

2

WSRC-TR-92-132

**CASSINI PU-238 PROGRAM SPECIFICATIONS FOR
PLUTONIUM DIOXIDE POWDER FOR GENERAL PURPOSE
HEAT SOURCE FUEL (U)**

by J. W. Barber

WSRC-TR-92-132

Westinghouse Savannah River Company
Savannah River Site
Aiken, South Carolina 29808

DE93 006348

Other Authors:

This paper was prepared in connection with work done under Contract No. DE-AC09-89SR18035 with the U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.

Sc

DISTRIBUTION STATEMENT

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P. O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401.

Available to the public from the National Technical Information Service, U. S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

389658

WSRC-TR-92-132
March 10, 1992

SRL
CASSINI Pu-238 PROGRAM RECORD COPY

Specifications For Plutonium Dioxide Powder
General Purpose Heat Source Fueled Clad Fabrication (u)

Prepared By:

Date: 4/10/92

James W. Barber, Senior Engineer A
Westinghouse Savannah River Company

Approved By:

Date: 4/10/92

W. B. Boore, WSRC, Pu-238 Program Manager
Westinghouse Savannah River Company

Date: 4/20/92

Robert G. Lange, Director, Department of Energy,
Office of Special Applications

Date: 4/14/92

Gordon M. Nichols, Chief of Programs Branch,
Separations Division, Department of Energy,
Savannah River Operations Office

Date: 4/16/92

Wayne R. Amos, Programs Manager
EG&G Mound Applied Technologies

Date: 4/16/92

Roy W. Zocher, NMT-9 Group Leader
Los Alamos National Laboratory

WSRC-TR-92-132
MARCH 10, 1992

Specification Approval (Continued)

[REDACTED] Date: 4/22/92

R. J. Hemler, Manager, RTG Programs
General Electric Company

[REDACTED] Date: 4-20-92

Arthur S. Mehner, Manager, Isotopes Project Group
Department of Energy,
Office of Special Applications

[REDACTED] Date: 4-20-92

Beverly A. Cook, Manager, Operations Group
Department of Energy,
Office of Special Applications

**Cassini Pu-238 Program
Specifications For Plutonium Dioxide Powder
For General Purpose Heat Source Fuel**

1.0 GENERAL

1.1 Scope

This fuel specification defines the chemical and physical requirements for plutonium-238 isotope in the plutonium dioxide powder form. Westinghouse Savannah River Company (WSRC) shall provide plutonium-238 isotope, in the oxidized chemical form, by the plutonium oxalate 3+ precipitation method to Los Alamos National Laboratory (LANL). A temperature above $740^{\circ}\text{C} \pm 60^{\circ}\text{C}$ for 3 ± 0.5 hours will be used to calcine the oxalate precipitate.

1.2 Definition

1.2.1 Fuel Powder Lot

That quantity of plutonium-238 isotope contained within each EP-61 shipping container, comprised of material taken from one or more fuel powder precipitations, shall be identified as a "Fuel Powder Lot" for purposes of chemical analysis. The fuel powder lot acceptance by LANL shall be based upon replicate measurements upon a single representative sample from each container.

2.0 APPLICABLE DOCUMENTS

2.1 Information and Reference Documents

The following documents provide the basis and the methods for determining the isotopic and chemical characteristics of the plutonium dioxide powder for product evaluation, safety testing, and flight quality fueled clad fabrication for the Cassini Program:

<u>Procedure Number</u>	<u>Operation Title</u>
WSRC L3.5, 2M41.1	Uranium or Plutonium Isotopic Abundance Analysis, Mass Spectrometry Method
ANC-DE-1-SC-25, R2	Spectrochemical Analysis
ANC-DE-1-MS-3, R4	Uranium & Plutonium Isotopic Composition Analyses
ANC-DE-1-RC-7, R3	Actinide Analysis
ANC-DE-1-PA-27, R4	Total Plutonium
TBD	Plutonia Powder Acceptance
TBD	MRB Board Members and Charter

2.2 Precedence of Documents

In the event of conflict between this specification and any other documents, this specification shall prevail.

3.0 **REQUIREMENTS**

Westinghouse Savannah River Company and Los Alamos National Laboratory shall conform to the following requirements.

