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Potential Energy Surfaces and

Reaction Dynamics of Polyatomic Molecules

Yan-Tyng Chang

Abstract

A simple empirical valence bond (EVB) model approach is suggested for con-
structing global potential energy surfaces for reactions of polyatomic molecular sys-
tems. This approach produces smooth and continuous potential surfaces which can
be directly utilized in a dynamical study.

Two types of reactions are of special interest, the unimolecular dissociation and
the unimolecular isomerization. For the first type, the molecular dissociation dy-
namics of formaldehyde on the ground electronic surface is investigated through
classical trajectory calculations on EVB surfaces. The product state distributiuns
and vector correlations obtained from this study suggest very similar behaviors seen
in the experiments.

The intramolecular hydrogen atom transfer in the formic acid dimer is an example
of the isomerization reaction. High level ab initio quantum chemistry calculations
are performed to obtain optimized equilibrium and transition state dimer geometries
and also the harmonic frequencies. A few preliminary dynamical studies based on
simple one-dimensional WKB and reaction path Hamiltonian methods are presented.
A global potential surface of the formic acid dimer is obtained through a normal
mode version of the EVB model which should be reasonable for those systems not
undergoing a dramatic change in molecular geometries during the course of the

reaction.
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Chapter 1

Introduction

A successful theoretical study of chemical reaction dynamics in the gas phase re-
quires developments in two categories: the comstruction of the potentiul energy
surfaces (PES’s) and methods for dynamical calculations on the surfaces. For a

simple system involving only three to four atoms, for example the H + H, exchange

‘reaction, a quantitative description of the Born-Oppenheimer potential surface with

chemical accuracy, can be achieved through modern high level ab initio quantum
chemistry calculations. Some rigorous quantum mechanical dynamics methods have
been developed which give good agreement with experimental results. However, the
vast majority of chemical reactions occur in polyatomic molecular éystems with 4 to
~ 10 (or even more) atoms. Enormous difficulties arise in trying to obtain the full
dimensional potential surface with quantum chemistry, and also in the dynamical |
simula.ions of the reaction, due to the large number of degrees of freedom involved.
One way of simplifying the problem is to use reduced dimensionality techniques. In
such techniques, one studies a similar reaction with smaller dimension and hopes
it will mimic the dynamics in the original system of interest. For instance, the in-
tramolecular relaxation of benzene CH local mode overtone has been studied by Lu

and Hase! with the molecular models HC3 and H;C,4

H H
I |

SN NN\

Another popular technique is to use the reaction path Hamiltonian (RPH) developed
by Miller, Handy and Adams.? Here, typically the steepest descent path (defined

in the mass-weighted cartesian coordinates) that starts from the saddle point and



follows the gradients to the reactant and product configurations is calculated. The
dynamics are then investigated with an approximate potential surface which congists
of the reaction path and local harmonic potentials for vibrational modes that are
perpendicular to the reaction coordinate. However, if the reaction involves more
than one large amplitude mode or if the reaction path is sharply curved, the RPH
is no longer a good approximation. In these cases, the construction of a global PES
is inevitable.

In general, the methods® of obtaining global PES include (1) fitting ab initio data
globally in" the form of physically meaningful analytical functions or multinomials,
or fitting the data locally with cubic splines,* and (2) using an approximate surface
obtained from empirical or semi-empiricgl methods. The techniques of diatomics-in-
molecules (DIM)® and the commonly used London-Eyring-Polanyi-Sato (LEPS)® for
triatomic systems are just two examples of this second approach. Empirical methods,
such as MM2/MM3" and AMBER,® that are developed for studying near-equilibrium
properties of macromolecules in the fields of organic chemistry and biology, could
be good candidates for constructing the non-reactive parts of the glcbal PES.

In order to correctly describe the dynamics, at least some of the aspects of the
PES have to be reproduced accurately: the equilibrium and transition state geome-
tries, the vibrational frequencies and the reaction barrier height. The surfaces should
also be smooth and have continuous first derivatives everywhere. In fact, continuity
through higher order derivatives is required if one wishes to calculate the harmonic
and/or anharmonic force constants of the potential. The above mentioned semi-
empirical and empirical methods frequently suffer the drawbacks of not reproducing
the correct transition state geometries and/or having discontinuous derivatives due
to improper connections of potential functions. In Chapter II, an approach called
the empirical valence bond model (EVB) for constructing global PES is presented.

It satisfies most of the important requirements of a good global PES, namely, re-



producing the barrier height and correct geometries, vibrational frequencies of the
equilibrium and transition state configurations, and being smooth and continuous
through (at least) first derivatives. On the other hand, the requirement of having
chemical accuracy (less than 1 kcal/mol error) everywhere on the potential surface
is impossible with such a simple method. In fact, the only global PES that is be-
lieved to have such an accuracy is the H + H; LSTH surface.? However, sensitivity
analysis of the dynamical quantities such as rate constants, reaction cross sections,
product state distributions, etc., on these preliminary global PES’s can provide an
indication of which regions of the surface are critical and need to be improved.

Two typés of polyatomic reactions are of specific interest here. The first one is
an unimolecular dissociation and the second, an unimolecular isomerization. Since
the invention of modern experimental tools, such as molecular beams and high res-
olution laser sources, and the new developments of various probing techmques, an
understanding of the detailed reaction dynamics for these types of reactions has now
become possible. In general, issues such as the time scale of a certain reaction com-
pared to that of energy randomization among various degrees of freedom (i.e.: IVR),
the effects of the initial ro-viliational states, the shape of the potential surfaces, the
reaction pathway, the product state distributions and the vector correlations have
to be investigated in order to get a complete picture of the reaétion.

One of the most well studied photodissociation reactions is that of formaldehyde
HQCO(So) -+ hx/(280 - 35511111) -t HQCO(SI,V, J,Kn, Kc)

In Chapter III, the method of EVB is used to construct global PES’s for formalde-

hyde, which are then used for dynamical study with classical trajectory simulations.



The results of the product state distributions and the vecior correlations are then
compared with the experimental observations obtained mostly by Moore and co-
workers.!® From the promising results in our calculations, we feel that the EVB
approach certainly provides a good starting strategy for getting a reasonable global
PES.

The second reaction studied in this thesis is the intra-molecular double hydrogen
atom transfer (an isomerization) reaction in a van der Waals molecule, the formic

acid dimcr.

This type of reaction can also be found in many chemical and biological systems
such as the A-T or G-C base pairs of DNA.!! Being the simplest carboxyl acid dimer
held by two hydrogen bonds, formic acid dimer has been the subject of many ex-
perimental and theoretical studies. In Chapter IV, thorough ab initio calculations
on the IR, and Raman spectra of a few isotopomers of formic acid dimer and the
energetics of the dimerization reaction at the SCF level of theory are presented.
For the hydrogen transfer reaction, the investigations of the transition state geom-
etry and the corresponding vibrational frequencies are first performed at the SCF
level. The potential bare barrier heights obtained by using three different basis sets
(STO-3G, DZ and DZ+P) range from 5.2 to 15.6 kcal/mol. Since the reaction rate
strongly depends on the potential barrier height, a more elaborate ab initio method
is necessary in order to get a converged answer.

It is well known that the electron correlation energy for van der Waals molecules

cannot be negiected.'? The classical approach is to use a configuration interaction



(CI) technique.!® Since more than 90% of the correlation energy comes from double
excitation, the most‘ commonly used methods are CI-D and CI-SD. However, these
two approaches are not size-consistent,'* and therefore, are not recommended. Go-
ing beyond double excitation, for example CI-SDTQ, certainly reduces the error,
but the calculation becomes enormous. Another popular method for treating the
electron correlation is the Moller-Plesset (MP) perturbation theory.!® It provides an
economical way without loss of accuracy. Usually, the expansion is truncated after
the fourth order. We perform a series of perturbation calculations on the reaction
barrier height with increasing order ﬁoﬁ MP2/DZP to MP4(SDTQ)/DZP. The ef--
fect of the size of basis set is also studied by performing a MP2/TZ2P calculation.
The converged value of the barrier height is in the range of 7 to 8 kcal/mol. More
accurate vibrational frequencies of the MP2/DZP optimized equilibrium dimer and
transition state dimer geometries are also performed with analytical methods. This
information is very important for the study of the dynamics.

Two simple dynamical models are used to estimate the tunneling splitting of the
ground vibrational level of the double hydrogen atom transfer reaction in formic
acid dimer. For future classical trajectory simulations of thisvreaction, we construct
a global potential surface for this system using a normal mode version of the EVB

model.



References

[1]
[2]
[3]

[5]

[6]

[7]

[10]

D.-H Lu and W. L. Hase, J. Chem. Phys. 89, 6723 (1988).
W. H. Miller, N. C. Handy, and J. E. Adams, J. Chem. Phys. 72, 788 (1980).

(a) D. G. Truhlar, R. Steckler, and M. S. Gordon, Chem. Rev. 87, 217 (1987).
(b) G. C. Schatz, Rev. Mod. Phys. 61, 669 (1989).

(c) J. N. L. Connor, Comput. Phys. Commun. 17, 117 (1979).

(d) D. M. Hirst, Potential Energy Surfaces, Taylor and J*rancis, Eds., London
1985).

ée) J.)N. Murrell, S. Carter, S. C. Farantos, P. Huxley, and A. J. C. Varandas,
Molecular Potential Energy Functions, Wiley: New York (1984).

(f) N. Sathyamurthy, Comput. Phys. Rep. 3, 1 (1985).

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes, Cambridge University Press (1986).

(a) F. O. Ellison, J. Am. Chem. Soc. 85, 3540 (1963).

(b) J. C. Tully, in Semi-empirical Methods of Electronic Structure Calculation,
Part A: Technigues, Ed. G. D. Segal, Plenum: New York (1977), Chap. 6.

(a) S. Sato, J. Chem. Phys. 23, 592 (1955).

(b) S. Sato, Bull. Chem. Soc. Jpn. 28, 450 (1955).
c) S. Sato, J. Chem. Phys. 23, 2465 (1955).

)

)

)

) N. L. Allinger, J. Am. Chem. Soc. 99, 8127 (1977).

) N. L. Allinger, Y. H. Yuh, and J.-H. Lii, J. Am. Chem. Soc. 111, 8551
989).

) - Lii and N. L. Allinger, J. Am. Chem. Soc. 111, 8566 (1989).

a
b)
1
c H
d) J.-H. Lii and N. L. Allinger, J. Am. Chem. Soc. 111, 8576 (1989).
K.
J.

(
(
(
(
(
(d)

Weiner and P. A. Kollman, J. Comput. Chem. 2, 287 (1981).
Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona,
S. Profeta Jr., and P. Weiner, J. Am. Chem. Soc. 108, 765 (1984).

(c) S. J. VVemer, P. A. Kollman, D. T. Nguyen, and D A. Case, J. Comput.
Chem. 7, 230 (1986).

J.
J.
P.
S.

(a) P. Siegbahn and B. Liu, J. Chem. Phys. 68, 2457 (1978).
(b) D. G. Truhlar and C. J Horowitz, J. Chem Phys. 68, 2466 (1978); 71,
1514(E) (1979).

(a) C. B. Moore and J. C. Weisshaar, Ann. Rev. Phys. Chem. 34, 525 (1983).
(b) D. R. Guyer, W. F. Polik, and C. B. Moore, J. Chem. Phys. 84, 6519
(1
(c

Che
(d)

986).
) H. Bitto, D. R. Guyer, W. F. Polik, and C. B. Moore, Faraday Discuss.
m. Soc. 82, 149 (1986).
W.

F. Polik, D. R. Guyer, and C. B. Moore, J. Chem. Phys. 92, 3453

A
v



1990). | |

Ee) P. Ho, D. J. Bamford, R. J. Buss, Y. T. Lee, and C. B. Moore, J. Chem.
Phys. 76, 3630 (1982).

(f) M. Pealat, D. Debarre, J. M. Marie, J. P. E. Taran, A. Tramer, and C. B.
Moore,Chem. Phys. Lett. 98, 299 (1983).

(g) D. Debarre, M. Lefebvre, M. Pealat, J. P. E. Taran, D. J. Bamford, and C.
B. Moore, J. Chem. Phys. 83, 4476 (1985).

(h) P. Ho and A. V. Smith,Chem. Phys. Lett. 90, 407 (1982).

(1)D. J. Bamford, S. V. Filseth, M. F. Foltz, J. W. Hepbun, and C. B. Moore,
J. Chem. Phys. 82,3032 (1984). |

(3) T. J. Butenhoff, K. L. Carleton, and C. B. Moore, J. Chem. Phys. 92, 377
(1990).

(k) T. J. Butenhoff, K. L. Carleton, M.-C. Chuang, and C. B. Moore, J. Chem.
Soc., Faraday Trans. 85, 1155 (1989).

(1) K. L. Carleton, T. J. Butenhoff, and C. B. Moore, J. Chem. Phys. 93, 3907
(1990).

(m) T. J. Butenhoff, K. L. Carleton, R. D. van Zee, and C. B. Moore, J. Chem.
Phys. 94, 1947 (1990).

(n) T. J. Butenhoff, Ph. D. Thesis, U. C. Berkeley (1990).

[11] S. Scheiner and C. W. Kern, J. Am. Chem. Soc. 101, 4081 (1979).

[12] (a) P. Hobza and R. Zahradnik, Chem. Rev. 88, 871 (1988).

(b) A. D. Buckingham, P. W. Fowler, and J. M. Hutson, Chem. Rev. 88, 963

(1988).

[13] (a) J. A. Pople, J. S. Binkley, and R. Seeger, Int. J. Quantum Chemistry Symp.
10, 1 (1976).
(b) J. A. Pople, R. Seeger, and R. Krishnan, Int. J. Quantum Chemistry Symp.
11, 149 (1977).

~ (c) R. J. Bartlett, Ann. Rev. Phys. Chem. 32, 359 (1981).

[14] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry, Macmillan: New
York (1982).



Chapter II
The Empirical Valence Bond Model

1 Introduction

One of the most difficult steps in theoretical treatments of chemical reactions in
polyatomic molecular systems is representing the potential energy surface.! Ideally,
of course, one would like to be able to compute the Born-Oppenheimer electronic en-
ergy V(q1,...,q3n-6) from the first principles for any values of the 3N-6 coordinates
that are necessary to specify the configuration of the N atom system. Though ab
initio quantum chemistry calculations? are becoming increasingly possible for poly-
atomic molecular systems, the number of such calculations needed for more thaﬁ 3
or 4 atom systems tends to make this direct approach unfeasible. |

One of the ways used for dealing with tlie‘ situation has been to exploit the
idea of a reaction path.>~5 Here one computes the potential energy surface only
along a one-dimensional curve(the reaction path) in the 3N-6 dimensional space that
connects reactant and product configurations. This is often the steepest descent
path (in mass-weighted cartesian coordinates) that passes through the transition
state for the reaction under study - the “intrinsic” reaction path® - but other paths
are possible® and sometimes more useful.” One typically also determines the force
constant matrix along this path, thus providing a local harmonic approximation to
the potential energy surface along the reacfion (or reference) path.

Though reaction path approaches have been very useful, particularly for quali-
tative and approximate dynamical treatments, and will certainly continue to be so,
there are times when a global potential energy surface is needed. This is true, for

example, for highly vibrationally excited molecules, where the dynamics tends not



to be localized about any one reaction path, and also for large amplitude motion far
away from any reference path.

For vibrational motions about stable molecular geometries a standard normal
mode expansion - harmonic plus perhaps anharmonic corrections — provides an ad-
equate global potential function. There also exist a ‘number of completely empirical
potentiai Juzctions®-1? that describe a variety of non-reactive motions and interac-
tions. Unless special alterations are made, however, these potential functions are
not capable of modeling the potential energy surface for a chemi;al reaction.

In this chapter we wish to pursue and develop an approach used by Warshel'® that
is especially designed to model reactive potential funétions, namely the empirical
valence bond (EVB) model. To illustrate the basic idea, consider an isomerization

reaction such as

(1) (2)

which is characterized by a muti-dimensional double well potential function. One
imagines that this Born-Oppenheimer potential energy surface results from a quan-

tum chemistry calculation with a 2-state valence bond electronic wavefunction

|¥) = c1|¢1) + c2]82), (2)

where [¢;) is a valence bond wavefunction that describes the electronic structure of

the reactant (1) in Eq.(1) and |¢,) the corresponding wave function that describes

9



the electronic structure of the product (2). The lowest electronic eigenvalue, i.e.,
the Born-Oppenheimer potential energy surface, is then given by the lower root of

the 2 x 2 secular equation, specifically

L

(Vi + Vaa) = [(Yl‘—‘ﬁ)2 +Vlf] g (3)

V= 7

N =

where

Vh = <¢11Hell¢1>a
Vi = (¢2|Hez|¢2‘),

1/12 = <¢1 |H=ll¢2>,

and H, is the electronic Hamiltonian. V is a function of the nuclear coordinates
q = (g1, ..,93n-6) because the electronic Hamiltonian depends on q, and thus V;;,
V22 and Vi, also do.

| In the empirical valence bond approach, however, no electronic matrix elements
are actually calculated. Vi; = Vii(q,. .., gsn-6) is identified as the potential energy
surface for the reactants and thus taken as a nonmreactive (i.e., single minimum)
potential energy surface that describes the nonreactive motion about the reactant
geometry. The simplest imaginable model for V;;(q) would be a harmonic normal-
mode approximation about the reactant equilibrium geometry. At a more sophis-
ticated level. one could use one of the nonreactive empirical potential models®~12
that has the bonding designated as in (1) of Eq.(1). Vj,(q) is similarly a nonreac-

tive (i.e., single minimum) potential energy surface that describes motion about the

10



product geometry. Vj; and V,, are often referred to as diabatic potential surfaces. ‘a
constrast to V itself which is the Born-Oppenheimer or adiabatic potential surface.

The most crucial part of the EVB model is the exchange matrix element (or reso-
nance integral) Vi; = Vj5(q), for it is less obvious how it should be chosen. Warshe]'®
has used some very simple approximations in his (very complex) applications, while
we describe a more rigorous way of choosing it which is {easible for modest size
polyatomic systems. Specifically, in section 2 it is shown how Vj3(q) can be chosen
so that the EVB potential V(q) of Eq.(3) exactly reproduées a given harmonic force
field about a given transition-state geometry.!* We envision that the transition state
quantities(geometry, energy, and force constant matrix) will be obtained by ab initio
quantum chemistry calculations. That is, the logic of the approach is that ab initio
calculations of useful accuracy can be carried out for a few selected features of the
reactive potential surface, and the most important of these are the transition state
parameters since this is the least well-known region of the potential. The reactant
and product regions are described reasonably well by simple (non-reactive) empirical
potential functions®~!2 for stable molecules. The EVB model that we present is thus
a way of incorporating ab initio calculations for the transition-state parameters with
simple diabatic potential functions that describe reactants and products separately.

Some other related work that bears reference is that of Ross and co-workers!®
in which a diabatic electronic representation is introduced as an aid in treating the
dynamics of the reaction (specifically in deriving Frank-Condon approximations for
product-state distribution); such, of course, is not the purpose here. Also related is
- the work by Downing et al.'® in which the diabatic potential form, Eq.(3), 1s used
(with linear approximations for the matrix elements) to fit single-minimum potential
energy surfaces(e.g. that for H,016(0)),

Section 3 shows how the EVB model that we present is able to provide a good

description of reactive potential surfaces for a wide variety of test potential functions

11



for isomerization reactions such as Eq.(1). It is also shown in section 4 that the EVB
model can also be applied to cases that the reactaits and/or products are dissociative

states.

2 Choosing the Exchange Matrix Element

The potential energy surface V(q) is thus taken to be in the form of Eq.(3), where the
diabatic potentials V11(q) and V22(q) are nonreactive (i.e., single minimum) potential
functions that correctly describe the regions near the equilibrium geometries q; and
q2, respectively. Vj; and V; are assumed to be known, and the goal here is to find
a useful wéy of determining the exchange matrix eleme;lt Vi2(q). It is clear that in

the reactant or product regions themselves, i.e., for q near q; or qz, one will have

Vi1 — Vaz)\ 2
‘/122 < ( = 2 22) ’ (4.(1)

and in this limit it is easy to see that Eq.(3) gives
V(q) = min [Vi1(q), Va(q)] (4.0)

which is clearly correct in these regions. It is thus only necessary to know V;3(q) in
the intermediate region between reactants and products, and to determine it in this
region we appeal to ab tnitio quantum chemistry.

Equation (3) can be used to express Vj; in terms of V4, V33, and V as follows:

Vi2(9)? = [Viy(q) = V(@)] [Vaz(q) = V(q)] . (5)

12



Near the transition-state geometry one has

1
V(q) ~ Vo + 5(q — a) Ko - (a4~ qo); (6)

where the transition-state geometry qo, energy Vo, and force constant matrix K are
obtained from an independent ab initio calculation. Since the nonreactive potential
functions Vj;(q) and V;,(q) are known, they can also be expanded in a Taylor’s

series about the transition state geometry

1
Vnn(q) = Vn + Dn ‘ Aq < EAq ’ Kn ‘ Aq’ (7)

where Aq=q - qp

for n=1,2. With Eqs.(6) and (7), Eq.(5) thus gives the following power series ex-

pansion for Vi3, correct through quadratic order in Aq
Vi =(Vi=V)(Va— Vo) + (Va = Vo)D; - Aq

1
+(Vi = Vo)D; - Aq+ '2'("’1 - W)Aq- (K2 - Kp) - Aq
1

+5(Va = W)Aq- (K1 — Ko) - Aq+ (D - Aq)(D, - Aq). (8)

2
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A cumulant resummation,!” though, gives better extrapolation properties ; therefore

Vi2(q)? is taken to be a generalized Gaussian

1
Viz(q)? = Aexp [B +Aq - 58q-C- Aq} , (9)

and this function is expanded through quadratic order in Aq and equated to the
corresponding terms on the right-hand side of Eq.(8) to determine the parameters

A, B(a vector), and C(a matrix). The arithmetic is straightforward and one obtains

A=V = W)V - W), (10.q)
D, D,
B = — 4 , 10.b
V=) T Vo= Vo) (10:5)
.D,D;- D;D;  Ko-K; Ko-K; (10.0

TV =V T Vo) T (Ve Vo)

For completeness, ‘we note that if the intermediate position qp is actually not the
transition-state geometry, so that Eq.(6) has a linear term Dy-Aq, then Eqs.(8)-(10)
still apply if the following change is made in (8), (10.b), and (10.c)

Dn — D" - Do, (10d)

for n=1,2.

14
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Figure 1: A one dimensional model with the diabatic potentials Vi; and V;; shown
with dotted lines, the adiabatic potential V with solid line and the exchange potential
Vi2 with long-dashed line.

