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Programmability and Performance Issues: the Case

of an Iterative Partial Differential Equation Solver*

Chinhyun Kim Jean-Luc Gaudiot Wlodek Proskurowski

Electrical Engineering-Systems Dept. Mathematics Dept.
University of Southern California University of Southern California

Los Angeles, CA 90089-2563 Los Angeles, CA 90089-1113

Abstract in the language semantics. These features allow a pro-
grammer to concentrate on the implementation details

In this paper, we use a specific example to discuss o, the algorithm at hand without worrying about par-
the viability of functional programming in the context allelization and other low-level machine mechanisms.

of parallel computing. The traditional argument for The drawback of fimctional languages, however, have
functional languages has been programmability. In- been performance. Programming in functional lan-
deed, due to high-level abstractions and the implicit guages can be a double-edged sword. That is, while
parallelism provided by functional languages, program- high-level abstractions free programmers from low-
mers are free to concentrate on the implementation level details, it could be difficult to achieve good per-
of the algorithm at hand without being burdened with formance.

low-level machine execution details. We further report Much work has been done in compilation techniques
that it is possible to deliver both programmability and to improve the performance of functional languages

performance through functional programming. Some [2]. It has been shown that the latest SISAL compiler
quantitative results from an experiment which consists called the Optimizing SISAL Compiler (Osc) [3] can
of developing a multigrid elliptic Partial Differential compete with the FORTRAN compiler on CRAY ma-

Equation (PDE) solver are presented, chines [4]. The CRAY FORTRAN compiler can be con-
sidered one of the best commercially available optimiz-

ing compilers. Thanks to Osc, using the performance
1 Introduction issue in the argument against, functional programming

has been substantially weakened. On the other hand,
In current parallel programmingstyle using impera-- the alleged functional language feature of programma-

tire languages such as FORTRAN or C, an applications bility issue has not been well substantiated.

programmer needs to be aware of the architectural A desirable (parallel) programming environment is
details of the target machine in order to generate an one that which shields a programmer from the low-
efficient program [7, 10]. This is due to the execution level machine details without sacrificing performance.
model (yon Neumann) of most existing programming The objective of this paper, therefore, is to address the
languages. Such practice makes writing parallel pro- issues of programmability and performance of rune-
grams difficult. Furthermore, once written, porting a tional programming together by presenting some era-
program to a machine with a different architecture vir- pirical results from an experiment. The experiment is
tually means rewriting the whole program. At present, be_sed on a one semester graduate level course on nu-
however, no other programming languages can corn- tactical methods of elliptic Partial Differential Equa-

pete with imperative languages in performance, tions (PDE). In the course, four different algorithms
Functional languages such a.s SISAL [5, 8] provide for numerically solving elliptic PDEs are presented

higher-level abstractions so that underlying machine and each student is required to implement the PDE
architecture is transparent to a programmer. In ad- solvers within some specified time. In the course,

dition, representation of parallel operations is implicit students are free to use a programming language of

*This work was supported in part by the NationM Science his/her choice. The four iterative PDE solvers cov-
Foundation under grant No. CCR-9013965. ered in the course are based on :



1. Basic iterative methods • Jacobi, Gauss-Seidel, r .....-...............................................................-.,

and Succesive Over Relaxation (SOR), Ji

2. Multigrid rnethod, y _ _---_---e ".uij+l

method (and FastPoissonsolvers), _- • , • ,.

4. Domain Decomposition method. , ,, i - i

The experiment consists of participating in tile ax _- _x Ox::unkn°wnknownvaluesValues
_:__.::::::: ...... _,,_,........... : ...................... _,-y_..,v-:__

course and implementing the PDE solvers in SISAL

within the assigned date. Once the PDE solvers are Figure 1: The finite difference method discretizes a
written, their performance on various types of paral- continuous region into a finite number of grid points
lel machines are measured in addition to uniprocessor by dividing the region of interest into equal grid sizes.
machines. There is to be no modifications made to

the programs that run on various machines. Note that
implementing the PDE solvers for parallel machines is boundary conditions •
not part, of the course. In the course, students were to

write programs only for sequential machines. -div (k grad u) = f
The programmer participating in the experiment

Two different values for the diffusion function k(x, y)had the following background at the start of the ex-
periment: are used. The first case is when k(x,y) = 1. This

results in the well-known Poisson's equation •
• Understood programming language issues in gen-

eral, but has not written any substantial SISAL 02U(X,y) 02U(X,y)]programs prior to the experiment. [ _-'xff + Oy2 = f(x,
Y)

• Itad no knowledge of the numerical PDE solver In general, the resulting equation is of the following
algorithms covered in the class prior to the exper- form •
iment.

Ou(:c,y) 0 . Ou(z,y)]0 [k(x, y) ] - [k(x, - f(x, y)
Due to space limitation, this paper concentrates Ox Ox -_y Y) Oy

the discussion on the implementation of a multigrid

method. In section 2, the model problem used in the In order to solve the problem numerically, the con-
experiment is discussed. In addition, characteristics tinuous partial differential equation needs to be dis-
of the multigrid algorithm is described in some detail, cretized. In other words, solution of the dependent

Section 3 describes the implementation of a multigrid variables are determined only at discrete points within
algorithm. In section 4, performance measurements the problem domain although the variables vary con-
of the implemented multigrid solver on sequential and tinuously throughout the domain. In the experiment,
parallel machines are described. In addition, the de- the partial differential equation is discretized using the
velopment time of each solver is described. Section 5 finite difference method. The finite difference method

ends with some concluding remarks, is based on Taylor series expansion in which the or-
der of the truncation error depends on the number of
terms selected from the 2'aylor series. In the experi-

2 Description of the Problem ment, second order approximation is used, i.e., trun-
cation error is of order O((Ax)2,(Ay)_); Ax and Ay

In this section, the model problem used in the ex- are the grid spaces in the x and y axis, respectively
periment is discussed. In addition, two multigrid al- (Figure 1). If Ax = Ay = h, an unknown variable u
gorithms are described in some detail, at discrete point xi and Vj (when k(x, y) =- 1) can be

2.1. The Model Problem approximated as in the following equation •

Ui-l,j + Ui+l,/ + uij-1 + ui,j+l + h'_fi,j
'.Fhe model problem used in the experiment is the ui,j = 4

following two-dimensional self-adjoint elliptic equa-
tion in the unit square with proper 1)irichlet (static) where 0 < i _<N, and 0 5- J _<_AI
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Figure 2: When the diffusion function is not constant, _ _ _ ,oh
using a staggered grid scheme results in a symmetric (b)i =======================================================================================================

coefficient matrix.

Figure 3" The top figure shows the V-cycle and the
bottom figure shows the FMV-cycle.

The variables N and M are the number of grid points

in the x and y directions, respectively. The u/,j and

fi,j represent the variables u(z,y) and f(z,y) at dis- 2.2 Multigrid Method
crete grid points zi and yj.

When k(x, y) is a function ofx and y, staggered grid The disadvantage of basic iterative methods is their
method is used so that the resulting coefficient matrix slow rate of convergence. Of the three methods listed,
is symmetric and the O(h 2) accuracy is retained. The SOR has the best performance. This, however, is
resulting difference equation looks like the folowing • based on the assumption that the optimum value of

the weighting parameter ¢oop, is known [6]. Unfortu-
KlUi-l,j + K2ui+l,j + K3ui,j-1 + K4ui,j+l nately, the value of Woe, is usually unknown. Con-

ui,i = Ko ceptually, the slowness of the basic iterative methods

4 h_fi'J is attributed to the fact that they act as a low-pass
K0 filter with a fixed cutoff frequency. Initially, the con-

I(0 -- ki-l/2,j + ki+l/2,j + ki,j-l/2 + ki,j+l/2 vergence rate is fast because the high frequency error

K 1 "- ki_l/2, j components are quickly filtered out. However, once
the high-frequency error components are filtered out.

K2 = ki+l/2,j and only the low-frequency (or smooth) error compo-
[(3 --- ki,j-1/2 nents are left, the convergence rate becomes very slow.

1(4 : ki,j+l/2 The be.sic idea behind the Multigrid method is to
take advantage of the fact that low-frequency error

Once the partial differential equation is discretized, components of a fine grid becomes high-frequency er-

a system of linear equations results which can be writ- ror components in a coarser grid [1]. Thus, the strat-
ten in a vector form as shown below • egy is to move down to a coarser grid once the conver-

gence rate at the current grid saturates. We can think
A(,_xn)u(,,xl) = f(n×l) of this as a low-pass filter whose cutoff frequency can

vary. That is, once the high-frequency components
•, A is the coefficient matrix. Its size is n x n and has are filtered out., the cutoff frequency can be further

the characteristics of being sparse and symmetric, moved down so that the error components which could
not be filtered out in the previous setting can be ill-

. u is a vector of unknown variables, tered. Thus, fast convergence rate can be sustained
by moving through different gr,d levels.

• f is a vector of the values of f(x,y) at discrete The basic Multigrid scheme forms a V-cycle in
points, which the downward path computes the residual er-.

ror while the upward path is the correction path which



updates the old estimation with a new approximation, e_cti.. _luv _.,.1,.2:intog._ v,r : rwoDim_.t._. rwoDJ_
let

The algorithm of the V-cycle in a recursive form is as _e_ld ,- R,lax,,.,_,V.F_,

follows [1] ' UpdateGrtd :" if N " 2 thonRelax (N, 1, NewGrld, F}
olae

• A h is a coefficient matrix at grid level h. _.tResidue :- ComputeRes(N,F, NewGrid) ;
CoarseF :- Restrlct(N/2,Residue) ;

CoarseErrorG :- MultiV(N/2,nl, n2, InltVal (N/2), CoarseF) :

• fa is a vector of the values of f(x, y) at grid level grrorGrid :- InterP(N.CoarseErrcrG):
CorrectedV :- Correctlon(N,NewGrld,ErrorGrtd)

h. in

Relax (N,n20 Cot rectedV0 F)

end lot

• v h is a vector of the unknown variable approxi- ..d_
mations at grid level h. i_,

OpdatedGrld
end let

• 12h is an interpolation function mapping from a ..a_=n_tio,
fine grid to a coarse grid. Also called, restriction.

• I_h is an interpolation function mapping from a Figure 4" The function MultiV is a SISAL implements-
coarse grid to a fine grid. tion of a recursive algorithm which performs a V-cycle.

Algorithm MV " v h _ Mgh(v h, fh)
starts out at the coarsest grid in which each grid points

1. Relax ul times on Ahv h = fh with are computed to exact values. These grid points are

initial guess v h. then interpolated to the next finer grid. Then a V-

2. If Cth is f2H (coarsest grid) then go to 4. cycle is performed on these interpolated grid points.

Else f2h ,_ I_h(f h _ Ahv h) This is repeated at every grid level until the finest
v 2h ,-- 0 (zero as initial guess, for error) grid level is reached. On the finest level the MV al-
v_.h _ MV2h(v2h, feb) gorithm is performed v0 times. This section describes

End if the SISAL implementation of the algorithm and vari-
ous functions performed as part of the multigrid op-

3. Correct: V h *--- V h + [hhv2h. erations.
4. Relax u_ times on Ahv h = f_ with v h as

initial g_ess. The function ltultiV shown in Figure 4 is a SISAL
implementation that performs a V-cycle. The func-
tion is written in a recursive style and closely resem-

A more efl_cient multigrid scheme called the full bles the Algorithm MV description. It has five input
mult_grid (FMV) computes the initial guess on the parameters and one output parameter which is a two
finest level by performing the V-cycle at every grid dimensional array. The data type TwoD:i.mis a user de-
level using the corrected value of v at the coarser level fined data type which is really a two dimensional array
_s the new initial guess. Its algorithm Jr, a recursive of double precision floating point numbers. The first

form is as follows [1] • three input parameters N,nl ,n2 of type integer are
the grid size, the number of relaxations in the down-

Algorithm FMV' v h _-- i;'_lVh(vh,f a) ward V-cycle, and the number of relaxations in the
upward V-cycle, respectively. Among the two input

1. If f2h is QH then go to 3. parameters of type TwoDim, V is the current approxi-

Else f=,h ._ l_h (fa _ Ahv h) mation of u and F is f in the equation Au = f. In the
v 2h --0 current implementation of the multigrid method, the
V2h ,--F]_lv2h(v2h,f 2h) coarsest grid is when the grid is 2 by 2, i.e., when the

End if number of unknowns become one. At this time, the

-h _h value of the unknown can be computed to the exact'2. Correct v h ,-- v h + J.2hv .
:1. V h *'-- 1_1 Vh(v h , (_) l.'o times, value.

The function MultiV is called by the function FMV

which performs the FMV-cycle. In FMV-cycle, com-

3 Implementation putation starts from the coarsest, grid level and moves
up one level at, a time. At each higher (finer) grid

In the experiment: a full multigrid algorithm is ira- level, a V-cycle is performed (Figure 3 (b)). Figure 5
plernented. As shown in F'igure 3 (b)_ this method is a SISAI, implementation of the function FMV.This



i

fLLIt_Ction F_ (N, nl, n2 ::Lnteger: V, F :TwoDim _turns TwoD_) r ......... J......... J................. J_ ............. L,_J............. ,x:_::_ ....... _.....

l.t CoarseUpdatedV - FMV(N/2 nl n2 BndVal(N/2) CoarseF): I f_

Grid - if N - 2 then I
ExactSolve (F) _ _ I

elee
lot

Residue :- ComputeRes(N.F.V)_ ( , ,L _L _, _,
CoarseF :- Restrict (N/2,Residue) ;

UpdateV:-InterP(N,CoarseUpdatedV): ! _;_:_'_l

CorrectedV :- Correction(N V UpdatedV)

endMUltiVCN'nl'n2'C°rrectedV'F)le, i ,, ,,, /" _ i' ,"_ ] K
_.-----,,. 1,_ _._ q ;

in
Grid

end lot _ : ; ; : ;

end function /

Figure5' The function FMVis a SISAL implementation L,.,e. i : 1 1
of a recursive algorithm which performs a FMV-cycle.

.Figure 6: The Red-Black Gauss-Seidel is a parallel

function is also written in a recursive style and closely version of the otherwise sequential Gauss-Seidel iter-
resembles the Algorithm FMV description in the pre- ative method. Notice the way the red and the black
vious section, grid points are divided. The cross-like regions repre-

sent, the 5-point stencil used in the approximation.
The functions HultiV and FMVcall the following five

functions. These are the core functions of the multi-

grid algorithm. A short description of each function parallelism available in the algorithm. In this respect,
is as follows : Jacobi method has the most parallelism. In Jacobi it-

eration, a new approximation of a grid point is only a
Relax : One of the iterative methods such as Jacobi, function of grid points from previous approximations.

Gauss-Seidel, etc. This function is discussed in Therefore, all grid points can be updated in parallel.
more detail in subsequent paragraphs. In Gauss-Seidel method, on the other hand, a new ap-

ComputeRes : This function computes residualr, i.e. proximationofa grid point depends partly on the most
r = f- Av. This function contains (two-level) recently approximated grid points. Due to this data

dependency in the algorithm, Gauss-Seidel method is
nested forall loops only. inherently sequent!al.

Restrict : This function performs an interpolation Fortunately, a parallel version of the Gauss-Seidel
from a grid of size N to N/2. It is used in method exists. It is called the Red-Black(R-B)Gauss-
the downward path of the V-cycle and contains Seidel method [9] and is shown in Figure 6. This
nested forall loops, method is not fully parallel as the Jacobi method. In-

stead, grid points are updated in two sequential steps.
InterP : This function performs an interpolation That is, one half of the grid points are updated first

from a coarse grid of size N/2 to a fine grid of and then the other half are updated next. At each
size N. This function also contains only forall step, however, grid points can be updated in paral-
loops, lel. Although the amount of parallelism available in

Correction : This function modifies the previously the Red-Black Gauss-Seidel method is only half that
al)proximated unknown variables by adding the of the Jacobi method, its superior convergence rate
correction values. This function contains forall (twice faster than Jacobi) makes it a better iterative

loops, scheme.