3.1 **Specification Changes**

Changes in this specification shall be reviewed and approved in accordance with the "Change Control Board - Membership and Responsibilities", as appropriate as defined in the "Interface Working Agreement for Encapsulated Plutonium-238 Fuel Form Production", (Latest Revision)

3.2 **Non-Conforming Material**

Plutonium dioxide powder which does not comply with requirements in this specification shall be evaluated to determine proper disposition and corrective action in accordance with the "Material Review Board - Membership and Responsibilities", as defined in the "Interface Working Agreement for Encapsulated Plutonium-238 Fuel Form Production", (Latest Revision).

3.3 **Quality Assurance**

All work performed by LANL shall comply and be in accord with HS-QA-PD-8, "LANL Quality Assurance Program Plan", Revision 1, July 12, 1991, HS-QA-PD-9, "Supplemental Procedure", Revision 0, October 25, 1991 and DOE Order 5700.6C dated August 21, 1991. WSRC shall comply and be in accordance with DOE Order 5700.6C dated August 21, 1991 or applicable DOE field office guidance.

4.0 POWDER QUALIFICATIONS

4.1 Plutonium-238 Dioxide Powder

The plutonium dioxide utilized for the Cassini program shall come from the Pu-238 inventory located at the various DOE contractor plants and laboratories. This material shall be a chemically recovered product of unblended or isotopically blended PuO₂. It shall be calcined and derived from plutonium 3+ oxalate precipitated in the WSRC HB-Line Facility using the reverse strike method. It shall meet the limits set forth in this specification.

4.2 Plutonium Composition Requirements

4.2.1 Plutonium-238 Isotopic Content

4.2.1.1 The Non Flight Unit Test Program shall use a combination of low and high isotopic material of both blended and unblended plutonium dioxide powder:

The unblended plutonium dioxide powder will be utilized to support the Recharacterization Program. 83.0 to 85.5 percent of the total mass of the contained plutonium isotopes (Pu-238, Pu-239, Pu-240, Pu-241, Pu-242) shall be of the plutonium-238 isotope at the WSRC date of analysis.

The blended plutonium powder will be utilized in the Qualification, and Safety Testing Programs. 78.0 to 82.0 percent of the total mass of the contained plutonium isotopes (Pu-238, Pu-239, Pu-240, Pu-241, Pu-242) shall be of the plutonium-238 isotope at the WSRC date of analysis.

4.2.1.2 The Flight Unit Program shall consist of plutonium dioxide powder blended to a uniform isotopic content. 83.0 ± 1 percent of the total mass of the contained plutonium isotopes (Pu-238, Pu-239, Pu-240, Pu-241, Pu-242) shall be of the plutonium-238 isotope at the WSRC date of analysis.

4.2.1.3 The mass fraction (expressed as a percent) of each plutonium isotope, relative to the total plutonium content, shall be measured and confirmed by LANL as cited in the the product description supplied from WSRC. The measurement shall be determined by mass spectrometry.

4.3 Plutonium-236

Plutonium-236 isotope shall not exceed 1 microgram/gram of the total plutonium content at the date of fuel precipitation and at the date of confirmatory measurement performed by LANL.

4.4 Actinide Impurities

The sum of the actinide impurities neptunium-237, americium-241, uranium, and thorium shall not exceed 1% of the total plutonium content when back decayed to the date of fuel precipitation. On the same basis no individual actinide impurity shall exceed 0.5%.

4.5 Nonactinide Cationic Impurities

The limits established for the nonactinide cationic impurities listed below are those established for material acceptance. Impurity levels are to be determined by the method cited in this specification (Section 5.5). Impurity levels exceeding these limits are to be reviewed by the established program MRB's to determine material disposition.

Table 1
Impurity Limits

<u>Element</u>	<u>Micrograms/Gram of PuO₂</u>
Al	100
B	5
Be	5
Ca	150
Cd	25
Cr	175
Cu	25
Fe	400
Mg	25
Mn	25
Mo	50
Na	100
Ni	100
P	20
Pb	100
Si	150
Sn	25
Zn	50

5.0 Powder Analysis

5.1 Calorimetric Acceptance

Each powder lot shall be measured for total thermal emission rate upon receipt by LANL. The measurement shall be to a confidence limit of \pm 1.0%.

