 1.83_+0.05 0.12_+0.05

-26.8+1.0 2.39!-0.07 1.00-!-0.05

-30.9+1.0 1.91_+0.05 0.48_+0.05

Table7.487RbIsotropicShiftsfromMASSimulations.The RbCIO4valuescomefrom
the simulationof theMASspectrum(figure7.2b)whilethe RbNO3valuescomefromthe
simultaneoussimulationof the 9.4Tand 11.7Tslicesfromfigures7.7and7.8.

Finally, the quadrupolar coupling constants for 87RbNO3 may be compared to

those measured by Sege1136. In those low field measurements, he measured coupling

constants of 1.76, 1.80 and 2.20 MHz and asymmetry parameters of 0.17, 0.48 and 0.91

for the three sites respectively. These are in very good agreement with the values mea-

sured with DAS experiments.

Theory of Coupling Constants from Crystal Structure

The RbNO3 coupling constants also provide a good example to demonstrate how

to use the measured quadrupolar information to assign resonances to actual sites in the

crystal structure. To do this, we assign a point charge to each of the atoms in the RbNO3

crystal structure. If for instance, we choose +1 for the rubidium atoms and -1/3 for each

of the oxygen atoms, we may then calculate EFG tensor at each rubidium site. To do

this, we use the unit cell centered at the origin and the 26 unit cells which directly sur-

round the origin. The electric field gradients are calculated using the formula given be-

low.
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V('o,yo, o) ........... -eq _ )2
(7.4)

o2V(o,yo,zo) eq

Where t_,fl are coordinates x,y,z and t5(ct-fl) is a Dirac delta function. With each electric

field gradient (EFG) tensor element known, we may then diagonalize the tensor to get the

principal axis values for Vxx, Vyy and Vzz. To convert these values into CQ and rl values,

we need to use the relationships that relate Votl3to quadrupolar coupling constants. In ad-

dition we need to know the Sternheimer anti-shielding factor. In the case of RbNO3 we

have calculated EFG values (see table 7.5) for a variety of point charge distributions.
l

Changing the values of the charges changes the absolute size of the EFG tensor values,

but does not appreciably change the asymmetry parameters. Therefore, we may assign

each DAS peak to a site in the RbNO3 crystal structure (unit cell not shown).

Rb Charge N Charge O Charge Site CQ (a.u.) rl

+0.70 -0.10 -0.20 1 3.5 0.31

2 3.4 0.59

3 3.5 0.97

+1.00 -0.10 -0.30 1 3.4 0.30

2 3.4 0.61

3 3.5 0.94

+0.60 +0.10 -0.23 1 3.4 0.29

2 3.4 0.72

3 3.5 0.81

+0.40 -0.10 -0.10 1 3.4 0.32

2 3.4 0.55

3 3.5 0.97

Table7.587RbNO3EFGValuesFromCrystalStructure.Thesecalculationswerecarried
out over a large numberof unit cells and the EFGvalueswere calculatedand averaged
for the thirtyinnermostRbsites(outof almost250 total).

Application of CPDAS to organic compounds
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The use of solid state NMR to study biologically active and interesting com-

pounds has been one of the longtime goals of many researchers. Techniques such as rota-

tional resonance (R2), spin echo double resonance (SEDOR), rotational echo double res-

onance (REDOR) and transferred echo double resonance (TEDOR) have been used suc-

cessfully to measure distances at specific sites in a number of biological samples by re-

search groups at MIT and Washington University. 137'138These techniques look primarily

at the IH, 19F, 13C and 15N nuclei in labeled compounds. The important oxygen nucleus

has been studied much less. The primary reasons for this lack of 170 information stems

from its low gyromagnetic ratio (1/7 of 1H), strong quadrupolar interactions and low nat-

ural abundance (0.037%). Isotopic substitution may be used to over come the last prob-

lem and large magnetic fields may be used to fight the first (and to some degree the sec-

ond). The strong second-order quadrupolar broadening in 170 compounds is the largest

obstacle remaining.

Recent developments in DAS have allowed us to begin to look more closely at

170. Specifically in the case of biological samples, decoupling of the 1H nuclei is essen-

tial for high resolution. In addition, the long 170 relaxation times and low sensitivity

may be overcome with cross polarization techniques (as described in chapter 5). We

have begun preliminary studies of L-alanine, one of the simplest amino acids which is

present in virtually all proteins and peptides. The 20% enriched sample was made by H.

Zimmerman by acid catalyzed exchange of oxygen in 170 labeled water. The relaxation

times in this compound are quite favorable for DAS, with a 700 ms IH relaxation time

(this determines the experimental repetition rate) and 2.5 s for the 170 (which determines

the minimum rotor reorientation time).

For the cross polarization experiments on 170 labeled L-alanine at 7.04 T the 3/4"

static coil DAS probe desigr.ed by Mueller et al. 51 was refitted with a double tuned 1H-

170 rf circuit capable of absorbing 500 W decoupling pulses on the 1H channel (301.2
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MHz). The circuit used is a standard one described previously by Doty eta/. 139,140 The

1H and 170 central transition selective pulses were both approximately 7 #s. The dwell

times were 12.5 gs in the t2 dimension and 18 gs in the tl dimension (after shearing).

The angle pair was the usual 0*-63.43* (k = 5) to obtain maximum CP efficiency.

!
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Figure 7.9 IH Decoupled Two-Dimensional 170 CPDAS Spectrum of Alanine at 7.0T.
The experimental parameters are given in the text. The two isotropic peaks are labeled
with arrows. All other peaks in the DAS dimension are spinning sidebands.

The spinning rate was 6 kHz and the hopping time was 35 ms. In these experiments, 256

points were taken in the anisotropic dimension and 117 in the isotropic DAS dimension.

The data in figure 7.9 was zero-filled to 256 x 256 for final processing. L-Alanine has
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two crystallographically distinct oxygen sites in the unit cell TM. The two isotropic peaks

for the distinct oxygen sites in L-alanine were observed at 51:t:4 and 80-2-_4ppm from the

170 labeled water standard. All other peaks in the spectrum in figure 7.9 are spinning

sidebands.

The spectra of alanine taken at 11.7T used a standard single tuned probe. 51 At

this high (500 MHz) proton frequency, no decoupling could be achieved and the oxygen

lines are significantly broader (almost a factor of 10) than in the decoupled spectrum at

7.04T.

D?SAA \m

! .... | .... |'''_ I .... | .... | .... | .... |'"

100 200 300 400

Frequency (ppm from H2170)

Figure 7.10 Undecoupled 170 MAS and DAS Spectra of Alanine at 11.7T. The ex-

perimental parameters for these experiments are given in the text. The isotropic peak in

the DAS spectrum occurs at 200 ppm; all other peaks are spinning sidebands.
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The _2 selective pulses were again 7.0 #s; most other parameters were similar to those

used at 7.04 T. Figure 7.10 shows both the MAS and two DAS spectra for the same ala-

nine sample as in figure 7.9. The MAS spectrum shows a broad powder pattern with a

number of singularities. The two peaks in the DAS spectrum are not clearly resolved and

are both assigned an isotropic shift of 200-2_7ppm. Using the two field results Oust as in

the case of the 87Rb salts of the previous section) we may calculate the isotropic chemical

shifts and quadrupolar coupling products for the two sites in alanine. These results are

com filed in table 7.6 below.
w i i ,, ii

._7.04T ,,gl1.7T PQ (MHz) tSi,o csSite _'obs '.'obs

1 51+4 ppm 200__7ppm 8.1_+0.3MHz 285+8 ppm

2 80-2_4 200-2_7 7.2+0.3 268+8

Table 7.6 170 L-Alanine DAS Results. Multiple field measurements from figures 7.9

and 7.10 are tabulated along with the calculated quadrupolar products and isotropic chem-

ical shifts. The error bars are indicated and arise from the overall width of the peaks in

the DAS spectra.

These values for the quadrupolar coupling products are in good agreement with the size

of the quadrupolar coupling constant measured for the carboxyl oxygen atoms in similar

compounds with NQR. Additional experiments are currently underway which will apply

the techniques of CPDAS and DAS to other organic compounds with the long term goal

of examining larger biologically active molecules.
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Chapter 8

Application of DAS to silicate materials

The use of dynamic-angle spinning to study silicate samples has so far proven to

be probably the most important application of this experiment. The 170 nucleus, along

with the 29Si nucleus, is in one of the pivotal locations in silicate materials. There are

two common types of oxygen environments in silicate samples, first those which are

covalently bonded between two other atoms (bridging oxygen atoms), usually silicon,

(but also others, for example aluminum, phosphorus or boron) and second those which

have a single covalent bond to a silicon atom and therefor a net negative charge balanced

by neighboring cations such as sodium, potassium or calcium. A third type has been

found in some high pressure systems, where oxygen forms three covalent bonds to

neighboring silicon atoms. This third type is very uncommon and will not be discussed

here. The use of NMR to look at 170 has becoming increasingly popular in the last ten

years, due to the construction of high field magnets (greater than 9 T) and high speed

spinning probes (greater than 10 kHz). The measurement of 170 quadrupolar coupling

parameters has been an important goal, since these parameters are strongly correlated to

the local microscopic structures142. Some of the most important early contributions were

made by Oldfield eta/. 72,73,78'97,104,143"151 Included in this list of references are pioneer-

ing MAS experiments on a series of modified silicate materials, including wollastonite,

diopside and forsterite. In recent years, DAS has been applied to the study of similar ma-

terials and the reader is referred to work done by Pines et al.45"48Some of this work will

be discussed in this thesis, as well as the previously mentioned thesis by Mueller. 15

Crystalline Silicates

In this section, I will describe studies of a variety of 170 labeled pyroxene mineral

samples which have previously been examined by Timken et al. 15° with MAS and by
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Mueller et al.45 using DOR and DAS. Specifically, the isotropic shifts and quadrupolar

coupling products (defined below) of diopside, clinoenstatite, forsterite, wollastonite and

larnite were measured. 48 In the past, in order to measure these parameters using NMR,

the static, magic angle spinning (MAS) and variable angle spinning (VAS) spectra for

compounds containing half-odd integer nuclear spins had been deconvoluted into

individual lines using powder pattern simulation programs (see chapter 2). This type of

analysis is often quite accurate. However, when more than two or more overlapping sites

are present, it is difficult to extract meaningful parameters without significant errors. As

has been shown throughout this thesis, the application of dynamic angle spinning (DAS)

NMR to systems with quadrupolar nuclei allows significant narrowing of the MAS

linewidths, usually by more than an order of magnitude and therefore a corresponding

increase in accuracy.

For nuclei with large quadrupolar coupling constants and small dipolar couplings

due to either low gyromagnetic ratios or low natural abundance (less than 50%), DAS

may often give substantial narrowing of the lines without generating the large number of

spinning sidebands often found in double rotation experiments (DOR). This is especially

important when there are a large number of magnetically inequivalent sites, such as in

wollastonite which has nine distinct oxygen sites. As has been mentioned earlier in this

thesis, by comparing the DAS spectra collected at two different magnetic field strengths

the isotropic peaks are seen to shift (in ppm), just as in the studies of 87Rb salts (see

chapter 7). This is expected as the isotropic peak in a DAS experiment expressed in units

of parts per million (ppm) is actually the sum of the isotropic chemical shift and the

isotropic 2nd-order quadrupolar shift (see equation 7. I and discussion).

(_obs -" _iso,cs "F 1_/2 ) (8.1)

The observed isotropic chemical shift (in ppm) is constant at all field strengths and there-

fore doesn't exhibit any shift between 9.4 T and 11.7 T. However, the isotropic 2nd or-
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der quadrupolarshift (in ppm) is inversely proportional to the square of field strength and

therefore becomes much smaller as field strength is increased.

..(2Q)
_(2Q) W/so X 10 6w/80 "-

COt

ffi 40t0/212(21 _ 1)2 1+

-3× 6 + (8.2)
= 40C0212(21- 1)2 P_

1

Substituting in the values for 170 (I - 5/2, co/,9.47"-54.245 MHz, col,11.77.= 67.898 MHz)

yields the following pair of linear equations for _iso.csand PQ where these are given in

units of ppm and MHz respectively.

_o9"4T 8iso,cs 2.03691P_bs =

oil'Tr = 6iso,c, 1.30476P_ (8.3)bs

In fact using the isotropic shifts from two fields allows one to solve two simultaneous

equations relating the coupling product PQ and the isotropic chemical shift 8iso,cs.

All of the 170 labeled crystalline mineral samples were prepared by Prof. J.

Stebbins and coworkers following a procedure already reported 14,45. The diopside was

isotopically enriched with 170 uniformly to the 20% level, while all other samples were

40% enriched. The phase identities and stoichiometry of these materials were all

analyzed using 29Si and 170 NMR and had shifts which agreed with previously reported

values. In addition, these findings were confirmed by powder x-ray diffraction. The

forsterite sample was slightly off-stoichiometry and contained 25% clinoenstatite but this

did not affect the final NMR measurements significantly. The unit cell structures of these

compounds has been reported before as well 152-156and are shown below in figure 8.1.
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Figure8.1 Crystal Structuresof SomePyroxeneSilicate Minerals. The unit cells for
diopside, clinoenstatite, wollastonite,larnite and forsteriteare shown. The numbers
indicate the distinctsites for each type of atom in the crystal structure. This figure is
takenwith permissionfromthe thesisbyMueller15.

All of the NMR spectra at 9.4 T were recorded on a Bruker AM-400 spectrometer

in a 89 mm widebore magnet, while the spectra at 11.7 T were recorded on a

Chemagnetics CMX-500 spectrometer in a 89 mm widebore magnet. The DAS probes

used for these experiments were homebuilt using a design detailed by Mueller, eta/. 15,51

The pulse sequences and phase cycles used to collect the data were the original DAS type

described previously in chapter 3. The rf-pulse widths were calibrated to selectively ex-

cite only the central (-1/2 to 1/2) transition of 170 and were usually in the range of 4 to 6

Its for the _2 pulses (equivalent to a zc/6 solution pulse). All data was taken with k = 1
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where the first angle was set at 01 = 37.38* and the second angle set at 02 = 79.19". The

usual hopping time between these two angles ranged from 25 ms to 35 ms, which was

significantly shorter than the T1 for these compounds. A 1 s to 5 s recycle delay was used

for most of the experiments and the spinning rate was usually between 6 and 7 kHz. We

sampled between 128 and 512 tl points for these compounds giving a digital resolution of

approximately 0.5 ppm. All 170 peaks were referenced externally to a sample of 37%

H2170 in a small ampoule placed inside a DAS rotor.