Two points were considered in deciding the kind of
iterative method to be used for relaxation. The first 4 Experimental Results
consideration is the convergence rate. As discussed

previously, SOR performs the best if wopt can be de- In this section, we first, discuss the programmal:)ility
retrained. Since this value cannot be determined in issue. We then describe the performance of the ira-

general, the next best choice is the Gauss-Seidel it- plemented program. First, the anaount of parallelism
eration. The second consideration is the arnount of existing in the SISAL implementation of a multigrid



Solvers Develop. Time (days) ConveroencoRate16x 16Gro
Basic iterative methods 29 s.0 ,

Multigrid 23
Precond. Conj. Gradient 21 _ _--_aacobl

Domain Decomposition 30 4.0 /_ G_---_R-BGauss-So_ol

\\Table 1" Time spent to learn and implement each PDE

solvers presented in the course. _ s.0

algorithm is analyzed. Then we present tile actual _ 2.0
performance of the program on a number of different

parallel machines. 1.0

4.1 Programmability

0 00• • ' • ' . ' 60.0 ' 80.0 ' 100.0

Table 1 shows tile development time of every PDE Numberof Iterations

solver implemented during the course. The develop-
ment time shown in the second column of the table Figure 7: Red-Black Gauss-Seidel iteration has a supe-

includes the class lectures explaining the algorithms rior convergence rate over that of the Jacobi iteration.
as well as the day's spent in actual program develop-
ment. On the average, half of the time was devoted
to the discussion of the algorithm and the other half 4.2.1 Parallelism Profile of the Multlgrld Ira-
to the actual implementation. Although the first as- plementation
sigmnent consists of simple programs, additional time For performance measurements, an implementation of

was needed to become familiar with writing SISAL pro- a full multigrid algorithm is used. In the program,
grams, the diffusion function of k(x,y) = e (x+y) is used.

In the case of the multigrid PDE solver, the Throughout the measurements, the number of relax-
SISAL implementation consists of approximately 350 ations t,1 in the downward path of the V-cycle is set to
source lines consisting of 17 functions. Two rune- two and the number of relaxations t,2 in the upward
tions (llu:l.tiV and FHV) are written in a recursive path of the V-cycle is set to one.

style. There are 25 loops in the program in which The most expensive operation in each grid level is
three loops are written in a sequential ioop construct the relaxation operation. As mentioned in the pre-
and 22 loops are written in a parallel loop construct, vious section, the Red-Black Gauss-Seidel relaxation
Approximately two weeks (six lectures) were spent in scheme is used. This scheme has a superior conver-
discussing the algorithm and one week was spent in gence rate over that of the Jacobi relaxation while still
actual program developnaent, providing parallelism. Figure 7 shows the convergence

Once a working program is written, that same rate of the two schemes for a two dimensional grid of
program was used for performance measurements on 16 by 16. The initial guess for the unknowns were set
various parallel machines without any modifications, to zero for both schemes. Table 2 shows the execu-

Therefore, on the average, a parallel PDE solver is tion time of the two iterations on a Silicon Graphics
written in two weeks which runs on various parallel four processor machine. It shows that both schemes
machines in addition to average single processor work- have a close to linear speedups indicating that both

stations, schemes contain enough parallelism. Note that the
execution time per iteration of the Jacobi iteration is

4.2 Performance slightly faster. This is due to the fact that. the Red-
Black Gauss-Seidel iteration updates grid points in a

This section first, discusses the amount of paral- two-step sequence while the Jacobi iteration does it; in
lelism available in the SISAL implementation of the a single step.

multigrid algorithm. Then actual performance mea- The relaxation operation along with other opera-
sured by executing tl_e program on different parallel tions such as interpolation, restriction, residue calcu-
machines is presented, lation and error correction is performed at every grid



512 x 512, 10 iterations
J acobi R-B Gauss-Seidel

PE Exec.Time(sec) Speedup BE Exec.time(sec ) Speedup
1 202.80 1 1 223.13 1
2 103.19 1.97 2 113.54 1.97

,,i

3 69.24 2.93 3 76.33 2.92
4 52.'01 3.90 4 57.54 3.88

Table 2: Both the Jacobi and the Red-Black Gauss-Seidel iterations contain enough parallelism to provide close
to linear speedups.

like a cluster of impulses is because it is assumed that

infinite number of processors is available. That is, all
instructions that become executable are assumed to

be executed together at the same time. The paral-Parallelism Profile (Infinite PEs)

8xs.st,¢e v_a. lelism profile shows that parallelism decreases by one
' ' fourth until the grid size of 2 by 2 is reached and in-

300.0 creases ba,k to the original level. The reason the pro-
file is not exactly symmetric is because the relaxation

n1=2 mlaxalions _2=| _u_km

,,on ,,,=a is performed twice going down the grid level (vt = 2),
f_l _ but only once coming up the grid level (v2 = 1). Note

.E 200.0
that a single relaxation produces two spikes because

in Red-Black Gauss-Seidel iteration, grid points are

1 updated in two sequential steps.100.0 In the current multigrid implementation, a full

°'°"'"""" / multigrid V-cycle (FMV-cycle)is used once in the ini-

'_-_;_,,-,,.,,-_ _Jl_ tialization stage followed by regular V-cycles in which
0_o0:0 L,.... , ......... _L ,I L, the number of repetitions is specified by an input pa-2800.0 3800.0

ExecutionTlme rameter. An FMV-cycle starts from the coarsest grid
and moves up to the finest grid. At each grid level,

Figure 8: The ideal parallelism profile of a single V- a V-cycle is performed. The parallelism profiles for
cycle where the grid size is 8 by 8. Vl = 2 and v2 = 1. an FMV-cycle is shown in Figure 9 for infinite proces-
(See Algorithm MV) sors. As expected, we see repeated V-cycle profiles of

different sizes. The rightmost pattern is the V-cycle
parallelism profile for an 8 by 8 grid. At far left, par-

level. Althouth there can be many variations of mov- allelism profile for a 2 by 2 grid can barely be seen.
ing around different grid levels, they are all based on Figure 13 shows the parallelism profile of the f, ll
the V-cycle. Figure 8 shows the parallelism profile multigrid scheme doing 5 iterations. As mentioned

, of the V-cycle for an 8 by 8 grid using the Red-Black already, the first iteration is the FMV-cycle, and the
Gauss-Seidel iteration as the relaxation scheme. The 2 next 5 iterations are the V-cycles.

by 2 grid is tile coarsest grid in the V-cycle. The paral-
lelism profile shown is for an ideal case which assumes 4.2.2 Actual Performance on Parallel Ma-
infinite number of processors and no communication chines
overhead.

The amount of parallelism is computed by counting Performance of the multigrid implementation is men-
the number of executable nodes at each time interval, sured on three MIMD type parallel computers. They

The nodes are part of the intermediate-level represen- are,
tation of the program which is a directed acyclic graph
called Intermediate Form 1 (IF1) [11]. The nodes rep- • CRAY Y-MP (4 PEs)

resent instructions and the edges connecting the nodes • Silicon Graphics (4 PEs)
represent data dependency relationships among the
nodes. The reason that the parallelism profile looks • Sequent Balance (16 PEs)



512 x 512, 5 iterations

PE CR.AY (sec.) SGI (sec.)
I

1 15.89 457.78
2 8.76 287.14

3 6.39 i.92.69

Parallelism Profi!e (Infinite PEs) 4 5.34 146.00
Sx 8, SingleFMV-cycle

" ' ' Table 3" Execution time of a multigrid program on a
30o.o CRAY Y-MP and a Silicon Graphics machines.

256 x 256, 5 iterations

.e _o.o PE Balance (see.)

[! t 13989.20'16 274.89

2 1993.i7

4 1014.61

l°°'°IJ 8 516.11

oo1........... h .....h
800.0 2800.0 3800.0 4800.0 5800.0

Exoc=_nnme Table 4: Execution time of a mujtigrid program on a
Sequent Ba];mce Machine.

Figure 9: The ideal parallelism profile of a single
FMV-cycle where the grid size is 8 by 8. ul = 2 and

u2 = 1. (See Algorithm FMV) CRAY Y-MP runs UNICOS which is a Unix-like

operating system and has vector execution units in
each processor. The Silicon Graphics machine is also
a Unix-based and is built on MIPS R3000 processor
chips. Sequent Balance utilizes National Semiconduc-
tor's NS32032 processor chip and is a slow machine by
today's standard.

In the performance measurement, a grid size of 512

ParaltelismProfile(InfinitePEs) by 512 isusedand eachrun consistsof 5 iterations.
8xs,s_,r=_n, Note that by 5 iterations we actually mean one FMV-

cycle followed by five V-cycles. Since the full multi-
3o0.o grid scheme utilizes a FMV-cycle with V-cycles, it is

helpful to measure the speedup of these two cycles

-VI - separately before measuring the speedup of the whole
I program. Figure 11 shows a graph which compares the

E 200.0
speedup of one FMV-cycle and one V-cycle. It shows

2_ that V-cycle results in a better speedup. This is ex-

:00.0 V-cycles at coarser grids. This results in less proces-
sor utilization and thus produces lower speedup. The

ltl _ _ _ i i graph shows that V-cycle results in a close to linearo,o ............... speedup,
_s_o.o ssoo.o 11_o.o issoo.o

ExecutlonTime From Figure 11, we expect the speedup of the multi-
grid implementation to be somewhere between the

Figure 10: The ideal parallelism profile of a full multi- speedup reached by the FMV-cycle and the V-cycle.

grid scheme doing 5 iterations. The grid size is 8 by Figure 12 shows the speedup of the multigrid irnple-
8. Ul = 2 and u2 = 1. mentation on CRAY Y-MP and Silicon Graphics ma-

chines. Figure 13 shows the speedup on a Sequent
Balance: Tables 3 ai:d 4 show the execution times.



Full Multigdd_.(Se_quentBalance)z_ xzb,s__rations
- , - 1 - , - l - 1 • l - 1 -

Comparison of Speedup .(SiliconGraphics)
512 x 512, Single cycle 16.04.0 , , ,, ,

V-cycle /
FMV-cycle

11.0

3.0
'10

09

I
09 6.0

2.0

1"01( " 310" 5'.0 " 7'.0 " 9'.0 " 11'.0" 13.0" 15.0 17.0
Numberof Processors

1.0. '' 210 ' 310 - 410
Number of Processors Figure 13: Speedup of a full multigrid implementation

on a 256 by 256 grid.
Figure 11" Speedup comparison of a single FMV-cycle
and a single V-cycle: 512 by 512 grid.

We see that the Osc compiler does a good job of
concurrentization by observing the speedup curve of
each machine. In addition to concurrentization, CanY
also utilizes hardware vector facilities. The Osc rec-

ommends innermost parallel loops for vectorization.
Full Mulligrid In the multigrid implementation used in the perfor-512 x 512, 5 iterations

4.0 .............. , , , mance measurements, the Osc recommended vector-
ization of 12 loops in which all were vectorized by the

(_---OCRAYY-MP native C compiler. A parallel loop in function N'oz'm
E3---_SiliconGraphics which has reduction operations (sum and greatest)

in the return clause were neither recomme.,ded by the

3.0 Osc nor vectorized by the CRAY C compiler.

"O

5 Conclusion
09

We have shown that functional programming is in-
2.0 deed a viable approach to parallel computing provid-

ing both programmability and performance. Our pro-

gram which has originally been written for a sequential
machine efficiently executed on a number of parallel
machines without requiring the programmer to man-

1.0, 210 ' 310 ' 410 ually parailelize the code. The implicit parallelism
Number of Processors of SISAL, therefore, has allowed the programmer to

concentrate on the implementation of the algorithm

Figure 12" Speedup of a full multigrid iml_lementation without having to worry about low-level execution de-
on a 512 by 512 grid. tails. Once a program is verified to work correctly on

a sequential machine, it, can be run on various parallel
machines without program modification.



Itowever, the current version of Osc is tailored for [8] J. McGraw, S. Skedzielewski, S. Allan, R. Old-
execution on a shared global address space machines ehoeft, J. Glauert, C. Kirkham, B. Noyce, and
which currently employ a relatively small number of R. Thomas. SISAL Language Reference Manual
processors (< 30). On the other hand, there is a grow- Version 1.2, March 1985.
ing number of parallel machines already introduced
or being introduced which employ a large number of [9] J. Ortega. Introduction to Parallel and Vector" So-

lution of Linear Sysiems. Frontiers of Computerprocessors (in the hundreds). Logically, some ma-
chines have shared global address space and some do Science. Plenum Press, 1988.

not. Physically, however, all large machines have dis- [10] A. Osterhaug. Guide to Parallel Programming on
tributed memory soread across the processors making Sequent Computer Systems. Sequent Computer
memory accesses nonuniform and latency a serious is- Systems, Inc., second edition, 1987.
sue to consider. To achieve good performance on such

machines, a new execution model needs to be devel- [11] S. Skedzielewski and J. Glauert. IFI An b_ter-
oped for the next generation of the SISAL compiler, mediate Form for Applicative Languages. Com-

puting Research Group, Lawrence Livermore Na-
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Implementing the Kernel of the Australian Region Weather
Prediction Model in SISAL

G.K. Egan
Laboratory for Concurrent Computing Systems

Swinburne University of Technology
John Street, Hawthorn 3122, Australia

Abstract being conducted in collaboration with the Lawrence
Livermore National Laboratory.

The SISAL implicit parallel programming language
has been implemented on a number of platforms rang-
ing from scientific workstations through medium cost

multiprocessors to high end parallel super computers 2 The SISAL language
and recently massively parallel processors. No changes

to source code are required to obtain good performance
across these platforms and it has been claimed that SISAL is a functional language for numerical corn-
SISAL exhibits similar uniprocessor performance to putation [4]. The developers of SISAL have been able
FORTRAN while providing significant speedup corn- to demonstrate performance comparable with FOR-
pared to FORTRAN on multiprocessors. TRAN on a number of computing platforms including

The Australian Region Weather Prediction Model tile Cray Research multiprocessors [5].

is an experimental FORTRAN code which uses a vari- SISAL prohibits by design the ability to express
able resolution nesting scheme to provide higher res. constructions which lead to the side effects that make

olution predictions over important areas of the Aus- compilation for parallel computer systems extremely
tralian continent such as cities and coastal fisheries, difficult. Examples of side effects include those which
In this preliminary study we er,plore the performance occur through the COMMON and EQUIVALENCE
of the SISAL implicit parallel programming language statements in FORTRAN and SISAL has neither of
on a significant scientific application by recoding the these constructs. SISAL is block structured and su-

kernel subroutine of the Model in SISAL. Results are perficially resembles a number of modern languages.
presented for a low end SPARC workstation, an entry The single assignment nature of SISAL means vari-
level Cray Y-MP EL and a high end Cray C90. ables have values assigned to them once. This requires

some departure from a common style of programming
where variables are re-used in programs sometimes for

1 Introduction unrelated computations. Translation of FORTRAN
programs into SISAL is not necessarily a simple pro-

The Australian Region Weather Prediction Model cess and can be complicated significantly if the pro-
(ARPE) was developed by the Australian Bureau gram being re-expressed has been the subject of undis-

of Meteorology Research Centre [1] for short-term ciplined maintenance or constructic, n. Tiffs may be
weather forecasting up to 36 hours. ARPE draws upon compounded if there is no original formulation of the
the work of hrakawa, Lamb and Miyakoda [2][3] for its mathematical model available. Direct transliteration
formulation and is intended to be a production code of well written FORTRAN code can yield satisfactory

results.
for the prediction of weather over the Australian re-
gion. This paper will concentrate on the implement_- Most comp_,_ative studies to date have involved
tion of the core subroutine of the AI_I)E in the SISAL the complete recoding of an application in SISAL. In

language and readers are directed to reference [1] for a this study the mixed language facility of the current
detailed description of the model. The work is part of (V12.9.1) Optimising SISAL Compiler is used with an
a continuing long term international study of SISAL initial core subroutine being recoded.