Equations (9)-(10) are the basic theoretical result of this chapter. They give a
very simple prescription for the exchange matrix element that will cause the EVB
potential, equation (3), to reproduce a given harmonic force field about a given
transition-state (or any other intermediate) geometry. Because of its Gaussian form,
as is illustrated in Figure 1, Vi; is damped out away from this region so that the
EVB expression (Eq.(3)) reduces to V3, or Vo, in the reactant and product regions.
It thus provides a useful way to incorporate ab initio quantum chemistry calculations
for the transition state with simple empirical potential functions which model the

nonreactive motions of the reactants and products.
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3 Model Potentials for Isomerization Reactions

Here we test the empirical valence bond (EVB) model on a series of two-dimensional
problems to illustrate its capabilities (and limitions) in a variety of situations. The
first example is a two-dimensional double-well potential function that has been used
previously'® as a test of various dynamical theories and also as a model for iso-
merization reactions such as Eq.(1). The specific form of the potential function

1S

V(s,Q) = Vo(s) + -;-muﬂ (Q - )2, (11)

where V5 (s) is a one-dimensional symmetric double-well potential and cis a coupling
constant which characterizes the strength of the coupling bei‘;ween the “reaction
coordinate” s and the “bath mode” Q. Written in this renormalized form, the barrier
height is independent of the coupling constant. n = 1 or 2 in Eq.(11) determines
the symmetry of the coupling. In all cases the mass m is that of a hydrogen atom

and the one-dimensional double-well potential is

| 2 1/2
Vols) = -;—(vn(s) + vza(s)) — [(vu(S) '; v22(3)> n v12(8)2J ’ (12.q)
where
1, 9 ,
'U11(S) = -émwo(.s + So) y (12b)
va(s) = %mwg(s - s0)?, (12.c)
v1a(s) = aexp(~bs?), (12.)
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Figure 2: Definition of coordinates.

with parameters wp = 1600 cm™, 5o =1, @ = 0.036065963, and b = 1.81678095 (all
distance in atomic units). These parameters yield a barrier height of ~ 8.2 kcal/mol,
which is typical of H atom transfer.

Sections 3.1 and 3.2 compare the true potential, Eqs.(11)-(12), and the EVB
approximation to it given by Eqs.(3) and (9)-(10). The case of a low-frequency (
w = 300 cm~! ) bath mode is considered in section 3.1 and that of a high-frequency
(w = 3000 cm™! ) bath in section 3.2. In most cases the diabatic potentials Vj; and

Va2 are taken as the harmonic normal-mode potentials for reactants and products,

i.e.,

Vii(s, Q) = 1/2mwls® + 1/2muw?Q"?, (13.a)

17



Vaa(s, Q) = 1/2mw?s” + 1/2mw?Q™, (13.b)

where s’ and Q' are the normal-mode coordinates (linear combinations of s and Q as
shown in Figure 2) about the reactant minimum on the potential surface and s” and
Q" are the product normal-mode coordinates. (The normal-mode frequencies w; and
w, are the same for reactants and products in this example because of symmetry).
As discussed i£1 the Introducion, this is the simplest possible choice for the diabatic
~ potentials. |

Some of the applications in sections 3.1 and 3.2 show how the EVB model can be

improved by including anharmonicities in the diabatic potentials; i.e., the harmonic

potentials Eq.(13.a) are replaced by Morse Potentials

1 )
Emwfs'z — Di(1 — e’ )2, (14.a)
1 ,
-‘-‘Z-mw,fQ'2 — Dy(1 —e™>29 )2, (14.b)

where the Morse paramters are chosen to approximate the potential about the re-

actant minimum(and similarly for the product potential in Eq.(13.b)).

3.1 Low-Frequency Bath Mode

Figure 3 shows a contour plot of the uncoupled (c=0) potential surface, Eqs.(11)-
(12), for th‘e case of a low-frequency ( w ~ 300 cm™!) bath mode. Since the one-
dimensional double-well functions Vy(s) of Eq.(12) is of EVB form, it is clear the
general EVB model, Egs.(3) and (9)-(10), will exactly reproduce the potential in
the uncoupled limit. It is thus of interest to see how the EVB model performs as

the coupling ¢ is increased.
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Figure 3: The double well potential energy surface of Eq.(11), for the uncoupled
case (¢ = 0) and a low-frequency (w = 300 cm™') bath mode Q. The coordinates

are in atomic units and the contour values in kcal/mol.



Figure 4, a and b, shows contour plots of the original potential and the EVB
approximation to it, respectively, for a modest size even (n=2 in Eq.(11)) coupling
constant. A typical example for this type of coupling is found for the formic acid
dimer (shown below) with s being the reaction coordinate of the double hydrogen
atom transfer defined at the transition state and Q as one of the normal modes with
A, symmetry. Though some quantitative differences are apparent in this model

~ calculation, on the whole the EVB model does an excellent job in representing the

important regions of the potential energy surface.

The three different types of atom are represented with solid circles of decreasing sizes, i.e., O > C
> H. Top: Eigenvector of the reaction coordinate of the double H atom transfer reaction in formic

acid dimer. Bottom: Eigenvector of a low frequency normal mode with A, symmetry.
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Figure 4: Same as Figure 3, but for even (n=2) coupling with the constant ¢ =

0.005: (a) the origininal potential of Eq.(11); (b) the EVB approximation given by
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Figure 5a,b shows a similar comparison for the case odd (n=1 in Eq.(11)) cou-
pling constant. (This example is very close to a two-dimensional potential of formic

acid dimer, with the reaction coordinate coupled to the normal mode shown below.)

Though the coupling causes a dramatic change in the potential surface from the
uncoupled case in Figure 3, one sees that EVB model again provides an excellent
description of this potential surface.

Finally, for the case of even coupling we increased the coupling constant ¢ un-
til significant discrepancies are seen in the EVB approximation. (For the case of
odd coupling, it is hard to imagine that one would even be interested in coupling
any stronger than that shown in Figure 5.) Figure 6a,b shows the original poten-
tial and its EVB approximation for this very strong even coupling case. Though
the EVB model reproduces the transition-state region correctly—as it must, by
construction—the shoulder of the potential between the reactant and product min-
ima is not described well. This is a serious shortcoming since one knows that the

tunneling dynamics between reactants and products is sensitive to this region of the
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potential surface.

We thus tried the alternate vercion of the EVB model noted in section 2; namely,
the point qo at which the EVB potential is required to match the true potential
through quadratic order was chosen not to be the transition state, the saddle point on
the potential, but rather the midpoint between the reactant and product equilibrium
geometries. (This is very much in the spirit of the straight-line reaction path model,
shown as dashed line in Fig. 2, that was recently discussed in ref.7(b).) Fig.6c shows
this modified EVB potential. The region of the potential between the reactant and
product wells is indeed in much better agreement with the true potential (Fig.6a)
than the initial EVB result (Fig.6b). Even though the transition-state region is not
described as well, this modified EVB potential would probably be better for treating
the tunneling motion between reactants and products.

However there is another way to improve the EVB model, and that is to use bet-
ter diabatic potential functions Vj; and V;;. Thus, the harmonic potentials about
the reactant and product minimum were replaced by Morse potentials, as indicated
in Eq.(14), which best represent the diagonal anharmonicity in the normal-mode di-
rections. (This is really only important for the high-frequency mode; the anharmonic
correction for the low-frequency mode has essentially no effect.) Figure 6d shows
the EVB potential that results in this case (where the “fitting point” q for defining
the exchange potential Vj; was taken as the transition state), and one sees that it
is indeed in much better agreement with the true potential (Figure 6a), in both the
transition-state region and also the shoulder region directly between reactants and
products. This EVB potential appears adequate for describing all important aspects

of this potential surface.
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3.2 High-Frequency Bath Mode

High-frequency bath modes are usually easier to describe correctly than low-frequency
ones because the steeper harmonic potential does not allow far as large excursions
in such degrees of freedom. Fig.7 shows the uncoupled (c=0) double-well potential
function of Eq.(11) for the case of a high-frequency (w = 3000 cm™!) bath mode.
Again, the EVB model exactly reproduces the potential in the uncoupled limit, so
we consider its behavior for nonzero coupling.

Figure 8, a and b, shows the original potential and its EVB approximation, re-
spectively, for the case of even coupling, and Figure 9a,b shows a similar comparison
for odd coupling, both for fairly large coupling constants. (The potential wells are
displaced less drastically from their uncoupled position than for the low-frequency
case becaﬁse the high f.requenby of the bath mode makes the potential “stiffer” with
regards to perturbation in the @ direction.) In both cases one sees that the EVB

mode] provides an excellent description of the true potential.

16 R —
//"‘" - \8/

-1.5 -1 -0.5

Figure 7: Te double well potential function of Eq.(11), for the uncoupled case (¢ =
0) and a hig-frequency (w = 3000 cm~!) bath mode Q.
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Figure 8: Same as Figure 7, but for even (n=2) coupleing with the constant ¢ =

0.05: (a) the original potential; (b) the EVB approximation (with harmonic diabatic
potentials).
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4 The H + H, — H, + H Collinear Reaction

Finally, this section shows that the EVB model is also applicable if the reactants
and/or producfs are dissociative states. Application is made to the well-known H
+ H; — H; + H collinear potehtia.l energy surface for a demonstration.

Figure 10a shows a contour plot of the well-known LSTH!® potential function for
this reaction. Here the reactants and products are the asymptotic regions r; — oo

and r; — oo, respectively. Thus, the diabatic potential Vi;(ry,73) in this case is

Vi1(r1,72) = v, (r2) + Vo(r1), (15.a)

where vy, is the diatomic potential function of the free Hy molecule and Vy(ry) is
a nonreactive “translational” distortion potential. For the present application we

have taken

Vo(r1) = V(r1, 7o), (16)

where V is the true LSTH potential function and ry is the equilibrium H, bond
length. (We have found that V;(ry) is well approximated by the functional form
Vo(ry) = Ae""’m.) The diabatic potential V3, is similarly given as

Vaa(r1,72) = vy (r1) + Vo(rz). (15.b)

Figure 10b shows the EVB potential that results with these diabatic potentials
and the exchange potential constructed via Egs.(9)-(10) to reproduce the transition-

state region. One does see some quantitative differences between parts a and b of
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Figure 10, but they are mostly in regions unimportant for the reaction. It would
undoubtedly be possible to find diabatic potentials that would allow the EVB model
to mimic the original potential more accurately; the point of this example, however,
is to show that the EVB prescription of section 2 yields a reasonably accurate
reactive potential surfacé even with the simplest, most obvious choice for the diabatic

potentials.

5 Concluding Remarks

The object of this chapter has been to show that the EVB model, with the pre-
scription described in section 2 for choosing the exchange potential Vi, , provides a
reasonable global approximation for reactive potential surfaces for a wide variety of
situations. In many cases the model gives good results with the simplest possible
choice for the diabatic potentials, namely, a harmonic normal-mode approximation
about the reactant and product equilibrium positions. The results are improved,
however, if anharmonicities are included in the diabatic potentials. This is pre-
sumably because in this case the diabatic potentials themselves describe the true
potential over a wider region of space, so that the exchange potential is then required
to describe matters in a more restricted region about the transition state.

The EVB model as put forth in this chapter can be readily applied to real
polyatomic reactions. In the following chapter, this method will be proved to be
successful for the construction of a 6 dimensional PES for the molecular dissociation

reaction of formaldehyde.
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(a)

(b)

Figure 10: The LSTH potential energy surface for the collinear H + H, — H, +
H reaction: (a) the original LSTH potential surface; (b) the EVB approximation,
with the diabatic potentials of Eqs.(15)-(16). 71,72 and the contour values are all in

atomic units.
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Chapter 111
Potential and Dynamics of Formaldehyde

1 Introduction

Formaldehyde has been studied extensively during the past two decades. Its abun-
dance and importance in the environment, such as in air pollution and in interstellar
space, have stimulated macroscopic kinetic'~3 and microscopic spectroscopic? stud-
ies of this molecule. Its small size and well resolved energy levels allow quantum-state
specific experimenté.l and theoretical studies of the rgaction dynamics. The mecha-
nism of the molecular dissociation of formaldehyde is well-known:® the electronically
excited H,CO (S;) internally converts to highly vibrationally excited levels of the

ground electronic state (Sg) which then undergo unimolecular decomposition,

H,CO(So) + hv(280 — 355nm) — H,CO(Sy, v, J, K,, Ke)

— H;CO(S3) — Ha(v,5) + CO(v, ). (1)

Stark level-crossing spectroscopy® studies of ‘the 4° and 4! bands of D,CO (S;)
has enabled the determination of the eigenstates of these highly excited vibrational
levels. This in turn allows oﬁe to determine the distribution of the state-specific
unimolecular decay rates, the S; and Sj internal conversion coupling, and the reac-
tion barrier height. For H,CO and D,CO, the activation energies (with zero point
energy correction) are estimated to be 79.240.8 kcal/mol and 80.640.8 kcal/mol,®()
respectively.

Past measurement of the energy partitioning in the fragmentation products

include the translational energy distribution from time-of-flight (TOF) molecular
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beam experiment,” the ortho H,(v,j) distributions® by coherent anti-Stokes Raman
spectroscopy (CARS), and the CO(v,j) distributions® by laser-induced fluorescence
(LIF). More recently, the technique of Doppler-resolved laser-induced fluorescence
was used to study the H; translational and (v,j) distributions, the quantum state
correlation!® and the vector correlations.!* These experiments have improved the un-
derstanding of the dissociation dynamics and the knowledge of some characteristics
of the reaction coordinate and potential energy surface.

On the theoretical side, much effort has been spent on finding the properties
of the stationary points!?~17 (i.e., the equilibrium state and the transition state)
on the Sp, S; and T;!® surfaces and also on investigating the possibility of an
intermediate state for the dissociation reaction. State-of-the-art ab initio quan-
tum chemistry studies utilizing large basis sets and high level correlation methods
such as multi-configuration self-consistent field (MCSCF),!* Moller-Plesset pertur-

1516 and coupled-cluster methods!” have been performed. The pre-

bation theory
dicted geometries, reaction barrier height, harmonic force constants and some of
the anharmonicities!®®) agree quite well with experiments. Knowledge of the force
constants and anharmonicities of the transition state region allows semiclassical cal-
culations of the transition state tunneling probabilities.!®

There is also some work concerning rotational excitation in the inelastic collision
of H, + CO. Schinke and co-workers?°(®) have used ab initio calculations combined
with damped long range dispersion coefficients (from experimental and calculated
cross sections) to obtain a rigid-rotor potential energy surface for the dissociative
rey’ The infinite order sudden approximation (IOSA) was used to study the
rotational state distributions of H; and CO molecules,?(®-9) and good agreement
with experiment was obtained.

However, a complete theoretical study of the reaction which allows full compar-

isons with the experimental results (for instance, the product state distribution, the
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vector correlations and the reaction rates) requires an accurate global potential
energy surface (PES). Although it is péssible to carry out selected ab initio quantum
chemistry for certain regions of a four-atom system, the amount of work and CPU
time necessary to determine the PES at all necessary geometries is prohibitive at
the present time. Empirical or semi-empirical methods are the usual approaches for
global PES’s. In 1981, Carter and Handy?' published an empirical surface with a

many-body expansion formula:

Vinco = 2V + Vi + Vi) + 2v$Y

+V&H, + 2Viico + Vi + Vinoo- (2)

This surface can be used to study any possible fragmentation reaction of formalde-
hyde, for example, radical dissociation into H + HCO or molecular dissociation into
H; + CO. Unfortunately, a classical trajectory study!® using this surface did not
yield correct results for the product state distributions of the molecular dissociation
reaction.

Recently, we suggested an empirical valence bond model?? for constructing global
PES’s for chemical reactions of polyatomic molecules. The idea is to combine useful
information (either from experiments or ab initio studies) on different regions of the
surface semi-empirically in order to obtain a 3N-6 full dimensional potential energy
surface for the H,CO — H, + CO reaction. The validity of the surface is then
tested through classical trajectory calculations of product state distributions and
vector correlations. Secton 2 describes the construction of the potential surface,
and the classical trajectory method is discussed briefly in section 3. Sections 4 and
5 present the product state distributions and vector correlations obtained from the

trajectories and compare them with the experimental results. Section 6 concludes.
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Figure 1: The 6 internal coordinates. A and B are dummy atoms representing the

centers of mass of CO and H; molecules.

2 The Global Potential Surface

2.1 Coordinates

There are many different ways of choosing the coordinate system for constructing the
global PES. Here we choose the Jacobi type internal coordinates which are obviously
the right choice in the dissociation region. The 6 (i.e., 3N-6) internal coordinates
q = (R,r,72, 7,72, ¢) are illustrated in Figure 1.

The definitions of R, r; and r; should be transparent. 7, is defined as ZCAB and
72 as LH,;BA where A and B are the centers of mass of CO and H,, respectively. ¢ is
the out-of-plane torsional angle. To give rigorous expressions for these coordinates,

let’s start from the cartesians x:

X = (FC?Fov FH1 ] FH:)
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Define

where

T = Fc - Fo = (mlaylazl)’

2 =TH — FH: = (wQay%z?)a

- - R g '

~  mpy,T my,T McTe + Mol

R= T ¥ METH, Ml T Moo _ (v y, 7y, (3c)
TnHl+mH2 mc+mo

The relationships between X and q are:

R=vX?+Y? 4 Z2,

ry = \/1012 + 12+ 2?2,

re = \/Ta? + y2® + 22%,
-

R.7
R‘Pl !

f72=.—7r—cos‘1 BT ,
R

1

71 = COS~

T2
R} (7 7y) — (R-7) (B 7)

1
Jrert = (B-5)'\Rora - (& )’

¢ = cos”

2.2 Transformation of the Force Constant Matrix

One of the important requirements of a good PES is to reproduce the correct ge-
ometries and the harmonic frequencies (and anharmonicity, if it is necessary) at the

stationary points, i.e., equilibrium and transition state for the reaction. Ab initio
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quantum chemistry is capable of finding these quantities with many state-of-the-art
techniques, To obtain the harmonic frequencies, calculation of the second derivatives
of the potential by analytical or numerical methods has become a common routine
in quantum chemistry. The results of the second derivative matrices are normally
represented in the 3N cartesians or the valence-bond type internal coordinates. Since
the coordinates we use for our PES is the Jacobi type internal coordinates, transfor-
mations of the geometries and force constant matrices (which are required for our
EVB model) are inevitable.

Although the transformaton of the geometries is trivial (through Eq.(4)), that
of the derivatives (of any order) of the potential is more tedious. Here we describe

two different approaches of transforming the second derivatives,

2.2.1 Method A

(a) Let B (3N-6 by 3N-3) be the transformation matrix® which relates the dis-
placements in q and X, and B’ (3N-3 by 3N) be the transformation matrix

between X and x,

dq=B.dX=B.B'.dx = C.dx. (5a)

(b) At the stationary points of the PES, the potential can be approximated by
2V = Vo) = dx™ K .x=dq” - (CT)” K .C™" . dg, (5b)
where K is the cartesian force constant matrix.
(c) The force constant matrix F in q is obtained through

F=(c")" .K.C™ (5¢)

This method is quite straightforward except that there exists infinite sets of the

inverse of C (3N-6 by 3N) and CT(3N by 3N-6). This is a consequence of the
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non-uniqueness of the transformation from internal coordinates to cartesians, To
preserve the center of mass and the orientation of the molecule upon a displacement

dq, the following approach is recommended for the inversions:?4

(€)= (c.M.0") .0 M,

o =[], (©)

where M = m~!, and m is a diagonal matrix (with dimensions 3N by 3N) consisting
the atomic masses.
The non-zero matrix elements of B and B’ are shown in Appendix A at the end

of this chapter.

2.2.2 Method B

(a) The normal mode coordinates Q are related to internal coordinates q through

the following:
dq =L dQ. (7a)

(b) Let Ly be the eigenvector matrix of the mass-weighted cartesian force constant
matrix, and A a diagonal matrix containing the corresponding eigenvalues. It

is not difficult to show that L can be expressed as

L=C -m™ /% Ly, (7b)
(c) Since dq” - F -dq = dQ” - A - dQ, one gets

F=(L7)" AL (7¢)
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Figure 2: Two configurations with the same potential energy but different labelings
on the hydrogen atoms. (Y, =7 — 12,0 =7 + @)

2.3 Symmetry of the Potential Surface

Before we construct the PES, there is another important property one should be
aware of, That is, the symmetry of the potential upon exchange of the two hydrogen
atoms, The potential energy stays the same when (v2,¢) — (7 — ¥2, ™ + ¢) as

illustrated in Figure 2.

An appropriate analytic form of the PES using the above coordinates is

V(Ra 7'1,7‘2>')'1172’¢) = Z Vl'llam(Rjr11r2)},llm('7170)},lqm(72’0) Cos md" (8(1)
i la,m>0

Since

V({v2,8) = V(r — 7,7 + ¢)

= (=1)""(=1)"V(72,8) = (~1)"V (72, ), (80)

l; is restricted to be an even number,
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In the next section, we construct the global PES which bears the above symmetry

property.

2.4 The Empirical Valence Bond Approach

A schematic one dimensional curve is plotted in Figure 3 to represent the ground
electronic PES of formaldehyde. The location of the equilibrium configuration (q*)
is at the middle of the curve, There exist two transition state configurations with
the same energy, and same geometry but different molecular orientations (corre-
sponding to exchanging the two hydrogen atoms). The tails of the PES represent
the dissociative region H; + CO.

Let Vi1(q), Vaz2(q) and Vas(q) be the diabatic global PES's. The exchange po-
tential between Vj; and Vi3 is represented by Vi3(q), and that between V;; and Vi,
is represented by V23(q). Because of the symmetry built into Vj; and Vp;, they are

the same for all geometries. That is,

Vir(q) = Vaz(q). (9)

The secular equation which determines the adiabatic (i.e., Born-Oppenheimer) PES

1s

Vii — A 0 Via
0 Ve — A Vas =0, (10a)
Wi Vas Vas — A

with the lowest root being the desired adiabatic ground state PES V(q). It is found

to have a very simple form:
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V(q)

q:



i
]

A = V(d) = 2(Via(a) + Vao(@) - [("“(“’ ) vt + vza<q>2}
(100)

The explicit expressions that we use for each term in Eq.(10b) are described in

~ the following subsections.