All of the simulations of quadrupolar powder patterns were done on a Stardent

Titan computer. To extract the quadrupolar parameters, a program, MINUITQ, was

written which calculates 2nd order quadrupolar powder patterns spinning about any

single axis (see appendix to this thesis). This program simulates only the central

transition for half-odd integer nuclei and assumes that no intensity is lost in spinning

sidebands. The experimental spectra were fit using a standard AMOEBA simplex routine

from Numerical Recipes in FORTRAN 157 or MINUIT, a minimization package from

CERN. These algorithms allow rapid convergence by minimizing the root mean square

deviation between the simulated and the experimental spectra. Each fit takes

approximately 2,000 to 10,000 iterations to achieve a best fit with each iteration taking

about 0.4 seconds per powder pattern. By using the quadrupolar parameters and isotropic

chemical shift values determined directly from the one-dimensional DAS spectra, we are

able to fix the isotropic shift and the value of PQ which limits the simplex to only 4

variable parameters per site, which are the asymmetry parameter, r/Q, the total intensity,

the lorentzian broadening, and the Gaussian broadening for each site, under rapid magic-

angle spinning. Finally, we are able to fit multiple experimental spectra simultaneously.

Thus by simulating MAS spectra at both 9.4T and 11.7T, we may place a large number of

constraints on our simulations. This allows more exact determination of the asymmetry

parameter, r/Q, and therefore the quadrupolar coupling constant, CQ.
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Figure 8.2 shows the DAS, DOR and MAS spectra of these six minerals previ-

ously reported. 15,45It is observed that in all cases, the DAS spectra show the same num-

ber of isotropic sites as are present in the crystal structure. In the wollastonite spectrum,

two of the bridging sites overlap at 28 ppm, giving a peak twice as intense as the third
I

bridging site at 22 ppm,

Magic-Angle Spinning Dynamic-Angle Spinning Double Rotation

• J . . •
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Figure 8.2 Crystalline 9.4T DAS, DOR and MAS Spectra. The MAS spectra are very

similar to those observed by Timken et al. 150 and all spectra are shown with permission

from the thesis by Mueiler.15 The MAS and DOR spectra were taken with standard one-

pulse experiments while for the DAS spectra the original DAS pulse sequence was used.

The large number of spinning sidebands in the DOR and the second-order quadrupolar

broadening in the MAS make interpretation of these more difficult. The comparison of
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the DAS to the DOR spectra immediately identifies the isotropic shifts and these are

compiled in table g. 1.

Figure 8.3 shows the DAS spectra of the various pyroxene silicates taken at 11.7T

(67.797 MHz). No DOR spectra were performed for these compound at this field. MAS

experiments were conducted for all compounds though only the MAS of diopside at

11.7T is shown in figure 8.5. The signal-to-noise ratio of the clinoenstatite spectrum was

significantly worse than in the previous experiments at 9.4 T.

Forsterite

Diopside

W "

Illllllll J I''lllllJl Illllllll'_llJllllll"("
160 120 80 40 0

Frequency (ppm from H2170)

Figure 8.3 Crystalline 11.7T DAS Spectra. All spectra are shown on the same scale
referenced relative to H2170. The isotropic peaks in the clinoenstatite and larnite spectra
were determined by performing these experiments twice, however the signal to noise dic-
tates that the errors in the measured isotropic shifts will be approximately twice (or +2
ppm) those in the other spectra.
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This is probably due to the fact that some of the sample was lost over the course of these

and other experiments and therefore the overall signal was significantly reduced. Both

the clinoenstatite and larnite DAS experiments were performed twice and peaks appeared

at the positions given in table 8.1 in both sets of experiments. In the case of wollastonite,

the number of resolved peaks is reduced from six non-bridging and two bridging sites at

9.4 T to five non-bridging and two bridging sites at 11.7T. The most intense bridging

peak again is the sum of two sites, just as in the 9.4T experiment. Also, the most intense

non-bridging peak (at 92 ppm) is the sum of two sites with different quadrupolar coupling

constants which are apparently crossing meaning that the isotropic chemical shift of the

one with the larger quadrupolar coupling constant is greater than the isotropic chemical

shift of the other, leading to the possibility that at a given field they will have identical

total isotropic shifts. If this experiment could be performed at a field as high as 14 T, this

peak would probably again split into two peaks.

The isotropic shifts at both 9.4 T and 11.7 T, as well as the calculated isotropic

chemical shifts and quadrupolar coupling product, PQ are listed in table 8.1 for each of

the compounds studied. There is some ambiguity as to the assignment of the peaks in the

wollastonite spectra between the two fields, however it is reasonable that the quadrupolar

coupling constants should be relatively similar in both the bridging and the non-bridging

region. Thus the order of the peaks should not change significantly. It may be shown

that changing the order (and therefore the assignment in table 8.1) of any of the 11.7 T

peaks will dramatically affect at least 2 of the isotropic shifts and coupling products.

Thus we feel that the assignments below are quite reasonable.
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.q9.4T .qi 1.7TCompound "obs (ppm) _'obs (ppm) 8iso.cs(ppm) PQ(MHz)
117.3 123.3 133.9 2.9-Z-0.2

Larnite 113.3 118.5 127.8 2.7:L-0.2

(Ca2SiO4) 108.8 113.4 121.6 2.5_+0.2
106.3 112.0 122.1 2.8:L,0.2

Diopside 69.2 75.1 85.6 2.8:L-0.2
(MgCaSi206) 48.5 54.0 63.8 2.7:L-0.2

28.6 43.3 69.5 (b) 4.5:L-0.1

39.3 45.5 56.6 2.9"2.4).3

Clinoenstatite 34.5 44.1 61.2 3.6:L-0.3

(MgSiO3) 32.3 42.0 59.3 3.6_+0.3
26.3 39.0 61.7 4.2_+0.3
18.0 36.8 70.3 (b) 5.1_+0.2
15.0 34.7 69.8 (b) 5.2_+0.2

Forsterite 49.0 57.1 71.5 3.3_+0.3

(Mg2SiO4) 49.0 54.8 64.3 2.7_+0.3
30.8 37.5 49.4 3.0-_.2

103.4 107.4 114.5 2.3_+0.2

Wollastonite 100.1 105.1 114.0 2.6_+0.2

(CaSiO3) 96.5 100.2 106.8 2.3_+0.2
89.0 91.9 97.1 2.0-2-0.2
85.8 91.9 102.8 2.9_+0.2
74.3 79.3 88.2 2.6_+0.2

28.2 44.9 74.6 (b) 4.8:L-0.1
28.2 44.9 74.6 (b) 4.8_+0.1
21.6 37.8 66.6 (b) 4.7_+0.1

Table 8.1 Isotropic Chemical Shifts and Quadrupolar Coupling Products from Two Field

Studies. The isotropic shifts measured from the spectra in figure 8.2 and 8.3 were used to

compute the isotropic chemical shifts and quadrupolar products for all of the oxygen sites
in each of the six minerals. The isotropic shifts marked with a (b) indicated bridging

oxygen sites. The errors for the observed isotropic shifts were +1 ppm (except for larnite
and clinoenstatite at I I.7T which had +2 ppm errors) providing an isotropic chemical

shift error of :t:2 ppm (:t3 ppm for larnite and clinoenstatite).

If the spectra could be collected at yet a third field (i.e. <7 T or >14T) then these assign-

ments may become more clear. To calculate the isotropic chemical shifts and quadrupo-

lar coupling products, the coupled equations 8.3 were solved. The errors in the calculated

parameters were computed using standard error propagation techniques.

164



In addition to these quadrupolar parameters, the magic angle spinning spectra of

diopside at 9.4T and 11.7T were simulated using automated simplex routines. By effec-

tively fixing the coupling product and the isotropic chemical shift values we were able to

generate highly accurate values for the asymmetry parameters. This in turn allows us to

recover the real quadrupolar coupling constant C12which is proportional to the field gra-

dient in the z-direction of the principal axes system of the nucleus. The experimental

spectra and best fit simulations are shown in figure 8.4. The values we extracted agreed

quite well with previous work. 15°

__ _eriment__ / _,_

(a') (b')

k_.XSi___, mulation J x_
, , I ,,, I , ,, I , I , , , I , ,, I , , , I , , ,

100 50 0 100 50 0

Frequency (ppm from H2170)

Figure 8.4 Crystalline Diopside 9.4T and 11.7T MAS Spectra. The MAS spectra at 9.4T

(a) are shown as well as at 11.7T (b). All spectra are shown with a ppm scale referenced

relative to H2170. The simulations (a' and b') were performed with the isotropic

chemical shift and quadrupolar product parameters fixed to those in table 8.1. The simu-

lation results are given in table 8.2.

In table 8.2 below, the values extracted from the simulations of the diopside MAS spectra

in figure 8.4 are compiled. Also shown are the parameters reported by Timken et al. 15°

previously from single field diopside MAS simulations. There are no error bars for the

Timken results, however, since these fits were done by hand without least-squares mini-

mization. Our results include actual error bars since the MINUIT subroutine calculates

and uses gradiehts on the chi squared surface.
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This Study Timken et al. 15°

Site 8iso,cs(ppm) C_ (MHz) rlq 8iso.cs(ppm) CQ(MHz) r/q

1 86+1 2.83_+0.05 0.13"2-0.10 84 2.7 0.0

2 64+1 2.74_+0.05 0.00-&0.10 63 2.7 0.1

3 69-&1 4.39-20.05 0.36_+0.05 69 4.4 0.3

Table8.2 DiopsideQuadrupolarParameters.Thesequadrupolarparameterswere ex-
tractedby simultaneouslyfittingtheMASspectrain figure8.4. Theerrorbarsare indi-
catedinthetable.

In the three chain silicates studied (diopside, clinoenstatite, and wollastonite), the

occupancy of terminal oxygen sites in the structure is twice that of bridging oxygen

species. In forsterite and larnite, all oxygen sites are non-bridging. Diopside, clinoen-

statite, and wollastonite have three, six, and nine crystallographically distinct oxygen

sites, respectively, and one, two, and three different bridging sites respectively. Referring

to table 8.1, we note that the quadrupolar products PQ for the oxygen sites in the chain

silicates are predominantly less than 4 MHz. Values higher than 4.3 MHz follow a 1:2:3

ratio, respectively, for diopside, clinoenstatite, and wollastonite, suggesting that lines as-

sociated with these values should be assigned to bridging sites. This observation is com-

patible with the results of Oldfield and coworkers in their studies of these and similar sili-

cates 15°. The DAS technique now allows complete resolution of all sites, even in wollas-

tonite. For this silicate with nine crystallographic oxygen sites, the NMR data now reveal

six distinct terminal sites as well as two inequivalent bridging sites occurring in a 2:1 ra-

tio.

A number of trends are conspicuous when the isotropic chemical shifts for the

various types of oxygen sites are examined. All of the bridging sites have isotropic

chemical shifts to within 4 ppm of 71 ppm, referenced to the single oxygen-17 resonance

from H2170. This is an extremely small deviation considering the wide range of chemi-

cal shifts which have been reported for oxygen-17.158 Here, however, all of the oxygen
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sites are quite similar and differ only in the identities of neighboring cations. As noted by

Oldfield and eoworkers, 15°the chemical shifts of the bridging oxygen atoms is generally

less sensitive to the nature of the nearby cations due to the distance separating the oxygen

nuclei and the cations.

Chemical shifts of SimO terminal sites are more strongly dependent on the

cations present. The deshielding of the oxygen nucleus as the effective ionic radius of the

cation increases has been established empirically 15°and when the cations are magnesium

ions (as in forsterite and clinoenstatite), the isotropic chemical shifts calculated range

between 49 and 72 ppm. When calcium ions are present exclusively (wollastonite and

larnite), the isotropic chemical shifts for the ten sites lie between 88 and 134 ppm. In the

mixed cation compound (diopside), both terminal oxygen sites had intermediate chemical

shift values (64 and 88 ppm). Thus it appears that each oxygen in diopside experiences

an averaged chemical shift value from the surrounding cations.

Similar trends are also observed when the quadrupolar coupling products are ex-

amined. For the bridging sites, Pt2 values range between 4.5 and 5.2 MHz. This again is

a very small range considering that oxygen-17 coupling constants as large as 12 MHz are

observed for sites with similar coordination or stoichiometry 159. For the terminal sites in

the magnesium-containing minerals PQ values from 2.8 to 4.2 MHz are found. For simi-

lar sites near calcium cations the experimentally determined values are generally lower

and fall between 2.0 and 2.9 MHz. Since the electronegativities of both cations are quite

similar, the electric field gradients near these ions are only slightly dependent on the type

of ion itself. The quadrupolar coupling products for terminal sites in diopside, which

both fall close to the overlap point of the ranges for the two types of cations, tend to sup-

port the argument that an average environment is experienced at these sites. A more

noticeable difference is between the bridging and terminal oxygen quadrupolar environ-

ments since the field gradients at bridging sites are almost double those at terminal sites.
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Finally, from the MAS simulations at the two fields, the values for the asymmetry

parameter, r/Q, at each of the three sites in diopside were determined (table 8.2). This

provides additional information above and beyond the coupling product, PQ. It also al-

lows us to determine with greater precision the value of the actual quadrupolar coupling

constants CQ, giving a quantitative description of the strength the field gradient at each

site. Further, all sites in diopside have asymmetry parameters near zero, indicating that

the x and y gradients are of approximately the same strength. The asymmetry parameter

of the bridging oxygen also may be correlated with the bridging Si-O-Si bond angle de-

termined from the crystal structure (see the next section). When many such bond an-

gle/asymmetry parameter correlations have been determined, this information may be

used to determine an unknown bond angle from quadrupolar parameters. 46

In conclusion, we have shown that by performing field-dependent DAS experi-

ments on oxygen-17 in minerals, parameters are obtained which can be directly corre-

lated with structural information. Trends are recognized in the isotropic chemical shifts

and the quadrupolar coupling strengths for a series of silicate minerals. It has been

demonstrated that these parameters depend on the type of oxygen crystallographic site

and the neighboring cation present in the crystals, corroborating extensive earlier studies

but further providing information on all oxygen sites present in certain complex silicate

minerals.