1*1



3 The weather prediction model
,umm&ry of subroutlne Inner2

CPU

Speed up
8 _ • 0 .STThe Weather Prediction Model code (ARPE) coil- , _ . 0,89

sists of some 10,000 lines of FORTRAN source code 6 - • 0.89• 5 _ * 0.89

Its pre-v)rocessors and ancillary code constitute per- _ - • 0.88-- • 0.88

haps another 5,000 lines of code. The code is gen- 2 - • o.8,I -- • 0.84

erally well written with disciplined use of COMMON 1 _ _ , _ 8 ,
and EQUIVALENCE statements. Tile kernel routines spe,_ up.
make almost no use of subroutines altllough the struc-
ture of the code suggests they should be used. ARPE
then is a reasonable example of a code where inlin- Figure l: speedup of INNER2 predicted by atexpert
ing has occurred from the outset in an attempt to
obtain improved performance. It predates modern 4.1 Results for FORTRAN
FORTRAN pre-processors which automatically inline

selected subroutines. The automatic parallel annotator was used to anno-
tate the INNER2 subroutine. No attempt was made to

resolve data dependencies il_ the original FORTRAN
4 FORTRAN in this part of the study although this is intended later.

The atexpert measurement tool was used to examine

The Cray Research FORTRAN tool suite used [6] individual DO loops for predicted speedup. Atexpert
runs under X Windows and is a marked advance on is claimed to accurately predict performance for ded-
those generally available only a few years ago. The icated systems. The tool provides parallelism profiles
tool set comprises' a profiler (flowview) which iden- and allows routines associated with parallel or sequen-
titles key subroutines and subroutines which are can- tial regions to be examined and analysed interactively.

didates for inlining; a pre-processor which performs It can be seen in Figure 1 that fpp failed to discover
inlining and attempts to identify and annotate paral- significant parallel regions in INNER2.
lel regions; an assistant for explicit parallel annotation

(atscope); and a parallelism estimator (atexpert).

5 SISAL

F_.outine Name Tot Time Call. Avg Time Percentage A¢cum%

....... pil_,ER_ _._E+o, 9 _._o_-+oo ,._, ,._, 5.1 Mixed language corn ation
LIE 1.09E+01 24 4.53E-01 18.23 60.47

PHYS 6 15E+00 5 I ._3E+00 10.31 70,79

LIEam _ 8_+oo _ ,._sE-o_ 9.4_ 80.2_ The osc compiler compiles and links modules writ-LIEH 5 50E-_00 12 4.58 F-,-01 I/.'_ 3 89.44

L_:B, _.89E.+oo _ ,.88_-o, _._, 9_8 ten in FOtTFRAN and SISAL. In this FORTRAN isSEM I M P 1.48 E +00 9 1.64 E-O 1 2.48 94.76

VMODE_ ,.0,F.+00 , _.,_z-o_ ,.,_ 98_, invoking a SISAL function To do this the original IN-l N N E I:t. 9.56F_01 9 1.06E-01 1,80 98,18

L^MLLt)AD,t)J ,, ,0_:-0_,_E.O__,_02800 __0E-0_3"84_:'0"0.',0_, 98.9_9.,_NER2 subroutine was replaced by a FORTRAN shell.
The shell initialises the array descriptors required by
SISAL and calls the replacement INNER2 written in

Table 1: Execution Profile (5 iterations Y-MP EL) SISAL [7].
Fortunately the array descriptors may be re-used

The original program was profiled using flowtrace for other arrays which have an identical shape. The
to identify the core subroutines. For reasons already ability to specify an offset for returned data structures
stated fiowtrace did not. identify any subroutines eli- could be used t.o avoid the often clumsy process of

gible for inlining, dealing with boundary values. The current descriptor
The INNER2 subroutine wa.s chose,n as the starting mechanism unfortunately sets to zero the elements not

point for this study but as it represents only 42% of written to.

tile run time contribution no significant speedup is to
bc expected. The LIE and PtlYS subroutines will 5.2 The transliteration process
t)e translated in due course. Our interest here is to

confirm that the run time is not adversely affected Although the mathematical fc)rnmlation was avail-
and that underlying concurrency is uncovered by the able it did not provide significant assistance in the
OSC compiler, transliteration process. The INNER2 subroutine was
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directly transliterated into SISAL with no restructur- 6 Conclusions
ing being attempted. A nunaber of unintentional out
of bound accesses were discovered in the FORTRAN A modest amount of difficulty was encountered in
program during this transliteration, the transliteration of the kernel INNER2 subroutine

The transliteration process was significantly corn- into SISAL. The run time for this first SISAL imple-
plicated by the size of the INNER2 subroutine. While mentation relative to FORTRAN is acceptable. Good
the SISAL debugger (sdbx) gave some assistance there speedup has been achieved with the SISAL version's
were many cases where sdbx was not able to deter- rnntime falling below that for FOlk'RAN at four pro-
mine the original source line causing the error. Other cessors. Given this promising start the study will
minor difficulties which would case irritation for pro- now refine the version of INNER2 and move to the
grammers used to imperative styles also arose. In this other dominant kernel subroutines LIE and PIIYS.

case even though the author has a reasonable under- The PHYS subroutine is dominated by conditionally
standing of SISAL the passage of time since writing executed code rLsare many other weather codes. It is
his previous SISAl, prograna still led him to be caught anticipated that this will produce a more demanding
by the following: test for SISAL.

:for initial Acknowledgements
° • • .

k : =0 ; The author thanks the Australian Bureau of Mete-

while k < kz repeat orology Research Centre for access to the ARPE code.k:= old k +1;
returns ...... u[k] ..... The author also. thanks the members of the Labora-

tory for Concurrent Computing Systems for their con-
tributions to the work presented in this paper.

Most programmers will expect k to be 1 when the
variable u is accessed on the first loop iteration rather
than zero as stated by the for initial clause. Appendices

Transliteration and debugging took approximately
,35 hours. INNER2.F

5.3 Results for SISAL The original code of INNER2 has been stripped out
and replaced with descriptor initialisation and call to

The results for one call of INNER2 in li'ORTIt_N sinner2.
and SISAL are shown in Table 2. In their current

SUBROUTINE INNEIR2

form both versions are several hundred lines long and c
C INNIDR2 C'AI.CULATI'_S TIIE I_H SIDES OF" THE MAIN SEMI-

the interleaving of initialisation, the calculation of pri- IMPLICIT EQUATIONS
C

mary meteorological variables and common working _._,.a..,,_,,:,
PA IIA MET EFt

variables makes their inner workings difficult to corn- + i
pre'mn¢'l1 t._. ol)''ppen"ces:. + 12=11+1,13=114-214=11+3,ILM=IL-,,ILN=II.-24- .J2=J14-1. J3=Jl-Jc2, J4.,_Jl+.3, JLM=JL.i. JLN=JI.-2

-_- ,KZMI =KZ-I, KZPl =KZ4-1

4- ,CP----| 00464E7, G=980.6, |{Lm2.50|EI(}, PBAR.=I.E6, |_.=2._7[_16

+ ,RV=4.6I E+6

+ )

.,-o I _*+"' I I ' I I _,:OMMO_
c177-Zp I ...... l 3.01-b0.4fl l 6.39+0.01 l ] + /DTDS/ DT,DS,DTI,DSI,DSI2,DSSQ,TDSI,HDTDS,BET65,DTMAX

o,<-O | 7 2+10 [ 6'_7Jc0'25 l I-0_-0 ol [ f) 29-_-l'l.0| ] + ,/IN'rGI%L/ PFIECP, PFiECTA, CKS, EKE, Pg, PS-
I_A I{, 'I'[¢H h'r, v hOMe;

+ ,/KTAU/ KTAU
"I-'abh_2: l{un Tinms for FOF(I'I_AN and SISAL c

(? O M _d O N

ar /¢'DIFF/ C;DIFF(IL.JL)

+ ,/COIRF'/ COI'%F'( I L, J t,)

+ ,/DNOHM/ DNOI%M(KZ)

It may be noted that althoug]] the run times on + ,/DQ/ DQ(KZ)+ ,/DTODQ/ D'rODQ(K Z)

+ ,/EM/ EM(II,,JL)

the SPARC, workstation for FOI_,TI/,AN and SISAl, + ,/EMSQ/ EMSq(IL,JL)

are conlparable i)erfornlance O11 tile (::ray systel_S is 4-+ ,/t';MSQI/,/GAMA/ F;MSQI(II,,JL)GAMA(KZ)

not a,s good. It is believed that tile transliteratimi +4 ./P"'/'/OM'_UA/pI"(KZ.IL.J"_OM_:_'A_KZ""'J"_
4- ,/PS/ F'SM(IL,JL), I"S(IL,JL), l'Sl'(lI,,Jl,)

resulted in a SISAL style which caused difliculty for + ./q/ q_Kz)
the SISA L optimisers; this is currently being resolved. +,:OMMON'/q"'t/c_l,,,(v,z)
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4- /R.M/ RMM(KZ,IL,JL), RM(KZ,It,,JL), _MP(KZ,IL,JL) +pe,
+ ,/RTBA R/ RTBA R(K Z) -_-psbar,
+ ,/sIGDOT/ SIG DOT(I4Z,I L,J L) +vmronK)
4" ,/T/ TM(KZ,IL,JL), T(KZ,IL,JL), TP(KZ,IL,JL) c
+ ,/TBAR/ TBAR(KZ) RETURN
+ ,/U/ UM(KZ,IL,JL), U(KZ,IL,JL), UP(KZ,IL,.1L) END
+ ,/v/ VM(KZ,IL,JL), V(KZ,IL,JL), VP(KZ,IL,JL)
+ ,IZSI ZS(IL,JL)

c

REAL Q inner2.slsinteger ik(100),iij(100),ikij(t00 )
DIMENSION RMPR(KZ,IL,JL)
DIMENSION TFLEV(KZ) DTFDQ(KZ),WVEL(KZ)
DIMENSION VA DVU (KZPI),VADVV (KZPI),VADVFIM(K ZP 1)
DATA VADVU/KZPIeO./,VADVV/KZpIeO./,VADVRM/F. ZPI*O./ define sinner:i
DATA OMG / o.o /

C % O.K, Egan 1993

c SISAL array descriptors
c one dimension type OneDReld = array[real];

lk(1)=0 type TwoDReLI -- array[OneDRetl];
ik(2)=0 type ThreeDReaI = &rr&ylTwoDRe&l];

ik(3)=0 global iog(&:real returns tea|)c

ik(4)=l
ik(5)=ks global sqrt(&:re&l returns real)
ik(6)=l
ik(7)=ks function boundsry'cel|(i,il,il,j,jl ,jl:iateger returns boole.n)
tk(a)=l (it = il)--(t = it)--({ = il)--(j = _I))end function

c
c two dimensions

iij(1)=0 {unction divergence'sums(
ilj(:i)= 0 i,j,kz,il ,il,j I ,jl:i nt ege r; dsi:real;

dq:O neDFLe a|;_,v,t :Th r eeDP, eal ;emsq:Y woDReal
itj(3)=O returns

c

iij(4)=il real, real, real, OneDre&l, OneDReal,
iij(5)=il OneDR.eal, OneDReal, OneDR.eal)
iij(6)=il for initial
iij(7)=il s_mu:=0,0;

surer:m0.0;
ilj(8)= I sumx:--0.0;c

iij(9)=jl k:--l;
iij(lO)=jl while (k < kl) repeat
ilj(ll)---.jl k:=old k +1;
iij(13)=jl sumu, surer, sumx := (
ilj (13) = 1 if boundtry'cell(i,i I ,il,j,j I ,jl) then

old sumu, old tutor, old sumx¢
c three dimensions else

ikij(l)=O old su mu+dq[k]*(ulk,i+ 1,j]-u[k,I- 1,j]
ikij(:i)= 0 + v[k,i,j]+v [k,i+ 1,j]-v[k,i,j. 1]-v[k,i+ I ,j- 1]),
ikij(3)=0 old su rnv+dqlkl*(u[k,|,j] +u[z,i,j+ t ]

c -ulk,t-1 ,i{- u[ k,t- 1,j+ 1]+ v[k,l,j+ l]-v[k,l,j- 1]),
ikij(4)= l old 8u mx+dq[k]*(ulk,i,j]-uJk,i- 1 ,j] +v [k,l,j]-v[k,i,j-I ])
ikij(b)=kz end if)
ikij(6)=l returns
lkij(T)=ks value of aumu

value of 8umv
ikij(8)=l value of sumxc

ikij(9)=il array of sumu
ikij(10)=il array of sumv
ikij(ll)=il array of sumx

array of (-emsqli,j]*aumx'dsl)ikij{ 1 :i)----il
ikij(13)=! array of tlk,i,j ]end for

ikij(14)=jl end fuuctlon
iklj(l._)= jl
ikij(1G)=jl function sin net:if
iklj(IT)=jl dt,ds,dsi,dsi:i,tdsl,dtmax,cks, eke. pe, psb&r, trhzt, vromg:re&l;
iklj( 19)= 1 ktau:integer;

cdiff:TwoDRe.l;<
call sinue_2( colp:TwoDRe,l;

+dt,ds,dsi,dsi_,tdsi,dtmtx,cks, eke, pe, psbar, trh_t, vromg, duorm:OneDReal;
+ktau, dq:OneDRe&l;
+cdiff,lij, dtodq:OneDReai;
+corp ,iij, em:TwoDRe&l ;
+dnorm,lk, emsq:TwoDReal;
+dq ,ik, emsqi:TwoDReal;
+dtodq,ik, gama:OneDRe&l:.
+era ,iij, omega:OueDReal;
+emsq,llj, phi:ThreeDReal;
+emsqi,ilj, psm, ps:TwoDReal;
+g_m&,ik, q:OneDReal;
+omeg_,ik, qph:OueDReal;
+phi,ikij, rmm, rm, rmp:ThreeDR.e_l;
+psm, iij,ps,iij, rtbar:OneDR'eah
+q,ik, tin, t, tp:ThreeDR'eah
+qph,ik, tbar:OneDFteal;
+rmm, iklj,rm, ikij,_mp,iki_, urn, u, up:ThreeDReal;
+rtbar,lk, vm, v, vp:ThreeDRe*l;
+sigdot,ikij, sl:TwoDReal
+tm,ikij, t,ikij, tp,ikij, returns

ThreeDR.eal,%new'rm

+t bar,ik, Thr eeDR. eal,%new' sigdot
+urn, ikij,u, ikij,up_iki_, ThreeDReal,%new'up
+vm. ikij,v, ikij,vp,ikij, ThreeDReal,%new'tp
+zs ,ilj, 'rhreeDReal,%new'rmp,: returns
+rm,iklj, Thr ee DReal'cY_ne w' vP
+sigdo_.,ikij, real,%new'eke
+up,ikij, real,%new'cks
+new'tp,lkij, real,_'ene w't r hat
+new' tmp,Jkij, re&l'CYonew' Pe
+vp,ikij, real,%new'psbt_
+eke, real%new'vmzong
+ck., )

+trhat, let
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ksz=lS; 0.0, cmonp
|l:=6&; else

jl: =40; 0.38e (c moup+e roll+ 1 ,j@ 1}/(ps[l+ 1 ,j_- I ] +pbe.r) + fmon p),

i1.=1! 0.35 e (cmonp-l-em[l-i-l,j-l] / (ps[i-_-l,j-l]+pbnr)
j1:=1; +em[ij-l] / (ps[i,j-ll-l-pbar))