2.4.1 ‘/11((])

The three dimensional rigid-rotor (with the bond distances of CO and H, fixed
at their equilibrium values) PES from Schinke and co-workers?®(® is used. The
functional form of their potential is simply the expansions in terms of the Legendre

polynomials,

V R 71172 Z ‘/hb Ph cos 71)})’2((308 72) (11)
Lz

with /; = 0,1,...,8 and ;=0 and 2. They only included I; up to 2 because the
potential around H; molecule is quite spherical. There is no dependence on the out-
of-plane torsional angle ¢ in the expression because the potential is not sensitive to
variation of ¢. Therefore, results from different ¢’s have been averaged over.

A simple way for obtaining our diabatic potential Vj;(q) is to add functional
forms which depend on CO and Hj bond distances in addition to Schinke's rigid-
rotor PES. Therefore, we have included the vibrational potential energy curves of

CO and H;.?! Our final expression is as follows:

=Y Viita(R)Py (c08 11) Py (05 72) + Veo(r1) + vp, (72), (12)
llulﬂ

where vco(r1) and vy, (r2) have the same functional form:
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v(r) = =D, [1 + ay(r —ro) + az(r — ro)® + as(r — ro)a] exp [—ai(r —ro)]. (13)
The coefficients in Eq.(13) for CO and H; are listed in Table I.

2.4.2 Vi3(q)

With ab initio quantum chemistry, the second derivatives about the potential mini-
‘mum are rea:iily obtained and provide a harmonic potential around the equilibrium
configuration. The functional form for Vi;3(q) is same as Eq.(8a). Terms beyond

quadratic order expansion have been truncated. V| i,’s become constant except

Vooo(R, T1, 7"2)-

Vas(q) = Vooo(R,1,72) + Vico cos 11 + Vozo cos® 72
+Vi21 sin 7, €os 2 sin ¥, cos ¢ + Vagq sin? 4 sin? 4, cos 2¢, (14)

where
2Vooo(R,T1,72) = FRR(R - Req)z + Fpr(r — T;q)z + Frm(T? - T§Q)2

+Fre (R = R¥)(ry = m1%) + Frey(R = R)(ra = 1%") + Friry (11 = r17)(r2 — 137),

(15a)
and
1
‘/100 = _E(F‘n‘u + FW)’
1

Vozo = EF-n'na

7121 = —F-n‘rzv
1 .
Vazr = 2(Foyy = Fo). (158)
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The F’s are the equilibrium configuration force constants in Jabobi type inter-
nal coordinates whick can be obtained through transformation from cartesian force

constant matrix as described in section 2.2.

2.4.3 Viz(q) and Vi3(q)

The exchange potentials V;3(q) and Vz3(q) are obtained as described in Chapter II.
q" and q°" represent the two transition state configurations. Vectors b, by and
matrices ¢;, €2 are constructed as before if the harmonic force fields around the two
transition states and the functional forms of the diabatic potentials V;;(q) and V33(q)
are known. Higher order terms can be added if information on the anharmonicities

(i.e., cubic and/or quartic force field ) is available.

1 .
Vis(q) = aexp [bl (q—q7) - -2-(q —q")7 -c1-(q— q°) + higher order term]

V23(q) = aexp [bz -(q—-q™) - %(q - q")T ¢z - (q—q"") + higher order term} .

(16)

Care has to be taken to ensure the proper asymptotic behaviour of the exchange

potentials. That 1is,

Vis(q) — 0 as q—aq, q° or q%
and

Vas(q) — 0 as q—4q;, q° or q*.
2.4.4 Geometries, Harmonic Frequencies and Energetics

There are quite a few reports from high level ab initio quantum chemistry calculations!?~!*

concerning the



urations of formaldehyde. Table II list the total energies and reaction barriers from
some of the reports and experimenfa.l observations.

The results of the geometries and harmonic force fields obtained from CCSD/TZ2P
and MP2/DZP are used independently to construct two global PES’s. The original
cartesian data were transformed to be in Jacobi type internal coordinates. Table
III gives the geometries of the equilibrium and the two transition states obtained
from both CCSD/TZ2P and MP2/DZP. The C-O distance at the transiticn state
is predicted to be longer in the MPZ/DZP than in the CCSD/TZ2P. An opposite
trend is predicted for the H-H distance.

The force constant matrices of the three configurations, which are required for
obtaining b,, bs, ¢; and c,, are shown in Tables IV, V, and VI. One can check the
accuracy of these transformed force constants by using them to find the harmonic

frequencies. The first step is to calculate the corresponding G-matrix through

G=C-M.CT, (17)

where M =m~! and C=B - B'.

The analytical expressions of the matrix elements of the G-matrix are listed
in Appendix B. The eigenvectors and eigenvalues of the well-known Wilson’s GF
matrix?*(®) is obtained with an algorithm (due to Miyazawa?3(°)) described in ref.23(b).
Table VII shows the result of the six normal modes at the CCSD/TZ2P and the
MP2/DZP transition state configurations and Figure 4 gives the schematic diagrams
of these vectors.

The potential bare barrier heights (for H,CO — H,CO*) predicted by CCSD/TZ2P
(90.4 kcal/mol) and MP2/DZP (94.7 kcal/mol) methods are both higher than the
commonly accepted values (= 86 kcal/mol), we have adjusted the energies of each

configuration in order to obtain a reasonable value of the barrier. With the zero of
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Figure 4: The normal modes of the CCSD/TZ2P optimized transition state geome-
try for the H,CO — H,; + CO reaction. The atoms are represented by solid circles
of different sizes, i.e., 0>C>H. Motions of C and O are exaggerated by a factor of 2.
The reaction coordinate is vg. v4 is an out-of-plane bending mode. The frequencies
of each modes are v: 3145.3, vy: 1880.6, v3: 1359.0, v 878.3, vs: 811.7 and vg:

19351 cm ™!,
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energy defined as:
V(q)=0 if R=0c0, r;=2132au.,, r;=140a.u.,

and the potential energies at the equilibrium and transition state configurations as:

V(q = q?) = —0.0083a.u.,

V(q=q") = V(q=q™) = 0.13a.u.,

the classical reaction barrier is found to be 86.8 Kcal/mol. The heat of reaction
without zero point correction for H,CO — Hy; + CO is chosen to be the same as
the experimental result (5.2 kcal/mol).1”

For the convenience of later discussions, these two global PES’s are referred as
CCSD PES and MP2 PES, although only part of the regions of the surfaces contain
informations from these two ab initio methods. It is impossible to show the entire
six dimensional potential energy surface on two dimensional paper. In Figure 5, we
present a few two-dimensional cuts of the adiabatic CCSD PES around the transition
state regions with all coordinates fixed at their transition state vaules except the
two degrees of freedom chosen for the plot. Figure 6 shows those from the MP2
PES.
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Figure 5: Two-dimensional cuts of the CCSD PES around the transition state. All
coordinates are fixed at their transition state values except those two chosen for the
plot. Bond distrances are in bohr, angles in degree and potential energy in hartree.

Location of the transition state is indicated by the dot. The spacing between contour
lines is 0.005 hartree.
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Figure 5, CCSD PES continued.

52




ﬂJ
0
8 s
&
1
"]
" 2
R(H,-CO)
22?0\\//\\/
20 \ /
= \\ 0’? NNy

9\'0

2 BN
ul \\\\\\\\\

2 3

R(H,-CO)
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3 Classical Trajectory Calculation

With the global potential energy surface, one can use classical trajectory calculations
to study the reaction dynamics, Since the EVB model gives an analytical expression
for the PES, calculation of the first derivatives is a simple task, The Hamiltonian
appropriate for a dissociative process should include all degrees of freedom, for

example,

1 1
= 5;;(1»25 +pi +p2)+ ;,;(pio +p2 +p2)

1
+%T(P:", +p3m +p3m)+""'—(pmug +pl/1!2 +pzu )+ V(R 11,12, 720 ¢). (18)

However, without external force, there should be no overall translations. In this
case, one can furthur reduce the Hamiltonian from 3N to 3N-3 degrees of freedom.

The Jacobi coordinates defined in section 2 are most suitable for our calculations,
X = (Xa Y, Z,z1,Y1,21, T2, Y2, 22)‘
The corresponding Hamiltonian and the equations of motion are

1 1
H =g (Ph+ P+ PR) + o= (PL + Py + FL)

+-2';;(Pf, + P2 + P2) 4+ V(R r1, 72,71, 720 6), (19a)
. OH
oH oV 8V 8g;
P‘=———"’—=——-——-—’_-=-—- B J: "- v
OXi X 5 0g; 0X; Z Oq Bii, (19¢)
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= (mo + m‘o) (TTLHl + m‘Hz)
me -+ Mo + MM, + mp, k

mem,
b= e+ my
muym )
fy = —TH (194)
mpy, +mpy,

3.1 Initial Conditions

In the experiments, formaldehyde is excited from the ground electronic state (So) to
a specific rovibrational state (v,J,I{4,K.) near the origin of the S; surface. Usually,
the 4" and 24" bands”~1° of the S; surface are probed. For example, a frequency
around 29,500 cm™! of the UV pulse excites a group of lines in the 24! band.

We mimic the experiments by choosing the total energy to be close to the ex-
perimental values. The total energy is set to be 0.153 a.u. (= 96 kcal/mol = 33,580
cm™?!) with the zero of energy defined previously, The excitation frequency and the
total available energy (total energy - zero point energies of CO and H;) are calcu-
lated and found to be close to the experimental ones. In the following, we describe

how we choose the initial conditions for a given parent total angular momentum J.

3.1.1 For Total Angular Momentum J ~ 0

If the anharmonicity and rotation-vibration couplings around the transition state
are weak, partitioning energy into the six normal modes should make the the total

angular momentum to be near zero. So, the strategy is as follows:

(a) Diagonalize the force constant matrix at the transition state to find the normal

modes (Q) and the harmonic frequencies.
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(b) Use random number generator to pick the initial coordinates and momenta of

the 5 normal modes which are orthogonal to the reaction coordinate such that

P} 4 vQ} = . (20)

(C) Let Qruaott‘on = Qe =0

(d) Extra energy (total energy — V - kinetic energy) is put into the momentum

along the reaction coordinate.
(e) Transform the coordinates and momenta from normal modes into the cartesians,
(f) Find the initial total angular momentum by
| X x P |=[J(J + 1)]##, (21)
and assign J to the nearest integer.
(g) Start the trajectory.

With the above total energy, about 50% of the trajectories arc¢ found to have
J=1, the other half of the trajectories are split between J=0 and J=2. Obviously,
this strategy does not give a completely well defined initial rotational state. Effort
ran be made to find a different way of choosing the initial conditions so that all of
the trajecotries have the same J and K,, but we feel that the current approach is
reasonable if the product state distributions do not depend too strongly on J and

Kq, and it has the great virtue of simplicity.

3.1.2 For Higher Total Angular Momentum

(a) Find the coordiantes and momenta in cartesians as for the case J=0.

(b) Find the three principal moments of inertia I, I, and 1,2 of the transition state

geometry.



(c) Randomly choose the three angular velocities w,, wy, and we such that

J(J 4+ Dl = M? = (Tawa)? + (Tows)? + (Towe)?, (22a)

(d) Find the extra velocity of each atom from the rotations about the three principal

axes,

(6"0‘)010'" = X Eatom* (22b)

(e) The total velocity of each atom is the sum of velocities from vibrational and
rotational motion.

Uatam = (Uvib)atom + (Urat)atom~ (22C)

Then the corresponding momenta can be obtained with proper mass factor,

(f) Check the total angular momentum, and run the trajectory.

3.2 Tajectory Propagation

The trajectories are propagated with either a fixed-step-size sixth order GEAR

26(a) or a variable-step-size Runge-Kutta-Merson routine in the NAG library?26(t)

routine
until R > 20 a.u. Conservation of total energy and of total angular momentum are
checked at the end of each trajectory. The accuracy of the total energy is required

to be within 10~ hartree. The product states are binned for each trajectory in the

usual quasi-classical fashion:

3.2.1 Determination of Translational Energies

(a) Total translational energy T':

1

T=—
21

(Px + Pf + Pz). (23a)
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(b) From conservation of linear momentum,

CO translational energy T,

my, + mu,
T, = x T, 23b
Me + Mo + Mmp, + mu, (230)
H, translational energy Ty,
Th, Me Mo x T, (23¢)

Me + Mo + My, + mMmuy,

3.2.2 Determination of Rotational States

The rotational quantum numbers are obtained from the following equations, and

assigned to the nearest integers.

(a) Orbital angular momentum quantum number L;
| B x Pq |= [L(L + 1))3h. (24a)
(b) CO rotational quantum number j,:
|71 % Pry |= [eolico + 1)]31, (240)
(c) H; rotational quantum number jg,:
|72 X By |= i, (i, + 1)]EA. (24c)
3.2.3 Determination of Vibrational States

There are two methods of getting the product vibrational quantum numbers.

(a) From Bohr-Sommerfeld quantitation rule:
/r> P d 1
o Prdr= (v+ E)W’ (25a)

where



(b) From the known energy level expression of a rotating anharmonic oscillator

with first order correction for centrifugal distortion and rotational interaction,

1 1.2 ... A 1.
= we(V+§)—w=z..-(v + 5) +B.j(§+1)=D.j%( + 1)2—ae(v+§)J(J +1).

(26)

E(v,j)
he

The spectroscopic constants?” of the H,, D; and CO molecules are listed in Table
VIII. Both of the above methods are implemented in the program and used to check
against each other.

3.2.4 Determination of the Impact Parameter

The dissociative impact parameter b can be obtained at the end of each trajecotry

by:

b= Rsina (27)

where a is the angle between P and R.

H

Ol
o

60



4 Product State Distributions

In this section, the product state distributions from classical trajectory calculations
usmg the CCSD PES and the MP2 PES are presented and compared with available
expenmenta.l observations. The total angular momentum of the parent molecule is

chosen to be ~ 0 if not noted otherwise.

4.1 H,CO Parent Molecule

4.1.1 Translational Energy Distributions

In 1981, Ho and co-workers studied the velocity distribution of CO molecules from
the ﬁagrﬁentation of H,CO by time-of-flight (TOF) mass spectroscopy.” Individual
ro-vibrational states in the 2!'4! and 4! vibrational bands (339 and 353 nm) were
excited. The TOF spectra for the 2'4! and 4! bands were found to be superimposable
within experimental error. The distribution from their work is reproduced in Figure
8(a). The total product translational energy is quite high. The maximum is at 55
kcal/mol, which corresponds to 65% of the total available energy.

Figure 8(b) shows the same distribution obtained from classical trajectory cal-
culations using the CCSD PES with total angular momentum J~0. It is normalized
to have an area equal to 1. The average total translational energy is found to be
60.0 kcal/mol or 70% of the available energy. The average translational energies
of H, and CO are 56.0 and 4.0 kcal/mol, respectively. As expected, most of the
translational energy is in the H; degrees of freedom.

The result using the MP2 PES is shown in Figure 8(c). The average total
translational energy, Hy and CO translational energies are found to be 64.3, 60.0,
and 4.3 kcal/inol, respectively. Comparisons of the two PES’s shows a steeper exit
channel on the MP2 PES. This causes more energy to flow into the translational

degrees of freedom and a larger deviation from the experiments.
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Figure 8: The distribution of the total translational energy for H,CO parent molecule
with J~ 0. (a) Result of TOF experiment. (b) Classical trajectory calculations using
the CCSD PES. (c¢) Classical trajectory calculations using the MP2 PES.
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4.1.2 H, Vibrational and Rotational State Distributions

The H,(v,j) distributions were studied in 1983 (v=1-3)%(4) and in 1985 ( v=0-4,
j=1-9)8®) with coherent anti-Stokes Raman spectroscopy and also in 1989 (rota-
tional distributions of v==1 and v=3)!° with Doppler-resolved laser-induced-fluores
cence spectroscopy. The vibrational distribution was concluded to be non-statistical
with the peak at v=1. The rotational distribution peaks at jy,~ 3 and behaves
approximately Boltzmann-like with T o = 1730° for v=1 and T,,, = 1240° for v=3.

Comparisons of the vibrational distributions are shown in Figure 9(a-c). The
CCSD PES reproduces the experimental distributions extremely well. Not only
does it peak at v=1, but it also reproduces the shape of the distribution. The
MP2 PES predicts a slightly ligher population in v=0 than in v=1, and near zero
population in v=3. The source of this disagreement comes from the fact that the
H-H distance at the transition state obtained from the MP2/DZP calculation is
slightly too short.

The calculated rotational distributions for each vibrational state are shown in
Figure IO(b-é). The long-dashed, dashed, dotted, and chain-dotted curves arev for
v=0, 1, 2, and 3, respectively. The areas under each curves reflect the relative
populations in each vibrational states. Using the CCSD PES, the peak positions
are at j=2 for v=0 and 1 and at j=3 for v=2 and 3. With the MP2 PES, one obtains
peak positions at j=2 for v=0 and j=3 for v=1 and 2. These results agree quite well
with the experiments.

The above calculated rotational distributions can be roughly fit with Boltzmann
distributions. But the warmer distribution for‘lower H; vibrational states, as was

found in experiment, is not seen here.
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Figure 9: The populations of H; vibrational state. (a) Experiments. (b) Classical

trajectory calculations using the CCSD PES. (c) Classical trajectory calculations
using the MP2 PES.
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Figure 10: The populations of H; rotational states. The long-dashed, dashed, dotted
and chain-dotted curves are for v=0, 1, 2 and 3, respectively. (a) Experiments.
(b) Classical trajectory calculations using the CCSD PES. (c) Classical trajectory
calculations using the MP2 PES.
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4.1.3 CO Vibrational and Rotational State Distributions

In the early 1970s, the dissociation pathway and dynamics of H,CO was not clear. It
was argued that the T, state or a long-lived intermediate state? might be involved
before dissociation takes place. These postulates were based, most importantly,
on the observation of CO product appearance rate being much slower than the
decay rate of the formaldehyde first excited singlet state. It is not until 1982, when
highly rotationally excited (jo > 25) CO molecules were observed by vacuum UV
measurements, that the matter was solved. These high j CO molecules played the
role of the long-lived intermediate in the earlier experiments where only CO with
low j were monitored.?(®)

Moore and co-workers®® reported in 1984 the vibrational and rotational dis-
tributions of CO obtained from vacuum UV LIF experiments. Only the v=0 and
v=1 states of CO were found and the ratio of populations was about 8 to 1 (see
Figure 11(a)). The photodissociation of H,CO with the pump laser frequency at
29512 cm™! showed a large amount of rotational excitation of CO. The distribution,
shown in Figure 12(a), was highly inverted with a maximum at 42 , and the full-
width-at-half-maximum (FWHM) about 20-22 j units. The rotational distributions
for v=0 and v=1 of CO were found to be nearly the same.

Results of the vibrational distribution from our calculations are shown in Figure
11(b-c). In agreement with the experimental results, essentially no population is
found for v>1. Again, the calculation based on the CCSD PES gives excellent
agreement with the experimental distribution. Calculations based on the MP2 PES,
however, show that the v=0 state has smaller population (68%) and the v=1 has
larger population (31%) than the experiments. This results because of a slightly
longer C-O distance in the transition state predicted by the MP2/DZP calculation

which causes more vibrational excitation in the product CO.
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Figure 11: The populations of the CO vibrational states from H,CO parent molecule.

(a) Experiments. (b) Classical trajectory calculations using the CCSD PES. (c)
Classical trajectory calculations using the MP2 PES.
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The calculated CO rotational distributions for H,CO dissociations using the two
PES’s are shown in Figure 12(b) and Figure 12(c). Solid dots, open circles and open
squares represent the rotational distributions for v=0, 1, and 2 of CO molecules.
Each distributions are then fit with Gaussians, The mean values and the FWHM

are as follows:

From CCSD PES: CO(v=0) <jo > =404 FWHM = 15.0,
CO(v=1) <jo > =415 FWHM = 14.8,
From MP2 PES:  CO(v=0) <j. > = 40.8 FWHM = 15.1,
CO(v=1) <je> = 40.3 FWHM = 15.8.

The peak positions seem to agree reasonably well with the experiments (j=42),

but the widths are found to be slightly narrower,

4.1.4 Impact Parameter Distribution

Several approximate dynamical models'®?*® have been employed to reproduce the
experimental product state distributions. The impulsive model, for example, should
be reasonable under the conditions that the exit valley is highly repulsive and the
product vibrations are stiff. Butenhoff et al.!® had used such a model, which com-
bined an impulsive force betwen H; and CO and the normal mode vibrations of
H,CO, to explain the highly non-thermal rotational distribution of CO and to re-
produce the experimental distributions. The results were encouraging despite the
simplicity of the model.

This treatment suggested that H, pushes away from a point about 0.3 outside
the C nucleus of the CO molecule when the fragmentation occurs. This corresponds
to an averaged impact parameter of ~0.9A. This large impact parameter gives a

strong torque on the CO molecule and thus the high rotational excitation.
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Figure 12: The populations of the CO rotational states. (a) Experiments. (b) Classi-
cal trajectory calculations using the CCSD PES. (c) Classical trajectory calculations
using the MP2 PES,
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In Figure 13, the distribution of the impact parameter out of 5000 trajectories shows
an averaged value b=0,89A and a spread over & 0.4A for H,CO parent molecules
using the CCSD PES. Since the motions of the molecules can be easily monitored
as a function of time from trajectory calculations, one can get a clear p.icﬁure of how
and when the dissociation occurs. Figure 14 shows the behaviors of a few dynamical
quantities as a function of time from one single trajectory. Figures 14(a), (b) and
(c) give the distances of ry(H,), 71(CO) and R. Figure 14(d) shows the change of
the impact parameter and Figure 14(e) is the potential that the molecule ‘feels’
along the trajectory. One can see that within less than one vibration of the H; and
CO molecules (roughly 10 fs after passing the transition étate), the parent molecule
is ready to dissociate and the dissociative impact parameter quickly becomes a
constant. For this particular trajectory, we find b=0.83A. A closer look at the
motions of the two fragments clearly demonstrate that it is the C side of the CO
molecule which is pushed away. This proves that the impulsive force is indeed acting

outside the C atom.
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Figure 13: Distribution of the impact parameter in units of A.
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4,1.5 Product Quantum State Correlation

Butenhoff et al.'® Lad also observed the correlation between the product quantum
states, Namely, the higher vibrational states of H, are correlated with the lower
rotational states of CO. This was explained through conservation of total energy,
total angular momentum and the constraint of the impact parameter distribution.
With the parent tofal angular momentum J~0, and the H; rotational angular mo-
mentum much smaller than that of the CO, the following equations are reasonable

approximations,

J =L+ jeo +Jju, >0, (28a)

L = pvb = [jeo + i, | = licol, (280)

where p is the H;-CO reduced mass, v is the relative velocity and b is the impact
parameter. When Hj is produced in higher vibrational state, the relative velocity
decreases as a result of conservation of total energy. And if the impact parameter
is constrained to be within a narrow range, the orbital angular momentum L will
decrease and so will j,.