Amorphous Silicates

The difference between a glass and a crystal lies in disorder present in the inter-

mediate-range glass structure that eliminates long-range translational symmetry (see fig-

ure 8.5). Characterization of disorder is an important experimental objective because it is

a critical test of the accuracy of models of glass structure. In pure silica glasses (SiO2),

the basic building block is the SiO4 tetrahedron which form a three-dimensional network

with the overall disorder coming in the range of Si-O-Si bond angles made by joining
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tetrahedra at the corners. 16° This distribution of bond angles in SiO2 has been exten-

sively studied with both X-ray and NMR techniques. 67,161"167

b

a) b)

Figure 8.5 Comparison of A203 Crystal and Glass Lattice Structures. The two structures

represent possible planar configurations for a sample with A203 stoichiometry. The dark

circles represent A atoms while the open circles represent oxygen atoms. Notice that the

AO 3 building block used in both structures preserves basically identical A-O bond

lengths and O-A-O bond angles. The primary difference lies in the distribution of A-O-

A bond angles leading to the wide range of rings in the glass as opposed to the strict 180*
bond angle with six sided rings in the crystal.

Figure 8.5 shows a possible planar structure for both a crystal and a glass with the A203

stoichiometry (for example B203). This figure could be thought of as a two-dimensional

analog of the three-dimensional lattices formed from AO2 glasses (such as SiO2). It is

immediately apparent that in the crystal, the A atoms are always surrounded by three

oxygen atoms with strict 120" bond angles; each O atom forms a distinct 180" bond as

well. The glass structure maintains the basic AO3 building block with 120" bonds,

however now the connecting A-O-A bonds are no-longer 180". With only a very slight

increase in the overall energy of the crystal structure, the glass structure may be formed.

This indicates some of the basic local order trends seen in three dimensional glasses.
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Figure 8.6 Insertion of Modifying Cations into Silicate Glasses. The insertion of a K20

"molecule" into the SiO2 glass lattice causes the creation of two non-bridging oxygen

atoms from a bridging oxygen. The distribution of these modifying cations throughout

the glass may proceed in either a random or partially random fashion as the modifying
cation concentration is increased.

In network-modified silicate glasses, the continuous disordered network of SiO4

tetrahedra is presumed to be disrupted by modifying cations which create non-bridging

oxygen atoms (oxygen atoms bonded to only one silicon atom). 16s Figure 8.6 shows how

the addition of a modifying cation (in this case in the form of K20) creates non-bridging

oxygen sites in a silicate glass. Two principal sources of disorder are thought to be this

disruption of the network and the distribution of bond angles (Si-O-Si) between network

forming cations (as mentioned previously). It is well established experimentally that the

silicon and oxygen are ordered locally in network modified-silicate glasses, and that the

SiO4 tetrahedra remain the basic structural unit. From extended X-ray absorption fine

structure (EXAFS) studies of modified cations, we know that they too are regularly

coordinated by oxygen, 169'!7°having coordination polyhedra and bond lengths similar to

those in crystalline silicates. Isotopically substituted neutron scattering has also shown

that ordering associated with modifier cations extends beyond the first coordination

spl,ere, by detecting strong correlations between Ca-Ca as well as Ca-O distances in

CaSiO3 glass 171'172. This is consistent with 29Si NMR studies of silicate glasses, which

show that the distribution of non-bridging oxygen atoms is not random, being close to

binary165,173; the deviation from a binary distribution depends on the electronegativity of
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the network modifier and on the glass transition temperature. Taken together, these

experimental data indicate considerable order associated with network modification.

Quantification of the remaining disorder associated with variations in bridging angles

between network-forming cations is therefore important. 166'167

Volumetrically, silicate glasses are dominated by oxygen anions, yet despite this,

the structure of silicate glasses has been studied almost entirely from the perspective of

the cations and their coordination. For example, X-ray scattering experiments are most

sensitive to scattering from cations (network-forming and network-modifying) that are

heavier than oxygen anions, EXAFS experiments concentrate on network modifiers such

as Na + or Ca2+, and 29Si NMR experiments specifically observe signal from the network-

forming cation. In this section, we investigate the local environments of the oxygen an-

ions. As oxygen is the connecting atom between locally ordered tetrahedral environ-

ments, the intermediate-range disorder in the glass will be reflected in the range of envi-

ronments exhibited by these oxygen atoms. As shown in the previous section, 170 NMR

is a sensitive and direct way to characterize these interconnections. Previously, 170

NMR has been used to study glasses with conventional static and MAS techniques. 159'174

These methods of course are seriously hampered by both the anisotropic broadening

arising from a range of crystallite orientations and the distribution of local environments

in a glass which lead to a continuum of sites. These two contributions to the lineshape

may not be separated in an experiment such as MAS, since this fails to remove all of the

anisotropic broadening arising from the second-order quadrupolar interaction (see chapter

2). In contrast, the two-dimensional DAS experiment is well suited for this type of sys-

tem, as this may be used to correlate high-resolution isotropic peaks in one dimension

(which will be a broad distribution in a glass due to the continuum of sites) with the in-

dividual powder patterns for each site in the second dimension (see chapter 3).
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Experimental

All of the spectra of silicate glasses in this section were taken with one of two

types of home built probes designed by Mueller et al. 51 and Eastman et al.44 The usual

field strength was either 9.4T or 11.7T to give the highest initial polarization and there-

for_ highest signal-to-noise ratios, since individual slices from the 2D DAS spectra were

to be simulated. Additionally, the HyperSEDAS or SEDAS (see chapter 4) pulse se-

quences were used since both the transverse and longitudinal (/'2 and TI) relaxation times

for these samples were in general quite long (1-20 seconds). The pulse widths were

usually between 3 and 7/as and the rotor reorientation times were often less than 40 ms.

For the shifted-echo experiments, the DAS echo was usually shifted from 4 to 8 rotor pe-

riods out in time (approximately 1 ms). The spinning rate was from 5 to 7 kHz and the

k = 1 angle pair was used for most experiments. In all glass spectra the time domain data

in the tl dimension rapidly decayed away due to the broad distribution of sites in the

isotropic dimension and therefore usually only 40-70 total points were collected in this

dimension. In the second dimension, usually 256 or 512 points were taken to provide the

necessary digital resolution to see distinct features in the anisotropic powder patterns.

The 170 labeled glasses were again prepared by Stebbins and coworkers. The

usual enrichment was between 35 and 50 percent and was achieved by the addition of

170 labeled water to SiCI4 to produce isotopically labeled SiO2 which was then used to

make the glasses by combination with alkaline and alkaline earth metal oxides (often 170

labeled as well). In general the glasses were quenched from the liquid state at about

1100" to 1600* C in a vacuum oven to assure that no oxygen was lost or exchanged in the

glass formation. In some cases, the samples were sealed in a Pt tube to allow quenching

from even higher temperature than were possible in the vacuum oven (specifically this

applies to the amorphous SIO2). In all cases, stoichiometry and phase were tested with

both 170 and 29Si MAS NMR at Stanford before attempting DAS experiments. For more

details of the synthesis see the thesis by Chmelka. 47
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Amorphous Silica (S|O2)

The study of amorphous SiO2 with 170 DAS represents the natural starting point

for a discussion of silicate glasses (as a side note, chronologically this was not the first

glass studied with DAS, however with the clarity of hindsight, this represents a more

logical place to begin the discussion of silicate glasses). A range of different silica sam-

pies were prepared by Stebbins and coworkers for study with DAS as well as some from

Dupree and coworkers. In all cases the spectra were very similar for all kinds of silica

glasses. Figure 8.7 shows the 2D DAS spectrum of amorphous SiO2 taken at 9.4T with

k = 1 (37.38* and 79.19* angle pair).

"'_t_ _ _ i _ _ , _ i _ _ _ , i u , _ , i , I", _ i _ _ _ ,'1 w _

150 100 50 0 -50 -100

Anisotropic dimension (ppm)

Figure 8.7 2D DAS Spectrum of Amorphous SiO2. The isotropic dimension shows a

single broad peak with spinning sidebands on both sides. The anisotropic slices are seen

to increase in asymmetry parameter and decrease in quadrupolar coupling as the isotropic

shift gets larger.

Notice that the center band is quite broad (approximately 20 ppm full width at half

maximum, FWHM) and the sidebands which appear to either side are fairly st,ong due to

the large quadrupolar coupling in this sample (quadrupolar coupling constant of about 5

to 6 MHz). Also, the overall shape of the anisotropic slices changes as the isotopic shift
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is increased. On the low frequency side of the isotopic peak, the asymmetry parameter

for anisotropic slices is nearly zero. As the isotropic shift increases in frequency, the

asymmetry parameter gets larger and the quadrupolar coupling constant gets smaller.

This is observed in both this data and the data from 11.7T. Table 8.3 compiles the inten-
i

sity, isotropic shift, quadrupolar coupling constant and asymmetry parameter for each of

the 18 slices with significant intensity (slices which may be simulated) through the cen-

terband isotropic peak. The slice number corresponds to the absolute number of the slice

through COl(for this data set, the tl dimensi_m was zero filled to 256 points).
-- __ IIIIIII

Slice Cq r/q Pop. _Siso,cs Slice Cf2 rlq Pop. _Siso,cs

109 5.85 0.00 0.24 32.5 118 5.78 0.13 0.85 55.0

110 6.00 0.00 0.44 40.2 119 5.70 0.15 0.79 55.5

111 6.14 0.00 0.55 47.4 120 5.61 0.17 0.71 55.3

112 6.18 0.02 0.65 51.4 121 5.53 0.18 0.61 55.7

113 6.18 0.03 0.75 54.3 122 5.47 0.19 0.50 57.0

114 6.11 0.05 0.83 54.6 123 5.43 0.20 0.40 59.0

115 6.02 0.07 0.87 54.0 124 5.38 0.22 0.31 60.5

116 5.93 0.09 0.89 54.0 125 5.12 0.26 0.22 55.6

117 5.85 0.11 0.89 54.3 126 4.58 0.34 0.15 43.4

Table 8.3 SiO2 Anisotropic Slice Fits. The simulations were performed using the

computer programs in the appendix with the assumption that the chemical shift

anisotropy was negligible.

It may be noted here that slices 109, 110, 125 and 126 have values for either the

quadrupolar coupling or isotropic chemical shift which do not follow the trends observed

throughout the rest of the table. This is due t,:_the fact that the signal-to-noise ratio of

these slices made sirvulation difficult and these values are to be given much less s_gnifi-

cance than in the re_;ion of the peak (slices 116 and 117). Five of these slices (as well as
I
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:igure8.9 ElectricFieldGradientModelCompound;.ThemoleculeH3Si-O-SiH3may
beusedas aroughmodelto showtherelativesizesof theEFGtensorastheSi-O-Sibond
angleis changed.

As this bond angle is reduced, the x-axis becomes defined by the plane made by the two

silicon atoms and the oxygen atom (the y-axis is of course perpendicular to the x- and z-

axes). At an angle of less than 180", the x andy field gradients will no longer by identical

and by definition (see equation 2.37) r/Q will be greater than zero. With simple point

charge or electron bonding models it is impossible to assess accurately how rapidly the

asymmetry parameter will grow towards the maximum possible value of one. Tossell

and Lazzeretti have done a more thorough analysis of this molecule using modem ab

initio molecular orbital calculation algorithms 142. Figure 8.10 shows the characteristic

quadrupolar coupling constants and asymmetry parameters calculated for this molecule

when the Si-O-Si bond angle was 180", 160" and 140".
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Figure 8.10 Ab Initio Quadrupolar Parameters for H3Si-O-SiH3. The quadrupolar

coupling constant and asymmetry parameter were calculated using Gaussian algorithms

for the angles 180", 160" and 140", Circles indicate values calculated by Tossell and

Lazzeretti while square are experimental points from Stcbbins et al.

The lines going through the points in these figures correspond to an empirical fit with the

functions given below.

CQ(Z$i- O- Si) - CQ(180 °) 2¢os(ZSi-O-Si)
cos( /Si-O-Si)- ! (8.4)

T1Q(ZSi - 0 - Si ) = 1- cos(LSi - 0 - Si )

These equations describe Tossell and Lazzeretti's data reasonably well. The two squares

in figure 8.10 indicate asymmetry parameters measured from simulations of MAS spectra

of wadeite (134.7" bridging bond angle) and cristobalite 175(146.4" bond angle). Notice

that these fall very near the empirical asymmetry parameter curve.

The equation used to describe the asymmetry parameter in terms of the bridging

bond angle may be inverted and used to convert our data in table 8.3 from intensity (or

population) as a function of slice number into intensity as a function of bond angle. This

involves two separate conversions. First, the data must be converted from intensity as a

function of slice number (or isotropic shift) into intensity as a function of asymmetry pa-

rameter. This is equivalent to redefining the axis in the one dimensional isotropic spec-

trum from slice number (or ppm) into asymmetry parameter. This is not, however, a

simple linear transformation and as such the intensity at each point must be rescaled by

the gradient at that point.
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(8.5)

The 6 in this equation indicates the isotropic shift of a given slice while 7"/corresponds to

the asymmetry parameter for that slice. These derivatives may be computed numerically

by graphing the asymmetry parameter as a function of isotropic shift and empirically fit-

ring the resulting curve. Additionally, the value of the asymmetry parameter may be ex-

trapolated with an empirical curve to determine the bond angles in regions where the in-

tensity is too low to simulate individual slices. The same procedure must be used to con-

vert from intensity as a function of asymmetry parameter to intensity as a function of

bridging bond angle, a. This however is not as difficult since we know a functional form

for the gradient already.

1(o_) = l(rl)ld-_ol=l(rl)sin_ (8.6)

This procedure leads to the bond angle distribution shown in figure 8.11 (reported first by

Grandinetti eta/. 176)
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Si-O-Si Bond Angle (degrees)

Figure8.11 AmorphousSiO2BondAngleDistribution.The squaresare thebondangle
distributionarrivedat from theDASspectralanalysis.The lineindicatesthebond angle
distributionfoundby MozziandWarrenwithX-rayscatteringexperiments.
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The peak in this bond angle distribution occurs at approximately 150". The absolute

accuracy of this bond angle distribution is about +_3*at the peak and +10" in the wings

(where the simulations were of significantly reduced precision and extrapolation of the

asymmetry parameters was used).

A second approach to determine the bond angle is to use the equation relating the

quadrupolar coupling constant to bond angle (equation 8.4). To do this, we again must

use the equivalent Jacobian equations to rescale the axes from intensity as a function of

slice number (isotropic shift) to intensity as a function of bond angles.

