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Abstract

This dissertation describes nuclear magnetic resonance experiments and theory
which have been developed to study quadrupolar nuclei (those nuclei with spin greater
than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning is
extensively reviewed and expanded upon in this thesis. Specifically, the improvement in
both the resolution (two-dimensional pure-absorptive phase methods and DAS angle
choice) and sensitivity (pulse-sequence development), along with effective spinning
speed enhancement (again through choice of DAS conditions or alternative multiple pulse
schemes) of dynamic-angle spinning experiment were realized with both theory and
experimental examples. The application of DAS to new types of nuclei (specifically the
87Rb and 85Rb nuclear spins) and materials (specifically amorphous solids) has also
greatly expanded the possibilities of the use of DAS to study a larger range of materials.
This dissertation is meant to demonstrate both recent advances and applications of the

DAS technique and by no means represents a comprehensive study of any particular

chemical problem. ’
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Chapter 1
Introduction

Nuclear magnetic resonance (NMR) spectroscopy is one of the most important
techniques used in chemistry today. The use of liquid state !H spectra to identify organic
compounds, along with infra-red spectroscopy, mass spectrometry and x-ray diffraction,
has essentially replaced the chemical techniques used in previous decades. In addition,
the use of NMR to examine large biologically active peptides, proteins, nucleic acids and
sugars has greatly enhanced the speed and accuracy of structure determination, as well as
giving site specific dynamical information. Finally, the use of magnetic resnance to do
medical imaging has significantly improved the diagnostic capability of the medical
community. Magnetic resonance imaging has provided a tool to do non-invasive exami-
nation of patients without the use of harmful high-energy radiation (i.e. x-rays) or ra-
dioactive chemical isotopes (i.e. positron emission tomography). However, all of these
techniques primarily deal with molecules in solution. The application of magnetic reso-
nance to solid state samples has been limited mostly to chemical physics and physical
chemistry laboratories at large research institutes. The last ten years have seen an explo-
sion in the use of solid state NMR. Primarily this has come about due to advances both in
multiple-pulse techniques and in sample reorientation experiments. The single most im-
portant solid state NMR technique to be developed is cross-polarized magic-angle spin-
ning (CPMAS). This experiment allows routine rapid collection of proton decoupled
carbon-13 spectra with nearly liquid-like resolution. The last five years have seen the
further advances of multi-dimensional solid state experiments which have continued to
enhance information content in solid state NMR spectra.

Throughout this thesis, I will discuss experiments I carried out in the laboratory of
Prof. A. Pines at the University of California, Berkeley. In particular, I will describe the

advances we made with the technique of dynamic-angle spinning NMR. This technique



was designed to obtain high-resolution liquid-like spectra of solid samples containing
quadrupolar nuclei. In this work, I will show the application of this technique primarily
to 87Rb and !70 containing compounds. This is by no means a complete or systematic
study of all such compounds, but merely a demonstration of the possibilities for the ulti-

mate use of dynamic-angle spinning experiments once these experiments become as rou-

tine as CPMAS.



Chapter 2
Theory of Nuclear Magnetic Resonance

To understand the techniques of nuclear magnetic resonance spectroscopy which I
will discuss throughout this thesis, I will first need to introduce some of the fundamentals
of quantum mechanics which will be used to describe the application of static and rotat-
ing frame magnetic fields to a system composed of a large number of spins. There are a
large number of good fundamenta! and more advanced texts on quantum mechanics.!-
Also I would direct the reader to additional books written specifically about nuclear mag-
netic resonance which provide the basis for much of the theory presented in this chapter.6-
I3 Finally the doctoral theses of Sun, Mueller and Chmelka all provide additional de-
tailed information about the techniques presented here.!4-16 Before doing a complete de-
scription of NMR in terms of quantum mechanics, I will first introduce the classical mag-

netization vector picture.

Classical Magnetization Description

The magnetization picture assumes that an ensemble of spins may be treated as an
overall macroscopic magnetization which rotates about the axis of the applied magnetic
field at a characteristic Larmor frequency. This description may adequately characterize

some simple single- and multiple-pulse experiments. The Larmor energy splitting is

given by the formula

AE[ = h'}’Bo = h(o, (21)

where £ is Planck's constant, ¥ is the gyromagnetic ratio and B, is the static magnetic
field. A useful concept in describing NMR experiments i< the rotating frame of the Lar-
mor frequency. Mathematically we transform from a fixed laboratory frame to a frame

which is rotating at the Larmor frequency about the z;44 axis defined by the static mag-




netic field. In this frame the Cartesian coordinates (x,,, Yiab»Ziap ) Will be transformed

according to the following relationships:

X0t = Xgp COS Wyt + Y5 SiN @Ot

Yrot = Yiah COS @yt — Xz Sin @t (2.2)

Zrot = Zab
where (X7, Yyor ,2,0;) are the rotating frame coordinates and @ is the Larmor frequency.
First, in this frame the effective z,,; axis magnetic field is exactly canceled for on reso-
nance spins and appears as a much smaller field B4, = By - (9-’7-2) to spins off reso-
nance by 8. Second, in the rotating frame a magnetic field oscillating about the labora-

tory x-axis (i.e. the applied radio frequency pulse) will appear as the sum of two oscillat-

ing magnetic fields. One oscillates at a frequency @egycive = @,

pplied — @ and the other

at a frequency @,g,crive =~ @gppliea — ;- Only the former, low frequency, rotating
frame magnetic field can affect the net magnetization of the sample. In the presence of a
strong radio frequency (RF) pulse, the net z magnetization will begin to process about the
effective magnetic field which is the vector sum of the By, along the z,o axis and By
along the x,,; axis. For on-resonance spins, a /2 pulse consists of RF field applied for a
time such that 7= Y Bygeciivet-  FOI spins which are only slightly off resonance
(81 > B,gier ), this RF pulse will effectively be a "90° pulse” to a good approximation and
the z,0; magnetization will rotate about the x,,; axes to generate a large y,o; magnetiza-
tion. When the strong RF pulse is turned off, the effective magnetic field returns to the
purely Boffm state along the z,,; axis. At this point, the net y,,; magnetization will begin
to process about the z,,; axis. This rotating magnetization will appear as an oscillating
magnetic field in the laboratory frame and can be detected with the same coil used to
generate the RF pulse. The detected signal called a free induction decay (FID) contains
the Fourier sum of all the frequencies present in the sample. The rotating frame Bloch

equations describe this magnetization evolution in classical terms and are shown below.




dt T,
aM M

dtx = WyBoﬁ'sel - _Y:j- 2.3)
aM

M
_d_ty- = Y(MzBl - MxBoﬁ'set)_ 7:22'

These equations show the excitation and free induction decay behavior described. In ad-
dition, they include relaxation terms not yet discussed. The T; (longitudinal) and T3
(transverse) relaxation rates are described more completely in some of the basic NMR
texts. For the purpose of this thesis, they will always be treated classically, meaning, an
irreversible exponential loss of coherence of both transverse (M, and My) and longitudi-
nal (M;) magnetization components. In quantum mechanical terms, they will lead to an
overall exponential damping of density matrix elements (such as Iy, I or I;) to equilib-

rium (Iz).

Quantum Mechanical Description

Any discussion of NMR will ultimately be limited if only the Bloch equations are
used to describe the system. To this end, the quantum mechanical fundamentals will be

discussed in the next section.

Rotations and Tensors

One of the most fundamental concepts in NMR is that of rotations. Many rather
complex problems in NMR spectroscopy (and other physical sciences) are greatly simpli-
fied by judicious choice of reference frame. The use of Wigner rotation matrices to sim-
plify the mathematics of rotations has been well described in books by Rose!?,
Edmonds!8 and Zare!®. Figure 2.1 shows the definition of the three Euler angles
(a,B,7) as used in Wigner rotation matrices D,(,f?n (ar,B,7). One use of Wigner rotation

matrices is to rotate an object with tensor properties between frames of reference.




Suppose we have a tensor A of rank / with elements A, which we wish to rotate into a

Xiab

B, 7
PAS LAB

—
X.,Y,2) X Vi 2

Figure 2.1 Euler Angle Definitions. The first rotation is of size o about the Z axis,
followed by a rotation of size 8 about the rotated Y axis and finally a rotation of size ¥y
about the rotated Z axis to arrive at the new xjgp, yjqb and z/gp axes.

new frame. In this new frame, the resulting tensor R; will have elements R, given by

the following expression.

l
Rm= YD (a.B.7)A, 2.4)

n=-|
This expression may be numerically simplified by expressing D,(,Q,(a,ﬁ ,7) in terms of

exponentials and reduced Wigner rotation matrix elements, d,(,f,), (B).

DY (a,B,7) = e (me+n1)glD) gy 2.5)

The expressions for each of the reduced Wigner rotation matrices can be found in any of
the previously mentioned sources. For most of the work in this thesis, I will deal primar-

ily with second rank tensors in both spin and spatial coordinates. Therefore, for refer-




ence, I include a table (2.1) of second-rank reduced Wigner matrices, but this is by no

means a complete set of matrices for all possible applications.

m
n -1 -2
2 2
I+cos 1+cosf . \/—3_ .2 1-cosf . 1-cos B
(B8)" | -EPsing | Fsin’B | -=PLsinp | (PP
1+cosf . 2 1-cos 3 . 1+cos 8 2 I-cosf .
1§ —5—sinf | cos”f-——— | —/gsin2p | ——~cos” B | ———=sinf

2p .
Jasin®B VEsin2p | =Pl _Bin2g | \Esin?B

1-cosf . 1+cos f 2 3 . 2 1-cos B 1+cosf .
>—sinfi | —5—=~cos” B gsin2f | cos” f——;5 ——+sinf

2 2
1-cos 1-cosf . 3 .2 1+cosf . 1+cos
(—-——~2 l ——sin 8 1/ gsin“ ———sin f8 ——=

Table 2.1 Second-rank reduced Wigner rotation matrix elements d,("zn) (ﬁ) These
elements may be used in conjunction with equation 2.4 and 2.5 to facilitate rotation of
tensors.

Perturbation Theory

To analyze the effect of adding a small internal Hamiltonian, like chemical shift,
to the overall system described by a large external Hamiltonian, I will use standard static
perturbation theory. Perturbation theory has been described previously in a large number
of locations; any good quantum mechanics text will include a section on this topic.
Briefly, I will sketch the basics and their application to NMR. Given an arbitrary
Hamiltonian which is the sum of two parts, one large (for example the Zeeman interac-
tion) and the other small (the chemical shift or quadrupolar interactions), a starting point
is to assume that the eigenvalues and eigenstates are those of the large Hamiltonian only
and then add correction terms, as in a Taylor series expansion. Shown below is the
derivation of the correction to both the eigenvalues and eigenstates for a general

Hamiltonian (equation 2.6) which is very similar to that found in Baym.!

H=Hy+V (2.6)




where the eigenstates |n) and eigenvalues €, of Hy, the dominant interaction, are known

exactly

Hy|n) = g,|n). 2.7

It is assumed that the actual eigenvalues and eigenstates will be very similar to those of
the large H, Hamiltonian. This assumption will be analytically true as the size of the
perturbation V goes to zero. Therefore, we will arbitrarily redefine our Hamiltonian with

a parameter which may be varied between 0 and 1 (ultimately we will let A go to 1).

H=Hy+AV (2.8)

Now we can confidently expand the actual eigenvalues Ey and eigenstates | N) below.

IN) =|n)+ A ND) + 22| NP}t 23| N ).
(2.9)

Ey =&, +AE + 2EP + AEQ)+--
Now we assume that the eigenstates of H; are normalized to 1 ({n|n)=1) and we will

choose the normalization of

N) so that (n|N) =1 also.

(n|N)=1 =(n|n)+/1<n|N(l)>+ 22(n|N®))+ 2 (n| N )+ 2.10

This implies that for an arbitrary A each correction term I N (i)> is orthoganal to the origi-

nal basis state |n).
(n|MP)=0  for i=1,23,.. 2.11)
Now we can write the Schodinger equation for the complete Hamiltonian.
H|N)=(Hy + AV)|N) = Ey|N) (2.12)

Collecting terms on both sides of the equation with the same power of 4 yields the fol-

lowing set of equations.



2% 5 Hy|n) = g,|n)
Ao H0|N(‘)>+ Vin)= EQ|n) + a,,lN‘”)

22 > Ho|N®) + V|NO) = EP|n) + EP|NO)+ e[ N®) (2.13)

2% = Ho|N®)+ v|NED) = EP|n) + ERD|NO e, | NO)

To determine the first order eigenvalue correction E{", we need to take the scalar product
of the second equation with (n|. By our previously defined orthogonality and normaliza-
tion equations, this produces the eigenvalue correction term.
(nlHo| N} +(nlVIn) = (nlERIn) + (nle,| M)
e,,<n|N(">+ (n|Vin) = EW(n|n)+ e,,(nlN(')> (2.14)
(n|V|n) = EY)

This result states that to first-order in perturbation theory, we need merely to calculate the
eigenvalues using the original basis set. This is equivalent to simply ignoring the non-di-
agonal matrix elements of V. For most NMR calculations we perform, this rather crude
approximation is sufficient. In some cases where V is large, however, higher order terms
may be needed (for example the second-order quadrupolar shift). To calculate the higher
order eigenvalue corrections, we take the scalar product of the Ak equation with(n|. This

produces the following result.
ER) = (n|v| M) (2.15)

This expression shows that once we know the (k-1)th correction to the eigenstate, we can
calculate the kth correction to the eigenvalue. The first step in calculating the correction
to the eigenstates is to expand the kth correction eigenstate in terms of the complete basis
set of H,. Note that the sum excludes the m = n state but includes all other possible

eigenstates of Hy, as this state is defined as orthogonal to the correction eigenstate.

NOY = S 1m) m| N (2.16)
|NO) = 3 |m){m| N8))
m#n



Now to calculate the second order correction (higher-orders are calculated in a similar
fashion) we take the scalar product of the A! equation with a basis state (m| (but not (n|).
(m|H0|N<‘>) +(m|V|n) = (m|ED|n) + (m|e,,|1v<‘>>
s,,,(mlN(l)) +(m|V|n) = Eg)(m|n) + s,,(mlN(1)>
1
(m|V|n)= (g, — &, )<m|N( )>

(o ay™ ()

(2.17)

Finally, we insert this result into equation 2.16 and take the scalar product with (n|V.

EY) = (nlV|NO) = Z“'"L”’)_(;"'V'") (2.18)

m#n

At this point, a word of warning in general, accidental degeneracy in the &y
eigenvalues can lead to problems and special precautions must be taken under those con-
ditions (this actually happens when this type of theory is applied to nuclear quadrupole
resonance (NQR) experiments!3). However, for most NMR problems, this will not pre-
sent any difficulties. An alternative way of writing our result is that the original
Hamiltonian ( Hy + V) may be approximated by a diagonal Hamiltonian, in which the

higher order energy correction terms appear on the diagonal.

H= Z(e,, + EQ + EP -+ n)(n] (2.19)

In summary, the results of perturbation theory show that to first-order it is correct
to truncate Hamiltonians, such as the chemical shift Hamiltonian in the presence of the
Zeeman interaction, by ignoring all terms which do not commute with the basis (Zeeman)
Hamiltonian (this is often refered to as dropping the non-secular terms). In cases where
the first-order correction is very large, second-order (and possibly higher) corrections
must be considered, but these must be considered using the entire perturbing Hamiltonian
(as the truncated first-order Hamiltonian would actually give a zero result for any higher

order correction, as it is entirely diagonal in the unperturbed basis set).

10



Zeeman Interaction

In nuclear magnetic resonance, the single most important Hamiltonian is the nu-
clear Zeeman Hamiltonian. This is expressed in the laboratory frame below in equation

2.20.

Hz = “h}BoIO = —ha)llo (2.20)

The magnetic field, By, defines the z;4 axis, £ is Planck's constant, yis the gyromagnetic
ratio of the nucleus of interest and @y is the Larmor frequency. The spin operator, I, is

defined below, as well as the two other spherical operators which make up the complete

Zeeman spin operator set.
I=1,

. (2.21)
Iy =+ (I, £il,)

The most fundamental aspect of the Zeeman interaction in high magnetic field is that it is
always (for the purposes of this dissertation) the largest nuclear spin interaction present in
a system. This effectively means that the eigenvalues and eigenstates of the Zeeman
Hamiltonian will act as a basis set for the perturbative expansion of the other important
interactions. The m spin states (the Zeeman eigenstates) for an isolated / spin nucleus are

|1,m). The matrix elements in this basis set for the various operators are given below.
IylI,m)=m|I,m)
Iy |1,m) = %J(Ixm)(lim+ D|I,m+1)

(2.22)

In this description any state with |m| > I is equivalent to the null state. For many of our
applications, however, we will also use a density matrix formulation of quantum mechan-
ics. In this formalism, operators can be represented as matrices which operate on a den-
sity matrix which describes the system. Matrices which represent operators are defined

below.

11



~
I

1
N\ 1,m)I,m|I|1,n)(1,n|

m,n=~1

I
Y cmall,m){1,n| (2.23)

mn=-1

Cm,n =(I’m|1k|1'”>

A brief description of the density matrix formulation of quantum mechanics is
merited here. Suppose we have a linear superposition state y(¢) (in Hilbert space) of
the Zeeman Hamiltonian given below with complex coefficients a,, (t).

V)= 3 an(0lm) @20
m==1
This state will evolve under a time-independent Hamiltonian according to the

Schrédinger equation.

indv ()

=H
. w(t)

U (2.25)
y(r) = e "y (0)
Alternatively, the same information may be presented in a density matrix formulation
(Liouville space), where the density matrix which defines the system is given in equation
2.26.

p(t)=y()y'(1)= mn}_:_c;m(t O, m)(1,n| 226

e—th/h W(O) WT (O)eth/h = e—th/h p(o)eth/h
It is in this form that most NMR experiments will be described throughout this and other
works.

The initial density matrix at thermal equilibrium in a high magnetic field can be

shown to be

po = —exp{~Hy /kT} = (211 l){1+Hz/kT}

1
z° + (.27
= tr{exp{-Hz/kT}} = (21 +1)

12




where k is Boltzmann's constant, 1 is a (2/+1X 2/ +1) unit matrix, and T is the spin
temperature. It can be shown that only the second term is observable in an NMR experi-
ment and therefore the unit matrix may be dropped from the expression leaving the re-
duced density matrix p, that will be used throughout this work. (It may be noted that this

represents a very small net population difference of only about 10-4.)

_mBy

I =1 2.28
(21 +1)kT ° Pr=ro (2.28)

Po =

The evolution of a density matrix under a time-dependent Hamiltonian will be governed

by the Liouville-von Neumann equation, which may easily be derived from the

Schrédinger equation 2.25.
dp,(t
p‘;t( ~L[H(2),p,(1))] (2.29)

This may be solved analytically, where T is the Dyson time-ordering operator,20:2!
p.(1) = U(r)pov‘f(t)

U(r)= Texr - J' s)ds} (2.30)

Through out the remainder of this work, the subscript r will be dropped from the reduced
density matrix and the reader should assume that all density matrices are in the reduced
form.

The final element needed to look at NMR problems is the transformation to a
frame which is rotating at the frequency —wy,,, as in the classical case. This may be ac-
complished by the following transformations. First, the rotating frame wavefunction may

be related to the laboratory frame wavefunction below and may be inserted into the

Schrédinger equation.
y(t) = el (e)
d";f ) = H, y() (2.312)
d 'wrotl(l'w (t) .
4 : dt -0} = —haylp "0y, (1)

13



Expanding the various derivatives and simplifying yields the effective Hamiltonian, Hy,

below.

ihe!@rorlot ""’—dt“—) = 1@ doe 0 Y (£) = =y Iy € 0"y, (1)

it dw:;tt(t) = “h(a)l - (0,-0,)10 Vror (t)

I?Z = -h(wl - wrot)IO

(2.31b)

Pror (1) = €'t p(r)e ™ rarle
Since the Zeeman Hamiltonian commutes with Iy, we have merely an offset Hamiltonian
in the rotating frame, just as in the classical case. The concept of transforming
Hamiltonians into an interaction frame will prove essential to simplify calculations later.
In this rotating frame, the Zeeman energy splitting has been effectively removed, how-
ever it will show up as an energy offset on all rotating frame measurements or calcula-
tions, since these must always be performed in the stationary laboratory frame. In prac-
tice, spectra are usually collected over a narrow bandwidth centered at the rotating frame

energy and therefore the actual Zeeman splitting energy doesn't appear in most spectra.

Radio frequency irradiation

The application of radio frequency pulses to a spin system was discussed earlier in
the classical description. The quantum mechanical description is very similar in all re-
spects. We express the oscillating magnetic field created at the w,, frequency with in-
tensity B; in the Hamiltonian, Hrr. Here, the RF is applied to the system through a coil

which defines the x4, axis perpendicular to the static magnetic field Bp.

Hpp = —hyB, cos(@,o + ¢) 112 (2.32)

This Hamiltonian may then be transformed into the rotating frame, as in equation 2.31

and the new RF Hamiltonian is shown below.

14



ﬁRF = —B—"Z—B‘-[lx cos ¢ — Iy sin ¢]—
ﬁ?—'—[cos@mm,t +¢) I, —sin(20,,! + ¢) Iy] (2.33)
= _f‘_27§_[1x cos¢ — I, sin ¢]

T2is shows how the single oscillating RF field is converted into two RF fields, one at
zero frequency and the other at 2w,,,. In addition, this shows that by using a standard
single coil in the laboratory frame, fully one half of the useful RF power is lost in the ro-
tating frame. This second field averages to zero in the interaction frame and cannot affect
the density matrix, just as a high frequency oscillating magnetic field cannot pick up a
piece of iron in the laboratory frame. The rotating frame RF Hamiltonian is now the
dominant Hamiltonian in the interaction frame, as long as the offset, (©,,, — @), is small
compared to —ﬂ;l- Now suppose we allow the equilibrium density matrix to evolve for a
time 7 under the RF Hamiltonian (assuming no offset and ¢ = 0 ). In this case, the density
matrix after a pulse will be described by the following equation.
P( 1'.) = e—iw,rl,p(o)eimlrl,

= e-iw, I, Izeiw, T, (2.34)

=1, cos@ 7~ 1I;sinoT
This shows the same features as the classical description. In fact, including a phase or
offset term leads to identical results as the classical results. As a final note on the RF
Hamiltonian, by controlling the phase ¢ of the RF, the researcher can effectively apply
fields along both the x,,, and y,o; axes, which proves essential in the case of multiple

pulse experiments.

Chemical Shift Anisotropy

The chemical shift interaction is a good starting point to look at the major features
of the internal NMR Hamiltonians. Chemical shifts arise from the interaction of the

magnetic dipole moment of the nucleus and local magnetic fields generated by both the

15



motion of electrons in the large magnetic field (diamagnetic effects) and paramagnetic ef-
fects due to excited state electrons?2, I will not discuss the theoretical schemes used to
calculate these shifts and will suffice it to say that they exist and are often anisotropic
(dependent on orientation of the molecule). The form of the chemical shift Hamiltonian

is given below in equation 2.35a.

2
Hesy = hyaiso.csBO Iy + ho, 2 (_l)m A2C:§mTZC:§n

m==-2
Ocsa =576
5o = Boly | (2.35a)
Ti3) = Boly
T$3, =0

Where Af‘fn is defined below.

2
A= 2D (% 87,77 o

m’=~2
8¢ = (6zz - 6iso.cs)

pso =43 (2.35b)

Cs
pr+1 =0

s _1p o (=)
P22 =27CS = 35, 5 0)

The principal values of the chemical shift tensor (sometimes reported instead of

8is0.cs»0C° and 7¢s) are arranged such that |5u - (5,-50“.4 2 |5yy ~ Oisocs| 2 |6xx = Oiso.cs*
The values of these principal values are very small and are usually reported in units of
parts per million (ppm). For 13C, for instance, the range of possible chemical shifts is
from about -20 to 250 ppm which is about 27 kHz at a Larmor frequency of 100 MHz.
The Euler angles, (acs,ﬂ s, 7CS ) refer to the orientation of the principal axis system of

the chemical shift tensor relative to the laboratory frame (see definition of Euler angles in

16



figure 2.1). This Hamiltonian, while appearing quite complex on the outside, actually can
be greatly reduced when transformed to the rotating frame.

2
HCSA = hy(siso,csBO 10 + hwcsa 2 (—l)m AZC:EMTZC.fn

m=-2
753 = Bolo (2.36)
T53, = By(1,1 €05 @yt — il_y $in @1
T53, = By(1_1 €08 @yt — il Sin ,,2)
In the rotating frame Hamiltonian, all of the oscillating terms, Tﬁl, may be ignored
(alternatively an identical result comes from first-order perturbation theory), leaving the

simple chemical shift Hamiltonian.
3 S
Acgy = 18y, 05 0y Iy + oo By AS Iy (2.37)

Another way of thinking about the truncating effect of transforming to the rotating frame
is to say that any terms in any Hamiltonian which do not commute with the Zeeman
Hamiltonian will oscillate rapidly in the rotating frame and average to zero. In terms of
energy level splittings, the chemical shift may be expressed below.

AEGH, 1 = (L,m|Hcss|I,m)—(I,m = 1|Hsa| I, m ~ 1)

2.38
=ha, (‘Siso,cs + \/%56‘31426:3) ( )

Quadrupolar Interaction

The first discussion of the quadrupolar interaction was by Casimir in an essay on
the nuclear-electric hyperfine interaction in 1936.23 Additionally, one of the more com-
plete early treatments of the quadrupolar interaction is the work by Cohen and Reif .24
More modern information on this subject may be found in additional sources.6:12:!5 The

basic Hamiltonian has the same form as the chemical shift anisotropy Hamiltonian.
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2
HQ = th 2(—1)'" A2Q.—ng.m

m=-2
0. =90
2" 2121 -1k
1€, =% (38 - 1) (239)
T2y, = 35 (lolur + Iniko)

9 = I
Where AzQ,m is defined below.

2
Az’Q.m = ZD&?m(aQ,ﬁQ, yQ)pgm,

m’'=-2
eq=V,
p2 =43 (2.40)
PPy =0

(Vv
PPy =%np= ZVHW)

Again, as in the previous section, the values of the electric field gradient (EFG) in the
principal axis frame are defined such that |V,,| 2 Ivyyl 2 |V,,| and the Euler angles refer to
the orientation of the EFG axis system relative to the laboratory frame. Additionally,
since the quadrupolar tensor is traceless, there is no net isotropic shift due to this interac-
tion (at least to first order in perturbation theory). As before, we can truncate this
Hamiltonian by eliminating the non-commuting (Tgi,,’fgﬁ) terms. The remaining
Hamiltonian is expressed in equation 2.41.

~ h
Ay = %Ago(slg ~I(I+1)) 2.41)

This first-order perturbation result illustrates an example where higher order corrections
are needed. To show the necessity, we look at the eigenvalues for the 2/+1 energy levels

of the Zeeman basis states.
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~ hw
(1,m|Bg|1,m) = EG®) = 22€ AQ,(1,m|(313 - 1(1 + 1)) 1, m)

EJ9 =222 A% (3m® - 1(1 +1))

h
EJ® = 222 A% (1(1+1)) (242)

or

1 hw
ELY = "7 ALo(3- 101+1)

The last two energies are for the two distinct cases where the spin is either an integer
(I=1,2,3,...) or half-odd integer (1 = %,%,%,...). Also, it is notable that in the spin 1/2
case, only the final ES_;_Q) energy levels exist and are analytically zero, as is expected since
a spin 1/2 has no quadrupolar momeat of the nucleus. At this point it is valuable to cal-

culate the energy splittings between a variety of single quantum (Am = %1)transitions.
1 1 1 3hw
eSS, = Bg? - EY9) = =72 aZ, (2m - 1) (2.43)

The first feature which is immediately visible is that for m = %, the splitting is analyti-
cally zero. In fact for any other value of m, this splitting will depend on both the size of
the quadrupolar coupling and the orientation of a given crystallite. Only half-odd integer
spins have a central transition (% « -—-1,_,—) which is unaffected by the quadrupolar interac-
tion to first order. In addition, if we calculate the energy splitting for a multiple quantum
(m & —m) transition (for both integer and half-odd integer spins), we find that these also
have no first-order quadrupolar energy splitting correction. For both the central transition
and multiple quantum transition, it is crucial to calculate the second-order contribution to
the energy splitting since this becomes the dominant energy splitting correction.
Additionally, when the quadrupolar coupling is large, the second-order quadrupolar cor-
rection will make significant changes to the satellite transition energy splittings. For the
remainder of this thesis, I will describe experiments and theory pertaining primarily to the

central transition of half-odd integer spins. For more information on the study of multi-
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ple-quantum overtone spectroscopy or integer spin spectroscopy, I direct the reader to the
original NMR references and references therein.67:12:25-28

To calculate the second order correction to the energy splittings in a quadrupolar
system, we need to return to equation 2.18 where now the sum is over the additional 27
Zeeman states (all except for the m state) for a quadrupolar spin /.

20) _ (I,mIHLU,n)(I,nIH [1,m)
E'(" B Z hw,;(m—n) <

(2.44)

n¥m

Rather than calculate this for a general m, I will instead look only at the central transition

second-order quadrupolar energy splitting expression.

AE(0) Z" (Ln|Hg| 1.5 " Z [(7.n1Hg| 1.3 "

‘i“’" ned ha),(-—-n) i ha),(--——n)
_ , )
(Ln| X (-1 AL, TS |1.4)
Z’ == 1
_2922_ nz (5"") (2.45)
o, 2 '

(1,n] 2( 1)* A2, TS k|1 -—)
k=-2 ,
5

_ﬂ*—i

=

These sums may be simplified by realizing that the TzQ,c spin operators produce non-zero
results for only very specific bra-ket pairs. For example, (1, j |7'2Q0| I,m) # 0 only when j
and m are the same. In fact, below are shown the only non-zero matrix elements involv-

ing the Ii-%) ket, which will be used to simplify equation 2.45.
(L£3|1R|1.24) = £ (3 -1+ 1)
1

( ’;%ITZQﬂII +’2L> 0

(L£3[T8|1.£3) =(1-3)(1+3) (2.46)
(1331|124 = G-+ )
(L2318l e4) =3 (1-3)(1-3)(r+3)(1+3)



Also, because the sums over n are limited to n # +32- and n # -—12- respectively, the first of
these relationships will not be used at all. The second shows that in fact all n # :t-‘z- may
be ignored. Additionally, if the spin is I = 3/2, then the final relationship will also disap-
pear (as evident in the fourth formula of 2.46 and in the fact that there is no 5/2 state for a
spin 3/2 nucleus). Now performing the sums in equation 2.45 we arrive at the following
formula for the second-order central transition energy splitting correction. Equation 2.47
was simplified using the complex conjugate relationship ( (2,,,) =(-1)"A 2_m which is

correct in this case, while not generally true for all tensors.

AERQ) = "“’Q SL(1(1+1)-3)(24842, + a%A2,) (2.47)

AE)
77 2

This result is now in a form which may be used to calculate actual NMR line positions,

which we will do in the next section.

Dipole-Dipole Interaction

The homonuclear and heteronuclear dipolar coupling Hamiltonians are some of
the most well studied in NMR. The basic form for a Hamiltonian describing the coupling

between two spins i and j is given in equation 2.48.

Hy=-Fhop 3 (1) 4P 70
p==Yhop, ¥ (-1)"4". Ty

j#i m=-2
_ VY
D; = 3
Ti j
-‘; = ( ) (2.48)

T =hinljn

Where A, |, Di js defined below.
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2
D, 2 D;
at= X DB (e B ] oo

m'=-2

P2l =13 (2.49)

Pf.iil = Pf.liz =0
As usual, the Euler angles refer to the orientation of the principal axis of the dipolar
coupling (corresponding to the vector connecting the two nuclei) relative to the laboratory
frame. It is immediately apparent upon substitution of the principal axis components into
the formula for the spatial tensor Azo' ¥, that only ﬁé) , which corresponds to the angle
between the internuclear vector and the static magnetic field, affects the overall
Hamiltonian. Secondly, truncation of this Hamiltonian by the Zeeman Hamiltonian is
more difficult because there are two cases, the homonuclear (i and j have similar Larmor
frequencies) and the heteronuclear (i and j have different Larmor frequencies). In any

case, only the m = O term will remain, giving the following Hamiltonian.

Hp = -3, hop, $(3Lolj0 -1 - 1;)d63(BF) (2.50)

J#i
I will return to this formula in chapter 3 when discussing the homonuclear dipolar cou-
pling contribution to dynamic-angle spinning linewidth. In addition, I will use this
Hamiltonian when discussing the theory of cross-polarization in chapter 5. In all other

cases, the dipolar coupling may be thought of as an irreversible relaxation mechanism

which leads to a Gaussian decay.

Truncation of RF Hamiltonian by the Quadrupolar Hamiltonian

The quadrupolar Hamiltonian is often times the second largest interaction present
in a system (in most cases only the Zeeman is larger) even in the presence of RF irradia-
tion. As such, when both radio frequency irradiation and quadrupolar Hamiltonians are
present, it is important to evaluate the relative sizes of these two parts,29-34 just as the

Zeeman offset term affects the RF effectiveness. To compare the RF and quadrupolar
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Hamiltonians, we need only examine the first-order contributions, since the second-order
quadrupolar interaction will rarely be larger than 100 kHz in the systems we study. The
total RF and quadrupolar Hamiltonian which is present in the rotating frame is given be-
low.
H=Hy+Hy+ Hyp
th

= (@) = Opor )Mo + 2 AL (313 - 1(1 + 1) (2.51)
+—’;9—'[1Jt cos ¢ — I, sin ¢]

In order to simplify this Hamiltonian, we may rewrite it in terms of fictitious spin 1/2 op-
erators. These are spin operators which involve only two states and look like the tradi-
tional spin 1/2 operators. Given below are the basic definitions which have been outlined
previously,25:26.33

< G-k 1 =1

1 = L(1 )k + k) ]) * =14 (2.52)

B = S(-iXkl+1R)G) B =-1Y

Within the jk manifold, these operators obey the usual spin 1/2 commutation rules
|2, 1] = in (2.53)

where a,f3, 7 = x,y,z and cyclic permutations. For commutators between different sub-

manifolds, the following commutation rules apply.

r .k .kw- .k k _ .
=[] =
jk  yik i 1k k ik (2.54)
i — ! —
L1){ g ‘_?1; [11 Ik ]_%
12, 15]=0

The last is the most important, since this states that all fictitious spin-1/2 operators com-

mute between unconnected manifolds. Using these relationships, the normal I, I and Iy
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may be redefined in the Hamiltonian given by equation 2.48 (where the spin / is a half-
odd integer spin) using the following relationships.
=211+ 122 4 2020 - 1)( 122 + 121713 )4

+n(21 = (n=D)(Ipnt 4 P22 (2.55a)
2041 2143
+(I+ -;—)z(lz A )

I = NZI(I}? + 1203 4 22T = 1) (123 + 121712 )4
+yn(2] = (n = 1)) (It 4 222 (2.55b)

+(1 +-;-)(1L'fﬂ'2"2+‘3)

X

I, =21 (12 + 2P+ 21 = 1) (123 + 121712 ) 4.

+yn(2D = (n=1)) (1! 4 22 (2.55¢)
+3

21+1 21

L) (eany

Additionally, the (313 -I(1+ l)) term may also be reduced.
(313 - 11+ 1)) = (21 - 1)(1}? = 12211 ) 4 (417 - 81 +3)(22° - 121712

n-1 n-1
+ _“+_12_(2n12 _ 2(61 + 1)1 + 321-2](1;1.11'“ _ 13[+1—n.2l+2—n)(2.56)
i=0 =0

+ ---+(0)(1Z 22
The last term is of particular importance, as this is the central transition contribution of
the first-order quadrupolar Hamiltonian. As expected, this is zero and this makes the
central transition manifold different from all of the other fictitious spin 1/2 manifolds for
this Hamiltonian. The Hamiltonian from equation 2.51 may be divided into a sum of jk
sub-manifold Hamiltonians H’* below with all other Hamiltonian elements (j — k # 1)

Zero

24




B0 4 M = (0 = 0y )(20 - j+ D)(IF 4 1) 4

"7“’2 Ago(z I + 12(3; - (6i + 1)1)}(1{1'” =17+ 2.57)

i=0

Ij,j+1 + In,n+1 )COS ¢ -

h Ty s s V% x
’;B‘ \/‘;(21“14-1) Jij+l nn+l\ _:

(Iy' + Iy' )sm ¢

where we define n =21 +1- j. These Hamiltonians may be truncated to first-order us-

ing our knowledge about the size of the interactions, (a), - Wy ) < % << ;7% Ago.
HI 4 B = (@) = 0,0 )21 = T+ 1)( 19+ 127 +

E%Q'Az 0(2112 + 2(31 - (6i + 1)1)}(1{1‘“ _ ,:.m)
(2.58)

.._7,_131'2’ +3 ]
H %2 “h 601 O, ( 5)
an

21+ )[12'2 R

l 3
+

2__.
2 ,
z

2/+1 2743
cos¢p—~1I, 22 sin¢J

This shows that the application of an RF pulse to a quadrupolar system produces distinc-
tively different results that when applied to a spin 1/2 system. First, the Hamiltonians
under RF irradiation for the outer transition sub-manifolds (the upper equation in 2.55)
are all identical and are equivalent to free precession without RF irradiation. Second, the
Hamiltonian for the central transition (the lower equation in 2.55) corresponds to the
same Hamiltonian as a spin 1/2 under RF irradiation, with the change by a factor of I + %
in the effective rotating frame magnetic field. Thus, a 90° pulse for a quadrupolar nu-
cleus will be shorter than for a comparable spin 1/2 system by a factor of I + -;— since the
RF precession frequency is scaled by this factor. The effect of quadrupolar truncation of
the RF Hamiltonian will be more thoroughly discussed later when we look at cross-polar-

ization of quadrupolar nuclei under Hartmann-Hahn matching conditions (see Chapter 5).
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Coherence Pathways

Having briefly described both the Hamiltonians present in most solid systems and
the effect of truncation, it may now be useful to describe evolution and detection of NMR
signals. For most of the experiments in this thesis, I will look at simple two level systems
(either spin 1/2 or the central transition of a half-odd integer quadrupolar nucleus). In the
absence of dipolar coupling, there are only three different coherent states that the density
matrix can evolve into or from; they are I, I, and I, (for quadrupolar nuclei, the central
transition superscripts have been dropped). Alternatively, the density matrix may be ex-
pressed in terms of spherical tensor operators I, I+, and I_. Our detector will always be
a single coil capable of collecting data in quadrature (both the real and imaginary compo-
nents in the induced FID). Therefore the observable in our experiments will be I (or I}
but never both). However, the phase of the receiver (¢,) may be controlled (by adding
the real and imaginary data from each scan differently in the computer acquisition system
to form the FID) to arbitrary accuracy in the computer. That is to say our observable may

be written in equation 2.59 as
S(t) = [ p(r)L1e™ |. (2.59)

This has the property of extracting only the /_; components from the density matrix; all
other components will have a zero trace. The response of the system to pulses and free

evolution can be characterized by the Hamiltonians below (where the pulse is applied

with phase ¢).
3 AEg,
o e (2.60)
ﬁRF=hwRF[1xcos¢—Iysin¢] wRF=Z§—‘(1+-]2-)

The response of each of the possible states of the density matrix to each Hamiltonian is

given below.
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Ugr = exp|—i Hget/h] = exp|~ieoggt(1 cos ¢ - I sin 9]

(2.61a)
Uﬂd = exp[—ia)ﬂdtlz]
UR,;IZU};,,- = I, cos Wppt + 8in a)R,.-t[Ix sin¢ — I, cos ¢]
UrrlUkr = Ix(cos2 ¢ +sinZ ¢ cos a)RFt) +1, 029 (1 - cos wgpt) -
I, sin ¢ sin wgpt (2.61b)
o .2 2 sin2¢
UrelyUpr = Iy(sm ¢ +cos” ¢ cos coR,.-t) +1,— (1-cos Wrrt) +
I, cos ¢ sin Wgpt
Usal Uka =1,
UﬁdeU}id =Ix COS(Dﬁdl‘+ Iy sin wﬁdt (2.61c)

U gl Uy = 1, €08 0 gt = I sin 0 gt
These equation are more useful when expressed in the spherical operator basis set.
URFIOU;QF = Iy cos Wgpt + is—mjaz’a"’—'[lﬂe“"p + I_le""]
UppluULe = % Ly (14 cos @gpt) = % I (1 - cos wggt)e ™ + (2.62a)
+ Ie™ sin gyt

U ,dIOUT‘d = Io
g ¢ (2.62b)

=Fiwﬁdr

UﬁdIﬂU;id = I_+_le

These equations may now be used to show the importance of coherence pathways in
NMR. As an initial example, we will look at an experiment consisting of a 90° pulse with
phase ¢ followed by a delay ¢ followed by a 90° pulse with phase ¢, followed by a de-
lay #; and then acquisition with phase ¢,. The observed signal may then be calculated us-
ing the above equations (2.62). Our initial density matrix will be Ip. This evolves during

the first pulse into the following coherences (or states).
lo——2—> 5 (L1e™® + 1, ) (2.63)

This state will continue to evolve under the FID Hamiltonian for a period ¢ giving the

following result.

