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Abstract—Most analyses of ChIP-chip in vivo DNA binding
have focused on qualitative descriptions of whether genomic
regions are bound or not. There is increasing evidence, however,
that factors bind in a highly overlapping manner to the
same genomic regions and that it is quantitative differences
in occupancy on these commonly bound regions that are the
critical determinants of the different biological specificity of
factors. As a result, it is critical to have a tool to facilitate the
quantitative visualization of differences between transcription
factors and the genomic regions they bind to understand each
factor’s unique roles in the network. We have developed a
framework which combines several visualizations via brushing-
and-linking to allow the user to interactively analyze and
explore in vivo DNA binding data of multiple transcription
factors. We describe these visualization types and also provide
a discussion of biological examples in this paper.
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I. INTRODUCTION

Chromatin immunoprecipitation followed by microarray
analysis (ChIP-chip) [1] has been widely used to investi-
gate interactions between transcription factors and DNA in
vivo on a genome-wide scale. These experiments generate
massive heterogeneous data sets, and many software tools
have been developed to analyze them. These tools typically
identify the locations of genomic regions bound by specific
transcription factors. However, especially those that are web-
based applications, provide only limited interactive opera-
tions. Furthermore, they lack the ability to help biologists
compare and analyze the behavior of different transcription
factors quantitatively. This is a serious limitation as recent
studies [2] [3] in Drosophila melanogaster show that many
factors bind quantitatively to overlapping sets of thousands
of genomic regions in vivo. Regions bound at high levels are
quite different in character from those more poorly bound,
with only the more highly bound regions being functional.
To better understand how transcriptional regulators behave
in cells, it is thus important to have an analysis tool that
can quantitatively analyze higher-order differences in DNA
binding patterns between factors.

Here we present a framework to facilitate such analyses.
It combines the track views present in a traditional genome
browser along with a correlation table, scatter plots and

parallel coordinates. The design is based on two important
visualization principles: multiple views and brushing-and-
linking. Multiple views allow the user to focus on different
aspects of interest in their individual visualizations. While
brushing-and-linking makes it possible to compare interac-
tively the same selected data in alternate views along with
their different contexts.

Section II summarizes other previous ChIP-chip analysis
and visualization tools. Section III explains the input and
data processing required for our tool. Section IV introduces
the different visual components used in our framework.
Section V demonstrates the use of our tool with biological
examples. Finally, we present ideas for possible future
research directions and conclude our paper in Section VI.

II. PREVIOUS WORK

There are a number of integrated analysis tools for an-
alyzing ChIP-chip data. For example, CisGenome [4] can
perform basic analysis tasks, such as peak detection, false
discovery rate computation, motif analysis and so on. Most
tools are designed to do computationally intensive tasks
rather than user-interactive analysis, or they analyze data for
only one specific transcription factor at a time. They do not
allow quantitative comparison of results for many factors at
once directly within the tool.

Popular genome browsers, such as [5] [6] [7], use track
views to display genomic data associated with each base pair
position of a chromosome. Each track usually displays only
properties such as sequence data, annotations from different
gene models and experimental data from microarrays, ChIP-
chip, etc. We use track views for the same purpose in our
framework. Scatter plots are commonly used to illustrate the
correlation and other relationships between two variables.
Our visualization tool was inspired by GeneBox [8], which
uses scatter plots to visualize the results of microarray ex-
periments. Parallel coordinates were developed by Inselberg
[9] [10] and Wegman [11] and are a common information
visualization technique for high-dimensional data sets.

In the field of information visualization, linking multi-
ple views to assist the user to explore and analyze high-
dimensional or complex data is an established concept.



Examples include the work of Henze [12] in computational
fluid dynamics data and the WEAVE system [13] that
uses Physical Views and Information Visualization Views
to explore cardiac data. Both methods use linked views to
define features by combining selected subsets of the data
in individual views. Our framework was also inspired by
PointCloudXplore (PCX) [14], which links various physical
views and abstract views to help scientists discover new
relationships in 3D, cellular resolution gene expression data
from Drosophila embryos.

III. INPUT AND DATA PROCESSING

The ChIP-chip data obtained from experiments are noisy
and cannot be directly used as input for analysis tools.
In our implementation, we smooth the data by using a
sliding window of 675 bp (“base pair”) and compute the
average of all data within this window. Other noise-reduction
techniques can also be applied instead.

To understand the relationships among transcription fac-
tors and their roles in the genetic network, we start by
calculating the correlations for all pair-wise comparisons
among transcription factors, e.g., fa and fb, fa and fc,fb
and fc, etc. We focus on genomic regions for one of each
pair of factors that have been identified as significant above
some defined false discovery rate (e.g. 1% FDR). Any
existing peak detection tool can be applied to determine
these “primary peaks” of binding along with the relative
ChIP-chip scores at each peak (i.e., the implied level of
transcription factor occupancy). Thus, for each transcription
factor, the input for our framework should contain at least
the genome wide ChIP-chip scores, their locations in base
pair, and also the locations of detected primary peaks.