13:=ll+t; end 11;
|3:=i1-_r3!

i4:=i1+3; pie, pan:=

ilm:=il.l; If boundtry'ce11(i,ll,tl,j,jl,jl) then

j3:=jl_-I ; 0.0, 0.0
j3:=_1_-3; else

j4:=j1+_; o.s'(psll,ji+psli+ l ,jl)+pb, r,
jlm:=jl-l; 0.5' (ps[i,jlq- ps {|,j-l- 1] )+ p bar

ksml:=ks-I ; end if;
kgtpl:=ks+ t; ere

cp:=l.OO464e7; °_o czar& vtrl&bles (or evaluating p.gr&d terms Iog&rithmlcally
g:=980.6; %

hi:--3.SOlelO; psrmi, psrmj, psldl, psldj, _spdi, zspdj, emudsi, emvdsi, emrdsl:=

pb*r:=l,e6; *(bound&ry'cell(l,ll,ilj,jl,jl) then
r:=3.STe6; 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
rv:=4.61 e4-6; else

pa[i@l,j]-ps [i,j].psm[l+ 1 ,j]+psm[i,j],
dtt:= Pall,j+ l ]-ps[i,j].psm[i,j+ 1 ] +psm[i,j],

tf (kt&u = 1) then Iol[(ps[l@l,j]._.pbtr).log(psljc),

dt lo& (ps[I j-l- 1 ] 4- pb.r).lo&(psijc),

else pb.re(u[l+ t ,jl.,s[i,j]) '

2.0 edt pb*r'(u[I ,j+ l]-ss[I,j]),

end if .... q[i,j]/(4.0edsepse),
emsq[i,j]/(4.0edse pan),

new'fro, rmpr:= e msq[t,j)/(4,0*dsepsij¢)
for k in l,kn cross i in ll,ll croat j in jl,jl end if;

t'rm, %

t'rmpr:= efo compute tot&l divergence
if (rm[k,i,j] > 0.0) then 0_o

rm[k,i,j], tumu, surer, sumx, vadvu, vadvv, vadvrm, wvel, tiler:=

rm(k ,l,j] / (ps[t ,j] +pb&r) divergence'sums(t ,j ,k_.t t ,il ,j I ,jl,d*i ,dq,u ,v ,t ,emsq) ;
else

0.0, slgdot'k:=

0.0 for k in l,kz

end if returns Q,rr_y of (

returns if (k = 1) then
array of t'rm 0,0

_rr&y of t'rmpr else

end for; wvel[k-l]-qph[k. 1] *wvellkt]

end if)
d moop;=O.O; end for;

emonp:=O.O;

vsdvrm'k, vLdvu'k, vsdvv'k:=

new'tp, new'up, new'vp, new'trap, new'slgdot, for I in l,ks

new'eke, new'cks, new'trh&t, ii:=1+1;

new'pc, new'psb&r, new'romlg:= t'vndvrm, t'v&dvu, t'vadvv :=

for t in it,il cross j in jl,jl It (1 = kn) then
0.0, 0.0, 0.0

p sij c := ps [l,j] + pbar; else

psi jolt= 1 .O/paiSe: emrdsie(qph[11] %umx.v.dvrm[ll])

corfl ,cot/2:= * (new'troll1,| j]+ ne w'r m[I,l j]

-t-3.0esqr t (new' r roll1 ,i,j] • ne w" rroll ,i,j])),

if boundary'cell(i,il,ll,j,jldi) then emudsiO(qph[11]esumu.vtdvu[11])

0.0,0.0 • (u[11,i j] + u[I,l,j]),

else emvdsi*(qph[li]* t umv-vsdv v[11])

0.13_*(cor p[i,j]+co rp{i+ 1 ,j]), • (v[ll,i,j] + vll,l,j])
0.135e(corPli,j]+corp[i,j+l]) end If

end if; returns

&tray o[ t'vQ.dvrm
emthad := emsq[i,j]epsljcletdsl; &rrsy of t'vtdvu

em2tps := emth&dOpsljcler / Cp; &tray of t'vadvv

end for;

emhadl,emhad3:= %

if boundary'cell(i,il,il,j _,jl) then 9r0 set up temperature difterence terms
0.0,0.0 %

else dtfdq:=
O.25*tdsiV(em[ij]+em[i+l,j]) for k in I, kz

0.3betdsie(em[id]+em[i,j+l]) returns array of (

end if; if ((k = l)---bound&ry'cell(i,il,il,j,jl,jl)) then
0.0

e.monp:=emonpi % 0.0 then cycle'emonp else

bmonp:=dmonp; % 0,0 then cycle'dmonp if (k = kz) then

dtm&xe(tflev[ks]-t flev[ktmll)+dtodqlkz]
cycle'dmonp, fmonp:= else

tt bound_ry'cell(i,il,il,j,jljl) then O.Se(tflev[k+l]-tflev[k-l}) / dq[k]+dtodqlk]
0.0,0.0 end if

else end if)
era(i+ 1 ,j]/(pall+ t,j]+pb.r), end for;

era[i,)+ 1]/(ps[i,j+ l ]+pb*r) %

end t|; Famue, psmuw, psmun, psmut, p|mu, pJmvn, parers, psmve, psmvw, psmv:=

if ((j ---- j3)--boundary'cell(i,il,il_j,jl,jl)) then
new'bmonp:= 0.0, 0,0, 0.0, 0.0, 0,0, 0.0, 0.0, 0.0, 0.0, 0.0

If (i ---- 13) & ('((j = jl)---(j = jl))) then else

em[i,j]eptljci if (i = ilm) then

else 1.5*ps m[il ,j]-O..',e ps m [ilm,j] + pb* r
cycle'dmonp else

end i|; 0.5" (ps m iS+ 1 ,j]-_- psm[i-_- 3,j] ) + p btr
end if,

new'*monp:=

if (i = i2) gz ('((j = jl)_(j = jl))) then 0.Se(pamli-l,jl+pamli,j])+pb_r,

0.2_*(new'hmonp+fmonp+em{t-l,j] / (ps[i-I jl+pbasl 0.5*(ptm[i,j+l]+pam[i+l,j+l])+pbar,

+em[i-l,j+l] / (ps[i-l,j+l]+pb&r)) 0.Se(psm[i,j-l]+pam[i-t-l,j-l])+pb.r,

else 0 5"(psm[i,j]+ psm[i+ ! ,jl)+pbar,
emonp

end if; l! (j = jim) then

1.5 Opt m[i,jl].O.6* psm[i.jlm]+ pb&r

c me rip:= ne w'bmon p-_-cycle'd monp; else

cycle'emonp, new'cmonp:= O.Se(psm[i,j+ l]+psm[i,jf2])-k pbar

if boundaty'cell(i,il,il,j,jl,ji) then end if,
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% moisture

OAt*(psm[l,j- 1]+plmll,j])+pb& r, %

0.5 * (psmli-_- 1 ,jl+psmli+ l ,j+ i])+ pbar, rme:=r mprlk,i,j]4- r mpr[k,i-F 1 ,j];

0.5*(psm[i-t,j]+plm[i- 1 j-i- 1])+ phar, rmw:= rmpr[k,i+j]+rmpr[k,l-1 ,j];

O_b*(psm[l,j]-_- psm[i,j+ 1]) + pbar r mn:=r mpr[k,i,j] + rmpr[k,l,j+ 1];

end 11; rml:=rmpr[k,l,j]+rmpr[k,i,j- 1];
% rmv&d:=

% commence vertical level loop if (k = kz) then

% 0,0 ¢FoKke
tp'k, up'k, vp'k, rmp'k, omega'k, else

new'eke, new'ppe, new'pvrom_, new'pith&t:= -(vadvrm[k-t-t].v&dvrm(k]) / dq[k I
for k in l,k, end 11;

% rmhad:=-emsq[i,j]etdti* ( u[k,t,j]erme.u[k,i.l,j]ermw
e_ compute vertical advection contribs, in rh* of mtm. -- ns. -_-v[k,i,j]Ormn.v[k,i,j.l]*rms);

ele rmme := rmm[k,i-Fl,j]/(psm[i-4-l,j]_rpb,r);

% compute horizont&l ,dvection terms associated with rhs of mtm. = us. rmmw := rmm[k,i-l,j]/(pJm[i-lj].pb&r);

% rmmn := rmm[k,l,j-_-l]/(psm[i,j-l-l]+pbLr);

up'k:= rmmr := rmmlk,i,j-ll/(ptm[i,j.l]+pb&r);

if ((j = j2)--bound&ry'cell(i,il ,il,j,jl,jl)) then rmmij ;= rmm[k,i,j]/(psm[i,j]+pb&r);
up[k.|,j] rmhdif:=

else if (dnorm[k] = 0.0) then
let 0.0

vail:= else

if (k = kz) then cdiff[i,j]*dnorm[k]*dti_

0.0 %gke *(rmme+rmmw-4-rmmn+rmms-4.0 • rmmlj)
else e(psm[i ,j]-_-pbtr)

-(vQ.d vu {k-_- l]- vad v u[k])/dq [k] end if;

end if; t'rmp'k:= rmm[k,i,j]+dtt*(rmh&d+rmv&d+rmhdif);
u b:= u[k,i,j]+ u [k,i- t ,j};

uc:=u[k,i,j]_u[k,i,j-l]; % suppress negative mixing ratios

ud:=u[k,i,j]+u[k,i+ I ,j]; %

ue:=u[k,i,j)+ u[k,i,j + 1]; rmp'k:=

vb:=v[k,l,j]q-v[k,i,j.l]; if (t'rmp'k < I.OE-20) then
v .... [k,i,j-X]+ v {k,i+ I ,j- l]; 0.0

v .... [k,i,j]-I-v [k,i+ 1 ,j]; else

hadvl:=emh_dl* ( ud*ud*cycle'dmonp-ub*ub*new'bmonp t'rmp'k

+ ue*ve*cycle'emo np*uc*vc* new'c mo up); end if
% in

9to compute pressure gradient terms on rhs of mtm. = n* rmp'k,

_e log_rit hmic&lly tp'k,

% omg
pgl:= ((pee*pb&r)*(phi[k,i+l,j]-philk,i,j]) end let

-J-zspdi-r t b_r[k]* ps rmi end if;
+pse'psldi*( r*O.5* (t[k,i+l,j]+t[k,i,j]) %

-_-r tbar [k]) )*dsi; vp' k,

ctl:---- cortl*(vc-_ve); new'eke'k,

ubdlf|:= new'ppe'k,

if (dnorm[k] ---- 0.0) then new'pvromg'k:=

0.0 i| ((| -" i_)--boundary'cell(l,il,il,j,jl,jl)) then

else vp[k,i,j],

cdiff[i,j]*dno rm[k]*dst 2 0.0, _eke

• ( um[k,i+l,j]/psmue-_-um[k,i-1 ,j]/ptmuw 0.0, _eppe

+ u m(k,i j-i- 1 ]/psmun+ um[k,i,j. 1 ]/psmu, 0.0 %pvromg
-4.0" um(k,i,j]/pamu )eptmu else

=nd if %

i,: let

(ctl + vtt l-hadv t-PSI +u bdiff)*dt-t- um[k,i,j] u_:---- u [k,i- 1 ,j] +u[k,i. 1 ,j + 1] ;
end let ue:=u[k,i,j]-t- u[k,l,j + 1];

end it; v&:= v[k,i,j]+ v[ k,i- l,j] ;

% vb:=:v[k,i,j] +v(k,i,j- 1] ;

t'rmp'k, tp'k, omega'k:= ve;_--vlk,i,j]+v[k,i._.l,j];

if ((i = i2)--bound&ry'cell(i,il,il,j,jl,jl)) then vf:=v[k,i,j]+v[k,i,j+l];
rmp[k,i ,j], %

tp[k,i,j], % calculate v velocity component logarithmically
omega[k]

elms ct2:_-.-co r (3" (us-4- u e) ;

% htdv2:---- emh,,d2*( ue*ve*cycle'emonp-ua*vtenew'nmonp

calculate hortzonte.l &dveetion term in the temp. = ation ._.vf*vfefmonp.vbevb*new'bmonp);

% pg3:= ((psn-pbar)*(phi[k,l,j-Tr l]-phl[k,i,j])

let -_zspdj-r t b*r[k]* per mj

wvelav:--- -j-psn*psldj* ( r*0.5* (t[k,i,j+l]+t[k,i,j])

if (k > I) then +rtbar[k]))*dst;
O. S * (wvel[k- 1 ]'4" wvel[k]) vbdiff:=

else if (dnorm[k] = 0.0)then
0.5*wvel[t] O.O

end St; else

thadvl:= u[k,i,j]* (t [k,i+ 1 ,j]- t [k,i.j]) cdi ff[i,j]*d nor m[k]*dti2

+ u[k ,i- X ,j]'(t [ k,i,j]-t [k,l- I,j] ) ; *( vm[k,l+l ,j]/psmve+vm[k,i.l ,j]/psmvw

thadv2:= v[k,i,j]* (t [k,i,j+ 1 ]-t [k,i,j]) +vm[k,i,j+ l]/psmvn+ vm[k,l,j-1]/pamvt

+v[k,i,j-l] *(t [k,i,j].t(k,i,j.1]); .4.0" vm[k,i,j]/psmv)* psmv
thadv -----emth&dS(thadvl-_-thadv2), end if;

tfull:= tflevlkl+t batik}; vat2:=

phadvl:---- uik,i,j]*(ps[i+l,j]-ps[i,j]) if (k = kx) then

-_ u [k,i- 1 ,jJ*(p* [i,j]- pail.. 1 ,j] ) ; O.O 9'og ke

phadv2:= v[k.i,j]*(ptii,j + 1]-ps[i,j] ) else

-'I-v{ k,i,j- t]* (pa[i,j]-ps[i,j- I ]) ; -(vadvv[k+ t]-v_d vv[k])/dq[k]
t'omg:= em2tps*(ph&dvl+phadv2); end if;

tpsttr'= t'omgStfull; t'vp:= (,:t2-4-vat2-h&dv2-pg24*vbdi_f)*dt+vm[k,i,j]

omg:= wvelav+q[k]*psijcSt'omg*cp / r, °fo

g_tma.pr:= (_' / cp)*tfull / qlk]-dtfdq[k]; % c*Llculate contributton_ to integrals
tudiff:= %

if (daorm[k] = 0,0) then in

0.0 t'vp,

elee dq[klepti,lci . (ulk,i,Jl*ulk,l,J}+ vlk,i,il*vlk,i,j]),

cdi ff[i,j]*dnor m[k]*dai2 tflev[k]*dq[k],

• ( t m{k.i+ I ,j] +tm[k,i- 1 d] (omega'k*o megt' k) *dq[ k]
+t m[k,i,_+ 1 ] +tm[k,i,j- |}-40*tm{k,i,j]) end let

end if; end if;
% returns

tp'k:= (tpetar-thadv+thdiff *tray c_f tp'k

+(wvelav*gamapr+q[k}*dtfdq[kl*wvel[kz])*psijci &tray of up'k

-(wvelav*gama[k]-_q[k}*dtodq[k]*wvel[kz]) / pbar _rre.y of vp'k

)*dt-_-tm[k,i,j]; array of t'rmp'k

_'© array of omega'k
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v.lue of *urn (dq[k]'p, ljci'(up'k'up'k+vp'k'vp'k)) %new'eke'k
vLlue of sum (tflev[k]_dq[k]) %new'ppe'k
v&lue of sum (omes&'keomeg_'kedq[kD %new" pvromg'k
v&lne of sum (t'rmp'kedq|k])°1optrhnt

end for; % k

t'new'ptrh&t := new'ptrhat-_-emsqi[i,j];
t'new'epe := uew'ppe'psljcSemsqi[i,j];
t'new'vromg := uew'pvromgeemsq|[l,j];

returns
army o1 tp'k
• rr&y o( up'k
stray o1 vp'k
array of rmp'k
&rr&y of sisdot'k
value of sum new'eke
value of sum (emsrtl[i,j]) CYenew'cka
value of sum (t'new'ptrhateemsqi[i,j])
v&h|e of sum t'new'epe
value of Sum ((psljc.o.gSSe6)eemsqi[i,j]) % psbar
v_|ue of sum t'new'vromg

end for % l,j
in

new'rm,
new'sigdot ,
new'up,
new'tp,
new'trap,
new'vp,
new'eke,
new'cks,
new'trhnt,
new" pe,
new'psbar,
new'ruing

end let
end function
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Abstract of length N is usually called an N-point DFT (FFT).
An important member of this family is actually an ex-