27



S (Le™ + L™ )—-5’2-4%(1#"("' romh) | g o “"ﬁ”")] (2.64)

The 90° pulse is then applied, which gives the result below.

(. - ; - \
( ) '2_:]‘5'1+1(e '(¢1+wﬁd‘1)_e'(¢1+wﬁd'l 2¢z))
' —i{ ) +@ g5ty
iy fid _ .
V2 't N :'/_I_l(el(%‘*wﬁd’x)_e-l(¢x+wﬁd'1-2¢z)) (2.65)
+7‘=I lei(¢1+&)ﬁdt|) 2V2
5 1-

L__1_Io(e"i(flh*“”ﬁd’n"‘i’z) +ei(¢1+wﬁd’1-¢2))
2
/

This density matrix will then evolve for a second ¢; + #; period, at which point we can
calculate the observable signal in #) (as detection occurs from #; = 0 on). Since evolution
under the FID Hamiltonian does not result in any transfer of coherence between different
density matrix states (for example I_, to I,,), the only coherence we need consider is the
1_, contribution (all others produce a trace of zero with our observable).

ei(¢1+ﬂ’ﬂd‘1) _ i("’l +2“’ﬁd'1) -

27 (oo -26,) 22! o i(81-202)

e2ia’/u‘1ei(¢1'¢r) ).
e 52 [ 1_1,,]

S(tt) =3 ilh-20244,) (2.66)

eZiwﬁd’l ei(¢1-¢r)

|
E| -i(g-20,+,)

W gyt
Paad i

This signal shows two components. The upper component is the signal coming from di-
rect evolution after the initial 90° pulse (notice that the #; dependence is identical to one
where there is no second pulse). The lower component is the echo signal (notice it has no
t; dependence) coming from the second pulse. If we try to acquire a spectrum which
contains only the echo signal, using only a single set of pulse and receiver phases will not
cancel the unwanted component. Suppose now, we add together the signal from four dif-

ferent experiments where the phases of the pulses and receiver (¢;,¢,, 9, ) consist of the
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following four sets {(0,0,0),(90,0,270),(180,0,180),(270,0,90)} (given in units of
degrees). Adding together the four signals will produce the following result.

2' ‘ -1 o
it e 'wfudl(e0+e '”+e0+em)—
— i fidf2
S(t],tz)-—-74 e

2 9; 94 ¥
(eo +e M L oUT Lo 2'") (2.67)
; j ! . .
= j'i'elwﬁd 2= 7‘-2-(—sm @ g4ty +icOS a)ﬁdtz)

These phases choose only the coherence pathway that we desire, that is the echo signal.
The phase cycle was arrived at by setting the net phase of the evolved signal equal to

zero, which for this sequence was ¢; —2¢, + ¢, = 0. This equation tells us the mathe-

909, 90¢, O
H h " 4] ‘ 9]
+1 (I4y)
0 (lo)
-
\
\
“1()_\ i

Figure 2.2 90-90 Echo Coherence Pathway. The bold line is the desired signal. The
dashed line is the main artifact we wish to remove.

matical relationship between the phases. However, it does not tell us how many different
phases each pulse must be cycled through to remove artifacts. This is actually an old and
difficult question which I will not answer completely. The partial answer to this question
can be seen in the formula for the signal. The upper signal came from a density matrix
element that is proportional to /_; in both ] periods while the lower signal came from a
density matrix that was proportional to /,; in the first ¢; period and I_; in the second.
Graphically, this is shown in figure 2.2 where the bold line denotes the coherence path-

way of the echo signal and the dashed line represents the coherence pathway of the un-
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wanted one pulse signal. This formalism was first put forth by both Bain3¢ and
Bodenhausen et al.37 and is discussed quite thoroughly in Ernst's book on multi-
dimensional NMR.? In figure 2.2, the density matrix elements are labeled as coherences,
in this case +1, 0 and —1; these are often assigned the variable name p and a transfer of
coherence between levels is written as Ap. The coherence pathway for an experiment
may be written as a vector Ap = (Apl yA4p,,4ps,..., Ap,,) of n Ap; elements where n is the
number of pulses. The 90°-90° echo experiment may be written (+1, —=2). It has been
shown in the above references that when a pulse is independently cycled through m
phases (0%%13@%1-)5), this cycle leads to selection the selection of a specific
Ap; and additionally Ap; £(m—1), Ap; £2(m-1), etc. In our experiment, the
quadrature of our receiver will automatically select only the —1 pathway in ;. Therefore
by guaranteeing that the first evolution period is a +1 coherence, we can assure that we
observe only the signal we want. It is obvious that using only 2 phases for the first pulse
will leave both Ap, of +3, +1, =3 and —1. The +3 and -3 coherence transfers are harm-
less since the density matrix can only have coherence between +1 and —1 for our system.
The -1 coherence transfer is a serious problem and indicates that the unwanted (-1,0)
pathway will survive. However, a phase cycle of 3 will result in Ap; of +4, +1, and 2.
None of the unwanted (+4 and -2) coherence transfers will produce any observable

signal. In the phase cycle for the experiment given earlier, we could have used

{(0,0,0),(120,0,240),(240,0,120)}, (2.68)

however this would necessitate 120° phase shifts which can be difficult on some spec-
trometers (especially in the receiver phase cycle). This same sort of analysis can be ap-
plied to more complex pulse sequences and at the appropriate locations, I will point out
the reasoning behind the phase cycles for the experiments used in this thesis. For further
information on phase cycling, the previously mentioned references will provide a good

starting point as well as additional references contained therein.
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Eigenvalues from static samples

The eigenvalues from both the chemical shift and quadrupolar Hamiltonians have
already been discussed. However, all of our expressions are in terms of zero and second
rank spatial tensors A,f',,. These spatial tensors are highly dependent on the orientation of
the principal axis system (PAS) of a crystallite with respect to the magnetic field (see
equations 2.35 and 2.40. Under static (time-independent) conditions, both the quadrupo-
lar and chemical shift energy levels can be calculated explicitly as functions of PAS ori-

entation. Looking first at the chemical shift interaction, we expand A below.

ASS = ZD,(,.Z,Z)(GCS,ﬂCS, ,},CS)pZC’;?l

m=-2
[ (2){pCS), 1 2 cs

| (B ) + Zer e () +

=\/; Nes 2i2CS (2) ( pCS (2:69)
2 035

=\/§ ———3°°Szfcs -l +"—§S-cos2acs sin® ﬁCS:l

This yields energy eigenvalues given below.

2 pCS _
AES . = hm,(&-mm +8¢ [éf-"fz‘;—‘ + 15 cos 20 sin? B D (2.70)

For a quadrupolar nucleus, the first-order quadrupolar eigenvalues are derived in a
similar fashion, since they are proportional to AZQO. The final result for the first-order

quadrupolar contribution to the energy splitting is given below in equation 2.62.

1 3 3cos® g2
AES,,‘_{),,,_ —41232‘,’Q1)(2m—1)[—9§—5@———+ 22 cos2a? sin ﬁQ]

h3C 250 _ .
=7 2/01) (2 )['3"—'——":05 ZB ! + EZQ-COSZGQ sz BQ:] 2.71)

_e*q0
Co= "

Figure 2.3 shows the energy level diagram for a spin 3/2 nucleus for a single orientation

of the quadrupolar PAS in the absence of chemical shift anisotropy. As was pointed out

31




earlier, for the central transition (where m = 1/2 in the above expression) there is no first-

order quadrupolar contribution to the energy splitting.

First-Order Second-Order

Zeeman Quadrupolar Quadrupolar

AE[+AE'? A, +AE‘Q+AEZQ

2 f s
2
w AE[+AEZQ
_L AE,
~ >

AE; +AE'Q AE, +AE'Q+AE2Q

I S
—— \\\

Figure 2.3 Zeeman and Quadrupolar Energy Splitting for I=3/2 nucleus.

In the case of the central transition, we must also include the second-order quadru-
polar correction to the energy splitting as well. This is more difficult to calculate, as the

spatial dependence is the sum of two terms. We can first look at the product A%Azg_, by

explicitly calculating AS, and A |.

2
Az = Zfﬁ%(ag,ﬁg,y‘?)pgm
(2)(BQ) "YQ :’/de)(ﬂQ) -iy?-2ia? +

= J; No d(2) (BQ)e—l}'Q-i-ZlaQ (2.72)

\/gsin 289 + %isin 202sin B9 -

n :
Tg-cos 202 cos B9 sin g2

ive
37
e
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0 _ i@ \/-%-sinzﬁ(? —%%isin 209 sin B9
a —\B_e n (2.73)
-7%cos 202 cos B9 sin p2

Multiplying these together gives A%AZQ_,.
9sin? 28€ + 0} cos? 20@ sin? 282 ~

AGAL, = (2.74)
e 3ng cos2a?sin? 282 + 4né sin? 2 sin? p2

Likewise, we can calculate the product A%Ag_z from AS and A ,.

0 \/Z -2iy@ \/%Sinz ﬁg—%isiﬂag cos B9 +
A =Nz ol 20 2.75)
W%cosZa (1+Cos B )
sm ﬁQ'i' zsm2anos/3Q+
A2, \/- 2iy? 276 )
B (2.76)
mcosZaQ(l-f-coszﬁQ)

2
rl'g cos? 2aQ(l + cos? ﬁQ) +

AGAL, = &| ngcos2a2(1+cos? B2)sin® B2 + 2.77)

nQ “25in? 202 cos® B2 + 3sin® B2 +

The sum, 2A291A;§,2_l +A2QZAZQ_2, may be written in terms of products of cos 2ia and
cos 2j where the coefficients a;; are given in table 2.2.
2 2
24942, + ASA2, =13 a; cos2ia? cos2 jB2 (2.78)
i=0 j=0

The energy splitting correction from the second-order quadrupolar effect is then given by

equation 2.70.

5 e290)" (101+1)-3)
AE! Qz% = (32,222(1 e ZZaU cos 2io? cos 2 j°

=
2 i=0j=0

HC2(I(1+1)-3) & & 0 o
= Terare, & 2% o8 e cos2ip

(2.79)

This energy splitting is shown for a single crystallite orientation in figure 2.3.
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i j ajj i J aij
0 0 -H(18+nd)| 1 2 -2,
o 1 -F(-3m)| 2 o  Hnj
0 2 #(18+n}) 2 1 -$nd
1 0 ¥ 19 2 2 & 5
L ! 37

Table 2.2 Cosine Expansion Coefficients. The ajj coefficients are used in the expansion
of the anisotropic portion of the second-order quadrupolar interaction in equation 2.70.

The total energy splitting, including both chemical shift and quadrupolar contributions,

under free precession in a high magnetic field may then be given by equation 2.80.

AE, ., =ho, + AESA _ + AEVD) 4 AE(?Q) (2.80)

m—m m—-ym—1
It is important to note that in a powder sample, where all orientations of crystallites are
present, there exists a continuous distribution of energy splittings corresponding to each
individual PAS orientation. This is in contrast to a liquid sample where the rapid motion

averages out all orientational dependence of the energy splitting.

Eigenvalues from Rotating Samples

In the previous section, the expression for the free precession energy splitting was
derived. This expression has multiple terms which have anisotropic (orientational) de-
pendences. One of the primary goals of solid state NMR is to acquire spectra which look
like liquid-state spectra. The goal of high-resolution isotropic spectra has been ap-
proached primarily from two direction. The first is the averaging of anisotropic interac-
tion by averaging the spin operator tensors with multiple-pulse schemes. These tech-
niques work quite well for dipolar interactions (see Haeberlen's book for a more complete
review of this subject3®). However, for Hamiltonians such as the truncated chemical shift

and quadrupolar interactions, multiple-pulse experiments can only average the anisotropic

34




contribution by averaging the isotropic contribution as well (for example, the CPMG

pulse sequence349), The second and more popular averaging technique involves

o N

B,

(a’ﬂ’Y) (wl't’ 9:0)
PAS l ROTOR LAB

—_—
X, Y,Z2) x,y%2) (x¥.2)

Figure 2.4 PAS to ROTOR to LAB rotations. The Euler angles used in moving from a
sample fixed PAS coordinate system to the laboratory system are indicated. This in-
volves multiple rotations.

removing the spatial tensors with time dependent spatial trajectories which approximate
isotropic motion. The technique of magic-angle spinning is the most important of these
time dependent trajectories. In the magic-angle spinning (MAS) experiment, the sample
is rotated rapidly (>4 kHz) about an axis oriented at the angle
6, = cos™! (l/ \3 ) = 54.74° with respect to the magnetic field. This has the effect of in-
troducing a time dependence for a general spinning angle to the spatial tensors A,':',, given
in equation 2.72.

l l
A=Y, YD (w.6,0)D5)(e* B4 v} )i (2381)

n=—{m’=-l|
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The A in this expression refers to either the chemical shift, quadrupolar or dipolar inter-
actions. The Euler angles which define the first rotation are 0, the spinning axis angle
and wyt, the time dependent rotation angle. These rotations, along with the usual PAS
rotations are shown in figure 2.4, When rotation is sufficiently rapid
(i.e. w, > w,b'CSA or o, > wé/w,). the time dependent (n # 0 in equation 2.81) terms
may be ignored (since they will average to zero) and only the time independent terms re-
main.
Ap =d\) (6) ZD(”O(a Bry )p;},,. (2.82)
m'=-1

For the chemical shift interaction, the important spatial tensor is Ay . 5. In this case, equa-

tion 2.82 may be expanded below.

3cos? f5 ~1

Ags =\[§(3cosz29—l) -t

-n—gs-coszacs sin® B
4 (2.83)
3cos? B -
AE —)m 1= h(D, al‘so,cs + 565(2295_22“6’:'1) 2
l7§5-cos 20 sin? g5
The only difference between this expression and the previous static expression is the sec-
ond-order Legendre polynomial (P;[cos 8]) scaling factor. The choice of the magic-an-
gle is now apparent, since this angle is the one which makes the second-order Legendre
polynomial zero and eliminates the anisotropic portion of the chemical shift interaction.
Likewise, it can be shown that magic-angle spinning can also remove the effects of both
homonuclear and heteronuclear dipolar coupling (both of which have a spatial depen-
dence which can be represented as a single second-order tensor). For the quadrupolar
interaction, this same analysis holds for the first-order effect when the spinning rate is

larger than the quadrupolar coupling constant.

1 3 3cos’ 0-1 ) 3cos?p2-1 1 .
AEMD | = 4,fz‘}Ql)(zm-l)( cos_ )[ cos § +70coszaQsm2ﬁQ] (2.84)
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In practice, this may only be observed for nuclei in highly symmetric environment (for
example 23Na in NaCl or 79Br and 8!Br in KBr) or with a very small nuclear quadrupolar
moment (such as the spin 3/2 nuclei 7Li and 133Cs). Even for these nuclei, spinning
sidebands which arise from the time dependent terms are often observed. For quadrupo-
lar nuclei with a large quadrupolar coupling only the central transition is observable (and
excitable as well), which has no first-order quadrupolar contribution to the orientation
dependence of the energy splitting. The second-order quadrupolar correction does, in
fact, show strong orientational dependence. Under fast spinning conditions, just as be-
fore, the time dependent contribution to the A%Azg_I and A%AZQ_2 products may be ig-
nored. As before we may calculate the individual contributions A% A2Q_, and AZQZAZQ_z.

A= Y 30 (04,6,0)0(2)(a?,6.12)o, x
;~—2k—-2

Zzzwzeo 2 (?.82,72)pf,

n=-2 p=-2

(2.85)

The removal of the time dependent terms is more difficult, since the product must be ex-
panded completely before dropping the time dependent terms. This eliminates all of the
terms except those where j + n =0. As has been shown earlier by Mueller', the spatial
sum may be written as a sum of cosines of the PAS Euler angles @ and ﬁQ in equation

2.71.

2
Za‘ cos2ia? cos2 j2

Mu

24242, + A%AL , =1

i=0 j=0
(2.86)
AE(;_?E_,Z_ %_ﬁ Za,j cos2ia? cos2 jB2
Note that the coefficients aj; are now defined as
aj; = a,(j ) P »[cos 6] + a( )P4 [cos 6] (2.87)

where the fourth-order Legendre polynomial (P4[cos 6]) is given in equation 2.88.
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P4[cos 6] = }(35cos* 6 - 30cos” 6 + 3) (2.88)

Each component of aj; is defined in table 2.3.

The formulas for the energy eigenvalues under rapid spinning conditions given in
equations 2.84 (first-order quadrupolar), 2.86 (second-order quadrupolar) and 2.83
(chemical shift anisotropy) all show both spinning angle and orientational dependence.
These dependences manifest themselves in the form of inhomogeneous broadening of the
NMR line for powder samples. In the next section, the actual lineshapes resulting from a
powder average for the various interactions will be shown. The effect of incomplete av-

eraging due to spinning will be discussed in a later section (see chapter 3).

i j a‘(jo) a,(f) "z(i)

o o —B(i+dng) -B(-313) sleerd)
o ! 0 -F(1-4mp) H(18+md)
0 2 0 0 5 (18+n3)
L 0 0 %inQ -§-an

! ! 0 —274"77(2 %an
: 2 0 0 - &g
2 0 0 0 %773
2 0 0 -3}
2 2 0 0 AL

Table 2.3 Coefficients in Anisotropic Cosine Expansion for the 2nd-Order Quadrupolar
Correction Under Fast Spinning Conditions.
Lineshape simulations

In the absence of spinning, the static eigenvalue equations may be used to obtain
the theoretical spectra observed from both spin 1/2 and quadrupolar nuclei. In all cases

where a powder sample is simulated the assumptions are the same. First, all orientations

38




of the crystallite PAS are equally probable (there is no sample alignment or preferential
geometry of the crystallites in the powdered sample). Second, all orientations of the crys-
tallite PAS are present in the sample. Third, the contribution from each crystallite to the
spectrum will be equal. With these three rules, we can construct a powder averaged
spectrum for a static or rotating sample. Mathematically, the process of calculating the
intensity at a given frequency (or energy) is equivalent to doing the following integration

over the sample.

Iw)= | |8(hw- AE(c,B))sinfdf da (2.89)

N
Q—y
O ey N

In this expression, the sin B scaling factor is included when converting an integral over a
unit sphere in Cartesian coordinates to spherical coordinates, to maintain a constant
df da solid angle. Also, the Dirac delta function is defined below.

6(a—b)={

0—>a#b

2.
1->a=b (2.90)

This formula may then be used to create a spectrum by performing the integrals for each
frequency within the sweepwidth of the spectrum. (We will also use equation 2.90 later
in chapter 3 when calculating spinning sideband positions and intensities.) Spectra simu-
lated in this fashion are shown in figure 2.5 for static spin 1/2 nuclei and quadrupolar nu-
clei.

It may be seen that the central transition goes off scale in the first-order
quadrupolar spectrum in figure 2.5. This is because, in the absence of chemical shift
anisotropy or dipolar broadening, the central transition has no first-order broadening. In
the second order quadrupolar spectrum, none of the satellite (outer) transitions are shown,

as they are of negligible intensity in the sweepwidth shown.
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This method of simulating spectra works equally well for spinning samples. In

figure 2.6, the high speed magic-angle spinning spectra of samples with identical parame-

c)
L | l | ] | § L l 1 L} L} L} ] ¥
~~.. -10 10 Pt
[}
b)
1 ] L) l | § 1 1 L} ' 1 L 1§ | § l 1 i =
-2000 0 2000
a)
] i g l | § L L) L l ] LI L} L] l 1 4 ¥
-10 0 10
Frequency (kHz)

Figure 2.5 Static CSA (2}, 1st Order (b) and 2nd Order (c) Quadrupolar Lineshapes. For
the chemical shift anisotropy simulation, @ was 100 MHz, §;5 cs Was 10 ppm, &€S was
50 ppm and ncs was 0.3. For the 1st Order and 2nd Order Quadrupolar lineshapes the @y
was 100 MHz, 8;50 s Was 10 ppm, I was 3/2, wg was 3.0 MHz, g was 0.2.

ters as in figure 2.5 are simulated. The spectrum of the spin 1/2 nucleus is completely
averaged into a single narrow line under MAS. This is expected, as all of the anisotropic
contribution to the energy splitting is averaged to zero. The second-order quadrupolar
MAS spectrum, however, is still quite complex and only about a factor of 3 narrower than

the static spectrum. This is expected as well since the second and fourth-order Legendre
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polynomials never simultaneously approach zero. In fact, this demonstrates the basic

JL

-10 0 10
Frequency (kHz)

Figure 2.6 MAS CSA (a) and 2nd Order (b) Quadrupolar Lineshapes. The simulation
parameters are identical to those in figure 2.6. Notice that while the chemical shift
anisotropy is completely averaged by MAS, the 2nd order quadrupolar interaction is only
slightly reduced (about a factor of 3) from the static simulation.

problem in observing the central transition of quadrupolar nuclei. There is no single
spinning axis which completely removes all of the anisotropic broadening to yield a
liquid-like spectrum (analogous to MAS for spin 1/2 nuclei). In figure 2.7, variable-angle
spinning (VAS) spectra are shown for a variety of spinning angles and quadrupolar

asymmetry parameters 7)g showing the range of both shoulder and singularity locations.
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A problem with the previously mentioned simulation scheme is the speed at
which spectra can be simulited. If we wish to use a least squares minimization approach
to simulating chemical shift and quadrupolar broadened spectra, the aforementioned

method is too slow. A slightly faster method is to divide the overall sweep width into N

n=0.00 n=025 ©=0.50 n=0.75 n=1

eow_LL_MA/KA
S B N W N
e |
Sl I N B W
SN N I
S N W N
e ) A AL A
Sl W W N NN

Figure 2.7 Quadrupolar VAS Spectra. All spectra are simulated assuming fast spinning
limit and constant C( and variable angle 6 and 1g.

bins. The angles o and B are then looped over their integration limits in small step sizes
and the frequency at each point is calculated. The scaling factor, sin f3, intensity is then
added to the appropriate frequency bin for this point. In this method, a large number of

steps (often over 200 for each angle) must be taken for both o and f to obtain spectra

42




with correct intensities across the spectrum. Using interpolation to divide the intensity
between bins for frequencies which fall between two bin positions fails to give signifi-
cantly better results (this type of interpolation can reduce the number of steps by perhaps
factor of 2).

A second method developed by Alderman et al.! is a much more efficient
scheme for calculating powder spectra. In this approach, the surface of a unit sphere
(over which integration is performed) is collapsed onto an enclosed octahedron. The ad-
vantage of an octahedron is that the face may be divided into a large number of triangles
(rather than curved rectangles on a sphere). The first advantage is that it is much easier to
interpolate over three points (arising from the division of the surface into triangles) than
four (which occurs when the two euler angles « and B are stepped in regular steps as in
the first method). The second advantage is that the surface may be parameterized into
three rational numbers (by dividing each edge of the octahedron into some integer num-
ber of segments and counting with integers along each edge) representing the x, y and z
coordinates. The formula for these coordinates are linear rather than quadratic in the case
of a sphere. The third advantage is that the calculation of sines and cosines is simplified,
as it merely ratios of surface coordinates rather than actual calculation of trigonometric
functions. Computer programs which utilize these algorithms are discussed and shown in

the appendix.
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Chapter 3
Dynamic-angle spinning DAS

In the previous chapter, the orientational dependences of the chemical shift inter-
action and the second-order quadrupolar interaction were derived. It was shown that
there exists no single spinning angle which averages the second-order quadrupolar inter-
action completely. Dynamic-angle spinning (DAS) was developed simultaneously by
both Pines e al.42 and Virlet et al.4> This technique is useful for obtaining high resolu-
tion isotropic spectra of quadrupolar nuclei in powdered samples. Specifically, DAS
does average both the first-order chemical shift anisotropy and the second-order
quadrupolar interaction. Previously, this technique has been used to study !1B#, 17045
48 23Na4249.50 27A151 and 87Rb49:52-34 in a variety of compounds. In most of these
cases, the technique of DAS provides orders of magnitude improvement in overall resolu-
tion in the isotropic dimension over MAS or static experiments. In the next section, I will

review some of the theory and history of the DAS experiment.

History of DAS

The roots of dynamic-angle spinning lie in the frequency formula for a second or-
der quadrupolar interaction. It can be seen (after recombining terms in equation 2.86)
that there are three terms for a crystallite of an arbitrary orientation spinning rapidly about
an axis oriented at 6 with respect to the magnetic field.
w(zg)(ag,ﬂg, 0)= o2 4 Az(aQ,ﬁQ)Pz[cos 0]+ Ay (@, B2)P4[cos 0]

020 = —3(1(1+1)—%)_C 2( 1,76 (3.1
iso "~ 400,12 (21-1)2 2 3

The first term represents the second-order quadrupolar isotropic shift. The other two, A2
and A4, represent the orientationally dependent coefficients of the second and fourth-or-

der Legendre polynomials. Figure 3.1 shows both the second and fourth-order Legendre



polynomials. It is immediately apparent that the fourth order roots (30.56° and 70.12°) do
not correspond to the second order root (54.74°). This demonstrates the futility of spin-
ning about a single axis to achieve high resolution quadrupolar spectra.

The solution is to use two different spinning angles in the averaging of the

quadrupolar interaction. Dynamic-angle spinning is just one of these solutions.

1.0
0.8
0.6
0.4
0.2}
0.0
-0.2
-0.4

T

-

T

0’ 20 40 60 80
Spinning Angle 6

Figure 3.1 2nd and 4th Order Legendre Polynomials. There is no single angle at which
both the 2nd and 4th order polynomials are zero. Therefore, muitiple angles will be
needed to average the second-order quadrupolar interaction (equation. 3.1).

Alternative solutions such as dynamic-angle hopping and double rotation will be dis-
cussed in chapter 6 of this thesis.>>¢ In this experiment, the sample is allowed to un-
dergo free precession following a 90° pulse at a first angle 6, for a time #,/(k +1). A z-
filter is used to store the magnetization during a hopping period, in which the rotor spin-
ning axis is changed from 6, to 6,. Atatime k¢ /(k +1) following the second pulse of
the z-filter, a dynamic-angle spinning echo will appear. This is shown below schemati-

cally in figure 3.2. The evolution of the density matrix will be the product of two unitary
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operators given by the evolution at each angle. The unitary evolution operators are

shown below in equation 3.2.

U(6,) = exp[-iw(’-Q)(aQ, B2.6,)ul, [k + 1)]
(—iw(zg)(aQ,BQ, 6, )kt,lz/(k + 1)) +
(—iw(ZQ)(aQ, B2, ez)tzlz)

p(n.12) = U(6,)U(6,)p(0)U" (6,)U" (6,)

U(6,) =exp (3.2)

The assumption made in equation 3.2 is that the z-filter does not change the density ma-
trix at all. In any single scan, this of course is impossible, however by proper choice of
the phase cycle, the density matrix can be reconstructed over multiple scans so that this

equation is true. The coherence pathway needed to accomplish this is shown in

mrmansuie-
y
w2 w2 2
RF t)/(k+1) H hop H kt1/(k+1) t2
Y4 \J \J

Figure 3.2 DAS Experiment and Pulse Sequence. In this experiment, the value of ¢ is
incremented in a two dimensional fashion. The ¢] dimension signal gives the isotropic
DAS spectrum while the second dimension contains informaticn about the anisotropy of
both the chemical shift and quadrupolar interactions.

figure 3.3. Note that the coherence is —1 both before and after the z-filter, indicating that
the density matrix is unaffected by the z-filter (except for relaxation which merely scales
the size of the density matrix uniformly). The minimum phase cycle needed to select this

coherence pathway (assuming good receiver quadrature) is given below.
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(0,0,0,0),(90,0,0,90),
(180,0,0,180),(270,0,0,270),
(180,180,0,0),(270,180,0,90),
(0,180,0,180),(90,180,0,270)

(¢1.05.95.0,)= (3.3)

This cycle is arrived at by noticing first that we need to guarantee a —1 coherence after
the first pulse and therefore cycle this pulse through 4 independent phases. The second

pulse is cycled through 2 independent phases, giving either a Ap of +1 or —1. Only the +1

/2 n/2 /2
RFm t1/(k+1) H hop H kt1/(k+1) t2
U J A\ A\
+1
0

4\ /\

Figure 3.3 DAS Pulse Sequence Coherence Pathway. The initial —1 pathway may be
selected by phase cycling the first pulse through 4 independent phases. The +1 Ap at the
second pulse may be achieved by cycling through 2 independent phases (since the ~1 4p
would produce a net -2 coherence, which cannot be present in this system). This indi-
cates that a complete phase cycle of 8 is needed to get artifact free spectra (since the
quadrature of the receiver selects the final -1 4p).

coherence transfer is meaningful and puts the coherence at 0, which is equivalent to
Zeeman order. This coherence will relax with rate T during the rotor axis reorientation
period, after which an uncycled 90° pulse is used to bring the coherence to the ~1 level
again (the +1 and O coherences will be unobservable with our receiver). The equation

which describes the relationship between the phases is given below.

¢+ —93+¢,=0 (3.4)
The observed signal may then be calculated, knowing that the initial density matrix is

p(0) = I_, following the first 90° pulse.
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S(tty) = te{p(t1.1,) 11 }
0?®(a?,p2,6, )1, +

= exp| —i (k+1)|x 3.5)
kco(2Q)(aQ,ﬂQ, 6, )tl

exp[-iw(m)(ag,ﬁg, 0, )tz ]

The key to the entire DAS experiment may be seen clearly in equation 3.5. If the ¢-de-
pendent part can be made to be purely isotropic through proper choice of 6, and 63, then
the entire problem is solved. To do this we set the 7;-dependent sum of two terms in this
exponential equal to (k + l)a),%Q)t, for all values of both orientation and time.
(k+1) 02 = 019 (a2,82,6, )1, + ko*?(a2,52,6, )1
U
0= Az(aQ,ﬂQ)Pz(cos 6)+ A4(aQ,ﬂQ)P4(cos 0)+

Az(aQ,BQ)sz (cos8) + A4(aQ,ﬂQ)kP4 (cos 6)

(3.6)

In this final expression, we know that the Legendre polynomials will not both simultane-
ously be zero (from figure 3.1). Also, the orientationally dependent coefficients will
likewise be non-zero for most orientations. The only absolute soiution is for the follow-

ing pair of equations to be true.
P,(cos 6,) = —kP,(cos 6,)

3.7
Py(cos 6,) = —kP,(cos 6,) (3.7

This guarantees that for all orientations, the anisotropic terms will cancel in the #; evolu-

tion, leaving a purely isotropic evolution.

S(t1.12) = exp| i ]exp[—iw(zg)(ag 82,6,)1 | (3.8)
Equation 3.7 is a system of two equations with three unknowns. This means that there
will be a continuous distribution of solutions which may be parameterized by k. These

angles are shown below in figure 3.4. The usual pair of angles used for DAS experiments

are the k = 1 pair (37.38° and 79.19°) and the k = 5 pair (0.00° and 63.43°). The reasons
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for the choice of k = 5 or k = 1 will be discussed later, however, any other angle pair

meeting the criterion of equation 3.7 will work as well. The solutions (as a function of k)

80 6,
o
%
£
40t
] 0
20
1 2 3 4 5

Time Constant k

Figure 3.4 DAS Angle Pairs. The angles 6 and 6; are solutions to equation 3.6 as
parameterized by k given in equation 3.9. It is interesting to note that the magic-angle
(shown with a dotted line) is not included in the possible solutions to the DAS equations.

to the pair of equations 3.7 are given below and were used to generate the curves in figure

34.

cos ) =

3.9
( 1- 2,/-‘-
cos 6, = —-——é—l

One of the first samples for which a DAS spectrum was collected was from the
23Na nucleus in sodium oxalate (Na3C204).4? The spectrum in figure 3.5 represents the
Fourier transform of the DAS echo tops which corresponds to the signal at #5 = 0. This
spectrum was taken at a magnetic field strength of 11.7T (132.7 MHz for 23Na) with a
homebuilt DAS probe which has was designed by Mueller et al.!>5! The angle pair for

this experiment is the k = 1 set of 37.38° and 79.19°. This represents a total of 512 scans
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for each of the 128 ¢, points which have been zero filled to 512 points before Fourier

transforming. The 23Na 7/2 central transition selective pulses were 5.0 s while the

\ e

_r L] v L L] 1 L L I 4 L] | § L] LJ Ll L | S v v | ] T

-10000 -5000 0 5000 10000

Frequency (Hz)

Figure 3.5 Example 1D DAS Spectrum of Sodium Oxalate. This spectrum was acquired
at 11.7T by Fourier transforming the DAS echo tops taken at £ = 0.

hopping time was 30.0 ms. The magic-angle was set using the usual method of maximiz-
ing the number of 8!Br spinning sidebands present in an internal KBr angle standard (2H
in deuterated HMB or DMB will also work equally well) as has been discussed previ-
ously.!3 The overall linewidth of the isotropic site is about 700 Hz. This is significantly
narrower than the approximately 3-4 kHz wide line seen in variable-angle spectra of
sodium oxalate. The theory for the limiting linewidth of DAS peaks such as this will be
described in the last section of this chapter.

Dynamic-angle spinning data may alternatively be processed by Fourier trans-
forming with respect to both dimensions. The resulting two-dimensional DAS spectrum
has phase twist lineshape (see chapter 4) and to make the data presentable, it is viewed in
magnitude mode (where this operation is performed by calculating the magnitude of each
complex point in the spectrum). The 2D DAS spectrum is shown for sodium oxalate in
figure 3.6. This experiment has 128 points in #] (the isotropic DAS dimension) and 128

points in f2 (the anisotropic VAS dimension). Other parameters are identical to the previ-
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ous spectrum. The spectral width in each dimension is indicated on the plot. The projec-

tions onto both axes are shown on top and to the right of the contour plot. Notice that

10000

g

@, Frequency (Hz)

-5000

-10000

-15000

L e L3 L l—" L LS ]’ L] A 2L "—l L. | L 2n B
-5000 0 5000
; Frequency (Hz)

Figure 3.6 Example 2D DAS Spectrum of Sodium Oxalate. This spectrum was acquired
at 11.7T by performing a 2D Fourier transform of the DAS data set. The data is pre-

sented in magnitude mode to avoid the phase twist lineshapes. Asterisks indicate
spinning sidebands.

two spinning sidebands on either side of the isotropic peak are indicated with asterisks.
The theory describing both their intensity and position will be presented in the next sec-
tion. Also, it is apparent that the presentation of the data in magnitude mode leads to
much broader lines than the absorption mode 1D spectrum seen in figure 3.5 (compare to
the isotropic projection onto the @; dimension in figure 3.6). A method for acquiring
pure-absorption phase spectra in two dimensions will be discussed in chapter 4. These
spectra demonstrate the potential of DAS to successfully average second-order

quadrupolar interactions.
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Spinning Sidebands

The appearance of spinning sidebands in the DAS spectra shown in figure 3.7
leads us directly into a discussion of their location and intensity in NMR experiments.
Shown below in figure 3.7 are the slow spinning MAS simulations of both a spin 1/2 and

spin 3/2 nucleus. The simulation parameters are identical to figures 2.5 and 2.6, with the

b)
e sl
-10000 -5000 0 5000 10000

i I
-10000 -5000 0 5000 10000

Frequency (kHz)

Figure 3.7 Sidebands in MAS Spectra of CSA and Second-Order Quadrupolar Broadened
Sites. Simulation parameters were identical to figure 2.5 and 2.6 (Ji50,cs = 10 ppm, &S =
50 ppm, n¢cs = 0.3 and Cg = 3.0 MHz, g = 0.2) with the added parameter of a spinning
speed of 2.0 kHz.

spinning speed given as 2.0 kHz. It is immediatly noticeable that slow spinning produces
additional lines not observed in the spectra in figures 2.5 and 2.6. In the case of a spin
1/2 nucleus, the additional spinning sidebands do not significantly hinder interpretation of
the spectrum. The only major difficulty in this case comes in integration and identifica-
tion of the isotropic chemical shift. The integration problem is overcome by adding to-
gether the integrated intensity from families of spinning sidebands in the case of multiple

sites.57 The problem of identifying isotropic sites may be overcome by performing the
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experiment at two spinning speeds and the peaks which do not shift will be the isotropic
sites. In the case of a spin 3/2 nucleus, the spinning sidebands make the spectrum even
more difficult to interpret than in the high speed limit. The sidebands overlap and leave
almost no gaps in the overall spectrum. Additionally, the total number of singularities,
whose positions normally help to estimate the quadrupolar parameters, is greatly multi-
plied and cannot be used for this purpose as easily. Finally, in the case of multiple sites,
spinning sidebands will make interpretation of quadrupolar spectra virtually impossible.

The source of the spinning sidebands lies in the assumption to drop the time de-
pendent terms from the expressions for the spatial tensor under sample rotaticin (equation
2.82). This assumption, while simplifying the calculation, in many cases proves to be
auite bad. There are a large number of papers in the literature which deal with spinning
sidebands. Specifically the works by both Maricq and Waugh’® and Herzfeld and
Berger™® are illuminating for the case of spin 1/2 nuclei. For quadrupolar problems the
papers by Jakobsen et al.,596! Samoson et al.,55:62:63 and others®476 provide good
reference material. For the case of DAS in particular, the papers by Grandinetti et al.52
and Sun et al.%° both give a good description of the spinning sideband problem.

'T'o describe spinning sidebands in spin 1/2 systems, it is necessary to return to our
original equation for the chemical shift anisotropy energy eigenvalues under spinning

conditions.

CSA _
AE™" = h)d;5, s +

2 2
na8S\2 Y Y DR (w1 +¢,.6,0)DE) (%, 85, v)pSs

m=-2n=-2

(3.10)

This expression may be written alternatively below
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AECSA =h i Wm (aCS ,ﬁCS’ e)e_im(mrl+¢r +)’CS)

m=~2

. 2 . cs
Wo(a.B%,0) = 0,84 +30,6%dF (0) X e dP(B< )5y (31D

n=-2

Wi (05, 85,6) = {F06%4)(6) 3 e ()53

n=-2
This expression allows us to write the time domain free induction decay following a

pulse.
05 () = & [ AESar
0

= ‘,Vo(aCS’BCS’e)t2 _

W,,.(a‘rcs -ﬁCs.e) (e-im(w,rz +¢,+7CS) _ e—i'"(lprﬂ'cs))
imo,
m#0

S(1,) = e-i¢cs('z)
_iwo(aCS ’ﬁCS'e)t2 (3' 12)

y exp[ z W,,,(acs ,pcs,e) (e—im(a),tz +¢,+7CS) B e-im(¢,+7cs) )J

mo,

Now we may use Dirac delta functions §(z) (see chapter 2) to rewrite 3.12 below.
)= e

2n CS pCs
1 W B8] _;
XE_J 5(W_wrt2_¢r_ycs)exp(z_£;;a__le thde
T 0 m#0

2n CS pCs

1 Wm 'p 6 ! .
*x 13(W‘¢r“7CS)eXP(- > ———————(amwr )e '"""de (3.13)
T 0 m#0

8(z) == iexp(-imz)

m==oco
The alternative series expansion definition of delta functions (given in equation 2.90) al-

lows us to write S(#,) in a different fashion (3.14).
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S(1,) = exp(—iW (.8, 0):2)

2 Cs pCs .
I exp 1N,(|/I-— Wt~ ¢, - ycs) + ZWe"’""’]dv (3.14)
Nl \ m#0
( w,(aC5,8%5.0) .
XY, — I exp| iN, (v — 9, — v - Z-——(—,,-,—w——-—)e Y\ dy
To \ m#0 ’

This expression may be simplified by reversing the summation over N3 and pulling the y

independent terms out of the integrals.

S(tz) = e-iwo(acs,ﬂcs’o)tz 2 Ay A;v e-—i(N, Wty +(N; =Ny )(¢r+yCS))
12

NN,
27 CS fCs
W . 0
Ay _L J exp| iNy + Z—ia—m—a?—-—)e Yo dy (3.15)
2n m#0 ’

. 1 2z ( cs gCs g )
AN=§"" exp| —iNy — 2-—————-;—— _"m" dy

m#0
Since all possible crystallite orientations are present in a powder sample, the signal may
be simplified by averaging over the (¢, + yCS ) variables.

—iW, CS'ﬁCS'o hd .
<S(t2 )>(¢,+7CS) =ée€ l o(a )‘2 Nz ANI ANle iNy @ty (316)
| =0

The final step is to do the powder average over the remaining two Euler angles,
(acs B cs ) (see section at the end of chapter 2 for a discussion powder averages). In the
case of magic-angle spinning, the first exponential term has no orientational dependence,
and the signal is given below.