This correlation also appears in our results and it is summarized as follows:

ref. 10 this work
Hy <jeo> <jeo>
v=0 ~ 45 44.8
v=1 ~ 4l 0.9
v=2 ~ 37 37.2

v=3 ~ 35 36.1

-J
o]



4.1.8 Effect of Parent Total Angular Momentum

The effect of the parent rotation was studied in the Moore group.*®) From the com-
parison of two excitations, one to J=3,4, Ko=2 and the other to J=16, K,=0, they
found that the increased parent total angular momentum is only partially transfered
to CO molecule. But it also causes a slightly wider CO rotational distribution. Fig-
ure 15(a) is reproduced from their paper, and it shows a 3 unit wider distribution

for the J=16, K,=0 case.
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Figure 15: Rotational state distributions of CO(v=0) with different parent angu-
lar momentum. (a) Experimental results. Solid curve is for H,CO J=3,4 K,=2
and dashed curve is for H,CO J=16, K,=0. (b) Results from classical trajectory
calculations. Solid curve is for H;CO J~0 and dashed curve is for H;CO J~15,
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To verify this conclusion, we also ran classical trajectories with a higher total

J(=15) for the H,CO. The three principal axes at the transition state are found
through diagonalization of the moment of inertia matrix. For initial condition with

K. = 0, the parent rotational energy is randomly partitioned into motion about the
b and c axes. Compared to the J ~ 0 calculation, a 6 units wider distribution with

almost no change of the mean value is found. Figure 15(b) shows the comparison,

and the result is summarized:
H,CO J=15,K,=0 CO(v=0) <je, >=41.7 FWHM=21.1

H,CO J=15,K,=0 CO(v=1) <j, >=41.1 FWHM=21.1,

A further investigation is performed to look at the effect of rotation about a

single principal axis. With all the parent angular momentum along the a axis, i.e.,
J=K;=15, wp = w. = 0, the width of the distribution is unchanged, but the mean

value < j., > is shifted from ~41 to ~44. We also find that the peak of H; rotational

state distribution is also increased (from jg, = 3 to jy, = 6). On the other hand, if

all the rotational energy is about the out-of-plane ¢ axis, i.e., we=0, wp=0, a much
wider j, distribution with no change in the peak position is obtained. The FWHM

1s increased by 9-10 units (from 15 to 25). For rotation merely about the b axis, we

see no change on either the peak position or the FWHM.

4.2 D,CO Parent Molecule

Experimental information of the product state distributions with D,CO parent

molecules is limited. An LIF study®® of the rQo(8)e transition of D,CO at 29545

cm™' showed higher rotational excitation of CO in the D,CO dissociation (peak at
j~ 83) than in the H;CO dissociation (peak at j~ 42). As shown in Figure 16(a-b),
the same behavior is seen from our calculations. An earlier study? showed photolysis

at 337.1 nm of D;CO yields the same CO vibrational state distribution within
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Figure 16: Rotational state distribution of CO from H,CO and D,CO. (a) Exper-
imental results. Solid curve is for H,CO J=3,4 K;=2 and dash curve is for D,CO
J=8. (b) Results from classical trajectory calculations. Solid curve is for H,CO J~0
and dash curve 1s for D,CO J~0.
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experimental error as photolysis of H,CO. This observation is also well reproduced
from our calculations using the CCSD PES.

The results (using the CCSD PES) of the product state distributions from classic
al trajectory calculations with same amount of total energy (96 kcal/mol) and total

angular momentum J~0 are summarized as follows:

(a) The averaged total translational energy, CO translational energy and D, trans-

lational energies are 54.8, 6.9 and 47.9 kcal/mol, respectively.

(b) The populations in the vibrational state of Dy are 3.8% for v=0, 29.5% for v=1,

32.6% for v=2, 25.4% for v=3 and 8.3% for v=4.
(c) <jp, > is ~ 4 for every vibrational state of D,.
(d) The vibrational distributicn of CO is same as in the H,CO case.
() <jeo > is at ~ 50 to 51.

(f) The averaged impact parameter is about 0.86A.

5 Vector Correlations

A more thorough understanding of the photofragmentation dynamics can be ob-
tained from not only the product scalar properties, but also the vector correlations.?8
Typical vector correlations that are investigated include (1) the polarization vector
E of the photolysis laser, (2) the transition dipole moment [ of the parent molecule,
(3) the fragment recoil velocity v, and (4) the fragment rotational angular momen-
tum j.

The correlation of E with the other vectors come from the fact that the transition
probability is proportional to (7 - E)®. Thus those parent molecules whose transition

dipole moment lies parallel to E are more likely to be excited. The consequence is
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an anisotropic distribution of the dissociating parent molecules. In the limit when
the molecules dissociate promptly after excitation, the angular relation between the
transition dipole moment and the rgcoil velocity v is preserved, and one observes the
velocity anisotropy (characterized as 3) in the laboratory frame. However, rotation
of the parent molecule prior to dissociation destroys the alignment between f and E.
Therefore, if the lifetime of the parent molecule is much longer than the rotational
period, which is true for many predissociation reactions?®("), one expects the spatial
distribution of the fragments to be less anisotropic even though the correlation
between I and v still exists in the molecular frame. Similar arguments apply to the
alignment (characterized as Aéz)) of the fragment rotational angular momentum. On
the other hand, the vector correlation between v and j will not be washed out by
parent rotational motion. This is because the v-j correlation occurs at the moment

when the parent molecule is about to dissociate.

5.1 Angular Distribution and Dissociation Mechanism

The excitation of formaldehyde from the ground electronic state to the 2'4! band
of the excited state is a b-type tramsition.!?® This implies the transition dipole
moment is parallel to the b axis in the molecular frame. At the transition state, this
axis is almost perpendicular to the CO bond and lies on the molecular plane. Figure
17(a) illustrates the axes. The convention used here is (c,a,b)=(x,y,z). Notice that
the z axis in the molecular frame is defined to be along the parent transition dipole
moment.

Since our trajectory study mimics the case of a prompt dissociation, the fragment
spatial distributions give direct information about the dissociation dynamics in the
molecular frame. In our calculation, the polar angle and azimuthal angle of v are

defined in Figure 17(b) as 6, and ¢,. Those of fragments’ j are §; and ¢,. The angle
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between v and j is represented by w;. The spatial distributions using the CCSD
PES are discussed in detail below. Results using the MP2 PES are found to be

almost identical except for the distribution’ of 6,.
"\ . ,(/ ’

5.1.1 Spatial Distribution of ecdil Velocity

The distributions , using the CCSD PES, of 6, and ¢, from 5000 trajectories are
shown in Figure 18(a-b). A planar dissociation of H,CO corresponds to ¢,=270°.
The narrow distribution (with the maxdimum deviation ~ 10°) of ¢, in Figure 18(b)
indicates a near-planar (ab-plane) dissociation. The distribution of §, lies between

~ 20° and 40° using the CCSD PES and between 30° and 60° using the MP2 PES.

5.1.2 Spatial Distribution of CO Angular Momentum

Figure 19(a-c) shows the distributions of 6;,,4;, and wj, for the CO molecule. One
sees narrow distributions peaking at 90° for 6, at 0° for ¢;, and at 90° for w;,. A
closer look at the vector j., from each trajectory verifies that j., is usually parallel to
the c axis and is always a counterclockwise motion according to Figure 17(a). Three
in-plane normal modes at the transition state contribute to the rotation of CO about
the c axis, v3, vs, and vg (shown in Figure 4). But the phases of 3 and v can cause
either clockwise or counterclockwise rotation. Therefore, one concludes that the
most important contribution to the CO rotation is the repulsive impulsive force
between CO and H,, which causes the counterclockwise rotation of CO (#5 ~ 07)
and the perpendicular vector relationship (w;, ~ 90°) between the recoil velocity

and the rotational angular momentum of CO.
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5.1.3 Spatial Distribution of H, Angular Momentum

Figure 20(a-c) gives the distributions of 8;,, ¢;,and wj; for H;, Unlike the CO
molecule, the angular momentum of H, has a much wider spatial distribution. The
ranges of the angles are roughly 60° < 6, < 120°, 0° < ¢;, < 360° and 30° < wj, <
150°, An ab-planar rotation (i.e., rotation about the c axis) of jy, will have ¢;, =
0° (counterclockwise) or 180° (clockwise), whereas rotation about the a or b axis
results in @;, = 90° or 270°. By inspecting the three components of the vector jg,,
we found that there is little contribution from rotation about the b axis. This is
easy to understand since the b axis is almost parallel to the H; bond.

The different behavior between j,, and jg, can be understood from the normal
nﬁode vibrational motions at the transition state, All of the normal modes have
very little character of CO rotational motion. But the amplitudes of H, motions are
usually large. The out-of-plane mode v contributes to the rotation of H; mostly
about the a axis. The phase of this normal mode determines the angle of ¢;, to be
close to either 90° or 270°. The in-plane vibrational modes, especially vy, vs and
ve(the reaction coordinate) contribute to the rotation about the c axis. The net

result is the wide spatial distribution of jy, in the ac-plane.
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5.1.4

The reaction coordinate at the transition state indicates co-rotation (both clockwise
or both counterclockwise) between CO and H; molecules. It is interesting to know
to what extent this co-rotation behavior will be preserved. If the angle between
jeo and jp, is defined as y, a co-rotation motion will have x close to 0°, whereas
a counter-rotation (éne clockwise, the other counterclockwise) has x close to 180°.
The distribution of y is shown in Figure 21. One sees a larger probability of co-
rotation than counter-rotation. But there are many trajectories in regions where

JH,Ljco. These trajectories result from a combination of CO in-plane rotation and

0.03

o.o24 .’
0.014 .
] I .
] . "0’....'. * oo s~:¢-’ > el
: Ty .'.“7\°".'¢ ~s~"-"~. "..':.' . "..
0.00 = A T - " e
0 30 60 80 120 150
Degree

Angular Relationship between j., and jg,

H; out-of-plane motion.

84
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5.1.6 Dissociation Mechanism

From the results of the product state distributions and the above analysis of the
vectors of the fragments, a clear picture of the dissociation process is obtained.
After H,CO passes through the transition state, the steep repulsive potential causes
instantaneous dissociation to occur in a time shorter than one vibration of Hy and
CO, resulting in the high translational energies in the fragments. Since Hj is much
lighter than CO, most of the translational energy is in the H; degrees of freedom, If
there is not much energy in the out-of-plane vibrational mode v4, the fragmentation
is a near-planar process with the recoil velocity lying mainly in the molecular plane,

The CO vibration is quite stiff along the exit valley. Therefore, the vibrational
population of CO is mainly in v=0. The impulsive force acting on the carbon side
of CO molecule causes high rotational excitation (and thus the highly non-thermal
rotational distribution) of CO and counterclockwise rotation about the ¢ axis. Since
the recoil velocity lies méinly in the molecular plane, the vectors v and j., are almost
perpendicular to each other. |

The potential for H, motion around the transition state region is more anhar-
monic. The H, distance at the saddle point corresponds to the v~3 outer turning
point of free H,. Therefore, the vibrational distribution of H, spans v=0-3, Contri-
butions from the impulsive force and the vibrational motions make a wide spatial

distribution (in the ac-plane) of the H; angular momentum.

5.2 State Resolved Anisotropy

For products produced in the ground state, as is the case for the dissociation of
formaldehyde on the Sy surface, the technique of Doppler-resolved laser-induced-
flourescence (LIF) is used to probe the quantum state resolved anisotropy. The

influence of the vector correlations on the line profiles has been formulated with



classical?®(©) and quantum mechanical?8¥) methods. Dixon?®(/) has developed a use-
ful method which extracts the vector correlations from the measured Doppler line

shapes

o L+ AugPa(cos )P (o), (29)

9(p) ~
where APp = Pyv/cis the maximum Doppler shift, yp is the ratio of the displace-
ment from line center to Avp, [xp = ¥ — Po/APp), Py(x) = 1/2(3x2-1) is the second
Legendre polynomial, 6 is the angle between the photolysis vector and the probed
laser propagation axis, and f,yy is the effective anisotropy parameter which is related
to a set of bipolar moments B¥(k;k;) and bipolar moment multipliers b, « «.,bg11(@
(these are constants which depend on the fragment’s j, the probed rotational tr-n-
sition, and the experimental geometry) by:

_ [ 5283(20) + bsB5(22) + ba/3(22)

Bett = | ™ (b 4 52BE(02)) Paoos 6) (30)

The quantity A((f) is equal to 4/5 BZ(02) and f is equal to 242(20) in Dixon’s
analysis, f3(22) characterizes the v-j correlation and B2(22) is for the jZ-v-j triple
vector correlation. In the limit of high fragment j and prompt dissociation, the

expectation values of these bipolar moments are

Agf) = -g— < Py(cosb;) >, (31.a)
B80(22) =< Py(cosw;) >, (31.c)
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3 .
BE(22) =< —Py(cos 6,)Pa(cos ;) — 3 sin 26, sin 26; cos(¢y — ¢;)

+—2— sin? 8, sin® 6; cos[2(dy — ¢;)] > . (31.d)

Table IX lists the values of the bipolar moments for a few extreme orientations of v
and j with respect to [ in the case of high fragment j and prompt dissociation, If
ihe vectors involved are perpendicular (parallel or antiparallel) to each oth er, the

corresponding anisotropy is usually negative (positive). The limits are

~04< AP <0.8 (32.a)

~-1<f<2 (32.0)
~0.5 < 33(22) <1 (32.c)
-05< B2(22) <1 (32.d)

Moore and co-workers'! have used Dixon’s method to analyze the LIF profiles
of the Hy molecule as a function of parent vibrational states (24! and 43), parent
rotatjonal states (through PP;(1), PPy(2), "Ro(0),: -+, "Ro(3), and "Qo(1), « -+, "Qo(3)
transitions), Hp vibrational states (v=1 or 3), and H, rotational states (jy,=0 to
8). In general, their results showed negative A (in one case, A = —0.31 for
Hz(v=3,j=2) ) which suggests a more perpendicular than parallel relation between g

and jp,. Our distribution of §;, centers at 90°, which agrees with this indication. The

anisotropy of 4 is found to depend seusitively on both the parent’s and the fragment’s

rovibrational states. Values of B as large as 0.85 (from the "Ro(0) transition to 2'4!
band of HoCO(S;), Hy(v=3,j=0)) and as small as -0.41 ("Ro(0) transition to the
4° band, Hp(v=1,j=2)) are reported. The corresponding 6,’s for these two cases

7
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(~ 38° for #=0.85 and ~ 64° for # = —0.41) are within the two limits of our 0,
distribution (from ~30 to ~60°) using the MP2 PES. The 42(22) values for the
v-j correlation are found in the experiments to be constant (withjn‘error bars) as a
funtion of the Hy(v,j) and photolysis transition. The weighted average for all of the
Hj(v,j) is B2(22) = —0.23 £ 0.02, which is closer to the limit of v.Ljy, than v||jx,.
The average values of 43(22) using the CCSD PES and the MP2 PES are found to
be —0.25 and —0.20, respectively.

A direct comparison of the quantum-state resolved anisotropy between the ex-
periments and our classical trajectory calculations may lead to false conclusions
for the following reasons: (1) Our study prepares initial conditions which leads to
prompt dissociation. However, the experiment prepares S; H,CO molecule with
a long lifetime, w: ... J.*mshes the anisotropy for many of the quantum states.
(2) Well defined parent ro-vibrational states are excited in the experiments. The
observed anisotropy depends strongly on these initial states. However, the initial
parent states in our calculation are mixed with many rotational states (from J=u
to 3, and the K, is not resolved) and vibrational states (random distribution of the
energy into the 6 normal modes at the transition state geometry). (3) The direction
of the transition dipole moment to the 4° band of H,CO is argued to be slightly
deviated from the b axis.!! In our calculation, we assume that [ is always parallel to
the b axis. A more meaningful co;npa.rison can be made if one can prepare identical
initial conditions as in the experiment and if the parent rotation is treated more

rigorously.

6 Discussion and Conclusion

The molecular dissociation dynamics of formaldehyde on the ground state poten-

tial energy surface has been studied through classical trajectory calculations. The
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overall picture of the dissociation process is the same as that predicted from exper-
iments. Yet, the motion of the two fragments, H, and CO, are easily monitored
from the trajectories and give a better view of how and when dissociation occurs.
The vibrational state distributions obtained from using the CCSD PES give better
agreement with experiments than those from the MP2 PES. This demonstrates that
these distributions are governed by the transition state geometry and the shape of
the potential around the transition state. The rotational state distribution of CO is
determined mainly by the impulsive force between H; and CO.

A complete vector analeis is performed for both H; and CO fragments in this
work, while the experiments were performed only for H,. A near-planar dissc;;ia.tion,
observed from the distribution of the reccil velocity, is seen using both the CCSD
PES and MP2 PES. The vectors v and j., are found to be almost perpendicular to
each other due to the impulsive force. On the other hand, the angular momentum of
H; has a much wider spatial distribution due to combination of the impulsive force,
the in-plane normal mode vibration and the out-of-plane bending motion.

The inability to prepare identical parent ro-vibrational states as in the experi-
ments prevents the study of the effect of parent internal state and the direct com-
parison of the quantum state resolved anisotropy. However, the prompt dissociation
conditions used in our trajectory calculation gives a clear description of the disso-
ciation dynamics ir the molecular frame. The experimental vector correlations are
a convolution of those in the molecular frame with the rotational motion of H,CO
before dissociation.

It is encouraging that the PES’s constructed from the EVB model reproduce
most of the experimental observations. The simplicity of the model allows reason-
able PES to be obtained from a limited amount of ab initio calculations. Yet, from
the comparison among the experimental results and our calculations, some improve-

ments on the surface are suggested: (1) The steeper potential along the exit valley on
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the MP2 PES results in too much energy being partitioned into the translational de-
grees of freedom. The CCSD PES , which is less steep, gives better agreement for the
translational distribution but it is still a few kcal too high. It appears that one needs
to flatten the potential along the exit valley. (2) The experimental study'!() of the
effect of parent rotational states on the anisotropy 3 for Hy(v=1,j=0) suggests, with
some approximation, that the recoil velocity v is about 23° off from the molecular
plane. Although more experimental evidence is required to ?erify this argument, the
out-of-plane torsional potential should be improved in order to obtain a less planar
dissociation. Harding’s ab initio calculation® of a few points around the transition
state region shows sharper variation of the potential in the out-of-plane angle than
our current PES’s. Lester’s intrinsic reaction coordinate (IRC) calculation®' shows
an imaginary frequency in the out-of-plane mode at geometries about 40 kcal/mol
below their MC4/DZP transition state. These two studies support the important
role of the out-of-plane motion in the dissociation dynamics.

It is obvious that the crucial region that controls the reaction is region aboutthe
transition state configuration. Previous studies: showed that the energies of the T,
and S; origins, the Sy transition state and the H+HCO threshold ‘all lie within a
range of 10-15 kcal/mol. The coupling among these configurations makes the PES
around the transition state extremely anharmonic. More ab initio calculations for

this region of the surface would thus still be useful.
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Appendix A: B Matrix

Define dq = B - dX, where q represents the 3N-6 internal coordinate vector
and X the 3N-3 Jacobi coordinate vector. The elements of q and X are defined
in section 2.1. The derivation of the matrix element of B is straighiforword except

th: se involve the out-of-plane torsional angle ¢. The results are shown as follows:

B, = X/R
B, =Y/R
Biz=Z/R
By = z1/m4
Bys = 11 /m
By = 2z1/m,

B3 = 12/7‘2

Bg = 1/2/7'2
B3y = 22/7‘2 ‘
r - - -
pe—_ 1 [a X(&7)
a V1 — cos ;2 Rry R3r,
By = - ! ><-yl Y(ﬁ"?l)-1
42 V1 —cos7? _Ler R3r,
B - ! X [ ad 4 (ﬁ ) Fl)-
®= V1 —cos7,? Rry R3r,
B 1 y X T (1:1; . 7_"1)-
4 V1~ cosy,? Rry Rry3 ]
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B 1 B% (1 (ﬁ . 7-“1)ﬂ
® = /1= cos 172 % Rry Rry3 ]

B 1 [ Z 2 (ﬁ . 7-"1)-
U /I = cosm? % Rry Rr3

Bs = ! X [ T2 X (ﬁ ) 7-,»2)*
s vV 1 — cos ’7_2—7 RT‘2 R37‘2

Bae L [w YRR
527 \/1 — COS ’)’22 R’f‘g R3T2

B3 = 1 X ’32 Z(ﬁ'ﬁ)-
8= V1 — cos ;% Rr, R3r,

B 1 | x [ X wz(ﬁ'?’")ﬂ :
T V1 — cos y;° Rr, Rry3 |

B - 1 y % yz(R'Fz)‘f
¥ /T =cosy? | Rr, Rry® |

. L [z u(@n)]
¥ VI-cosv? Rr, Rry3

1 2X (71 -72) — &1 (R-72) — 22 (R ”1)
Be; =

\/l—cosqﬁ2 \/Rz,.l R’ 7 \/Rz'f‘g (R‘
] 7

The expressions for Bs; and Bg; are identical to B, except (X, z;, ;) should be

replaced by (Y, y1,y2) or (Z, 21, 2;), respectively.
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Bes =
T Vi | - (B R (R-6)
R Gim) - (R-7) (R-7)] [ B - X (R-71)]
[t - ()| o~ ()
5 1 o, R? - X (ﬁ 7:'1)
67 — —

Again, the expressions for Bgs, Bgs, Bes and Bgg can be obtained by proper sub-
stitutions of X, zy, z,.
The transformation between the 3N cartesian coordiantes and 3N-3 Jacobi co-

ordinates are very simple. Only the non-zero matrix elements are shown here.

m
' n - n c
Bu = Bzz - Bss - T

me+m,
m
! - / — ! — o
Bm—st—Bse———‘—‘—
me + Mo
my
' ' ' 1
Byj; = Byg = Byg = ————
my, + MHy,
mpy.
I - n! —n! - 2
Bl.lO - B2.11 - 33,12 -
my, + my,

B;1=Bé2=Bfls3=B:r7=Bé8=Bs’>9=1

o o [ 1 — / —_ ! —
B44 - B55 - BGG - B7,10 - BS,ll - BQ,12 =-1
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Appendix B: G Matrix

The definition of the G matrix in 3N-6 internal coordinates is given as?3(e)
3N 1
G“r = E ——.OHCM" 4,‘t,t' = 1,2, e ,3N —6

=1 '

or in matrix notation

G=C.M-CF
where
M=m"!
and
C=B:.-B

The formulae of the non:-zero matrix element are:

1
Gu = -
7
1
G = —
H1
1
G33 = —
M2
1 1
Gaq =
44 pri? o uR?
cos ¢
45 LR
sin ¢ cot v,
Gy = ——————
1 1
Gss = —_
T pr? | uR?
sin ¢ cot y;
Gy = ————
G = G4 G55 2 [1 - COS¢ cot v, cot ")’2]
66 — —~ 7 T 2
sin“y;  sin‘y, uR

94



R.eferences

[1]
[2]
3]

[4]

[5]
(6]

7]

8]

[9]

R. D. McQuigg and J. G. Calvert, J. Am. Chem. Soc. 91, 1590 (1969).
P. L. Houston and C. B. Moore, J. Chem. Phys. 65, 757 (1976).