Even and quarter-even symmetric DFTs are variants
tension of Cooley and Tukey's idea to N-point DFT's

of the discrete Fourier transform (DFT) in which all where N is factorizable. These N-point FFTs com-
redundant operations induced on the DFT equations pute the N-point DFT through nested sequences of

by the presence of either an even or quarter-even sym- DFT's whose lengths are the factors of N. The Good-
merry in the input data have been eliminated. These Thomas algorithm [5] improves the extended Cooley-
kinds of transforms appear frequently in image pro- Tukey FFT for transform lengths that are highly com-
cessing and in the core procedures of some direct meth- posite. Rader's algorithm [7], in turn, is designed for
ods for the numerical solution of the Poisson equation, computing prime length DFT's. These algorithms, all
Fast methods for computing even and the quarter-even members of the family of traditional FFTs, reduce the

DFTs when the number of data samples is a power of N-point DFT arithmetic complexity from O(N 2) to
two have been proposed by Swarzlrauber [8] and Briggs O(N log N).
[1]. Their methods are generalizable to any factoriz-

able number of data samples. In this article, following A second family of fast DFT algorithms, called
the basic mathematical techniques used by Rader [7] symmetric FFTs, was started with an article by Coo-

to derive a fast prime length FFT, we introduce fast ley, Lewis and Welch [3] in 1970. A symmetric FFT
methods .for computing the even and the quarter-even uses the symmetries of the input sequence to improve
symmetric DFT for a prime number of data samples, over its traditional FFT counterpart in terms of com-
The expression of these methods in terms of matrix putational complexity and memory storage require-
algebra facilitates their implementations in SISAL. ments. Especially important for their use in image

processing and in fast Poisson solvers design are tile

1 Introduction. even-symmetric FFT (E) and the quarter-even sym-
metric FFT (QE). The Cooley-Lewis-Welch algorithm

Since its rediscovery in 1965 by Cooley and Tukey computes the N-point DFT of a real (E) sequence us-
[2], the fast Fourier transform (FFT) has become one ing a N/2-FFT as a core procedure. This algorithm
of the most widely used computational tools in science involves, however, a numerically unstable pre-process.

and engineering. The term FFT, initially associated Dollimore [4] redesigned the Cooley-Lewis-Welch al-
with the Cooley-Tukey FFT for sequences of period gorithm improving on its numerical stability proper-
N = 2k, has become, after the efforts of many re- ties. Swarztrauber [8], who coined the term symmet-
searchers over the years, the generic name of a whole ric FFT, found a family of algorithms for computing

family of efficient discrete Fourier transform (DFT) real (E)and (QE)symmetric FFTs of any factorizable
numerical methods. Each menaber in the FFT family length. The main strategy in Swarztrauber's approach
is specialized to computing the DFT of a particular is to eliminate data redundancies induced by the sym-

class of periodic sequences. This period is also re- metry of the input sequence in the intermediate steps
ferred to as the transform length and the DFT (FFT) of the traditional extended Cooley-Tukey FFT. Swarz-

"This work wassupported by NSF grant R11-8905080a_d the trauber's algorithm does not consist of a core proce-
Computational Mathematics Group of Puerto Rico EPSCoR II dure separated from pre- or post-processes but its data
gram. flow is not as regular as its traditional counterpart.
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Briggs's algorithm [1] is in the same spirit of Swarz- redundant data. If z = (5-) is(E) symmetric, its dis-
trauber's but with a more regular data flow. crete Fourier transform X = (Xk) is also (E) symmet-

The purpose of this article is to propose new al- tic and so, equation (1) can be reduced to
gorithms for computing the DFT of (E) and (QE)
symmetric FFTs of prime length and test their Sisal N-_-..c-

implementations. These algorithms fill a gap in the f(_ = xo + _ z,_(w_ n + ¢oTvkn),
symmetric FFT family since none of the above men- n=l
tioned methods can be used for computing symmetric
DFT's of prime length, k = 0, 1,..., N-.....A12for N odd.

This equation defines the even discrete Fourier

2 Background transform ((E) DFT). Since W_v" + WNk" =
2cos(2_rkn/N), the (E) DFT is sometimes called the

The discrete Fourier transform of an N-periodic cosine transform. Its matrix representation is the

complex se_quenc_ez = (xn) is the N-periodic complex N-...._!12+ 1 x -_ + 1 real matrix
sequence X = (Xk) deterrrfined by the equations

1 2 2 ... 2

N-1 l e 1 c 2 ... CN-I

fi:k = C znWkN"' k=O,...,N- 1, (1) . . . "r-'.

n=0 F(_) = 1 ck c2k ... c( N__._!)k
where wg -" exp (-2_ri/g) and i - _"]'. Since these
sequences are periodic of period N, the indices n and

k range over Z/N, the set of integers modulo N. Also, 1 c...v__-_ c2(-_q"t) "'" c_2
the sequences z and )_ can be represented by the vec-

tors x = (z0, ...,zg-1) and ._" = (_'0, ...,XN-1). This where cm -" 2cos(2r_). On the other hand, if (zn) is
gives the following matrix formulation of equation (1) (QE) symmetric, equation (1) can be reduced to

X"= FNz _j-L-1

where FN -- [w_vn], 0 < k,n < g- 1 is an N x N n=o
complex matrix.

An N-periodic sequence x = (zn) is said to be: The (QE) symmetry does not induce any reduction in
the number of DFT outputs, Therefore. the matrix

even - symmetric (E) ifxn = x_n and representation of the (QE) DFT is an N × N2-----$+ 1

quarter- even symmetric (QE) ifxn = x_(,,+l), complex matrix. We denote this matrix F(qe).
Rader's prime length complex FFT is based on the

For an odd number N, a fundamental set of indices for identification of an N- 1 x N- 1 block in FN which can
the (E) symmetry is any subset S of Z/N satisfying: be transformed into a Hankel-circulant by means of

(El) S U (-S) = Z/N and appropriate row and colunm permutations. In general,an M x M matrix A is a Hankel-circulant if it can be
(E2) SA(-S) = {0} written as

where -S = (-n • n E S}. A fundamental set of a0 al a2 ... aM_l
indices S for the (QE) symmetry, in turn, is any subset al a2 ... a0

of Z/N satisfying: A = a2 ... al
. , . .

(QE1) SU-(S+I) =Z/N and ...
N- | aM_l ao al ... aM-2

(QE2) sn-(s+ 1) = ---7,
We use the notation A = Circ(ao, ..., aM-l)and (]A =

whereS'+ 1 = {n+l'nCS}. The set {0,1 N-_.._1} (ao al .. aM_l) T the "generator" of A.''''' 2 ' ' '' '

is a fundamental set of indices for both symmetries, tlankel-circulants admit the following interesting

The restriction of an (E) ((QE)) symmetric sequence matrix factorization: Let A be an M x M llankel-
to an (E) ((QE)) fundamental set of indices eliminates circulant and let f_(A) be the diagonal nlatrix whose
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main diagonal is tile inverse DFT of the first row of where e is a column vector of l's and eT is its trans-
A. Then, pose. Thus,

[ o ]A = FAf_(A)FM FNX = Y+ p-1 l?VrNPN.gX,N,g

Thus, the multiplication of a nankel-circulant A of [ 0 1
order M by a vector can be computed in terms of = Y+ [ PN,lgFM(F_llGwNo FMPN,gX') JM-point FFTs, in fact, in terms of 2&point FFTs by

embedding A in a circulant ,4 of order 2k defined as where M = N - 1, o denotes component-wise multi-
follows: Let A = Circ(ao, al,..., aM-l) and let k be plication,
the minimum m for which 2m > 2M - 1. Define

A=Circ(ao, ...,aM_ 1 , ao, al , ..., aM_2, 0, . . . , 0) [ x0 "_- Xl + " " ' +XN-lx0

where the number of zeros inserted is 2_ - 2M + 1 and Y = [ "for any vector x of length M, let 5: be the vector of x0
length 2k obtained from x by padding the last 2k -
2M + 1 positions with zeros. Then Ax is the vector and x' is the result of deleting the first component of

consisting of the first M components of ,42. x. This matrix expression is essentially Rader's algo-
In order to identify the Hankel-circulant block in rithm. The same factorization but using H?N instead

of WN gives what we call the extended Rader algo-FN let us rewrite the N-point DFT matrix as
rithm.

1 eT ] In the rest of this paper, we show how, as in the ex-FN = e WN j tended Rader algorithm, the core procedures for com-
puting even and quarter-even prime length symmet-

where e is the column vector of ones of length N - 1 tic FFTs can be written as the product of a Hankel-

and eT is its transpose. The N - 1 x N - 1 complex circulant by a vector. The efficiency of these algo-
block can be transformed into a Hankel-circulant by rithms, as well as the Rader algorithm or its extended
pre- and post-multiplacations by permutation matri- version, depends on the availability of efficient algo-
ces whose definition rely on the field structure of Z/N. rithms for computing FFTs.
Indeed, if N is prime, then Z/N is a field and the mul-

tiplicative group U(N) = Z/N- {0} is a cyclic group 3 Prime length (E) symmetric FFTs
generated by a primitive root g modulo N. For exam-

ple, U(5) = {1,2, 3, 4} is generated by g = 2 since Let us rewrite the (E) DFT matrix as

<2°>N =1 b_(e) [ 1 2eT ]<21 > N =2 "N = e CN

N-1
<2 _>N =4 where CN = [ekn], 1 < k,n < N__.___I,an _ x --y-
< 23 >N = 3 real matrix. Now let g be a primitive root modulo N

where < • >Y denotes the least positive residue con- and define P_:_ to be the matrix representation of the
gruent to gk modulo N. Thus, if g is a primitive root permutation on 1 _<n < _N__A,defined by the map

modulo N we define PN.g as a matrix representation (

,Je) (n) = l < gn-1 >N, if < gn-I >N <of the permutation Yk -- X<gk-l>N, 1 < k <_ N - 1. t'g,g gn-1 -- "It can be easily shown that < N - >g, otherwise

Then we have
l_1N = PN,g WN PN)g

where I_'N = C,rc(wNW_<g>Nw<gN-'>N).'"" , ,..., F_)x = [le rN,,qn(_)-12eT_N'Z-'p(e)N,gX]
Ilence,

[1 ] wheroFNX = p- I )VN PN,g xe N,g
= ,c (,) ... c_(o),,,_,)).CN C'i"c(c,'_',)_(1), pN.,(_)' ' pN,_--
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Thus, in this case we have _ In fact, using this function we get

[ ] -k(_,+l))F(e)z = Y + p(e) -1 n(e) i,
N,g FM(F_tiGcN o ri_,gz ) = w_ v2cos(27rk(2n + 1)/2N)

where M = N- 1,
for k ¢ 0. Therefore, if

Y -- ' _2N

DN =
XO ""

and W_ (NN-1)

mI "- . $1 t3 ... tN-2

t2 t6 ,.. 12(N_2)
z._ TN = . . . .

For example, suppose N = 7. The group of units in tg-x t3(N-1) ... t(N-t)(N-2)
Z/7 is generated by g = 3. In fact,

where L = 2 cos(2rs/2N), then we have,
<3°>_ =1

< 31 >7 = 3 QN = DNTN.

<3 2 >7 =2
Since the input indexing set has been embedded into

< 33 >7 = 6 = -1 Z/2N while the output indexing set remains a subset
< 34 >7 = 4 = -3 of Z/N, a slight adaptation of the Hankel-circulant
< 35 >T = 5 = -2. representation technique is required. This adaptation

is based in the following observations: first of all, since
Clearly { 1,3, 2} is a fundamental set and in this case N is an odd prime U(2N) is isomorphic to U(N) and

cx c3 c2 cl c3 c_ in particular, U(2N) is cyclic of order N- 1. Fur-

thermore, no even number belongs to U(2N) and so,
(_7 = ca c2 c6 = c3 c2 cl U(2N) C ¢(Z/N). By way of example, let us considerC2 C6 C4 C2 Cl C3

the case N = 7. As pointed out earlier, the group
The last equality is due to the fact that the cosine U(7) is the output indexing set for the (QE)core pro-
function is even. cedure. Since ¢ transforms (QE) symmetries into (E)

symmetries, an (E) fundamental subset of ,/,(Z/7) will

4 Prime length (QE) symmetric FFTs be the image of a (QE) fundamental indexing set in
Z/7. Now, V(14)) is generated by g : 3. In fact,

Hankel-circulant representations for blocks in the

core subrnatrix QN = [w_n +WNk(n+l)], 0 < k < N- 1 < 30 >14 : 1

and 0 <_ n _< N-12 1 of 'Nl:?(qe) require some extra < 31 >14 = 3

work since neither the upper nor the lower -_ × N-1 < 3_ >14 -" 9
square blocks in QN can be transformed into Hankel-
circulant through any row-column permutation. A < 33 >14 = 13
way around this difficulty is based on the function < 34 >14 = 11

< 35 >14 : 5
¢" Z/N--, Z/2N, ¢(n)= 2n+ 1,

which maps (QE) symmetries into (E) symmetries in The missing odd number in the above list is 7 = ¢(3).
the sense that But zz is not an input for the core computation. A

natural choice for an input (E) fundamental set is
¢(-(n + 1)) = -¢(n). {1,3,9}, which is the image under ¢ of the (QE) fun-
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damental set {0, 1,4}. Tile rearranged matrix is now,

[ i°1 ]tl ta t9 = Y + p-1 AN FN_IHx'
t3 t9 t13 Dy o N,g --AN

R7 = t_ t6 t4
t6 t 4 t12 where
t4 t12 to

t5 tl t3 TN = Circ(tptNq.;)(o),te_q;)(1), ...,fp_qT(._) )

By using the properties tj = ti, , if j+j' = 0 mod 2N
(q*),

and tj = -t/, whenever j + j' = 7k, k odd, we see Ha:' = F_NI__)G_N o FL_._QN,aX ,
that 2

1 [x._r_+2(zo+zx+...+z._z) ]

1[1 Y=

-1 tl t3 t9 XN-_ Z '
R7 = --1 t3 t9 tl

-I t9 tl t3 N-I

1 w_-'f_ 1

-- -A7 " '

which is a Hankel-circulant based matrix factorizat, ion wN -
for 7"7. It is crucial to note that the same integer g = 3

has been used to generate both U(7)and U(14). Such [ w_'/_ J zO

a common integer exists for any pair of gr¢ ,ps U(N) ¢d2N Xl

and U(2N) provided that N is an odd prime. In fact, DN = . , and x' = .
for N an odd prime and g odd, g is a primitive root
modulo N if and only if g is a primitive root modulo W2(NN-1) gg'ff'_
2N.

Now positive signs correspond precisely to the cases 5 Implementations.