QJl--I= (8.7)

This is slightly more difficult since we do not have an absolute value for the quadrupolar

coupling constant at 180*. The simplest solution is to use the asymmetry parameter of the

highest signal-to-noise ratio slice to determine the bond angle for that slice and use the

empirical equation 8.4 to extrapolate to C0(180*). This requires that both empirical rela-

tions in equation 8.4 hold reasonably well, which may not be as accurate as in the case

where only the asymmetry parameter i sused. However, when the quadrupolar coupling

constants in table 8.3 are plotted against the isotropic shifts it is apparent that they form a

nearly linear relationship which allows much greater confidence when extrapolating to

the coupling constants in the outer slices. Also, the percent error bars on the quadrupolar

coupling constants from the simulation are much smaller then those for the asymmetry

parameters. Additionally, the linear relationship allows easy computation of the

derivatives in equation 8.7. The bond angle distribution derived from this method is

virtually identical to the one in figure 8.11. Also shown in figure 8.11 is the Si-O-Si

bond angle distribution of Mozzi and Warren. 161 Both the DAS and X-ray scattering

bond angle distributions show a number of similarities. First, they both have a sharp cut

off on the low angle side. This corresponds to the point where steric hindrances make the
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small bridging bond angles energetically unfavorable. Second, both have a long tail on

the high angle side. This again is reasonable, since there will be no steric hindrances as

the bond angle approaches 180°, however this is a strong deviation from the tetrahedral

bond angle (as in H20) one might expect from simple molecular orbital arguments.

Finally, both have a maximum near 150", which is quite reasonable since most of the

crystalline SiO2 polymorphs have bridging bond angles between 140" and 155". The

bond angle distribution of Mozzi and Warren is much broader, however, which may be

attributed to the inherent difficulties (and inaccuracies) in fitting the three pair correlation

functions needed to analyze the X-ray scattering results with arbitrary functions.

Additionally, the lack of good high angle scattering data may effectively truncate the

results and lead to artificial broadening of the bond-angle distribution.

Tetrasilicates (K2Si409 and KMg.sSi409)

The second class of silicate glasses we have evaluated are tetrasilicates. These all

have a total of +2 cationic charge balancing an Si409 -2 cluster. The actual structures of

both the crystalline and glassy compounds are much more complex. In the crystalline

compounds, the silicates form long double stranded chains separated by cations. In the

glass, these chains remain (as evidenced by the 29Si NMR) however they are no longer

ordered. In our study of these materials 46we hoped to both determine the Si-O-Si bond

angle distributions to compare to the distribution from SIO2. Additionally, we attempted

to evaluate the local ordering of the cations in the glass, similar to the ordering described

by Gaskell in calcium modified silicate glasses 171,172.

The experimental DAS spectra are shown in figure 8.12 for both K2Si409 and

KMg.sSi409 glasses. Both spectra were taken at 9.4T where the separation of the bridg-

ing and non-bridging oxygen peaks was the greatest. Spectra at 11.7T were very similar

and are not shown here.
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Figure 8.12 2D DAS Spectra of Tetrasilicate Glasses. The DAS spectrum on the left is

for K2Si409 and the spectrum on the right is for KMg.5Si409 • These spectra were taken

at9.4T withthe usualpulsesequencesandacquisitionparameters.

The isotropic bridging oxygen peak occurs at 0 ppm in both spectra while the non-bridg-

ing oxygen peak occurs at 65 ppm in the K2Si409 glass and 25 ppm in the KMg.5Si409

glass. The two peaks on either side of the bridging oxygen correspond to spinning side-

bands. The magnesium substituted glass has significantly worse signal-to-noise than the

potassium tetrasilicate and cannot be used to extract a bond angle distribution. In the
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case of potassium tetrasilicate, we are able to simulate a number of the slices through the

isotropic bridging oxygen site. The quadrupolar and chemical shift parameters from

simulations of both the 9.4T and 11.7T DAS data sets are given in table 8.4. In both

cases, only the peaks which were simulated are given. Intensities for extrapolated points

were gotten from the one-dimensional DAS projection. In both cases the slice numbers

are referenced to the 128 total points in the COldimension following zero filling of the

data in tl. These parameters may then be converted into a bond angle distribution just as

in the previous section. Both the 11.7T and 9.4T data give very similar distributions, as

evidenced by the similarity of the quadrupolar and chemical shift parameters for the most

intense slices (61 and 62 at 9.4T and 69 and 60 at 11.7T). This resulting 9.4T bond angle

distribution is shown in figure 8.13.

Slice C_ r/_ Pop. _iso,cs Slice Cq r/_ Pop. 8iso,cs

56 5.73 0.09 0.21 57.3 54 6.12 0.10 0.51 57.7

57 5.66 0.11 0.23 58.0 55 6.06 0.11 0.66 59.2

58 5.65 0.12 0.26 60.5 56 5.90 0.12 0.83 58.4

59 5.65 0.13 0.29 63.0 57 5.79 0.14 1.06 56.9

60 5.55 0.16 0.31 62.9 58 5.72 0.16 1.13 60.3

61 5.43 0.19 0.33 62.1 59 5.66 0.17 1.16 61.9

62 5.33 0.20 0.33 61.7 60 5.56 0.19 1.15 62.7

63 5.25 0.22 0.32 62.4 61 5.48 0.21 1.10 64.0

64 5.28 0.23 0.30 66.2 62 5.40 0.22 0.97 65.5

65 5.14 0.26 0.27 64.7 63 5.34 0.23 0.82 67.1

66 5.10 0.28 0.25 67.3 64 5.28 0.24 0.66 68.8

Table 8.4 K2Si409 AnisotropicSlice Fits from 9.4T and 11.7TDAS Spectrum. The
simulationswere performedusingthe computerprogramsin the appendixwith the as-
sumptionthat the chemicalshift anisotropywasnegligible,as in table 8.3. The parame-
terson the left correspondto 9.4T dataandonthe rightto 11.7T.
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Notice that the maximum in this distribution falls at about 140", about 10" less than in the

SiO2 bond angle distribution. Also shown in figure 8.13 with a dashed line is the bond

angle distribution calculated from a molecular dynamics simulation of

78K20.216SIO2.177 It may be noted that this is significantly different in both the shape

and maximum.

Returning to the DAS spectra in figure 8.12, we note that the only major differ-

enee between the two spectra is in the position of the non-bridging oxygen peak. Both

bridging site peaks are of approximately the same shape and width, as well the non-

bridging peaks are of similar width.
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Figure 8.13 K2Si409 Bond Angle Distribution. The bond angle distribution for

K2Si409 (squares) as well as a molecular dynamics simulation (dashed line) result are

shown.

It is important to see that there is no sign of a non-bridging peak at 65 ppm in the

potassium magnesium tetrasilicate glass. This indicates that in the mixed cation glass

there are no regions which are potassium "rich" and no region conversely which are

magnesium "rich". In fact, the cation distribution must be anything but random in this

glass, otherwise the peak at 25 ppm would be a broad lump from 65 to 25 ppm. In the

case of these glasses, for a K:Mg ratio of 2:1 in the potassium magnesium tetrasilicate,
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the only way to produce an ordered 2:1 arrangement of K+ and Mg +2in the vicinity of the

non-bridging oxygen atoms is to have an original coordination of four K+ cations in the

potassium tetrasilicate which then substitutes one Mg +2 for two K+ cations in the

potassium magnesium tetrasilicate. This will take the non-bridging oxygen atom from a

coordination of 5 atoms (4 potassium atoms and 1 silicon) to 4 atoms (2 potassium atoms,

1 silicon and 1 magnesium). Since the magnesium is a much smaller cation of

comparable size to a silicon cation, the magnesium substitution will produce a local non-

bridging oxygen environment which is much more similar to a bridging oxygen environ-

ment than in the potassium tetrasilicate, hence the reduced isotropic chemical shift values.

Additionally, since there will be a total of a +4 charge in the vicinity of every non-

bridging oxygen atom, the non-bridging oxygen atoms themselves must be locally

ordered and occur in distinct pairs. Additionally, both non-bridging oxygen atoms must

not be coordinated to the same silicon atom, since this would necessitate the formation of

Q2 (where Qn stands for a silicon bonded to n bridging oxygen atoms) species, which are

not found in silicon NMR experiments. In fact all silicon atoms are in either Q3 or Q4

almost exclusively (50:50 ratio). 178 This cationic ordering is in strong agreement with

Gaskell eta/. 171'172when they stated that the calcium cations were found to be in very

ordered and regular arrangements in a tetrasilicate glass they studied. In fact, this study

goes a step further to actually demonstrate absolute coordination in a modified

tetrasilicate glass.

Disilicates (K2Si205)

The final class of glasses studied is the disilicates which consist of a mixture of

cations totaling +2 charge and a Si205 -2 anion cluster. The crystalline form of these

materials forms long chains which are separated by cations. The glasses also form the

same chains, but again lacking the long range order of the crystal. Figure 8.14 shows the

DAS spectrum of a potassium disilicate glass taken at 11.7T. This spectrum looks very

184

i



much like the potassium tetrasilicate spectrum in figure 8.12. The main isotropic peak

for the bridging oxygen sites occurs at 35 ppm while the non-bridging oxygen peak

occurs at 75 ppm. The overall width and position of these peaks are approximately the

same as in the potassium tetrasilicate spectrum at 11.7T. The non-bridging peak indicates

that, just as in the potassium tetrasilicate, the non-bridging oxygen atoms will be five-fold

coordinated to one silicon and four potassium atoms. As in the previous two sections, the

quadrupolar and chemical shift parameters were extracted with simulations of the

bridging site slices. These are tabulated in the same form as before in table 8.5. As in the

amorphous silica, the DAS spectrum was zero filled in the tl dimension to 256 points and

the slices are referenced to these 256 points in the resulting ¢Oldimension.

&

..>

-..)

, /
"1 ......... ! ...... ""l'r'"'_'"l ..... '°"1 .......

150 100 50 0 -50

Anisotropic dimension (ppm)

Figure 8.14 DAS Spectrum of K2Si205 glass at 11.7T. The DAS spectrum above was

taken with the usual HyperSEDAS pulse sequence and parameters.

The first three slices (110, 111 and 112) seem to have unusually large isotropic chemical

shifts relative to the expected trend from the other slices and thus they are attributed less

significance (this is primarily due to the low signal-to-noise of these outer slices). These
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coupling constants are converted into a bond angle distribution in the usual fashion,

which is shown below in figure 8.15.

Slice CQ rIQ Pop. _iso,cs Slice C_ r/q Pop. 8iso,cs

110 6.57 0.00 0.07 73.1 119 5.58 0.16 0.73 70.8

111 6.52 0.00 0.11 73.7 120 5.48 0.18 0.77 71.2

112 6.37 0.00 0.16 72.2 121 5.38 0.20 0.79 71.6

113 6.08 0.01 0.23 67.7 122 5.30 0.21 0.78 72.5

114 6.01 0.04 0.31 68.5 123 5.24 0.23 0.72 73.8

115 5.94 0.05 0.40 69.2 124 5.16 0.25 0.62 74.5

116 5.81 0.09 0.49 70.9 125 4.97 0.27 0.49 73.3

117 5.72 0.12 0.58 68.1 126 4.84 0.28 0.35 73.2

118 5.65 0.13 0.66 69.9 127 4.78 0.29 0.24 74.3

Table 8.5 K2Si205 Anisotropic Slice Fits. The simulations were performed using the

computer programs in the appendix with the assumption that the chemical shift

anisotropy was negligible, as in table 8.3 and 8.4.
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o 0.6 - o
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0.4 - o
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0 0
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0.0 I l i I

120 140 160 180

Si-O-SiBond Angle (degrees)

Figure 8.15 K2Si205 Bond Angle Distribution. The circles indicate the bond angle

distribution extracted from the quadrupolar coupling constants in table 8.5.
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This bond angle distribution, just like the potassium tetrasilicate, has a maximum at ap-

proximate 140 ° with error bars of _+3*in the peak region and +_10"in the wings. The

usual sharp cut off at 130° is observed, just as in the potassium tetrasilicate and in the

silica. Any small variations between the tetrasilicate and disilicate bond angle distribu-

tions may be attributed to the random errors associated with the simulations. In disili-

cates such as K2Si205, it has been found as well previously that all silicon atoms are in

Q3 coordination.178

Conclusions

The three bond angle distributions shown in the preceding sections are a good

starting point to be able to understand the structures present in silicate glasses. The sig-

nificance of these distributions is not well understood at this point, however some conclu-

sions may be dra_n. First, the bond angle maximum of the amorphous silica (150") is

significantly higher than the maximum for the potassium modified silicates (140°). This

could possibly be attributed to the local ordering of the potassium cations around the non-

bridging oxygen atoms. To achieve the cationic ordering observed earlier, it is necessary

that the cations begin to form clusters early in the quenching of the glass and not be

trapped in unfavorable environments as the glass viscosity increases. This is not difficult

to envision, since the non-bridging oxygen sites are quite mobile due to the formation and

breaking of bridging silicon-oxygen bonds as the cations migrate through the glass. As

the glass forms, the cations must find energetic minima in the locally ordered clusters

which controls the medium-range structure during the overall quenching of the glass. In

the amorphous silica, there are no cations to lend mobility to oxygen atoms and therefore

the glass transition temperature is much hieher. Additionally as the silica fluid begins to

quench into a glass, the lack of cations will cause a rapid loss of mobility and increase in

the viscosity of the liquid. This might indicate that the silica bond angle distribution

would be broader than the potassium silicate glasses were it not for the fact that the Si-O-
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Si potentials in the pure silica glass are significantly different than in the potassium sili-

cate. Experimentally we observe that the silica and potassium silicate bond angle distri-

butions are of similar width, indicating that the effect of the local ordering and lower

quench temperature of the potassium silicates is comparable to the stronger potentials in

the silica to control the overall bond distribution. It is difficult to attach any stronger

conclusions at this time. Additional studies of the effect of quench rate and temperature

on bond angle distributions, as well as compositional studies will be needed to give a

complete picture of the processes occurring in glasses.
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Appendices

Computer programs
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A variety of computer programs were developed which were used to simulate the

one dimensional VAS spectra or slices from two-dimensional DAS spectra. The first

program, CQP, outputs a file which contains frequency and intensity pairs over the full

sweep width desired. The second program, MINUITCQ, uses the MINUIT (CERN) li-

brary of minimization routines to iteratively arrive at a least-squares best fit to an input

data set. The first program is useful for rapidly getting the initial parameters in a fit in the

correct ranges and for exploring the effects of small deviations in parameters. The sec-

ond program uses both simplex and gradient minimization techniques and provides an er-

ror matrix which may be used to evaluate the overall errors in each of the fit parameters.