Because the primary peak of fa does not imply fb will
also have a primary peak at the same location, we compute
correlation coefficients between pairs of factors as follows.

i A transcription factor, fa, is first chosen as the base.
ii A subset of its primary peaks are selected for a given

analysis, for example, the top 100.
iii ChIP-chip scores of these two transcription factors, fa

and fb, are looked up at the peak locations of fa to
form pairs of values. These pairs of ChIP-chip scores
are used as coordinates for dots in a scatter plot and
to calculate the correlation coefficient. A similar look-
up operation for score pairs is also used for parallel
coordinates.

iv This process is repeated by choosing other transcrip-
tion factors in turn as the base.

IV. VISUALIZATIONS

Our current framework consists of a correlation table,
track views in the genome browser, scatter plots and par-
allel coordinates. All these views are coupled together via
brushing-and-linking. Detailed descriptions of these compo-
nents are provided in the following sub-sections.

Figure 1. An example of the correlation table, showing correlation coeffi-
cients between all possible pair-wise comparisons among the transcription
factors, bicoid (bcd), giant (gt), krüppel (kr), hunchback (hb), snail (sna),
twist (twi) and schnurri(shn). The coefficients were calculated using ChIP-
chip data from experiments using Drosophila melanogaster embryos. For
simplicity, we only show two digits after the decimal point. The original
value is shown in the tool-tip, or in the status bar when the cell is clicked
for selection. The background color of each cell is interpolated using the
color bar to the right (suggested by ColorBrewer, http://colorbrewer2.org)
according to the correlation coefficient. Corresponding visualizations of
cyan, blue, green and magenta boxes are shown in Figure 3(a), 3(b), 4(b)
and 4(c), respectively.

A. Correlation Table

The correlation table window is the central graphical user
interface (GUI) and the starting point of our analysis tools.
Using this table, it is possible to load data sets of tran-
scription factors and adjust parameters such as the number
of primary peaks used in the correlation computation. The
correlation table also triggers the creation of new views and
hence serves as a view factory. Clicking on a table cell
(i.e.,, a correlation coefficient) creates a new view with the
scatter plot of that pair of transcription factors; clicking on a
transcription factor name in the vertical table header shows
a corresponding parallel coordinates view.

Figure 1 shows an example of the correlation table. In this
table, the selected cell indicated by the cyan box represents
the Pearson correlation coefficient of bicoid (bcd) versus
hunchback (hb). Although other kinds of correlation coeffi-
cient, such as rank correlation, also could be used, a Pearson
correlation places more emphases on the quantitative aspects
of the data and thus is more appropriate. The coefficient was
computed by first locating the top 100 primary peaks for bcd,
and then finding the corresponding ChIP-chip scores for hb
at those locations to form 100 pairs of data. Thus, each row
in the table is computed based on the same locations of top
primary peaks detected in the corresponding transcription
factor shown in the vertical header. Because the primary
peaks for each factor are not coincident in the genome, the
table is not quantitatively symmetrical, i.e.,, bcd versus hb
and hb versus bcd have different values.



B. Track View

The track view is used to display annotations, sequences,
ChIP-chip scores and other quantitative data using nucleic
base pairs as abscissa like those in a typical genome browser.
The user can switch the chromosome they would like to
explore through the graphics user interface. Multiple tracks
can be added into the view to display different properties
at once. Besides displaying ChIP-chip scores, the track
view allows the user to discover relationships between a
transcription factor and DNA, such as where binding regions
are located. Other visualization tools in our framework focus
instead on relationships among transcription factors.

Figure 2 shows the track view window of the example we
discussed in Figure 1. We hide transcription factors other
than bcd and hb in this window for simplicity. The user can
generate multiple sets of selections, with the same color or
different colors, in the track view window, and they will be
shown in other views via brushing-and-linking. The three
regions selected in Figure 2 are also shown in Figure 3 and
Figure 4.

C. 2D Scatter Plot

The scatter plot is conceptually the simplest way to inter-
pret each correlation coefficient in the correlation coefficient
table. The relationship between two transcription factors is
visualized in ChIP-chip score space. The X-axis represents
the ChIP-chip score space of the reference transcription
factor, while the Y-axis represents the ChIP-chip score
space of the second factor. For example, Figure 3(a) shows
the corresponding scatter plot of bcd versus hb selected
in Figure 1; Figure 3(b) shows the scatter plot for hb
versus bcd. Besides showing the correlation, scatter plots can
easily show any non-linear relationship, support discovery of
clusters of dots, or suggest more complicated relationship
between two transcription factors in the plot.