< g" >2N< N. Also, if n < N_....A1,then < gn >9`N< N

if and only if < gn+-_-_ >9`N> N, each sign pattern All three of the algorithms developed in this work,
will be the negative of the other. Rader, even, and quarter-even, require the computa-

The general case can be described as follows: Let g tion of the product of a circulant matrix A by a per-
be an odd primitive root modulo N (and hence a prim- muted vector Z, which we compute by a cyclic con-

itive root modulo 2N) For each j = 0, 1 (N-3) volution F(F-1GA o FZ). Thus the efficiency of all
• ,..., 9 , three algorithms depends on an efficient FFT and itslet

1. if < gJ >2N< N inverse for vectors of size N - 1 or (N - 1)/2 whereAt = '1, otherwise. N is the length of the original input vector. When N
is of the form 2t+ 1, the FFTs are of size2 k. In all

Let AN = diag(A0,..., AN_....A_).Also, let p(qe)N,gbe the other cases, we embed the circulant A in a circulant
matrix representation of the map defined by of size 2k, where k is the least number rn for which

2m 7>2size(A) - 1. power of 2.

p(q,) { < gn >2N, if < g" >2N< N The three algorithms were programmed in Sisal
N,a (n) = _ 2N - < gn >2N, otherwise, 12.9.1, using double precision, and tested on a sili-

con graphics computer (S.G.I.) with four processors.
where n = 0, 1 N - 2, and let; o(qe) be the ma-) "'"'_ "_N,g Cyclic convolution was implemented using a radix 4

trix represenlation ot the map defined by Q(qe)(n) = version of Stockham's algorithm, which we found toN,9

¢ "atocq_)(n)), n = 0, 1 _ Then we have be the fastest FFT on the S.G.I. when compared to
_" N.a ..... ' 2 • other standard FFTs, both with and without digit-

N z -- y+ DN o p-1 AN ._/-,N[,-}(qe)x t Initialization for each of the three algorithms in-
N,g --AN "¢N,a cludes the computation of:
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• a primitive root g modulo N Each of the three algorithms requires an additional
function, called "rader","even", and "qeven", respec-

• vectors of indices needed for permuting the input tively. For example, for Rader's algorithm, we use
and output vectors

• the size M of the cyclic convolution and a function rader(M,N:integer;emb:boolean;
boolean variable indicating whether embedding indexl,index2:array[integer];

necessary, invfft_circ,x:array[complex]
returns array [complex]

• twiddle factors for Stockham's radix 4 FFT %scalar_plus_vector returns the result of adding a

• the inverse DFT of the first row of the circulant %scalar component-wise to a vector
let

Initialization for the quarter-even case also requires z := perm(N- 1,index2,
core(M,N,emb,indexl,invfft_circ,x));

• the vector DN of negative powers of w2N YO := for i in 0, N - 1

N-_ returns value of sum x[i]
• the vector Z of powers of w_" end for

in

• the vector AN array_addl(scalar_plus_vector(N- 1,x[0],z),y0)
end let

The following two functions, expressed in pseudo end function % fader
Sisal, are used for all three algorithms:

The function even is almost identical to fader ex-

function circXvector(M:integer; cept for a factor of 2.0 in the computation of y0. The
in vfft_cir c ,z :array [complex];
returns array[complex]) function qeven is given by

% twiddle factor arguments have been suppressed

% array[complex] is actually implemented by a pair function qeven(M,N:integer;
% of real vectors emb:boolean;
% vecXvec returns the component-wise product indexl,index2:array[integer];
% of two vectors A:array[double_real];
let invfft_circulant,Z,D:array[complex]
z := vecXvec(M,invfft_circ,fft(M,x)) returns array[complex])

ill % scalarXvec_plus_vec(c,x,y) returns cz + y
fft(M,z) % where c is a complex scalar and z 'and y are

end let % complex vectors
end function %circXvector % cadd returns the sum of two complex scalars

let

r :-- core(M,(N + 1)/2,emb,indexl,invfft_circulant,x);
function core(M,N:integer;emb:boolean ul,u2 := for i in 0, (N - 3)/2

indexl:array[integer]; returns array of h[i]*r[i]
in,a'rt_circ,x:array[complex] array of - A[i]*r[i]
returns array[complex]) end for;

% perm returns a vector with its components in the v := vecXvec(N - 1,D,perm(N - 1,index2,ulll u2));
% order given by a vector of indices w := scalarXvec_plus_vec(N - 1,x[(N - 1)/2],Z,v);
let y0 := cadd(x[(N- 1)/2],
z "= perm(N - l,indexl,array_setl(x,0)); for/in l, (N- 1)/2
ernbedded.z "- if _mb then z returns vahle of sum 2.0d0*x[i]

else embed(N- 1,M,z) end for)
in in

circ Xvector (M ,inv fft_circ ,embedded _z) arr ay_addl( array_se t l( w, l ),y0 )
end let end let

end function %core end function %qeven
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Since tile even and quarter-even algorithms reduce [6] J. Otto, "Prime Factor Symmetric FFTs,"
the problem size by approximately one-half, we can manuscript.
expect that running times for each of these two algo-
rithms to be about one-half of the running time for [7] C. Rader, "Discrete Fourier Transforms when the
tl,e Rader algorithm, no matter the value of N. In Number of Data Points is Prime," Proc. IEEE,
practice, however, we can do eveu better. For exam- Vol. 56, pp. 1107-1108, 1968.

ple, running times for the largest prime less than 214 [8] P. Swarztrauber, "Symmetric FFTs," Math.
and the smallest prime greater than 2 TMare: Comp., Vol. 47, pp. 323-346, 1986.

N = 16,381
i CPU 2CPU's 4 CPU's

Rader 1.92 1.36 1.10
even 0.78 0.55 0148

qeven 0.91 0.i37 0.53......

N = 16,411
1 CPU 2 CPU's 4 CPU's

Rader 4.17 2.99 2.61

even 1.85 1.28 1.04

qeven 1.98 1.38 1.09

We note that in these two examples, even and qeven
run more than twice as fast as Rader. This will be

true for any N not of the form 2_"+ 1 since the even

and quarter-even algorithms will compute the FFT in
terms of a cyclic convolution which is half the size of

the cyclic convolution used by the Rader algorithm;
however, running times for cyclic convolution more
than double with double the problem size.
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Abstract this remains to be investigated. In this study we will
restrict ourselves to non-blocking threads.

In this paper we present a model of coarse gram In this paper we present the compilation of a func-
dataflow ezecution. We present a top down method for tional language, Sisal [MSA+85], into machine inde-

generating machine independent multithreaded code, pendent coarse grain dataflow code (MIDC). We de-
called MIDC. We define MIDC. We discuss the rel- fine MIDC, outline the relevant compilation stages,
evant phases in the Sisal to MIDC compilation pro- and measure the total number of threads executed,
cess, and present some example compilations. We the average thread size, and the number of inputs per
quantify the number of threads, number of inputs per thread for the Livermore and Purdue benchmarks.
thread, and average thread size for Livermore and Put. The rest of the paper is organized as follows. In
due benchmarks, section two we introduce the MIDC model of cornpu-

Keywords: Hybrid yon Neumann/Dataflow, tation and outline MIDC generation. In section three
threads, code generation algorithm, we present some example programs and their interme-

diate forms. In section four we analyze the dynamic

properties of our cluster generation strategy.

1 Introduction

2 The MIDC Model of Computation
Itybrid dataflow machines execute threads of von

Neumann RISC code, where the threads are enabled MIDC nodes are threads of von-Neumann instruc-

by the availability of data. Thread enabling is either tions. A node is scheduled as a unit on one processor.
implemented by efficient matching using explicit to- An MIDC program is a data-driven graph of these
ken storage and presence bits, or by pools of "wait- clusters. Synchronization (matching) occurs at the
ing" and "ready" threads with hardware support to cluster level, and once a cluster is enabled, it runs to

move threads from and to these pools. A strict fir- completion without blocking and has a deterministic
ing rule allows a thread to execute only when all its execution time. This implies that an instruction that

inputs are available, avoiding threads to block but po- issues a memory request cannot be in the same clus-
tentially increasing latency and decreasing thread size. ter as the instructions that use the value returned by
Conversely, a non-strict firing rule allows a thread to the split-phase read. In our model, threads executes
execute when some of its inputs are not available, strictly, that. is, a thread is enabled only when all the
In this case threads can become larger, but the at- input tokens to the cluster are available. The limited
chitecture must cope with blocking threads, which fine grain parallelism internal to tile cluster could be
may increase the complexity of synchronization, and exploited, for instance, by a superscalar or VLIW pro-
may consequently require a larger, replicated, pro- cessor. The construction of clusters is guided by the
cessor state. It appears that the matching unit ori- following objectives:
ented machines, such a.s the monsoon [PC90] and EM-
4[SKS+92], with little processor state, would favor • Minimizing the internal thread parallelism, so
non-blocking threads, whereas the pool oriented ma- that the inter thread parallelism is maximized.

chines with large processor state, such a_s tile TERA • Ensuring deadlock-free execution of threads.
machine [ACC+90], would favor blocking threads, but

• Minimizing matching and synchronization over-
•This work is supported by NSF (]rant MIP-9113268 head by maximizing the locality and making clus-
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ters as large as possible without violating tile first updating the particular element. This dramatically
two objectives, improves the run time performance of the system.

The Optimizing Sisal Compiler (OSC) [CanS9] per-
• Minimizing the input latency caused by large forms some transformations that are useful for the

numbers of inputs to clusters, machines that it currently targets, but not necessar-
ily for MIDC. Sometimes analysis is needed to de-

It should be noted that there is a trade-off between cide whether such transformations need to be undone.
thread size and input latency. The larger a thread, the One such example is the transformation of ASeatt6r
more inputs it may require. It is therefore not always nodes in the Generator sub-graph of Forall nodes to
advantageous to have as large as possible threads. a RangeGenerateand the addition of AElement nodes

to read the array in the Forall Body. This transfor-
2.1 Compiler Structure mation is turned off for the purpose of MIDC code

generation.
We are designing a Sisal compiler for coarse grain

dataflow machines by targeting to MIDC, which 2.2 Cluster Generation
should be easily mappable to machines such as mon-
soon, EM-4, *T, and Tera. IF1 [SG85] is used as a The top down cluster generation process transforms
common intermediate forn, ¢,_rall Sisal compilers, and IF2 into a flat machine independent dataflow code

decouples the front end ,,_ tile compiler from the code MIDC where the nodes are clusters of straight line
generator. There are four components of the graph yon Neumann code, or basic blocks, and the edges
form: nodes, edges, types and sub-graphs. Nodes de- represent data paths. A node header provides a node-
note operations, edges represent values that are passed label, the number of input ports, the number of reg-
from node to node, types are attached to edges and isters used, and the destinations for all outputs. Out-
functions. To provide block structure, some set of puts can be conditional, i.e. only sent if a register,
nodes and edges can be encapsulated in a sub-graph, specified in the output directive, contains true. The
For control structures such as loops and conditionals, node header is followed by a stream of instructions.
sub-graphs are encapsulated in compound nodes. Instruction operands may be node input values, reg-

The functional semantics of IF1 prohibits the ex- isters or literals. Tokens travelling through the graph
pre_ion of copy-avoiding optimizations. An extension are tagged with an activation name, which can be in-
of IF1, called IF2 [WSYR86], allows operations that terpreted as a pointer to a stack frame as in [CP90] or
explicitly allocate and manipulate memory. A class as a color in a more classical dataflow sense.
of AT operations is introduced, which are similar to An MIDC program consists of a number of function
their IF1 counterparts but have additional informa- definitions, one of which is called main and commu-
tion indicating where in memory their results should nicates with the outside world. A function consists
be constructed. Artificial dependence edges have also of a header and a body. A function header provides
been added to introduce synchronization where this the interface between calls and called functions. The

may be useful, for instance to facilitate update in place MIDC syntax definitions are presented in Table 1.
optimization [Can89]. The concept of a buffer in IF2 The IF2 to MIDC translation process starts with
provides a machine independent way of describing ad- a graph analysis and splitting phase, which breaks up
dressable memory. A buffer comprises two parts: 1) a the nested IF2 graphs such that threads can be gen-
buffer pointer into a contiguous block of memory, and erated. Innermost loops are identified, as they are
2) an element descriptor that defines the elements of candidates for vectorization, which is important not
the buffer, which may be arrays, streams, records or only for machines with vector capabilities, but maybe

basic types. IF2 makes two assumptions: 1) all scalar even more so for block (pre)fetching of conglomerate
values are operated by value and therefore copied to data. Initial values for reduction operators are gen-
wherever they are needed, and 2) all of the fanout erated in the appropriate threads. Threads terminate
edges of a structured type are assumed to reference the at control graph interfaces for loops and conditionals,
same buffer, that is, each edge is not assumed to rcp- and at nodes for which the execution time is not stati-
resent a distinct copy of the data. IF2 edges are dec- cally determinable, such as a function calls and remote
orated by pragmas. For instance, there is a "update- memory accesses. Terminal nodes are identified and
in-place" pragma that indicates that a certain replace- the IF2 graphs are split along this seam.
meat of an array element can be done without copying Function interfaces are then set up for all the func-
the other elements of the array, but by destructively tions that have survived function inlining. A function
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Function Interface: F FName Node# #ins Output

FName: string
Output: < (Destination) >
Destination: node# porto

Function Body: Node...

Node: N Node# #regs #ins OutList
Instruction ...

OutList: < (CondReg ValueReg Destination MatchFn) ... >
Instruction: Targets = Operation
Targets: Target Register [Target Register , Targets

Target Register: R# I V#

Operation: Operator Operands

Operands: , Operand I Operand , Operands
Operand: Operand Register I Literal

Operand Register: V# I R# I I#
Literal: "Type Value"

CondReg: Operand Register
ValueReg: Operand Register
MatchFn: Normal I Queue

#: number or number of %: comment ...: a sequence

Table 1' MIDC Syntax Definitions

interface consists of input and output directives for a loops contain subgraphs. The IF2 to MIDC compiler
function call. It connects input parameters to nodes generates threads for all sub-graphs and "glue" code
in the function body, and combines return values with to link them together. They are wired up sequen-
return information provided by the caller. A trigger tially, such that activation names and other resources
input is used to activate code that has no inputs, for these loops can be kept to a minimum. Forall loops

with data independent body graphs and a loop countIF2 function bodies consist of simple nodes, func-
tion calls, and compound nodes. In the case of sire- known before the loop is executed, consist of a gener-
ple nodes, such arithmetic and logical operators, the ator, a body, and a returns graph. They are wired up
translation scheme from IF2 to MIDC is straight- so that all parallelism in these loops can be exploited.
forward. Simple nodes are merged to form threads, rib that end, all ordering in the reduction operators
A function call is translated in code that connects the has been removed. This is valid as Sisal reduction op-

call site to the function interface, where the input val- erators, such ms sum, product, least, and greatest are

ucs and return contexts are given a new activation commutative as well as associative.
nalne, q'he return contexts combine the caller's acti-

vation name and the return destination and are tagged

(as arc the input values) witll the new activation name. 3 Examples
The function interface returns function results using

dynamic arcs. Three example SISAL programs will be used to ex-

Conlpound nodes, rel)resenl,ing conditionals and emplify our code generation process, Please refer to
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the appendix. Livermore Loop 3 in figure 1 is a vector our desire to reduce the number of tokens to
inproduct function, figure 5 shows a double recursive a minimum. For each array that is present, a
binary integration function using tile trapezium rule, FetchCRunk (FCH) operation is issued. This is
and figure 9 shows a bubble sort function. Function In- done after computing its address in the array, see
lining, common sub-expression elimination and other Nodes 6 & 8. This particular loop body is en-
classical compiler optimizations along with update in coded using vector instructions. Partial reduc-
place and copy elimination gives rise to the second tions and array gather are generated. To allow
internlediate form IF2. Tile IF2 forms of the Liver- out of order execution of tile final reduction oper-
more Loop 3, binary integration and sort programs ation, MIDC node 7 recolors partial results to the
are shown in figures 2 6 and 10 respectively. Tile outer context using a Label (LAB) instruction.
programs are compiled into the MIDC form shown in

figures 3, 7 and 11. To facilitate easier reading, 4. Tile Returns graph is used as a barrier as the
comments have been added by hand to reference the partial reductions are reduced further to give the

source code or provide an insight into the "glue" code final reduction. The Returns graph is run on the
needed, color of the outer context. To implement out of

order evaluation, a Queue Matching Funclion is

3.1 Livermore Loop 3 added. As its name implies if two or more tokens
of tile same color appear at the same port, the
tokens are queued in non-deterministic order forDuring IF2 analysis we lind that the loop is an

innermost loop, and that there are no other struc- processing.

tures that impede vectorization present in the graph.
The generator graph for the loop contains a set of 3.2 Binary Integration
AScatter nodes. In keeping with the need for par-
tial reductions the Reduce node is duplicated in the The analysis phase finds a Select node in the rune-
body. Since MIDC threads have no state, the initial tion body. Since control can flow either to the Else or
value for the reduction has to be supplied from outside the Then sub-graphs the outputs of the sub-graphs
the Returns graph, and all the intermediate reduction needs to be merged, and consequently, the MIDC
values have to be looped back to the Returns graph, graph needs to be split at this merge point. Further
The corresponding edges are added in the Generator analysis shows that the Select node feeds the output
graph. The graph is now ready for code generation, of the function and not any other internal nodes, and

the results of the Then and Else graphs can be linkedFigure 3 shows the code generated and figure 4
shows the MIDC graph structure for Livermore Loop directly to the function output interface. The Else
3. graph contains two independent call nodes, which can

be a part of the same thread. Tile Else graph is split
1. The RangeChecg (RCK)operator in node 3 checks broken at the outputs of the call nodes, as their la-

whether the sizes of all the array inputs to the tency is indeterminate.
loop are the same. Node 3 also contains code to Figure 7 shows the MIDC code generated and fig-
calculate the number of chunks and the size of the ure 8 shows the MIDC graph structure. Code is gen-

odd sized chunk, if present,, erated as follows.

