skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis, structure, and reactivity of high oxidation state silver fluorides and related compounds

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/101247· OSTI ID:101247
 [1]
  1. Univ. of California, Berkeley, CA (United States)

This thesis has been largely concerned with defining the oxidizing power of Ag(III) and Ag(II) in anhydrous hydrogen fluoride (aHF) solution. Emphasis was on cationic species, since in a cation the electronegativity of a given oxidation state is greatest. Cationic Ag(III) solv has a short half life at ordinary temperatures, oxidizing the solvent to elemental fluorine with formation of Ag(II). Salts of such a cation have not yet been preparable, but solutions which must contain such a species have proved to be effective and powerful oxidizers. In presence of PtF6-, RuF6-, or RhF6-, Ag(III) solv effectively oxidizes the anions to release the neutral hexafluorides. Such reactivity ranks cationic Ag(III) as the most powerfully oxidizing chemical agent known as far. Unlike its trivalent relative Ag (II) solv is thermodynamically stable in acid aHF. Nevertheless, it oxidizes IrF6- to IrF6 at room temperature, placing its oxidizing potential not more than 2 eV below that of cationic Ag(III). Range of Ag2+ (MF6-2 salts attainable in aHF has been explored. An anion must be stable with respect to electron loss to Ag2+. The anion must also be a poor F- donor; otherwise, either AgF+ salts or AgF2 are generated.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC03-76SF00098
OSTI ID:
101247
Report Number(s):
LBL-37334; ON: DE95016458
Resource Relation:
Other Information: TH: Thesis (Ph.D.); PBD: May 1995
Country of Publication:
United States
Language:
English