(S0 Dy =2 S

N] T—00
@3.17)

N

n

=% [ [lay| sinpSdpdacs
0

O e ]

This MAS signal shows that there will exist a set of N spinning sidebands a distance N,

from the isotropic peak with intensities given by Sy. In practice, the Sy will die away

55




fairly quickly with increasing N. In fact, once Ny is outside of the static powder pattern,
Sy will be nearly zero (but not absolutely zero). This behavior is seen in the slow speed
MAS spectrum for a spin 1/2 nucleus in figure 3.6.

For the case of quadrupolar nuclei, this analysis may again be performed. For the
first-order quadrupolar interaction, the math is entirely identical, except that signal must
be added together for all of the possible single quantum transitions. The second order
quadrupolar interaction presents a more difficult problem. Remember that the expression
for the second-order quadrupolar energy splitting is given below (identical to equation

2.97)
hw}
AECD) =222 (1(1+1)- 3)(248AL, + AGAL ;) (3.18)

This expression may be simplified using the following tensor relationship for products of

tensor elements (3.19).

Mgl = 2(1,0[2,2,m,—m)ayq

1=0,2,4
40 =ZDﬁg(er¢r,9,0)ZD&’(a,B,7)G& (3.19)
n k

op =9 (L.k|2,2,j.k = j)p2jPax-j

J

Here the ajp tensor has been explicitly written out for rotation from the PAS to the rotor
frame followed by rotation from the rotor frame to the LAB frame. The coefficients
(L,M|L,I',m,M — m) used in the expansion are the usual Clebsh-Gordon coefficients.
For the quadrupolar interaction, this expansion leads to the following formula for the sec-

ond-order splitting.
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20) _ ho} 1,012,2,m,~
AECO) = Z225(1(1+1)-3) ¥ T Lolzdnom) 00
1=0,2,4 m>0

0 _ 3% 3 716 1 o _ 3e2q2nQ (3.20)
020="72 V7|3 "'} Om2=—pr

38242% 0 e2q2n6

=0 | T8 )’ O4r2 =27 » Oaxa =3

As previously, we may rewrite the energy splitting in the following fashion (just as in
equation 3.10).

AE?Q) = ie""(‘””“"”’*’Q)W,,(aQ,ﬂQ,9)
n=—4

; —in| W1+, e
W,,(aQ,/BQ,O)=%%2(I(1+1)—%)l ozéi (ar+0:47%) 41 ) a21)
—IS'InI’

XZ e—ikaQ d/(cf.) ( ﬂQ) 01% 2 (I,0|2,i;m‘-—m)
k

m>0
It is important to note the similarity between this equation and equation 3.11. In fact, the

same analysis may be followed to arrive at a very similar result following the average

over rotor phase.

-~
1 8]

(3.22a)
S(tz) - e—l¢Q('2)
-iwy(a2,82.6), < + N,
(S( 2)>(¢ +yQ) _ 0( )2 NZANIA | Ny, Iy
tad
2r 0 a0 )
AN = _.1__ J exp| iNy + Z_V_VL(_“E')E_'_"_)C—W dy (3.22b)
2r 0 nz0 §
2r 0 n0
A;, = —2-% J' exp[-tNul— 2 W"(o;a'f ) '"‘VJd
0 n#0
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This again shows that all of the sidebands will appear at a frequency Nw, from the cen-
terband with positive intensity given by |Ay |2. In this case, the averaging over the final
two Euler angles may not be performed analytically, since the second-order quadrupolar
frequencies are anisotropic under all single axis spinning angles. The result of a complete
powder average is to generate spectra much like the slow speed spin-1/2 MAS spectrum
in figure 3.6 except that instead of narrow isotropic lines there will be miniature powder
patterns as seen in the same figure. With the above equations, simulations of spinning
sidebands may be accomplished with methods similar to those described at the end of
chapter 2. There are faster methods, however, for simulating sideband intensities and I
would direct the reader to various papers on this and related subjects.49:52:58-60.64,74,76-81

Finally, suppose the spinning angle 6 is set to 0°, or parallel to the static magnetic
field. In this case, all of the W, with n # 0 will be analytically zero for both the chemical
shift and quadrupolar interactions. This means that spinning the sample parallel to the
magnetic field has absolutely no effect on the spectrum (relative to a static experiment)
and generates no spinning sidebands. This feature will be useful in the next section when
the k = 5 DAS experiment is described, as one of the ~pinning angles is indeed 0°.

The dynamic angle spinning experiment may be analyzed in a very similar man-
ner as the previous two cases. The first step is to redefine the time axes in the normal
DAS experiment. In figure 3.8, the new time definitions are shown along with the origi-
nal DAS sequence. Notice that the only difference is that the evolution between the first
two /2 pulses is defined as #) rather than #1/(k+1) and the t; evolution begins immedi-
ately following the last 772 pulse. This definition of time axes differs from the original
DAS experiment only in the application of a shearing transformation following the two-
dimensional Fourier transform. The shearing angle is related to the k value by the follow-

ing equation.

9, = tan"' k (3.23)
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Shearing transformations are well known in NMR82-86 and will not be discussed at this

point. The two dimensional DAS experiment performed with k = 1 (37.38°, 79.19°) on

™2 /2 /2
RF ty/ (k+1) -‘ hop -lkn/(k+l) t2
, UI\V,\ I\VAU AN
/2 /2 /2
RF I-h h -I hop rl 19 ﬂ
A A ANA A

Figure 3.8 Redefined DAS Pulse Sequence for Spinning Sideband Calculation. The time
definitions given above are useful for calculating sideband positions and intensities and
the original style DAS spectrum may be arrived at by shearing the final two-dimensional
Fourier transformed data set.

RbClOy is shown in figure 3.9. The n/2 selective pulse widths were 5.0 us and the spin-
ning speed was 3.2 kHz. The data was taken at a magnetic field strength of 11.7T and
was sheared with a 45° shearing transformation. Notice, the shearing transformation cre-
ates a spectrum with isotropic peaks and spinning sidebands in the @ (DAS) dimension
and anisotropic 79.19° slow spinning VAS spectra in the @y dimension. The positions of
the spinning sidebands in the projection onto the w'y DAS axis in figure 3.9 are at the
isotropic frequency plus or minus one half the spinning speed. The factor of one half,
while initially appearing rather unusual, may be explained by looking at the actual side-
band positions with the same formalism used previously.>? As a starting point, we will
assume that energy splitting will be determined by only the quadrupolar interaction (no
CSA present for now, however the results may be easily generalized) given in equation
3.20. In this case the evolved phase may be written as the sum of two integrals, given in

equation 3.24.
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Figure 3.9 Sidebands in k = 1 DAS 2D Spectrum of RbClO4 at 11.7T. The pulse widths
were 5.0 us and spinning speed was 3.2 kHz. The data was sheared with a 45° shearing
transformation following data collection and processing with the sequence in figure 3.6.

¢DAS(1 12 lJ'AE(zQ (aQ ﬂQ 6,.t, ¢rl)
1 (3.24)
+%J'AE(ZQ)(aQ’ﬂQ,92,,,4)’2)&

(=}

The variables in the expressions for the energy splitting indicate that we will consider
both the absolute rotor phase and PAS orientation of the sample. Upon performing these

integrals, the DAS signal may be expressed below.
¢PAS(1,,8,) = Wo(aQ B2.0)n + Wy(a?,BC 0),

_ z ( B2 6])( —zm(w,l|+¢n+7’a) _e—-im(¢,1+YQ)J (3.25a)

lmw

m#0

_y Falato20) («2.82.6, (e-im(wr'2+¢r2+7’g)_e*im(d’rz*?Q))
lmw

m#0

60



S(t,t) = €79 (02)

= e-—iWO(aQ.BQ.G, )t,e—iwo(aQ.BQ.92 )12

xexp(z__(_ﬁ_"_')( "'"(“’r'l”rl*’g)_e"""("’"*yg))] (3.25b)

mo
m#0

xexp( Z Wm(a:ﬁg»ez) (e-fm(“’r’2+¢r2+70) _ e‘m(¢r2+70)]]
m#0

This can again be simplified with the use of delta functions as before to give the follow-

ing equation for the DAS NMR signal.

S(h.ty)=e

x > Ay (6 )AXI2 (61)An, (6, )A, (62)
Ny.Ng.N3.Ng

-i[(N’ ~Ny+N3=N, )(q},l +y2 )+(N3 =Ny )(#,2-0 )] (3.26)
X

-:‘Wo(aQ.ﬂQ,Ol )f] —iWo(aQ,,BQ.Bz )12

+(N +N3=Ny)w, 0+ N3w,1,

2z aQﬁ 8 _
=2—‘-J [zNw+ 2————-——) my | dy
0 m#0

This may be averaged over the initial rotor phase, (¢,1 +7y2 ) , as before.

<S(’1J2)>¢mya =e

X 3 An (61)An, (61)An, (62)AN,-ny4n, (62) (3.27)
Ny N3Ny

X e—i[(Nz-Nl )(¢r2_¢rl )+N2(D,l| +N3wr’2]

~iWo(a®,82.6, )y -iWo(a?,B2.6, )i,

In most cases, the relative phase of the rotor (¢,, — ¢,;) between the first and second
evolution periods will be relatively random. In the case of large numbers of scans, these

variables (¢,, ~ ¢, ) may be averaged over as well.

<S(‘1 1) ))¢rl'¢r2v7Q =

X Z'AN, (91 )l2|AN2 (92)|2 e—i[N,w,Il-szwr,z]

NN,

—iWO(aQ.BQ.G] )!1 -iWO(aQ.BQ,ez )12

(3.28)
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This indicates that the intensity of all of the sidebands in the two dimensional spectrum
will be positive. The peaks will occur at frequencies Ny, from Wy (6, ) in the first di-
mension correlated with frequencies at Now, from W(6,) in the second. When the
spectrum is sheared, the peaks will all remain positive, however their positions will shift.
Transforming the time variables into the sheared time definitions, we will arrive at the

following expression for the DAS signal.

h
e
(3.29a)
t =_1(_ti_+t,
27k +1 2
(Wo(ag.ﬂQ.a,)+kwo(a0.ﬁ0,ez)),;
=i s Q2 n@ ’
<S(t1',t§))=e ' k+1 ¢ iWo(a?.82.6, )13
(3.29b)

M.t kN

% ZlANn(el)lzlANz(92)|2 e_i[ K+l kel

1,N2

+Nyw,15 ]

The definition of the DAS angle pairs is equivalent to the following equation.

Wo(a2.82.6,)+ kWo(2,82,6,) = (k + 1) 022 (3.30)

150

Which reduces equation 3.29 to the form in equation 3.31.
-y -iwy(a?,82,6, )15
($(i. 1) = oL Ml 80
Nyw, ) kNt

X zlAN,(Gl)IZIANZ(ez)F e—i[ k1 kel

Nl 'N2
N, kN, ]w p
r

(8(5.0))=e f ZIAN, (6 )|2 lANz (92)l2 e_i[m+m
NN,

+N2w,r§]
(3.31)

-io(2®

This equation shows that the isotropic spectrum arrived at by Fourier transforming the
DAS echo tops at 7 = 0 will have sidebands at multiples of two frequencies, kw, /(k +1)
and ®,/(k+1). The two dimensional spectrum will have sidebands at multiples of the
same two frequencies in @ and at @, in @;. Looking again at the two dimensional DAS

spectrum in figure 3.9 we observe exactly these sideband positions. Each of the slices ex-

62




tracted on the right corresponds to the isotropic peak and sidebands where Ny =0, £1, £2,

13, etc for N = -2, 0 and +2 respectively. It is interesting also that the N = -1 and +1

Static

1.4 kHz

2.4 kHz

3.2kHz

3.8 kHz

6.5 kHz

-10 .5 0 5 10
Frequency (kHz)

Figure 3.10 1D 87RbC1O4 DAS Spectra at a Variety of Spinning Speeds;. The k =1 DAS
spectra are shown over a range of spinning speeds. The intensity of the sidebands may be
described by equation 3.30.

slices have very low intensity as the detection angle (79.19°) is nearly 90° where odd or-
der sidebands may be shown to have no intensity. Also, it may be seen that the most in-
tense peak in each of these slices corresponds to the Nj = 0 peak. The sidebands in each

of the slices are separated by @, /(k +1) which in this case is w, /2.



Figure 3.10 shows the one-dimensional DAS spectrum of 87RbC104 taken at
11.7T at a variety of spinning rates for the usual k = 1 case just as in figure 3.9. The
sideband intensities are seen to grow more numerous and intense as the spinning speed is
reduced. The intensity of each sideband is derived from equation 3.31 by adding together
the intensity (se¢2: equation 3.33) from each Ny, N3 pair which contributes an integrated
intensity of oL f T‘AM (6, )lzlAN2 (6, )Iz sin f2dB2da? at a given sideband position
(7‘1%+ %—)a), froorg the centerband (keeping in mind that there may be degeneracies
when & is an integer). As is the case with double rotation (DOR, see chapter 6), the
spinning sideband intensities in DAS do not necessarily approximate the static powder
pattern in the limit of very slow spinning as is the case in slow spinning MAS.

When one of the spinning angles is 0°, as in the case of k = 5 DAS, the formula
for the DAS signal is simplified further. Since all W,(0°) with n # O are zero, the value of
the intensity integrals will be simplified. In the case where 8y is 0°, there will be side-
bands in the @) dimension of the unsheared spectrum and all sideband intensities with Ny

# 0 will be zero.

(S(5.1)), o =e ol Mol RO )
' br1:9:2:7

.sza),tl'
2 ’[ k+l

)<2|AN2 (ez)l e
N,

+N2w,t§]
(3.32)

(20) _lszw,.ll

(S(.0)), , o=c ™ Flay, (@) ¢ *
N,

A k = 5 DAS spectrum is shown below in figure 3.11. The unsheared spectrum correlat-
ing the static 0° spectrum with the 63.43° VAS spectrum shows that there are no side-
bands in the w; dimension and the sidebands are spaced by @ in the @) dimension. In
the sheared spectrum, the sidebands in the DAS dimension are spaced by Sw, /6 and by
o, in the anisotropic spectrum. This represents the highest possible effective spinning

speed in the isotropic dimension in a DAS experiment.



In a case where the time ratio k (or alternatively 1/k) is not an integer then the one
dimensional isotropic projection becomes more complicated. In the case of a non-integer
k, the sidebands at multiples of the two frequencies kw,/(k +1) and @, /(k + 1) will not
overlap for small integer values of Ny and N3. In the full two dimensional spectrum, the
sidebands will appear separated, but will not overlap when projected. This sideband be-
havior may be seen in the k = 0.8 2D DAS spectrum of RbClOy4 in figure 3.12. Notice

also that there are analytically no odd sidebands in the second dimension corresponding

Y e

\ N [—
; % g @.8 } N
: \" K y —A
[ A

Figure 3.11 87RbC104 Sidebands in k = 5 DAS 2D Spectrum. The acquisition pa-
rameters are identical to those used in figure 3.7, with the exception of the angle pair (0°
and 63.43°) used.

to odd V5. This is a direct result of spinning at 90° since all odd sidebands disappear in a

1D 90° VAS spectrum.
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Figure 3.12 87RbC104 Sidebands in k=0.8 DAS 2D Spectrum. The acquisition pa-
rameters again are identical to those used previously, with the exception of the angle pair
(39.23° and 90.00°) used.

Returning to the case of one-dimensional DAS projections, the positions of side-
bands are given by equation 3.32. This equation may be integrated over the final two
powder angles, to yield an expression which may be calculated to generate sideband in-

tensities in a relatively simple manner.
My Ky ]w,t,

ZSNl,N2(61702) [k+l k+1
N].Nz

, f20
(s(t1’0)>powder = 0 ’
(3.33)

2r
SNI A 9], 92 = 'IL I lANl (91 )IZIAN2 (92 )|2 sin ﬁQdBQdaQ
0

© Sy §
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This expression was used to calculate spinning sideband intensities for RbCl04 DAS
spectra with k values between 1.0 and 5.0. These simulations are shown next to the ex-

perimental spectra in figure 3.13.

ke / (k+1) e/ (k+1)
k=5 (0°,63.43°)
k=45 (10.66°,63.96°)
k=4 (15.38°,64.58°)
k=35 (19.27°,65.35°)

(22.61°,63.33%)
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Figure 3.13 All k values for fast spinning 8’RbC104 DAS at 11.7T. These spectra were
collected with experimental parameters identical to those used in the previous spectra.
The simulated spectra assumed only a quadriooiar coupling Cg of 3.2 MHz, an
asymmetry parameter 70 of 0.10, @, of 6.4 kHz and approximately 300 Hz of Lorentzian
broadening.
The quadrupolar parameters used to simulate the spectra were a Cg of 3.2 MHz, an
asymmetry parameter 7g of 0.10, and a spinning speed @, of 6.4 kHz. Lorentzian broad-
ening was added so that the linewidths of simulated spectra were the same as the experi-
mental spectra. It is important to note that there are basically two frequencies of spinning
- . ] k = i
sidebands in these spectra, 77 @, and 37 @,. In the case of k = 1, these two frequencies

are the same (just as was seen before in figure 3.9) and sidebands appear only at 3.2 kHz.

In the case of k = 5, the former low frequency sidebands are absent, as predicted by the-
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ory and shown earlier in figure 3.11, and only the high frequency 5.3 kHz sidebands ap-
pear. Because the spinning speed is quite fast compared to the second-order interaction,
only the N7 = %1 or N2 = %1 sidebands appear in these spectra; none of the sum and dif-
fereuce frequencies show up.

In conclusion, the presence of spinning sidebands in DAS spectra can lead to
greatly complicated spectra, w‘ith multiple spinning frequencies present. By choosing the
proper value for the time ratio, K = 1 or k = 5, the sideband behavior is greatly simplified
and the effective spinning speed is maximized. Additionally, the sideband intensities
contain information which may be used to extract the quadrupolar coupling parameters.
This has not been discussed here and the reader is directed to the thesis of Sun'® and re-

lated papers9-52 for additional information on simulating sideband intensities.
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Linewidths in DAS (Homonuclear Dipole-Dipole Interaction)

In this section, the contribution of the homonuclear dipole-dipole interaction to
dynamic-angle spinning spectra will be discussed. Remember, the form of the static

homonuclear dipolar Hamiltonian from equation 2.48.

Hp ==Y hop, $(3501;0 - 1; - 1;)d53(B7) (3.34)

J#i

Under rapid spinning conditions, this may be expressed below.

2
HD=—thDU%(31,-’01}"0—1,--1}-) Y. DY (.t +9,,6,0) D2 (af . B 7P)

pr me2 (3.35)
= -rdQ)(0)Y wp, $(3%0,0 - 1 - 1;)d53 (BF)
J#i

This Hamiltonian will allow the coherence, which until this point has been assumed to be
between —1 and +1, to evolve into higher order bilinear coherences. The homonuclear
dipolar contribution to the isotropic linewidth in a DAS spectrum arises since the storage
pulses used during a hop cannot store bilinear terms. Also, the reduced Wigner matrix
element d(%)(e) indicates that the spinning merely scales the entire interaction, under the
time independent approximation (and under high speed magic-angle spinning, all dipolar
couplings are scaled to zero). Since the sign of Pz[cos(e,-)] is reversed (see equation
3.7) following a hop from the DAS angle 6) to 6, and if the density matrix describing
the system was the same before and after the hop, all dipolar contributions to the isotropic
spectrum would be refocused at the DAS echo top. Unfortunately, the density matrix is
not the same before and after the hop and the homonuclear dipolar interaction continues
to dephase in the isotropic #, time domain, rather than refocus. An approximation which
describes the dipolar dephasing of a static on-resonance homonuclear bath of spins is a

Gaussian decay

S(t) = exp(-Myt* [2), (3.36)
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where M, is the second moment as defined by Van Vleck®”. Under fast spinning VAS
conditions, the effective dipolar coupling is scaled by Pz[cos(ei )] and therefore the ef-
fective second moment is M2P§[cos(0)]. The signal function for an on-resonance spin

would then be
S(r) = exp(~M, P} (cos 6)F [2). (3.37)

Figure 3.14 shows the dipolar linewidth of both 23Na and 87Rb nuclei in sodium oxalate
and rubidium perchlorate respectively under rapid VAS conditions. The linewidth was
measured from the homogeneously broadened isotropic spectrum collected by Fourier
transforming the echo tops at r; = #; of a90° - #1 - 180° - 7 experiment (where the dwell
time in t; was equal to the rotor period). The curves in both cases correspond to the

function |CpP,[cos(6)]|. where Cp is the static homogeneous linewidth. Notice that the

2004
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Figure 3.14 Homonuclear Dipolar Linewidth versus Spinning Angle. The left set
corresponds to NaC204 23Na linewidth as a function of angle where the static linewidth
is 1400 Hz. The right set corresponds to RbClO4 87Rb linewidth as a function of angle
where the static linewidth is 195 Hz.

linewidth goes nearly to zero at the magic angle (54.74°) in both cases. This indicates
that, at a spinning speed of approximately 6 kHz, the homonuclear dipolar coupling is

well described by equation 3.35 and 3.37.

In a DAS experiment, the signal of an on-resonance spin can be expressed as the

product of two Gaussian decays at two different angles.
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S(#) - exp(-—Msz2 (cos 6, )(k—'jq)z /2)exp(—M2P§ (cos 6, )(7('%)2 /2)
———

For the DAS angle pairs, 6, and 6, the value of P,[cos(8)] can be expressed in terms
of k where P,[cos(6,)]=+/k/5 and P[cos(6,)] =—+1/5k . This yields an effective

second moment for the isotropic line in the DAS experiment of M$¥ = 2kM, [5(k + 1)

(3.38)

giving a linewidth of approximately \fZ—kM—z / v5(k +1). The narrowest line in a conven-
tional DAS experiment should therefore arise when the k = 5 angle pair, 0° - 63.43°, is
used and should be about 75% of the linewidth for a k = 1 experiment.

For the isotropic linewidth measurements, samples of sodium oxalate, Na;C204
and rubidium perchlorate, RbClO4, were obtained from commercial sources while the
deuterated boric acid, D3BO3, was made by exchanging the protons in H3BOj3 in D50,
both commercially obtained. The experiments were performed at 11.7T (37Rb frequency
163.623 MHz, 23Na frequency 132.201 MHz, !1B frequency 160.446 MHz) with the
same probe as before. The pulse sequence used for DAS was the original sequence. The
selective 90° times were between 4 and 8 pus and the recycle delays were between 1 and
4's. The spinning speeds wers between 5.0 and 7.0 kHz which effectively removed all
spinning sidebands from these spectra. The spectral widths were set to 10 kHz and be-
tween 256 and 1024 scans were acquired for each of 60 t; points at each k value.

The dipolar linewidths for NapC204, RbClO4 and D3BO3 are shown in figure
3.15 for a range of k values from 0.8 to 5. It is always true that the linewidth at k = 5 is
about 20% less than at k = 1, in agreement with the theory presented earlier. The solid

curves through these data points are the best fit using the function
\2kM,
Aw; ic = AQOT, + =" 3.39
isotropic T, ﬁ( k+ 1)
where M,is the second moment due to homonuclear dipolar interactions in a static sam-

ple and Awz, is the intrinsic linewidth due to field inhomogeneity and T relaxation.
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The values for M, extracted in this manner are very similar the those extracted from
static CPMG experiments. This further confirms that the k = 5 angle pair is the best angle

pair to perform the DAS experiment.

1200
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Figure 3.15 Dynamic-Angle Spinning Linewidths as a function of k. The solid circles are
for D3BO3, the crosses are for NapC204 and the solid boxes are for RbCl04. The lines
through each set of points are the best fit with the linewidth function given by equation

3.39.
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Chabter 4
Pure Phase NMR

In traditional liquid state NMR pure-phase spectra have always been important in
giving the highest signal-to-noise ratios and signal resolution. The basic problem is most
easily illustrated with a simple two-dimensional data set of the form S(#,t,) (notice the

similarity between this equation and equation 3.7).

S(t,1y) = & T2 (1) gifhin g=i2at @.1)

Where £, and €2, are the frequencies in each dimension for a single peak in the 2D
Fonrier transformed spectrum with linewidth 1/27,. When a 2D data set of this form is

Fourier transformed in the #, dimension, the result is a data set of the form S(#,, @, ).
-1 s
S(t] » (0 ) = e'Tz h eytﬂl‘l (A(OJ2 ’ .(22 ) + lD( ®,, 92 )) (42)

Where A(®,£2) and D(w,£2) in this case are the absorptive and dispersive Lorentzian
lineshape functions respectively with a peak in the @ dimension at frequency 2.

=T
A(0,2)= 1+(w-02)° T}

_ _(0-o)
D(w,2)= 1+(w-2)°T2

(4.3)

It is immediately apparent, that the second Fourier transform will produce a very complex
result, S{(@;,®,).
S(w;, ;) = (A(0;,92,)+iD(w,, 2))(A(@,,£2,) +iD(@,,2,))
= (A(01,2))A(@;,£2,) - D(@,,£2,)D(@,,2,)) @4
+i(A(0,,92,)D(0,,92,) + D(0,2,)A(0,,2,))

This has two terms, one real and one imaginary. If this were completely pure-absorptive
mode, the real term would contain A(®;,2,)A(@,,£2,) only. The term which leads to
the phase-twist lineshape is the A(®,,Q,)A(®,,$2,)- D(w,,$2,)D(®,,£2,) one. Figure

4.1 shows both the pure-absorption mode and phase-twist 2D lineshapes. The next sec-
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tion describes three of the methods used to obtain a pure-absorptive mode lineshape in

(a) (b)

Figure 4.1 Pure-Absorption mode and Mixed-Phase 2D NMR Spectra. Spectrum (a) is an
example of a pure-absorption mode line with equal homogeneous broadening in both
dimensions. Spectrum (b) is an example of a mixed-phase line with the same parameters.
Note in (b) the presence of both positive (+) and (=) contours, giving a peak of much
larger effective linewidth.

2D NMR experiments. Each will be described briefly and in all cases additional infor-
mation may be found in the papers referenced therein and in the classic text on multi-di-

mensional NMR by Emst et al.”

Pure-Absorption Mode Acquisition Methods

The three most important methods for achieving pure-absorption phase multi-di-
mensional NMR data, States, TPPI and whole echo acquisition, are described in moderate
detail in the next section. Each section contains references to other more complete de-
scriptions of these experiments and the interested reader is directed there for additional

information.

States Method

The method developed by States et al.88 creates pure-absorption mode spectra by

. acquiring a hypercomplex data set. In this type of data acquisition, there are two parts, a
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cosine labeled S,(1;,7;) and a sine labeled S;(#,t,) portion. Thus, twice as many data

points are needed to get the same resolution as a comparable phase-modulated experi-

ment. The hypercomplex data is collected such that the cosine portion is quadrature in ¢,

and amplitude modulated by cos(£2,1;) in #; while the sine portion is amplitude modu-

lated by sin(.Qltl) in #;. Mathematically, the two signals are expressed in equation 4.5.
S.(1,12) = cos(£21, )e_Tz—l (h+12) =ity

=1 . 4.5)
SS (tl o tz ) = Sin(gltl )e-—TZ (tl +n )e_laztz

To process this type of data, the ¢ Fourier transform is performed separately on each data

set. This yields two new signal functions S_(#,®, ) and S;(1, @,) given below.

Sc(tl ,0)2) = COS(Q]I] )e-Tilll (A(w2sQ2)+ iD(wZ,Qz)) 4 6
; (4.6)
Ss(t] ’ w2) = sin(.Qlt] )e'Tzl" (A((Oz,gz)"' iD(CDz,Qz ))

These are then combined to form a data set S,,,,(tl , @, ) whose real components are the
ortion of Sc(tl , wz) and whose imaginary components are the negated real portion
of S, (1, ;).
Sy (0, 02) =A(@2, 42, )e—T;‘:, (cos(2ity) - isin(£2,))

CN)
= A((Dz , Qz )e-T{‘:, e__i'Qltl

This data set is now ready to be Fourier transformed with respect to 1. Notice that there
is no dispersive D(®,,£2,) term in the S,,(#,®,) expression. In fact the final
S ,,p(a), , @, ) will have no dispersive contribution to the real channel (which is what nor-

mally is displayed).

Spp (@1, 0;) =A(0,2))A(@;, 92, ) + iD(@), 2, )A( ;. 92,) (4.8)

This will yield a truly pure-absorption mcde lineshape, such as in figure 4.1. To imple-
ment a phase cycle to collect this type of hypercomplex data set, the data must be col-
lected with both the +1 and —1 coherence pathways in ;. When summed together they

yield a cosine pathway and when subtracted they yield a sine pathway. A simple method
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for deriving a phase cycle for a hypercomplex data set is to take a phase cycle which
chooses only the —1 or +1 pathway in ] and split this cycle into two phase cycles. One
will be made up of those cycles which generate cosine in ¢; and the other will have those
which generate sine in #;. This is a little more difficult when #; is split between two dif-
ferent evolution periods (such as the original DAS experiment), but can still be accom-

plished with proper phase cycling and pulses (see Mueller et al.50)

Time Proportional Phase Incrementation

The technique of time proportional phase incrementation (TPPI)890 is mathemat-
ically equivalent to the method derived by States. Again, twice as many data points must
be collected as in a phase-modulated experiment with the same resolution. The basic dif-
ference between States method and TPPI arises in the data acquisition and processing.
To acquire TPPI data, a Sypp;(#),1;) data set is collected where the dwell time Arj is one
half and the number of #) points is twice what would be normally used in a phase modu-
lated experiment, giving both the same spectral width and digital resolution in ¢;. In
addition, all the pulses immediately before the #; evolution period begins are incremented

by 90° after each #; point.

-~ =1 ;
sTpp](tl ,tz) =e T (n+22) COS(.Q]tl + ——;A’:l )el-Qz!z 4.9)

This data is Fourier transformed with respect to #; exactly as a usual phase modulated

data set to YICld STPPI (t] N ) .
=1 R
STPPI (tl s 0)2) =e T2 o COS((Q] + "i"at‘t-l')t] )(A((D2,.(22) + lD(COz , !22 ))
| A wz,.Qz)cos((.Q, + 25 ) ) + (4.10)
=e

iD(,,£2,) cos((.Ql + TZT)‘I )

The imagirary portion of this data set is then thrown out and the remaining real portion is

Fourier transformed with a real Fourier transform in #; (rather than the usual complex
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Fourier transform). This type of Fourier transform has no quadrature and peaks show up
at both the positive and negative frequencies. This is where the phase incrementation
"trick" can be seen. Each term has a w; frequency of £, +-5§1'-;;- rather than just £2,.

Therefore the signal will be given by equation 4.11.
A(a’z»gz)( (mlvgl t3 “) + A(wl,-ﬂl - ﬁ)) -

(4.11)
iA(wz,.Qz)(D(w,,.Ql 2A,)+D(0)|"‘-Ql 24:.))

Srppi (1, @2) =
The resulting spectrum is symmetric about zero frequency and the negative side may now
be thrown out. The remaining positive frequency data set is pure-absorption mode and
may be made equivalent to the States result by setting the center of the spectrum to zero
frequency (a shift of -2-5'-‘7). The phase cycle for this type of spectrum is identical to the
phase cycle for the cosine portion of the hypercomplex data set from the previous section
with the addition of the time proportional phase incrementation of the pulses before the

start of 7;.

Whole Echo Acquisition

Whole echo acquisition®! has been less popular than the other methods of obtain-
ing pure phase spectra. This is primarily because in the case of liquid spectra, it is diffi-
cult to obtain whole echoes in #; since the lines are so narrow. In fact, when only a frac-
tion of the echo is collected phase twist components will enter into the final 2D spectrum.
In the case of solids, where the inhomogeneous broadening is usually much larger than
the homogeneous broadening, whole echo acquisition can actually be better than the other
methods. To understand why two-dimensional whole echo acquisition works, first it is
useful to look at a one-dimensional case. Suppose you generate a Gaussian-shaped time-
domain echo with a 90°-180° (/2 - t, - & - acq) sequence which has a signalSe(tz) given

by equation 4.12.
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S, (12 ) = e"Tiz(’z ~t,) e""-ﬂz('z -1,) | 4.12)

When this signal is Fourier transformed, a spectrum of the form given by equation 4.13
will be generated, assuming that the signal is shifted far enough out in time and is zero at

both the first and last 7, points.

S,(w)=e + €% =4,(0,,2) (4.13)

This appears at first glance to be much worse than if we had only collected from the echo
top on, due to the phase factor. However, by effectively shifting the time origin by apply-
ing a first-order phase correction of f, (which multiplies each point in the spectrum by

'), the spectrum is greatly simplified.

(02-2)% 12

Se(wy)=e ™ + =A,(0,,5;) (4.14)

This shifted-echo (hence the se subscript) spectrum has no dispersive imaginary compo-
nents. This can be quite useful in a two-dimensional experiment where the signal is of

the form.
T2 -tV i - Y -1l
Se(tl,t2)=e T2%(rp~t.) e i€y (1, ’e)e Ty'h g-ishn (4.15)

This is a constant time echo experiment and the first Fourier transform is done as usual in

the t, dimension. The resulting signal function has the form given in equation 4.16.

-] .
S, (01, 0;) = A, (@,,£2, )¢ T2 g4l (4.16)
A first order phase correction of ¢, is then applied to the @, dimension which yields sig-
nal with the function given in equation 4.17 (note the se subscript on the absorptive one-
dimensional A, (®,,£2,) function).
-1 .
Sse (tl » W2 ) = Ase(wZ ’ 'Q2 )e_T2 f e-‘altl (4.17)

A Fourier transform is then applied to the ¢#; dimer -ion giving a pure-absorption mode 2D

spectrum as the result (see equation 4.18).
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Se(a)l, (02) =Ase(a)2,.f22)(A(wl "Ql ) + lD(a)l ,Q] )) (418)

This result is particularly important because data of this sort doesn't require the factor of 2
additional #; points like the States or TPPI methods, thus it will have a N2 improvement
in signal-to-noise over States or TPPI data. However, this is only true in situations where
the entire echo may be collected for every #; point, which in general will only be the case
for solids with a strong inhomogeneous broadening. The phase cycle necessary to collect
a whole echo is not any different than collecting a standard phase-modulated data set. In
fact, in some cases TPPI or States methods may be applied in concert with whole echo

acquisition to gain an additional V2 improvement in signal-to-noise ratio.>3

Pure Phase DAS

The original DAS experiment as described by both Mueller e al.42 and Llor and
Virlet*? was a phase modulated experiment (with the phase cycles given in the papers)
and gave phase-twist lineshapes in two dimensional spectra which necessitated magni-
tude mode display (see figrre 3.6). To obtain higher resolution, pure-phase two dimen-
sional DAS experiments were first developed by Mueller et al.*>47 In this work, they
viewed the DAS experiment in a non-sheared fashion and used either a z-filter or a 90°
pulse after the total t; evolution period to give pure-absorption mode spectra. As will be
discussed below, we have been able to obtain higher signal to noise ratio pure-absorption
mode DAS spectra by redefining our time axes.> Also, further sensitivity improvements

have been made by shifting the DAS echo in time using 7 pulses.

Pulse Sequences

The original DAS pulse sequence has been discussed earlier but will be reviewed
to show the differences between it and the new pulse sequences. In figure 4.2 we see a
simulated DAS spectrum acquired with the original DAS sequence. The mixed-phase ar-

tifacts are seen in the upper right and lower left side of the spectrum as broad negative re-
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gions. This overall phase twist will make the slices through the isotropic peaks difficult

to interpret.
2
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Figure 4.2 Original DAS Experiment. The pulse sequence and coherence pathway (a) is
shown to the left of the simulated spectrum (b). The phase cycle used to implement this
pathway was given earlier. Dashed contour lines indicate negative contours.

Figure 4.3 shows the modified DAS experiment where the time axes have been
redefined, very similar to the time definitions in a 2D exchange experiment (and identical
to those definitions discussed in the description of spinning sidebands in chapter 3). In
this experiment, the evolution at the first angle is defined as #; and the evolution after the
hop is defined as #. This definition will place a shifting DAS isotropic echo in the #; di-
mension. In fact, this echo will appear at a time &k 7). When this data is processed without
modification, we observe a diagonal peak which is the correlation between anisotropic
patterns in both dimensions. A conventional 2D DAS spectrum may be obtair=d by
shearing this spectrum by an angle 6 (as was mentioned earlier in the spinning side-

bands section of chapter 3).

6, =tan"' k (4.19)

Another method for shearing the uata is to apply a ¢#; dependent first-order phase correc-
tion of ¢(#,®, ) to the data set between the first and second Fourier transforms.
¢(n, )=k

] 4.20)
§'(tf, w3) = e 2 (1, 0, )
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This method of acquisition produces a phase-twist spectrum, but because an entire echo is
collected for the later ¢} points, the negative contours are much smaller, giving effectively

higher resolution in both dimensions.

('/2)91 (1!/2)‘42 (1!/2)”3 ("Sll))gR
@ . n hop ﬂ . ®)

- J
rotor —9|____/——__ 0"2 Y
1

.
———td. L) 1

PITN T\

Figure 4.3 Modified DAS Experiment. The (a) pulse sequence and coherence pathway are
shown to the left of (b) the unsheared simulated spectrum. The dashed line coherence
pathway indicates the anti-echo DAS experiment. The phase cycle used to implement
this pathway is identical to the original DAS experiment. Dashed contour lines indicate
negative contours.

A second modification to the DAS experiment may be made by using either the
method of States et al.38 or TPPI®%:90 to acquire pure-absorption mode spectra using the
same ?1 and #7 definitions. To accomplish this, we need to merely change the way the
data is collected. Rather than collecting a single data set as a function of #] and 15, we
collect a hypercomplex data set as a function of #) and #5. As mentioned previously, a
hypercomplex data set separates the sine and cosine evolution in #;. Each of these data
sets is Fourier transformed with respect to #;. This produces a data set with absorptive
lineshapes in the real channel and dispersive lineshapes in the imaginary channel. The
real portion of the cosine data set is combined with v—1 times the real portion of the sine
data set. Thus there are only absorptive lineshapes in w; which are modulated by e
in the #; dimension. Applying the same #; dependent first-order phase correction from
equation 4.2, we then can perform the #; Fourier transform. This yields pure-absorption

mode 2D DAS spectra. There are no mixed-phase artifacts to make interpretation diffi-

cult. The phase cycle and coherence pathway for this experiment are given in figure 4.4.
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Figure 4.4 Hypercomplex DAS Experiment. The pulse sequence (a), coherence pathway,

and phase cycle are given above. Cycle (b) is the cosine data set and cycle (c) is the sine

data set.

An alternative method of sensitivity improvement in dynamic-angle spinning ex-
periments comes from shifting the isotropic DAS echo in #;. This is accomplished by
applying a & pulse after a n ¢, delay following the final 7/2 read pulse. This shifted echo
DAS (SEDAS) pulse sequence is detailed in figure 4.5. This sequence has the advantage
of shifting the DAS echoes in time by n t,. For all #; values, an entire DAS echo may be
collected which leads to a higher signal-to-noise ratio than the hypercomplex DAS which
takes twice as long to effectively collect whole echoes in #;. This is especially important

in cases where the broadening is primarily inhomogeneous and anisotropic in the @ di-

mension.
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Figure 4.5 Shifted-Echo DAS Experiment. The pulse sequence (a), coherence pathway,
and phase cycle (b) are given above.

In cases where the broadening is inhomogeneous in both the w; and @; dimen-
sions of a DAS experiment, further advantage may be had by collecting hypercomplex
data in concert with a shifted echo experiment. This hypercomplex SEDAS experiment
is shown schematically in figure 4.6. The phase cycle for both the cosine and sine por-
tions of the data set are indicated as well. In both the SEDAS and HyperSEDAS experi-
ments, both the first and third pulses are phase cycled through four steps each. This ef-
fectively chooses only a —1 (or both +1 and -1 in the hypercomplex division of the phase
cycle in figure 4.6) coherence after the first pulse and guarantees a +1 coherence follow-

ing the third pulse. This sequence effectively collects both the echo and anti-echo DAS
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signals. In the case of a crystalline sample, the anti-echo signal will shift to the left in #;

as 1) increases while the echo signal will shift to the right in #; as #; increases.
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Figure 4.6 Hypercomplex Shifted-Echo DAS Experiment. The pulse sequence (a),
coherence pathway, and phase cycle for the cosine data set (b) and sine data set (c) are
given above. Two echos are shown in the above figure since the signal will have an echo
contribution from both the echo (solid line) and anti-echo (dashed line) pathways which
may not necessarily occur at the same point.