5.2 Isotopic Acceptance

All powder lots will be measured upon receipt, by a gamma ray spectrometer, as a preliminary acceptance assessment of the Pu-238, Pu-239, Pu-241 content. The measurements shall be to a confidence limit of \pm 2.0% for Pu-238 and to \pm 15.0% for the Pu-239 and Pu-241 isotope.

5.3 Isotopic Composition

Isotopic composition shall be determined by mass spectrometry at both WSRC and at LANL. The WSRC measured values shall be used in the powder description for receipt of shipments.

5.4 Mass Loss on Ignition

WSRC shall determine a weight loss on ignition for each powder lot. Ignition loss shall indicate less than 0.3% of total sample mass decrease after ignition heating at $700^{\circ}\text{C} \pm 7^{\circ}\text{C}$ in air for 2.25 hours \pm 15 minutes.

5.5 Spectrographic Analysis

LANL shall perform a spectrographic analysis of each fuel powder lot received from WSRC to determine the impurity level in the plutonium dioxide powder. All analysis are to be replicated and results compared with the impurity limits established in Table 1.

5.6 Notification of Analysis

5.6.1 Westinghouse Savannah River Company shall provide an isotopic analysis of the plutonium dioxide powder. All shipments will comply with DOE order 5633.3 requirements.

5.6.2 Los Alamos National Laboratory shall provide Westinghouse Savannah River Company with results of analyses for each powder lot received within five (5) working days of completion of analysis. Results of these analyses shall be conveyed to WSRC by facsimile, followed by transmission of hard copies of these data.

6.0 Records

6.1 Record Retention

All production and analytical data shall be retained by WSRC and LANL to confirm that program specifications are being met. Original records for manufactured plutonium dioxide powder and heat sources shall be maintained for a minimum of 30 years beyond the approval date for this specification date. These records shall be retained for retrieval and inspection by DOE or by designated organizations in accordance with DOE requirements and specifications.

MARCH 10, 1992

7.0 References

- 7.1 PuFF FEED MATERIAL ACCEPTANCE, DPSOL 235-F-PuFF-3251 Revision 8, Separations Department, June 21, 1983.
- 7.2 238PuO₂ FFFC POWDER, DPSTS-235-F-PuFF-5.03, November 6, 1978.
- 7.3 General Heat Source (GPHS) Specifications, DPSP-79-1076, D. K. Bickford, January 20, 1980
- 7.4 238Pu Fuel Form Processes Bimonthly Report, November/December 1977. E. I. du Pont de Nemours and Co., Savannah River Laboratory, Aiken, SC.
- 7.5 238Pu Fuel Form Processes Monthly Report, June 1976. E. I. du Pont de Nemours and Co., Savannah River Laboratory, Aiken, SC.
- 7.6 238Pu Fuel Form Processes Monthly Report, October 1975. E. I. du Pont de Nemours and Co., Savannah River Laboratory, Aiken, SC.
- 7.7 GPHS FUEL SPECIFICATIONS - NONACTINIDE IMPURITIES, Memorandum, J. D. SCARBROUGH-M. L. LATIMER to R. S. SWINGLE, March 24, 1980.
- 7.8 INTERFACE WORKING AGREEMENT for ENCAPSULATED PLUTONIUM-238 FUEL FORM PRODUCTION REVISION 2, OCTOBER 1991(Draft).
- 7.9 Conversation Concerning Actinide and Nonactinide Impurities in 238PuO₂, J. W. Barber with D. K. Bickford, January 9, 1992.
- 7.10 PLUTONIUM-238 DIOXIDE POWDER MATERIAL SPECIFICATION, Roy W. Zocher, February 1, 1992(Draft).
- 7.11 Comments from Material Specification Meeting, February 6, 1992.

7.0 References(continued)

7.12 Recommendations for Flowsheet for the Pu-238 Fuel for the Boost Surveillance and Tracking System, DPST-86-371, D. H. Taylor and D. F. Bickford, April 11, 1986.

7.13 Ir/PuO₂ COMPATIBILITY: TRANSFER OF IMPURITIES FROM PLUTONIUM DIOXIDE TO IRIDIUM METAL DURING HIGH TEMPERATURE AGING, W. H. Christie, D. Pavonne, D. H. Taylor, January, 1984.

DATE
FILMED

3 / 10 / 93