CQP- VAS Spectral Simulation Program

PROGRAM CQP
C

C CALCULATES FREQUENCIES FOR EACH CRYSTALLITE ORIENTATION

C ASSUMING THE PRESENCE OF BOTH SECOND-ORDER QUADRUPOLAR
C INTERACTIONS AS WELL AS CHEMICAL SHIFT ANISOTROPY. THE PAS

C OF THESE TWO INTERACTIONS DO NOT NEED TO NECESSARILY COINCIDE

C AND IN FACT THE CSA PAS IS DESCRIBED FIRST RELATIVE TO THE

C QUADRUPOLAR PAS AND THEN BOTH ARE ROTATED TO THE ROTOR FRAME
C AND THEN FINALLY TO THE LABORATORY FRAME. IT IS ASSUMED AS

C WELL THAT THE SPINNING SPEED IS FAST ENOUGHT TO ELIMINATE ALL

C TIME DEPENDANT TERMS IN THE FREQUENCY EXPRESSION. THE POWDER
C PATTERS ARE CALCULATED USING A METHOD

C

C This was written by Jay Baltisberger

C Chemistry Department

C Berea College
C Berea, KY 40404

C

C while at the University of California, Berkeley in the

C laboratory of Prof. A. Pines
C

C THIS PROGRAM IS DESIGNED TO RUN ON STANDARD UNIX TYPE MACHINES

C THE FOLLOWING PROGRAMS AND SUBROUTINES NEED TO BE COMPILED AND
C LINKED.

C

C

C COMPILE LIST

C cqp.f
C dr.f

C dr2. f

C jran. f
C fftl.f

C powdim8.f
C lines.f
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C tent.f

C

C LINK LIST

C cqp.o
C dr.o

C dr2.o

C jran. o
C fftl.o

C powdimS.o
C lines.o

C tent.o

C (+ all standard math libraries needed for your

C given computer)
C

C

C

C PROGRAM WRITTEN TO CALCULATE MULTIPLE POWDER PATTERNS GIVEN

C THE QUADRUPOLAR AND CHEMICAL SHIFT PARAMETERS OF EACH.
C THE USER MUST HAVE HIS OWN PROGRAM TO DISPLAY THE

C SPECTRUM ON WHATEVER DEVICE IS AVAILABLE.

C PROGRAM GIVES OPTION OF MAGNITUDE MODE,

C RESOLUTION (LARGER NUMBERS ARE HIGHER) AND NORMALIZATION
C

IMPLICIT NONE
C

C DECLARATION OF VARIABLES

INTEGER SIZE

PARAMETER (SIZE=I024)

REAL SPEC(0:SIZE-I),DATA(I:2*SIZE),DATA2(I:2*SIZE)

REAL FWIDTH, NOISE, AMP, MAXIMUM, FSTART

REAL GOBBLE, DBETA (7 ),AL2GAM2, NAL2GAM2, SNAL2GAM2, SAL2GAM2
REAL AL2GAM, AL2NGAM, SAL2GAM, SAL2NGAM

REAL GAM2,BETA2,ALPH2,DECAY,SPIN, BETAS,DELCS,ETACS

REAL CA(0:8),GAMS,ETA2,ETA,WISO, PI

REAL WL,WQ,OFF,C,ALPH,BETA,GAM,P2,P4,THETA

REAL ALPHS,FINC,SW,BROADL, BROADG,EPLG,A(0:2,0:2),C2,C4
INTEGER NTRAN

- INTEGER MM,NUM, PATS,I,ISEED, POINTS,P, ISIGN
CHARACTER*I ANSWER

COMMON OFF,A,WISO,ALPH,

1 CA,BETA,GAM,ALPHS,BETAS,GAMS,P2
C

C FIRST EXECUTABLE STATEMENT.
C

PI=I.0

PI=4.0*ATAN(PI)

WRITE(*,*) 'HOW MANY POINTS?'

READ(*,*) POINTS
C CLEAR SPECTRUM VARIABLES

DO 5 P=0,POINTS-I

SPEC (P) =0.0

DATA2 (2*P+l) =0.0

DATA2 (2"P+2) =0.0
5 CONTINUE

C

C GET PARAMETERS

C

WRITE(*,*) 'HOW MANY PATTERNS (OR SITES)?'
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READ(*,*) PATS

WRITE(*,*) 'WHAT IS I (SPIN)?'

READ(*,*) SPIN

WRITE(*,*) 'WHAT IS WL (MHZ)?'

READ(*,*) GOBBLE

WL=GOBBLE* 1000.
WRITE(*,*) 'WHAT IS THETA (DEGREES)?'

READ(*,*) THETA
THETA=THETA* PI /180.0

WRITE(*,*) 'WHAT IS THE SPECTRAL WINDOW (KHZ)?'

READ(*, *) SW

WRITE(*,*) 'WHAT IS THE CHEM. SHIFT AT 0.0 FREQ (IN PPM)?'

READ(*, *) OFF
OFF=OFF*WL/i000.0/I000.0

WRITE(*,*) 'WHAT PERCENT NOISE DO YOU WANT?'

READ(*,*) NOISE

NOISE=NOISE/100.0

WRITE(*,*) 'WHAT IS THE SEED?'

READ(*,*) ISEED

WRITE(* *) 'WHAT RESOLUTION (8,16 32,64 128 256) _', o , , •

READ(*,*) NTRAN

IF (NTRAN.GT. 256)NTRAN=256

WRITE(*, *) 'WOULD YOU LIKE A MAGNITUDE SPECTRUM?'
READ (*, 998 ) ANSWER

MM=0

IF (ANSWER. EQ. 'Y' .OR. ANSWER. EQ. 'y ') MM=I
WRITE(*,*) 'WOULD YOU LIKE THE SPECTRUM NORMALIZED?'

READ (*, 998 ) ANSWER

998 FORMAT (AI)
C

C CALCULATE P2 AND P4

C OF SPINNING ANGLE

C

C2=COS (THETA) *COS (THETA)
C4=C2"C2

P2=((3.0"C2)-I.0)/2.0

P4= ((35.0"C4) - (30.0"C2) +3.0)/8.0
C

C CALCULATE FREQUENCY RANGE
C

FWIDTH=SW

FSTART=- SW/2 .0

FINC=FWIDTH/REAL (POINTS-1 )

C

C

DO 1252 NUM=I,PATS
C LOOP THROUGH THE TOTAL NUMBER OF PATTERNS

C

C LOAD QUAD AND CSA VALUES FOR EACH SITE
C

WRITE(*,*) 'WHAT IS ETA?'
READ(*, *) ETA

WRITE(*,*) 'WHAT IS WQ (MHZ)?'

READ(*,*) GOBBLE

WQ=GOBBLE* I000.0

WRITE(*,*) 'WHAT IS THE IS,TROPIC CHEMICAL SHIFT (PPM)?'

READ(*,*) WISO

WISO= (WISO*WL/1000 .0/i000 .0) -OFF
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WRITE(*,*) 'WHAT IS THE DELTA (SIGMA33 - ISO) (ppm)?'

READ(*,*) DELCS

DELCS= (DELCS*WL/1000.0/I000.0)

WRITE(*,*) 'WHAT IS THE ETA (SIGMA11 - SIGMA22)/DELTA?'

READ(*,*) ETACS
WRITE(*, *) 'WHAT IS THE ANGLE ALPHA BETWEEN CSA & PAS (DEG) ?'

READ(*,*) ALPH

ALPH=ALPH* PI /180.0

ALPHS=SIN (ALPH)

ALPH=COS (ALPH)
ALPH2 =ALPH *ALPH -ALPH S*ALPHS

WRITE(*,*) 'WHAT IS THE ANGLE BETA BETWEEN CSA & PAS?°

READ(*,*) BETA
BETA=BETA* PI /180.0

BETAS=S IN (BETA)

BETA=COS (BETA)
BETA2 =BETA* BETA- BETAS *BETAS

WRITE(*, *) 'WHAT IS THE ANGLE GAMMA BETWEEN CSA & PAS?'

READ(*, *) GAM
GAM=GAM* PI /180.0

GAMS=SIN (GAM)

GAM=COS (GAM)
GAM2 =GAM* GAM- GAMS *GAMS

AL2GAM=ALPH2 *GAM-GAMS *2. *AL PH *ALPHS

AL2NGAM=ALPH2 *GAM+GAMS* 2. *ALPH*ALPHS

SAL2GAM=ALPH2 *GAMS+GAM* 2. *ALPH*ALPHS

SAL2NGAM=ALPH2 *GAMS-GAM* 2. *ALPH*ALPHS

AL2GAM2 =ALPH2 *GAM2-4. *ALPH*ALPHS*GAM*GAMS

NAL2CAM2 =ALPH2 *GAM2 +4 .*ALPH *ALPHS *GAM* GAMS
SAL2GAM2 =ALPH2 *2. *GAM*GAMS +2 .*ALPH*ALPHS *GAM2

SNAL2GAM2=ALPH2*2. *GAM*GAMS-2 .*ALPH*ALPHS*GAM2

WRITE (*, *) 'WHAT IS THE INTEGRATED PEAK INTENSITY?'

READ(*, *) AMP

WRITE(*,*) 'WHAT IS THE LORENZIAN BROADENING (KHZ)?'

READ(*,*) BROADL
WRITE(*,*) 'WHAT IS THE GAUSSIAN BROADENING (KHZ)?'

READ (*, * ) BROADG

GOBBLE=WQ*WQ* (SPIN* (SPIN+I.) -.75)

C=GOBBLE/32./WL/SPIN**2/(2. *SPIN-1. )**2
C

C CREATE MATRIX OF A(2)IJ A(4)IJ

C
ETA2 =ETA* ETA

GOBBLE= -WQ*(I.0+(ETA2/3.0))*WQ*3.0*(SPIN*(SPIN+I.0)-0.75)

WISO= WISO + (GOBBLE/40.0/WL/SPIN**2/(2.0*SPIN-I.0)**2)

C MATRIX FOR QUADRUPOLAR ELEMENTS

A(0,0) =C* (((18.0+ETA2) "81.0"P4/I120.0)
1 - (P2* (i. 0- (ETA2/3.0) )"12.0/7.0) )

A(0, I) =C* ((P4* (18.0+ETA2) *9.0/56.0)

1 - (P2* (I. 0- (ETA2/3.0) )*36.0/7.0) )

A(0,2)=C*P4*(18.0+ETA2)*9.0/32.0

A(I,0)=C*((P4*ETA*81.0/56.0)+(P2*ETA*24.0/7.0))
A (I, I) =C* ((P4*ETA*27.0/14.0) - (P2*ETA*24.0/7 .0) )

A(I, 2) =-C*P4*ETA*27 .0/8.0

A(2,0) =C*P4*ETA2*27 .0/32 .0

A (2, i) =-C*P4*ETA2*9 .0/8.0

A(2,2) =C*P4*ETA2*9.0/32.0
C MATRIX FOR CSA ELEMENTS
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DELCS=DELCS*P2

CALL DR (DBETA, BETA, BETAS )

CA (1 ) = DELCS* (DBETA (1 )+SQRT (2. /3. )*ETACS*ALPH2 *DBETA (3 ))

CA(2) = DELCS*((-2.*GAM*DBETA(2))+(SQRT(2./3.)*DBETA(4)*

1 ETACS*AL2GAM) + (SQRT (2./3. )*ETACS*AL2NGAM*DBETA (6 )))

CA(3) = DELCS*((SQRT(2./3.)*ETACS*DBETA(6)*SAL2NGAM) +

1 (2. *DBETA (2 )*GAMS )- (SQRT (2. /3. )*ETACS *DBETA (4 )*
1 SAL2GAM) )

CA(4) = DELCS*((2.*GAM2*DBETA(3))+(SQRT(2./3.)*

1 ETACS*AL2GAM2*DBETA (5 ))+ (SQRT (2./3. )*ETACS*NAL2GAM2*

1 DBETA (7)) )

CA(5) = -DELCS*((2.*DBETA(3)*2.*GAM*GAMS)+(SQRT(2./3.)*

1 ETACS* DBETA (7 )*SNAL2GAM2 )+ (SQRT (2. /3. )*ETACS *

1 DBETA (5)*SAL2GAM2 ))
C

BROADL =AB S (PI*BRO ADL /FW IDTH )
BROADG =BROADG /FWI DTH

C INVOKE POWDER SIMULATION

C

CALL POWDIM8 (SPEC, POINTS, FSTART, FWIDTH, 2*NTRAN)

MAXIMUM=SPEC (1 )

DO 30 P=0,POINTS-I

DATA(2*P+I) =SPEC (P)

IF(SPEC(P) .GT.MAXIMUM) MAXIMUM=SPEC(P)

DATA(2*P+2) =0.0
30 CONTINUE

ISEED=MOD (ISEED, 54321 )
DO 35 P=0,POINTS-I

CALL JRAN (GOBBLE, ISEED)

DATA (2*P+ 1)=DATA (2 *P+ 1 )+MAXIMUM*NOI SE* 2.0 *

1 (0.5-GOBBLE)
35 CONTINUE

ISIGN=-I

CALL FFTI (DATA, POINTS, ISIGN)

BROADL= EXP (-BROADL )

BROADG= (-PI *BROADG *BROADG )
EPLG= i. 0

DO 43 P=0, ((POINTS/2)-1)

DATA(2*P+I) =DATA (2*P+l) *EPLG

DATA (2 *P+2 )=DATA (2*P+2 )*EPLG
EPLG= EPLG* BROADL

DECAY=EXP (REAL (P )*REAL (P)*BROADG )

DATA (2*P+ 1 )=DATA (2*P+ 1 )*DECAY

DATA (2*P+2 )=DATA (2*P+2 )*DECAY
43 CONTINUE

DO 42 P=(POINTS/2), (POINTS-l)

DATA(2*P+I) =DATA (2*P+l) *EPLG

DATA (2*P+2 )=DATA (2 *P+2 )*EPLG
EPLG=EPLG/BROADL

DECAY=REAL (POINTS- P )*REAL (POINTS- P )*BROADG
DECAY=EXP (DECAY )

DATA (2*P+I) =DATA (2*P+l) *DECAY
DATA (2 *P+2 )=DATA (2 *P+2 )*DECAY

IF (MM.EQ. 1)THEN
DATA(2*P+I) =0.0

DATA(2*P+2) =0.0
ENDIF

42 CONTINUE
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ISIGN=I

CALL FFTI (DATA, POINTS, ISIGN)
C FIND AREA OF SPECTRUM

MAXIMUM= 0.0

DO i00 P=0,POINTS-I
MAXIMUM=MAXIMUM+DATA (2*P+ 1 )

100 CONT INUE

C NORMALIZE SPECTRUM SO THAT LARGEST POINT IS UNITY

DO 201 P=O,POINTS-I

SPEC (P) =0.0

DATA2 (2*P+I) =DATA2 (2*P+I) + (AMP*DATA (2*P+I)/MAXIMUM)

DATA2 (2"P+2) =DATA2 (2"P+2) + (AMP*DATA (2"P+2)/MAXIMUM)

201 CONTINUE

1252 CONTINUE

IF (MM. EQ. 1 )THEN

DO 8915 P=0,POINTS-I

DATA2 (2*P+I) =SQRT ((DATA2 (2*P+l) *DATA2 (2*P+l)) +

1 (DATA2 (2"P+2) *DATA2 (2"P+2)) )
8915 CONTINUE

ENDIF

IF (ANSWER.EQ.'Y') THEN
MAXIMUM= 0.0

DO 234 I=0,POINTS-I

MAXIMUM=MAXIMUM+DATA2 (2"I+I)
234 CONTINUE

DO 235 I=0,POINTS-I

DATA2 (2"I+i) =DATA2 (2"I+I)/MAXIMUM
235 CONTINUE

END IF

C DISPLAY THE RESULT

OPEN (UNIT=I0, FILE= 'POWD. DAT', STATUS= 'UNKNOWN' )
REWIND (10 )

DO 2657 I=0,POINTS-I

WRITE(10,*) (REAL(I)*FINC+FSTART),DATA2(2*I+I)

2657 CONTINUE

CLOSE (10 )
END

C

SUBROUTINE DR (D, CB, SB)
C

IMPLICIT NONE

C

C DELCLARATION OF ARGUMENTS

REAL D(7),CB, SB
C

C

D(1) = ((3.*CB*CB)-I.)/2.
D(2) = -SQRT(3./2.)*SB*CB

D(3) = SQRT(3./8.)*SB*SB
D(4) =-((I.+CB)/2.)*SB

D(5) = ((I.+CB)/2o)*((I.+CB)/2.)