In this case, the anti-echo will often shift out of the window before decaying to zero in-
tensity in 71. In most cases (assuming enough points are taken in #;) the echo signal will

always remain in the observation window. If the n ¢, decay is chosen long enough so that
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both the echo and anti-echo data remain in the acquisition window for all #; points, the
total intensity will be nearly zero (in analogy to collecting long delay times in a constant
time experiment).

In the case of a sample with a broad inhomogeneous distribution of sites in both
dimensions, the echo will decay away much faster in #. In addition, if the distribution in
t] is continuous, the anti-echo will not shift to the left in #; as rapidly in #;. Likewise, the
echo will not shift to the right in #; as quickly in t;. For the case of an amorphous solid,
the hypercomplex SEDAS is the best pulse sequence, since it combines the signal-to-
noise enhancements of an echo in #; with hypercomplex data in #;. Chapter 8 gives spe-
cific examples of glasses with distributions of isotropic shift, for which acquisition with

HyperSEDAS gave significant improvements in sensitivity.

Experimental Examples

The following figures (figs. 4.7, 4.8, and 4.9) show examples of various types of
DAS spectra. All of these spectra were taken with k =5 (the angle pairs were 63.43° and
0.00°) and the magnetic field strength was 11.7T. The sample used was a standard
reagent grade RbCl04 sample. The pulse sequences for each experiment are indicated in
each figure caption. The 90° and 180° selective pulses were 3.35 us and 6.70 us respec-
tively, the axis reorientation time was 50 ms, the spinning rate was 5.8 kHz, the echo time
in SEDAS and HyperSEDAS experiments was 1.029 ms and the number of acquisitions
for each ¢ point was 128 scans for both the sine and cosine data sets. The hypercomplex
sine and cosine data sets were combined to produce the normal phase modulated data in
t;. The dwell time in the #; dimension and in the #; dimension following proper shearing
was 50 us for both. The acquisition length in the‘second dimension was 256 complex
points while it was 128 points in the first dimension.

Figure 4.7 shows the normal phase modulated DAS data set acquired with the

pulse sequence in figure 4.2 showing the usual phase-twist lineshape. The phase-twist
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lineshape greatly increases the effective linewidth in the anisotropic dimension. In this
spectrum (and in figs. 4.8 and 4.9), contours were placed at ~12, 14, 41, 68 and 95
percent of the maximum. The negative contours appear to the lower left and upper right

of the center of the main peak, just as they occur in figs 4.1b and 4.2.
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Figure 4.7 Original DAS Spectrum. This spectrum was taken with the parameters given
in the text above and with the pulse sequence in figure 4.2.

Figure 4.8 shows the echo DAS spectrum collected with the pulse sequence in
figure 4.3. Note that a 41.67 us #; dependent first-order phase correction was required to
shear the two-dimensional spectrum. This spectrum is not quite completely pure-absorp-
tive phase. However, the dispersive contributions are of small enough size that they do
not change the overall appearance of this spectrum in reference to the completely pure-
absorptive phase spectrum in figure 4.9.

Figure 4.9 shows the pure-absorptive spectrum acquired with the hypercomplex
DAS pulse sequence (figure 4.4). The spectra acquired with SEDAS and HyperSEDAS
look virtually identical and are not shown. The lineshape shows no phase-twist disper-

sive components in the two-dimensional spectrum above.
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Figure 4.8 Echo DAS Spectrum. This spectrum was taken with the pulse sequence given
in figure 4.3.
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Figure 4.9 Hypercomplex DAS Spectrum. This spectrum was taken with the pulse se-
quence given in figure 4.3.
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Signal-to-Noise Ratio Enhancements

In the case of one-dimensional DAS spectra, the signal-to-noise enhancement will
be independent of the enhancement in the anisotropic dimension. In practice, the shifted
echo experiments will provide better signal-to-noise, since the complete DAS echo signal
can be collected for short | points. For short #; points in the non-shifted DAS experi-
ments, the echo top intensity may be complicated by ringing of the probe. This ringing
can significantly reduce the signal-to-noise ratio in the one-dimensional projections.
Also, by doing only a partial projection of the signal in the two dimensional spectrum
(rather than a complete projection) by adding only regions with strong signal, significant
improvements in signal-to-noise ratio in the one dimensional DAS spectra may be
achieved. This may distort the overall intensities in the final DAS spectrum and in some
cases it is not possible to eliminate any region of the two dimensional spectrum for pro-
jection.

In table 4.1, the two dimensional signal-to-noise ratios are tabulated for each of
the various DAS pulse sequences. These numbers are arrived at by measuring the RMS
noise in a region of the 2D spectrum which is devoid of signal and comparing this to the
highest point (largest signal) in the complete 2D spectrum. The experimental examples
shown in the previous section were used to generate these ratios. As has been predicted
by theory, the hypercomplex SEDAS experiment has the highest signal-to-noise ratio.
This should in theory be a factor of /2 = 1.4 better than the SEDAS experiment. In this
case, the factor was indeed achieved, but in practice this may not be always be true, since
the DAS anti-echo may shift out of the acquisition window too rapidly. The SEDAS sig-
nal-to-noise ratio should also be a factor of +/2 = 1.4 better than both the echo DAS and

hypercomplex DAS experiments.
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Sequence Pure Phase S/N Ratio

z-Filter DAS yes 15.8
DAS (fig. 4.2) no 20.6
Hypercomplex DAS (fig. 4.4) yes 31.3
Echo DAS (fig. 4.3) no 31.6
Anti-echo DAS (fig 4.3, dashed pathway) no 10.9
Shifted-echo DAS (fig. 4.5) yes 434
Hypercomplex Shifted Echo (fig. 4.6) yes 67.0

Table 4.1 Signal-to-Noise Ratio Enhancements For a Variety of Pulse Sequences. These
measurements were all performed with equal acquisition time for each experiment.

Again, this enhancement seems to hold quite well. The hypercomplex DAS should be
better by a factor of V2 =1.4 than the original DAS experiment, which also is true.
Finally the z-filter pure phase method signal-to-noise ratio should be comparable to the
original DAS experiment, since the z-filter sacrifices a factor of /2 = 1.4 which is re-
stored by the hypercomplex data collection. In practice, the z-filter will have worse sig-
nal-to-noise ratios than the original phase modulated data, since relaxation during the z-
filter will further reduce the signal-to-noise in this type of experiment. Therefore, theory
predicts that the signal to noise of the hypercomplex SEDAS will be at least a factor of
/8 = 2.8 better than the older z-filter method of acquiring pure-phase data. A final
comment about pure-absorption phase DAS is to warn the reader that in some cases
SEDAS or hypercomplex DAS may actually work better than the full hypercomplex
SEDAS. This will occur when the apparent T; of a sample is too fast to allow long n ¢,
echo times. In most cases throughout this thesis, the SEDAS pulse sequence will be

used.
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Chapter 5
Cross Polarization

The use of cross polarization in solid-state nuclear magnetic resonance has lead to
the rapid advance of experiments on spin 1/2 nuclei such as 13C and ISN. Both of these
nuclei are very important in biological samples, especially peptides and proteins. The pi-
oneering work with CPMAS by researchers such as Waugh and Griffin at MIT and
Schaeffer at Washington University has opened the door for a variety of high resolution
studies of these types of samples. A brief history of some of the theory behind cross po-
larization will be discussed below. Following that introduction, I will describe some of
the difficulties in applying the technique of CP and CPMAS to quadrupolar nuclei and

one solution to this problem.

History

The technique of cross polarization was first discovered over 30 years ago by
Hartmann and Hahn.%2 This represents one of Hahn's many contributions to the field of
magnetic resonance. In these experiments, magnetic polarization is transferred from one
type of nuclear spin to another. This is accomplished by applying strong rf fields along
the rotating frame x axis to both types of spins following a 90° excitation pulse along the
y axis. In this case, the transverse magnetizations of both spins are "spin-locked" along
the rotating frame x axis. In this rotating frame, the precession rate of each spin about the
spinlocking magnetization will be determined by the respective strengths of the rf fields
and gyromagnetic ratios. When the Hartmann-Hahn condition is achieved, the precession
frequency of both types of spins will be equal, that is to say the rf amplitude is set to a
level such that the 90° pulse lengths are identical for both spin systems. Mathematically,
this is expressed as ¥;B,; = YsB¢ for spin 1/2 nuclei. This condition is quite sharp and

appears much like other resonance phenomena. The reason that this allows polarization
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to be exchanged is that the flip-flop terms in the homonuclear dipolar Hamiltonian (those
which mutually flip two different spins) are now zero energy processes. This greatly en-
hances the dipolar coupling and allows energy to be transferred between the two spin
baths. The spin temperature of the two baths will rapidly come to equilibrium with the
higher gyromagnetic ratio spins giving energy to the lower gyromagnetic ratio spins.
This may be applied to systems such as 'H-13C to gain approximately a factor of 3-4 in
13C polarization or to 1H-15N to gain a factor of 9-10 in !5N polarization. Additionally,
since the 1H bath is high abundance, the T relexation time will often be much faster than
I5N or 13C and the experimental repetition rate may be increased significantly?3.
Combining cross polarization with magic-angle spinning has the added advantage of
giving high resolution spectra for nuclei like carbon-13 and nitrogen-15.% In this re-
spect, 13C CPMAS has become a standard and routine experiment in most laboratories.
In the next section, the use of cross polarization to study quadrupolar nuclei under VAS
conditions will be discussed. Previously, CP has been applied to a number of different
quadrupolar systems, with polarization usually being transferred from the abundant 'H
spins to the specific quadrupolar nucleus28:60.65.73.95-106 [ woyld direct the reader to

these references for additional information on this subject.

Spinning Effects on CP of Quadrupolar Nuclei

Significant increases in NMR sensitivity can be achieved by transferring high nu-
clear spin polarization between inequivalent nuclei using cross polarization (CP) tech-
niques. In addition, selective CP transfer can be applied as a useful tool for spectral
editing. While CP is a very effective technique for static samples, the combination of CP
with high-resolution solid-state NMR techniques that require sample rotation suffers from
a number of difficulties. One of these difficulties is that the dipolar spin interactions that
mediate the CP transfer become time dependent under magic-angle spinning (MAS)

making the Hartmann-Hahn matching conditions more complicated and also reducing the
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efficiency of the polarization transfer. Another difficulty arises when cross polarizing the
central transition of half-integer quadrupolar nuclei. In this situation the time-dependence
of the large first-order quadrupolar interaction interferes with the Hartmann-Hahn match-
ing. Remember that even though the central transition is unaffected to first-order by the
quadrupolar interaction, the energy levels themselves are affected.

Dynamic Angle Spinning (DAS) NMR was designed to provide high resolution
isotropic spectra for the central transition of half-integer quadrupolar nuclei that are
broadened due to second-order effects. DAS achieves this line narrowing capability by
making the angle of the spinner axis a time-dependent variable. This additional degree of
freedom aids not only in providing high-resolution spectra, but, as we show here provides
a solution to the problem of combining cross-polarization with high-resolution solid-state
NMR techniques. This solution exploits the time independence of the spin eigenvalues
when spinaing at 0° (parallel) to the external magnetic field direction. By performing the
CP step while spinning at 0°, the full static CP intensity can he obtained and used in an

MAS, variable-angle spinning (VAS), or DAS experiment.

Theory

The theory of spin locking and cross polarization of the central transition of half-
odd integer nuclei has been described in detail by Vega 96195 In this section, we present

a condensed treatment of this problem.

In the CP experiment involving polarization transfer from a spin I = 1/2 to the
central transition of a quadrupolar spin of S = 3/2, the observable of interest,(S, (1)), is

obtained from the relation
(S,()=Tr{o(r)S, } . (5.1)

Here o(r) is the density operator whose evolution is given by
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o(t) =U(1) o(0)U' (1) " (5.2)

where
U(t)= Texp[—i | H(s)ds}, (5.3)
0

T is the time ordering operator, and H(t) is the Hamiltonian. The secular Hamiltonian in

the rotating frame is given by

H(t)=—'HRF+HD(t)+HQ(t), (54)
where
HRF =—-h(0“ Ix "‘hwls Sx s (55)
Hp(t) = hopAR (1) 21,8, , (5.6)
and
= o) ] 2
Ho(t) = haog A% (1) J- (357 - (S +1)), (5.7)

where ®,; and ;g are the rf-field strengths for I and S spins, respectively, and AZDo(t)
and AZQo(t) are irreducible spherical tensors for the dipolar and quadrupolar interactions
defined in chapter 2, respectively. It is convenient to rewrite this Hamiltonian in the fic-
titious spin-1/2 formalism 2633 (see chapter 2) as
H(t) = —hoyl, —\Bhoygs (S + S3*) - 2k 587

+V6hwpAS (1)(S12 - S2*) + 3hwpAR (1) 21,5} (5.8)

+hopAR(t) 21,55,
We assume |@y], |o;s| > |@p]|, and transform into a time dependent frame?? that diago-

nalizes Hgp + Hp(t) using

1 T T
W(r)= exp(—z £y I, )exp(z ) S;4 )exp(—z 5 Sy23 )

xexp(i2&1(1)S,* Jexp(i2&, (1)S5*)

(5.9)
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where

'\/5(01 S

tan2¢&,(t) = , (5.10)
61( ) -'\/ga)QAz%(t)‘*' W s
and
V3w
tan2&,(t) = 15 . (5.11)
—V6weA% (1) - w5
The propagator in this time dependent frame is given by
t
0(t) = Texp{—% [[A(s)- thT(s)W(s)]ds} (5.12)
0
where
H(t)= W' (1)H(1)W(1)
=—hoy I, + hwlS(S;“ - Sz23) - hay3 (1) S, - hey (1) S2*

—hbie (1) 21.SM + b2 (1) 21,SP — nbi2 (1) 21,8\% - nb3g (1) 21,52

with
o3(t) = \/301123 +(Vewgafh (1) - o 5)2 = _Jgfﬁf(’gf'(),; Drs (5.14)
0y (8) = -\/3(»125 + (V6woAD (1) + @y5)” = ‘/gwi‘:%’é:)(; s (5.15)
bjs (1) = @pAR (1){2cos(& (1) - &,(1)) + cos(& (1) + &(1))} (5.16)
bjé (£) = wpAgp (£){2sin(&(£) - &, () - sin(& (1) + &,(1))} (5.17)
bis (1) = @pAz (1){2cos(£ (1) = &, (1)) = cos(&, (1) + &, (1))} (5.18)
bis (1) = wpAx (£){2sin(& (1) - §,(1)) +sin(&, (1) + &, (1)) } (5.19)
and

Wt ()W(e) = 2hi%‘t(ﬁs;3 + 2h‘—i§—;t(—’—)s§“ . (5.20)
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where 0<{&(1),E,()} < Z. U(r) is related to the rotating frame propagator by
U(¢) = W()J(r)W' (0). Equation 5.1 can be rewritten

(S,(0)= Tr{l"l(t) &(0)0" (t)§+} : (5.21)

where §, = Wi(1)S, W(¢) and 5(0) = W'(0)6(0)W(0). The transformed observable S,
is
S, = Sz23 cos® & (t)cos® &, (1) + S22 sin 2, (1)
~814 5in? & (¢)sin? &, (1) - S2* sin 2, (1)
~8125in? &, (£)cos? &, (1) — S24 cos? & (1)sin? &,(r)
+813{cos & (1)sin & (1) — cos 2&, (1)}
+824{cos &,(1)sin &, (2) + cos 2&, (1)}
+iS3? {sin & (t)cos & (¢) + cos(&, (1) - &2 (1))}
+iS;*{cos(& (1) - £, (1)) - cos & (1) sin &, (1)}
+isy*{sin & (1)sin & (1) = sin(&, (1) - &(1))}
+iS2{cos & (1) cos &, (1) — sin(& (1) - &, (1))} -

(5.22)

After an initial 772 pulse on the I spin, the initial density operator is 6(0) = /,, and the

transformed initial density operator is

6(0)= W'(0)o(0)W(0)=1,. (5.23)

In the static case, a Hartmann-Hahn matching condition of @; =(S+1/2)w;g is em-
ployed and only those spins where IwQAQQO(a, ﬁ,y,t)l >> |@s| (where the spatial depen-
dence of A,Z%(t) is given explicitly in terms of the Euler angles of the principle axis
frame) undergo polarization transfer to the central transition.

In the case of rotating samples under the above matching conditions, only those
spins that satisfy |wQA2Q0(a, B, y,t)‘ >> ]a)l S[ or pass through this condition during a rotor
period, will undergo CP transfer, as shown by Vega. For these spins the values of & (¢)

and &,() have values close to either 0 or 7/2. When &(¢) = §,(1) =0, w3(¢) and
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,4(t) are approximated by —a)QAz%(t) + w5 and coQAZQO(t)+ ;s respectively, and
when & (1) = &,(¢) = £, are approximated by a)QAZQO(t) - a5 and —wQAz%(t) — Wy re-
spectively. In this situation, the Hamiltonian in equation 5.11 can be rewritten so that the
diagonal elements are in terms of single and triple quantum transitions:

H(& =~ 0) = —hoy; I, - 2hang S2 +VBhagAD (1)(She - S3) - 520

6hwpAR (1)1 S +2hop AR (1)1,SP
or
H(E = Z) = ~hoy I, + 2ho;s S — VBrwpAS (1)( S5 - 5% ) - 525

2hwpAR (1) 1.8 + 6RwpAR (1)(2) ISP

- O
2 - éz(t)
2 /3
3
g
>
/6
0

0 /2 T 3n/2 2n
Rotor Phase (radians)

Figure 5.1 &) and &; as a Function of Rotor Phase. The values of both | and &; stay
very near their minimum (0) and maximum (7/2) values for all rotor phases, indicating
that the approximations made for equation 5.24 and 5.25 are quite reasonable.

Figure 5.1 shows the graph of &; and &; as a function of rotor phase for a crystallite with
a quadrupolar coupling constant of 11.0 MHz, asymmetry parameter of 0.0 whose PAS is

oriented perpendicular to the rotor which is spinning about an axis oriented 54.74° from
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the magic angle. Notice that the values of stay very close to the minimum and maximum
values at almost all rotor phases. These curves are typical for most crystallite orienta-
tions. The Hamiltonians in equation 5.24 and 5.25 may be transformed into the RF rotat-

ing frame, assuming that |@y;|, |@;5|>> |@p|, as has been previously discussed.92:94

I, — I, cos @t + I, sinwy 1

(5.26a)
Sf3 - 833 cos2mw,gt + Sy23 sin 2@ gt
H(& = 0) = hwpal (1)(sk - 5&)
—thDAZDo(t)(Ix cos @t + I, sin co”t)S,‘c4
(5.26b)
+2ha)DA2%(t)(1x cos )yt + I, sin co”t)
)((S‘%3 cos 2 w, gt + S§3 sin 2 CO]S,)
or
I, = I, cos @yt + 1, sin @yt
(5.27a)
St — 83 cos2wt - Sy sin 2wyt
A(E = 2) = ~nwpAR (1)(S6s - %)
+6thA200(t)(1x cos @yt + 1, sin a)l,t)Sf3
(5.27b)

~2hwpAR (¢)(I, cos it + 1, sin o )
14 14 .
x(Sx cos2amygt — S, sin 2w,st)
Under the Hartmann-Hahn condition for the central transition, @;; = 2w, s, these equa-
tions simplify into terms which oscillate at frequencies of 0, w17 or 2. The time de-

pendent cosine and sine modulated terms that remain will vanish in the time average be-

tween zero crossings when ®,; > ®, simplifying the Hamiltonians in the doubly rotating

frame further.
H(£ =0) = VEhwp AR (1)(Se — 553 ) + hwp AR (1)(1,SE + 1,577 (5.28)

or
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(& ~ 2) = ~VBhogAD (1)(skk - SB) - hopAB ({181 - 1,51) (529

Additionally, the transformed observable, ., of Eq. [23] becomes
S, = 82 cos? &, (t)cos® &, (1) - 514 sin? £, (¢)sin? &, (1)
+52 cos2&, (1) - S13 cos 2£ (1)
+iS2 cos &) (t)cos &, (t) + S, sin & (¢)sin &, (1)

+i5';2 cos(&,(2) - &,(2)) + iSy34 cos(&,(t) - &,(1))

(5.30)

In general, the time-ordering operator T makes the derivation of U(¢) in Eq. [20]
complicated since H(r) and isW' (t)W(z) do not commute with themselves or each other
at all times. There are however certain approximations that can simplify this task. How
the system evolves depends on whether the passage through or near the zero crossing is
adiabatic or sudden. In figure 5.2 the values of W13(t), @24(f), 2d&1/dt and 2d&>/dt are
shown plotted versus ngQA%(t) for three different spinning rates (5 kHz, 1 kHz and
100Hz). It can be seen that the off diagonal iAW (r)W(¢) terms are only important when
the spinning is rapid and the size of the quadrupolar coupling is small. The simulation
parameters are identical to those used in figure 5.1.

The adiabatic approximation is permitted when |FI (t)l >> |W*(z)W(t)l at all times

(as in figure 5.2, 100 Hz spinning rate), and the propagator becomes
!
lja(t)=exp|:—-§jﬁ(s)ds]. (5.31)
0

Under this propagator, with the Hartmann-Hahn match given above, the time dependent

rotating frame initial density matrix (equation 5.24) becomes

U,()8(0) T (0) =T, (1)1, T} (1) = -;-(12 +52) (5.32)

(assuming we start with a crystallite with &, (#) = €,(#) = 0) and polarization is trans-
ferred from the I-spin to the central transition of the S-spin. When the sample rotation

takes the first-order quadrupolar coupling through or near zero, CP transfer from the I-
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spin to the central transition of the S-spin continues, since the system is under adiabatic

conditions.

Frequency (kHz)

Frequency (kHz)

®)3(t)
------ @4(1)
..... 28, (/dt

———. d2E(t)/dt

Frequency (kHz)

-750 -500 -250 0 250 500 750
6'7wAg(t) (kHz)

Figure 5.2 Matrix elements in cross-polarization of quadrupolar nuclei. The spinning
rates are 5 kHz, 1 kHz and 100 Hz which produce adiabaticity parameters of 0.11, 0.55
and 5.5 respectively. Notice that the off-diagonal terms dominate only in the small
quadrupolar coupling region and in cases of rapid spinning

Before the zero-crossing, &,(t) = £,(t) =0 and the effective observable is therefore
§P =52 +iS?’ (as can be seen from equation 5.23) resulting in a large observable signal.
After the zero-crossing, &(t)=¢&,(t1)=% and the effective observable is
§2 =-S5\ +iS)*. Therefore, the cross-polarized central-transition observable intensity

(S2(t)) goes to zero. However, since & () =&,(t) =%, the effective adiabatic
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Hamiltonian is changed to Eq. [30] and the polarization will transfer from the I-spin to
the triple quantum S-spin coherence in the transformed frame. Any central coherence

polarization will remain spin locked and unchanged.

0,0, T (0)— %(1z +54) (5.33)

This evolved coherence is exactly of the same form as our observable operator, and leads
to observable intensity identical to immediately prior to the first zero crossing. After the
next zero-crossing, the effective observable is transformed back into §? = S +iS>, and
the central-transition begins to cross polarize again while the triple quantum coherence
remains spin locked. After multiple zero-crossing cycles in the thermodynamic limit, the
central and triple quantum transitions will be equally polarized from the I-spin as shown
by Vega 105, The state of the observable does not matter for observable intensity at this
point. The overall CP intensity will be identical to that observed for a static spin in the
thermodynamic limit, however the overall rate will be half as fast, since both the central
and triple quantum transitions are being polarized simultaneously. In the presence of a
short rotating frame relaxation time, this will lead to a reduced overall CP intensity from
adiabatic spins.

The sudden approximation is permitted when (as in figure 5.2, 5 kHz spinning

speed) at the zero-crossing, lfI(t)l < IW*(t)W(t)'. The propagator is then
U.(t)= exp[ J W' (s)W(s) ds] . (5.34)
0

This propagator transforms the S> and S* in the following manner:

U.(0)S20!(r)—> 8. (5.35)
U,(5)SHU! (1) > SP (5.36)

The transformed initial density operator before the first zero-crossing is still given by

equation 5.32. However, during the first zero-crossing, the S term is transformed to S.*.
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In the sudden reversal of the first-order quadrupolar coupling, the cross-polarized central-
transition is transferred to the triple quantum transition after the reversal. The observable
intensity after the zero-crossing is therefore identical to that immediately before the zero-
crossing. After the first zero-crossing, the CP transfer from the I-spins to the triple quan-
tum coherence will continue according to equation 5.33. Therefore the observable opera-
tor will always match the cross polarizing transition. After multiple zero crossings, one
of the two transitions will be completely polarized while the othér/ will be unpolarized.
The polarized intensity will always remain observable and the CP efficiency and rate
should be identical to the static case.

For crystallites which pass through the zero crossing in neither an adiabatic or
sudden regime fall into the intermediate regime (see figure 5.2, 1 kHz spinning speed).
This type of evolution is the most difficult of the three cases to calculate. To determine
the evolution of the density matrix in the intermediate regime, we need to include both
the diagonal H(r) and the off diagonal W' (r)W(¢) contributions to the unitary evolution
propagator. These two terms do not commute with each other and the time ordering op-
erator may not be easily removed. The solution to this problem is to rediagonalize the net
Hamiltonian at each time step. There does not appear to be an easy method for doing this
diagonalization. Vega has shown with numerical simulations that spins undergoing an
intermediate regime zero crossing evolve into non-spin locked states?®!05, Therefore, the
contribution these spins make will only be prior to their first zero-crossing, after which
their contribution to the overall observed cross polarization intensity will decay rapidly.

We have performed variable spinning angle cross-polarization experiments which
may be approximately described with the above results. For a powdered sample, we may
classify each spin according to its PAS orientation with respect to the rotor in one of five

categories. These categories are:
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1. Spins with large a)QAZ,QO(t) which undergo no zero crossings (essentially
static spins, alternatively spins which have &) and &, approximately equal to either O or
/2 for all time),

2. Spins which have a small coQA%(t) for the majority of a rotor period
(alternatively those spins which only have small oscillations in & and &; about 7/4),

3. Spins which have a large a)QAZQO(t) for most of the rotor period and un-
dergo adiabatic regime zero crossings (alternatively those spins for which &) and &; oscil-
late between 0 and 7/2),

4, Spins which have a large a)QAzQO (#) for most of the rotor period (just as in
3) and undergo sudden regime zero crossings,

5. Spins which have a large aJQAZQO(t) for most of the rotor period (just as in

3 and 4) and undergo intermediate regime zero crossings.
For spins which fall into the first and fourth categories, the cross polarization contribu-
tions are simple, as they will contribute full intensity with normal polarization build up
rates. For the spins in the fifth category, the ¢ross polarization contribution is also simple
to calculate, since in the limit of long contact times, they will contribute no cross polar-
ization intensity. For spins in the second category, the Hartmann-Hahn match condition
will not be met for a significant portion of the total contact time and the contribution will
again to zero to the overall cross polarization intensity. For spins in the third category,
the cross polarization contribution will be identical to the static or sudden spins, however
the build up rate will be half as fast.

The only difficulty remaining is to determine mathematically the definition for
each of these five categories. The first category is the most easy to define, as this consti-
tutes spins for which I«fé(oQA%(t)l > 5,5 at all times (corresponding to &; and &;
within 7712 of the minima and maxima of 0 or 7/2). The extent to which the quadrupolar

coupling must be larger than the radio frequency strength is difficult to define exactly, but
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generally a factor of five or more is probably sufficient to fully truncate the radio fre-
quency portion of the Hamiltonian. The second category is likewise simple in definition,
as this represents the spins for which |«/6a)QA2%(t)| < 5w, for more than one third of a
rotor period. The factor of one third is an arbitrary number which seems to work well in
practice. This in general will represent only the spins whose PAS z-axis lies near the
magic-angle under sample rotation. The third, fourth and fifth categories relate to spins
which spend a majority of their time (more than two-thirds of a rotor period) with
lwfngA%(t)l > 5wys. To differentiate between these three cases, the ratio of the sizes of
'ﬁ (t)l and |W*(t)W(t)| at the zero crossing must be considered. This leads to the defi-

nition of an adiabaticity parameter & below.
- 2
()| = \/wfs +(VBwgA% (1) - wys)

LAOLOE 2"%‘” -— Vi8w50g 2 dA%(t)
35 + (Jga)QAZQO(t) - co]s) !

y (5.37)
2 2
(30)125 + (‘\/ngAZQO(tO) - (015) )
T g
20
18(01st dt ‘,0

This is then evaluated at the zero crossing where «/EwQAz%(to) = 5. At this point the
value of & goes through 7/4 and the adiabaticity parameter is then

3(0]25

= (5.38)
dAf (1)
\fng dr *l 10
Alternatively one could define an adiabaticity factor based on w4 and 2d&/dt, however
this gives an identical result at the 2d&»/dt resonance where V6wyA% (to) = ~0ys.

Explicitly evaluating this derivative yields
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' 2 2 .
ag(ny= Y, Y eimorrntnn)g@ 6)d2)(B)p,,

m=-2 n=-~2
Q t 2 2 . notm
L0 -6, 3, 3 -ime R 01 o,
me—2 n=2 (5.39)
= 0,890
3(0]25

" 0gw,B5 1)

This definition of adiabaticity parameter is proportional to the one used by Vega in his
description of cross polarization!%3, however, now there is an additional orientation de-
pendence as well which comes from the time derivative of AZ (). When the value of o
is much larger than one, then the diagonal terms dominate in the evolution and the spin
will be categorized in group three (adiabatic). When the value of ¢ is much less than
one, then the off-diagonal terms dominate at the zero crossing and the spin will be cate-
gorized in group four (sudden). When ¢ is of the order of one, then the spins are classi-
fied as group five (intermediate). To calculate the approximate cross polarization effi-
ciency at a given spinning angle, we merely calculate the number of spins in each cate-
gory and add the cross polarization intensity proportionally for each category. The adia-
batic contribution is the most difficult to estimate as the build up rate is half as fast and
therefore may not be fully cross polarized before rotating frame relaxation begins to im-
pede the buildup. In any case the adiabatic contribution should lie somewhere between
the 50% and 100% intensity contribution levels.

The theory for the dynamic-angle spinning experiment has been described previ-
ously in chapter 3. Remember that in the DAS experiment, there exists a continuous dis-
tribution of angle pairs which lead to high resolution isotropic spectra. Specifically, the k
=1 and k = 5 angle pairs will be evaluated under CP conditions. I have done experiments

which compare CP efficiency at a variety of spinning angles.
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Experimen‘s on Sodium Pyruvate and Sodium Hydroxide

The cross polarization experiments were performed on a home built spectrometer
based on a Techmag acquisition system at 7.04 T (!H NMR frequency of 301.200 MHz
and 23Na frequency of 79.671 MHz).
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Figure 5.3 Cross-Polarization Pulse Sequences. Phase cycles are indicated for the one
dimensional =xperiments (a-c) which are one pulse with decoupling, cross polarized with
decoupling and zero-polarized with decoupling and sample spinning axis reorientation.
The (d-e) pulse sequences are the normal and CP two dimensional DAS experiments re-
spectively. The phase of the 90° pulses on X are identical to those in the SEDAS experi-
ment. The spin lock pulse is always set to the phase of the first pulse plus 90°.

(D
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The DAS probe was home built with a stationary 0.75" diameter coil for both rf-trans-
mission and detection as described by Mueller et al.>! The double-tuned resonant circuit
was similar to one described by Doty et al.'97 The spinning rate was between 4.0 and 6.6
kHz. The samples of sodium hydroxide, NaOH-xH,0O, and sodium pyruvate,
CH30OCOONa, used for these experiments were obtained from standard commercial
sources. The pulse programs and phase cycles are given in figure 5.3 below. The DAS
pulse sequence has been described previously in chapter 4. For the CP efficiency exper-
iments, phase alternation of the !H ii was used (figure 5.3b) to assure that only the in-
tensity due to CP would be measured. For CPDAS and ZPVAS experiments (figure 5.3a
and 5.3c), a 90° pulse was applied on 23Na simultaneously with the initial 'H 90° to
achieve the largest final sodium polarization. For the 23Na spectra without CP, recycle
delays of 30s and 16 s were used for NaOH and CH30COONa, respectively, while, for
the CP experiments, recycle delays of 10 minutes and 36 s were used, respectively. For
the DAS experiments, we acquired 32 scans plus 1 dummy scan for each of the 90 #;
points while for the CP build up curves and ZPVAS spectra we acquired either 4, 8, or 64
scans plus 2 dummy scans for each different contact time and angle pair respectively. For
the CPDAS and ZPVAS experiments on CH30COONa the CP contact time was 20 ms.
The contact time for NaOH 2 ms. The input power of 200W on the 'H channel and
100W on the 23Na channel gave 7 us central transition selective 90° pulses. The CP
Hartmann-Hahn match condition was achieved by setting
YuB =1 +1/2)YNaBi2 =2YNaBi,Na Which will selectively polarize the central
(I/2 > -1/2) transition since the central transition nutation frequency is
Opusation = (S +1/2)YNaBi Na in the presence of a large quadrupolar interaction 6272835,
Methods of simulating powder patterns have been described previously in chapter 2 and

in additional papers*!76:81,
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Cross Polarization Results and Discussion

The effect of level crossings on CP efficiency can be seen clearly below in figure
5.4, which shows the cross polarization efficiencies of NaOH and sodium pyruvate ver-
sus VAS spinning angle. All intensities are scaled relative to the corresponding single

pulse 23Na VAS and MAS spectra, using the sequence in figure 5.3a.
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Figure 5.4 CP Efficiency versus Spinning Angle. The upper graph shows the cross
polarization efficiency (boxes) for sodium pyruvate. The circles in this graph indicate the
effective polarization under ZPVAS (rather than CPVAS). The line indicates the theoret-
ical curve from the model described in the previous section. The lower graph shows the
CP efficiency (diamonds) for sodium hydroxide. The line again represents the approxi-
mate theoretical efficiency.
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As expected, only under static (0° VAS) conditions do we achieve the expected CP effi-
ciency maximum of approximately ¥,/2¥, = 1.9 for sodium hydroxide (NaOH) and
37,/47, = 2.84 for sodium pyruvate (CH30COO- Na*). The factor of 1/2 and 3/4 are
due to the high abundance (basically 100%) of both the !H and 23Na isotopes causing
cross polarization to be controlled by the equilibrium between their respective spin tem-
peratures and heat capacities (related to the number of protons and sodium atoms per
molecule). As the VAS angle increases, CP efficiency decreases dramatically. As seen
in figure 5.4, spinning the sample at an angle greater than approximately 30° results in a
CP efficiency that is less than that achieved by a single pulse. This indicates that the
level crossings are significant, even when only a reduced fraction of the spins are under-
going the maximum four crossings per rotor cycle. For DAS purposes, the only angle
pairs which will have an angle less than 30° will be those with high & values. This imme-
diately points to the k = 5 experiment, since this has added advantages of fastest effective
spinning rate and narrowest homonuclear dipolar linewidths (see chapter 3).

The dashed theoretical fits in figure 5.4 were obtained by numerically calculating
the curves according to the theory outlined in the previous section. For NaOH and
CH30COONa, the values of e2gQ/h were 1.8 and 2.36 MHz and nqQ were 0.0 and 0.77
respectively. The parameters for sodium pyruvate were obtained from simulations of the
MAS spectrum while those of sodium hydroxide were taken from Vega.!03
Qualitatively, the theoretical CP efficiency curves are approximately what one would ex-
pect, with the greatest CP enhancement for VAS angles near 0°.

Figure 5.4 also shows CP efficiency for sodium pyruvate at the angle at which de-
tection occurred under ZPVAS. Since CP always occurs at 0°, the observed efficiency is
constant for all angles. However, the efficiency under ZPVAS is less than that observed
under 0° CPVAS because of T relaxation processes that occur during the hop from 0° to

the detection angle.
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In figure 5.5 we show the 1H decoupled MAS spectra of sodium pyruvate ac-
quired with and without CP and with ZPMAS along with the simulation of the MAS

powder pattern. The signal-to-noise is the worst for CPMAS—about 75% of that seen in

the MAS spectrum without CP.
()]
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Figure 5.5 Comparison of CPMAS, MAS and ZPMAS Experiments. (a) and (e) show
ZPMAS spectra, (b) and (f) show 1-pulse MAS spectra, (¢) and (g) show CPMAS spectra
and (d) shows the high speed MAS simulation.

On the other hand, the ZPMAS spectrum has a signal-to-noise ratio about twice that seen
in the MAS spectrum taken without CP. This is expected since very little of the static
cross polarized magnetization should decay by T} processes during the hop from 0° to
54.74° while the cross polarization efficiency under MAS is so poor.

In figure 5.6, the decoupled DAS and CPDAS spectra of sodium pyruvate for the
0°-63.43° (k = 5) and 37.38°-79.19° (k = 1) angle pairs are compared. As can be seen in

figure 5.4, for k = 5, we observe over 2.5 times the signal-to-noise in the spectrum taken
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with CP compared to the spectrum taken without CP. In addition, the CPDAS experi-
ment at k = 5 has a S/N ratio over 4.5 times that of the CPDAS experiment at k = 1. This
demonstrates the importance of 0° cross polarization for DAS. The CPDAS experiment

done at 37.38° (k= 1) has a worse S/N than the same experiment done
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Figure 5.6 Comparison of CPDAS (fig 5.3e) versus DAS (fig 5.3d). The spectra on the
right are k=5 DAS spectra while the spectra on the left are k=1. The upper spectra in
both cases are from CPDAS.

without cross polarization. In fact, the CP efficiency under CPDAS at k=1 is very similar
to that observed under VAS at 37.38° (figure 5.2), which is to be expected. Other k val-
ues will also have reduced CP efficiencies, in addition to having spinning sideband pat-
terns which are more complicated than in the k = 1 or 5 cases (see chapter 3). In table
5.1, the absolute signal-to-noise ratios for each the experiments in figure 5.6 are pre-
sented.

We have shown that the efficiency of CP is influenced very little by the choice of

spinning angle until the angle approaches 0°. Therefore, in any VAS or DAS experiment
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it will be difficult to achieve maximum CP efficiency unless one does the magnetization

transfer at 0° as a part of, or before starting the experiment.

Experiment Angle Pair Signal to Noise Ratio
CPDAS (fig 5.3e) k=5 (0.00°, 63.43°) 123.6

CPDAS (fig 5.3e) k=1 (37.38°,79.19%) 273

Normal DAS (fig 5.3d) =5 49.1

Normal DAS (fig 5.3d) k=1 32.3

Table 5.1 Signal to Noise Ratios in CPDAS and Normal DAS
In addition, for the case of DAS the choice of 0° and 63.43° possesses the additional ben-
efit of giving the largest effective spinning speed, Sw,/6, and narrowest residual
homonuclear dipolar linewidth (see chapter 3). These results should prove quite valuable
for systems with low abundance such as 87Rb (27.8% abundant) or where isotopic label-
ing is crucial 170 (0.037% abundant) which could have polarization enhancements of 3.1
and 7.4 respectively leading to large savings in experiment time. In addition, for spin 1/2
systems (such as YH-13C or 'H-15N), where the time modulation of the dipolar interaction
leads to modulations of the Hartmann-Hahn match condition, the use of ZPMAS may

yield better CP efficiencies and reduced CPMAS distortions.
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Chapter 6
Alternatives to DAS

Throughout the preceding chapters both the theory and recent experimental ad-
vances of dynamic-angle spinning NMR have been discussed. This experiment was de-
veloped to produce high-resolution liquid-like spectra from solid samples containing
quadrupolar nuclei such as 170, 23Na and 27Al. Other techniques for averaging both the
quadrupolar and chemical shift interactions have also been developed, including double
rotation5:198 magic-angle hopping!%%:110, magic-angle turning'!! and dynamic-angle

hopping.’S

Double Rotation (DOR)

Double rotation is the simultaneous solution to the quadrupolar spinning problem

in which at least two angles are required to give narrow isotropic spectra.>

)\

Figure 6.1 DOR Rotor & Rotations. A representation of a DOR rotor is shown with the
rotation angles given. These correspond to those shown in equation 6.1. The phase of
the outer rotor is defined to be zero at zero time when the inner rotor makes the smallest
angle with respect to the vertical axis (the magnetic field).

In this experiment, a small rotor is spun about an axis which slowly moves in a conical

fashion about the magic-angle with respect to the magnetic field. Figure 6.1 shows the
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rotations needed to go from the PAS frame to the inner rotor frame then to the outer rotor
frame and finally to the laboratory frame. The expression for the frequency under this

time dependent trajectory is given below in equation 6.1.