C.-K. Cheng, P. Ho, C. B. Moore, and M. B. Zughul, J. Phys. Chem. 88 206
(1983).

(a) K. Yamada, T. Nakagawa, K. Kuchitsu, and Y. Morino, J. Mol. Spectrosc.
38, 70 (1971).
(b) D. J. Clouthier and D. A. Ramsa.y, Ann. Rev. Phys. Chem. 34, 31 (1983)

- (¢) D. E. Reisner, R. W. field, J. L. Kinsey, and H.-L. Dai, J. Chem Phys. 80,

5968 (1984).

(d) K. Nakagawa, R. H. Schwendeman, and J. W. C. Johns, J. Mol. Spectrosc.
122, 462 (1987).

(e) S -C. Hsu, R. H. Schwendeman, and G. Magerl J. Mol. Spectrosc 136,
157 (1989).

C. B. Moore and J. C. Weisshaar, Ann. Rev. Phys. Chem. 34, 525 (1983).

(a) D. R. Guyer, W. F. Polik, and C. B. Moore, J. Chem. Phys. 84, 6519
(1986).

(b) H. Bitto, D. R. Guyer, W. F. Polik, and C. B. Moore, Faradoy Discuss.
Chem. Soc. 82, 149 (1986).

(c) W. F. Pohk D. R. Guyer, and C. B. Moore, J. Chem. Phys. 92, 3453
(1990).

P. Ho, D. J. Bamford, R. J. Buss, Y. T. Lee, and C. B. Moore, J. Chem. Phys.
76, 3630 (1982).

(a) M. Pealat, D. Debarre, J. M. Marie, J. P. E. Taran, A. Tramer, and C. B.
Moore,Chem. Phys. Lett. 98, 299 (1983).

(b) D. Debarre, M. Lefebvre, M. Pealat, J. P. E. Taran, D. J. Bamford, and C.
B. Moore, J. Chem. Phys. 83, 4476 (1985). ‘

(a) P. Ho and A. V. Smith,Chem. Phys. Lett. 90, 407 (1982).
(b)D. J. Bamford, S. V. Filseth, M. F. Foltz, J. W. Hepbun, and C. B. Moore
J. Chem. Phys. 82, 3032 (1984).

3

[10] T. J. Butenhoff, K. L. Carleton, and C. B. Moore, J. Chem. Phys. 92, 377

(1990).

[11] (a) T. J. Butenhoff, K. L. Carleton, M.-C. Chuang, and C. B. Moore, J. Chem.

. Soc., Faraday Trans. 85, 1155 (1989).

“ (b) K. L. Carleton, T. J. Butenhoff, and C. B. Moore, J. Chem. Phys. 93,

3907 (1990).

95



(c) T. J. Butenhoff, K. L. Carleton, R. D. van Zee, and C. B. Moore, J. Chem.
Phys. 94, 1947 (1990).
(d) T. J. Butenhoff, Ph. D. Thesis, U. C. Berkeley (1990).

[12] J. D. Goddard and H. F. Schaefer III, J. Chem. Phys. 70, 5117 (1979).

[13] J. D. Goddard, Y. Yamaguchi, and H. F. Schaefer III, J. Chem. Phys. 75,
3459 (1981).

[14] M. Dupuis, W. A. Lester Jr., B. H. Lengsfield III, and B. Liu, J. Chem. Phys,
79, 6167 (1983).

[15] M. J. Frisch, J. S. Binkley, and H. F. Schaefer, J. Chem. Phys. 81,1882 (1984).

[16] (a) W. H. Green Jr., A. Willetts, D. Jayatilaka, and N. C. Handy, Chem. Phys.
* Lett. 169, 127 (1990).
(b) N. C. Handy, private communication.

[17] G. E. Scuseria and H. F. Schaefer 111, J. Chem. Phys. 90, 3629 (1989).
[18] R. L. Jaffe, D. M. Hayes, and K. Morokuma, J. Chem. Phys. 60, 5108 (1974).

[19] W. H. Miller, R. Hernandez, N. C. Handy, D. Jayatilaka, and A. Willetts,
Chem. Phys. Lett. , 172, 62 (1990).

[20] (2) R. Schinke, H. Meyer, U. Buck, and G. H. F. Diercksen, J. Chem. Phys.
80, 5518 (1984).
b) Z. Badié¢, R. Schinke, and G. H. F. Diercksen, J. Chem. Phys. 82, 236

E
(c) Z. Batié, R. Schinke, and G. H. F. Diercksen, J. Chem. Phys. 82, 245
(
(

d) R. Schinke, Chem. Phys. Lett. 120, 129 (1985).
(e) R. Schinke, J. Chem. Phys. 84, 1487 (1986).

[21] N. C. Handy and S. Carter, Chem. Phys. Lett. 79, 118 (1981).
[22] Y. T. Chang and W. H. Miller, J. Phys. Chem. 94, 5884 (1990).

[23] (a) E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrat' ns;
Dover : New York, 1955.

(b) S. Califano, Vibrational States, Wiley: London, New York, 1976.
(c) T. Miyazawa, J. Chem. Phys. 29, 246 (1958)

[24] P. Pulay, Mol. Phys. 17, 197 (1969).
[25] J. B. Marion, Classical Dynamics; Harcourt Brace Jovanovich (1970).

[26] (a) C. W. Gear, Siam. J. Num. Anal., Ser. B, 2, 69 (1965).

(b) NAG fortran library , Mark 14 (1990) was developed by the Numerical
Algorithms Group.

96



[27] The spectroscopic constants are from: G. Hertzberg, Spectra of Diatomic
Molecules; Van Nostrand Reinhold : New York (1950), Table 39.

[28] (a) C. H. Greene and R. N. Zare, Ann. Rev. Phys. Chem. 33, 119 (1982).

(b) C. H. Greene and R. N. Zare, J. Chem. Phys. 78, 6741 (1983).

(c) G. E. Hall, N. Sivakumar, D. Chawla, P. L. Houston, and I. Burzk, J. Chem.
Phys. 88, 3682 (1988). :

(d) G. E. Hall, N. Sivakumar, P. L. Houston, and I. Burak, Physical Review
Letters, 56, 1671 (1986).

(e) P. L. Houston, J. Phys. Chem. 91, 5388 (1987).

(f) R. N. Dixon, J. Chem. Phys. 85, 1866 (1986).

(g) K.-H. Gericke, S. Klee, F. J. Comes, and R. N. Dixon, J. Chem Phys. 85,
4463 (1986).

(h) S.-C. Yang and R. Bersohn, J. Chem. Phys. 61, 4400 (1974).

(i) T. Nagata, T. Kondow, K. Kuchitsu, G. W. Loge, and R. N. Zare, Mol.
Phys., 50, 49 (1983). \

[29] J Michael Hollas, High Resolution Spectroscopy; Butterworths :London, Boston
(1982).

[30] Lawrence B. Harding, private communication.

[31] William A. Lester,Jr., private communication.

97



Table I. Coefficients for Hy and CO vibrational potentials®®

D, To a az as
H, 0.17456 1.402 2.0532 1.0476 0.4823
CO 0.41248 2.132 1.9537 0.4329 0.2279

% From ref 21,
b Units are in atomic units.

Table II. Summary of total (in hartrees) and relative (in kcal/mol) energies of the
formaldehyde ‘

MP2¢ MP4SDTQ® CCSD°  experiment

H, -1.171916 -1.17088

co -113.16245  -113.12497

H,CO -114.33949  -114.31822

H,CO* -114.20255  -114.17418

AE(H,CO — H,CO%) 94.7 85.94 90.4 (86.8)° 86

Excitation Energy® (81.4)° 78-81.17
79.240.89

AE(H,CO — H, + CO) 3.22 (0.9)° 5,2h

 ref 16(b), MP2/DZP optimized geometries,
b ref 15, MP2/6-31G(d) optimized geometries, 6-311 +- + G(3df,3pd) basis set.
¢ ref 17, CCSD/TZ2P optimezed geometries.
4 Excitation energy = classical barrier height + zero-point energy correction.
® ref 17, data based on CCSDT-1 calculations with CCSD/TZ2P optimization geometries.
! ref 6(a). JCP 84, 6519 (1986) D,CO 79.1-82.2 kcal /mol.
z ref 6(c). JCP 92, 3453 (1990) D,CO 80.6+0.8 kcal/mol.
ref 17,
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Table III. Geometries in Jacobi type internal coordinates of formaldehyde at equi-
librium and transition states®®

CCSD/TZ2P optimized ]| MP2/DZP optimized

qeq qlﬁ q""‘l qeq qll ql‘lll
R 2.391 3.321  3.321 || 2.421 3.310 3.310
ri 2.274 2198  2.198 | 2.311 2.248 2.248
ro 3.528 2467  2.467 | 3.537 2.342  2.342
Mmoo 0° 32.04°  32.04° || - 0° 31.25° 31.25°
v2 90.0° 77.73°  102.27° || 90.0° 80.14° 99.86°
é ©o00 180° 0°  180°

¢ q°¢ is the equilibrium geometry. q* and g** are the two transition state geometries. They are
obtained by transforming geometries from refs. 16(b) and 17.
b Bond distances in bohr, angles in degree.

Table IV. Force constant matrix for formaldehyde at the equilibrium geometry?®

CCSD/TZ2P
R Ty Ty 2e! Y2 ¢
R 0.28853
ri -0.08058 0.85647
ro  0.09876 -0.04058 0.13539
" 0.0 0.0 0.0 1.37680
~a 0.0 0.0 0.0 0.26004 0.78097
¢ 0.0 0.0 0.0 0.0 0.0 0.45623
MP2/DZP
R 1 2 T V2 é
R 0.29993 “

ry -0.09274  0.82859
ro  0.10438 -0.04879 0.14190

- 0.0 0.0 0.0 1.45490
g 0.0 0.0 0.0 -0.31447 0.81596
¢ 0.0 0.0 0.0 0.0 0.0 0.47416

* Units of force constant are hartree/bohr?, hartree/bohr*radian , hartree/radian?,
b Only the lower triangle of this symmetric matrix is shown.
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Table V. Force constant matrix for formaldehyde at transition state 1%%

CCSD/TZ2P |
R ry ) 20! Y2 é
R 0.20305
ry -0.07646 1.02710
r, 0.08712 -0.03098 0.00726
v -0.22791 0.13621 0.18648 -0.26308
12 0.36905 -0.27888 0.02932 0.10174 0.58706
¢ 0.0 0.0 0.0 0.0 0.0 0.04807
MP/DZP
l R . Ty T2 g0 2 ¢
R 0.21839
ry -0.09636 1.00330
ro  0.10064 -0.03955 0.01302
v -0.25214 0.15286 0.21961 -0.29644
v 0.38297 -0.28989 0.03121 0.12814 0.56742
¢ 0.0 0.0 0.0 0.0 0.0 0.04859

Table VI. Force constant matrix for formaldehyde at the transition state 22

CCSD/TZ2P
R T 2 gi! Y2 é
R 0.20305
ry -0.07646 1.02710
re 0.08712 -0.03088 0.00726
v -0.22791 0.13621 0.18648 -0.26308
72 -0.36905 0.27888 -0.02932 -0.10174 0.58706
@ 0.0 0.0 0.0 0.0 0.0 0.04807
MP2/DZP
R T1 T2 71 Y2 ¢
R 0.21839
ry -0.09636 1.00330
ro  0.10064 -0.03955 0.01302
v -0.25214 0.15286 0.21961 -0.29644
v2 -0.38297  0.28989 -0.03121 -0.12814 0.56742
) 0.0 0.0 0.0 0.0 0.0 0.04839

* Units of force constant are hartree/bohr?, hartree /bohr*radian , hartree/radian?.

b Only the lower triangle of this symmetric matrix is shown.
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Table VII. Normal modes and harmonic frequencies® at the transition state q*

CCSD/TZ2P
1 2 3 4 5 6
R 062344 047111 0.06882 0.00000 0.74300 -0.41340
ri -0.16801 0.74828 -0.05632 0.00000 -0.06208 0.04011
r,  0.34609 0.44800 097200 0.00000 0.26449 0.86322
v -0.08861 0.02853 0.13148  0.00000 -0.26309 -0.19697
v» 0.67489 0.12893 -0.17328 0.00000 -0.55221  0.20866
¢  0.00000 0.00000 0.00000 -1.00000 0.00000 0.00000
v 3145.3 1880.6  1359.0  878.3 8117 119346
MP2/DZP
1 2 3 4 5 6
R 042666 022213 0.04202 0.06000 0.39740 -0.37518
ry -0.11103 0.34944 -0.09519 0.00000 -0.03023 0.03794
r, 0.26333 0.31335 110090 0.00000 0.14682 0.76382
7 -0.05392 0.02991 0.14695 0.00000 -014249 -0.17808
v.  0.46998 0.03965 -0.22275 0.00000 -0.31183  0.20270
¢  0.00000 0.00000 0.00000 -0.80007 0.00000 0.00000
v 3266.6 18487 15065  907.4  861.5 120648

¢ Harmonic frequencies are in em™!.

Table VIII. Spectroscopic constants for Hy, D, and CQ%*?

W, WeTe B, D, Q.
H, 4395.20 117.91 60.81 0.04648 2.993
D, 311850 64.10 30.492 0.01159 1.0492
CO 2170.21 13.461 1.9314 6.43x10~% 0.01749

% From ref 27.

b Units in em 1.
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Chapter IV
IR, Raman Spectra and Dynamics
of Formic Acid Dimer

1 Introduction

The formic acid dimer is one of the simplest examples of a molecular entity held to-
gether by two hydrogen bonds.!~® As such, it has been the subject of a rather large
number of experimental®=?° and theoretical?!~%7 studies. Particularly noteworthy
are the classic 1958 infrared study of Millikan and Pitzer!® and two definitive inves-
tigations (1982, 1986) of the Raman spectrum by Bertie and co-workers.!>16 Some
of these previous studies investigated the geometrical cha.;lgesg'34 between monomer
and dimer and the energetic stabilization!"18:20:23.2834 f the dimer due to hydro-
gen bond formation. Others were primarily concerned with the double hydrogen
atom transfer in formic acid dimer along the double well potential.?!22:27:29-33 Gjpce
hydrogen atom transfer ’plays an important role in many chemical and biological
systems, the knowledge of the total energies and geometries, as well as the vibra-
tional frequencies of the equilibrium and transition state, is indeed very important
to the understanding of such dynamical processes.

Among the experimental studies, the geometry of the monomer has been thor-
oughly investigated with various techniques such as infrared?=° and microwave%4!
spectroscopy and electron diffraction.® The experimental determination of the equi-
librium dimer structure is based on electron-diffraction measurements. Infrared
and Raman spectra pertaining to the equilibrium between monomer and dimer have
also been reported.'~'® Some of these vibrational motion investigations of the dimer
were restricted to the study of the O-H stretching mode'1416 since this stretching

mode is subject to a double minimum potential and has evoked siginificant research
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interest.

On the other hand, numerous theoretical studies with ab initio quantum chemical
methods have been carried out at various levels to predict the structures of the dimer
and the potential surface for the double-hydrogen-atom-transfer process. However,
most of the geometries used in the potential surface calculation were dednced from
experimental?! data or not fully optimized.?2:?"3! For example, Mijoule®® and his co-
workers reported the équilibrium and transition-state structures at the 6-31G level
with gradient optimization, but they assumed the O-H---O bond angle to be 180°.

Here, we use various levels of quantum chemistry methods to perform a more
thorough investigation which covers some of the interesting aspects of the formic acid
dimer. Particularly, three different basis sets, i.e., minimum (STO0-3G), double-(
(DZ), and doubl-¢ plus polarization (DZ+P) are used within the Self-Consistent-
Field (SCF') level of theory to study the following: (1) the change of the geometry
and the shift of vibrational frequencies from formic acid monomer to the equilibrium
dimer due to the formation of the two hydrogen bonds, (2) the stabilization energy
of the dimerization process, (3) the variation of the vibrational frequencies and
Infrared intensities among a few isotopomers of the equilibrium formic acid dimer,
{4) the Raman intensities. The comparisons with the experiments are also presented
if they are available. Section 2 briefly describes the theoretical approach of the SCF
method and sections 3 to 6 present the results.

Ab initio calculations pertaining to the study of the double-hydrogen-atom-
transfer reaction are presented in section 7. The optimized geometry and vibrational
frequencies at the transition state are obtained also with the SCF method and the
results are shown in section 7.1. Since the tunneling dynamics a pure quantum
mechanical phenomeno. which is important at lower temperature) depends very
much on the potential barrier height, higer level ab initio calculations which include

electron correlation energies have to be performed. In section 7.2, we recalculate the
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optimized geometries, frequencies and total energies of the equilibrium and transi-
tion state dimer with MP2/DZP approach. In section 8, a few preliminary studies
of the tunneling dynamics of double hydrogen transfer process ‘a.re presented. A new
version of the empirical valence bond approach which uses normal mode harmonic
potentials is also suggested in section 8 for describing global potential surfaces of

systems such as formic acid dimer. Section 9 concludes.

2 Theoretical Approach with SCF Method

The geometries of the formic acid monomer (C, structure), equilibrium dimer (Cs;
structure), and dimer transition state (D, structure) have been fully optimized by
the energy gradient method without settiﬁg any constraints on the bond angles and
bond lengths. As demonstrated by the vibrational analyses, all three structures
turn out to be planar. The basis sets used were minimum (STO-3G), double-{
(DZ), and double-({ plus polarization (DZ+P). The DZ basis set is that of Huzinaga
and Dunning,*? which consists of (9s5p/4s2p) on carbon and oxygen and (4s/2s) on
hydrogen. For the DZ+P basis set polarization functions, a single set of d functions
for each heavy atom and a single set of p functions for each hydrogen atom were
added to the corresponding DZ basis set. The polarization function exponents were
a4(C) = 0.75, ag(O) = 0.85, and ap(H) = 0.75. The DZ+P basis set for the formic
acid dimer includes 116 constracted Gaussian functions.

With use of analytic SCF second-derivative techniques,*® all quadratic force con-
stants and the resulting harmonic vibrational frequencies were determined. The
presence of a single imaginary vibrational frequency for the D, structure proves

that it is a true transition state.
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3 Molecular Structures from SCF Method

The optimjzed‘ geometries for monomer, equilibrium dimer, and dimer transition
state are illustrated in Figures 1-3. Table I reproduces the theoretical geometries of
the monomer at all three levels of theory together with the most reliable experimental
structu.c. As shown in Table I, the theoretical geometries are all in reasonable
agreement with experiment. Ferhaps the only major structural error occurs at the
SCF/DZ level of theory. There the C-O-H bond angle(115.3°) is predicted to be
9.0 deg larger than experiment. This is a common failure of the SCF/DZ method,
occuring regularly for angles about oxygen.*4

The theoretical geometries for the equilibrium dimer as well as that from electron-
diffraction measurements® are listed in Table II. Comparisons between Table I and
Table II show that there are some structural changes due to the formation of hy-
“drogen bonds. For examples, the C=0 double bond is longer in the dimer than
in the monomer, whereas the C-O single bond shows opposite trend. Comparing
theoretical geometries for the dimer with data from electron diffraction measure-
ments, one sees generally good agreement. Specifically, the differences between the
SCF/DZ+P structure and the expeﬁmental bond distances are as follows: —0.018 A
(C=0), -0.020 A ( C-0), -0.067 A (O-H), +0.083 A (O-H.--0). The bond angle
differences are —0.3° (0-C=0) and +0.25° (C-O-H).

Since the experimental structure of the transition state dimer is not obtainable,
only theoretical results are available. As expected, the previously single bonded C-O
distance is shorter for the transition state than for the equlibrium dimer. Compari-
son between this transition state bond length and the C=0 and C-O bond lengths
shows that it is characteristic of bond order one and a half. Interestingly, the O...0

and C.--C distances are found to be shorter for the D, structures.
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1.104
1.075
- 1.088

C
4 110.4° \-

110.4°
110.5°

Figure 1: Predicted equilibrium geometries for the formic acid monomer. Bond

distances are given in A. Three levels of self-consistent-field theory are reported for
each geometrical parameter.
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(1.685) __ ___H..______o
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(1.234)
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(1.097) (1.320) 172
(178.4°)
03 1.009 9
0.975
0.966
(1.003)

Figure 2: Same as Figure 1, except it is for the predicted geometries for the formic
acid equilibrium dimer and the results from the MP2/DZP are shown with paren-

theses.
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1.106
1.188
(1.208)
1.280 05 KHlo/' 05 116.4°
1.268 117.8°
1.244 181.8° 116.8°
(1.271) 171.5° (116.5°)
| 179.3° 127.20
c (177.7°) 124.5° H
o 126.2°
7 1 X 115.7° . 8
; ;g: 122.0° (127.0°)
1.086 117.20
(1.008) (115.4°)

Figure 3: Same as Figure 1, except it is for the predicted geometries for the formic
acid transition state dimer and the results from the MP2/DZP are shown with

parentheses.

108



4 Vibrational Fr‘equen'ciesand IR Intensities

4.1 (HCOOH); Molecule

Table III-V give the harmonic vibrational frequencies, IR intensities, and normal

15,16 were

mode assignments of the molecules studied here. The conventions of Bertie
adopted in describing the normal modes. The designations “oop” and “ip” refer to
out-of-plane bending and in-plane bending.

It is not surprising®® that the predicted frequencies from DZ and DZ+P for
the monomer and Cj, dimer are consistently higher than the observed data. The
absolute and relative difference between SCF/DZ+P harmonic frequencies w and
the observed monomer fundamentals v are 547 cm™! = 15.3% (r4), 351 cm™! =
11.9% (v2), 238 cm™! = 13.4% (v3), 155 cm™! = 11.2% (v4), 203 cm™! = 16.6% (vs),
164 cm™! = 14.9% (vg), 65 cm~! = 10.4% (v7), 150 cm™! = 14.5% (vs), and 51 cm™!
= 7.9% (vg). These differences are due to?® a combination of (1) the tendency of the
SCF/DZ+P method to overshoot the true harmonic vibrational frequencies and (2)
the contributions of anharmonicity; generally speaking w; > v; and anharmonicity
corrections of 5 % are not unusual.