D(6) = ((I.-CB)/2.)*SB

D(7) = ((I.-CB)/2.)*((I.-CB)/2.)
RETURN

END

C

C

SUBROUTINE DR2 (D, CB, SB)
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C

IMPLICIT NONE

C

C DELCLARATION OF ARGUMENTS

REAL D(3),CB,SB
C

C

D(1) = ((3.*CB*CB)-I.)/2.

D(2) = -SQRT(3./2.)*SB*CB

D(3) = SQRT(3./8.)*SB*SB
RETURN

END

C

C

SUBROUTINE LINES (COSX, SINX, COSY, SINY, FREQ, AMP)

C

C CALLED FROM POWDER. WILL CALCULATE MAS SPINNING PATTERNS OF QUAD

C NUCLEI.

C

IMPLICIT NONE

C

C DELCLARATION OF ARGUMENTS

REAL P2, COSX, COSY, SINY, SINX, FREQ, AMP

REAL ALPHS,BETAS,GAMS,C2X,C4X,C2Y,C4Y,COSA(0:2)

REAL ALPH, BETA

REAL GAM,OFF,COSB(0:2),A(0:2,0:2),WISO

REAL CA(0:8),DBX(3)

INTEGER I,J

COMMON OFF, A, WISO, ALPH,

1 CA, BETA, GAM, ALPHS, BETAS, GAMS, P2
C

C FIRST EXECUTABLE STATEMENT

C COMPUTE FREQUENCY AND CONSTANT INTENSITY
CALL DR2 (DBX, COSY, S INY)

C2X=COSX*COSX

C4X=C2X*C2X

C2Y=COSY*COSY

C4Y=C2Y*C2Y

COSA (0) =I. 0

COSB (0) =I. 0
COSA (i) = (2.0"C2X) -I. 0

COSB(1) = (2.0"C2Y) -i. 0

COSA (2) = (8.0*C4X) - (8.0*C2X) +I. 0

COSB (2) = (8.0"C4Y) - (8.0"C2Y) +I. 0

FREQ=WISO

DO 3 I=0,2

DO 4 J=0,2

FREQ=FREQ+ (A(I, J) *COSA(I) *COSB (J))
4 CONTINUE

3 CONTINUE

FREQ=FREQ + (CA(1)*DBX(1))

FREQ= FREQ + (CA (2 )*COSX+CA (3 )*S INX )*DBX (2 )

FREQ=FREQ + (CA(4)*COSA(1)+CA(5)*2.*COSX*SINX)*DBX(3)
AMP= i. 0

RETURN

END

C

C
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C

C RANDOM NUMBER GENERATOR FROM NUMERICAL RECIPES IN FORTRAN

C

SUBROUTINE JRAN(JRN, IDUM)

INTEGER MI,IAI,ICI,M2,IA2,IC2,M3,IA3,IC3

INTEGER IXl, IX2, IX3, J, IFF, IDUM

REAL RMI ,RM2, JRN, TEMP, R (98 )

C
MI=259200

IAI=7141

ICI=54773

RMI=REAL(I.0/MI)
M2 = 134456

IA2 = 8121

IC2= 28411

RM2 =REAL(I.0/MI)

M3 = 243000
IA3 = 4561

IC3 = 51349

IF((IDUM.LT.0).OR.(IFF.EQ.0)) THEN
IFF=I

IXI=MOD((ICI-IDUM),MI)

IXI=MOD((IAI*IXI+ICl),MI)

IX2=MOD(IXI,M2)

IXI=MOD((IAI*IXI+ICI),MI)

IX2=MOD(IXI,M3)

DO I0 J=i,97

IXI=MOD((IAI*IXI+ICI),MI)

IX2=MOD((IA2*IX2+IC2),M2)

R(J)=(IXI+IX2*RM2)*RMI
i0 CONTINUE

IDUM=I

ENDIF

IXI=MOD((IAI*IXI.ICI),MI)

IX2=MOD((IA2*IX2.IC2),M2)

IX3=MOD((IA3*IX3.IC3),M3)

J=I+((97*IX3)/M3)

TEMP=R(J)

R(J)=(IXI+IX2*RM2)*RMI

JRN=TEMP

RETURN
END

C

C

C

C

C
SUBROUTINE POWDIM8(SPEC,POINTS,FSTART,FWIDTH,NT)

C

C THIS PROGRAM USES THE SAME ALGORITHM AS ONE BY ALDERMAN, ET.

C AL. CALLED POWDER, BUT THIS CALCULATES SINES AND COSINES OF

C SPHERICAL ANGLES

C

C THE OUTPUT HOWEVER DIFFERS FROM OTHER TYPES IN THAT IT USES

C LINE FUNCTIONS OF THE FORM LINE(L,M,N,K,FREQ,AMP) THE

C VARIABLES ARE L=COS(PHI), M=SIN(PHI), N=COS(THETA), K=SIN(THETA)
C THESE ARE NEEDED ANYTIME YOU DO CERTAIN CALCULATIONS WHICH

C INVOLVE ROTATED FRAMES, IE THE CSA + QUAD PROBLEM
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C

C

C

IMPLICIT NONE

INTEGER*4 NT, POINTS, NZ
PARAMETER (NZ=512)

REAL SPEC (0 :POINTS-I ),FSTART, FWIDTH
REAL FREQ(0:NZ,0:NZ),AMP(0:NZ,0:NZ)

REAL FREQ2(0:NZ,0:NZ),AMP2(0:NZ,0:NZ)

INTEGER I, J, LIS

REAL X,Y, Z, R, R2, L,M, N, K, FINC
C

DO 20 I=0,NT

DO 30 J=0,NT

X=REAL (NT- I-J )

Y=REAL (J- I)

Z=2. *REAL (J)

L=2. *REAL (I )
M=2. *REAL (NT-J)

N= 2. *REAL (NT- I )

IF (L.LT.Z) Z=L

IF (M.LT.Z) Z=M

IF (N.LT.Z) Z=N

R=SQRT ((X'X) + (Y'Y) + (Z'Z))

R2=SQRT ((X'X) + (Y'Y))

IF ((I+J) .NE.NT)THEN
L=X/R2

M=Y/R2

ELSE

L=0.0

M=0.0

ENDIF

N=Z/R

K= R2 /R

CALL LI_ES(L,M,N,K,FREQ(I,J),AMP(I,J))
N=-N

CALL LINES(L,MoN,K,FREQ2(I,J),AMP2(IoJ))

AMP (I, J) =AMP(I, J)/R/R/R

AMP2 (I,J)=AMP2 (I,J)/R/R/R
30 CONTINUE

20 CONTINUE

FINC= FWIDTH /FLOAT (POINTS )

DO 40 I=0, (NT/2-1)

DO 50 J=0, (NT/2-1)

CALL TENT(FREQ(I+I,J),FREQ(I+I,J+I),FREQ(I,J),

1 AMP(I+I,J)+AMP(I+I,J+I)+AMP(I,J),SPEC,

1 POINTS, FSTART, FWIDTH, FINC)

CALL TENT(FREQ(I,J+I),FREQ(I+I,J+I),FREQ(I,J),

1 AMP (I,J+l)+AMP (I+l, J+l)+AMP (I,J), SPEC,

1 POINTS, FSTART, FWIDTH, FINC )

CALL TENT(FREQ2(I+I,J),FREQ2(I+I,J+I),FREQ2(I,J),

1 AMP2 (I+l, J)+AMP2 (I+l, J+l)+AMP2 (I, J), SPEC,

1 POINTS, FSTART, FWIDTH, FINC )

CALL TENT(FREQ2(I,J+I),FREQ2(I+I,J+I),FREQ2(I,J),
1 AMP2 (I, J+l)+AMP2 (I+l, J+l)+AMP2 (I, J), SPEC,

1 POINTS, FSTART, FWIDTH, FINC)

50 CONTINUE
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40 CONTINUE

DO 41 I=(NT/2), (NT-I)

DO 51 J=(NT/2), (NT-I)

CALL TENT(FREQ(I+I,J),FREQ(I+I,J+I),FREQ(I,J),

1 AMP (I+l, J) +AMP (I+l, J+l) +AMP (I, J) ,SPEC,

1 POINTS, FSTART, FWIDTH, FINC)

CALL TENT(FREQ(I,J+I),FREQ(I+I,J+I),FREQ(I,J),

1 AMP (I, J+l) +AMP (I+l, J+l) +AMP (I, J) ,SPEC,
1 POINTS, FSTART, FWIDTH, FINC)

CALL TENT(FREQ2(I+I,J),FREQ2(I+I,J+I),FREQ2(I,J),
1 AMP2 (I+l, J)+AMP2 (I+l, J+l)+AMP2 (I, J), SPEC,

1 POINTS, FSTART, FWIDTH, FINC)

CALL TENT(FREQ2(I,J+I),FREQ2(I+I,J+I),FREQ2(I,J),

1 AMP2(I,J+I)+AMP2(I+I,J+I)+AMP2(I,J),SPEC,

1 POINTS, FSTART, FWIDTH, FINC )
51 CONTINUE

41 CONTINUE

DO 42 I=0, (NT/2-1)
DO 52 J=(NT/2), (NT-I)

CALL TENT(FREQ(I+I,J),FREQ(I,J+I),FREQ(I,J),

1 AMP(I+I,J)+AMP(I,J+I)+AMP(I,J),SPEC,
1 POINTS, FSTART, FWIDTH, FINC)

CALL TENT(FREQ(I,J+I) ,FREQ(I+I,J+I),FREQ(I+I,J),

1 AMP (I,J+l) +AMP (I+l, J+l) +AMP (I+ i,J) ,SPEC,
1 POINTS, FSTART, FWIDTH, FINC )

CALL TENT(FREQ2(I+IoJ) ,FREQ2(I,J+I),FREQ2(I,J),

1 AMP2(I+I,J)+AMP2(I,J+I)+AMP2(I,J),SPEC,

1 POINTS, FSTART, FWIDTH, FINC )

CALL TENT(FREQ2(I,J+I),FREQ2(I+I,J+I),FREQ2(I+I,J),

1 AMP2(I,J+I)+AMP2(I+I,J+I)+AMP2(I+I,J),SPEC,

1 POINTS, FSTART, FWIDTH, FINC )

52 CONTINUE

42 CONT INUE

DO 43 I=(NT/2), (NT-I)

DO 53 J=0, (NT/2-1)

CALL TENT(FREQ(I+I,J) ,FREQ(I+I,J+I) ,FREQ(I,J),

1 AMP(I+I,J)+AMP(I+I,J+I)+AMP(I,J),SPEC,

1 POINTS, FSTART, FWIDTH, FINC )

CALL TENT(FREQ(I,J+I) ,FREQ(I+I,J+I),FREQ(I,J),

1 AMP(I,J+I)+AMP(I+I,J+I)+AMP(I,J),SPEC,

1 POINTS, FSTART, FWIDTH, FINC)

CALL TENT(FREQ2(I+I,J),FREQ2(I,J+I),FREQ2(I,J),

1 AMP2 (I+l, J)+AMP2 (I, J+l)+AMP2 (I, J), SPEC,

1 POINTS, FSTART, FWIDTH, FINC)

CALL TENT(FREQ2(I,J+I),FREQ2(I+I,J+I),FREQ2(I+I,J),

1 AMP2 (I, J+l)+AMP2 (I+l, J+l)+AMP2 (I+l, J), SPEC,

1 POINTS, FSTART, FWIDTH, FINC )
53 CONT INU E

43 CONTINUE

RETURN
END

C
C

C
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C

C FFT ALGORITHM FROM NUMERICAL RECIPES IN FORTRAN

C

C

SUBROUTINE FFTI(DATA,NN, ISIGN)

C

C REPLACES DATA BY ITS DISCRETE FT IF ISIGN IS 1 OR REPLACES

C DATA BY NN TIMES ITS INVERSE DISCRETE FT IF ISIGN IS -i.
C DATA MUST BE A COMPLEX ARRAY OF NN ELEMENTS OR A REAL ARRAY

C OF 2*NN ELEMENTS. NN MUST BE AN INTEGER POWER OF 2

C

IMPLICIT NONE

INTEGER ISIGN, ISTEP,NN,N,I,J,MMAX,M
DOUBLE PRECISION WR,WI,WPI,WPR,WTEMP,THETA

REAL PI,TEMPI,TEMPR,DATA(*)

PI=I.