AE(?Q) - _"_2&_?.:&(1(1 +1)- %) Z z (l.OIZ.i;m.—mz al%

1=0,2,4 m>0

!
= 2 D@t + ¢,,,6,,0) ZDI) (@2 + ¢,2,6,,0) 6.1)
n=— j==l

X ZD,(C})(aQ,ﬂQ, r2)of
k=—1

In this expression, 9 is the angle the outer rotation axis makes with respect to the mag-
netic field and 6; is the angle the inner rotation axis makes with respect to the outer rota-
tion axis. The outer rotation rate and absolute rotor phase are given by w,) and ¢; while
the inner rotation rate and absolute rotor phase are given by w,; and ¢,. The outer rotor
phase is defined as zero when the inner rotation axis makes the smallest angle with re-
spect to the magnetic field. The Euler angles refer to the rotation from the PAS to the in-
ner rotor reference frames. Under the assumption of high speed spinning about both axes,

this expression is greatly simplified.

AE(RQ) E‘_"g(( )___) 2 2(1.0|2,i;m.—m)al%

1=0,2,4 m>0
g (6.2)
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Much like the case of high speed magic angle spinning, the appearance of terms propor-
tional to Legendre polynomials leads to the choice of DOR spinning angles. In the above
expression, if 8, is chosen equal to the root of the fourth-order Legendre polynomial

Py[cos 6,] and 6y is chosen equal to the root of the second-order Legendre polynomial

11.7T

T

T T T

T . S e
-50 -45 -40 -35 -30 -25 -20
Frequency (ppm from 1 M 87RbN03)

Figure 6.2 DOR of 87RbNO3 at 9.4T. The two spectra above were taken with short 30°
pulses and a rapid repetition rate. This allowed acquisition of a large number of scans
with random rotor phases, to achieve complete averaging of this variable leading to all
positive sideband amplitudes (see below). The Larmor frequency at 11.7T was 163.628
MHz and 130.886 MHz at 9.4T. The spinning rates were 500 Hz (lower spectrum of
each pair) and 700 Hz (uper spectrum) in these experiments.

Pz[cos 6 ], only the I = 0 terms will be non-zero. Alternatively, the angles may be re-
versed with the same effect. There is only one angle which is the root of Pz[cos 91]

which is the magic angle, 54.74°, while two angles are the roots of P4[cos6,], 30.56°
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and 70.12°. Due to the requirements of constructing a DOR probehead, the usual choice
is 54.74° for the outer rotor and 30.56° for the inner rotor. With these angles chosen, the
DOR experiment is a simple single pulse and acquire experiment. Figure 6.2 shows the
DOR spectra for 87RbNO3, a salt with three crystallographically distinct sites. The spin-
ning sidebands (marked with asterisks) arises from the time dependent terms which were
ignored in equation 6.2. The isotropic peaks (marked with vertical arrows) are those
which do not change position when the spinning rate is changed. These correspond to
peaks at -29, -32 and -34 ppm at 11.7T (163.628 MHz Larmor frequency) and -32, -36
and -37 at 9.4T (130.886 MHz Larmor frequency). The time dependent terms which lead
to spinning sidebands may be analyzed in a manner virtually identical to that presented in
chapter 3. First, we expand the energy splitting in equation 6.1 as the sum of oscillating

time dependent terms.

AE20) =12_‘16_(1(,+1)_%) Yy go2zmom 0

@ 1=0,2,4 m>0 "
{ ! {
af} = 2: Zlkzldﬁ’(ez)d(”(el)d )(82)o (6.3)
n=-| j=—l k=-

Xe-i["(wrl'+¢rl )+j(wr2'*¢r2 + 70 )+kaQ ]

This expression may then be regrouped according to the dependence on rotation rates.

Q
AE(2Q) - WI) "[ rl[+¢rl)+1( Wl + P,y +Y )]
1=022 4nj2—-l

W = 2298 (1(141)- 1) (6:)a(0) 3. (69) o8 (©4)
k=-{
x e—ikaQ Z (1,02,2,m,~m)

m
m>0

This may then be simplified by grouping the / = 0, 2, and 4 terms together for each n,j

pair. This simplifies equation 6.4 even further.
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AE(Q) - ian e”‘["(wr1'+¢,x)*f(mr2'+¢r2+70)]
mm (6.5)

]
Wy= YWY
1=20,2,4

This may then be integrated to give the evolved phase and signal after a 90° pulse.

W ‘e-i[n(a),,wq),; )+j(wr2'+¢r2 + YQ )]
nj

4
PR () =Wt + Y
n,j=—4

j=n$0
W .e

4 _
+ ca ,
n.jé-‘t _'("a)rl + JwrZ)
Jj=n#0

~i(nw, + jo,;)

(6.6a)
~{ndn1+i(0r2+79)| :

S(t) = e~ 9228 (0) _ ~iWoot

T Lt CRUT et ey

X n
i 10 Yy Frra gy
L j=n=0 (6.6b)

-'i[ﬂ¢n +f(¢r2 +YQ)]

( 3 -Wye

X exp .
2 (g @)
| j=n=0

The use of Dirac delta functions again may be used to simplify this equation.

S(t) = e Woo!

- -
5(‘/’ S L ¢r1 )5(‘/" = Wyt - ¢r2 - }’Q)
2r 2m
x—L- 4 w.. =i{ny+jy’]
w { £ xexp| Y L laydy’
n,j=—4 (nwrl + j(l),.z)
i j=n#0 ]

Pa('l" ¢rl)6( W, - ¢r2 - yQ)

2n2m 6.7
1 —i{ny+jv’
X = 4 _W.e '["W"’]V’]
4 '“) xexp| Y, —— dydy’
n,j=—4 (na)rl +j(0,2)
L Jj=n#0 ]
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Then substituting back the infinite sum expansion for the Dirac delta functions gives

equation 6.8.

S(t) = e"in‘
[ 4w e inv+iv]
o |INM(V-oat=0,)+ Y, -
= W, + jo ,
X rye NZN { ‘([ exp ;I=;;3 (n rnTJ r2) dy dy
14672
h*‘iNz(V" = Ot =@y - YQ) |
—. 4 _w ,e‘i["vﬂjv'r (6.8)
2e2n |iN3(W-0a)+ D (";14'1'0’,2)
foa r ’
X Z I J exp '}!;_Jn;(‘)‘ dydy
A6~Nk 0 0
_+iN4(V" =02 - YQ) |

The y and ¥ independent terms may be removed from the integrals and the signal may

be expressed below.

S(1) = e~ Woo! 2AN,.N2A;I3.N4e_,[le”+N2w'2]’
NNy ,N3 Ny

o~ (=N )on+ (=N ) 02477

(6.9)
21 2n 4w -e—i["W+jw']
Ay N, =17 exp| iNy +iN ' + L ydy’
V2 4pm -([ { n.j§—4 (nwrl +1wr2)
Jj=n#0

This expression may then be integrated over the inner rotor phase (N2 = N4) due to the

fact that usually we observe signal from powder samples (all 92 will be present).

(S, aye =0 3 Ay, w101 Mol MN] 6 1)
Ny.Ny.Ns

The signal may then be averaged over all the powder angles and outer rotor orientations.

i0(9) ;
- <t ~i{Nyo, |+ Nyw,, Jt
<S(t))powder e zle-Nze Ao +tiena]

NN,

i

- 2 (6.11)
Swony =5 | [|Aw | sin B2dBCda?
00
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(a) Static

(b DOR(200Hz)
© DOR(320Hz)
d DOR(440Hz)

(e) I ’ l DOR(640Hz)

® DOR(850Hz)
10 0 -10
Frequency (kHz)

Figure 6.3 DOR of 23NayC,04 at 9.4T. The spectra above were taken with the usual
short pulses and a rapid repetition rate. Shown are the sideband intensities and positions
for a variety of spinning rates (outer rotor spinning rate indicated beside each spectrum).
It is important to note that the intensities do not necessarily approximate the powder
pattern in the slow spinning limit.

This shows that spinning sidebands will show up at sums and differences of integers
times the rotor frequencies. In general, the strongest sidebands will be those with small
Nj and N5 values. For a more detailed analysis of DOR spinning sideband intensities, see
papers by Sun et al.'64% In figure 6.3 are shown the experimental DOR spectra of
sodium oxalate at a variety of spinning rates. The most important feature here is that
even in the slow spinning limit, the sideband intensities do not approximate the shape of
the static pattern, as occurs in spin 1/2 systems under MAS. The spectra in figure 6.3
were taken by B.Q. Sun and Y. Wu and details concerning their acquisition may be found

in their papers.!6:49:112
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In addition, certain symmetry considerations can lead to the cancellation of all of
the odd-order outer frequency sidebands leading to greater sensitivity and resolu-
tion,49:100.108.112-114 Tq show this effect, we return to equation 6.6 and assume that the
inner rotor is spinning much faster than the outer rotor and average over this motion.

W, (e—in(a),,t+¢,l) — i )

n
pPOR (1) = Wogt + .
’E) —inw,

6.12)
W

n0

(e~in(wr]’+¢rl) — e_in¢’l )
S(t) = e ™o exp| T

n#0

nw;.

This, of course, now looks similar to the expression for the VAS signal in equation 3.11
or 3.21. There is one major difference, in that now the following substitution may be
made for W_,, = —=W,,. In fact, were this true for the VAS case, it would be possible to
eliminate all odd order sidebands from any one dimensional experiment. This is not the
case, however, and the rotor-synchronized acquisition described below will only give its

effective speed enhancement under DOR conditions.

S(t)=e Mol expl ¥ Wao(cosn(@,it +9,1) = cosng,, )} (6.13)

n>0 naw,

Signal may now be collected through outer-rotor synchronization such that the outer rotor

phase is only 0° or 180°. When this is done, the signal may be written below.

(S(t))°'+18°'___e“W0°‘ exp| 3 W,,O(cosrzwrlt-l)J

_n=2'4 nwl‘]
- W, 0lcosnw, st —1
=e iWoot exp Z 2'10( r3 ) (614)
Ln=1.2 nw,;
W3 = 2wrl

Notice that a redefinition of the spinning rate has been made which changes the indices of

the sum. This may be expanded with delta functions as before.
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(6.15)

x_2]; Ia(w_wr3t)cxp 2 .‘KZ_’.LOM d[l[
n=12 03

(6.16)

2n
; %%
X772, J °XP{1N(W—w,3t)+ Y —Z'J;I%M]dw
N - =12 r3

Now we pull out constant terms from the integrals, just as in equation 3.14.

(S(t)>0°+]80~ _ e-iWool expl: 2 nO ]EA -2iNw,

n=2,4 nwy
(6.17)

2n
Ay =+ J exp[iN!/H- Y Wao cos(ny/2) dy
0 n=2,4 na

This signal may then be averaged over the remaining powder angles, giving the result in

equation 6.18.

0"+180° -io2 Q) -2i
<S(t))p;vde, ='Z]"e i, ze 2iNw, ¢t
N
2r n (6.18)
xj Jexp Wao Ay sin f2dp%da¥
0 0 n=2,4 "@n

This expression shows immediately that the sidebands will be spaced at twice the outer
rotor spinning speed from the isotropic peak. This is quite useful, since it is difficult to
spin a DOR outer rotor much faster than 1 kHz and there will always be a large number
of spinning sidebands present to complicate spectra. Figure 6.4 gives an example of the

advantages of synchronized DOR when applied to the 23Na spectrum of Nay;C304.
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Figure 6.4 DOR of 23NapyC704 at 9.4T. The spectra above were taken with short 30°
pulses and a rapid repetition rate. Absolute rotor phase was monitored using optical
methods and pulses were applied only at the 0° and 180" positions. The outer rotor spin-
ning rate was 604 Hz for the spectra on the left and 800 Hz for those on the right. For the
simulations, the parameters were Cg = 2.43 MHz, ng = 0.72 and w; = 105.8 MHz.

Magic-Angle Hopping (MAH)

A different kind of experiment which generates isotropic spectra for spin 1/2 sys-
tems has been described by Bax e al.'® In this experiment, a static sample is allowed to
evolve at three different orientations which define the vertices of an octahedron. This is
accomplished by using z-filters to store the evolved magnetization while the sample is
rotated by 90 degrees about two orthogonal axes. The pulse sequence for this experiment

is shown in figure 6.5.
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w2 w2 n2 w2 2

t;/3|| hop ||t/3]| hop ||

AllllLa,

Figure 6.5 Magic-Angle Hopping Experiment. Pulses and hops are indicated
schematically. The phase cycle is given in table 6.1. Each t1/3 period is spent with the
magnetic field pointing through each of three vertices of an octahedron attached to the
PAS of a given crystallite.

Alternatively, MAH may be accomplished by rotating the sample about the magic angle
in three discrete 120° jumps using the same pulse sequence. In any case, no spinning ap-
paratus is required, however, the ability to perform rapid jumps may actually be of greater
experimental complexity. Of these two implementations, the second is preferable, as it

only requires rotation about a single axis.

o1 02.04,05 ¢3 O Il &1 20005 B O
0 0 0 0 | 180 0 180 0
0 0 90 90 || 180 0 270 90
0 0 180 180 { 180 0 0 180
0 0 270 270 || 180 0 90 270
90 0 270 0 || 270 0 90 0
90 0 0 90 | 270 0 180 90
90 0 90 180 || 270 0 270 180
90 0 180 270 || 270 0 0 270

Table 6.1 Magic-Angle Hopping Experimental Phase Cycle. Phase cycle for MAH where
the phase ¢, refers to the nth pulse in the pulse sequence. This same phase cycle may
also be used for the MAT experiment (see figure 6.6).

The phase cycle needed to implement this experiment is given in table 6.1. Both the first

and third pulses are cycled through four phases each to select Ap = ~1. The 4p = +1 will
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be selected automatically without phase cycling the second or fourth pulses, since any
non-zero coherences will decay during the hops. Finally, the last Ap = —1 will be selected
by the quadrature phase of the receiver and merits no additional phase cycling, unless re-
ceiver quadrature is imperfect.

To show mathematically how the MAH evolution can generate an isotropic spec-
trum in the #; dimension of a two dimensional experiment we have to look at the fre-

quency expression for the chemical shift interaction.
= 2 5CS . ACS
Ocsa = Giso,cs@; + \/;5 @A20

2
ASS = ZD,(,?})(“CS,[;CS.YCS)P'A‘C.?"

m=-=2

(6.19)

The three Euler angles relate the laboratory frame to the principal axis frame of reference.
In an experiment where the sample is rotated oof about an axis oriented 70! with respect
to the magnetic field, this expression is modified as below.

2
_ 2 oCS (2) ( rot prot CS
WDcspq = 8iso,cswl + \/;6 o, z Dm'o(a B ’O)Az'”’

m==2

2
A2(f§n = Z Dr(nz'?m ((ZCS ,ﬁCS , ,},CS )P:(».:fn

m'=-2

(6.20)

To examine the experiment where the sample is hopped in three 120 degree jumps about
a given angle Bro! with respect to the magnetic field, we only have to sum up the evolu-
tion at each of the three rotor orientations. The three different orientations, expressed in

the Euler angles are given below.
(arol ﬁml 0)
(arol’ﬂrot’o) - (aml + 2%,[3’0',0) (6.21)

(arol + ﬁ%r_,ﬁrol’o)

The net evolved phase over a period ¢) may then be written below
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¢MAH (tl) = 5isa.cswltl

D(Z%(arot ,ﬂrat,o) +

m,

2
+\/g6csw,%‘ 3 Df,%(a"”-&-%’i,ﬁ"",o)-r A,

m==2
D'('iz)(aror + %lz_’ﬁrol,o)

- -

(6.22)

The first term is the isotropic portion of the interaction which we wish to retain. The sec-
ond is the anisotropic portion which will be shown to average to zero under the magic-
angle hopping experiment. The first simplification comes by setting 70! to the magic-
angle (54.74°). This is the zero of the second-order Legendre polynomial and forces all
of the m = 0 terms to be zero. Secondly, by separating the Wigner rotation matrices into

products of exponentials and reduced Wigner matrices via equation 6.23, the sum in 6.22

may be further simplified.
D'('IZ,)O(aVOf ’ﬁrot ,O) - e—ima'fu dfnz')o (ﬂrot) (6.23)

In this expression, the m = 0 terms have been dropped as they are zero.

¢MAH(tl) = 6iso,cswltl + J'%’acswl %ll: ze_,‘mo,rm ﬁ%(ﬁmt)CmAZC:fn]

m#0

(6.24)

C,,,=(l+e 3 4e

-2imn —4imr )

The sum of exponentials (Cp,) inside the sum over m is seen to be zero by using the fol-

lowing expressions.

n . .
Zcos—z;‘l-’E = ¥sin2Z = forn>1 (6.25)
i=1

i M=
<]
=]
1

This effectively removes all of the anisotropic contribution to the evolution and the net
evolution and signal are given below.
MAH (, \ _
¢ (tl) - 5iso.csmlt1

6.26
S(tl) = e—i¢MAH(II) = e_iaisa.c.rw.‘ll ( )
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An alternative approach to understanding this type of averaging scheme is to invoke
group theoretical arguments as shown by Sun et al.!6!13 This produces an identical result
and will not be discussed here.

An excellent alternative to MAH is an experiment called magic-angle turning
(MAT) first described by Gan.!!! In this experiment, the sample is rotated continuously
about the magic-angle, just as in MAS. However, now the sample is rotated at a very
slow spinning speed (less than 100 Hz). In this fashion, the evolution at each of the ver-
tices of an octahedron may be approximated by interrupting the spinning with z-filters.

This pulse sequence is seen in figure 6.6 below.

2 w2 w2 m2 n/2

t1/3|| hop |{t1/3|| hop ty

3 —~ 3

Figure 6.6 Magic-Angle Turning Experiment. Pulses and hops are indicated

schematically. The phase cycle is the same as the MAH experiment (see table 6.1). Each

hop is performed by allowing the rotor to shift by 120° degrees. As in the previous exper-

iment, each t1/3 period is spent with the magnetization at a different vertex of the octa-

hedron, giving a shifting isotropic echo.
The theory for this experiment is identical in the limit of very slow spinning (#«7,). In
the intermediate case, where ?; represents is a significant portion of 7; (the period of the
sample rotation), the theory must be written slightly differently. Now instead of the sum
of three evolution periods, the frequency expression will be the sum of three integrals of
the time-dependent frequencies. The expression for the NMR frequency of a sample ro-

tating about an axis oriented at ™ with respect to the magnetic field as a function of

both crystallite orientation (acs , ﬁcs , }'CS) and time is given below.
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0csa (1) = Bigo s + 36 0, RES (1)

(t) - 2 —im (l),f+¢,)d(2) (ﬂrot)ACS

m=-2

(6.27)

In this expression the A term is identical to the A in equations 2.35 and 6.20. Now
the net evolution following the MAT pulse sequence will be the sum of three integrals
given below.

MAT -
¢ [tI] = 8iso,csw1tl +
T,H,

j':l S(t)dr + J' t)dt 6.28)

2 5CS
-\/-3-5 o 21,44

+[2, R (1)t
3

Again, the first term is the isotropic chemical shift and the second corresponds to the
anisotropic parts. The integrals themselves are over sums which can be separated into a
larger sum of integrals. The time-independent part is proportional to the second-order
Legendre polynomial of cos 8. This is analytically zero, since we have chosen 8™ to
be the magic-angle, 54.74°, which means the sum in equation 6.29 will contain nom =0
terms. Each of the integrals may performed analytically and regrouped below.

oMAT[1] = 8o cs00ity

Pexp(i"-j—wit—‘) exp(0) - exp(0)

25%w, 2 et 4@) (ﬂ"")Azc,i +exp(—i'"§""' )exp(’img"T’) exp(-—ﬂaﬂ’—)

“imw,
+ exp( —zm;o,n ) exp( -:ma;,z T, ) _ exp( -:ma;,z 1, )

(6.29)

m=~2

These may be further simplified sincew, 7, =27.

MAT[’] ] = 5&:0 cs@Orh

+\/—6CSCO 2 m;’::” d(2)(ﬁrol)ACS[exp(—im;o,:, )Cm _ Cm] (6.30)

m=-2

The C,, in this expression is identical to that in 6.24. Using the fact that C,, is zero,

yields the same frequency expression as in equation 6.26.

126




¢MAT[‘I ] = 5iso.cswltl

S(ty) = e 1] 2 giBuocants (6.31)

Therefore an anisotropic echo in ¢; will appear at a time #}/3 following the last pulse in
the MAT sequence which has evolved in ¢ with an isotropic frequency. In both the
MAH and MAT experiments, however, signal is lost due to the z-filters. In fact, if the z-
filters could be eliminated, a factor of 2 signal-to-noise could be recovered.

A possible alternative to the MAH and MAT sequences is the MAT>® with #
pulses (MAT-180) sequence which is shown in figure 6.7.

/2 nn nn n

T
12
/6 || llese |l |lte H e I n
AN A

P

Figure 6.7 Magic-Angle Turning Experiment with n Pulses. Pulses are indicated
schematically. The phase cycle is given in the text below. In this experiment, no storage
pulses are used while rotor shifts by 120°. Each of the t1/6 periods is spent at a different
vertex of the octahedron, giving a shifting isotropic echo.

In this experiment, the density matrix is never stored with z-filters. However, now the
sequence has been made into a constant time experiment (as f) is varied, the MAT
isotropic echo will always appear at a point ¢, after the last 7 pulse) which introduces cer-
tain other problems which I will discuss later. The phase cycle needed to implement this
experiment is quite simple, assuming the 7 pulses are accurate. Only the first pulse is
cycled through four phases and the receiver phase is set equal to this phase (just as in a
standard one pulse experiment with cyclops phase cycling.) To show mathematically
why this experiment works, we use the same approach as earlier. The phase is expressed

below in equation 6.32.
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pMAT-I0 1] = J';} Wcsy (#)dr - J'gwc&q (t)ar

i+l, 2,
+ LZ TCOCSA(t)dt - IE;% Wcsa (f)df (6.32)
3 6

oo, 2,
+J2?%:‘T Wesa (1) dt - I!;+2+ Wcsa(t)dt + J‘j'r Wcsa (1) dt
The integral from 7; to 27; in this sum may be divided into six integrals with the same
limits as the corresponding terms in 6.32 and since @csy (1) = @esy (7 +1,), the negative
terms will cancel terms from the expansion of the last integral. The expressior. for the
CSA frequency may be substituted in 6.32 and the time-independent terms removed from

the integrals as in 6.27 and 6.28.

Ly 21,40
2J6R§59(t)dt+2j, S RS (1) dt
0 5

47,41
22" R (1)dr

3

This integration may be performed as earlier, yielding the same phase as in the MAH and
MAT experiments.
¢MAT—180 [tr] = ai.to.cswltl

S(t ) B e-i¢“""8°['r] _ e"'5uo.cs0’1‘1 (6.34)
1) = =

This shows that all three experiments give the identical result. The difference between
the MAT-180 and the MAT experiment lies in the sensitivity and resolution. In the MAT
experiment, the. resolution is improved by taking more # points with a corresponding
longer total 2 ¢, time. The sensitivity, however, is a full factor 2 worse than the MAT-180
sequence (meaning a factor of 4 more scans are needed). In the case of MAT-180, to en-
hance the resolution, the rotor must be slowed down (since the longest available ¢; point
is for t; = 2 t,). Since this is a constant-time experiment, there will be more transverse
(T) relaxation for the same ¢] point at slower speeds than at faster speeds since each ¢

point has identical 2¢, transverse relaxation scaling the overall intensity. At some point,
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in attempting to gain further resolution in a MAT-180 experiment, the relaxation intensity
loss will become larger than the factor of 2 loss due to z-filters in the MAT or MAH ex-
periments. At this point, it is more profitable to use the MAH or MAT experiment in fa-
vor of the MAT-180 sequence. Finally, since the MAT-180 sequence is constant time,
there should be no net homonuclear dipolar contribution to a spin-1/2 isotropic spectrum
(as is the case for the MAT sequence). In addition, both the MAT and MAT-180 may be

performed over more than one or two rotor cycles.

MAS

MAT-180 —*—*\J waw

MAT \f

T ™ T T T T r T T " T T T
-10 -5 0 5 10
Frequency (kHz)
Figure 6.8 MAS, MAT and MAT-180 Spectra of 207}’bNO3. All of these spectra repre-

sent 64 points in #j zero filled to 512. The dwell times were 50 us and the 90° pulse
widths were 12 us.

YT T

In the case of MAT, any number of rotor cycles may be used which is not a multiple of
three, while for MAT-180, any even number of rotor cycles which is not a multiple of
three may be used. (If the number of rotor cycles is a multiple of three, each of the three
evolution periods will have identical starting phase and no averaging will result.) Figure

6.8 shows the MAS, MAT and MAT-180 spectra of 207PbNO3. Notice, in this case, the
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signal-to-noise ratio of the MAT-180 spectrum is slightly better than in the MAT spec-
trum, since the 2 ¢, time was chosen to be relatively short. This has the adverse effect of

adding truncation artifacts to the spectrum in the form of "sinc" wiggles.

Dynamic-Angle Hopping (DAH)

In the previous section on magic-angle hopping methods were discussed which
produce sideband-free isotropic spectra. In the case of spin-1/2 nuclei, a number of
techniques are already available which produce sideband free evolution.!!5-122 The ap-
plication of these methods to central transitions of quadrupolar nuclei is somewhat lim-
ited, especially in the case where sidebands overlap centerband features. The ideas of
MAH, however, may be applied equally well to the quadrupolar problem (DAH).36:113 In
the quadrupolar case the integrals of equation 6.29 will involve a sum from m = —4 to +4.
The additional m = +3 and +4 terms will cause the simple MAH and MAT experiments to
fail, since the value of Cp, # 0 for m = £3 and #4. To average these as well, five different
evolution windows are needed (in the case of hopping about the magic-angle). In this

case, the expression for Cp, is given below (which is zero for all m < 5).

(6.35)

=2mx  Aimx  bimx  -Bimx

Cm=(l+e S +e * +e S +e ® )
This is still not sufficient to produce isotropic spectra, since five hops about the magic-
angle will only give a sideband free MAS spectrum (not altogether useless). To isotropi-
cally average a quadrupolar central transition, it has been shown that multiple spinning
axes are required.!6:4243.35.113 The solution to the problem is to use two DAS angles and
use five evolution periods at each angle to cancel the time dependent terms. This is a to-
tal of 10 evolution periods, needing a minimum of 9 z-filters to store magnetization dur-
ing hops. This is almost certainly an unacceptable number and therefore a better solution
is to choose the DAS angle pair which simplifies the problem. The k = 5 angle pair of

63.43° and 0.00° is the best angle pair for this sort of experiment, since at 0.00° there are
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no time-dependent terms. Thus, to do the DAH experiment, we merely spin slowly about
the angle 63.43° with respect to the magnetic field. Under these conditions we use 90°
pulses to store the evolution between the five 72° jumps. Following these five evolution
periods, the magnetization is stored as the spinning axis is realigned to 0.00° and evolu-
tion is allowed to proceed again. This experiment still needs a total of 5 z-filters for
magnetization storage, but this represents a factor of 4 improvement in signal-to-noise
over the 9 z-filter experiment proposed earlier (unfortunately it is still a factor of 4 worse
than in a conventional DAS experiment).

The phase cycle needed to implement this DAH experiment is quite long, since a
large number of pulses are involved in the sequence. The schematic pulse sequence and
the equation which describes the relationship between the eleven 90° pulses and the re-
ceiver phases are given below. The time t7,° indicates the time needed to allow the rotor
to rotate 72° and the time t;0p indicates the time needed to reorient the spinning axis from
63.43° t0 0.00°.
90'~ & = 90°~t7p = 90°= & = 90" 175- — 90"~ L -

° o ! ° o 1 ° o_ !
90—tz = 90°= L = 90"ty = 90"~ & = 90"~ 1., =90~ ¢ =12 (5 36)

Gt = P3Gy — P+ g~ P+ g — g+ b0~ 11 = —dp

In this experiment, the coherence alternates between —1 (during the ¢1/6 evolution peri-
ods) and O (during the 77 z-filter storage periods). To achieve this, the first pulse should
be cycled through four phases to choose the —1 coherence transfer and the second will be
uncycled, assuming that the 72° hopping period will be sufficiently long that all trans-
verse magnetization will decay away. This, in theory, should be continued for each of the
next 8 pulse pairs. The last pulse may be left uncycled, since the receiver quadrature will
select the —1 pathway. This is a total of 45, or 1024, steps in the phase cycle. In many
situations, this is too many steps to do a phase cycle over for a spectrometer (i.e. the

Bruker™ AM-400) or more scans than is possible in a two-dimensional experiment due to
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long relaxation times (remember that the isotropic DAH signal must be collected point by
point in ¢] just as in DAS). One solution is to use only cycles of pulse phases of three
rather than four. This will still choose only a Ap = —1, however this may be difficult to
implement on some spectrometers. Also, it still requires a total 35, or 243, steps which is
over a factor of four fewer scans. In the case where fewer scans are desired, it is neces-
sary to choose fewer pulses to cycle. It is probably best to cycle pulses closer to the be-
ginning of the sequence, thereby guaranteeing the coherence pathway for most of the
early steps. This can lead to experimental artifacts. Ideally, we should cycle the other
pulses (except the last) through two steps to guarantee no transverse components during
z-filters. This will expand the phase cycle again by a factor of 25 (a total factor of 32).

A final note about the sequence is that the five angles at 63.43° and one at 0.00°
are equivalent to the static magnetic field being rotated to point through the vertices of an
icosohedron (which has the symmetry needed to average first and second order interac-
tions) in the PAS coordinate system.

A second implementation of the DAH experiment is to use 180° pulses (DAH-
180), just as in the MAT-180 sequence. Instead of storing the magnetization with z-fil-
ters, we can instead apply rotor synchronized 180° pulses in the following sequence,
where the time variables have the same meaning as before.
90°~1, — 15 — 180°t75 — 180°— 75 — 180°=t75- — 180" {5 — 180" ty,- — 180°

— 15 = 180°—t5- — 180" {5 — 180°=t75 — 90°=t,, —90°= L ~ 1,

(6.37)
—01+2¢07 - 203+ 204 —2¢s +2¢¢ -

207 +2¢3 =209 + 2010 — 011 — $12 = —%p
The phase cycle needed to implement DAH-180 is much simpler than for DAH, assum-
ing the 180° pulses are accurate and lead to only a 2 coherence transfer. In this case,
only the first pulse needs to be cycled through four phases and the eleventh through two

(just as in the original DAS experiment). In fact, the sequence is identical to the original
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DAS experiment with the addition of nine 180° pulses. These may be ignored in this case
for phase cycling purposes. Any of the pure-phase modifications discussed in chapter 4
may be used here to enhance the overall signal-to-noise in the two-dimensional spectrum
(if the we are interested in an isotropic/anisotropic correlation spectrum). Again, both the
DAH and DAH-180 cycles may be implemented over more than two rotor cycles, just as
in the case of MAT and MAT-180. Since the frequency expansion has sines and cosines
up to 4 @,, the number of evolution periods must always be larger than this (we choose
5), and the number of rotor periods the experiment is performed over must not be a mul-
tiple of the number of evolution periods (in this case 5). The mathematics needed to
prove these features for the DAH and DAH-180 are identical to the case of MAT and
MAT-180. These types of experiments have recently been discussed by Gann ef al.5 and
Alderman et al.'?? and I would direct the interested reader to these papers for additional

information.
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Figure 6.9 DAS and DAH 1D spectra of 8’RbypCrO4. The upper DAH spectrum shows
no spinning sidebands and the isotropic peaks are easily identified, while in the lower
DAS spectrum the broad site with an isotropic shift at -201 ppm breaks into a large
number of sidebands. A second spinning speed would be needed to identify this as the
isotropic site using this method.




Figure 6.9 shows the DAS and DAH spectra for rubidium chromate (87RbyCrOg)
taken at 9.4 T which has two sites. Both sites appear in the DAS spectrum, however the
broad site with an isotropic shift at —201 ppm is greatly reduced in intensity due to the
large number of spinning sidebands. Even the more intense peak at —27 ppm has at least
six spinning sidebands in this spectrum. The appearance of the isotropic peak at =201
ppm in the DAH spectrum shows the power of the DAH experiment. This peak is much
more intense than the same peak in the DAS spectrum. This peak, unfortunately, is
broadened more than the peak at —27 ppm, thereby making the intensity seem much less
than the expected 1:1 ratio. This is probably due to angle errors during the 72° hops
while spinning at 63.43° which result from fluctuations in the spinning rate. Finally, be-
cause of the large number of z-filters, the DAH experiment required over 20 times the
number of scans and therefore 20 times the overall experiment time as the comparable
DAS experiment. This factor negates much of the benefit of DAH, since the same infor-
mation may be attained with just two DAS experiments in a tenth the time.

In figure 6.10 we see the DAS and DAH-180 spectra for rubidium sulfate
(37Rb2S04) at 9.4 T which also has two sites. Both sites appear in both spectra.
However, in the DAH-180 spectrum, there are no spinning sidebands to complicate the
interpretation. Also, the intensities of the two peaks should reflect the populat’ 1 at the
two sites (which is 1:1 in this case). For the DAS spectrum, intensity measurement ne-
cessitates integration of a large number of spinning sidebands (some of which overlap).
If we compare only the heights of the isotropic centerbands, we arrive at a ratio of 2.8 (-
25 ppm site) to 8.5 (29 ppm site). This 1:3 ratio is much less than expected from the
crystal structure. Taking the heights of each sideband as the integral and adding up the
intensity for each of the sidebands in the DAS spectrum, yields intensities of 9.2 (-25
ppm site) and 10.1 (29 ppm site). These are, as expected, quite close to the 1:1 ratio,

however, in samples with multiple sites, integration of sideband intensity may be impos-
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sible. For the DAH-180 spectrum, we may easily integrate each of the two peaks (2.62

and 2.34 intensities respectively) and get the correct 1:1 ratio.

(b)
(a) * *
%
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Frequency (ppm from 1M 87RbNO3)

Figure 6.10 DAS and DAH-180 1D spectra of 87Rb2804;. Spectrum (a) shows the 9.4T
DAS spectrum of 87RbyS0Oy4 taken at a spinning rate of 5 kHz and with the SEDAS pulse
sequence. Spinning sidebands are indicated with asterisks. Spectrum (b) shows the 9.4T
DAH-180 spectrum of the same compound taken with the 9 & pulse sequence applied
over 8 rotor cycles at 2.4 kHz.

As was mentioned earlier for the MAT-180 sequence, constant-time experiments
may sometimes present sensitivity problems when additional resolution is needed. The
DAH-180 sequence is partially a constant-time experiment since 5/6 of the ] evolution
occurs under constant time conditions. Therefore, as can be seen in figure 6.10, we often
get truncation artifacts in DAH-180 spectra. These sequences, however, show great
promise for studying systems where an inhomogeneous distribution of isotropic shifts ex-
ists, for example in an amorphous solid such as a glasse (see chapter 8). In these cases,
the distribution of isotopic shifts leads to a rapid dephasing in t} (in fact, much more

rapid than the intrinsic T2 linewidth would suggest). This means that many fewer point
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are required in ¢ before the signal disappears. Therefore a constant time experiment such
as DAH-180 is uniquely well suited for the study of these systems, just as pulse se-
quences such as HyperSEDAS are best suited for giving high-sensitivity pure-phase two-
dimensional spectra. Combining these two ideas should greatly improve the overall

quality of isotropic/anisotropic correlation spectra in amorphous solids.
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Chapter 7
Application of DAS to Inorganic Salts

Dynamic-angle spinning has proven quite valuable in the evaluation of the electric
field gradients present at the nuclei in a variety of inorganic salts. Specifically, the alkali
metals are particularly conducive for study with NMR. All of these nuclei are spin-3/2
and possess a manageable quadrupolar moment. In the case of 7Li and 133Cs, the
quadrupolar interactions are generally small enough that MAS is sufficient to achieve
high resolution spectra. The nuclei of 87Rb, 85Rb and 23Na, however, require the more

complete averaging of a technique like DAS or DOR.

Sodium

This nucleus was one of the first evaluated with DAS. The large gyromagnetic
ratio and high natural abundance make this a natural candidate for study with DAS.
However, these two factors conspire to make the homonuclear dipolar interaction quite
strong and therefore highest resolution is only achieved in samples where the sodium is
magnetically diluted, for example in crown ether complexes or with bulky anions in ionic
salts. Unfortunately, the total chemical shift range for this nucleus is quite small, as is the
range of electric field gradients, since this is a fairly small cation. Therefore, the overall
linewidth from the homonuclear dipolar coupling (see chapter 3) renders DAS insensitive
to small variations in the local EFG and chemical shift interaction. Examples of sodium

spectra are shown in both chapter 3 and chapter 5.

Rubidium Salts

The application of dynamic-angles spinning NMR has also been extended to other
inorganic salts.’ Specifically, 8’Rb has proven to be an extremely sensitive nucleus for

DAS experiments. 87Rb and alkali metals in general are important in a number of areas,
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they serve as promoters in catalysts, for example, the heterogeneous catalysis of ammonia
synthesis!?4 and oxidative coupling of methane to yield ethane and ethene.!?> Rubidium
is an important component of some glasses,!2% and recently, it has been shown that Buck-
minsterfullerene, Cgo, doped with Rb metal becomes superconducting at 28 K.127

In order to assess the applicability of DAS to rubidium and its potential to yield
structural information about materials such as those listed above, 87Rb MAS, VAS and
DAS spectra of five inorganic salts were obtained. The salts chosen were RbCl, RbClOg,
Rb2S04, RbyCrO4 and RbNO3 because they had been previously studied with static
NMR experiments!28:129 and the crystal structures were well known. !30-135

In the study by Cheng et al.,'?® the T relaxation times for each of these salts was
measured and all were between 100 and 300 ms. We performed the VAS, MAS, and
DAS experiments using a probe designed by Mueller et al.>! We used the usual DAS
pulse sequences (see chapters 3 and 4) for both the 1D spectra®? and for the pure-phase
MAS detected spectra.’® Our central transition selective 90° pulses were between 4.0 and
6.0 us. Our hopping times were usually between 30 and 50 ms and our data sets were
128 t; points by 512 complex t; points. All MAS and variable-angle spinning (VAS)
spectra were acquired with a standard Hahn-echo pulse sequence (/2 - n t, - 7 - t 4 - ac-
quire) where ¢, is the rotor period, n is an integer and n ¢, was between 500 and 1500 us.
The t,4 delay was used to allow collection of the whole echo.

For 87Rb, as with all quadrupolar nuclei, the measured isotropic shift in DAS has

a field dependence because it is the sum of two contributions.

Bobs = Oisocs + O (7.1

150

These two terms are the isotropic chemical shift and the isotropic second-order
quadrupolar shift, respectively. The isotropic chemical shift is field independent when
expressed in units of ppm while the second-order quadrupolar shift has a strong field de-

pendence given below.
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All constants have their usual meanings. Using equations 7.1 and 7.2, we may calculate
isotropic chemical shifts by measuring isotropic shifts at two field strengths. To do this,
we solve the system of linear equations from equation 7.3 evaluated at two By fields.
Equation 7.3 (the reduced version of equation 7.1) may be expressed as follows for 87Rb

in units of ppm.
-10 T2 172
S = i~ (128107 )1+ B )

- 2
= 8005 -—(1.28x10 ‘Oﬁfz-i-)PQZ(—‘y) (1.3)

B3
2
= Mo
PQ = CQ\’I +-

It is important to note that it is impossible to extract the Cg from 7¢ using only multiple
field experimental 1D DAS results. However, multiple field results do help to minimize
experimental error in the final results.

Figure 7.1 shows the 87Rb VAS spectra and the angles of acquisition. Only the
RbCl is clearly resolved. This is because of the absence of quadrupolar coupling due to
the cubic crystal structure of RbCl. Figures 7.2 and 7.3 show the DAS spectra at 11.7T
and 9.4T respectively. There is an order of magnitude narrowing of the DAS spectra
compared to the VAS spectra. In the cases where multiple lines are present due to spin-
ning sidebands, the isotropic peaks were identified by spinning at multiple spinning rates.

The VAS spectra in figure 7.1 show the resolving power of simple one-dimen-
sional NMR techniques applied to Rb salts. In all cases except RbNO3 and RbyCrOg, the
individual sites are clearly separated. However, only the RbCl spectrum yields a single
narrow line which may be used to measure the isotropic shift. The other spectra would
all require simulations to extract the actual isotropic shifts, and in the case of RbNOs3, the

simulation would be quite difficult due to the extreme overlap of the three sites.
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Figure 7.1 87Rb Salts 11.7T VAS Spectra. (a) RbCl at 54.74°, (b) RbClO4 at 54.74°, (c)
RbS04 at 79.19°, (d) RbaCrOy4 at 54.74°, (¢) RbNOj at 54.74°.

The DAS spectra at 11.7T reveal the actual isotropic shifts for each site in each
compound (except the broadest site in RbaCrO4) without the need for simulations. This
has the advantage of greatly improving the accuracy of the measurement of the isotropic
shifts. In the case of RbySQOy4, the DAS spectrum illustrates one of the classic problems

with VAS spectra.
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Figure 7.2 87Rb Salts 11.7T DAS Spectra. (a) RbCl, (b) RbClOy4, (c) RbaSO4, (d)
RbyCrOy4, (€) RbNO3 .