2. A stream of colors to drive the loop bodies in 1. The input and output function interfaces are gen-
parallel will be generated using the Generate erated.
Activation Name Stream (GANS)instructionin

MIDC node 4, along with the outer context and 2. For the function body, code generation is straight-
the the position of the chunk in the array using forward. Most IF2 nodes are simple, and have
the SetColorSetinXed (SCSX) instruction. The a corresponding operator in MII)C. For the se-

loop set up is completed in MID(, node 4 by the lect node, tokens have to be directed to the
corresponding subgraphs, using conditional out-Proliferation of the loop body inputs and the gen-
puts driven by the boolean input to the se-

e.ration of input values for any reduction opera-
tion necessary, lect node. The Then branch is straightfor-

ward, as it is empty and only acts a.s a redi-

3. (-.,'ode for the loop body is generated in two ver- rection node. In the Else branch, we come
sion: one that pertains to full chunks and one across two call nodes. Their function interfaces
for the odd sized chunk. This is in keeping with are identified using the function name in the
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call node. A new activation name is generated Table 2 gives the total number of clusters, in-
using tile GeneratehctivationName (GAN) in- structions and matches for the Livermore and Purdue
struction. All the parameters are recolored us- benchmarks.

ing the SetActivationName (SAN) instruction.
Then the return address along with the old ac-

tivation name is provided. This is done in MIDC References
node 6 using the l_EColor (ttgc) instruction.

[ACC+90] R. Alverson, D. Callahan, D. Cummings,
3.3 Bubble Sort B. Koblenz, A. Portfield, and B. Smith. The

Tera computer system. In Proc. Int. Con]. on

The analysis phase finds that the IF2 function Supercomputing, pages 1-6. ACM Press, June
graph contains a LoopB ill node 3, the output of which 1990.
links to the output of the function graph. No internal [Can89] D.C. Cann. Compilation techniques for high
nodes use the output of this node. Thus, the function performance applicative computation. Techni-
graph need not be split. The LoopB node 3 in turn cal Report CS-89-108, Colorado State Univer-
contains another LoopB, node 4. As this node does sity, 1989.
not feed other internal nodes of the gral)h, splitting [CP90] D.E. Culler and G. M. Papaxtopoulos. The

need not be performed. The Aglement operations in explicit token store. Journal of Parallel and
Distributed Computing, 10(4), 1990.node 4 are independent of each other and can be a

part of the same MIDC thread. The graph is split at [MSA+85] J. McGraw, S. Skedzielewski, S. Allan, R. Old-
the outputs of the lElement nodes. We also find a ehoeft, J. Glauert, C. Kirkham, B. Noyce, and
Select node in the LoopB. The graph is split in the R. Thomas. SISAL: Streams and Iteration
same manner as described in the binary integration in a Single Assignment Language: reference
example above, manual version 1.2. Manual M-146, Rev. 1,Lawrence Livermore National Laboratory, Liv-

Figure 11 shows the MIDC code generated and fig- ermore, CA, March 1985.
ure 12 shows the MIDC graph structure. Code gen-

eration is straightforward once analysis has been per- [PC90] G.M. Papadopoulos and D. E. Culler. Mon-
formed, soon: an explicit token-store architecture. In

Int. Ann. Syrup. on Computer Architecture,

1. The upper limit of the array required by the June 1990.
lLimH in node 3 is computed using the array de- [Roh92] Lucas Roh. IDIAS: a dataflow machine sim-

ulator. Technical Report CS-92-112, Coloradoscriplor. The size and lower bound of the array
State University, Computer Science Depart-

is computed, ment, March 1992.

2. When tile Select graphs are being encoded, we [SG85] S.K. Skedzielewski and John Glauert. IFI:
find that some threads do not have any input. An intermediate form for applicative languages
Since a thread cannot start execution if it does reference manual, version I. 0. Technical Re-

not have any inputs, the MIDC nodes have to be port TR M-170, Lawrence Livermore National
triggered. This is done by tile TI_G instruction, Laboratory, July 1985.

see MIDC Node 11. [SKS+92] M. Sato, Y. Kodama, S. Sakai, Y. Yamaguchi,
and Y. Koumura. Thread-based programming
for the EM-4 hybrid dataflow machine. In Int.

4 Evaluation Ann. Syrup. on Computer Architecture, 1992.

[WSYR86] M. Welcome, S. Skedzielewski, R, K. Yates,

In this section we present the dynamic properties of and J. Ranelleti. IF2: An applicative language
our top down generation strategy, by running the Liv- intermediate form with explicit memory man-
ermore and Purdue benchmark codes on our coarse agement. Technical Report TR M-195, Univer-

sity of California- Lawrence Livermore Labo-
grain dataflow graph simulator [Roh92]. The objec- ratory, December 1986.
tives of these measurements are to evaluate the total

work, in terms of number of clusters, the average num-
ber of instructions per cluster (So) and average num-

berof inputs per cluster (It) and the average number

of inputs per illstruction (Ii).
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Program Size Clusters Instructions Matches S¢ 1¢ - Ii
11 20 123 1031 838 8.38 6.81 0,81

12 20 895 8638 5652 9.65 6.32 0.65
13 20 84 308 242 3.67 2.88 0.79

14 100 86 727 648 8.45 7.53 0.89

15 20 102 685 668 6.72 6.55 0.98
16 20 1345 6696 5206 4,98 3.87 0.78
17 20 129 2403 1080 18.63 8.37 0.45

18 20 1053 6019 3776 5.72 3.59 0.63
19 20 634 11744 9494 18.52 14.97 0.81

110 50 1556 53624 31525 34.46 20.26 0.59
llls 20 98 543 540 5.54 5.51 0.99

112 20 603 3547 2558 _.88 4,24 0,72

113 50 355 4401 3960 12.40 11.15 0.90
I14 20 231 2750 1979 11.90 8.57 0.72

115 20 990 7863 5368 7.94 5,42 0.68
116 20 539 2272 2609 4.22 4.84 1.15

]17 20 138 1632 1497 11.83 10.85 0.92
119 20 1645 15407 14488 9.37 8.81 0.94
121 25 25686 113764 88022 4.43 3.43 0.77
122 20 1833 7790 5934 4.25 3.24 0.76

124 20 116 455 428 3.92 3.69 0.94

pi .... 100 202 ' 1007 705 4.99 ' 3.'49 " 0.70

p2 20 1263 5825 3366 4.61 2.67 0.58
p3v 20 283 1228 644 4.34 2.28 0.52

p3 20 1283 4032 3404 3.14 2.65 0.84
p4v 20 13 64 31 4.92 2.38 0.48
p4 20 63 272 184 4,32 2.92 0.68
p5v 20 3209 13536 10876 4,22 3.39 0.80

p5 20 3366 17138 16113 5.09 4.79 0.94
p7 20 2063 7447 7408 3.61 3.59 0.99

p8 20 690 5247 3562 7.60 5.16 0.68
p9 20 3713 40870 25180 11.01 6.78 0.62

pl0 20 1458 8254 8068 5.66 5.53 0.98
pllv 20 325 1562 927 4.81 2.85 0,59
pll 20 375 1645 1332 4.39 3.55 0.81
p12 20 2879 10481 12185 3.64 4.23 1.16
p13 20 123 643 592 5.23 4.81 0.92
p14 20 667 14233 4920 21.34 7.38 0.35
p15 10 4995 55407 29206 11.09 5.85 0.53
Total 669,tl 449608 321697 6.72 4.81 0.72,

'Fable 2: Dynamic counts for Livermore loops (1) and Purdue benchmarks (p). v at the end of the program name
signifies vector execution. ,5'_- Instructions/Cluster, 1_- Matches/Cluster, Ii - Matches/Instruction.
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A Livermore Loop 3

function Loop3p(vl, v2: array[integer] returns Integer)
for el in vl dot e2 in v2

x :ffi el * e2;
returus value of sum x

end for

end function _ Loop3p

Figure 1: Sisal Code for Livermore Loop 3.

,, _ i FunctionLoop3

Forall
1: 2 1

Generator

•
Body

Re_

Figure 2:IF2 representation of Livernaore Loop 3.
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% Entry Code for Function loop3.
% Input Interface.
F loop3 1 2 <(3 1)(3 2)>

% Output Interlace.
F loop3 2 2 <0>

Body of Function loop3. N S 3 3 <(R3 RI 2 I 0)(!R3 RI 5 2 O)
N ,S7 2 <(;R0 il I Z 0)(:Ro 12 4 _ o) (!R3 R:Z S S 0)>
(!Ro R3 4 30)(!RO RS 4 4 O) RI = ADD 12 II ; reduce the p,rt[&l sums,
(R4 R6 4 & 0)(_R4 R7 4 3 0)> R3 = SUI 13 "1" ; loop till #chunks = 0
R0, R0, RI = UPK 11 R3 := EQI R3 R0
R0, R0, R2 = UPK 12
RCK RI lqL3 ; M_ke sure arrays are of equal lenl;ths. N 6 3 2 <()>
R3 = MOI R1 "8" ; Chunk sine --- 6 R2, R0, R0 --'- UPK I1
IR3 = SUI R1 R3 RI = EIX II

R6 = DVI R1 "S" ; Calculate the number of chunks. FCH R3 RI uS" "TDI" ; fetch chunk for vector X,
R4 = EQI R3 R0 R3, R0, IR0 = UPK i_
RT --.--ADi R6 "1" FCH R3 RI _8" "7D_" ; fetch chunk for vector y,

N 4 14 3 <(!IRI3 R4 9 40)(!R0 lqL37 3 O) N 7 3 3 <(!RO R3 8 I 3)>
(!RO It6 6 I O)(!RI3 117 8 1 O) VI = MUVD II 12 ; Multiply vectors.
(!R0 IqL86 2 0)(:RI2 Rg 8 3 O) R3 = IRSM Vl "8" ; seduce vector sum.
(!RI2 RII 8 30)(!R12 Rll g 3 0) R3 = LAB R3 13 ; recolor the result.
(!R0 RI3 5 30)(!RO RI4 5 3 0)> ; St,=it of For61l loop.
R3 = EIX II ; Extlact loop index fol future ole. N 8 3 3 <;()>
R.4 ----SIX R3 14 ; Set loop index for the odd chunk. R3, R0, R0 = UPK II
RI2 = EQI 13 RO RI -----EIX I1
R1 = SUI 13 "I" FCIf R2 R.I 13 "gDI" ; fetch odd size chunk for vector X.
R3 = (fANS "1" RI "&" ; Oeuerate an Activation Name stream. R3, R0, R0 = UPK I:
R_ = SCSX R2 R3 ; Save the old color and index information. FCH R3 RI 13 "gD2" ; fetch odd sine chunk /or vector Y.
R6 = POL II R3 ; Proliferate the loop _rgurnents.

R7 = SIX II 14 N g 3 4 <(fRO R3 5 1 3)>
R5 = POL 12 R2 VI = MUVD II 12 ; odd size chunk is reduced _s above.
R9 = SiX 12 14 R:_ = R.SM V 1 13
RI0 = EQU 13 R3 ----SIX R2 14
IRII = SIX RIO 14
RI3 = EqU 13 ; Number of chunks needed for th_ _educe.
RI4 = EQU "O.OD0" ; Set initial value fol the r_ ]uce operutlon.

Figure 3: MIDC code for Livermore Loop 3.

[-:}

Figure4: MIDC graphsstructureforLivermoreLoop 3. LegendinNodes:Node number (#inputs,#instructions).
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B Binary Integration

function F(I: real returns real)
3.0*IeX.X + 2.0*X*I + 5.0

end function _ F

function Trap(L, R : real returns real)
(R-L) • (F(L) + FCR))I2.0

end function _ Trap

function Area(L,R,Est,Tol: real returns real)
let

Mid := (L + R)/2.0;

A1 := Trap(L, Mid); i2 := Trap(Nid, R);
levsst := il + A2

in
if abs(Est - |sweet) < Tol
then newest

else Area(L, Nid, AI, Tol/2.0) + Area(Rid, R, A2, Tol/2.0)
end if

end let
end function _ Area

Figure 5: Sisal Code for Binary Integration.
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Pigure 6:IF2 for Binary Integration.
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% Function Interfsce for Function Are._.
_e input lnterfsce.
F _reu 1 4 _(S 1)(S '_)(_ 3)(S 4)_.

_I_ Output Interf&ce.
P _r_s 2 2 <()>

% Body of Function Ares.
N 3 35 4 <(R33 R33 8 1 0)(!R3& II 6 3 O) N 6 13 6 <(!R0 R3 I I 0)(:R0 R4 t 2 o)

c,R35,... o) ,R 3,2.50, 0)c..oR.I' °oi
(!R3s R31 6 4 0)) (!R0 RIO I 2 0)('R0 RII I 3 0)
RI ---- ADR II 12 | TI --. L -{" R (![10 RI2 I 4 0)(!R0 RI3 2 2 0)> ; _Ise breach.
R2 --- DVR RI "3.0" , Mid _- (L -(- R)/3 R3 = (]AN II | Function Cell to Ares.
R3 = SUR R2 11 ! Tr,p(L, Mid), [alined. R3 =m SAN 13 R3 ; Arsuments s|ven • new color.
R4 --. MUR 11 "5.0" R4 ---- SAN 12 R3
R3 = MUR R4 II R3 = SAN 11 R2

R6 = MUR R3 II RI _s DVR 16 m2.0m ; New toler•nce calcut•ttd.
R7 ----'MUR 11 "2.0" Ft6 --- SAN RI R2
RS -- MUR R7 II _.T ---- REC R3 "TDI" ; Destinstloa _- old color.
Rg = ADR B.6 RS _.8 = CIAN II
RI0 -- ADR R9 "b.0" ; F(L), inlined. Rg = SAN ]2 R8
Rll --.-MUR R2 "3.0" RI0 = SAN 15 IqL8
R12 = MUR P.II R2 RII = SAN 14 ha
RI3 = MUR RI2 R2 RI2 -- SAN RI R8
RI4 = MUR R2 "2,0" RI3 = REC R8 "TDS"
RIb = MUR RI4 R2

RI6 : ADR RI3 RI5 N 7 I 2 <(!R0 RI 2 1 0)> ; Else Contiuu•tion.
RI7 = ADR RI6 "3.0" ; F(Mld), inlined. RI = ADR I1 12
RI8 = ADR RI0 RIT
RI9 = MUR R3 RI8 N 8 0 I <_(;R0 II 2 I 0)7 ; Then Brsuch return Newest.
R20 = DVR Rlg "2.0" ; Tr•p(L, Mid) completes.
R21 -- SUR 12 R2
R22_ = MUR 13 "3.O"
R23 = MUR R22 12
R24 = MUR R23 12
R23 = MUR 12 "2,0"
R26 = MUR R25 |2
R2T ----ADR R24 R26

R2S = ADR R2T "S.0" ; F(R), |alined.
R29 = ADR RIT R28
R30 = MUR R21 R2g
R31 = DVR R30 "3.0" ; Tr&p(Mid, R) completes.
R32 = ADR R20 R31 ; Newest = AI -_- A2
R33 ----SUR 13 R32
R34 = ABR R33
R3S = LTR R34 14 ; T2 = &bs(Eet - Newest).