Several components in the scatter plot window assist the
user in navigating and interacting with the data. A gray
bounding box represents the value range in ChIP-chip score
space. It might be shown in an anisotropic coordinates for
better visual results. Grids and scales are adjusted automat-
ically when the user zooms in or out, or translates the view.
Furthermore, an overview window at the corner provides
a global context. In the overview window, the gray box
indicates the value range in the ChIP-chip score space. A
green box represents the viewing area of the primary scatter
plot window in isotropic coordinates. The intersection point
of the vertical line and the horizontal line in the overview
indicates the center of the primary scatter plot window. This
overview is particularly useful when the user zooms into
the plot to explore only a small subsection. Chromosome
selectors also provide means to explore different parts of the
data. The user can also obtain each dot’s basic information,
such as its rank, base pair position, chromosome name and

both transcription factors’ ChIP-chip scores, by clicking on
the dot.

D. Parallel Coordinates

Although one can use multiple 2D scatter plots to discover
relationships among more than two transcription factors, it
is not easy to work with multiple scatter plots at once.
Parallel coordinates provide an alternative way to visual-
ize or analyze high-dimensional or multi-variate data sets.
Several examples are shown in Figure 4. Each vertical axis
in the plots represents the ChIP-chip score space of an
individual transcription factor, the scores being normalized
by each factor’s maximum score respectively. The red thick
vertical part of one axis shows the score range of the base
transcription factor used to compute correlation coefficients
for the row in the correlation table. The blue thick vertical
portions on the other axes represent the corresponding score
ranges for the other factors. Corresponding ChIP-chip scores
for transcription factors at the same base pair location are
connected by the same polyline.

Since there are many polylines usually overlapping in
the parallel coordinates, it can be difficult to see important
information. We therefore implemented three enhancements
to make it easier to discover relationships among factors.
First, we added a highlight mode where the polyline under
the cursor is enhanced while the other polylines are dimmed
(Figure 4(c)). Detailed information about this highlighted
polyline, such as rank and ChIP-chip scores, is displayed in
the status bar. Second, we color polylines based on their
rank for the base transcription factor (Figure 4(a)). This
coloring scheme can help the user observe when peaks with
different binding strength have different relationships with
other transcription factors. Third, the user can re-arrange the
order of axes by dragging them or the transcription factor’s
label in the horizontal header of the correlation coefficient
table, allowing better visualization of relationships between
neighboring axes. Our brushing-and-linking mechanism up-
dates all parallel coordinates windows to reflect this changed
order of axes.

E. Brushing-and-Linking

ChIP-chip scores of different transcription factors along
with related sequence data and annotation information form
a complicated high-dimensional data set. Although each of
the different visualizations introduced in the previous sub-
sections can help the user focus on selected dimensions
to explore and define some important features, many other
features are usually more complicated and cannot be an-
alyzed or understood well by a single visualization. One
intuitive way to understand a high-dimensional feature is by
combining information projected onto its sub-spaces. In our
framework, each visualization type conceptually represents
a sub-space of the original data set. The user can select a
subset of data in any visualization (except the correlation



Figure 2. An example of the track view window. The three tracks shown represent gene annotations and ChIP-chip scores for bcd and hb, respectively.
There are two regions brushed in red (α and γ) and one in blue (β) around eve.

(a) bcd versus hb (b) hb versus bcd

Figure 3. Shown are the corresponding scatter plots when a user clicks on the cells indicated by the cyan box (a) and the blue box (b) in the correlation
table shown in Figure 1, respectively. In panel (a), the X coordinate of each dot represents the ChIP-chip score for each of the top 100 primary peaks in
bcd and each dot’s Y coordinate represents the corresponding ChIP-chip score in hb at the same base pair location. (b) shows the equivalent coordinates
for hb on the X axis and bcd on the Y axis. Normal dots are shown in gray. Selections made in Figure 2 are also shown in these plots. The status bar
shows the detailed information of the dot clicked by the user in the scatter plot.

table) to define a feature or area of interest. Brushing-and-
linking allows the user to observe the same set of selected
data in other visualizations, i.e., in other sub-spaces. Our
framework supports multiple brushes, i.e., multiple sets of
selection, in different colors to assist in the comparison of
multiple features at the same time. Figure 2, Figure 3 and
Figure 4 together provide an example of the use of brushing-
and-linking.

V. CASE STUDY

The tools described in this paper use the output of ChIP-
chip experiments, files that contain the normalized probe-
level enrichment scores genome wide, and the information of
the bound regions identified above a defined FDR including
the genomic location and the ChIP-chip score of each region.