The actual isotropic shifts in this salt (as seen in the DAS spectrum, figure 7.2c) do not
correspond to the highest point in the VAS spectrum (figure 7.1c), rather, the isotropic
shifts in the VAS spectrum fall at the overall centers of gravity of each peak. Low inten-
sity contributions in the wings of the VAS peaks make calculation of the center of gravity

of these peaks difficult.
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Figure 7.3 87Rb Salts 9.4T DAS Spectra. (a) RbClOy4, (b) RbSOy4, (c) RbyCrOy4, (d)
RbNOj3 .

Figure 7.3 shows the DAS spectra of the same salts at a lower field strength.
Notice that the spectra all have the same high resolution of the 11.7T spectra in figure
7.2. However, now some of the peaks fall at different isotropic positions because of dif-
ferences in the second order quadrupolar isotropic shifts (see equation 7.2 and 7.3). The
cubic RbCI does not shift at all, since this salt has zero electric field gradients at the Rb

nucleus (as evidenced earlier by the narrow MAS spectrum in figure 7.1a). All other
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peaks shift slightly down field to more negative ppm values. Also, the number of spin-
ning sidebands for a given site differs between the two fields, due to the fact that the
overall size of the second-order broadening (which appears in the expressions for side-
band intensities in chapter 3) is increased at lower field. Also, since the chemical shift
scales with the field, the CSA contribution to the sidebands will actually be reduced at the

lower field (this is the reason much of the 13C and 3!P MAS NMR work is done at lower

field strengths).

Compound 8237 (ppm) 87T (ppm) 825,5) (ppm)  Pp (MHz)

RbCl 12741 1271 12742 0

RbClO4 -28+1 -23%1 -1412 3.110.3

Rb,ySO4 -25+1 -10t1 1642 5.310.2
29+1 34+1 42142 3.0+0.3

RbyCrO4 -27%1 -21+1 -11%£2 3.310.3
-201+2 a a a

RbNO3 -32+1 -29%1 -2412 2.4+04
-36t1 -32%1 -25%2 28104
-37+1 -34t1 -2942 241404

Table 7.1 87Rb Isotropic Shifts and Coupling Products. The isotropic chemical shifts and
quadrupolar products were calculated using equation 7.3. 2This site was too broad for
detection at 11.7T with both the DAS and MAS experiments.

In the case of RbyCrOy, the second broad site at —201 ppm appears in the 9.4 T spectrum
which was absent in the higher field spectrum. Also, the overall number of sidebands
around the —27 ppm peak is greatly reduced at 9.4 T, since the major contribution to the
anisotropic broadening of this site is the chemical shift interaction. This actually may be
seen in the MAS spectrum (figure 7.1d) where the individual sidebands have clearly re-
solved quadrupolar MAS patterns. Normally, when large numbers of sidebands result

from quadrupolar coupling alone, the MAS pattern will be greatly distorted and overlap-
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ping with the sidebands. In the case of RbyCrOy, this is not observed, showing that the
CSA is quite large for this site. All of the measured isotropic shifts are compiled in table
7.1 below.

The two field DAS measurements were used to generate both the quadrupolar
coupling products and isotropic chemical shifts for these salts using equation 7.3. These
values are tabulated in table 7.1. The values of the quadrupolar products and isotropic
shifts in table 7.1 may now be compared to the values arrived at by Cheng et al.!?8 from
static simulations compiled in table 7.2. For the case of the RbCl, our results agree ex-

actly with those of Cheng et al.!28

Compound 8 (ppm) My Po(MHz)
RbCl 128.0 0 0
RbClO4 38 0.16 3.2
RbySO4 3.0 0.13 3.2
46.6 0.89 29
RbyCrO4 474 0.48 5.4
52.8 0.75 12.5
RbNO3 * * *

Table 7.2 Previously Measured 87Rb Isotropic Chemical Shifts and Quadrupolar
Parameters. These parameters were determined by simulating static central transition
multi-site patterns with both quadrupolar and chemical shift anisotropy parameters by
Cheng et al. For RbNO3, the three sites could not be resolved.

For other compounds, the agreement is much worse, indicating the difficulty of relying
only on static simulations (which have a large number of parameters to adjust) in measur-
ing quadrupolar and chemical shift parameters. The rough size of the coupling constants
measured by Cheng et al.!?8 for the RbClO4 and RbyCrO4 are in the correct range. How-
ever, in all cases except for RbCl, the isotropic chemical shifts are quite inaccurate. Also,
in the case of RbNO3, which has the strongest overlap, the static simulations fail com-

pletely.

144




Improvements from Multiple-Field DAS

To improve the overall accuracy and precision for the measurement of the
isotropic chemical shifts and quadrupolar coupling products, the DAS measurement
should be made at more than two fields. In this case, the system of equations which re-
late the measured isotropic shifts to the isotropic chemical shift and second-order

quadrupolar coupling products are over-determined.

—
fantXN
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Frequency (ppm from 1M *"RbNO;)

Figure 7.4 RbNO3 Spectra at Four Field Strengths. (a) 11.7T, (b) 9.4T, (c) 7.0T and (d)
4.2T.

This opens the possibility of a linear least-squares fit of the isotropic shifts when plotted
versus the reciprocal of the field strength squared. Figure 7.4 shows the RbNO3 spectra

measured at 11.7 T (a), 9.4 T (b), 7.0 T (c) and 4.2 T (d). Notice in figure 7.4 that the
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overall resolution in ppm seems to get worse as the field strength gets larger. In fact the
linewidth will remain approximately constant in units of Hertz (about 150 Hz in this case)
and will appear larger in units of ppm (normally used in all reported measurements) as
the field is reduced. This means that the error bars on the lower field isotropic shift mea-
surements will become larger and larger. This fact must be accounted for in the linear
least squares analysis of the best fits (see figure 7.5). To do this, the contribution of each
point to the lease-squares chi-squared value must be weighted by the error in the mea-
surement of that point. Figure 7.5 shows the plot of the measured isotropic shifts versus
the reciprocal of the field strength squared. The best fits through each of the sets of

isotropic shifts are shown.
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Figure 7.5 RbNO3 Linear Regression of Isotropic Shifts versus 1/ B§
This linear regression gives significant improvements in the overall errors. Figure 7.4
shows the DAS spectra at the four field strengths and Figure 7.5 shows the actual linear
regression best fit. Table 7.3 gives the compiled final results and errors. As observed,
the errors are about half as large as with only two fields (table 7.1). The isotropic shifts
are all given in units of ppm and the quadrupolar coupling product is in units of MHz. In

addition, when these results are compared to those from single site simulations (see next
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section), the values for the quadrupolar and chemical shift parameters are much closer to

the correct values.

4.2T 10T 9.4T1 1.7 (CS)
6obs 5obs 6017.; 501:3 ‘Siso P g

-48.413.0 -344+2.0 -32.0£1.0 -29.0+1.0 -26.8+0.8 1.7240.06

-67.5£3.0 -39.8+2.0 -36.0+1.0 -32.0+1.0 -26.840.8 2.36+0.04

-55.3£3.0 -40.242.0 -37.0£1.0 -34.0+1.0 -31.610.8 1.8110.05

Table 7.3 37RbNO3 Multiple Field DAS Results. Isotropic chemical shifts and

quadrupolar products were calculated from a linear regression analysis of the isotropic
. 2 .

shifts versus I/BO as in figure 7.6.

Improvements from MAS-Detected DAS

MAS detected DAS was performed at both 9.4T and 11.7T (figures 7.6 and 7.7
respectively.) These spectra show a high resolution DAS dimension as well as a pure-
phase MAS detected anisotropic dimension. Slices through each DAS peak yield accu-
rate MAS lineshapes for each site. Figure 7.8 shows the simulation of each of the three
sites and table 7.4 gives the most precise (because there is only one external standard) and
accurate (essentially more data points are effectively involved in the calculation than in
multiple field methods) 87RbNO; quadrupolar coupling and chemical shift parameters
measured. In addition, by using both fields, even greater accuracy may be achieved by
simulating both field spectra at the same time. This approach has been used previously
for multiple site 170 spectra® (see chapter 8). The pulse sequence used to collect these
spectra is the double-hop DAS sequence described by Mueller et al.5® This sequence
achieves pure-absorption mode spectra by taking a hypercomplex data set in z;. The
overall signal-to-noise ratio is greatly reduced as compared to the hypercomplex SEDAS
experiment (by a factor of 8) due to the second z-filter storage period (used to store mag-
netization while we reorient the spinner between the second DAS angle to the magic-an-

gle 54.74°) and the lack of an echo in the second dimension. However, in the case of
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87RbNO3, the relaxation times and absolute signal intensity make collection of a MAS

detected DAS spectrum quite feasible.
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Figure 7.6 RbNO3 9.4T 2D MAS detected DAS Contour Plot. Single site MAS slices

through each isotropic peak in the DAS dimension have been extracted and are displayed
to the right of the contour plot.
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Figure 7.7 RbNO3 11.7T 2D MAS detected DAS Contour Plot. Single site MAS slices
through each isotropic peak in the DAS dimension have been pulled out and are displayed
to the right of the contour plot.

In the 9.4T MAS detected DAS spectrum, figure 7.6, the site with a nearly zero asymme-

try parameter at —32 ppm is clearly separated from the other two sites. The slice through
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this peak may be fit easily with a single high speed MAS pattern. The other two sites
overlap too much and the sum of the slices through these peaks must be simulated with
two patterns. In the case of 11.7T MAS detected DAS, figure 7.7, all three sites are
cleanly separated and may be simulated individually. Figure 7.8 shows each of the three
slices through the isotropic DAS peaks at 11.7T, along with the best fit simulations. The

parameters and error bars for these simulations are given in table 7.4 below.
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Figure 7.8 RbNO3 Single Site MAS Slices and Simulations at 11.7T. Best fit parameters
are given in table 7.3.

The isotropic shifts from these simulations agree quite well with the results from the four
field linear regression fit of the isotropic shifts. The same type of simulation was per-
formed on the 8’RbC104 MAS spectrum, yielding the results in table 7.4. The advantage
with the MAS detected DAS method is that in this case, only a single field strength is
needed with only a single experiment. The errors from this method are even less for the
quadrupolar coupling constants than in the multiple field experiments of the previous
section. The errors in the measurement of the isotropic chemical shifts, however, are

larger since these are primarily systematic errors due to the external 1M 87RbNO3 fre-
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quency reference. The combination of both the multiple field measurements and the
MAS detected DAS experiments leads to the highest overall accuracy and precision in the

determination of these parameters.

Compound 81(:{53) (ppm) Co (MHz) n

RbClO4 -16.2£1.0 3.2040.05 0.10+0.05

RbNO3 -26.2+1.0 1.83+0.05 0.1240.05
-26.8+1.0 2.3940.07 1.0040.05
-30.9+1.0 1.9110.05 0.4810.05

Table 7.4 87Rb Isotropic Shifts from MAS Simulations. The RbC104 values come from
the simulation of the MAS spectrum (figure 7.2b) while the RbNO3 values come from the
simultaneous simulation of the 9.4T and 11.7T slices from figures 7.7 and 7.8.

Finally, the quadrupolar coupling constants for 87RbNO3 may be compared to
those measured by Segel!36. In those low field measurements, he measured coupling
constants of 1.76, 1.80 and 2.20 MHz and asymmetry parameters of 0.17, 0.48 and 0.91
for the three sites respectively. These are in very good agreement with the values mea-

sured with DAS experiments.

Theory of Coupling Constants from Crystal Structure

The RbNO3 coupling constants also provide a good example to demonstrate how
to use the measured quadrupolar information to assign resonances to actual sites in the
crystal structure. To do this, we assign a point charge to each of the atoms in the RbNO3
crystal structure. If for instance, we choose +1 for the rubidium atoms and —1/3 for each
of the oxygen atoms, we inay then calculate EFG tensor at each rubidium site. To do
this, we use the unit cell centered at the origin and the 26 unit cells which directly sur-
round the origin. The electric field gradients are calculated using the formula given be-

low.
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V(x0.Y0:20) = —2 = —-4

r Nxx) (=30 +(z-2)’

3%V (x5 Yo,
(;ga}l’;) %) =V,p = ﬂ(r25(a -B)- 3aﬁ)

(7.4)

S
Where a,f are coordinates x,y,z and 8 (@—p) is a Dirac delta function. With each electric
field gradient (EFG) tensor element known, we may then diagonalize the tensor to get the
principal axis values for Vyy, Vyy and V;;. To convert these values into Cg and 7 values,
we need to use the relationships that relate Vg to quadrupolar coupling constants. In ad-
dition we need to know the Sternheimer anti-shielding factor. In the case of RbNO3 we
have calculated EFG values (see table 7.5) for a variety of point charge distributions.
Changing the values of the charges changes the absolute size of the EFG tensor values,
but does not appreciably change the asymmetry parameters. Therefore, we may assign

each DAS peak to a site in the RbNOj3 crystal structure (unit cell not shown).

Rb Charge N Charge O Charge Site Cg (au) N
+0.70 -0.10 -0.20 1 3.5 0.31
2 34 0.59
3 35 0.97
+1.00 -0.10 -0.30 1 34 0.30
2 34 0.61
3 3.5 0.94
+0.60 +0.10 -0.23 1 34 0.29
2 34 0.72
3 3.5 0.81
+0.40 -0.10 -0.10 1 34 0.32
2 34 0.55
3 35 0.97

Table 7.5 7RbNO3 EFG Values From Crystal Structure. These calculations were carried
out over a large number of unit cells and the EFG values were calculated and averaged
for the thirty inner most Rb sites (out of almost 250 total).

Application of CPDAS to organic compounds
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The use of solid state NMR to study biologically active and interesting com-
pounds has been one of the longtime goals of many researchers. Techniques such as rota-
tional resonance (R2), spin echo double resonance (SEDOR), rotational echo double res-
onance (REDOR) and transferred echo double resonance (TEDOR) have been used suc-
cessfully to measure distances at specific sites in a number of biological samples by re-
search groups at MIT and Washington University.!37:138 These techniques look primarily
at the 1H, 19F, 13C and !5N nuclei in labeled compounds. The important oxygen nucleus
has been studied much less. The primary reasons for this lack of 170 information stems
from its low gyromagnetic ratio (1/7 of 1H), strong quadrupolar interactions and low nat-
ural abundance (0.037%). Isotopic substitution may be used to over come the last prob-
lem and large magnetic fields may be used to fight the first (and to some degree the sec-
ond). The strong second-order quadrupolar broadening in 17O compounds is the largest
obstacle remaining.

Recent developments in DAS have allowed us to begin to look more closely at
170, Specifically in the case of biological samples, decoupling of the 'H nuclei is essen-
tial for high resolution. In addition, the long 170 relaxation times and low sensitivity
may be overcome with cross polarization techniques (as described in chapter 5). We
have begun preliminary studies of L-alanine, one of the simplest amino acids which is
present in virtually all proteins and peptides. The 20% enriched sample was made by H.
Zimmerman by acid catalyzed exchange of oxygen in 170 labeled water. The relaxation
times in this compound are quite favorable for DAS, with a 700 ms 'H relaxation time
(this determines the experimental repetition rate) and 2.5 s for the 17O (which determines
the minimum rotor reorientation time).

For the cross polarization experiments on 170 labeled L-alanine at 7.04 T the 3/4"
static coil DAS probe desigred by Mueller et al.>! was refitted with a double tuned 'H-

170 1f circuit capable of absorbing 500 W decoupling pulses on the 'H channel (301.2
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MHz). The circuit used is a standard one described previously by Doty et al.!3%140 The
TH and 170 central transition selective pulses were both approximately 7 us. The dwell
times were 12.5 us in the r; dimension and 18 us in the #; dimension (after shearing).

The angle pair was the usual 0°-63.43° (k = 5) to obtain maximum CP efficiency.

L

oty

400 200 0 -200 -400 -600
Frequency (ppm from H,''0)

Figure 7.9 'H Decoupled Two-Dimensional |70 CPDAS Spectrum of Alanine at 7.0T.
The experimental parameters are given in the text. The two isotropic peaks are labeled
with arrows. All other peaks in the DAS dimension are spinning sidebands.

The spinning rate was 6 kHz and the hopping time was 35 ms. In these experiments, 256
points were taken in the anisotropic dimension and 117 in the isotropic DAS dimension.

The data in figure 7.9 was zero-filled to 256 x 256 for final processing. L-Alanine has
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two crystallographically distinct oxygen sites in the unit cell'4!. The two isotropic peaks
for the distinct oxygen sites in L-alanine were observed at 5114 and 80+4 ppm from the
170 labeled water standard. All other peaks in the spectrum in figure 7.9 are spinning
sidebands.

The spectra of alanine taken at 11.7T used a standard single tuned probe.’! At
this high (500 MHz) proton frequency, no decoupling could be achieved and the oxygen
lines are significantly broader (almost a factor of 10) than in the decoupled spectrum at

7.04T.

MAS

DAS

DAS

N ———
100 200 300 400
Frequency (ppm from H2’7O)

Figure 7.10 Undecoupled 170 MAS and DAS Spectra of Alanine at 11.7T. The ex-
perimental parameters for these experiments are given in the text. The isotropic peak in
the DAS spectrum occurs at 200 ppm; all other peaks are spinning sidebands.
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The 7/2 selective pulses were again 7.0 us; most other parameters were similar to those
used at 7.04 T. Figure 7.10 shows both the MAS and two DAS spectra for the same ala-
nine sample as in figure 7.9. The MAS spectrum shows a broad powder pattern with a
number of singularities. The two peaks in the DAS spectrum are not clearly resolved and
are both assigned an isotropic shift of 200+7 ppm. Using the two field results (just as in
the case of the 87Rb salts of the previous section) we may calculate the isotropic chemical
shifts and quadrupolar coupling products for the two sites in alanine. These results are

compiled in table 7.6 below.

Site Sohs Boss ' Po (MHz) Biso.cs
1 51+4 ppm 200£7 ppm 8.1+0.3 MHz 28518 ppm
2 80+4 20047 7.240.3 26818

Table 7.6 170 L-Alanine DAS Results. Multiple field measurements from figures 7.9
and 7.10 are tabulated along with the calculated quadrupolar products and isotropic chem-
ical shifts. The error bars are indicated and arise from the overall width of the peaks in
the DAS spectra.

These values for the quadrupolar coupling products are in good agreement with the size
of the quadrupolar coupling constant measured for the carboxyl oxygen atoms in similar
compounds with NQR. Additional experiments are currently underway which will apply
the techniques of CPDAS and DAS to other organic compounds with the long term goal

of examining larger biologically active molecules.
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Chapter 8
Application of DAS to silicate materials

The use of dynamic-angle spinning to study silicate samples has so far proven to
be probably the most important application of this experiment. The 170 nucleus, along
with the 29Si nucleus, is in one of the pivotal locations in silicate materials. There are
two common types of oxygen environments in silicate samples, first those which are
covalently bonded between two other atoms (bridging oxygen atoms), usually silicon,
(but also others, for example aluminum, phosphorus or boron) and second those which
have a single covalent bond to a silicon atom and therefor a net negative charge balanced
by neighboring cations such as sodium, potassium or calcium. A third type has been
found in some high pressure systems, where oxygen forms three covalent bonds to
neighboring silicon atoms. This third type is very uncommon and will not be discussed
here. The use of NMR to look at 170 has becoming increasingly popular in the last ten
years, due to the construction of high field magnets (greater than 9 T) and high speed
spinning probes (greater than 10 kHz). The measurement of 170 quadrupolar coupling
parameters has been an important goal, since these parameters are strongly correlated to
the local microscopic structures!42, Some of the most important early contributions were
made by Oldfield et l.72:73.78.97.104,143-151  Included in this list of references are pioneer-
ing MAS experiments on a series of modified silicate materials, including wollastonite,
diopside and forsterite. In recent years, DAS has been applied to the study of similar ma-
terials and the reader is referred to work done by Pines et al.43-48 Some of this work will

be discussed in this thesis, as well as the previously mentioned thesis by Mueller.!

Crystalline Silicates

In this section, I will describe studies of a variety of 170 labeled pyroxene mineral

samples which have previously been examined by Timken et al.}3% with MAS and by
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Mueller et al.#> using DOR and DAS. Specifically, the isotropic shifts and quadrupolar
coupling products (defined below) of diopside, clinoenstatite, forsterite, wollastonite and
larnite were measured.*® In the past, in order to measure these parameters using NMR,
the static, magic angle spinning (MAS) and variable angle spinning (VAS) spectra for
compounds containing half-odd integer nuclear spins had been deconvoluted into
individual lines using powder pattern simulation programs (see chapter 2). This type of
analysis is often quite accurate. However, when more than two or more overlapping sites
are present, it is difficult to extract meaningful parameters without significant errors. As
has been shown throughout this thesis, the application of dynamic angle spinning (DAS)
NMR to systems with quadrupolar nuclei allows significant narrowing of the MAS
linewidths, usually by more than an order of magnitude and therefore a corresponding
increase in accuracy.

For nuclei with large quadrupolar coupling constants and small dipolar couplings
due to either low gyromagnetic ratios or low natural abundance (less than 50%), DAS
may often give substantial narrowing of the lines without generating the large number of
spinning sidebands often found in double rotation experiments (DOR). This is especially
important when there are a large number of magnetically inequivalent sites, such as in
wollastonite which has nine distinct oxygen sites. As has been mentioned earlier in this
thesis, by comparing the DAS spectra collected at two different magnetic field strengths
the isotropic peaks are seen to shift (in ppm), just as in the studies of 87Rb salts (see
chapter 7). This is expected as the isotropic peak in a DAS experiment expressed in units
of parts per million (ppm) is actually the sum of the isotropic chemical shift and the

isotropic 2nd-order quadrupolar shift (see equation 7.1 and discussion).

aobs = 6isa.cs + 5'(2Q) (8])

5o

The observed isotropic chemical shift (in ppm) is constant at all field strengths and there-

fore doesn't exhibit any shift between 9.4 T and 11.7 T. However, the isotropic 2nd or-
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der quadrupolar shift (in ppm) is inversely proportional to the square of field strength and

therefore becomes much smaller as field strength is increased.
20
5(20) ] 9.;1.)_ X 106
50 w{

-3x10® C5(1(1 +1) -%)(1 + %é)

40?12 (21 -1)?

~3x10°(1(1+1)-3) , (8.2)

= 2,2 7 P

40w;1°(21-1)

1
nd )2

Substituting in the values for 170 (I = 5/2, w9 47= 54.245 MHz, w11 77= 67.898 MHz)

yields the following pair of linear equations for &, s and Pg where these are given in
units of ppm and MHz respectively.
SonT = 8jgp.0s — 2.03691P3

(8.3)
o T = 850,05 — 1.30476 P

In fact using the isotropic shifts from two fields allows one to solve two simultaneous
equations relating the coupling product Pg and the isotropic chemical shift J;, .

All of the 170 labeled crystalline mineral samples were prepared by Prof. J.
Stebbins and coworkers following a procedure already reported!443. The diopside was
isotopically enriched with 170 uniformly to the 20% level, while all other samples were
40% enriched. The phase identities and stoichiometry of these materials were all
analyzed using 29Si and 170 NMR and had shifts which agreed with previously reported
values. In addition, these findings were confirmed by powder x-ray diffraction. The
forsterite sample was slightly off-stoichiometry and contained 25% clinoenstatite but this

did not affect the final NMR measurements significantly. The unit cell structures of these

compounds has been reported before as well!32156 and are shown below in figure 8.1.
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(a) Diopside (b) Forsterite
o °
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(d) Larnite

Figure 8.1 Crystal Structures of Some Pyroxene Silicate Minerals. The unit cells for
diopside, clinoenstatite, wollastonite, larnite and forsterite are shown. The numbers
indicate the distinct sites for each type of atom in the crystal structure. This figure is
taken with permission from the thesis by Mueller!>.

All of the NMR spectra at 9.4 T were recorded on a Bruker AM-400 spectrometer
in a 89 mm widebore magnet, while the spectra at 11.7 T were recorded on a
Chemagnetics CMX-500 spectrometer in a 89 mm widebore magnet. The DAS probes
used for these experiments were homebuilt using a design detailed by Mueller, et al 1351
The pulse sequences and phase cycles used to collect the data were the original DAS type
described previously in chapter 3. The rf-pulse widths were calibrated to selectively ex-
cite only the central (-1/2 to 1/2) transition of 170 and were usually in the range of 4 to 6

ps for the /2 pulses (equivalent to a /6 solution pulse). All data was taken with k= 1
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where the first angle was set at 6) = 37.38"° and the second angle set at 8, =79.19°. The
usual hopping time between these two angles ranged from 25 ms to 35 ms, which was
significantly shorter than the T for these compounds. A 1 sto 5 s recycle delay was used
for most of the experiments and the spinning rate was usually between 6 and 7 kHz. We
sampled between 128 and 512 ¢#; points for these compounds giving a digital resolution of
approximately 0.5 ppm. All 170 peaks were referenced externally to a sample of 37%
H3170 in a small ampoule placed inside a DAS rotor.

All of the simulations of quadrupolar powder patterns were done on a Stardent
Titan computer. To extract the quadrupolar parameters, a program, MINUITQ, was
written which calculates 2nd order quadrupolar powder patterns spinning about any
single axis (see appendix to this thesis). This program simulates only the central
transition for half-odd integer nuclei and assumes that no intensity is lost in spinning
sidebands. The experimental spectra were fit using a standard AMOEBA simplex routine
from Numerical Recipes in FORTRAN!37 or MINUIT, a minimization package from
CERN. These algorithms allow rapid convergence by minimizing the root mean square
deviation between the simulated and the experimental spectra. Each fit takes
approximately 2,000 to 10,000 iterations to achieve a best fit with each iteration taking
about 0.4 seconds per powder pattern. By using the quadrupolar parameters and isotropic
chemical shift values determined directly from the one-dimensional DAS spectra, we are
able to fix the isotropic shift and the value of Py which limits the simplex to only 4
variable parameters per site, which are the asymmetry parameter, 7, the total intensity,
the lorentzian broadening, and the Gaussian broadening for each site, under rapid magic-
angle spinning. Finally, we are able to fit multiple experimental spectra simultaneously.
Thus by simulating MAS spectra at both 9.4T and 11.7T, we may place a large number of
constraints on our simulations. This allows more exact determination of the asymmetry

parameter, 70, and therefore the quadrupolar coupling constant, Cg.
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Figure 8.2 shows the DAS, DOR and MAS spectra of these six minerals previ-
ously reported.!345 It is observed that in all cases, the DAS spectra show the same num-
ber of isotropic sites as are present in the crystal structure. In the wollastonite spectrum,
two of the bridging sites overlap at 28 ppm, giving a peak twice as intense as the third
bridging site at 22 ppm.

Magic-Angle Spinning Dynamic-Angle Spinning Double Rotation
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Figure 8.2 Crystalline 9.4T DAS, DOR and MAS Spectra. The MAS spectra are very
similar to those observed by Timken et al.}30 and all spectra are shown with permission
from the thesis by Mueller.!3 The MAS and DOR spectra were taken with standard one-
pulse experiments while for the DAS spectra the original DAS pulse sequence was used.

The large number of spinning sidebands in the DOR and the second-order quadrupolar

broadening in the MAS make interpretation of these more difficult. The comparison of
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the DAS to the DOR vspectra immediately identifies the isotropic shifts and these are

compiled in table §.1.

Figure 8.3 shows the DAS spectra of the various pyroxene silicates taken at 11.7T
(67.797 MHz). No DOR spectra were performed for these compound at this field. MAS
experiments were conducted for all compounds though only the MAS of diopside at
11.7T is shown in figure 8.5. The signal-to-noise ratio of the clinoenstatite spectrum was

significantly worse than in the previous experiments at 9.4 T.

Larnite

Forsterite

Diopside

Clinoenstatite

Wollastonite

[TT 7T I T [P [T I [ TIo [T T[T I T [TTTr]
160 120 80 40 0

Frequency (ppm from HZWO)

Figure 8.3 Crystalline 11.7T DAS Spectra. All spectra are shown on the same scale
referenced relative to Hp170. The isotropic peaks in the clinoenstatite and larnite spectra
were determined by performing these experiments twice, however the signal to noise dic-
tates that the errors in the measured isotropic shifts will be approximately twice (or 2
ppm) those in the other spectra.
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This is probably due to the fact that some of the sample was lost over the course of these
and other experiments and therefore the overall signal was significantly reduced. Both
the clinoenstatite and larnite DAS experiments were performed twice and peaks appeared
at the positions given in table 8.1 in both sets of experiments. In the case of wollastonite,
the number of resolved peaks is reduced from six non-bridging and two bridging sites at
9.4 T to five non-bridging and two bridging sites at 11.7T. The most intense bridging
peak again is the sum of two sites, just as in the 9.4T experiment. Also, the most intense
non-bridging peak (at 92 ppm) is the sum of two sites with different quadrupolar coupling
constants which are apparently crossing meaning that the isotropic chemical shift of the
one with the larger quadrupolar coupling constant is greater than the isotropic chemical
shift of the other, leading to the possibility that at a given field they will have identical
total isotropic shifts. If this experiment could be performed at a field as high as 14 T, this
peak would probably again split into two peaks.

The isotropic shifts at both 9.4 T and 11.7 T, as well as the calculated isotropic
chemical shifts and quadrupolar coupling product, Pg are listed in table 8.1 for each of
the compounds studied. There is some ambiguity as to the assignment of the peaks in the
wollastonite spectra between the two fields, however it is reasonable that the quadrupolar
coupling constants should be relatively similar in both the bridging and the non-bridging
region. Thus the order of the peaks should not change significantly. It may be shown
that changing the order (and therefore the assignment in table 8.1) of any of the 11.7 T
peaks will dramatically affect at least 2 of the isotropic shifts and coupling products.

Thus we feel that the assignments below are quite reasonable.
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Compound Sope (PPM) sy (PPM)  Sjgp s (pPm) Pg (MHz)
117.3 123.3 133.9 2.940.2
Larnite 113.3 118.5 127.8 2.710.2
(CazSiOy) 108.8 113.4 121.6 2.5+0.2
106.3 112.0 122.1 2.810.2
Diopside 69.2 75.1 85.6 2.840.2
(MgCaSizOg) 48.5 54.0 63.8 2.740.2
28.6 43.3 69.5 (b) 4.540.1
39.3 45.5 56.6 2.910.3
Clinoenstatite 345 44.1 61.2 3.610.3
(MgSiO3) 32.3 420 59.3 3.610.3
26.3 39.0 61.7 4.210.3
18.0 36.8 70.3 (b) 5.120.2
15.0 34.7 69.8 (b) 5.240.2
Forsterite 49.0 57.1 71.5 3.310.3
(Mg2SiOg) 49.0 54.8 64.3 2.740.3
30.8 37.5 49.4 3.0+0.2
1034 107.4 114.5 2.310.2
Wollastonite 100.1 105.1 114.0 2.610.2
(CaSiO3) 96.5 100.2 106.8 2.310.2
89.0 91.9 97.1 2.010.2
85.8 91.9 102.8 2.940.2
74.3 79.3 88.2 2.610.2
28.2 44.9 74.6 (b) 4.840.1
28.2 449 74.6 (b) 4.810.1
21.6 37.8 66.6 (b) 4.710.1

Table 8.1 Isotropic Chemical Shifts and Quadrupolar Coupling Products from Two Field
Studies. The isotropic shifts measured from the spectra in figure 8.2 and 8.3 were used to
compute the isotropic chemical shifts and quadrupolar products for all of the oxygen sites
in each of the six minerals. The isotropic shifts marked with a (b) indicated bridging
oxygen sites. The errors for the observed isotropic shifts were 1 ppm (except for larnite
and clinoenstatite at 11.7T which had £2 ppm errors) providing an isotropic chemical
shift error of £2 ppm (3 ppm for larnite and clinoenstatite).

If the spectra could be collected at yet a third field (i.e. <7 T or >14T) then these assign-
ments may become more clear. To calculate the isotropic chemical shifts and quadrupo-
lar coupling products, the coupled equations 8.3 were solved. The errors in the calculated

parameters were computed using standard error propagation techniques.
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In addition to these quadrupolar parameters, the magic angle spinning spectra of
diopside at 9.4T and 11.7T were simulated using automated simplex routines. By effec-
tively fixing the coupling product and the isotropic chemical shift values we were able to
generate highly accurate values for the asymmetry parameters. This in turn allows us to
recover the real quadrupolar coupling constant Cg which is proportional to the field gra-
dient in the z-direction of the principal axes system of the nucleus. The experimental
spectra and best fit simulations are shown in figure 8.4. The values we extracted agreed

quite well with previous work.!30

(a) (b)

Experimental

(a') (b")

Simulation
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Frequency (ppm from H,!70)

Figure 8.4 Crystalline Diopside 9.4T and 11.7T MAS Spectra. The MAS spectra at 9.4T
(a) are shown as well as at 11.7T (b). All spectra are shown with a ppm scale referenced
relative to H217O. The simulations (a' and b') were performed with the isotropic
chemical shift and quadrupolar product parameters fixed to those in table 8.1. The simu-
lation results are given in table 8.2.

In table 8.2 below, the values extracted from the simulations of the diopside MAS spectra
in figure 8.4 are compiled. Also shown are the parameters reported by Timken et al.150
previously from single field diopside MAS simulations. There are no error bars for the
Timken results, however, since these fits were done by hand without least-squares mini-
mization. Our results include actual error bars since the MINUIT subroutine calculates

and uses gradieuts on the chi- squared surface.
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This Study Timken et al.130

Site 8iso,cs ( ppm) CQ( MHz ) Ug aiso.cs ( ppm) CQ ( MHZ) 772_

1 861 2.83+0.05 0.1310.10 84 2.7 0.0
2 64+1 2.74+0.05 0.00+0.10 63 2.7 0.1
3 69+1 4.3940.05 0.3610.05 69 44 0.3

Table 8.2 Diopside Quadrupolar Parameters. These quadrupolar parameters were ex-
tracted by simultaneously fitting the MAS spectra in figure 8.4. The error bars are indi-
cated in the table.

In the three chain silicates studied (diopside, clinoenstatite, and wollastonite), the
occupancy of terminal oxygen sites in the structure is twice that of bridging oxygen
species. In forsterite and larnite, all oxygen sites are non-bridging. Diopside, clinoen-
statite, and wollastonite have three, six, and nine crystallographically distinct oxygen
sites, respectively, and one, two, and three different bridging sites respectively. Referring
to table 8.1, we note that the quadrupolar products Pg for the oxygen sites in the chain
silicates are predominantly less than 4 MHz. Values higher than 4.3 MHz follow a 1:2:3
ratio, respectively, for diopside, clinoenstatite, and wollastonite, suggesting that lines as-
sociated with these values should be assigned to bridging sites. This observation is com-
patible with the results of Oldfield and coworkers in their studies of these and similar sili-
cates!5%, The DAS technique now allows complete resolution of all sites, even in wollas-
tonite. For this silicate with nine crystallographic oxygen sites, the NMR data now reveal
six distinct terminal sites as well as two inequivalent bridging sites occurring in a 2:1 ra-
tio.

A number of trends are conspicuous when the isotropic chemical shifts for the
various types of oxygen sites are examined. All of the bridging sites have isotropic
chemical shifts to within 4 ppm of 71 ppm, referenced to the single oxygen-17 resonance
from H2170. This is an extremely small deviation considering the wide range of chemi-

cal shifts which have been reported for oxygen—17.!38 Here, however, all of the oxygen
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sites are quite similar and differ only in the identities of neighboring cations. As noted by
Oldfield and coworkers, ! the chemical shifts of the bridging oxygen atoms is generally
less sensitive to the nature of the nearby cations due to the distance separating the oxygen
nuclei and the cations.

Chemical shifts of Si—O terminal sites are more strongly dependent on the
cations present. The deshielding of the oxygen nucleus as the effective ionic radius of the
cation increases has been established empirically!5? and when the cations are magnesium
ions (as in forsterite and clinoenstatite), the isotropic chemical shifts calculated range
between 49 and 72 ppm. When calcium ions are present exclusively (wollastonite and
larnite), the isotropic chemical shifts for the ten sites lie between 88 and 134 ppm. In the
mixed cation compound (diopside), both terminal oxygen sites had intermediate chemical
shift values (64 and 88 ppm). Thus it appears that each oxygen in diopside experiences
an averaged chemical shift value from the surrounding cations.

Similar trends are also observed when the quadrupolar coupling products are ex-
amined. For the bridging sites, Pg values range between 4.5 and 5.2 MHz. This again is
a very small range considering that oxygen—17 coupling constants as large as 12 MHz are
observed for sites with similar coordination or stoichiometry!3°, For the terminal sites in
the magnesium-containing minerals Pg values from 2.8 to 4.2 MHz are found. For simi-
lar sites near calcium cations the experimentally determined values are generally lower
and fall between 2.0 and 2.9 MHz. Since the electronegativities of both cations are quite
similar, the electric field gradients near these ions are only slightly dependent on the type
of ion itself. The quadrupolar coupling products for terminal sites in diopside, which
both fall close to the overlap point of the ranges for the two types of cations, tend to sup-
port the argument that an average environment is experienced at these sites. A more
noticeable difference is between the bridging and terminal oxygen quadrupolar environ-

ments since the field gradients at bridging sites are almost double those at terminal sites.
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Finally, from the MAS simulations at the two fields, the values for the asymmetry
parameter, 7)g, at each of the three sites in diopside were determined (table 8.2). This
provides additional information above and beyond the coupling product, Pg. It also al-
lows us to determine with greater precision the value of the actual quadrupolar coupling
constants Cg, giving a quantitative description of the strength the field gradient at each
site. Further, all sites in diopside have asymmetry parameters near zero, indicating that
the x and y gradients are of approximately the same strength. The asymmetry parameter
of the bridging oxygen also may be correlated with the bridging Si-O-Si bond angle de-
termined from the crystal structure (see the next section). When many such bond an-
gle/asymmetry parameter correlations have been determined, this information may be
used to determine an unknown bond angle from quadrupolar parameters.*6

In conclusion, we have shown that by performing field—dependent DAS experi-
ments on oxygen—17 in minerals, parameters are obtained which can be directly corre-
lated with structural information. Trends are recognized in the isotropic chemical shifts
and the quadrupolar coupling strengths for a series of silicate minerals. It has been
demonstrated that these parameters depend on the type of oxygen crystallographic site
and the neighboring cation present in the crystals, corroborating extensive earlier studies
but further providing information on all oxygen sites present in certain complex silicate

minerals.

Amorphous Silicates

The difference between a glass and a crystal lies in disorder present in the inter-
mediate-range glass structure that eliminates long-range translational symmetry (see fig-
ure 8.5). Characterization of disorder is an important experimental objective because it is
a critical test of the accuracy of models of glass structure. In pure silica glasses (SiO3),
the basic building block is the SiO4 tetrahedron which form a three-dimensional network

with the overall disorder coming in the range of Si-O-Si bond angles made by joining
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tetrahedra at the corners.!%® This distribution of bond angles in SiO2 has been exten-

sively studied with both X-ray and NMR techniques.57+161-167

a) b)

Figure 8.5 Comparison of A5O3 Crystal and Glass Lattice Structures. The two structures

represent possible planar configurations for a sample with A203 stoichiometry. The dark

circles represent A atoms while the open circles represent oxygen atoms. Notice that the

AOj3 building block used in both structures preserves basically identical A-O bond

lengths and O—~A—O bond angles. The primary difference lies in the distribution of A~O-

A bond angles leading to the wide range of rings in the glass as opposed to the strict 180°

bond angle with six sided rings in the crystal.
Figure 8.5 shows a possible planar structure for both a crystal and a glass with the A203
stoichiometry (for example B,03). This figure could be thought of as a two-dimensional
analog of the three-dimensional lattices formed from AQO; glasses (such as SiO3). Itis
immediately apparent that in the crystal, the A atoms are always surrounded by three
oxygen atoms with strict 120° bond angles; each O atom forms a distinct 180° bond as
well. The glass structure maintains the basic AO3 building block with 120° bonds,
however now the connecting A-O-A bonds are no-longer 180°. With only a very slight

increase in the overall energy of the crystal structure, the glass structure may be formed.