PI=4.*ATAN(PI)
N=2*NN

J=l

DO i000 I=I,N,2

IF(J.GT. I)THEN

TEMPR=DATA (J )

TEMPI=DATA (J+ 1 )

DATA (J) =DATA (I )

DATA(J+I)=DATA(I.I)

DATA(I)=TEMPR
DATA(I+I)=TEMPI

ENDIF

M=N/2

i01 IF((M.GE.2).AND.(J.GT.M))THEN
J=J-M

M=M/2

GOTO I01

ENDIF

J=J+M

I000 CONTINUE

MMAX=2

102 IF(N.GT.MMAX)THEN
ISTEP=2*MMAX

THETA=DBLE(2.*PI)/(ISIGN*MMAX)

WPR=-2.D0*DSIN(0.5D0*THETA)**2

WPI=DSIN(THETA)

WR=I.D0

WI=0.D0

DO i001 M=I,MMAX,2

DO 1002 I=M,N, ISTEP
J=I+MMAX

TEMPR= SNGL (WR) *DATA (J )-SNGL (WI) *DATA (J +1 )

TEMPI=SNGL (WR) *DATA (J+l) +SNGL (WI) *DATA (J)

DATA (J) =DATA (I )-TEMPR

DATA (J. 1 )=DATA (I+ 1)-TEMPI

DATA (I)=DATA (I)+TEMPR

DATA(I+I)=DATA(I.I).TEMPI

1002 CONTINUE
WTEMP=WR

WR=WR*WPR-WI*WPI+WR

208



WI=WI*WPR+WTEMP*WPI+WI

i001 CONTINUE

MMAX=ISTEP

GOTO 102

ENDIF

RETURN

END

C

C TENT ALGORITHM FROM ALDERMAN ET. AL. IN POWDER PROGRAM
C

C

SUBROUTINE TENT(FREQI,FREQ2,FREQ3,AMP, SPEC,POINTS,

1 FSTART,FWIDTH,FINC)
C

C CALLED FROM POWDER. ADDS TO SPECTRUM THE "TENT"

C WHICH REPRESENTS THE

C CONTRIBUTION FROM A TRIANGLE ON THE VERTICES OF WHICH THE

C FREQUENCIES ARE FREQI,FREQ2,FREQ3.
C

IMPLICIT NONE

C

C DECLARATION OF ARGUMENT VARIABLES.

REAL FREQI,FREQ2,FREQ3,AMP
INTEGER POINTS

REAL SPEC(0:POINTS-I),FSTART,FWIDTH,FINC
C

C DECLARATION OF INTERNAL VARIABLES.

REAL AREA3,AREAI,AREA2,FMIN, FMID,FMAX,FI,F2,TOP

INTEGER P,PMID, PMAX
C

C FIRST EXECUTABLE STATEMENT.

C SORT THE FREQUENCIES

FMIN=AMINI(FREQI,FREQ2,FREQ3)

FMID=AMINI(AMAXI(FREQI,FREQ2),AMAXI(FREQ2,FREQ3),

1 AMAXI(FREQ3,FREQI))

FMAX=AMAXI(FREQI,FREQ2,FREQ3)
C COMPUTE HEIGHT OF "TENT".

IF(FMAX.NE.FMIN) TOP=AMP*2.0/(FMAX-FMIN)
C COMPUTE INDICES OF TENT EDGES AND TOP

P=INT((FMIN-FSTART)/FINC)

PMID=INT((FMID-FSTART)/FINC)

PMAX=INT((FMAX-FSTART)/FINC)
C LOOK FOR CONTRIBUTIONS OUTSIDE OF SPECTRUM.

IF (PMAX.GE.POINTS) PMAX=POINTS

IF (PMID.GE.POINTS) PMID=POINTS

IF (P.GE.POINTS) P=POINTS

IF (P.LT.0) P=0

IF (PMID.LT.0) PMID=0

IF (PMAX.LT.0) PMAX=0

AREAI=TOP/(2.*(FMID-FMIN))

AREA2=TOP/(2.*(FMAX-FMID))

AREA3=TOP/2.
C ERECT "TENT" BY EXAMINING VARIOUS CASES.

IF (P.NE.PMID) GO TO i0

SPEC (P) =SPEC (P) + (FMID-FMIN) *AREA3
GO TO 40

I0 F2=FINC*REAL(P+I)+FSTART

SPEC(P)=SPEC(P)
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1 + (F2-FMIN) * (F2-FMIN) *AREAl
20 P=P+I

FI=F2

IF (P.EQ.PMID) GO TO 30
F2=F2+FINC

SPEC (P) =SPEC (P)

1 +FINC* (F2+FI-2*FMIN) *AREAl
GO TO 20

30 SPEC (P) =SPEC (P)

1 + (FMID-FI) * (FMID+FI-2*FMIN) *AREAl
40 IF (P.NE.PMAX) GO TO 50

SPEC (P) =SPEC (P) + (FMAX-FMID) *AREA3
GO TO 80

50 F2=FINC*REAL (PMID+ 1 )+FSTART

SPEC (P) =SPEC (P)

1 + (F2-FMID) * (2*FMAX-F2-FMID) *AREA2
60 P=P+I

FI=F2

IF (P.EQ.PMAX) GO TO 70
F2=F2+FINC

SPEC (P) =SPEC (P)

1 +FINC* (2*FMAX-FI-F2) *AREA2
GO TO 60

70 SPEC (P) =SPEC (P)
1 + (FMAX-FI) * (FMAX-FI) *AREA2

80 CONTINUE
RETURN

END

MINUITCQ - VAS Least Squares Fitting Program

MINUITCQ uses many of the same subroutines as the previous CQP program. In

all cases these are the same, except where indicated by specific inclusion in the program

below. The code for the MINUIT subroutine is not included here but may be acquired

from CERN. This is a very powerful minimization library which is applicable to a wide

range of programming needs. Both MINUITCQ and CQP are written in the usual

FORTRAN-77 with no extensions. This code may be acquired from the author of this

thesis or Prof. A. Pines at the University of California, Berkeley.

C THIS PROGRAM WAS WRITTEN BY JAY BALTISBERGER

C PINES RESEARCH GROUP

C UCBERKELEY

C BERKELEY, CA 94720
C

C THIS WILL CALCULATE AND FIT A QUADRUPOLAR LINESHAPE SPINNING

C ABOUT ANY AXIS. (WITH 0 DEGREES BEING EQUIVALENT TO STATIC)
C THE ASSUMPTION IS THAT THE SPINNING RATE IS GREATER THAN THE

C OVERALL WIDTH OF THE PATTERN SO NO SIDEBANDS ARE INCLUDED.
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C ALSO IN ADDITION TO THE 2ND ORDER QUADRUPOLAR LINESHAPE, WE

C MAY INCLUDE A CSA WITH AXES NON-COINCIDENT WITH THE QUADRUPOLAR
C AXES. LINE BROADENING IS INCLUDED BOTH WITH GAUSSIANAND

C LORENTZIAN COMPONENTS. TO RUN THIS PROGRAM ON A UNIX BASED

C MACHINE, YOU MUST COMPILE AND LINK THIS AS BEFORE.
C

C

C COMPILE LIST

C minuitcq.f
C dr.f

C dr2.f

C intrac.f

C minuit.f

C jran.f
C fftl.f

C powdim8.f
C lines.f

C tent.f

C

C LINK LIST

C cqp.o
C dr. o

C dr2. o

C jran. o
C fftl .o

C powdim8.o
C intrac.o

C minuit.o

C lines.o

C tent.o

C (+ all standard math libraries needed for your

C given computer)
C

C

C THE BASIS OF THIS PROGRAM COMES FROM A SIMULATION CODE WRITTEN

C BY ALDERMAN, GRANT, ET. AL. AT U.OF UTAH, JUST LIKE CQP.F

C ALSO CSA/QUAD COMBINED FORMULA APPEAR THROUGHOUT THE LITERATURE
C SUCH AS THE PAPER BY BAUGHER, BRAY, ET. AL.

C IN ADDITION THE NONCOINCIDENT AXES HAS BEEN DESCRIBED MANY

C TIMES AS WELL SUCH AS BY P. ELLIS, ET. AL. AT U OF S.CAR.

C
C

FUNCTION DUMMY (X)

REAL DUMMY, X
DUMM=X

RETURN

END

C

C

C

FUNCTION SQAVELEVEL(ITER)
IMPLICIT NONE

C DECLARATION OF VARIABLES

REAL SQAVELEVEL,F_IDTH,FSTART

INTEGER START,MM, SHOW,COUNT,NTRAN,QPTE,CSTE,SPIN,ITER, PATS,I

REAL WISO,WL, P2
REAL P4

REAL ZERO,FINC,SPECIN(0:I023)
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REAL A(0:2,0:2),VAL,OFF

REAL PARAM(0:32,0:64,5),CHIFIX,CA(0:8)

COMMON SPECIN, A, WISO, PATS, SPIN, WL, P2, P4, OFF, FWIDTH, FSTART, FINC

1 ,MM, SHOW, COUNT, QPTE, CSTE, PARAM, NTRAN, CHIFIX, CA
C

VAL= 0.0

ZERO= 0.0

START= 0

IF(ITER.LT.0) THEN

ITER=ABS (ITER)

START= 1023 -ITER
ITER=I023

END IF

DO 21 I=START, ITER

ZERO=ZERO+SPECIN (I )
21 CONTINUE

ZERO=ZERO/REAL (ITER-START+ 1 )
DO 22 I=START, ITER

VAL= (ZERO-SPECIN (I) )* (ZERO-SPECIN (i)) +VAL
22 CONT INUE

VAL=VAL/REAL (ITER- START+ 1)

SQAVELEVEL=VAL
RETURN

END

C

C

C

SUBROUTINE FXT (NPAR, GRAD, FCT, PR, IFLAG, DUMMY)
C PROGRAM WRITTEN TO CALCULATE MULTIPLE POWDER PATTERNS GIVEN

C THE QUADRUPOLAR PARAMETERS OF EACH.
C IN ORDER TO SEE THE RESULT THE USER MUST PROVIDE A

C SUBROUTINE SHOW (SPEC, POINTS) WHICH DISPLAYS THE CALCULATED

C SPECTRUM ON WHATEVER DEVICE IS AVAILABLE. THE ARGUMENT SPEC

C IS A REAL ARRAY WITH POINTS ELEMENTS. THE LARGEST VALUE IN

C THE SPECTRUM IS UNITY.

C

EXTERNAL DUMMY

C

C SIZE OF SPECTRUM

C

C DECLARATION OF VARIABLES

INTEGER SIZE,NPA_, IFLAG

PARAMETER (SIZE=f024)

REAL GRAD (60 ),DUMMY

REAL SPEC(0:SIZE-I),DATA(I:2*SIZE),DATA2(I:2*SIZE)

REAL FCT, PR (60 ),FWIDTH, AMP, MAXIMUM, FSTART

INTEGER MM, COUNT, NUM, QPTE, CSTE, PATS, I, J, POINTS, P, ISIGN
INTEGER SHOW, NTRAN

REAL SPIN, ERROR, ETA, WISO, PI, WL, WQ, C, P2

REAL DECAY, P4, DBETA (7) ,AL2GAM2, NAL2GAM2, SNAL2GAM2, SAL2GAM2

REAL AL2GAM, AL2NGAM, SAL2GAM, SAL2NGAM

REAL FINC, ETA2, SPECIN (0 :1023 ),BROADL, BROADG

REAL EPLG,A(0:2,0:2),GOBBLE,OFF

REAL PARAM(0:32,C:64,5),CHIFIX,CA(0:8)
COMMON SPECIN, A, WISO, PATS, SPIN, WL, P2, P4, OFF, FWIDTH, FSTART, FINC

1 ,MM,SHOW,COUNT,QPTE,CSTE,PARAM,NTRAN,CHIFIX,CA
C

C FIRST EXECUTABLE STATEMENT.
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POINTS=SIZE

PI=I.

PI=4.*ATAN(PI)

C CLEAR SPECTRUM

DO 5 P=0,POINTS-I

SPEC(P)=0
DATA2(2*P+I)=0.0

DATA2(2*P+2)=0.0
5 CONTINUE

C

C

C GET PARAMETERS

DO 1252 NUM=I,PATS

ETA=ABS(PR((NUM-I)*II+I))
ETA2=ETA*ETA

WQ=ABS(PR((NUM-I)*II+2))

WQ=WQ*I000.0

IF(QPTE.EQ.I) WQ=WQ/SQRT(I+(ETA2/3.))
WISO=(PR((NUM-I)*II+3)-OFF)*WL/1000.0/1000.0

DELCS=PR((NUM-I)*II+4)*WL/IO00.O/IO00.O

ETACS=ABS(PR((NUM-I)*II+5))

GOBBLE=-WQ*(I.0+(ETA2/3.0))*WQ*3.0*(SPIN*(SPIN+I.0)-0.75)

GOBBLE=GOBBLE/40.0/WL/SPIN**2/(2.0*SPIN-I.0)**2

IF(CSTE.EQ.I)THEN
WISO=WISO+GOBBLE

ENDIF

ALPH=PI*PR((NUM-I)*II+6)/180.0

BETA=PI*PR((NUM-I)*II+7)/180.0
GAM=PI*PR((NUM-I)*II+8)/180.0

ALPHS=SIN(ALPH)

BETAS=SIN(BETA)

GAMS=SIN(GAM)

ALPH=COS(ALPH)

BETA=COS(BETA)

GAM=COS(GAM)

ALPH2=ALPH*ALPH-ALPHS*ALPHS

BETA2=BETA*BETA-BETAS*BETAS

GAM2=GAM*GAM-GAMS*GAMS

AL2GAM=ALPH2*GAM-GAMS*2.*ALPH*ALPHS

AL2NGAM=ALPH2*GAM+GAMS*2.*ALPH*ALPHS

SAL2GAM=ALPH2*GAMS+GAM*2.*ALPH*ALPHS

SAL2NGAM=ALPH2*GAMS-GAM*2.*ALPH*ALPHS

AL2GAM2=ALPH2*GAM2-4.*ALPH*ALPHS*GAM*GAMS

NAL2GAM2=ALPH2*GAM2+4.*ALPH*ALPHS*GAM*GAMS

SAL2GAM2=ALPH2*2.*GAM*GAMS+2.*ALPH*ALPHS*GAM2

SNAL2GAM2=ALPH2*2.*GAM*GAMS-2.*ALPH*ALPHS*GAM2

AMP=ABS(PR((NUM-I)*II+9))

BROADL=PR((NUM-I)*II+I0)

BROADG=PR(NUM*II)

IF((ETACS.GT.I).OR.