Our tool allows users without bioinformatics background
to explore the functional relationships between factors by
examining how the levels of binding by one factor or a group
of factors at each genomic region correlates with those of
other factors quantitatively.

We use transcription factors involved in Drosophila em-
bryogenesis to demonstrate the usefulness of these tools.
Drosophila embryo development is governed by several
groups of transcription factors that coordinate different as-
pects of patterning. Along the anterior-posterior (A-P) body
axes, pattern formation is initiated by the A-P early factors,
bcd, cad, hb, kr, gt, kni, tll and hkb, which act in concert
to regulate the latter patterning of the A-P pair-rule factors.
Along the dorsal-ventral (D-V) axes, a separate group of D-
V factors, including dl, sna, shn and twi regulate patterning.



(a) Rank-coloring based on hb (b) based on bcd (c) based on hb, in highlight mode

Figure 4. Examples of parallel coordinates. In (a), polylines are colored by their ranks in hb ChIP-chip scores. From high ranks to low ranks, red, yellow,
green, cyan and blue represents 20 polylines, respectively. Panel (b) and (c) correspond to the parallel coordinates plots when a user clicks on the green
box, and the magenta box in Figure 1, respectively. Color polylines in (b) and (c) represent selections made in Figure 2 via brushing-and-linking.

Factors that belong to the same functional group tend to
regulate transcription via the same genomic regions, and as
a result it is expected that their binding shows a preferential
correlation. Figure 1 shows that indeed this is the case.
When the binding levels for the top 100 most highly bound
regions of each factor are compared, the binding by factors
among the A-P early group (bcd, gt, kr and hb) tend to
correlate more highly with each other than they do with
members of the D-V group (twi, sna and shn). As has been
shown previously, when additional factors are included in
such analysis, more functional groups can be revealed [3].
Thus the correlation in binding levels can be useful guide
to whether transcription factors are functionally related.

While such a correlation analysis can reveal functional
relatedness between factors, the relationship between any
two factors is usually more complex. Factors from different
functional groups may regulate the same genes. For example,
while the expression of most A-P and D-V factors are
primarily regulated by members of the functional group they
belong to, they are each to a small degree also regulated by
factors of the other groups [15] [3]. Also, while members
of the same class often share the same targets, there are
important quantitative differences in the degree to which
each factor controls these targets. Such complexities can be
explored by either scatter plot or parallel coordinates plots.
For example, as the scatter plots in Figure 3 show, while
there are genomic regions that are bound strongly by both
bcd and hb (e.g., region α), other regions are bound strongly
by bcd but weakly by hb (e.g., region γ), and vice versa
(e.g., region β). Figure 2 also shows the same bcd and hb
binding patterns to these three example regions using our
genome browser view. These regions are each well studied
enhancer elements of the eve gene: α is the eve stripe 2
enhancer through which bcd and hb synergistically activate

eve transcription [16]; γ is the eve stripe 1 enhancer for
which bcd is the chief activator [17]; and β, the eve stripe
4/6 enhancer which hb represses, while bcd has no known
functional role [17].

Parallel coordinates plots also support exploration of
complex aspects of binding by multiple factors. Figure 4(a)
shows that hb binding overall has a higher correlation with
the other A-P factors, bcd, gt, and kr, than it does with
the D-V factors, sna, twi, and shn. However, some regions
that are strongly bound by hb are at least modestly bound
by D-V factors, suggesting that the associated genes may
be regulated by both sets of factors. Figure 4(b) shows the
example genomic regions α and γ highlighted, allowing one
to quickly see that the eve stripe 2 enhancer (α) is bound
strongly not only by bcd and hb, but also by kr and gt (two
factors known to be important for defining the expression
boundaries of eve stripe 2), but not by the other factors
included in this analysis, whereas the eve stripe 1 enhancer
(γ) is only strongly bound by bcd. Similarly, Figure 4(c)
shows that site β (eve stripe 4/6) is bound only by hb.

VI. POSSIBILITIES FOR FUTURE RESEARCH AND
CONCLUSIONS

Traditional ChIP-chip tools focus on fundamental analy-
ses such as locating binding regions. We have presented a
framework which combines several visualizations using to
analyze higher-order relationships among different transcrip-
tion factors in ChIP-chip data. We also have demonstrated
using biological examples how easy-to-use and valuable this
framework is for discovering functional relationships among
factors.

There are still several challenges that remain to be tackled.
One is to integrate more low-level analysis tools and also
more visualization types into this framework to make it more



powerful and useful. Furthermore, although our framework
works perfectly on a local computer, it is desirable to be
able to access remote databases directly. When analyzing
up to several hundred transcription factors, memory usage
becomes a critical problem due to the massive size of
each transcription factor’s ChIP-chip data set. One could
also further improve the efficiency of data structures and
algorithms.
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