This indicates some of the basic local order trends seen in three dimensional glasses.
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Figure 8.6 Insertion of Modifying Cations into Silicate Glasses. The insertion of a K70

"molecule" into the SiO3 glass lattice causes the creation of two non-bridging oxygen

atoms from a bridging oxygen. The distribution of these modifying cations throughout

the glass may proceed in either a random or partially random fashion as the modifying

cation concentration is increased.
In network-modified silicate glasses, the continuous disordered network of SiOg4
tetrahedra is presumed to be disrupted by modifying cations which create non-bridging
oxygen atoms (oxygen atoms bonded to only one silicon atom).!68 Figure 8.6 shows how
the addition of a modifying cation (in this case in the form of K;0) creates non-bridging
oxygen sites in a silicate glass. Two principal sources of disorder are thought to be this
disruption of the network and the distribution of bond angles (Si-O-Si) between network
forming cations (as mentioned previously). It is well established experimentally that the
silicon and oxygen are ordered locally in network modified-silicate glasses, and that the
SiO4 tetrahedra remain the basic structural unit. From extended X-ray absorption fine
structure (EXAFS) studies of modified cations, we know that they too are regularly
coordinated by oxygen,!6%170 having coordination polyhedra and bond lengths similar to
those in crystalline silicates. Isotopically substituted neutron scattering has also shown
that ordering associated with modifier cations extends beyond the first coordination
spl.ere, by detecting strong correlations between Ca-Ca as well as Ca-O distances in
CaSiOj glass!”172, This is consistent with 29Si NMR studies of silicate glasses, which

show that the distribution of non-bridging oxygen atoms is not random, being close to

binary!63:173; the deviation from a binary distribution depends on the electronegativity of

170



the network modifier and on the glass transition temperature. Taken together, these
experimental data indicate considerable order associated with network modification.
Quantification of the remaining disorder associated with variations in bridging angles
between network-forming cations is therefore important,!66:167

Volumetrically, silicate glasses are dominated by oxygen anions, yet despite this,
the structure of silicate glasses has been studied almost entirely from the perspective of
the cations and their coordination. For example, X-ray scattering experiments are most
sensitive to scattering from cations (network-forming and network-modifying) that are
heavier than oxygen anions, EXAFS experiments concentrate on network modifiers such
as Na* or Ca2+, and 29Si NMR experiments specifically observe signal from the network-
forming cation. In this section, we investigate the local environments of the oxygen an-
ions. As oxygen is the connecting atom between locally ordered tetrahedral environ-
ments, the intermediate-range disorder in the glass will be reflected in the range of envi-
ronments exhibited by these oxygen atoms. As shown in the previous section, 170 NMR
is a sensitive and direct way to characterize these interconnections. Previously, 170
NMR has been used to study glasses with conventional static and MAS techniques.!%:174
These methods of course are seriously hampered by both the anisotropic broadening
arising from a range of crystallite orientations and the distribution of local environments
in a glass which lead to a continuum of sites. These two contributions to the lineshape
may not be separated in an experiment such as MAS, since this fails to remove all of the
anisotropic broadening arising from the second-order quadrupolar interaction (see chapter
2). In contrast, the two-dimensional DAS experiment is well suited for this type of sys-
tem, as this may be used to correlate high-resolution isotropic peaks in one dimension
(which will be a broad distribution in a glass due to the continuum of sites) with the in-

dividual powder patterns for each site in the second dimension (see chapter 3).
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Experimental

All of the spectra of silicate glasses in this section were taken with one of two
types of home built probes designed by Mueller et al.’! and Eastman et al.#* The usual
field strength was either 9.4T or 11.7T to give the highest initial polarization and there-
forc highest signal-to-noise ratios, since individual slices from the 2D DAS spectra were
to be simulated. Additionally, the HyperSEDAS or SEDAS (see chapter 4) pulse se-
quences were used since both the transverse and longitudinal (T3 and T) relaxation times
for these samples were in general quite long (1-20 seconds). The pulse widths were
usually between 3 and 7 us and the rotor reorientation times were often less than 40 ms.
For the shifted-echo experiments, the DAS echo was usually shifted from 4 to 8 rotor pe-
riods out in time (approximately 1 ms). The spinning rate was from 5 to 7 kHz and the
k = 1 angle pair was used for most experiments. In all glass spectra the time domain data
in the #; dimension rapidly decayed away due to the broad distribution of sites in the
isotropic dimension and therefore usually only 40-70 total points were collected in this
dimension. In the second dimension, usually 256 or 512 points were taken to provide the
necessary digital resolution to see distinct features in the anisotropic powder patterns.

The 170 labeled glasses were again prepared by Stebbins and coworkers. The
usual enrichment was between 35 and 50 percent and was achieved by the addition of
170 labeled water to SiCly to produce isotopically labeled SiO; which was then used to
make the glasses by combination with alkaline and alkaline earth metal oxides (often 170
labeled as well). In general the glasses were quenched from the liquid state at about
1100° to 1600° C in a vacuum oven to assure that no oxygen was lost or exchanged in the
glass formation. In some cases, the samples were sealed in a Pt tube to allow éuenching
from even higher temperature than were possible in the vacuum oven (specifically this
applies to the amorphous SiO7). In all cases, stoichiometry and phase were tested with
both 170 and 29Si MAS NMR at Stanford before attempting DAS experiments. For more

details of the synthesis see the thesis by Chmelka.4’
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Amorphous Silica (SiO»)

The study of amorphous SiO2 with 170 DAS represents the natural starting point
for a discussion of silicate glasses (as a side note, chronologically this was not the first
glass studied with DAS, however with the clarity of hindsight, this represents a more
logical place to begin the discussion of silicate glasses). A range of different silica sam-
ples were prepared by Stebbins and coworkers for study with DAS as well as some from
Dupree and coworkers. In all cases the spectra were very similar for all kinds of silica
glasses. Figure 8.7 shows the 2D DAS spectrum of amorphous SiO2 taken at 9.4T with
k=1 (37.38° and 79.19° angle pair).
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Figure 8.7 2D DAS Spectrum of Amorphous SiO3. The isotropic dimension shows a
single broad peak with spinning sidebands on both sides. The anisotropic slices are seen
to increase in asymmetry parameter and decrease in quadrupolar coupling as the isotropic
shift gets larger.

Notice that the center band is quite broad (approximately 20 ppm full width at half
maximum, FWHM) and the sidebands which appear to either side are fairly st-ong due to
the large quadrupolar coupling in this sample (quadrupolar coupling constant of about 5

to 6 MHz). Also, the overall shape of the anisotropic slices changes as the isotopic shift
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is increased. On the low frequency side of the isotopic peak, the asymmetry parameter
for anisotropic slices is nearly zero. As the isotropic shift increases in frequency, the
asymmetry parameter gets larger and the quadrupolar coupling constant gets smaller.
This is observed in both this data and the data from 11.7T. Table 8.3 compiles the inten-
sity, isotropic shift, quadrupolar coupling constant and asymmetry parameter for each of
the 18 slices with significant intensity (slices which may be simulated) through the cen-
terband isotropic peak. The slice number corresponds to the absolute number of the slice

through @, (for this data set, the ¢} dimension was zero filled to 256 points).

Slice £Q uP) Pop. 0 || Slice CQ Tg Pop. 6506

109 585 0.00 024 325 118 578 0.13 0.85 55.0
110 6.00 000 044  40.2 119 570 0.15 079 555
111 6.14 000 055 474 120 561 0.17 0.71 55.3
112 6.18 002 065 514 121 553 0.18 0.61 55.7
113 6.18 003 075 543 122 547 019 050 57.0
114 6.11 0.05 0383 54.6 123 543 020 040 59.0
115 6.02 007 087 54.0 124 538 022 031 60.5
116 593 009 08 3540 125 512 026 022 55.6
117 585 0.11 089 543 126 458 034 015 434

Table 8.3 SiOj Anisotropic Slice Fits. The simulations were performed using the
computer programs in the appendix with the assumption that the chemical shift
anisotropy was negligible.

It may be noted here that slices 109, 110, 125 and 126 have values for either the
quadrupolar coupling or isotropic chemical shift which do not follow the trends observed
throughout the rest of the table. This is due to the fact that the signal-to-noise ratio of
these slices made simrulation difficult and these values are to be given much less signifi-

cance than in the reg:ion of the peak (slices 116 and 117). Five of these slices (as well as
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“igure 8.9 Electric Field Gradient Model Compound;. The molecule H3Si-O-SiH3 may

be used as a rough model to show the relative sizes of the EFG tensor as the Si-O-Si bond

angle is changed.
As this bond angle is reduced, the x-axis becomes defined by the plane made by the two
silicon atoms and the oxygen atom (the y-axis is of course perpendicular to the x- and z-
axes). At an angle of less than 180°, the x and y field gradients will no longer by identical
and by definition (see equation 2.37) nq will be greater than zero. With simple point
charge or electron bonding models it is impossible to assess accurately how rapidly the
asymmetry parameter will grow towards the maximum possible value of one. Tossell
and Lazzeretti have done a more thorough analysis of this molecule using modern ab
initio molecular orbital calculation algorithms!42, Figure 8.10 shows the characteristic

quadrupolar coupling constants and asymmetry parameters calculated for this molecule

when the Si-O-Si bond angle was 180°, 160° and 140°.
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Figure 8.10 Ab Initio Quadrupolar Parameters for H3Si-O-SiH3. The quadrupolar
coupling constant and asymmetry parameter were calculated using Gaussian algorithms
for the angles 180°, 160° and 140°. Circles indicate values calculated by Tossell and
Lazzeretti while square are experimental points from Stebbins et al.

The lines going through the points in these figures correspond to an empirical fit with the
functions given below.

. N oy 2c0s(£LSi-0-S8i)

CQ(ASI -0- Sl) = CQ(180 )m

(8.4)
No(£LSi— 0 - Si)=1-cos(£Si- O - Si)

These equations describe Tossell and Lazzeretti's data reasonably well. The two squares
in figure 8.10 indicate asymmetry parameters measured from simulations of MAS spectra
of wadeite (134.7° bridging bond angle) and cristobalite!75 (146.4° bond angle). Notice
that these fall very near the empirical asymmetry parameter curve.

The equation used to describe the asymmetry parameter in terms of the bridging
bond angle may be inverted and used to convert our data in table 8.3 from intensity (or
population) as a function of slice number into intensity as a function of bond angle. This
involves two separate conversions. First, the data must be converted from intensity as a
function of slice number (or isotropic shift) into intensity as a function of asymmetry pa-
rameter. This is equivalent to redefining the axis in the one dimensional isotropic spec-
trum from slice number (or ppm) into asymmetry parameter. This is not, however, a
simple linear transformation and as such the intensity at each point must be rescaled by

the gradient at that point.
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1(")=’(5)§§ 8.5)

The 6 in this equation indicates the isotropic shift of a given slice while 7 corresponds to
the asymmetry parameter for that slice. These derivatives may be computed numerically
by graphing the asymmetry parameter as a function of isotropic shift and empirically fit-
ting the resulting curve. Additionally, the value of the asymmetry parameter may be ex-
trapolated with an empirical curve to determine the bond angles in regions where the in-
tensity is too low to simulate individual slices. The same procedure must be used to con-
vert from intensity as a function of asymmetry parameter to intensity as a function of
bridging bond angle, . This however is not as difficult since we know a functional form

for the gradient already.

I(a)=1(n)

%%-=z(n)gna 8.6)

This procedure leads to the bond angle distribution shown in figure 8.11 (reported first by

Grandinetti et al.!76)
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Figure 8.11 Amorphous SiO7 Bond Angle Distribution. The squares are the bond angle
distribution arrived at from the DAS spectral analysis. The line indicates the bond angle
distribution found by Mozzi and Warren with X-ray scattering experiments.
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The peak in this bond angle distribution occurs at approximately 150°. The absolute
accuracy of this bond angle distribution is about +3° at the peak and +10° in the wings
(where the simulations were of significantly reduced precision and extrapolation of the
asymmetry parameters was used).

A second approach to determine the bond angle is to use the equation relating the
quadrupolar coupling constant to bond angle (equation 8.4). To do this, we again must
use the equivalent Jacobian equations to rescale the axes from intensity as a function of
slice number (isotropic shift) to intensity as a function of bond angles.

dCQ ( ) 2Cp(180°)sinar )| dO
(cos at—1)? dCQ

I(a)=1(C, | (8.7)

This is slightly more difficult since we do not have an absolute value for the quadrupolar
coupling constant at 180°. The simplest solution is to use the asymmetry parameter of the
highest signal-to-noise ratio slice to determine the bond angle for that slice and use the
empirical equation 8.4 to extrapolate to Cg(180°). This requires that both empirical rela-
tions in equation 8.4 hold reasonably well, which may not be as accurate as in the case
where only the asymmetry parameter i sused. However, when the quadrupolar coupling
constants in table 8.3 are plotted against the isotropic shifts it is apparent that they form a
nearly linear relationship which allows much greater confidence when extrapolating to
the coupling constants in the outer slices. Also, the percent error bars on the quadrupolar
coupling constants from the simulation are much smaller then those for the asymmetry
parameters. Additionally, the linear relationship allows easy computation of the
derivatives in equation 8.7. The bond angle distribution derived from this method is
virtually identical to the one in figure 8.11. Also shown in figure 8.11 is the Si-O-Si
bond angle distribution of Mozzi and Warren.'®! Both the DAS and X-ray scattering
bond angle distributions show a number of similarities. First, they both have a sharp cut

off on the low angle side. This corresponds to the point where steric hindrances make the
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small bridging bond angles energetically unfavorable. Second, both have a long tail on
the high angle side. This again is reasonable, since there will be no steric hindrances as
the bond angle approaches 180°, however this is a strong deviation from the tetrahedral
bond angle (as in H20) one might expect from simple molecular orbital arguments.
Finally, both have a maximum near 150°, which is quite reasonable since most of the
crystalline SiO2 polymorphs have bridging bond angles between 140° and 155°. The
bond angle distribution of Mozzi and Warren is much broader, however, which may be
attributed to the inherent difficulties (and inaccuracies) in fitting the three pair correlation
functions needed to analyze the X-ray scattering results with arbitrary functions.
Additionally, the lack of good high angle scattering data may effectively truncate the

results and lead to artificial broadening of the bond-angle distribution.

Tetrasilicates (K,SigO9 and KMg 5Si4O9)

The second class of silicate glasses we have evaluated are tetrasilicates. These all
have a total of +2 cationic charge balancing an SigOg~2 cluster. The actual structures of
both the crystalline and glassy compounds are much more complex. In the crystalline
compounds, the silicates form long double stranded chains separated by cations. In the
glass, these chains remain (as evidenced by the 29Si NMR) however they are no longer
ordered. In our study of these materials® we hoped to both determine the Si-O-Si bond
angle distributions to compare to the distribution from SiO;. Additionally, we attempted
to evaluate the local ordering of the cations in the glass, similar to the ordering described
by Gaskell in calcium modified silicate glasses!”!:172,

The experimental DAS spectra are shown in figure 8.12 for both K3Si4O9 and
KMg 5Si4Og glasses. Both spectra were taken at 9.4T where the separation of the bridg-
ing and non-bridging oxygen peaks was the greatest. Spectra at 11.7T were very similar

and are not shown here.
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Figure 8.12 2D DAS Spectra of Tetrasilicate Glasses. The DAS spectrum on the left is
for K2Si4Og and the spectrum on the right is for KMg 58i4Og . These spectra were taken
at 94T with the usual pulse sequences and acquisition parameters.

The isotropic bridging oxygen peak occurs at 0 ppm in both spectra while the non-bridg-
ing oxygen peak occurs at 65 ppm in the KSi4Og glass and 25 ppm in the KMg 551409
glass. The two peaks on either side of the bridging oxygen correspond to spinning side-
bands. The magnesium substituted glass has significantly worse signal-to-noise than the

potassium tetrasilicate and cannot be used to extract a bond angle distribution. In the
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case of potassium tetrasilicate, we are able to simulate a number of the slices through the
isotropic bridging oxygen site. The quadrupolar and chemical shift parameters from
simulations of both the 9.4T and 11.7T DAS data sets are given in table 8.4. In both
cases, only the peaks which were simulated are given. Intensities for extrapolated points
were gotten from the one-dimensional DAS projection. In both cases the slice numbers
are referenced to the 128 total points in the @ dimension following zero filling of the
data in t;. These parameters may then be converted into a bond angle distribution just as
in the previous section. Both the 11.7T and 9.4T data give very similar distributions, as
evidenced by the similarity of the quadrupolar and chemical shift parameters for the most
intense slices (61 and 62 at 9.4T and 69 and 60 at 11.7T). This resulting 9.4T bond angle

distribution is shown in figure 8.13.

Slice CQ TLQ Pop. 5,-30'“ Slice CQ T]g POp

5iso,cs

56 573 009 0.21 57.3 54 6.12 0.10 0.51 577
57 566 0.11 023 58.0 35 6.06 0.11 066 59.2

58 565 012 026 60.5 Il 56 590 0.12 083 584
59 565 013 029 630 || 57 579 014 106 569
60 555 016 031 629 || 58 572 016 113 603
61 543 019 033 621 59 566 0.17 116 619
62 533 020 033 617 FJ 60 556 0.19 115 627
63 525 022 032 624 | 61 548 021 110 640
64 528 023 030 662 | 62 540 022 097 655
65 514 026 027 647 )| 63 534 023 082 671

66 510 028 025 673 | 64 528 024 066  68.8

Table 8.4 K3SigOg Anisotropic Slice Fits from 9.4T and 11.7T DAS Spectrum. The
simulations were performed using the computer programs in the appendix with the as-
sumption that the chemical shift anisotropy was negligible, as in table 8.3. The parame-
ters on the left correspond to 9.4T data and on the right to 11.7T.
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Notice that the maximum in this distribution falls at about 140°, about 10° less than in the
SiO; bond angle distribution. Also shown in figure 8.13 with a dashed line is the bond
angle distribution calculated from a molecular dynamics simulation of

78K20-2165i02.177 It may be noted that this is significantly different in both the shape
and maximum.

Returning to the DAS spectra in figure 8.12, we note that the only major differ-

ence between the two spectra is in the position of the non-bridging oxygen peak. Both

bridging site peaks are of approximately the same shape and width, as well the non-
bridging peaks are of similar width.
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Figure 8.13 K3Si4O9 Bond Angle Distribution. The bond angle distribution for

K28i409 (squares) as well as a molecular dynamics simulation (dashed line) result are
shown.

It is important to see that there is no sign of a non-bridging peak at 65 ppm in the
potassium magnesium tetrasilicate glass. This indicates that in the mixed cation glass
there are no regions which are potassium "rich" and no region conversely which are
magnesium "rich". In fact, the cation distribution must be anything but random in this
glass, otherwise the peak at 25 ppm would be a broad lump from 65 to 25 ppm. In the

case of these glasses, for a K:Mg ratio of 2:1 in the potassium magnesium tetrasilicate,
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the only way to produce an ordered 2:1 arrangement of K+ and Mg*2 in the vicinity of the
non-bridging oxygen atoms is to have an original coordination of four K+ cations in the
potassium tetrasilicate which then substitutes one Mg*2 for two K* cations in the
potassium magnesium tetrasilicate. This will take the non-bridging oxygen atom from a
coordination of 5 atoms (4 potassium atoms and 1 silicon) to 4 atoms (2 potassium atoms,
1 silicon and 1 magnesium). Since the magnesium is a much smaller cation of
comparable size to a silicon cation, the magnesium substitution will produce a local non-
bridging oxygen environment which is much more similar to a bridging oxygen environ-
ment than in the potassium tetrasilicate, hence the reduced isotropic chemical shift values.
Additionally, since there will be a total of a +4 charge in the vicinity of every non-
bridging oxygen atom, the non-bridging oxygen atoms themselves must be locally
ordered and occur in distinct pairs. Additionally, both non-bridging oxygen atoms must
not be coordinated to the same silicon atom, since this would necessitate the formation of
Q2 (where Q" stands for a silicon bonded to n bridging oxygen atoms) species, which are
not found in silicon NMR experiments. In fact all silicon atoms are in either Q3 or Q4
almost exclusively (50:50 ratio).!”® This cationic ordering is in strong agreement with
Gaskell et al.171172 when they stated that the calcium cations were found to be in very
ordered and regular arrangements in a tetrasilicate glass they studied. In fact, this study
goes a step further to actually demonstrate absolute coordination in a modified

tetrasilicate glass.

Disilicates (K2Si205)

The final class of glasses studied is the disilicates which consist of a mixture of
cations totaling +2 charge and a SipOs5~2 anion cluster. The crystalline form of these
materials forms long chains which are separated by cations. The glasses also form the
same chains, but again lacking the long range order of the crystal. Figure 8.14 shows the

DAS spectrum of a potassium disilicate glass taken at 11.7T. This spectrum looks very
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much like the potassium tetrasilicate spectrum in figure 8.12. The main isotropic peak
for the bridging oxygen sites occurs at 35 ppm while the non-bridging oxygen peak
occurs at 75 ppm. The overall width and position of these peaks are approximately the
same as in the potassium tetrasilicate spectrum at 11.7T. The non-bridging peak indicates
that, just as in the potassium tetrasilicate, the non-bridging oxygen atoms will be five-fold
coordinated to one silicon and four potassium atoms. As in the previous two sections, the
quadrupolar and chemical shift parameters were extracted with simulations of the
bridging site slices. These are tabulated in the same form as before in table 8.5. As in the
amorphous silica, the DAS spectrum was zero filled in the ¢} dimension to 256 points and

the slices are referenced to these 256 points in the resulting @) dimension.
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Figure 8.14 DAS Spectrum of K38ip05 glass at 11.7T. The DAS spectrum above was
taken with the usual HyperSEDAS pulse sequence and parameters.

The first three slices (110, 111 and 112) seem to have unusually large isotropic chemical
shifts relative to the expected trend from the other slices and thus they are attributed less

significance (this is primarily due to the low signal-to-noise of these outer slices). These

185



coupling constants are converted into a bond angle distribution in the usual fashion,

which is shown below in figure 8.15.

Slice Co ng _ Pop. Oisocs || Slice  Co Mg Pop. iy
110 6.57 0.00 0.07 73.1 119 558 0.16 0.73 70.8

111 652 0.00 0.11 73.7 120 548 0.18 077 712
112 637 000 0.16 72.2 121 538 020 079 71.6
113 608 001 023 677 122 530 021 0.78 725
114 6.01 0.04 031 68.5 123 524 023 072 738
115 594 005 040 69.2 124 516 025 062 745
116 581 0.09 049 709 125 497 027 049 733
117 572 0.12 058  68.1 126 484 028 035 732

118 565 0.13 066 69.9 127 478 029 024 743

Table 8.5 K2Si3O5 Anisotropic Slice Fits. The simulations were performed using the
computer programs in the appendix with the assumption that the chemical shift
anisotropy was negligible, as in table 8.3 and 8.4.
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Figure 8.15 K3Si20s5 Bond Angle Distribution. The circles indicate the bond angle
distribution extracted from the quadrupolar coupling constants in table 8.5.
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This bond angle distribution, just like the potassium tetrasilicate, has a maximum at ap-
proximate 140° with error bars of +3° in the peak region and *10° in the wings. The
usual sharp cut off at 130° is observed, just as in the potassium tetrasilicate and in the
silica. Any small variations between the tetrasilicate and disilicate bond angle distribu-
tions may be attributed to the random errors associated with the simulations. In disili-
cates such as K3SisOs, it has been found as well previously that all silicon atoms are in

Q3 coordination.!”8

Conclusions

The three bond angle distributions shown in the preceding sections are a good
starting point to be able to understand the structures present in silicate glasses. The sig-
nificance of these distributions is not well understood at this point, however some conclu-
sions may be drawn. First, the bond angle maximum of the amorphous silica (150°) is
significantly higher than the maximum for the poiassium modified silicates (140°). This
could possibly be attributed to the local ordering of the potassium cations around the non-
bridging oxygen atoms. To achieve the cationic ordering observed earlier, it is necessary
that the cations begin to form clusters early in the quenching of the glass and not be
trapped in unfavorable environments as the glass viscosity increases. This is not difficult
to envision, since the non-bridging oxygen sites are quite mobile due to the formation and
breaking of bridging silicon-oxygen bonds as the cations migrate through the glass. As
the glass forms, the cations must find energetic minima in the locally ordered clusters
which controls the medium-range structure during the overall quenching of the glass. In
the amorphous silica, there are no cations to lend mobility to oxygen atoms and therefore
the glass transition temperature is much higher. Additionally as the silica fluid begins to
quench into a glass, the lack of cations will cause a rapid loss of mobility and increase in
the viscosity of the liquid. This might indicate that the silica bond angle distribution

would be broader than the potassium silicate glasses were it not for the fact that the Si-O-
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Si potentials in the pure silica glass are significantly different than in the potassium sili-
cate. Experimentally we observe that the silica and potassium silicate bond angle distri-
butions are of similar width, indicating that the effect of the local ordering and lower
quench temperature of the potassium silicates is comparable to the stronger potentials in
the silica to control the overall bond distribution. It is difficult to attach any stronger
conclusions at this time. Additional studies of the effect of quench rate and temperature
on bond angle distributions, as well as compositional studies will be needed to give a

complete picture of the processes occurring in glasses.
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A variety of computer programs were developed which were used to simulate the
one dimensional VAS spectra or slices from two-dimensional DAS spectra. The first
program, CQP, outputs a file which contains frequency and intensity pairs over the full
sweep width desired. The second program, MINUITCQ, uses the MINUIT (CERN) li-
brary of minimization routines to iteratively arrive at a least-squares best fit to an input
data set. The first program is useful for rapidly getting the initial parameters in a fit in the
correct ranges and for exploring the effects of small deviations in parameters. The sec-
ond program uses both simplex and gradient minimization techniques and provides an er-

ror matrix which may be used to evaluate the overall errors in each of the fit parameters.

CQP - VAS Spectral Simulation Program

PROGRAM CQP

CALCULATES FREQUENCIES FOR EACH CRYSTALLITE ORIENTATION
ASSUMING THE PRESENCE OF BOTH SECOND-ORDER QUADRUPOLAR
INTERACTIONS AS WELL AS CHEMICAL SHIFT ANISOTROPY. THE PAS
OF THESE TWO INTERACTIONS DO NOT NEED TO NECESSARILY COINCIDE
AND IN FACT THE CSA PAS IS DESCRIBED FIRST RELATIVE TO THE
QUADRUPOLAR PAS AND THEN BOTH ARE ROTATED TO THE ROTOR FRAME
AND THEN FINALLY TO THE LABORATORY FRAME. IT IS ASSUMED AS
WELL THAT THE SPINNING SPEED IS FAST ENOUGHT TO ELIMINATE ALL
TIME DEPENDANT TERMS IN THE FREQUENCY EXPRESSION. THE POWDER
PATTERS ARE CALCULATED USING A METHOD

This was written by Jay Baltisberger
Chemistry Department
Berea College
Berea, KY 40404

while at the University of California, Berkeley in the
laboratory of Prof. A. Pines

THIS PROGRAM IS DESIGNED TO RUN ON STANDARD UNIX TYPE MACHINES
THE FOLLOWING PROGRAMS AND SUBROUTINES NEED TC BE COMPILED AND
LINKED.

COMPILE LIST

cgp. f

dr.f

dr2.f
jran.f
fftl.f
powdim8. f
lines.f

nNOoONONONOOONONONON0NOOO0OO0OO0O0O00O0N0NO0O00NO0O
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tent.f

LINK LIST
cgp.o
dr.o
dr2.o
jran.o
fftl.o
powdim8.o
lines.o
tent.o
(+ all standard math libraries needed for your
given computer)

PROGRAM WRITTEN TO CALCULATE MULTIPLE POWDER PATTERNS GIVEN

THE QUADRUPOLAR AND CHEMICAL SHIFT PARAMETERS OF EACH.
THE USER MUST HAVE HIS OWN PROGRAM TO DISPLAY THE
SPECTRUM ON WHATEVER DEVICE IS AVAILABLE.

PROGRAM GIVES OPTION OF MAGNITUDE MODE,

RESOLUTION (LARGER NUMBERS ARE HIGHER) AND NORMALIZATION

IMPLICIT NONE

DECLARATION OF VARIABLES

INTEGER SIZE

PARAMETER (SIZE=1024)

REAL SPEC(0:SIZE-1),DATA(1:2*SIZE),DATA2(1:2*SIZE)
REAL FWIDTH,NOISE, AMP, MAXIMUM, FSTART

REAL GOBBLE,DBETA(7),AL2GAM2,NAL2GAM2, SNAL2GAM2, SAL2GAM2
REAL AL2GAM, AL2NGAM, SAL2GAM, SALZ2NGAM

REAL GAM2,BETAZ,ALPHZ2,DECAY, SPIN, BETAS, DELCS, ETACS
REAL CA(0:8),GAMS,ETAZ2,ETA,WISO, PI

REAL WL,WQ,OFF,C,ALPH, BETA,GAM, P2, P4, THETA

REAL ALPHS, FINC, SW, BROADL, BROADG, EPLG,A(0:2,0:2),C2,C4
INTEGER NTRAN

INTEGER MM, NUM, PATS, I, ISEED, POINTS, P, ISIGN

CHARACTER*1 ANSWER

COMMON OFF,A,WISO,ALPH,

CA, BETA,GAM, ALPHS, BETAS, GAMS, P2

FIRST EXECUTABLE STATEMENT.

PI=1.0

PI=4.0*ATAN(PI)

WRITE(*,*) 'HOW MANY POINTS?'

READ(*,*) POINTS

CLEAR SPECTRUM VARIABLES

DO 5 P=0,POINTS-1
SPEC(P}=0.0
DATA2(2*P+1)=0.0
DATA2(2*P+2)=0.0

CONTINUE

GET PARAMETERS

WRITE(*,*) 'HOW MANY PATTERNS (OR SITES)?'
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READ(*, *) PATS
WRITE(*,*) 'WHAT IS I (SPIN)?'
READ(*,*) SPIN
WRITE(*,*) 'WHAT IS WL (MHZ)?'
READ(*,*) GOBBLE
WL=GOBBLE*1000.
WRITE(*,*) 'WHAT IS THETA (DEGREES)?'
READ(*,*) THETA
THETA=THETA*PI1/180.0
WRITE(*,*) 'WHAT IS THE SPECTRAL WINDOW (KHZ)?'
READ(*,*) SwW
WRITE(*,*) 'WHAT IS THE CHEM. SHIFT AT 0.0 FREQ (IN PPM)?'
READ(*,*) OFF
OFF=0OFF*WL/1000.0/1000.0
WRITE(*,*) 'WHAT PERCENT NOISE DO YOU WANT?'
READ(*,*) NOISE
NOISE=NOISE/100.0
WRITE(*,*) 'WHAT IS THE SEED?'
READ(*,*) ISEED
WRITE(*,*) 'WHAT RESOLUTION (8,16,32,64,128,256)?"
READ(*,*) NTRAN
IF(NTRAN.GT.256) NTRAN=256
WRITE(*,*) 'WOULD YOU LIKE A MAGNITUDE SPECTRUM?'
READ(*,998) ANSWER
MM=0
IF (ANSWER.EQ. 'Y' .OR.ANSWER.EQ.'y"') MM=1
WRITE(*,*) 'WOULD YOU LIKE THE SPECTRUM NORMALIZED?'
READ(*,998) ANSWER
998 FORMAT (Al)

CALCULATE P2 AND P4
OF SPINNING ANGLE

C2=COS (THETA) *COS (THETA)
C4=C2*C2

P2=((3.0*C2)-1.0)/2.0
P4=((35.0*C4)-(30.0*C2)+3.0)/8.0

CALCULATE FREQUENCY RANGE

FWIDTH=SW
FSTART=-SW/2.0
FINC=FWIDTH/REAL (POINTS-1)

DO 1252 NUM=1, PATS
LOOP THROUGH THE TOTAL NUMBER OF PATTERNS

LOAD QUAD AND CSA VALUES FOR EACH SITE

WRITE(*,*) 'WHAT IS ETA?’

READ(*,*) ETA

WRITE(*,*) 'WHAT IS WQ (MHZ)?'

READ(*,*) GOBBLE

WQ=GOBBLE*1000.0

WRITE(*,*) 'WHAT IS THE ISOTROPIC CHEMICAL SHIFT (PPM)?'
READ(*,*) WISO

WISO=(WISO*WL/1000.0/1000.0)-OFF
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WRITE(*,*) ‘WHAT IS THE DELTA (SIGMA33 - ISO) (ppm)?'
READ(*,*) DELCS

DELCS= (DELCS*WL/1000.0/1000.0)

WRITE(*,*) 'WHAT IS THE ETA (SIGMAll - SIGMAZ22)/DELTA?'’
READ(*,*) ETACS

WRITE(*,*) 'WHAT IS THE ANGLE ALPHA BETWEEN CSA & PAS (DEG)?'

READ(*,*) ALPH

ALPH=ALPH*PI/180.0

ALPHS=SIN (ALPH)

ALPH=COS (ALPH)

ALPH2=ALPH*ALPH-ALPHS*ALPHS

WRITE(*,*} 'WHAT IS THE ANGLE BETA BETWEEN CSA & PAS?'
READ(*,*) BETA

BETA=BETA*PI/180.0

BETAS=SIN(BETA)

BETA=COS (BETA)

BETA2=BETA*BETA-BETAS*BETAS

WRITE(*,*) 'WHAT IS THE ANGLE GAMMA BETWEEN CSA & PAS?'
READ(*, *) GAM

GAM=GAM*PI/180.0

GAMS=SIN (GAM)

GAM=COS (GAM)

GAM2=GAM*GAM-GAMS *GAMS
AL2GAM=ALPH2*GAM-GAMS*2.*ALPH*ALPHS

AL2NGAM=ALPH2 *GAM+GAMS*2 . *ALPH*ALPHS
SAL2GAM=ALPH2*GAMS+GAM*2 . *ALPH*ALPHS
SAL2NGAM=ALPH2 *GAMS~GAM*2 . *ALPH*ALPHS
AL2GAM2=ALPH2*GAM2-4 . *ALPH*ALPHS*GAM*GAMS
NAL2CAM2=ALPH2*GAM2+4 . *ALPH*ALPHS*GAM*GAMS
SAL2GAM2=ALPH2*2.*GAM*GAMS+2 . *ALPH*ALPHS*GAM2
SNAL2GAM2=ALPH2*2. *GAM*GAMS -2 . *ALPH*ALPHS*GAM2
WRITE(*,*) 'WHAT IS THE INTEGRATED PEAK INTENSITY?'
READ(*,*) AMP

WRITE(*,*) 'WHAT IS THE LORENZIAN BROADENING (KHZ)?'
READ(*,*) BROADL

WRITE(*,*) ‘WHAT IS THE GAUSSIAN BROADENING (KHZ)?'
READ(*, *) BROADG

GOBBLE=WQ*WQ* (SPIN* (SPIN+1.)-.75)
C=GOBBLE/32./WL/SPIN**2/(2.*SPIN-1.)**2

CREATE MATRIX OF A(2)IJ A(4)1J

ETA2=ETA*ETA

GOBBLE= -WQ*(1.0+(ETA2/3.0))*WQ*3.0* (SPIN* (SPIN+1.0)-0.75)

WISO= WISO + (GOBBLE/40.0/WL/SPIN**2/(2.0*SPIN-1.0)**2)

MATRIX FOR QUADRUPOLAR ELEMENTS

A(0,0)=C*(((18.0+ETA2)*81.0*P4/1120.0)
-(P2*(1.0-(ETA2/3.0))*12.0/7.0))

A(0,1)=C*((P4*(18.0+ETA2)*9.0/56.0)
-(P2*(1.0-(ETA2/3.0))*36.0/7.0})

A(0,2)=C*P4*(18.0+ETA2)*9.0/32.0

A(1,0)=C*((P4*ETA*81.0/56.0)+ (P2*ETA*24.0/7.0))

A{1,1)=C*((P4*ETA*27.0/14.0)-(P2*ETA*24.0/7.0))

A(1,2)=-C*P4*ETA*27.0/8.0

A(2,0)=C*P4*ETA2*27.0/32.0

A(2,1)=-C*P4*ETA2*9.0/8.0

A(2,2)=C*P4*ETA2*9.0/22.0

MATRIX FOR CSA ELEMENTS
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DELCS=DELCS*P2

CALL DR (DBETA, BETA, BETAS)

CA(1) = DELCS* (DBETA(1)+SQRT(2./3.)*ETACS*ALPH2*DBETA(3))

CA(2) = DELCS*((~2.*GAM*DBETA(2))+(SQRT(2./3.)*DBETA(4)*
ETACS*AL2GAM) + (SQRT(2./3.) *ETACS*AL2NGAM*DBETA (6) ) )

CA(3) = DELCS*((SQRT(2./3.)*ETACS*DBETA (6) *SAL2NGAM) +
(2.*DBETA(2) *GAMS) - (SQRT(2./3.) *ETACS*DBETA(4) *
SAL2GAM))

CA(4) = DELCS*((2.*GAM2*DBETA(3))+(SQRT(2./3.)*
ETACS*AL2GAM2 *DBETA(5) ) + (SQRT (2./3.) *ETACS*NAL2GAM2 *
DBETA(7)))

CA(S5) = -DELCS*((2.*DBETA(3)*2.*GAM*GAMS)+ (SQRT(2./3.)*
ETACS*DBETA (7) *SNAL2GAM2) + (SQRT (2./3.) *ETACS*
DBETA (5) *SAL2GAM2) )

BROADL=ABS (PI*BROADL/FWIDTH)
BROADG=BROADG/FWIDTH
INVOKE POWDER SIMULATION

CALL POWDIMS (SPEC, POINTS, FSTART, FWIDTH, 2*NTRAN)
MAXTIMUM=SPEC (1)
DO 30 P=0,POINTS-1

DATA (2*P+1) =SPEC (P)

IF (SPEC (P) .GT.MAXIMUM) MAXIMUM=SPEC (P)
DATA (2*P+2)=0.0
CONTINUE

ISEED=MOD (ISEED, 54321)
DO 35 P=0,POINTS-1
CALL JRAN (GOBBLE, ISEED)

DATA (2*P+1) =DATA (2*P+1) +MAXIMUM*NOISE*2.0*

{0.5-GOBBLE)

CONTINUE

ISIGN=-1
CALL FFT1 (DATA, POINTS, ISIGN)
BROADL=EXP (-BROADL)
BROADG= ( - PI *BROADG * BROADG)
EPLG=1.0
DO 43 P=0, ((POINTS/2)-1)

DATA (2*P+1) =DATA (2*P+1) *EPLG

DATA (2*P+2) =DATA (2*P+2) *EPLG
EPLG=EPLG*BROADL
DECAY=EXP (REAL (P) *REAL (P) *BROADG)

DATA (2*P+1)=DATA (2*P+1) *DECAY

DATA (2*P+2) =DATA (2*P+2) *DECAY
CONTINUE
DO 42 P=(POINTS/2), (POINTS-1)

DATA (2*P+1) =DATA (2*P+1) *EPLG

DATA (2*P+2) =DATA (2*P+2) *EPLG
EPLG=EPLG/BROADL

DECAY=REAL (POINTS-P) *REAL (POINTS-P) * BROADG
DECAY=EXP (DECAY)

DATA (2*P+1) =DATA (2*P+1) *DECAY

DATA (2*P+2) =DATA (2*P+2) *DECAY

IF (MM.EQ.1)THEN

DATA (2*P+1)=0.0

DATA (2*P+2)=0.0

ENDIF
CONTINUE
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ISIGN=1

CALL FFT1(DATA, POINTS, ISIGN)

FIND AREA OF SPECTRUM

MAXIMUM=0.0

DO 100 P=0,POINTS-1

MAXIMUM=MAXIMUM+DATA (2*P+1)

CONTINUE

NORMALIZE SPECTRUM SO THAT LARGEST POINT IS UNITY
DO 201 P=UL,POINTS-1

SPEC(P)=0.0

DATA2 (2*P+1)=DATA2(2*P+1) + (AMP*DATA (2*P+1) /MAXIMUM)

DATA2 (2*P+2)=DATA2 (2*P+2) + (AMP*DATA (2*P+2) /MAXIMUM)
CONTINUE
CONTINUE
IF(MM.EQ.1) THEN

DO 8915 P=0, POINTS-1

DATAZ (2*P+1) =SQRT ( (DATA2 (2*P+1) *DATA2 (2*P+1) ) +

(DATA2 (2*P+2) *DATA2 (2*P+2)))

CONTINUE
ENDIF
IF (ANSWER.EQ.'Y') THEN

MAXIMUM=0.0

DO 234 I=0,POINTS-1

MAXIMUM=MAXIMUM+DATA2 (2*I+1)

CONTINUE

DO 235 I=0,POINTS-1

DATA2 (2*I+1)=DATA2(2*I+1) /MAXIMUM

CONTINUE
ENDIF
DISPLAY THE RESULT
OPEN (UNIT=10,FILE="'POWD.DAT',6 STATUS="'UNKNOWN ')
REWIND (10)
DO 2657 I=0,POINTS-1

WRITE(10,*) (REAL(I)*FINC+FSTART),DATAZ2(2*I+1)
CONTINUE
CLOSE(10)
END

SUBROUTINE DR (D, CB, SB)
IMPLICIT NONE

DELCLARATION OF ARGUMENTS
REAL D(7),CB,SB

D(1) = ((3.*CB*CB)-1.)/2.