The classic paper by Millikan and Pitzer!® labels the dimer infrared intensities
as s (strong), m (medium), w (weak), etc. For several of the normal modes, more
quantitative information concerning the IR intensities has been given by Marechal.
Since the IR intensities have been quantitatively predicted from theory here, an
interesting comparison in Table IV is possible. Note, of course, that all A, and
B, normal modes have zero IR intensity in the “double harmonic” approximation
used here. The three greatest IR intensities are predicted theoretically for vy7 (1575
km/mol), 19 (1188 km/mol), v, (478 km/mol). It is most encouraging that v,

V19, and vy, are three of the four frequencies designated “very strong” by Millikan

and Pitzer.’® We predict a significant but smaller intensity (156 km/mol) for the
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fundamental 115 labeled very strong by Millikan and Pitzer. A designation of simply
“strong” would have been more consistent with the ab initio predictions.

The fourth highest theoretical IR intensity (v14, 357 km/mol) is labeled “strong”
by Millikan and Pitzer.!® This is followed by vg3 (85 km/mol) and vy (75 km/mol),
both designated “medium” from the observed IR spectrum. vy4 is predicted from
SCF/DZ+P theory to have an intensity of 48 km/mol, a bit less than expected
from Millikan and Pitzer’s label “strong”. The remaining four fundamentals are
predicted to have IR intensities less than 20 km/mol (SCF/DZ+P). Those weak

intensities concur with the experimental labels,'%?

except for vy5, which is desig-
nated “medium” by Millikan and Pitzer. A success for théory is that among modes
with nonvanishing IR intensity, the vibrational frequency with weakest intensity is
v13 (1050 cm™!) for which I = 0.4 km/mol (SCF/DZ+P). This is in fact the one
furdamental (among 113 — v34) above 200 cm™ that was not observed as a well
defined feature by Millikan and Pitzer.!°

Except for two low-frequency vibrations, all the SCF/DZ+P harmonic frequen-
cies w lie above the corresponding observed fundamentals v. The two exceptions
are the O-..O stretch (SCF/DZ+P ws = 182 cm™!, g = 190 cm™!) and the O-
H...O in-plane bending vibration (SCF/DZ+P wyq = 223 cm™!, vy = 248 cm™?),
Although the theoretical frequencies fall slightly below the experimental fundamen-
tals, the absolute agreement is excellent. These two modes, O- - -0 and O-H.. .0, are
among the most sensitive to the theoretical description of the HCOOH.. . HCOOH
interaction.

Perhaps more interesting than the vibrational frequencies themselves are the
frequency shifts between dimer and monomer. These shifts are displayed in Table V.,
One sees in Table V that two critical pieces of experimental informatior. are missing,
namely Av(v;) and Av(vy), predicted by theory to be two of the four largest

frequency shifts. However, the remainder of the comparisons between theory and
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experiment leave little doubt that theory is qualitatively reliable in these predictions.

Not surprisingly, the largest shifts occur for the O-H frequencies. The antisym-
metric dimer O-H stretch vy7 is known!® to be 459 cm™! less than that for the
isolated monomer, and theory predicts an even larger shift for the symmetric OH
stretch vy, ‘The simple explanation, of course, is that the formation of two strong
hydrogen bonds in the dimer "veakens the two O-H single bonds. In the limit of the
Dy, transition state, the four O-H linkages become indistinguishable.

The next largest dimer-monomer vibrational shift occurs for vy4, the in-phase
combination of monomer out-of-plane O-H bending modes. This large shift is 4276
cm~! from experiment,!® with SCF/DZ+P theory predicting +292 cm~?, in good
agreement. The comparable out-of-phase combination of oop O-H bending frequen-
cies is not known from laboratory studies, but it should be close to the predicted
Av(vi1) = 4242 cm™!. These vibrational frequencies increase in the formic acid
dimer, because the formation of the two hydrogen bonds has the effect of causing
the monomers to become much more rigidly planar. That is, the nonplanar excur-
sions of the O-H are now ‘not only accountable to the singly bonded formyl group
(HCO) but also to the partner monomer.

A significant dimer-monomer vibrational frequency shift also occurs for vy, the
symmetric combination of in-plane H-O-C bending frequencies. For the reasons
discussed in the previous paragraph, these vibrational modes are shifted to higher
frequency in the dimer. SCF/DZ+P theory does not do terribly well in predicting
this shift: Av(vy) = 4135 (theory) and +193 cm™! (experiment). Further theoret-
ical work will be necessary to ascertain whether these discrepancies are due to (1)
an inadequate description of the potential energy surface, in which case the true
harmonic shifts Aw would be closer to Av, or (2) neglect of important anharmonic

effect,

Insight into the problem between theory and experiment for v4 is given by the
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analogous com’parisons for vy and vy;. For these two shifts SCF/DZ theory seems
to be doing a reasonable job, while the higher level SCF/DZ+P method does very
poorly compared to experiment. The reason is that the separation between H--C-O
and H-O-C bending modes is rather murky. SpeciﬁcallJ’t, Bertie and Michaelian!®
identify the higher of these two B, modes as H~O-C béd‘/.lding. This is consistent
with the SCF/DZ potential energy distributions (PED’s), However, in the SCF/DZ
case the weightings are quite close, being 0.52 (H-O-C) and 0.36 (H-C-0). At the
SCF/DZ+P level, the PED’s reverse to give 0.71 (H-C-0O) and 0.23 (H-O-C). Fur-
thermore, since vy and vy, are only separated by 85 cm™! g:’tpetimentally, one cannot
be certain that the experimental designations of Bertie and Michaelian are unam-
bigous. The best way to think about v4 and vg and a,bouwl‘\ 10 and vy; is that they
are strongly interacting combinations of the H-C-O and }EH*--O—C bending modes.

This is, of course, confirmed by the accepted assignment that for the monomer the
H-C-O bend lies higher, while for the A, dimer vibrations ‘ithe H-0-C bend lies
higher. \

Further insight into the assignments for v, and vy, is possibly given by examina-
tion of the IR intensities. For the formic acid monomer, theory‘ and experiment agree
that the H-O-C bend has a higher IR intensity and lower fundamental frequency
than the H-C-O bend (SCF/DZ+P: I(4) = 10 km/mol, I(5) = 26 km/mol). To the
extent that the monomer results may be used to anticipate the dimer intensities,
one would thus expect the H-O-C bending assignment to go to the lower dimer
vibrational frequency with higher IR intensity. This is precisely what is predicted
by SCF/DZ+P theory, but it is opposite to the experimental assignments.

The C-O single bond stretching frequencies are shifted upward by ~ 110 cm™!
in the dimer, and DZ+P SCF theory does a good job in reproducing this trend.

Inspection of Figure 2 shows that the C-O single bonds are next-nearest néighbors

to the H. - -O hydrogen bonds and take on a small amount of “conjugation” or double
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bond character upon dimer formation. |

Perhaps most widely discussed among the formic acid dimer vibrations are the
C=0 double bond stretching frequencies. A recent paper by Dybal, Cheam, and
Krimm4® discusses in great detail the origin of the splitting between the symmetric
(va = 1670 cm™!) and antisymmetric (119 = 1754 cﬁ'l) componen*s of the C=0
stretch mode. This shift of 84 cm~!- between C=0 dimer modes is predicted to
be (1983 ~ 1927) = 56 cm™! at the SCF/DZ+P level of theory. With the SCF/4-
31G method Moroknma and co-work(;rs33 predicted 44 cm™? for this shift. Karpfen
predicts 58 cm™! for this dimer shift in his ab initio study®® using a small double-
¢ basis set in conjunction with SCF theory. The three sets of ab initio harmonic
vibrational frequencies are consistent with the conclusion of Dybal, Cheam and
Krimm* that the remaining discrepancy (84 - 56 = 28 cm~1) may be due to a
difference in anharmonicity between the A, and B, modes.

It is encouraging that the smaller dimer-monomer vibrational frequency shifts
are also treated in a reasonable manner by the present theoretical methods. For
example, the symmetric combination of C-H stretches is predicted to be 10 cm™!
higher in the dimer, while the experimental shift is +7 cm™!. In fact the sign of
every known dimer-monomer vibrational frequency shift is properly predicted with
SCF/DZ+P theory. SCF/DZ theory fails once, for 145, the asymmetric combination
of C-H stretches. In that case Aw(SCF/DZ) = -2 em™!, Aw(SCF/DZ+P) = +7
cm™!, and Av(exptl) = +15 cm™!.

Finally, a brief comparisoh of the dimer and monomer IR intensities is in order.
Based strictly on the formic acid monomer results (Table III), one would expect the
dimer C=0 stretch (monomer intensity 533 km/mol) to be strongest, followed by the
C-O single bond stretch (301 km/mol) and then by the O-H stretch (116 km /mol
for the monomer; SCF/DZ+P level of theory). Although these three modes do have

the largest IR intensities among the B, dimer fundamentals, the order is different.

W
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That is, the O—H stretch has the highest IR intensity (1575 km/mol) and the C-O
single bond stretch the lowest (478 km/mol) of the three. Since the IR intensity is
proportional to the square of the change in the dipole moment with respect to the
appropriate normal coordinate, (6u/6Q)?, the urder of dimer IR intensities is not

trivially deduced from those of the formic acid monomer.

4.2 (HCOOD); Molecule

The theoretical predictions concerning the IR spectra of HCOOD and (HCOOD),
are summarized in Tables VI and VII. All monomer and dimer assignments are the
same as those given from experiment by Bertie, Michaelian, Eysel, and Hagel.!®
It is also encouraging that every predicted SCF/DZ+P harmonic frequency except
Va4 lies above the analogous observed fundamental. In the case of v4 the absolute
agreement is still quite good, with w(SCF/DZ+P) = 218 cm™! and v(expl) = 240
cm™l.
With two exceptions, the dimer--lﬁonomer vibrational frequency shifts agree quite
well with experiment. The predicted A; SCF/DZ+P dimer-monomer shift for the
D-O-C bend is somewhat disappointing, being +70 cm™!, while experiment shows
no shift. We might be inclined to blame this on a poor description of the H-C-0
and D--O-C mixing, but (1) these are now rather well separated by the deuterium
substitution and (2) theory does quite well for the H-C-O shift from monomer to
dimer.

The serious disagreement between theory and experiment occurs for the O-D
stretching frequency v1s, which Excoffon and Marechal'® have assigned at 2068 cm™!.
The SCF/DZ+P wig is 35.1 % greater than experimental 113. This is clearly unrea-

sonable and we are forced to conclude that the true 15 must be significantly higher.

We suggest that it is extremely unlikely that v;g is less than 2200 cm~!. Thus it
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seems clear that Excoffon and Marechal have made a misassignment.

However, that the present results are based on the harmonic approximation while
in ref.13 an attempt was made to inclu&e strong anharmonic couplings. As the main
effect of these anharmonicities is to broaden the O-D stretching band, it may be
reasonable to compare frequencies appearing in an harmonic frame with band centers
of these broad anharmonic bands and not with the peculiar transition labeled 0000.
In Table II of ref.13 this band center falls at 2281 cm™!, which seems to fit in with
the present theoretical predictions.

The theoretical IR intensities for (HCOOD), may be compared with the qual-
itative experimental labels assigned by Millikan and Pitzer.!® Theoretically, the
stronéest fundamental is predicted to be 19, the B, C=0 stretch, for which an
intensity of 1129 km/mol is seen in Table VII. This prediction fits perfectly with
Millikan and Pitzer’s identification of v as the only “very strong” fundamental. The
second strongest theoretical vibration is 45, the O-D stretch, for which 891 km/mol
is predicted, perhaps surprising considering the above-discussed misassignment of
11s. However, if one looks at Figure 1b of the paper by Excoffon and Marechal,!®
it is clear that there is an intense IR band peaking at ~2300 cm~*. Thus, although
the correct assignment of 115 was long concealed, the existence of an IR band of
high intensity (consistent with the SCF/DZ+P prediction I = 891 km/mol for w;s)
is indisputable. Our third strongest fundamental is v5; (371 km/mol), the C-O
single bond stretch, and it is encouraging that this band is the only one designated
“strong” by Millikan and Pitzer.!® The four fundamentals (v17, V20, V22, and vy3) ex-
perimentally labeled “medium” intensity by Millikan and Pitzer are predicted here
to have intersities in the range 50-102 km/mol and thus the agreement is superb.

Three of the experimental (HCOOD), fundamentals in Table VII were assigned
by Carlson, Witkowski, and Fateley!! from the far-infrared spectrum. Clearly these

intensities fall on a different absolute scale than those of Millikan and Pitzer.1©
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Nevertheless, the relative ordering vs (124) , s (v15), and m (v16) agrees perfectly

with the ab initio intensities, which are 46, 11, and 4 km/mol, respectively.

4.3 (DCOOH); Molecule

Tables VIII and IX give theoretical and experimental information pertinent to the
infrared spectra of DCOOH and its dimer. Although seven fundamentals of the
dimer are yet unobserved, all 17 known (anharmonic) frequencies lie below the
corresponding SCF/DZ+P harmonic frequencies.

Again the ab initio IR intensities agree well with the experimental descriptions of
Millikan and Pitzer.!® The three most intense fundamentals in the IR are predicted
to be the O-H stretch w7 (1599 km/mol), the C=0 stretch wyg (1191 km/mol),
and the C-O single bond stretch wy; (389 km/mol). These are the only three
fundamentals labeled “strong” by Millikan and Pitzer. Similarly, the C-D stretch is
predicted to have substantial intensity (199 km/mol) and is labeled appropriately
“ms” in the experimental analysis.

Table IX shows that there is a reversal in the theoretical and experimental de-
scriptions of the A, vibrations 1413 and 114. In the theoretical analysis v;3 is clearly
the out-of-plane C-D bending motion. In contrast Bertie, Michaelian, Eysel, and
Hager identify the higher frequency of v;3 and vy4 as the out-of-plane O-H bend.
The experimental difference (v13 — v14) = 40 cm™! is, however, reasonably predicted
by theory, which finds (w12 — wy4) = 31 cm™!.

The experimental dimer-monomer vibrational frequency shifts (where available)
are in general well-reproduced by SCF/DZ+P theory. The only disappointment
occurs for vy7, the dimer O-H stretch, which is predicted to be 282 cm™! lower than
the monomer O-H stretch. In constrast the experimental shift is much greater,

namely (3098 - 3566) = —468 cm™!. As noted earlier, an error of the same magnitude
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is made by SCF/DZ+P theory for the (HCOOH); species. Future theoretical studies

would do well to pursue the source or sources of these rather significant errors.

4.4 (DCOOD); Molecule

Comparable theoretical and experimental results for the per-deuteriated species
DCOOD and {DCOOD); are summarized in Tables X and XI. One sees immedi-
ately in Table X a disagreement between the SCF/DZ+P methods and experiment
concerning the monomer assignment of vs and vg, the D-C-O and D-O-C bending
motions. From theory the higher of the two frequencies is assigned to the D-O-C
bend. However, the assignment is marginal, with the PED’s being 0.40 (D-0O-C)
and 0.20 (D-C-0) for ws. Bertie and Michaelian'® instead assign vs to the D-C-O
bending motion. Interestingly, the theoretical difference (ws —wg) = 84 cm™! agrees
quite well with the experimental (vs — vg) = 97 cm™?.

It is not surprising, in light of the monomer D-C-0O and D-O-C assignments,
that the SCF/DZ+P dimer assignments are not identical with those based strictly
on experimental observations. The fact that these assignments are not trival is
seen in footnote e 6f Table I in the paper by Bertie and Michaelian,!® who state
that vy; and vy, are a mixture of the D-O-C and D-C-O deformations. In fact
theory and experiment agree for the assignment of vy; (D-O-C) and v, (D-C-0).
However, as seen in Table XI, there is a disagreement for vs and vs. The SCF/DZ+P
PED’s identify vs as the D-O-C bend, while Bertie and Michaelian prefer the D~
C-O deformation. Again, however, theory and experiment are in good agreement
concerning difference in frequencies: Aw(5—6) = 105 cm™'; Av(5 - 6) = 91 cm™!.

The C=0 stretch vyq is predicted here to have the highest infrared intensity,
namely 1139 km/mol. It is encouraging that this is also the strongest fundamen-

tal (“very strong”) in the designations of Millikan and Pitzer.!® The next strongest

it |
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IR fundamental, from theory, should be the O-D stretch vy7 (849 km/mol). How-
ever, we find no acceptable experimental identification of this fundamental. Bertie
and Michaelian'® cite Excoffon and Marechal for v(O-D) = 2068 cm™!, but this
is apparently from (HCOOD),, for which the O-D should admittedly be compara-
ble. However we have already shown that the latter assignment of Excoffon and
Marechal m‘ust be incorrect. Millikan and Pitzer assign V17 (O-D) = 2323 cm™!,
and this is certainly closer to the truth than 2068 cm™!. The remaining fundamen-
tals labeled “strong” by Millikan and Pitzer are (in order of theoretical intensity,
with SCF/DZ+P values in parentheses) vyq (C-O, 321 km/mol), v (C-D, 204
km/mol), 114 (60-D oop, 195 km/mol), vo; (D-C-O, 88 km/mol), and vy3 (O-
C=0, 90 km/mol). The fundamentals labeled “weak” all have significant smaller
SCF/DZ+P IR intensities. Thus one sees again an essentially perfect correspon-

dence between theoretical and experimental IR intensities.

5 Raman Intensities

Bertie and co-workers'®'® have carried out definitive experimental studies of the
Raman spectra of formic acid and its dimer, and they include in their papers con-
siderable information concerning the Raman intensities. In the present theoretical

study we define the Raman intensity following Gussoni*’ as

I =450 + 74" (1)

wherc o' and 7' are the derivatives of the trace and anisotropy of the polarizability,

respectively. The depolarization is then defined as?*’
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p = 37"/ 450" + 47"] ()

The theoretical Raman intensities reported here were obtained with use of recently
developed analytic method.*® Since Raman intensities can be quite sensitive to basis
set choice,19%% only the SCF/DZ+P results are reported here.

The predicted Raman intensities for the HCOOH monomer are compared with
experiment in Table XII. There the theoretical predictions are seen to be generally
helpful. Specifically, the two fundamentals (vs and vg) not observed in the Raman
and the one labeled questionable (v5) by Bertie and Michaelian'® have the lowest
theoretical Raman intensities, 0.9-1.2 A4/amu. Thus theory “explains” the difficulty
of observing these fundamentals in the Raman spectrum. Furthermore the next two
highest intensity Raman fundamentals (v and v7) hold this position according to ei-
ther the theoretical or experimental intensities. A disappointment in the theoretical
Raman intensities is their failure to show v; and v; having comparable intensities
— SCF/DZ+P theory predicts I(v;) to be nearly six times more intense than I(v3).

The formic acid dimer Raman intensities are summarized in Table XIII. The
allowed Raman fundamental predicted to have lowest intensity is vg, corresponding
to the O---O motion. This theoretical prediction fits well with the fact that vg has
not yet been observed in the Raman spectrum.’® Two other Raman fundamentals
are predicted by SCF/DZ+P theory to have intensities less than 1 At/amu. Of
these two frequencies vy (A,) has been observed in the Raman, while v;; (B,) has
not to date been identified. |

The Raman fundamental with highest theoretical intensity (v, 203 A4/amu) is
also found in the laboratory to have the greatest Raman intensity (100 counts/s).

However, the second most intense Raman fundamental is predicted by theory to be
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v, the O-H stretch, at 147 A4/amu , and v, is not observed at all in the laboratory.
The non-identification of v; is discussed in some detail in the paper by Bertie and
Michaelian.}® To summarize their conclusions, there are broad features in the ex-
pected region of the Raman spectrum, but these are muddled by the likely presence
of overtone and combination bands, making the analysis treacherous. Of course,
the mixing of v»; with overtones and combinations is not accounted for in the simple
harmonic approximation adopted in the present theoretical study.

There is a reasonable correspondence between theory and experiment for the Ra-
man depolarization ratios of the formic acid dimer. For example, the three smallest
depolarization ratios occur for vg, v3, and v, both theorefically and experimentally.
Note that the B; depolarization ratios do not provide a test of the theory since these
are required by symmetry to be precisely 3/4. However, there are four Raman fun-
damentals with nontrivial experimental depolarization ratios in the range 0.4-0.75,
and these are predicted by theory to be 0.49-0.70. We conclude that theoretical
predictions of depolarization ratios at this level can be reliable and may be very
helpful in the future in interpreting complicated Raman spectra.

Although not reported here, SCF/DZ Raman intensities for (HCOOH), are gen-
erally within a factor of 2 of the DZ+P predictions, but they provide a poorer

correspondence with the experimantal intensities.

6 Energetics of the Dimerization Reaction

Total and relative energies for formic acid and its dimer are reported in Table XIV.
The only piece of energetic information available from experiment concerns the dis-

sociation energy for the process

(HCOOH), — 2HCOOH (3)
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The most widely cited experimental value for AH is that reported by Clague and
Bernstein!” in 1969, namely 14.8 + 0.5 kcal/mol. Earlier experimental dimerization
energies fall in the range 15.2 — 18.0 kcal/mol and are discussed in the classic mono-
graph by Pimentel and McClellan.’ Clague and Berstein!” used the ratio of infrared
intensities of the dimeric to monomeric O-H stretching vibrations to determine the
equilibrium constant for Eq.(3) and hence the dissociation energy. A related but
independent experimental study, also appearing in 1969, was that of Mathews and
Sheets,®! who reported AHjgp = 14.1 £ 1.5 kcal/mol.

In early 1987, Henderson reported a new value of the dimerization of formic acid
based on Fourier transform infrared spectroscopy.5? Henderson reports AH(1)=11.7
+ 0.1 kcal/mol. Although we are a bit skeptical concerning the very narrow error
bars associated with this new experimental dimerization energy, the fact that the
experiment is sufficiently simple to be suitable for undergraduates to carry out as
coursework is very impressive. Possible support for the experiment of Henderson®?

is the recent NMR study of Lazaar and Bauer,?° who conclude that A E, for formic

acid dimer dissociation is no more than 12 kcal. These authors also suggest that

Do = AHO o~ AH;;()O — 1.5 kcal (4)

We have evaluated AHjgo ab initio (see Table XIV) and find it to be 0.2 kcal larger
than Do at the SCF/DZ+P level of theory.