1 (ETA.GT.I.))THEN
FCT=8.0E20.ABS(ETA*IE9)

RETURN
ENDIF

GOBBLE=WQ*WQ*(SPIN*(SPIN+I.)-.75)

C=GOBBLE/32./WL/SPIN**2/(2.*SPIN-I.)**2

C

C CREATE MATRIX OF A_2)IJ A(4)IJ
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A(0,0)=C* (((18.0+ETA2)*81.0*P4/II20.0)

1 - (P2* (i. 0- (ETA2/3.0)) "12.0/7.0) )

A(0,1)=C*((P4* (18.0.ETA2)*9.0/56.0)

1 - (P2* (i. 0-(ETA2/3.0)) *36.0/7.0) )

A(0,2) =C'P4* (18.0+ETA2) *9.0/32 .0

A(I,0)=C*((P4*ETA*81.0/56.0).(P2*ETA*24.0/7-0))

A(I, i) =C* ((P4*ETA*27 .0/14 .0) - (P2*ETA*24 .0/7 .0) )

A(I, 2) =-C*P4*ETA*27 .0/8.0

A(2,0) =C*P4*ETA2*27 .0/32 .0

A(2, i) =-C*P4*ETA2*9 .0/8.0

A(2,2) =C*P4*ETA2*9.0/32.0
C MATRIX FOR CSA ELEMENTS

DELCS=DELCS*P2

CALL DR (DBETA, BETA, BETAS)

CA(I) = DELCS*(DBETA(1)+SQRT(2./3.)*ETACS*ALPH2*DBETA(3))
CA(2) = DELCS*((-2.*GAM*DBETA(2))+(SQRT(2./3.)*DBETA(4)*

1 ETACS*AL2GAM) + (SQRT (2. /3 •)*ETACS*AL2NGAM* DBETA (6 )))

CA(3) = DELCS*((SQRT(2./3.)*ETACS*DBETA(6)*SAL2NGAM) +

1 (2. *DBETA (2) *GAMS) - (SQRT (2./3. )*ETACS*DBETA (4) *
1 SAL2GAM) )

CA(4) = DELCS*((2.*GAM2*DBETA(3)).(SQRT(2./3.)*
1 ETACS*AL2GAM2 *DBETA (5)). (SQRT (2 ./3 .)*ETACS*NAL2GAM2 *

1 DBETA(7)))

CA(5) = -DELCS*((2.*DBETA(3)*2.*GAM*GAMS)+(SQRT(2./3.)*
1 ETACS* DBETA (7 )*SNAL2GAM2 )+ (SQRT (2. /3. )*ETACS *

1 DBETA (5 )*SAL2GAM2 ))
C

BROADL=ABS (PI *BROADL /FWIDTH )
BROADG= BROADG /FWI DTH

C INVOKE POWDER

CALL POWDIM8 (SPEC, POINTS, FSTART, FWIDTH, 2 *NTRAN)

DO 30 P=0,POINTS-I

DATA (2*P+I) =SPEC (P)

DATA (2"P+2) =0 .0
30 CONT INUE

C BROADEN THE PATTERN

ISIGN=I

CALL FFTI(DATA, POINTS,ISIGN)

BROADL=EXP (-BROADL )

BROADG= (-PI *BROADG *BROADG )

EPLG= 1 .0

DO 43 P=0, (POINTS/2-1)

DATA (2*P+I) =DATA (2*P+I) *EPLG

DATA (2"P+2) =DATA (2"P+2) *EPLG
EPLG=EPLG* BROADL

DECAY=EXP (REAL (P) *REAL (P) *BROADG)

DATA (2*P+I) =DATA (2*P+!) *DECAY

DATA (2*P+2 )=DATA (2*P+2 )*DECAY
43 CONT INUE

DO 42 P=(POINTS/2) , (POINTS-I)

DATA (2*P+I) =DATA (2*P+I) *EPLG

DATA (2*P+ 2 )=DATA (2 *P+ 2 )*EPLG
EPLG= EPLG /BROADL

DECAY= REAL (POINTS- P )*REAL (POINTS- P )*BROADG

DECAY= EXP (DECAY )

DATA (2*P+ 1)=DATA (2 *P+ 1)*DECAY

DATA (2"P+2) =DATA (2"P+2) *DECAY
42 CONTINUE
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ISIGN=-I

CALL FFTI (DATA, POINTS, ISIGN)
C FIND VALUE OF LARGEST POINT IN SPECTRUM

MAXIMUM= 0.0

DO I00 P=0,POINTS-I

MAXIMUM=MAXIMUM+DATA (2*P+ 1 )
100 CONT INUE

DO 201 P=0,POINTS-I

SPEC (P) =0.0

20_ DATA2 (2*P+l) =DATA2 (2*P+l) + (AMP*DATA (2*P+I)/MAXIMUM)
1252 CONTINUE

C DO LEAST SQUARES COMPARISON TO REAL DATA

IF (MM. EQ. 1 )THEN
DO 1089 P=0,POINTS-I

DATA2 (2 *P+ 1)=SQRT ((DATA2 (2 *P+ 1)*DATA2 (2*P+ 1 ))+

1 (DATA2 (2"P+2) *DATA2 (2"P+2)) )
1089 CONT INUE

ENDIF

ERROR=0.

DO 2061 P=0,POINTS-I
ERR_)R=ERROR+ (DATA2 (2 *P+ 1)-SPECIN (P) )**2

2061 CONT INUE

FCT=ERROR/CHIFIX

1391 FORMAT('THE LEAST SQUARE VALUE IS :',E14.7,

1 ' THE COUNT IS :',I7)

IF (COUNT. GE. 0 ) THEN
COUNT=COUNT_ 1

IF(MOD(COUNT,50).EQ.0) THEN

WRITE(*, 1391) FCT,COUNT
ENDIF

IF (MOD (COUNT, SHOW) .EQ. 0.AND. SHOW. GT. 0) THEN

OPEN (UNIT=I0, FILE= 'POWD. SIM' ,STATUS= 'UNKNOWN' )
REWIND (10 )

DO 9081 I=0,POINTS-I

WRITE(10,*) FSTART+I*FINC,DATA2(2*I+I)
9081 CONTINUE

CLOSE (10 )

OPEN(UNIT=!0, FILE= 'FIT. SIM' ,STATUS= 'UNKNOWN' )

REWIND (10 )

WRITE(10,*) COUNT

DO 22091 J=I,PATS*II

WRITE(10,*) PR(J)
22091 CONTINUE

WRITE(10, *) FCT

CLOSE (10 )
END IF

END IF

IF (IFLAG.EQ.3) THEN

OPEN (UNIT=I0, FILE= 'FIT2 .DAT' ,STATUS= 'UNKNOWN' )
REWIND (10 )

WRITE (10, * ) COL_NT

DO 20091 J=I,PATS*II

WRITE (i0, *) PR(J)
20091 CONTINUE

WRITE(10, *) FCT

CLOSE (10 )

OPEN (UNIT=I0 ,FILE= 'POWD. SIM' ,STATUS= °UNKNOWN' )

REWIND (10 )
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DO 9085 I=0,POINTS-I

WRITE(10,*) FSTART+I*FINC,DATA2(2*I+I)
9085 CONTINUE

CLOSE (10 )
ENDIF

RETURN

EniD

C

SUBROUTINE DR (D, CB, SB)
C

IMPLICIT NONE

C

C DELCLARATION OF ARGUMENTS

REAL D(7),CB,SB
C

C

D(1) = ((3.*CB*CB)-I.)/2.

D(2) = -SQRT(3./2.)*SB*CB

D(3) = SQRT(3./8.)*SB*SB

D(4) = -((I.+CB)/2.)*SB

D(5) = ((I.+CB)/2.)*((I.+CB)/2.)

D(6) = ((I.-CB)/2.)*SB

D(7) = ((I.-CB)/2.)*((I.-CB)/2.)
RETURN

END

C

C

SUBROUTINE DR2 (D, CB, SB)
C

IMPLICIT NONE

C

C DELCLARATION OF ARGUMENTS

REAL D(3),CB,SB
C

C

D(1) = ((3.*CB*CB)-I.)/2.

D(2) = -SQRT(3./2.)*SB*CB

D(3) = SQRT(3./8.)*SB*SB
RETURN

END

C

C

SUBROUTINE LINES (COSX, SINX, COSY, SINY, FREQ, AMP)
C

C CALLED FROM POWDER. WILL CALCULATE SPINNING PATTERNS OF QUAD
C NUCLEI.

C

IMPLICIT NONE

C

C DELCLARATION OF ARGUMENTS

REAL SPECIN(0:1023),COSX,COSY,SINX,SINY,FREQ,AMP

REAL OFF, SPIN, WL, P2, P4, FWIDTH, FSTART, FINC

REAL C2X,C4X,C2Y,C4Y,COSA(0:2),COSB(0:2),A(0:2,0:2),WISO

INTEGER CSTE, QPTE, SHOW, NTRAN, COUNT, MM, PATS, I,J

REAL PARAM(0:32,0:64,5)

REAL CA(0:8),CHIFIX,DBX(3)

COMMON SPECIN, A, WISO, PATS, S PIN, WL, P2, P4, OFF, FWIDTH, FSTART, FINC

1 ,MM, SHOW, COUNT, QPTE, CSTE, PARAM, NTRAN, CHIFIX, CA
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C

C FIRST EXECUTABLE STATEMENT

C COMPUTE FREQUENCY AND CONSTANT INTENSITY

CALL DR2 (DBX, COSY, S INY )
C2X=COSX*COSX

C4X=C2X*C2X

C2Y=COSY*COSY
C4Y=C2Y*C2Y

COSA(0)=i.
COSB(0)=I.
COSA(I)=(2.*C2X)-I.
COSB (i) = (2. *C2Y) -I.

COSA(2) = (8.*C4X) - (8.*C2X) +I.

COSB (2) = (8. *C4Y) - (8.*C2Y) +I.

FREQ=WISO
DO 3 I=0,2

DO 4 J=0,2

FREQ=FREQ+ (A (I,J) *COSA (I)*COSB (J))

4 CONTINUE

3 CONTINUE

FREQ=FREQ + (CA(1)*DBX(1))

FREQ=FREQ + (CA(2)*COSX+CA(3)*SINX)*DBX(2)

FREQ=FREQ + (CA(4)*COSA(1)+CA(5)*2.*COSX*SINX)*DBX(3)
AMP=I. 0

RETURN

END

C

C
PROGRAM MINUITCQ

EXTERNAL FXT

EXTERNAL DUMMY

INTEGER QPTE, CSTE, NTRAN
INTEGER MM, SHOW, COUNT, I, PATS, POINTS

CHARACTER*30 FILENM

CHARACTER* 1 ANSWER

REAL OFF

REAL SPECIN(0:I023),A(0:2,0:2),WISO

REAL WL, THETA, PI, SPIN, SW, C2, C4, P2, P4, FWIDTH, FSTART, FINC
REAL PARAM(0:32,0:64,5),CHIFIX,CA(0:8)

COMMON SPECIN, A, WISO, PATS, SPIN, WL, P2, P4, OFF, FWIDTH, FSTART, FINC

1 ,MM, SHOW, COUNT, QPTE, CSTE, PARAM, NTRAN, CHIFIX, CA

9999 FORMAT (A30 )

998 FORMAT (AI)
SHOW= - 1

COUNT= 0

POINTS= 1024

WRITE(*,*) 'WHAT IS THE DATA FROM?'

READ(*o 9999) FILENM

WRITE(*, *) 'IS THIS A MAGNITUDE SPECTRUM? °

READ (*, 998 ) ANSWER
MM=0

IF (ANSWER. EQ. 'Y' .OR. ANSWER. EQ. 'Y' )MM=I
WRITE(*,*) 'IS THIS FILE XY PAIRS OR Y ONLY (X/Y)?'

READ (*, 998 ) ANSWER

OPEN (UNIT=8, FILE=FILENM, STATUS= 'OLD' )

DO 99 I=0,1023

IF (ANSWER.EQ.'Y' .OR.ANSWER.EQ.'Y') THEN

READ(8,*) SPECIN(I)
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ELSE

READ(8,*) WISO,SPECIN(I)

ENDIF
99 CONTINUE

CLOSE (8 )

WRITE(*,*) 'WHAT IS WL (MHZ)?'

READ(*, *) WL

WRITE(*, *) 'WHAT IS THE SPECTRAL WINDOW? '

READ(*,*) SW

WRITE(*,*) 'DO YOU WANT OUTPUT?'

READ (*, 998 ) ANSWER

IF (ANSWER. EQ. °N' .OR. ANSWER. EQ. 'N' ) COUNT=- 1
WRITE(*, *) 'HOW OFTEN DO YOU WANT SPECTRA?'

READ(*,*) SHOW
WRITE(*,*) 'HOW MANY PATTERNS?'

READ(*,*) PATS

IF(PATS.GT.5) PATS=5
WRITE(*,*) 'WHAT IS I (SPIN)?'

READ(*,*) SPIN
WL=WL*I000.0

WRITE(*,*) 'WHAT IS THETA (DEGREES)?'

READ(*,*) THETA

WRITE(*,*) 'USE (I)SOTROPIC CS OR (D)OR CS?'

READ (*, 998 ) ANSWER
CSTE=0

IF (ANSWER.EQ.'I' .OR.ANSWER.EQ. 'I') CSTE=I
WRITE(*,*) 'USE (R)EAL WQ OR (P)RODUCT WQ(I+ETA2/3)?'

READ(*,998) ANSWER

QPTE=0
IF(ANSWER.EQ.'P' .OR.ANSWER.EQ.'P') QPTE=I
PI=I.

PI=4. *ATAN (PI )
THETA=THETA* PI /180.

WRITE(*,*) 'WHAT IS THE OFFSET FROM ZERO FREQ (IN PPM)?'

READ(*, *) OFF

WRITE(*,*) 'WHAT IS THE POWDER RESOLUTION (32 TO 256)?'

READ (*, *) NTRAN

WRITE(*,*) 'HOW MANY POINTS ON LEFT SIDE DEFINE ERROR? '

READ(*,*) ITER

CHIFIX=SQAVELEVEL (ITER)
C

C CALCULATE C, P2 AND P4

C2=COS (THETA) *COS (THETA)
C4=C2"C2

P2= ((3. *C2) -i)/2.

P4= ((35.*C4) - (30. *C2) +3. )/8.
C

C CALCULATE FREQUENCY RANGE

FWIDTH=SW

FSTART=- SW/2 .

FINC=FWIDTH/REAL (POINTS- 1)

C

C
MP= PATS* 6+1

NP= PATS* 6

NDIM= 6*PATS

OPEN (UNIT=5, FILE= 'MINCQ. I ',STATUS= 'UNKNOWN' )

OPEN (UNIT=6, FILE= 'MINCQ.FIT' ,STATUS= 'UNKNOWN' )

218



CALL MINUIT (FXT0 DUMMY)

CLOSE (5)

CLOSE (6)
END

C

C

C
FUNCTION INTRAC

LOGICAL* 4 INTRAC

INTRAC = .FALSE.

RETURN

END

C
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