D(2) = -SQRT(3./2.)*SB*CB

D(3) = SQRT(3./8.)*SB*SB

D(4) = -((1.+CB)/2.)*SB

D(5) = ((1.+CB)/2.)*((1.+CB)/2.)
D(6) = ((1.-CB)/2.)*SB

D(7) = ((1.-CB)/2.)*((1.-CB)/2.)
RETURN

END

SUBROUTINE DR2(D,CB, SB)
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IMPLICIT NONE
DELCLARATION OF ARGUMENTS
REAL D(3),CB,SB

D(1) = ((3.*CB*CB)-1.)/2.
D(2) = -SQRT(3./2.)*SB*CB
= SQRT(3./8.)*SB*SB

SUBROUTINE LINES (COSX, SINX,COSY, SINY, FREQ, AMP)

CALLED FROM POWDER. WILL CALCULATE MAS SPINNING PATTERNS OF QUAD
NUCLETI.

IMPLICIT NONE

DELCLARATION OF ARGUMENTS

REAL P2,COSX,COSY, SINY, SINX, FREQ, AMP

REAL ALPHS, BETAS, GAM3,C2X,C4X,C2Y,C4Y,COSA(0:2)
REAL ALPH, BETA

REAL GAM,OFF,COSB(0:2),A(0:2,0:2),WISO

REAL CA(0:8),DBX(3)

INTEGER I,dJ

COMMON OFF,A,WISO,ALPH,

CA, BETA, GAM, ALPHS, BETAS, GAMS, P2

FIRST EXECUTABLE STATEMENT
COMPUTE FREQUENCY AND CONSTANT INTENSITY
CALL DR2 (DBX,COSY, SINY)
C2X=COSX*COSX
C4X=C2X*C2X
C2Y=COSY*COSY
C4Y=C2Y*C2Y
cosa(0)=1.0
COSB(0)=1.0
COsSA(1l)=(2.0*C2X)-1.0
COSB(1)=(2.0*C2Y)-1.0
COSA(2)=(8.0*C4X)-(8.0*C2X)+1.0
COSB(2)=(8.0*C4Y)-(8.0*C2Y)+1.0
FREQ=WISO
DO 3 I=0,2
DO 4 J=0,2
FREQ=FREQ+ (A(I,J)*COSA(I)*COSB(J))
CONTINUE
CONTINUE
FREQ=FREQ + (CA(1)*DBX(1l))
FREQ=FREQ + (CA(2)*COSX+CA(3)*SINX)*DBX(2)
FREQ=FREQ + (CA(4)*COSA(1l)+CA(5)*2.*COSX*SINX)*DBX(3)
AMP=1.0
RETURN
END
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RANDOM NUMBER GENERATOR FROM NUMERICAL RECIPES IN FORTRAN

SUBROUTINE JRAN (JRN, IDUM)

INTEGER M1, IAl,IC1,M2,IA2,IC2,M3,IA3,IC3
INTEGER IX1,IX2,IX3,J,IFF,IDUM

REAL RM1,RM2,JRN,TEMP,R(98)

M1=259200

IAl1=7141

IC1=54773

RM1=REAL(1.0/M1)

M2 = 134456

IA2 = 8121

IC2= 28411

RM2 =REAL(1.0/M1)

M3 = 243000

IA3 = 4561

IC3 = 51349

IF((IDUM.LT.0) .OR. (IFF.EQ.0)) THEN
IFF=1

IX1=MOD((IC1-IDUM) ,h M1)
IX1=MOD( (IA1*IX1+IC1l),6M1)
IX2=MOD(IX1,6M2)
IX1=MOD((IA1*IX1+IC1l),M1)
IX2=MOD(IX1,6M3)

DO 10 J=1,97
IX1=MOD((IA1*IX1+IC1l),M1)
IX2=MOD( (IA2*IX2+IC2),M2)
R(J)=(IX1+IX2*RM2)*RM1

CONTINUE

IDUM=1

ENDIF
IX1=MOD((IA1*IX1+IC1l),M1)
IX2=MOD( (IA2*IX2+IC2),M2)
IX3=MOD{ (IA3*IX3+IC3),M3)
J=1+((97*IX3)/M3)
TEMP=R(J)
R(J)=(IX1+IX2*RM2) *RM1
JRN=TEMP

RETURN

END

SUBROUTINE POWDIMS (SPEC, POINTS, FSTART, FWIDTH, NT)

THIS PROGRAM USES THE SAME ALGORITHM AS ONE BY ALDERMAN, ET.
AL. CALLED POWDER, BUT THIS CALCULATES SINES AND COSINES OF
SPHERICAL ANGLES

THE OUTPUT HOWEVER DIFFERS FROM OTHER TYPES IN THAT IT USES
LINE FUNCTIONS OF THE FORM LINE(L,M,N,K,FREQ,AMP) THE

VARIABLES ARE L=COS{PHI), M=SIN(PHI), N=COS(THETA), K=SIN(THETA)

THESE ARE NEEDED ANYTIME YOU DO CERTAIN CALCULATIONS WHICH
INVOLVE ROTATED FRAMES, IE THE CSA + QUAD PROBLEM
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IMPLICIT NONE

INTEGER*4 NT, POINTS,NZ

PARAMETER (NZ=512)

REAL SPEC(0:POINTS-1),FSTART,FWIDTH
REAL FREQ(O:NZ,0:N2),AMP(0:NZ, 0:N2)
REAL FREQ2(0:NZ,0:NZ),AMP2(0:NZ,0:N2)
INTEGER I,J,LIS

REAL X,Y,2,R,R2,L,M,N,K,FINC

DO 20 I=0,NT
DO 30 J=0,NT

X=REAL(NT-I-J)
Y=REAL(J-1)
Z=2.*REAL(J)
L=2.*REAL(I)
M=2.*REAL(NT-J)}
N=2.*REAL(NT-1I)
IF(L.LT.Z) Z=L
IF(M.LT.Z) Z=M
IF(N.LT.Z) Z=N
R=SQRT ( (X*X) + (Y*Y) +(2*Z))
R2=SQRT ( (X*X) + (Y*Y))
IF((I+J).NE.NT)THEN
L=X/R2
M=Y/R2
ELSE
L=0.0
M=0.0
ENDIF
N=Z/R
K=R2/R
CALL LIMES(L,M,N,K,FREQ(I,J),AMP(I,J))
=-N
CALL LINES(L,M,N,K,FREQ2(I,J),AMP2(I,J))
AMP(I,J)=AMP(I,J)/R/R/R
AMP2(I,J)=AMP2(I,J)/R/R/R
CONTINUE

CONTINUE
FINC=FWIDTH/FLOAT (POINTS)

DO 40 I=0, (NT/2-1)

DO 50 J=0, (NT/2-1)

CALL TENT(FREQ(I+1,J),FREQ(I+1,J+1),FREQ(I,J),
AMP(I+1,J)+AMP(I+1,J+1)+AMP(I,J),SPEC,

POINTS, FSTART, FWIDTH, FINC)

CALL TENT(FREQ(I,J+1),FREQ(I+1,J+1),FREQ(I,J),
AMP(I,J+1)+AMP(I+1,J+1)+AMP(I,J),SPEC,
POINTS, FSTART, FWIDTH, FINC)

CALL TENT(FREQ2(I+1,J),FREQ2(I+1,J+1),FREQ2(I,J),
AMP2 (I+1,J)+AMP2(I+1,J+1)+AMP2(I,J),SPEC,

POINTS, FSTART, FWIDTH, FINC)

CALL TENT(FREQ2(I,J+1),FREQ2(I+1,J+1),FREQ2(I,J),
AMP2 (I,J+1)+AMP2(I+1,J+1)+AMP2(I1,J),SPEC,
POINTS, FSTART, FWIDTH, FINC)
CONTINUE
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CONTINUE

DO 41 I=(NT/2),(NT-1)
DO 51 J=(NT/2), (NT-1)
CALL TENT(FREQ(I+1,J),FREQ(I+1,J+1),FREQ(I,Jd),
AMP(I+1,J)+AMP(I+1,J+1)+AMP(I,J),SPEC,
POINTS, FSTART, FWIDTH, FINC)
CALL TENT(FREQ(I,J+1),FREQ(I+1,J+1),FREQ(I,J),
AMP(I,J+1)+AMP(I+1,J+1)+AMP(I,J),SPEC,
POINTS, FSTART, FWIDTH, FINC)
CALL TENT(FREQ2(I+1,J),FREQ2(I+1,J+1),FREQ2(I,J),
AMP2(I+1,J)+AMP2(I+1,J+1)+AMP2(I,J),SPEC,
POINTS, FSTART, FWIDTH, FINC)
CALL TENT(FREQ2(I,J+1),FREQ2(I+1,J+1),FREQ2(I,J),
AMP2(I,J+1)+AMP2 (I+1,J+1)+AMP2(I,J),SPEC,
POINTS, FSTART, FWIDTH, FINC)
CONTINUE
CONTINUE

DO 42 I=0, (NT/2-1)

DO 52 J=(NT/2), (NT-1)
CALL TENT(FREQ(I+1,J),FREQ(I,J+1),FREQ(I,J),
AMP(I+1,J)+AMP(I,J+1)+AMP(I,J),SPEC,
POINTS, FSTART, FWIDTH, FINC)
CALL TENT(FREQ(I,J+1),FREQ(I+1,J+1),FREQ(I+1,J),
AMP(I,J+1)+AMP(I+1,J+1)+AMP(I+1,J),SPEC,
POINTS, FSTART, FWIDTH, FINC)
CALL TENT(FREQ2(I+1,J),FREQ2(I,J+1),FREQ2(I,J),
AMP2 (I+1,J)+AMP2(I,J+1)+AMP2(I,J),SPEC,
POINTS, FSTART, FWIDTH, FINC)
CALL TENT(FREQ2(I,J+1),FREQ2(I+1,J+1),FREQ2(I+1,dJ),
AMP2(I,J+1)+AMP2 (I+1,J+1)+AMP2(I+1,J),SPEC,
POINTS, FSTART, FWIDTH, FINC)

CONTINUE

CONTINUE

DO 43 I=(NT/2), (NT-1)

DO 53 J=0, (NT/2-1)
CALL TENT(FREQ(I+1,J),FREQ(I+1,J+1),FREQ(I,J),
AMP(I+1,J)+AMP(I+1,J+1)+AMP(I,J),SPEC,
POINTS, FSTART, FWIDTH, FINC)
CALL TENT(FREQ(I,J+1),FREQ(I+1,J+1),FREQ(I,J),
AMP(I,J+1)+AMP(I+1,J+1)+AMP(I,J),SPEC,
POINTS, FSTART, FWIDTH, FINC)
CALL TENT(FREQ2(I+1,J),FREQ2(I,J+1),FREQ2(I,J),
AMP2(I+1,J)+AMP2(I,J+1)+AMP2(I,J),SPEC,
POINTS, FSTART, FWIDTH, FINC)
CALL TENT(FREQ2(I,J+1),FREQ2(I+1,J+1),FREQ2(I+1,J),
AMP2 (I,J+1)+AMP2(TI+1,J+1)+AMP2(I+1,J),SPEC,
POINTS, FSTART, FWIDTH, FINC)

CONTINUE

CONTINUE

RETURN
END
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SUBROUTINE FFT1 (DATA,NN, ISIGN)

REPLACES DATA BY ITS DISCRETE FT IF ISIGN IS 1 OR REPLACES
DATA BY NN TIMES ITS INVERSE DISCRETE FT IF ISIGN IS -1.
DATA MUST BE A COMPLEX ARRAY OF NN ELEMENTS OR A REAL ARRAY
OF 2*NN ELEMENTS. NN MUST BE AN INTEGER POWER OF 2

sNoNeEo N XS

IMPLICIT NONE

INTEGER ISIGN, ISTEP,NN,N,I,J,MMAX M
DOUBLE PRECISION WR,WI,WPI,WPR,WTEMP, THETA
REAL PI,TEMPI,TEMPR,DATA(*)

PI=1.
PI=4.*ATAN(PI)
N=2*NN
J=1
DO 1000 I=1,N,2
IF(J.GT.I)THEN
TEMPR=DATA (J)
TEMPI=DATA (J+1)
DATA (J)=DATA(I)
DATA (J+1)=DATA(I+1)
DATA (I)=TEMPR
DATA(I+1)=TEMPI
ENDIF
M=N/2
101 IF((M.GE.2) .AND. (J.GT.M) ) THEN
J=J-M
M=M/2
GOTO 101
ENDIF
J=J+M
1000 CONTINUE
MMAX=2
102 IF(N.GT.MMAX)THEN
ISTEP=2*MMAX
THETA=DBLE (2.*PI)/ (ISIGN*MMAX)
WPR=-2.DO*DSIN(Q0.5DO*THETA) **2
WPI=DSIN(THETA)
WR=1.DO
WI=0.DO0
DO 1001 M=1,MMAX,2
pO 1002 I=M,N, ISTEP
J=I+MMAX
TEMPR=SNGL (WR) *DATA (J) -SNGL (WI) *DATA (J+1)
TEMPI=SNGL (WR) *DATA (J+1) +SNGL (WI) *DATA (J)
DATA (J) =DATA(I)-TEMPR
DATA(J+1)=DATA(I+1)-TEMPI
DATA(I)=DATA(I)+TEMPR
DATA(I+1)=DATA(I+1)+TEMPI
1002 CONTINUE
WTEMP=WR
WR=WR*WPR-WI*WPI+WR
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WI=WI*WPR+WTEMP*WPI+WI
1001 CONTINUE
MMAX=ISTEP
GOTO 102
ENDIF
RETURN
END

TENT ALGORITHM FROM ALDERMAN ET. AL. IN POWDER PROGRAM

sNeNoKe!

SUBROUTINE TENT(FREQ1, FREQ2,FREQ3, AMP, SPEC, POINTS,
1 FSTART,FWIDTH, FINC)

CALLED FROM POWDER. ADDS TO SPECTRUM THE “TENT"

WHICH REPRESENTS THE

CONTRIBUTION FROM A TRIANGLE ON THE VERTICES OF WHICH THE
FREQUENCIES ARE FREQ1, FREQ2, FREQ3.

oNoNeNeNe K¢

IMPLICIT NONE

00

DECLARATION OF ARGUMENT VARIABLES.

REAL FREQ1l,FREQ2,FREQ3, AMP

INTEGER POINTS

REAL SPEC(0:POINTS-1),FSTART,FWIDTH, FINC

C DECLARATION OF INTERNAL VARIABLES.
REAL AREA3,AREAl,AREA2, FMIN, FMID, FMAX,F1,F2,TOP
INTEGER P, PMID, PMAX

FIRST EXECUTABLE STATEMENT.
SORT THE FREQUENCIES
FMIN=AMIN1 (FREQ1l, FREQ2, FREQ3)
FMID=AMIN1 (AMAX1 (FREQ1, FREQZ2) ,AMAX1 (FREQ2, FREQ3),
1 AMAX1 (FREQ3,FREQ1))
FMAX=AMAX1 (FREQ1, FREQ2, FREQ3)
o COMPUTE HEIGHT OF "“TENT".
IF (FMAX.NE.FMIN) TOP=AMP*2.0/(FMAX-FMIN)
C COMPUTE INDICES OF TENT EDGES AND TOP
P=INT( (FMIN-FSTART) /FINC)
PMID=INT ( (FMID-FSTART) /FINC)
PMAX=INT ( (FMAX-FSTART) /FINC)
C LOOK FOR CONTRIBUTIONS OUTSIDE OF SPECTRUM.
IF (PMAX.GE.POINTS) PMAX=POINTS
IF (PMID.GE.POINTS) PMID=POINTS
IF (P.GE.POINTS) P=POINTS
IF (P.LT.0) P=0
IF (PMID.LT.0) PMID=0
IF (PMAX.LT.0) PMAX=0
AREA1=TOP/ (2. * (FMID-FMIN) )
AREA2=TOP/ (2.* (FMAX-FMID) )
AREA3=TOP/2.
C ERECT "TENT" BY EXAMINING VARIOUS CASES.
IF (P.NE.PMID) GO TO 10
SPEC (P) =SPEC(P) + (FMID-FMIN) *AREA3
GO TO 40
10 F2=FINC*REAL (P+1) +FSTART
SPEC (P) =SPEC (P)

[oNeNe]
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1 +(F2-FMIN)*(F2-FMIN)*AREAl
20 P=P+1
Fl=F2
IF (P.EQ.PMID) GO TO 30
F2=F2+FINC
SPEC(P)=SPEC(P)
1 +FINC*(F2+4F1-2*FMIN) *AREAl
GO TO 20
30 SPEC (P) =SPEC (P)
1 +(FMID-F1l)*(FMID+F1-2*FMIN) *AREAl
40 IF (P.NE.PMAX) GO TO 50
SPEC(P)=SPEC(P) + (FMAX-FMID) *AREA3
GO TO 80
50 F2=FINC*REAL (PMID+1) +FSTART
SPEC(P)=SPEC(P)
1 +(F2-FMID)*(2*FMAX-F2-FMID) *AREA2
60 P=P+1
Fl1=F2
IF (P.EQ.PMAX) GO TO 70
F2=F2+FINC
SPEC(P)=SPEC(P)
1 +FINC*(2*FMAX-F1-F2)*AREA2
GO TO 60
70 SPEC(P)=SPEC(P)
1 +(FMAX-F1)*(FMAX-F1)*AREA2
80 CONTINUE
RETURN
END

MINUITCQ - VAS Least Squares Fitting Program

MINUITCQ uses many of the same subroutines as the previous CQP program. In
all cases these are the same, except where indicated by specific inclusion in the program
below. The code for the MINUIT subroutine is not included here but may be acquired
from CERN. This is a very powerful minimization library which is applicable to a wide
range of programming needs. Both MINUITCQ and CQP are written in the usual
FORTRAN-77 with no extensions. This code may be acquired from the author of this

thesis or Prof. A. Pines at the University of California, Berkeley.

THIS PROGRAM WAS WRITTEN BY JAY BALTISBERGER
PINES RESEARCH GROUP
UCBERKELEY
BERKELEY, CA 94720

THIS WILL CALCULATE AND FIT A QUADRUPOLAR LINESHAPE SPINNING
ABOUT ANY AXIS. (WITH O DEGREES BEING EQUIVALENT TO STATIC)
THE ASSUMPTION IS THAT THE SPINNING RATE IS GREATER THAN THE
OVERALL WIDTH OF THE PATTERN SO NO SIDEBANDS ARE INCLUDED.

cNeNeNo N e NN Ne!
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ALSO IN ADDITION TO THE 2ND ORDER QUADRUPQLAR LINESHAPE, WE

MAY INCLUDE A CSA WITH AXES NON-COINCIDENT WITH THE QUADRUPOLAR
AXES. LINE BROADENING IS INCLUDED BOTH WITH GAUSSIAN AND
LORENTZIAN COMPONENTS. TO RUN THIS PROGRAM ON A UNIX BASED
MACHINE, YOU MUST COMPILE AND LINK THIS AS BEFORE.

COMPILE LIST
minuiteq. £
dr.f
dr2.f
intrac.f
minuit.f
jran.f
fftl.f
powdim8. £
lines.f
tent.f

LINK LIST
cap .o
dr.o
dr2.0
jran.o
fftl.o
powdim8.o
intrac.o
minuit.o
lines.o
tent.o
(+ all standard math libraries needed for your
given computer)

THE BASIS OF THIS PROGRAM COMES FROM A SIMULATION CODE WRITTEN
BY ALDERMAN, GRANT, ET. AL. AT U.OF UTAH, JUST LIKE CQP.F

ALSO CSA/QUAD COMBINED FORMULA APPEAR THROUGHOUT THE LITERATURE
SUCH AS THE PAPER BY BAUGHER, BRAY, ET. AL.

IN ADDITION THE NONCOINCIDENT AXES HAS BEEN DESCRIBED MANY
TIMES AS WELL SUCH AS BY P. ELLIS, ET. AL. AT U OF S.CAR.

FUNCTION DUMMY (X)
REAL DUMMY, X
DUMMY=X

RETURN

END

FUNCTION SQAVELEVEL (ITER)

IMPLICIT NONE

DECLARATION OF VARIABLES

REAL SQAVELEVEL, FWIDTH, FSTART

INTEGER START,MM, SHOW, COUNT, NTRAN, QPTE, CSTE, SPIN, ITER, PATS, I
REAL WISO,WL, P2

REAL P4

REAL ZERO, FINC,SPECIN(0:1023)
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21

22

REAL A(0:2,0:2),VAL,OFF

REAL PARAM(0:32,0:64,5),CHIFIX,CA(0:8)

COMMON SPECIN, A,WISO, PATS,SPIN,WL,P2,P4,0FF,FWIDTH, FSTART, FINC
,MM, SHOW, COUNT, QPTE, CSTE, PARAM, NTRAN, CHIFIX, CA

VAL=0.0
ZERC=0.0
START=0
IF(ITER.LT.0) THEN
ITER=ABS (ITER)
START=1023-ITER
ITER=1023
ENDIF
DO 21 I=START, ITER
ZERO=ZERO+SPECIN(I)
CONTINUE
ZERO=Z2ERO/REAL ( ITER~START+1)
DO 22 I=START,ITER
VAL= (ZERO-SPECIN(I))* (ZERO-SPECIN(I)) +VAL
CONTINUE
VAL=VAL/REAL (ITER-START+1)
SQAVELEVEL=VAL
RETURN
END

SUBROUTINE FXT{(NPAR,GRAD, FCT, PR, IFLAG, DUMMY)
PROGRAM WRITTEN TO CALCULATE MULTIPLE POWDER PATTERNS GIVEN
THE QUADRUPOLAR PARAMETERS OF EACH.
IN ORDER TO SEE THE RESULT THE USER MUST PROVIDE A
SUBROUTINE SHOW (SPEC, POINTS) WHICH DISPLAYS THE CALCULATED
SPECTRUM ON WHATEVER DEVICE IS AVAILABLE. THE ARGUMENT SPEC
IS A REAL ARRAY WITH POINTS ELEMENTS. THE LARGEST VALUE IN
THE SPECTRUM IS UNITY.

EXTERNAL DUMMY
SIZE OF SPECTRUM

DECLARATION OF VARIABLES

INTEGER SIZE,NPAR, IFLAG

PARAMETER (SIZE=1024)

REAL GRAD(60) , DUMMY

REAL SPEC(0:SIZE-1),DATA(1:2*SIZE),DATA2(1:2*SIZE)

REAL FCT,PR(60),FWIDTH, AMP, MAXIMUM, FSTART

INTEGER MM, COUNT,NUM, QPTE,CSTE, PATS, I,J,POINTS, P, ISIGN

INTEGER SHOW, NTRAN

REAL SPIN, ERROR,ETA,WISO,PI,WL,WQ,C, P2

REAL DECAY,P4,DBETA(7),AL2GAM2,NAL2GAM2, SNAL2GAMZ2 , SAL2GAM2

REAL AL2GAM, AL2NGAM, SAL2GAM, SAL2NGAM

REAL FINC,ETA2,SPECIN(0:1023),BROADL, BROADG

REAL EPLG,A(0:2,0:2),GOBBLE, OFF

REAL PARAM(0:32,0:64,5),CHIFIX,CA(0:8)

COMMON SPECIN, A,WISO, PATS, SPIN,WL,P2,P4,0FF, FWIDTH, FSTART, FINC
.MM, SHOW, COUNT, QPTE, CSTE, PARAM, NTRAN, CHIFIX, CA

FIRST EXECUTABLE STATEMENT.
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POINTS=SIZE
PI=1.
PI=4.*ATAN(PI)
CLEAR SPECTRUM
DO 5 P=0,POINTS-1
SPEC(P) =0
DATA2(2*P+1)=0.0
DATA2 (2*P+2)=0.0
CONTINUE

GET PARAMETERS
DO 1252 NUM=1, PATS
ETA=ABS (PR{ (NUM-1)*11+1))
ETA2=ETA*ETA
WQ=ABS (PR ( (NUM-1)*11+2))
WQ=wQ*1000.0
IF(QPTE.EQ.1) WQO=WQ/SQRT (1+ (ETA2/3.))
WISO= (PR((NUM-1)*11+3)-OFF)*WL/1000.0/1000.0
DELCS=PR ( (NUM-1)*11+4)*WL/1000.0/1000.0
ETACS=ABS (PR ( (NUM-1)*11+5))
GOBBLE=-WQ* (1.0+ (ETA2/3.0) ) *WQ*3.0* (SPIN* (SPIN+1.0)-0.75)
GOBBLE=GOBBLE/40.0/WL/SPIN**2/(2.0*SPIN-1.0) **2
IF(CSTE.EQ.1)THEN
WISO=WISO+GOBBLE
ENDIF
ALPH=PI*PR( (NUM-1)*11+6)/180.0
BETA=PI*PR( (NUM-1)*11+7)/180.0
GAM=PI*PR( (NUM-1)*11+8)/180.0
ALPHS=SIN(ALPH)
BETAS=SIN(BETA)
GAMS=SIN (GAM)
ALPH=COS (ALPH)
BETA=COS (BETA)
GAM=COS (GAM)
ALPH2=ALPH*ALPH-ALPHS*ALPHS
BETA2=BETA*BETA-BETAS*BETAS
GAM2=GAM*GAM-GAMS*GAMS
AL2GAM=ALPH2 *GAM-GAMS*2 . *ALPH*ALPHS
AL2NGAM=ALPH2 *GAM+GAMS*2 . *ALPH*ALPHS
SAL2GAM=ALPH2 *GAMS+GAM*2 . *ALPH*ALPHS
SAL2NGAM=ALPH2 *GAMS~GAM*2 . *ALPH*ALPHS
AL2GAM2=ALPH2*GAM2-4 . *ALPH*ALPHS *GAM*GAMS
NAL2GAM2=ALPH2*GAM2+4 . *ALPH*ALPHS *GAM*GAMS
SAL2GAM2=ALPH2*2.*GAM*GAMS+2.*ALPH*ALPHS*GAMZ
SNAL2GAM2=ALPH2*2.*GAM*GAMS-2 . *ALPH*ALPHS *GAM2
AMP=ABS (PR ( (NUM-1)*11+9))
BROADL=PR( (NUM-1)*11+10)
BROADG=PR (NUM*11)
IF((ETACS5.GT.1).0R.
(ETA.GT.1.))THEN
FCT=8.0E20+ABS(ETA*1E9)
RETURN
ENDIF
GOBBLE:WQ*WQ*(SPIN*(SPIN+1.)-.75)
C=GOBBLE/32./WL/SPIN**2/(2.*SPIN-1.)**2

CREATE MATRIX OF A(2)IJ A(4)IJ
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A(0,0)=C*(((18.0+ETA2)*81.0*P4/1120.0)
-(P2*(1.0-(ETA2/3.0))*12.0/7.0))
A(0,1)=C*((P4*(18.0+ETA2)*9.0/56.0)
-(P2*(1.0-(ETA2/3.0))*36.0/7.0))
A(0,2)=C*P4*(18.0+ETA2)*9.0/32.0
A(1,0)=C*((P4*ETA*81.0/56.0)+ (P2*ETA*24.0/7.0))
A(1,1)=C*((P4*ETA*27.0/14.0)-(P2*ETA*24.0/7.0))
A(l1,2)=-C*P4*ETA*27.0/8.0
A(2,0)=C*P4*ETA2*27.0/32.0
A(2,1)=-C*P4*ETA2*9.0/8.0
A(2,2)=C*P4*ETA2*9.0/32.0

MATRIX FOR CSA ELEMENTS

DELCS=DELCS*P2

CALL DR (DBETA,BETA,BETAS)

CA(1) = DELCS* (DBETA{1)+SQRT(2./3.)*ETACS*ALPH2*DBETA(3))

CA(2) = DELCS*((-2.*GAM*DBETA(2))+(SQRT(2./3.)*DBETA(4)*
ETACS*AL2GAM) + (SQRT(2./3.) *ETACS*AL2NGAM*DBETA(6)) )

CA(3) = DELCS*((SQRT(2./3.)*ETACS*DBETA(6) *SAL2NGAM) +
(2.*DBETA(2) *GAMS) - (SQRT(2./3.)*ETACS*DBETA(4) *
SAL2GAM) )

CA(4) = DELCS*((2.*GAM2*DBETA(3))+(SQRT(2./3.)*
ETACS*AL2GAM2*DBETA(5) )+ (SQRT(2./3.) *ETACS*NAL2GAM2 *
DBETA(7)))

CA(5) = -DELCS*((2.*DBETA(3)*2.*GAM*GAMS) + (SQRT(2./3.}*
ETACS*DBETA (7) *SNAL2GAM2) + (SQRT(2./3.) *ETACS*
DBETA (5) *SAL2GAM2) )

BROADL=ABS (PI*BROADL/FWIDTH)
BROADG=BROADG/FWIDTH

INVOKE POWDER
CALL POWDIMS8 (SPEC, POINTS, FSTART, FWIDTH, 2*NTRAN)
DO 30 p=0, POINTS-1

DATA (2*P+1)=SPEC(P)

DATA (2*P+2)=0.0
CONTINUE

BROADEN THE PATTERN

ISIGN=1
CALL FFT1 (DATA, POINTS, ISIGN)
BROADL=EXP (-BROADL)
BROADG= ( -PI*BROADG*BROADG)
EPLG=1.0
DO 43 pP=0, (POINTS/2-1)

DATA (2*P+1)=DATA(2*P+1) *EPLG
DATA (2*P+2)=DATA(2*P+2) *EPLG
EPLG=EPLG*BROADL
DECAY=EXP (REAL (P) *REAL (P) *BROADG)
DATA (2*P+1)=DATA(2*P+1) *DECAY
DATA (2*P+2)=DATA (2*P+2) *DECAY
CONTINUE

DO 42 P=(POINTS/2), (POINTS-1)
DATA (2*P+1)=DATA(2*P+1) *EPLG
DATA (2*P+2) =DATA(2*P+2) *EPLG
EPLG=EPLG/BROADL

DECAY=REAL (POINTS-P) *REAL (POINTS-P) *BROADG
DECAY=EXP (DECAY)

DATA (2*P+1)=DATA (2*P+1) *DECAY
DATA (2*P+2) =DATA(2*P+2) *DECAY
CONTINUE
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100

201
1252

1089

2061

1391

9081

22091

20091

ISIGN=-1
CALL FFT1(DATA, POINTS, ISIGN)
FIND VALUE OF LARGEST POINT IN SPECTRUM
MAXTIMUM=0.0
DO 100 P=0, POINTS-1
MAXIMUM=MAXIMUM+DATA (2*P+1)
CONTINUE
DO 201 P=0,POINTS-1
SPEC(P)=0.0
DATA2 (2*P+1)=DATA2 (2*P+1) + (AMP*DATA (2*P+1) /MAXIMUM)
CONTINUE
DO LEAST SQUARES COMPARISON TO REAL DATA
IF(MM.EQ.1)THEN
DO 1089 P=0,POINTS-1
DATA2 (2*P+1) =SQRT ( (DATA2 (2*P+1) *DATA2 (2*P+1) ) +
(DATAZ (2*P+2) *DATA2 (2*P+2) ) )
CONTINUE
ENDIF
ERROR=0.
DO 2061 P=0,POINTS-1
ERROR=ERROR+ (DATAZ2 (2*P+1) -SPECIN(P) ) **2
CONTINUE
FCT=ERROR/CHIFIX
FORMAT (' THE LEAST SQUARE VALUE IS :',E14.7,
' THE COUNT IS :',I7)
IF(COUNT.GE.0) THEN
COUNT=COUNT+1
IF (MOD(COUNT, 50) .EQ.0) THEN
WRITE(*,1391) FCT,COUNT
ENDIF
IF (MOD(COUNT, SHOW) .EQ.0.AND.SHOW.GT.0) THEN
OPEN (UNIT=10,FILE="'POWD.SIM',6 STATUS="'UNKNOWN' )
REWIND(10)
DO 9081 I=0,POINTS-1
WRITE(10,*) FSTART+I*FINC,DATA2(2*I+1)
CONTINUE
CLOSE(10)
OPEN(UNIT=10,FILE='FIT.SIM', STATUS="UNKNOWN"')
REWIND(10)
WRITE(10,*) COUNT
DO 22091 J=1,PATS*11
WRITE(10,*) PR(J)
CONTINUE
WRITE(10,*) FCT
CLOSE(10)
ENDIF
ENDIF

IF (IFLAG.EQ.3) THEN

OPEN (UNIT=10,FILE='FIT2.DAT', STATUS="'UNKNOWN")
REWIND(10)

WRITE(10,*) COUNT

DO 20091 J=1,PATS*11

WRITE(10,*) PR(J)

CONTINUE

WRITE(10,*) FCT

CLOSE(10)

OPEN (UNIT=10,FILE="'POWD.SIM', STATUS="'UNKNOWN ")
REWIND (10)
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DO 9085 I=0,POINTS-1
WRITE(10,*) FSTART+I*FINC,DATA2(2*I+1)

9085 CONTINUE
CLOSE(10)
ENDIF
RETURN
END
C
SUBROUTINE DR (D,CB, SB)
c
IMPLICIT NONE
C
Cc DELCLARATION OF ARGUMENTS
REAL D(7),CB,SB
c
C
D(1) = ((3.*CB*CB)-1.)/2.
D(2) = ~-SQRT(3./2.)*SB*CB
D(3) = SQRT(3./8.)*SB*SB
D(4) = -((1.4+CB)/2.)*SB
D(5) = ((1.+CB)/2.)*((1l.+CB)/2.)
D(6) = ((1.-CB)/2.)*SB
D(7) = ((1.-CB)/2.)*((1.-CB)/2.)
RETURN
END
C
C
SUBROUTINE DR2(D,CB, SB)
C
IMPLICIT NONE
C
C DELCLARATION OF ARGUMENTS
REAL D(3),CB,SB
C
C
D(1) = ((3.*CB*CB}-1.)/2.
D(2) = -SQRT(3./2.)*SB*CB
D(3) = SQRT(3./8.)*SB*SB
RETURN
END
c
C
SUBROUTINE LINES (COSX,SINX, COSY,SINY, FREQ, AMP)
c
C CALLED FROM POWDER. WILL CALCULATE SPINNING PATTERNS OF QUAD
C NUCLEI.
C
IMPLICIT NONE
Cc
C DELCLARATION OF ARGUMENTS

REAL SPECIN(0:1023),C0SX,C0OSY,SINX,SINY,FREQ, AMP

REAL OFF,SPIN,WL,P2,P4,FWIDTH, FSTART,FINC

REAL C2X,C4X,C2Y,C4Y,COSA(0:2),C0O8B(0:2),A(0:2,0:2),WISO

INTEGER CSTE,QPTE, SHOW, NTRAN, COUNT, MM, PATS,I,J

REAL PARAM(0:32,0:64,5)

REAL CA(0:8),CHIFIX,DBX(3)

COMMON SPECIN,A,WISO, PATS,SPIN,WL,P2,P4,0FF, FWIDTH, FSTART, FINC
1 , MM, SHOW, COUNT, QPTE, CSTE, PARAM, NTRAN, CHIFIX,CA
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9999
998

FIRST EXECUTABLE STATEMENT
COMPUTE FREQUENCY AND CONSTANT INTENSITY
CALL DR2 (DBX,COSY, SINY)
C2X=COSX*COSX
C4X=C2X*C2X
C2Y=COSY*COSY
C4Y=C2Y*C2Y
Ccosa(0)=1.
COSB(0)=1.
COSA(1l)=(2.*C2X)-1.
COSB(1)=(2.*C2Y)-1.
COSA(2)=(8.*C4X)-(8.*C2X) +1.
COSB(2)=(8.*C4Y)-(8.*C2Y) +1.
FREQ=WISO
DO 3 I=0,2
DO 4 J=0,2
FREQ=FREQ+ (A(I,J)*COSA(I)*COSB(J))
CONTINUE
CONTINUE
FREQ=FREQ + (CA(1)*DBX(1))
FREQ=FREQ + (CA(2) *COSX+CA(3)*SINX) *DBX(2)
FREQ=FREQ + (CA(4)*COSA(1)+CA(5)*2.*COSX*SINX)*DBX(3)
AMP=1.0
RETURN
END

PROGRAM MINUITCQ
EXTERNAL FXT
EXTERNAL DUMMY
INTEGER QPTE,CSTE,NTRAN
INTEGER MM, SHOW, COUNT, I, PATS, POINTS
CHARACTER*30 FILENM
CHARACTER*1 ANSWER
REAL OFF
REAL SPECIN(0:1023),A(0:2,0:2),WISO
REAL WL,THETA, PI,SPIN,SW,C2,C4,P2,P4,FWIDTH, FSTART, FINC
REAL PARAM(0:32,0:64,5),CHIFIX,CA(0:8)
COMMON SPECIN,A,WISO,PATS,SPIN,WL,P2,P4,0FF,FWIDTH,FSTART,FINC
,MM,SHOW,COUNT,QPTE,CSTE,PARAM,NTRAN,CHIFIX,CA
FORMAT (A30)
FORMAT (Al)
SHOW=-1
COUNT=0
POINTS=1024
WRITE(*,*) 'WHAT IS THE DATA FROM?'
READ(*,9999) FILENM
WRITE(*,*) 'IS THIS A MAGNITUDE SPECTRUM?'
READ(*,998) ANSWER
MM=0
IF (ANSWER.EQ.'Y'.OR.ANSWER.EQ.'Y"')MM=1
WRITE(*,*) 'IS THIS FILE XY PAIRS OR Y ONLY (X/y)?'
READ(*,998) ANSWER
OPEN (UNIT=8,FILE=FILENM, STATUS='OLD')
DO 99 I=0,1023
IF (ANSWER.EQ.'Y'.OR.ANSWER.EQ.'Y') THEN
READ(8,*) SPECIN(I)
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ELSE
READ(8,*) WISO,SPECIN(I)
ENDIF
CONTINUE
CLOSE(8)
WRITE(*,*) 'WHAT IS WL (MHZ)?'
READ(*, *) WL
WRITE(*,*) 'WHAT IS THE SPECTRAL WINDOW?'
READ(*,*) SW
WRITE(*,*) 'DO YOU WANT OUTPUT?'
READ(*,998) ANSWER
IF (ANSWER.EQ.'N' .OR.ANSWER.EQ.'N') COUNT=-1
WRITE(*,*) 'HOW OFTEN DO YOU WANT SPECTRA?'
READ(*,*) SHOW
WRITE(*,*) 'HOW MANY PATTERNS?'
READ(*,*) PATS
IF(PATS.GT.5) PATS=5
WRITE(*,*) 'WHAT IS I (SPIN)?'
READ(*,*) SPIN
WL=WL*1000.0
WRITE(*,*) ‘'WHAT IS THETA (DEGREES)?'
READ(*, *) THETA
WRITE(*,*) 'USE (I)SOTROPIC CS OR (D)OR CS?'
READ(*,998) ANSWER
CSTE=0
IF(ANSWER.EQ.'I'.OR.ANSWER.EQ.'I') CSTE=1
WRITE(*,*) 'USE (R)EAL WQ OR (P)RODUCT WQ(1l+ETA2/3)?'
READ(*,998) ANSWER
QPTE=0
IF (ANSWER.EQ.'P' .OR.ANSWER.EQ.'P') QPTE=1
PI=1.
PI=4.*ATAN(PI)
THETA=THETA*PI/180.
WRITE(*,*) ‘'WHAT IS THE OFFSET FROM ZERO FREQ (IN PPM)?'
READ(*,*) OFF
WRITE(*,*) 'WHAT IS THE POWDER RESOLUTION (32 TO 256)?'
READ(*, *) NTRAN
WRITE(*,*) 'HOW MANY POINTS ON LEFT SIDE DEFINE ERROR?'
READ(*,*) ITER
CHIFIX=SQAVELEVEL (ITER)

CALCULATE C, P2 AND P4
C2=COS (THETA) *COS (THETA)
C4=C2*C2

P2=((3.*C2)-1)/2.
P4=((35.*C4)-(30.*C2)+3.)/8.

CALCULATE FREQUENCY RANGE
FWIDTH=SW

FSTART=-SW/2.
FINC=FWIDTH/REAL (POINTS-1)

MP=PATS*6+1

NP=PATS*6

NDIM=6*PATS

OPEN (UNIT=5,FILE='MINCQ.I',STATUS="'UNKNOWN")
OPEN (UNIT=6,FILE='MINCQ.FIT', STATUS="'UNKNOWN")

218




00

CALL MINUIT (FXT, DUMMY)
CLOSE(5)

CLOSE(6)

END

FUNCTION INTRAC

LOGICAL*4 INTRAC
INTRAC = .FALSE.
RETURN

END
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