As Table XIV shows, the formic acid dimer has significantly more zero-point
vibrational energy (ZPVE) than do two monomers. At the highest level of theory
this ZPVE correction is 2.0 kcal/mol. In this way SCF/DZ+P theory predicts Dy =
12.3 kcal/mol for the dimerization energy. Although such hydrogen bond energies

are not in general known with great precision from experiment, SCF/DZ+P theory
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does agree satisfactorily with the available data for systems such as the water and
hydrogen fluoride dimers.®® In fact the SCF/DZ+P value Dy = 12.3 kcal is quite
consistent with the Lazaar-Bauer result (< 12.0 kcal) when one realizes that the
reliability of this level of theory is of the order of 1 kcal/mol for such dissociation
energies. The DZ basis set predicts Dy = 16.8 kcal, clearly larger than experiment,
as is also the case for the H;O and HF dimers.%® In constrast, the minimum basis set
SCF method does a good job of reproducing (to within 0.3 kcal) the more realiable
SCF/DZ+P result. The reader should recall, of course, that the minimum basis set
does not do superbly well in predicting the equilibrium geometrical structure of the
dimer, |

SCF/DZ+P theory predicts AHao = 12.5 kcal/mol, to be compared with the
experimental values 14.8, 14.1, and 11.7 kcal, respectively.!”*'#? Considering the
broad range of experimental dissociation enérgies, the theoretical prediction is quite

satisfactory.

7 Energetics of the Double Hydrogen Transfer
Reaction

To study the isomerization reaction (shown in Eq.(5)) which involves the double
hydrogen atom transfer within the formic acid dimer, one needs the preliminary
information such as the geometry, harmonic force field of the transition state and

the reaction barrier height.
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Since no “experimental” data at the transition statc and the barrier height are avail-
able. One can only obtain these information through ab initio quantum chemistry.
Section 7.1 presents the results from SCF calculations and section 7.2 gives a fur-
ther investigation using higher level ab initio methods which includes the effect of

electron correlations.

7.1 Results from SCF Method

The predicted transition state geometries with the three SCF level calculations were
presented previc;usly in section 2 and shown in Figure 3. Table XV gives the vi-
brational frequencies and IR intensities for transition state obtained with DZ and
DZ+P basis sets. As expected, the single imaginary vibrational frequency (nega-
tive force constant in terms of normal coordinates) corresponds to the out-of-phase
combination of O-H stretching motions. The frequency 1695i from the SCF/DZ+P
calculation seems to be indicative of a substantial barrier height, which is shown in
Table XVTI to be 15.6 kcal/mol. Noteworthy is the variation of the barrier heights
with the basis sets. At the STO-3G level, it is predicted to be 5.2 kcal/mol, about
10 kcal/mol lower than the higher level DZ+P calculation. Since the tunneling
dynamics is sensitive to reaction barrier height, further investigation with more so-

phisticated approach is required in order to obtain the “true” value.

7.2 Results from Moller-Plesset Method

Among all the high level ab initio methods, the Moller-Plesset perturbation approach®
provides an inexpansive way of including the electron correlations which contribute
to the potential energies. The program codes used are those from CADPAC®® or
Gaussian88°® and the calculations are carried out either in Cray/XMP or Cray?2

machines. The geometries of the equilibrium dimer and dimer transition state have
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been fully optimized by the energy gradient method at the MP2/DZ+P level of
theory. The polarization function exponents used for these calculations are those
suggested in CADPAC. That is, a4(C) = 1.0, ag(O) = 0.90, and ap(H) = 0.80. Cal-
culation of the analytic MP2 second-derivatives for this 10 atom sy;stem takes about
4-5 CPU hours. Higher order corrections to the energies from electron correlations
are obtained through the third (MF3) or fourth (MP4) order perturbation theories.
A complete MP4(SDTQ) calculation of the energies is also performed and if needs
roughly 2 gegabytes of disk space and 13 CPU hours in Cray2 machine. ‘To test
the effect of the size of the basis sets, the MP2/TZ2P calculations are applied to
the MP2/DZP optimized geometries. The triple-( basis sets®” contain 3s for the H
atom, 5s4p for the first row atoms, and 9s6p for the second row atoms. For formic
acid dimer, there are all together 210 basis functions.

The optimized geometries for equilibrium dimer, and dimer transition state are
illustrated with parentheses in Figures 2-3. Table XVII reproduces the theoretical
geometries and Table XVIII gives the vibrational frequencies for the equilibrium
and transition state configurations. The total energies obtained at each levels for
both configuration and the reaction bare barrier heights are presented in Table
XVI. In general, there is little difference between the optimized geometries from
the SCF/DZP and the MP2/DZP calculations. However, for most of the vibra-
tional modes, the harmonic frequencies are decreased by a few percents using the
MP2/DZP level of theory. This indicates that we are approaching the correct an-
swers since the SCF/DZP theory often overestimates the frequencies by up to 15%.
In fact, a better agreement of the vibrational frequencies between the MP2/DZP
calculation and the experiments is found.

For the reaction barrier, one sees a sharp decrease from 15.6 kcal/mol to 6.4
kcal/mol as one moves from the SCF/DZP to the MP2/DZP method. Enlarging the

size of the basis sets from DZP to TZ2P only increases the barrier by 1.5 kcal/mol.
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The barrier height osciallates between a small range (6.4 to 8.55 kcal/mol) depending
on the level of the correction. We believe a barrier height around 7 to 8 kcal/mol is

close to the true value,

8 Tunneling Dynamics of the Double Hydrogen
Transfer Reaction

The theoretical study of the reaction dynamics of polyatomic molecules is a great
challenge due to the number of degrees of freedom involved. During the past 10
years also, various methods have been developed and employed in the Miller group
for studying the tunneling dynainics in various systems. Among t}}em, the sim-
ple 1-dimensional WKB method®® provides the simplest estimation on the order of
magnitude of the tunneling splitting. More accurate methods such as the reaction
path Hamiltonian®® which utilizes the minirnum energy path (MEP) as the refer-
ence coordinate and the reaction surface Hamiltonian®® which includes two large
amplitude modes (LAM) as the system coordinates have been applied to the case
of the single hydrogen transfer in malonaldehyde. Recently, a similar reaction path
Hamiltonian® which is expressed in the cartesian coordinates was suggested. This
new Hamiltonian has the advantages that the cumbersome kinetic coupling that
occurs in the previous reaction path Hamiltonian is transformed into the potential
coupling and that it is mass-independent, which makes the study of the isotope
effect much easier. In the following, we apply the WKB method and the cartesian
reaction path Hamiltonian approach to study the double hydrogen transfer in formic
acid dimer. Then, a normal mode version of the EVB model combined with proper
relative orientations among the reactant, transition state and product configura-

tions is presented for obtaining global potential surface which will be used for future



trajectory study on this system.

8.1 Simple 1-Dimensional WKB Method
Within a simple one-dimensional symmetric double-well description of the potential,
the WKB approximation gives the tunneling splitting as

AE = h—;ﬁe'o, (6a)

where wp is the calssical vibrational frequency in one of the wells and 6 is the WKB
barrier penetration integral. If the barrier is approximated by an Eckart potential
function®?, 6 is given by

2w

0= 55 (Vesrs = VEoVess), (60)

where V,;; is the effective potential barrier height, Ey is the energy relative to the
bottom of the wells, and wj is the imaginary frequency at top of the barrier, For the
ground vibrational state,

3N-7

1
Vess =Vot+ Y 5 (hwf — hu), (6¢)
k=1

and

1
Bo = Shwr, (6d)

where {w;} and {wi} are the vibrational frequencies of the remaining 3N-7 normal

modes at the transition state and the equilibrium configurations.
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Figure 4: coordinate system used for the formic acid dimer

We carried out this calculation with the values obtained from SCF/STO-3G,
SCF/DZ and SCF/DZ+P and MP2/DZP methods. The corresponding wp, which
pertains to the O-H stretching in the reactant (and product) configuration, are 3708,
3620, 3782 and 3198 cm™! and the imaginary frequencies are 1098i, 1663i, 1695i and
11994, respectively. The bare barrier height V; are 5.2, 14.2, 15.56 and 6.4 kcal/mol.
Using the above equations, we find the tunneling splitting of the gound vibrational
state AE, to be 70, 0.6, 0.3, and 66 cm™!, respectively.

8.2 The Cartesian Reaction Path Hamiltonian Method

Readers are referred to ref.61 for detailed descriptions of this method. Due to the
non-negligible geometry change (the relaxation) of the formic acid dimer during the
double hydrogen transfer reaction, the flexible bath version of the method is used.

Since we are looking at a simultaneous double hydrogen transfer, the “system”
coordinate should be a linear combination of the coordinates of the two involving H
atoms. If one defines the x coordinate to be parallel to C - .. C (shown in Figure 4),
the largest amplitude motion will be the motion of the two center H atoms along

the x axis. Therefore, our system coordinate z, is defined as:
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Iy = (IHL - tz)' (7)

B =

It describes the concerted motion of the two H atoms toward opposite directions.

The proper mass m; for this coordinate is 2xmy.

The remaining 3N-1 coordinates (includ.ing: Ty = 1/2(zH, + zH,)) are the bath
modes, and are represented as X. In the flexible bath version of the method, the
reference geometry of the bath along the reaction path is allowed to vary with tae

system coordinate r;. lLe.,

X = Xg(l‘l), (8)

the subscript “0” means it is along the reaction path.

The basic idea of this “Cartesian Reaction Path Hamiltonian” method is to make
local approximation of the potectial energy surface with a second order Taylor series
expansion about the system coordinate r;. The resulting Hamiltonian is

1 1
H(py,z:1,P,X) = Em-_lpf + §P -m™ - P + Vo(z1, Xo(z1))

+%[X — Xo(z1)] - K(z1, Xo(21)) - [X — Xo(z1)] = £(z1,X0(z1)) - [X — Xo(z1)]. (9)

One of the drawbacks of the above Hamiltonian is that it contains not only the
internal vibrational degrees of freedom, but also the overall translational and ro-
tational motions. Unfortunately, if one wishes to maintain the simple form of the

Hamiltonian, these motions can only be projected out in an approximate fashion.®!

128



The details of the developement of the approximation can be found in the original
paper. The main essences of the approximation are (1) only the translations and
rotations of the substrate (instead of the whole molecule) are being projected. For
example, the two H atoms in the middle of the formic acid dimer molecule are not
con’sidered, (2) a frozen substrate Xo(z?) has to be used when defining the projection
operator.®® Usually, one choose z¢ = 0 which cooresponds to the transition state.
The resulting Hamiltonian which has the translations and rotations projected out

approximately is :

1
H(py,z,,P,Q) = 577117? + Vers(z1)

3N-6 1 1
+ 30 SR 4 5Q Keyy(m:) - Q— fyglzr) - Q. (10)
k=2

where Q contains the 3N-12 “normal mode” coordinates of the substrate (with N-2

atoms) and the remaining 5 cartesian coordinates of the 2 H atoms,

X — Xo(z1) = Xo(27) = Xo(71) + m™/?. U - Q, (11a)

and,
Kess(z:) = U7 .m V2. K(z,) -m~/2. U, (11B)
ferr = {f(21) + [Xo(z1) — Xo(29)] - K(z1)} - m™2. U, (11c)

Vers(z1) = V(z1, Xo(z1)) — f(21) - [Xo(z1) — Xo(29)]

+5(Xa(z1) = Xo(a)] - Ko, Xo(e) - Kofa) - Xolal)], (114
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with U being the eigenvector matrix of the projected force constant matrix defined
at (z9, Xo(z7)), the transition state.

There are a few different methods of treating the dynamics qf a “system-bath
Hamiltonian”. The basis set method developed by Makri and Miller®™ is used here.

The complete basis function is a product of two parts,

Pin = Xi(z:)25(Q): | (12a)

{xi} is a set of distributed gaussians (with the center of the i-th gaussian at grid
point z;)

o —1/4
xi(z) = (2)  expl-a(z - z)) (126)

of Hamilton and Li}ght65 for describing the wavefunctions along the system coordi-
nate and {®n} is the shifted harmonic oscillator wavefunctions with n being the
array of the vibrational quantum numbers for the bath modes. The matrix elements
of the Hamiltonian H;nn and the overlap integral S;pn i n: are then calculated.
One can further simplify the calculation by including only the diagonal terms i'n the
bath modes, i.e., n = n". The eigen-energies are then obtained through diagonal-

ization of

SY:.H.8 V2 (13)

and the tunneling splitting of the ground state is obtained from the difference of the

two lowest energy levels.
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The quantities Vo(z1) , f(z1,Xo(z;)) and K(z;,Xo(1)) have to be calculated for
a few grid points (roughly 10 points) along the reaction path through ab initio quan-
tum chemistry, Due to the tremendous cost of calculating the second dgrivatives
with high level ab initio theory (recall that for each single geometry, 4-5 CPU hours
are reqired to obtain the 2nd derivatives at the MP2/DZP level), SCF/STO-3G is
used to obtain these quantities for a first test. The number of the distributed gaus-
sians and the parameter o are varied until the energies are converged. Typically, we
find 25 to 4(; gaussians necessary. For the simplest calculation where only ground
state wavefunctions of the bath modes are included, i.e., n=0, a value of ~0.06
cm~! is obtained for AE;, the tunneling splitting of the ground vibrational state.
Basis functions with higher vibrational wavefunctions for the bath modes could be
included in the calculation, but the dimension of the Hamiltonian and the overlap
integral matrices quickly become unmanageable for this 24 (i.e. 3N-6) degrees sys-
tem. Usually, one will include only the wavefunctions of one or two bath modes

which have strongest coupling with the system coordinate.

8.3 Global Potential Surface via Norinal Mode Version of

EVB

Recall in Chapter II that the simplest diabatic potential around the potential minima
contains the summation of a bunch of harmonic oscillators along its normal mode
coordinates (for instance, Eq.(13) of Chap II). When applied to a few 2-D model
potentials which simulate isomerization reactions between two symmetric double
wells, the EVB approach reproduces the original potentials very well. For a real
system such as the intramolecular hydrogen transfer in formic acid dimer, such
a simple approach may be reasonable since the geometries of the reactant and the

product are not too different and there are only a few large amplitude normal modes
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which require anharmonic correction to the potential. However, as we encountered
in the previous section, for a real system, special care has to be taken in order to
exclude the overall translations and rotations from the expression of the potential
energy surface,

The idea of this normal mode version is to represent the two diabatic potential
- energy surfaces in the normal mode coordinates defined at the reactant configuration

(represented as (1)) and the product configuration (as (2))

1
Vi=Vi+5QW 0. W, (14a)

1 |
Vi = Vi + 5Q7 0. Q0. (145)

The relationship of the 3N cartesians {z;,,7 = 1,-++,N ,5 = z,y, z} and the normal
modes coordinates (Q™ for the reactant, Q® for the product and Q) for the

transition state configuration) are

3N
o+ 2 L3 Q
(2)
+ Z bASA
+ZM3 - (15)

where -{IS},)}, {3’-(-27)}’ and {rf;)} are the cartesian geometries of the reactant, product
and transition state configurations, and the {L}'s are the corresponding normal
mode eigenvectors. One can choose either Q") , Q) or Q(*) as the independent
coordinate system for representing the adiabatic potential V. Let’s pick Q(*) and

rewrite Q) and Q® in terms of Q*). Since
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3N
oh + z LEWQL = o)+ 3 LEKal,
k=1

multiplying each sides of the equation by LS},?,‘,, and followed by summing over ¢,7,

one obtains

QP =3 [al) - =) L,(,I,),,+E[EL,.,' ,,k} Q, K =1,3N.  (16a)
(Y ‘

“1 u“y

Similarly,

QP =3 [« - =) LE) >

Yy k=1

Y

ZL,,'k,Lf;?k} QY, K =1,3N.  (16b)

Substituting Eq.(16a) into Eq.(14a), we get the following equation in matrix notation

(@) = V5 4 2 [x) = xR [y x0)]

+[x - x])T KO L0 Qe 4 %Q(-)T LOT KM L. QW)

! - 1 uT *
=1 +D; QW+ -QM K. QY (17)

where K0 = LM . M. LT vr = v 4 %[xm_x(l)]T KO . [x(-)_xm],
D) = [x(") - x(l)] ‘K. LM and K| = LT KO . L™, A similar equation is
obtained for Vp,(Q*)).

[y
(V5]
(8]



8.3.1 Orientation

‘Same as in the case of the “Cartesian Rgaction Path Hamiltonian” method, the
potential functions contain the three translational and three rotational parts that
need to be projected out, This is a common situation when one starts with the 3N
cartesian coordinates.

Let us rewrite Eq.(15) as follows,‘ where the 3N-6 local ‘internal’ normal coordi-

nates are seperated from the remaining 6 local overall translations and rotations.

3N
+ Z L(l) Z ka(l)

k=3N-5

3N
2+ e+ 3 sllop

k=3N-5

3N (
= 1‘7 + Z ;kQ Z Lw?kQ;:) (18)

k=3N-5

The characteristics of the eigenvectors of these local translations and rotations vary
from one geometry to another. However, one would like {L{"}, {L{*} and {L,(:)}

(for k=3N-5,-.., 3N) to span the same space so that

3N aN aN
S omer- ¥ omer- ¥ e e
k=3N~5 k=3N-5 k=3N~-5
and,
n LR S 2 () 1 =8 L) o)
+ 3 LQy = + Z L.-,k —‘L‘.'q + kE: LilkQi. (19%)
= =1

Under this circumstance, simply by changing the upper limit of the subscripts k and
k' from 3N to 3N-6, Eqgs.(16-17) can be utilized to describe diabatic potentials which
include only the 3N-6 “internal” ccordinates. In order to satisfy Eq.(19), we pursue

the conditions such that only one set of {Li}, (k=3N-5 to 3N) is independent. ILe.,
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3N
Lie L 3 LikAwk (20a)

3N
P2 3 IO AL (200)

where A and A’ represent the tranformation matrices with dimensions of 6 by 6 if
the above equations are valid. |

Ideally, Eq.(19-20) could be satisfied by properly orient the geometries of the
reactant, p;oduct and transition state in the three dimensional space. But, this
involves the complexity of finding the 3 Euler angles® of each geometries. A simpler
alternative is io ‘guess’ and vary the relative orientations of the three geometries
in space until minimum values of the following determinants A™ and A® are

obtained,

|ILO L&A= AD, (21a)

|IL® L& A" = AP, (21b)

If AY (and A®) is found to be zero for some specific relative orientations, the

conditions stated in Eqs.(19-20) are found. One can rewrite A" (and A®) as

A = ¢ [(L(l)T — AT, L(*)T) . (L(l) — LM, A)
. [LmT LD L AT LT e A AT LT L0 LT ). A}

T L
=6+ Afp =23 (LD L), Ay, (21c)
k! k!
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The identity

and

AL AORSS §

have been used in deriving the above equations, From variational principle,

gi(l:; = 24 — 2L L0, =0,
one obtains,
Aar = (107 1O,
and
A = -5 L(l A ) )ikt

k.k!

Since, for the translational degrees of freedom,
3N-3 T 2
D7 L)y =3,

one can further simplify the expression of A() as

3N T 2
AW =3 Y (@M. L™y, (22)
kk'=3N-2
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With an initial guess of the relative orientations of the three geometries, one can
minimize A!) by using a 3-dimensional rotational matrix M to vary the relative

orientation. In other words, we seek a M that will minimize

Al)“3—z ZZM“I'L‘Y"‘ "7k')' (23)

k! oy A

We found that, if the reactant and product are orientated according to what we
suggested in ref.67, one will get a minimum A if the reaction is restricted to be on
a plane. To be more explicit, one calculate the angle ¢ that is required to rotate the

original reactant geometry to a new orientation according to

Smi(eal + y Py

(1) ()

T~ 2T

(24)

if the motion of the molecule is restricted to be on the xy-plane. The superscripts
(1) and (*) indicate the reactant and the transition state geometries, For example,
using the MP2/DZP optimized geometries, if the original molecular orientations of
the reactant, the product, and the transition state are such that the C..-C lie on
the x-axis, using Eq.(24) we found that the reactant geometry should be rotate by
about 0.033°, and the product geometry by -0.033°,

8.3.2 Global Minima of the Potential

The “approximate” 3N-6 dimensional global potental energy surface is easily ob-
tained through this normal mode version of EVB approach. Again, the validity
of this global potential surface needs to be examined. Here, the locations of the
global minima are tested. The correct minimum locations of the “true” PES (ie.,

Born-Oppenheimer PES obtained completely through ab initio calculations) are at
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, for the reactant, Q) = 0 and , for the product, Q® = 0. These two locations can
be rewritten in the transition state normal mode coordinate system using Eq.(16)
with the knowledge of the eigenvectors L), L(® and L(*), Since the most important
normal modes are those with same symmetry as the reaction coordinate (Agin Cy,
and By in D,,), we show in Figures 5 the 9 A, symmetry normal modes obtained
from MP2/DZP for the reactant geometries. Those of the product configuration can
be obtained through rotation of normal modes in Fig. 5 by 180° about either x oy
y axis. The 5 A; and 4 By, normal modes of the transition state configuration are
shown in Figure 6. The minimum locations of these 9 normal modes are shown in
Table XIX. The coordinates for the other modes with Ay, By and By (in Cqp point
group) are essentially zero (due to zero coupling with the reaction coordinate) for
these geometries at stationary points on the PES. On the other hand, the global
minima of the “approximate” EVB potential surface are searched with the Newton.
Raphson method® and compared with the correct values. As seen in Table XIX,

very good agreement is obtained,

9 Concluding Remarks

The results presented and discussed here are just a fraction of the information
available from the present study. For example, in the study of the vibrational
frequencies and IR intensities with SCF, we have not reported theoretical predic-
tions for any of the “mixed dimers”, namely HCOOH-HCOOD, HCOOH.DCOOH,
HCOOH-DCOOD, HCOOD-DCOOH, HCOOD-DCOOD, and DCOOH.DCOOD.
Among the transition states for hydrogen or deuterium transfer, only (HCOOH),
among the ten distinct possibilities has been considered. Moreover, only for HCOOH
and (HCOOH), have Raman intensity data been presented. It is apparent that the

formic acid dimer is a source of much theoretical and experimental information. As
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such it provides a unique opportunity for the understanding of hydrogen-bonding
and hydrogen atom transfer processes.

For the double hydrogen atom transfer reaction, since the dynamics depends
sensitively on the information of the potential energy surface, we perform ab initio
studies of the energetic and the harmonic vibrational frequencies of the transition
state and the equilibrium dimers beyond SCF level of theory. The potential bare
barrier height has been improved from 15.6 Kcal to about 7 - 8 kcal/mol with the
Moller-Plesset method,

Tunneling splitting of the ground vibrational state pertaining to this double hy-
drogen atom transfer reaction is estimated with very sifnple WKB method. The
results vary from 0.3 to 70 cm~! depending on the set of ¢} initio data used. Ob-
viously, this method can only give a vague guideline of the tunneling splitting even
if definite values of the barrier height and harmonic frequencies are available. The
method of cartesian reaction path Hamiltonian (with off diagonal bath mode cou-
pling excluded) has also been applied here and a value of 0.06 cm™ is obtained by
using the STO-3G information. Higher order coorections to this method such as (1)
including wavefunctions of higher vibrational states of the bath modes and (2) in-
cluding off-diagonal bath mode coupling, may be added ir order to obtain converged
answer but the size of the matrices involved would quickly become tremendous.

One simple way to study the reaction dynamics is to perform trajectory calcu-
lations. Makri and Miller® suggested a semi-classical tunneling model which allows
trajectories to leak from one potential well to the other in imaginary time. Results
of the tunneling splitting using this method for a few simple potentials are encour-
aging. We have constructed a global (24 dimensions) potential energy surface via
the norrﬁal mode version of the EVB approach for the formic acid dimer which is

ready to be used for this type of study.
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Figure 5: Normal modes of formic acid dimer with A, symmetry at the MP2/DZP
reactant configuration. The lable of each mode is same as that in Table XVIII, The
three different atomes are represented by different sizes, with O>C>H.
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Figure 5, continued.
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Figure 3, continued.
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Figure 6: Normal modes of the transition state configuration with either A, or By,

symmetry.
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Figure 6, continued.
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Figure 6, continued.
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Table I. Theoretical (Self-Consistent-Field) and Experimental Equilibrium Geome-

tries for the Formic Acid Monomer

b

STO-3G DZ DZ+P exptl
7(C1=0;)8  1.214 1.210 1.185  1.202
r(C1-03) 1.386  1.351 1.324 1.343
r(C1-Hy) 1,104 1075 1.088 1.097
r(03-Hs) 0.990  0.956 0.952 0.972
£0,=C;-0¢ 1236 1245 1250 124.6
[H;=C;-0, 1260 1252 1245 124.1
[H;=C;-0; 1104 1104 110.5
[Cy=0;-Hy; 1048 1153 109.0 106.3

@ Bond distances in A.
b For atom numbering see Figure 1.,

¢ Experimental structure is that chosen by: Harmony, M. D.; Laurie, V. W.; Kuczkowskl, R. L.;

1

Schwendeman, R. H.; Ramsay, D. A.; Lovas, F. J.; Lafferty, W, J.; Maki, A. G. J. Phys. Chem.
Ref, Data 1979, 8,619.

4 Angles in degree.
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Table II. Theoretical (Self-Consistent-Field) and Experimental Equilibrium Ge-
ometries for the Formic Acid Dimer®

STO-3G DZ DZ+P exptle

r(C1=03) 1231  1.225 1.199 1.21740.003
r(C;-O3) 1348 1,321 1,300 1,320:0.003
r(Cy~Hy) 1107 1075 1,087 1.079:0.021
r(03-Hy) 1.009 0975 0.966 1.03340.017
r(Og+++04) 2536  2.700 2779 2.69620.007
r(Og++Os) 2.206 2260 2,227 2.262+0.004
r(Cy +++Cy) 3690  3.847 3.890

r(O4+-Hy) = 1526 1752 1,818

L03-C1=05 125.7 1251 1259  126.2+0.5
LH;-Cy=04 122.2 1225 1222  115.4%3.1
(Hs-Cy-03 112.0 1124 1119

£Cy-03-Hp 108.1 1166 110.0  108.5+0.4
LO3-Hg.+:04 179.0  163.5 172.7 (180)°

¢ From ref 9 and the compliation by Harmony, et al,, footnote ¢ to Table I,
b Geometrical parameter assumed in the refinement of the electron diffraction data.
¢ Bond distances in A, angles in degree.

151



Table III. Vibrational Frequencies and IR Intensities for the HCOOH Monomer/

DZ DZ+P
freq® int® freq® int°®  exptl assignment
A’ vy 4030 104 4116 116 3569° O-H
vy 3400 34 3203 53 2942° C-H
vy 1872 481 2015 533 1777° C=O0
vge 1519 7 1536 10 1381° H-C-O
vs 1382 22 1426 26 1223 H-0O-C
vg 1185 335 1268 301 1104° C-O
vy 648 71 690 62 625¢ 0O-C=0
A” wvg 1160 1 1183 0.3 1033%¢ H-C-O oop
v 680 310 693 201 642° H-O-C oop
¢ In em~,
® km/mol.
¢ From ref 15,
4 From ref 43,
¢ From ref 42,

! Note that the theoretical prediction are harmonic frequencies, while the experimental values are

the observed(anharmonic) fundamentals,
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Table IV. Vibrational Frequencies and IR Intensities for the Formic Acid Dimer
Equilibrium Geometry

DZ DZ+P exptl®
freq int freq int freq int assignment

A, v, 3620 0 38782 0 O-H

vy 3401 0 3303 0 2949 C-H

vz 1800 0 1927 0 1670 C=0

vy 1549 0 1561 0 1415 H-0-C

vy 1503 0 1527 0 1375 H-C-O

vg 1295 0 1357 0 1214 Cc-0

v; 696 0 732 0 677 0-C=0

g 209 0 182 0 190 0...0

veg 181 0 164 0 137 ~ O-H..-Oip
B, 1o 1184 0 1200 0 1060 6C-H oop

vy; 1029 0 935 0 60-H oop

vy, 262 0 250 0 230 O-H..:0 oop
A, vz 1190 43 1203 0.4 1050 6C~H oop

vi4 1075 566 985 357 917 strong §O-H oop

vis 188 24 174 13 163 medium O-H.:+O oop

vie 101 3 81 4 68 weak twist about C-H bond

B, wv., 3686 1551 3835 1575 3110 verystrong O-H
vig 3398 130 3300 156 2957 very strong C-H
vip 1840 1145 1983 1188 1754 verystrong C=O
vyo 1536 5 1551 19 1450 very weak HOC?
vy 1495 140 1505 75 1365 medium HCO®
v, 1289 549 1358 478 1218 very strong C-O
vz 117 95 747 85 697 medium 0-C=0
vy 249 54 223 48 248 strong O-H.--O1p

@ Experimental fundamentala for the dimer are reviewed in ref 15; intensity labels are from Millikan
and Pitzer, ref 10, and Clague and Novak, ref 12,
b These assignments are from DZ SCF theory and Bertie and Michaelien, ref 15. DZ+P SCF
theory reverses the identifications of vg0 and vy;.
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Table V. Dimer-Monomer Vibrational Frequency Shifts (in cm~!) for Formic Acid®

Aw(DZ SCF) Aw(DZ+P SCF) Av(exptl) assignment

A, 1 -410 -344 O-H

2 +1 +10 +7 C-H

3 -T2 -88 -107 C=0

4 +167 +135 +193 H-0-C

5 -16 -9 -6 H-C-O -

6 +110 +89 +110 C-O

7 +48 +42 +52 0-C=0
B, 10 +24 +17 +27 6C-H oop

11 +349 +242 60-H oop
A, 13 +30 +20 +17 6C-H oop

14 +395 +292 +276 60-H oop
B, 17 -344 -281 -459 O-H

18 -2 +7 +15 C-H

19 -32 -32 23 C=0

20 +154 +15 +227 H-C-0°

21 -24 +79 -16 H-0O-C@

22 +104 +90 +114 C-0O

23 +69 +57 +72 0-C=0

¢ These assignments are from DZ+P SCF theory. DZ SCF and Bertie and Michaelian reverse the
identifications of vy and vg,.

b Experimental Vibrational frequencies are from ref 10, 15, 42, and 43. Dimer frequencies with no
immediate counterpart in the monomer are excluded here.
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Table VI. Vibrational Frequencies (cm™!) and IR Intensities (km/mol) for HCOOD®

L w(theory) int(theory) v(exptl)® assignment
A1 3204 47 2938/2042 O-H

2 2995 76 2631 O-D

3 2010 511 1773 C=0

4 1530 12 1368 H-C-O

5 1327 235 1178 C-O

6 1105 59 972 D-0O-C

7 616 59 560 0O-C=0
A" 8 1182 1 1011 H-C-O oop

9 544 124 508 D-O-C oop

@ Bertle et al,, ref 16; Hisatsune and Heicklen, ref 42.
b All theoretical predications were made at the DZ+P SCF level of theory
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Table VII. Vibrational Frequencies (cm™*) and IR Intensities (km/mol) for (HCOOD)§

freq int® (dimer-monomer)? assignment
A, 1 3303 (2951) 0 +9 (+9/+13) C-H
2 2760 (-) 0 -235  (-) 0-D
3 1913 (1663/1679) 0 -97 (-110/-94) C=0
4 1539 (1383) 0 +9  (+15) H-C-0
5 1400 (1261) 0 +73  (+83) Cc-0
6 1175 (972) 0 +70 (0) D-C-0O
7 670 (624) 0 +54  (+64) 0-C=0
g 182 (-) 0 NC 0-.-0
9 160 (~144) 0 NC O-D---0 ip
B, 10 1197 (10607) 0 +15  (+497) §C-H oop
11 692 (-) 0 +148 (-) 60-D oop
12 244 (224) 0 NC O-D-- -0 oop
A, 13 1198 (1037) 3 +16  (+26) §C-H oop
14 741 (693) 221 +197  (+185) §0-D oop
15 166 (158) 11 (s)® NC 0-D. -0 oop
16 81 (68) 4 (m) NC twist about C-H bond
B, 17 3302 (2960) 102  (m) +8 (+18/+22) C-H
18 2793 (2068) 891 -202  (-563) O-D
19 1977 (1745) 1129 (vs) -33  (-28) C=0
20 1542 (1387) 50 (m) +12  (+19) H-C-O
21 1399 (1259) 371 (s) +72  (+81) Cc-0
22 1145 (1037) 93 (m) +40  (+65) D-0-C
23 690 (651) 91 (m) +74 (+91) 0-C=0
24 218 (240) 46 (vs)t NC 0...0

¢ Unless indicated, qualitative experimental intessity descriptions (in parentheses) are from Millikan

and Pitzer, ref 10.

% Intensity labels from far infrared spectrum of ref 11.
¢ All predictions were made at the DZ+P SCF level of theory. Experimental results are given in
parentheses. Note that theoretical vibrational frequencies are harmonic, while the experimental
frequencies are the observed (anharmonic) fundamentals, taken from Bertie, Michaelian, Eysel,
and Hager, ref 16. The controversial 13 is from Excoffon and Marechal, ref 13.

¢NC=no comparable monomer vibrational frequency.
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Table VIII. Vibrational Frequencies (cm™!) and IR Intensities (km/mol) for DCOOH®

w(theory) int(theory) v(exptl)® assignment

A1 4116 118 3566 O-H

2 2458 87 2218 C-D

3 1977 523 1760/1724 C=O

4 1413 5 1297 H-O-C

5 1311 254 1140 C-O

6 1083 45 970 D-C-O

7 683 62 620 0-C=0
A 8 1000 9 D-C-0 oop

9 681 188 665 H-O-C oop

¢ Bertie et al., ref 16; Millikan and Pitzer, ref 39a; Miyazawa and Pitzer, ref 39b.
> All theoretical predications were made at the DZ+P SCF level of theory.
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Table IX. Vibrational Frequencies (cm~!) and IR Intensities (km/mol) for (DCOOH)§

freq int® (dimer-monomer)®  assignment

A, 1 3782 (9 0 334 () O-H

2 2459 (2208) 0 +1  (-10) C-D

3 1896 (1643) 0 81 (-117/-81) C=0

4 1536 (1385) 0 +123  (+88) H-0-C

5 1380 (1230) 0 +69  (+90) C-0

6 1101 (994) 0 +18  (+24) D-C-0

7 725 (872) 0 +42  (+52) 0-C=0

8 180 () 0 NC 0...0

9 163 (~140) 0 NC O-H.--0 ip
B, 10 1013 (-) 0 +13 (=) 6C-D oop

11 934 () 0 +253  (-) 60-H oop

12 218 (202) 0 NC O-H. -0 oop
A, 13 1014 (890) 28 (mb) +14 (-) 6C-D oop

14 983 (930) 328 (mb) +302 (+265) §0-H oop

15 148 (-) 9 NC O--H.--0O oop

16 80 (-) 4 NC twist about C-D bond
B, 17 3834 (3098) 1599 (s) 282 (-468) 0-H

18 2456 (2251/2224) 199 (ms) -2 (+33/46) C-D

19 1956 (1726) 1191 (s) 21 (-34/+2) C=0

20 1497 (1360) 30 (w)  +84 (+63) H-0-C

21 1384 (1239) 389 (s +73 (+99) c-0

22 1103 (996) 62 (m)  +20 (+26) D-C-0

23 740 (695) 85 (m)  +57 (+75) 0-C=0

24 218 (-) 46 NC 0...0

¢ Experimental intensity descriptions are from Millikan and Pitzer, ref 10.
® NC= no comparable monomer vibrational frequency.
¢ All predictions were made at the DZ-+P SCF level of theory. Experimental results are given in
Note that theoretical vibrational frequencies are harmonic, while the experimental
frequencies are the observed (anharmonic) fundamentals, taken from Bertie, Michaelian, Eysel,

parentheses,

and Hager, ref 16.
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Table X. Vibrational Frequencies (cm~") and IR Intensities (km/mol) for DCOOD®

w(theory) int(theory) wv(exptl)® assignment

A1 2995 71 2632 O-D

2 2456 85 2232 C-D

3 1973 504 1735 C=0

4 1328 214 1170 C-O

5 1145 3 945 D-0-C

6 1061 54 1042 D-C-O

7 . 611 58 556 0O-C=0
A" 8 1000 10 873 D-C-O oop

9 526 111 491 D-0-C oop

o Bertie and Michaelian, ref 15; Millikan and Pitzer, ref 39a; Miyazawa and Pitzer, ref 39b.
b All theoretical predications were made at the DZ+P SCF level of theory.
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Table XI. Vibrational Frequencies (cm~?!) and IR Intensities (km/mol) for (DCOOD)§

freq int® (dimer-mounomer)®  assignment
A, 1 2759 () 0 236 (-) 0-D
2 2457 (2211) 0 +1 (-21) C-D
3 1887 (1648) 0 -86 (-87) Cc=0
4 1395 (1250) 0 +67 (+80) C-0
5 1196 (990) 0 +51  (+39) D-0-C
6 1091 (1081) 0 +30 (+45) D-C-O
7 665 (617) 0 +54  (+62) 0-C=0
8 180 (-) 0 NC 0.
9 159 (130) 0 NC 0-D---0 ip
B, 10 1012 (892) 0 +12  (+19) 6C-D oop
11 686 (-) 0 +160 (=) 60-D oop
12 214 (194) 0 NC O-D.. .0 oop
A, 13 1014 (890) 26 (w,b) 414 (417) §C-D oop
14 730 (678) 195 (s) 4204 (+187) 60-D oop
15 143 (135) 8 (W) NC O-D---0 oop
16 80 (68) 4 (w) NC twist about C-D bond
B, 17 2794 (-) 849 (-) =201 () 0-D
18 2455 (2226) 204 (s -1 (-6) C-D
19 1952 (1720) 1139 (vs) 21 (-15) C=0
20 1395 (1246) 321 (s) +67 (+76) c-0
21 1173 (1055) | 14 (w) +28  (+13) D-0-C
22 1085 (987/976) 88 (s) +24 (+42/+31) D-C-O
23 685 (642) 90 (s) +74  (+86) 0-C=0
24 213 (227) 44 (s) NC 0---0

¢ Experimental intessity designations (in parentheses) are from Millikan and Pitzer, ref 10, and
Clague and Novak, ref 12.
® All predictions were made at the DZ+P SCF level of theory. Experimental results are given in
parentheses. Note that theoretical vibrational frequencies are harmonic, while the experimental
frequencies are the observed (anharmonic) fundamentals, taken from Bertie, Michaelian, ref 15.

¢ NC= no comparable monomer vibrational frequency.
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Table XII. Raman Intensities for the Formic Acid Monomer®

freq exptl int theor int depolarization ratio

v(cm=1)® (counts/s)® (A4/amu) exptl theory

s A’ oy 3569 6 50.8 <«0.1 0.27
) 2942 sh 78.2 <0.3 0.25

v3 1777 9 8.5 0.1 0.21

) V4 1381 high T® 6.5 0.57
vs 1223 1.2 0.43

Ve 1104 3 2.3 0.1 0.13

N 77 625 3 3.0 0.1 0.55

AV g 1033 0.9 0.75

Ve 642 0.5 0.9 0.75

% Bertie and Michaelian, ref 15.
® Observed only at high temperature.
¢ The theoretical results reported were obtained at the DZ+P SCF level of theory.
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Table XIII. Raman Intensities for the Formic Acid Dimer, with Theoretical Results

obtained at the DZ+P SCF Level of Theory®

freq exptl int theor int depolarization ratio

| v(icm™)® (counts/s)® (A4/amu) exptl theory
Ay n 147.4 0.28
Vy 2949 100 203.1 0.1 0.26

V3 1670 32 12.7 <0.1 0.10

I 1415 8 12.5 0.5 0.49

Vs 1375 7 2.3 04 0.65

Ve 1214 10 6.3 0.06 0.10

vy 677 14 5.3 0.4 0.67

Vg 190 0.1 0.40

Vg 137 5 ‘ 02 0.75 0.70

B, vio 1060 3 14 0.75 0.75
1 0.5 0.75

V19 230 40 5.2 0.75 0.75

¢ Bertie and Michaelian, ref 15.
® Note that only Raman-allowed fundamentals of the dimer are included here.
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Table XIV. Summary of Total (in hartrees) and Relative (in kcal/mol) Energies
for the Formic Acid Monomer and Dimer

STO-3G DZ DZ+P exptl

monomer -186.2179 -188.7061 -188.8144

equilibrium dimer  -372.4599 -377.4429 -377.6516

D, for dimerization 15.1 19.3 14.3

zero-point vib corr -3.1 -2.5 -2.0

Dg for dimerization 12.0 16.8 12.3 <12.0°

A Hsgo 12.6 17.2 12.5 14.840.5°
14.141.5¢
11.740.1¢

% Reference 20.
b Reference 17.
¢ Reference 51.
9 Reference 52.
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Table XV. Vibrational Frequencies (cm™!) and IR Intensities (km/mol) for the
Formic Acid Dimer Transition State (Point Group D)

DZ DZ+P
freq int freq  int assignment
A, v 8412 0 3313 0 C-H
v; 1858 0 1845 0 H-0-C
vy 1479 0 1554 0 C-O
V4 788 0 821 0 H-C-O
Vs 536 0 555 0 O-H
By, we 1770 0 1910 0 C-O
vy 1486 0 1513 0 H-C-O
Vg 237 0 239 0 H-0O-C
vy 16631 0 16951 0 O-H
ng V1o 1189 0 12103 0 6C-H oop
vp 341 0 338 0 wag(CO,)
Bs, vi2 1527 0 1460 0 60O-H oop
Au Via 133 0 99 0 twist (COQ)
By, vi4 1574 571 1511 292 60-H oop
vis 1191 25 1209.8 26 6C-H oop

e 266 52 259 35 wag(CO,)
B,, 7 1804 1463 1927 1392 C-O

vig 1507 195 1524 134 H-C

V20 629 19 641 10 O-H
Bgu V921 3410 56 3311 79 C"H

vz 1468 1246 1532 707 C-O

Va3 930 4034 962 4887 O-H

Va4 700 2683 779 3508 O-H
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Table XVI. Summary of Total (in hartrees) and Relative (in kcal/mol) Energies
for the Formic Acid Dimer®

equilibrium dimer  transition dimer

reaction barrier

SCF/STO0-3G -372.4599 -372.4517 52
SCF/DZ -377.4429 -377.4203 14.2
SCF/DZP -377.6516 -377.6268 15.6
MP2/DZP -378.714650 -378.704473 6.40
MP3/DZP -378.719943 -378.706316 8.55
MP4(SDQ)/DZP -378.742985 -378.729396 8.53
MP4(SDTQ)/DZP -378.779543 -378.768345 7.09
CISD/DZP* -378.645884 -378.632637 8.16
MP2/TZ2P -379.024110 -379.011512 7.90
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Table XVII. Theoretical (MP2/DZP) Eqmlibrmm and Transition State Geome-
tries for the Formic Acid Dimer®®

Equilibrium Transition State

7(C1=0; 1,034 1271
r(Cy- oa) 1.320 1.271
r(Cy=Hy) 1.097 1,096
r(03-Hp) 1.003 1,203
(Oq++ Hy) 1.665 1.203
(G .. .Cy) 3.800 3.540
lOaﬂcl=Os 126.5 127.0
LH7-Cy=0p 121.9 116.5
tH7-C1-03 111.6 116.5
LCy-03-Hy 109.1 1154
LO3-Hg .0y 178.4 177.7

% See Figure 1 in Chapter 4 for the atomic labelings,
® Bond distances in A, angles in degree,
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Table X VIIL Vibrational Frequencies for the Formic Acid Dimer Equilibrium and
Transition State Geometry

equilibrium transition state
A, v; 8198 |A, v 3195
Vo 3185 Vq 1728
V3 1739 V3 1416
vy 1502 V4 745
vs 1419 Vs 522
Ve 1275 Blg Vg 1808
V7 679 | 44 1423
Vg 208 Vg 231
vg 171 ve 1199
Bg V1o 1083 Bzg V10 1063
11 1006 V11 325
V12 280 Bag Vi2 1401.5
Au V13 1125 Au Vi3 86
Vi4 1019 B1u V14 1454
Vis 189 V15 1064
Vie 79 Vg 241
Bu V17 3312 Bzu Vir 1793
V18 3181 Vis 1621
15T 1806 Vg 1419
V40 1473 Va0 593
Va1 1413 Bau vn 3194
Va2 1277 Va2 1517.5
ve3 710 Va3 1359
Vog 277 Vag4 794
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Table XIX. Locations of the Global Minima in Normal Mode Coordinates®

A, Symmetry ab initio Newton-Raphson
reactant product reactant product

Q) -0.06  (-0.06) -0.06  (-0.06)
) 6.5 (6.5) 6.5  (6.5)
) -84 (-8.4) -85  (-8.5)
Q" 272 (27.2) 271 (27.1)
() 943  (94.3) 94.3  ( 94.3)
QY 31 (3.1) 31 (3.1)
B 1.5 (-1.5) 1.5 (-1.5)
Q" 7.9 (75.9)  -158  (75.8)
) 464 (-46.4) 46.4  (-46.4)

¢ The subscripts of each modes are identical to those in Table XVIII, At the transition state, Qp is
the reaction coordinate. Modes 1-6 have A; symmetry in Dy; and behave even-coupling, Modes
6-9 have By, in Dgj, and behave odd-coupling.
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