Figure 7: MIDC code for the Binary Integration Function Area.

lam-fv._ I

Figure 8' MIDC graph structure for Binary Integration Function Area.
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C Bubble Sort

function Sort (Data: array [integer] returns array[integer])
for initial

Li_it := array_limb(Data) ;

B := Data;

exchange := true

while Limit > array_liml(Data) & exchange repeat

Limit := old Limit- I;

B, exchange :=

for initial

J := array.liml(old B) - I;

I := old B;
exch := false

while J < Limit repeat

J := old J + 1;

Y := old X[J];

X, exch :=

if ( Y > old I[J . I]) the,_

old l[J:old l[J+l]; J+l: Y], true

elseif old exch then old X, true

else old X, false

end if

returns value of X

value of exch

end for

returns value of B

end for

end function _Sort

Figure 9: Sisal Code for Bubble Sort.
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Figure 10:IF2 for Function Sort.
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% Function Interface for Function Sort. N 7 6 4 <(!R0 hi 8 6 0)(RI R2 9 1 0)
% Input luterfsce. (RI R3 9 3 0)(R1 R4 9 3 0)
F sort I t 0 <(3 1)> (Rl RS 9 4 0)>

RI = LTI 13 I1 ; Test graph of inner loop.
.% On,put Interface. R2 -- INX II
F sort 2 2 0 _()_> R3 " INX 12

R4 = INX 13

0_ Body of Function Sort. Rb ----"INX 14
N _ 12 I <(:R0 R7 4 2 o)(!ho R8 4 t 0)
(!R0 R9 4 S 0)(:h0 Rio 4 4 o) N 8 v _ <(:I8 h4 4 2 0)(',l_ hs 4 3 o)
(_ho hv 8 2 o)(!h0 hs 5 z o) (Ie R7 S _ o)(*.I8 R4 5 m o)
(!h0 R9 5 S 0)(:R0 RI0 5 4 0) (!16 I31.65 3 0))
(!R0 R13 S 6 0)) RI = DIL I1 ; Returns Graph of inner loop.
RT ----.IlL 11 ; inlt graph o'l outer loop. R4 = SIX RI |6
R0, R3, R0 = UPK 11 ; ALimL o1 "_he Input arrsy, R3 = DIL 14
R8 = IlL R,5 ; Increment lter,tlon Level R3 = SIX R2 1,5
h6 = EQU "ThUE" R7 = INX 1,q
R9 = IlL R6

R0, hl. R2 = UPK 11 N 9 10 4 <(tR0 14 I0 4 0)(!R0 13 10 3 0)
R3 = ADI h3 RI ; ALimH of the Input array. (!R0 12 I0 3 0)(!R0 II I0 1 0)
R4 : SUI h3 "I n (!R0 RI I0 7 0)>
RI0 = IlL R4 RI = ADI 13 _1" ; Body of inner loop.
hll : EIX 11 ; Extract Index of outer loop. R3, R3, h4 ---- UPK 14
R12 -----IlL RII R,5 = SUI R! R3

RSS R2 R5 "IOD3 n ; AElement, node 3.
N 4 7 4 <(_R0 R3 5 6 0)(R3 R4 6 1 0) B7, R8, R9 -----UPK 14
(R3 R5 6 2 0)(R3 R8 6 3 0) R6 = ADI 13 n5"
(R3 R7 6 4 0)> R10 --- SUI R6 R8
hi -_ LEI 14 II ; Test Graph of outer loop. RSS R7 hI0 "IOD6" ; Al_lement, mode 4.
h3 _- NOT hl

R3 : AND h2 13 N I0 2 T <(*.R0 11 T I 0)(:R2 14 11 I 0)
R4 = INX 11 ; Increment Index for the (R2 14 12 I 0)(R2 17 13 3 0)
R5 : INX 12 ; next iteration. (R3 13 12 3 0)(:R3 19 II 3 0)
R6 : INX 13 (!R0 I1 S 1 0)_
h7 : INX 14 R! : LEI 16 16 ! Compute conditlounl.

R3 : NOT RI ; nodes, S b 6.
N 5 5 6 <(!16 R3 _ 1 0)(16 R,5 ,5,50):>
hi = DIL 11 ; Returns l_raph of outer loop. N 11 3 3 <(!h0 11 7 4 0)(112 RI 14 I 0)
h3 = SIX RI 1,5 ; Set index vulue for the outer value. (19 R2 13 1 0)(:R0 11 8 4 0)_>
R6 ---- INX 1,5 ; Increment Index for next iteration. R! = TRO II ; Select Node, selector grnph.

R3 = TRO |I ; Trigger one of the paths.
N 6 to 4 <(_RO I1 4 I o)('RO R,5 7 3 o)

(!R0 R6 7 I 0)(:h0 R7 7 3 0) N 13 55 3 <(!R0 R1 13 4 0)(:R0 11 13 2 0)
(!R0 RS V 4 o)Cho R,5 S _ 0) (_R0 13 13 3 0)(:R0 la 13 3 o)>
!R0 R6 8 I 0)(;R0 R7 8 3 0) R! = ADI 13 "l n ; Then path of outer select.
!R0 R8 8 4 0)(fRo R10 8 ,5 0) R5, R3, R4 : UPK 11
(:R0 h; 4 4 0)(!h0 11 S I 0) R6 : SUI RI R3
(!R0 RI ,5 4 0)> RSS R2 h3 nI3D1 n
R4 "" EQU "FALSE" ; Body of the outer loop.
R,5 = IlL R4 ; Also, the lnlt for the inner loop. N 13 13 ,5 <_(!R0 R12 7 4 0)(!R0 h13 7 3 0)
R1 = SUI 14 nl" (!R0 R13 8 4 0)(!R0 R13 8 3 0)_>
R6 = IlL RE RI : EQU 12 ; continuation of then p,th
IR0, R2, R0 -= UPK 19 R2, R3, R4 = UPK R! ; from MIDC node 13.
h3 = SUI h3 nl" R'5 : SUI 13 R3
R7 = IlL R3 WSS R3 R3 11 ; ARepl&ce
R8 = IlL 12 R6 -" PAl( R2 R3 R4
h9 = EIX 11 RV = ECrU R6
R10 = IlL R9 R8, R9, Rl0 -" UPK R7

R11 = SUI 14 h9
N 7 6 4 <(:h0 R1 8 6 0)(hi R2 9 1 0) WSS R8 RII i,5 ; ARepl&ce
(R1 R3 9 3 0)(hi R4 9 3 0) R13 = PAK R8 R9 Rl0 ; Rep_ch the &tray descriptor.
(RI R6 9 4 0)> RI3 = EQU "TRUE n
R! : LTI I3 II ; Test graph o1 inner loop.
R2 = INX II N 14 1 1 <(!R0 RI V 2 0)(!RO Rt 8 2 0)>
R3 = INX 12 IRI = EQU "FALSE" ; Else path o1 the inner select.
R4 = INX 13

[q.,5= INX 14 N 16 1 1 <_(!Ro RI 7 3 0)(!R0 RI 8 2 o)_.
RI = EQU "TRUE" ; Then path of the inner select.

Figure 11: MIDC code for the Sort.
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Figure 12: MIDC graph structure for Function Bubble Sort.
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Overlapping Communications and Computations on
NVlVlA Architectures

Rich Wolski and John Feo
Lawrence Livermore National Laboratory

Livermore, CA 94551

Abstract when a reference occurs. Each load or store is over-

Many of the currently available multiprocessing systems lapped with computation from another runnable thread.
are built from commodit3' RISC processor chip sets. Current partitioning methods do not adequately
These processors reduce the latency associated with ac- model load and store operations; consequently, they
cessing memory by supporting non-strict load and store generate poor partitions for RISC-base systems. In this
operations. These operations complete before the data paper, we define two new nodes, WAt (write-at) and
is actually present in registers or transferred from regis- RAt (read-at), to model memory access operations.
ters to memor3,. Effectively overlapping communication When we include these nodes in data dependency
and computations is the key to achieving high-perfor- graphs with memory nodes [WolFeo92], we find that
mance on these systems. Present partitioning methods conventional partitioning algorithms, such HEF (heavy-
do not accurately model non-strict load and store opera- edge first), can effectively overlap communications and
tions; consequently, they generate non-optimal sched- computations. Most importantly, the partitions gener-
ules for RISC-based machines. In this paper, we define ated have shorter critical path lengths.
two new nodes, WAt and RAt, to model the execution In Section 2, we introduce the new nodes, describe
semantics of load and store operations. We show that the advantages of program dependency graphs with
by including these nodes in program dependency graphs memory nodes, and describe changes to the HEF algo-
with memory nodes, we can effectively overlap commu- rithm to accommodate WAts and RAts. In Section 3,
nications and computations, thereby, reducing critical we give performance results for a RISC-based, NUMA
path lengths. We present performance results for a architecture. In Section 4, we conclude and describe
RISC-based NUMA machine. Our study demonstrates future work.
the importance of the new nodes and the versatility of
program dependency graphs with memory nodes. 2 Partitioning

Parallel programs are naturally represented as data
1 Introduction dependency graphs [Kuck81]. Within such graphs,

nodes represent computations, and directed edges repre-
While older, CISC (complex instruction set com- sent the conveyance of data between computations. The

puter) architectures implement strict instruction seman- advantage of a graphical representation is that paral-
tics, modern parallel computer systems tend to be built lelism is immediately visible. Nodes contained within
using RISC (reduced instruction set cc,nputer) processor independent paths through a program may be executed
technology. Many RISC processors are pipelined, in parallel. Traditionally, partitioning methods have as-
load/store architectures in which all computational in- sumed the macro-actor model of computation described
structions operate on register operands. Data is moved in [Sarkar87]. The model assumes the lowest level op-
between registers and memory by explicit load and store erations to be atomic and functional. Each fundamental
instructions rather than as part of each computation, unit of computation executes to completion once initi-
Since the systems are typically pipelined, the load and ated, and produces results based solely on its inputs.
store operations are non-strict; that is, control is returned Fundamental computations are assumed to be strict with
to the processor before the operations complete. More- respect to their inputs and outputs. An operation may
over, several emerging new NUMA (non-uniform mem- not execute before all of its inputs are present, and no
or), access) multiprocessor architectures implement pro- output may be consumed until all outputs have been
cessor muitithreading as a mechanism for latency toler- produced. The macro-actor model represents the com-
ance [Alv91, Nik91]. These systems hide memory la- munication of data from producer to consumer as a sin-
tencies by rapidly switching between runnable threads gle atomic event.

In [WolFeo92], we showed the advantage of includ-
ing memory nodes in dependency graphs when partition-
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ing ff)r NUMA architectures. The graphs more accu- Figure 2 illustrates the use of WAt and RAt nodes. In
rately reflect the complex memory structure of these the figure, the computation node is marked "C", each
machines, and enable partitioning algorithms to optimize RAt is marked "R", and each WAt is marked "W". The
the use of memory. The graphs identify explicitly the memory nodes read and written by the computation are
three distinct phases of communications [Figure Ia]: colored to indicate that they have been assigned to regis-

ters. The memory nodes between the WAts and RAts
l) the producer writes its results to an accessible mem-
ory location, are colored to indicate that they have been assigned to

some memory type. [Since our focus is NUMA archi-
2) the data is transferred by an intermediate communi- tectures, we have eliminated the communication phase
cation facility to a memory location accessible by the of each memory transfer.]
consumer, and

memory3)the consumer reads the data fromtheaccessiblelocation. _If the producer and consumer write and read the same
memory, then we may merge the two memory nodes _
eliminating the communication phase [Figure lb]. By k,L)
providing an architectural model that specifies the per-
formance characteristics for each type of memory and
communication channel, the compilation system can es-
timate execution delays accurately, and generate better
program partitions and schedules.

During the communication phase, if it exists, both
processors are free to execute other ready operations.
Thus, data dependency graphs with memory nodes help
to identify certain opportunities for overlapping commu-
nications and computations. But, for RISC-based and
multithreaded architectures that can overlap every l l
memory access operation with computations, the actual
number of opportunities is much greater than that iden-
tified.

communicate _1

memory node Legend

I I - Register k'_ - Memory I(a)

Figure 2

Unlike other nodes, however, WAt and RAt nodes

(b) may or may not imply execution semantics. The defini-
tion of their execution semantics depends on the archi-
tecture and language system. If the target architecture

Figure 1 supports a load/store instruction set (as is the case with
most RISC processors), then the RAt and WAt nodes
correspond to load and store instructions respectively.

Tt_ercfore, to model load and store operations, we Conversely, if the architecture and language system
introduce two new nodes: support direct memory addressing at the instruction

WriteAT: executed by a producer to transfer data from level, then the RAts and WAts simply carry cost
register to memory (abbreviated WAt). information but no execution semantics.

In RISC-based NUMA architectures, computations
ReadAt: executed by a consumer to transfer data from read and write only registers, and are strict. No compu-
memory to register (abbreviated RAt). tation may fire until all of its register inputs are avail-
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able, and no register output may be consumed until all ation of a merge sort where the output sorted list is the
have been produced, ttowever, load and store opera- new thread.
tions are not strict. Once executed, the processor is free The semantics of load and store operations, as ira-
to continue execution of independent instructions even plemented by most architectures, also requires that the
though the inputs and outputs of these instructions are cost statistics for RAts and WAts be calculated differ-
not yet stable. Since a WAt and RAt have execution ently than for other nodes. Specifically, for RAts and
senmntics, our architectural model defines an execution WAts we must charge the cost of accessing a non-regis-
cost for each node. ter colored memory node after the execution of the RAt

The heavy-edge-first (HEF) algorithm attempts to re- or WAt since that is how delayed memory operations are
duce program critical path by assigning the edges carry- typically implemented. A load instruction can be
ing the largest volumes of data (the heaviest edges) to thought of as reading a memory location and writing a
the fastest memories. All memory nodes are initially register. The delay until the load executes, however, is
colored with a default memory or communication type not incurred as a result of its input memory type.
and sorted according to volume. The memory node in- Rather, the node executes and some time later its output
cident on each edge (considered one at a time in the or- register type contains a copy of the data in its input
der specified by the sort) is speculatively colored with memor T type. Similarly, a WAt "doesnot read a register
every other possible memory type. After each coloring, and write a memory location in terms of the cost model.
the graph's critical path is calculated, and the coloring The WAr fires and then data is moved from register to
that yields the shortest critical path is accepted. The al- memory. Graphically, we depict this relationship in
gorithrn terminates when all edges have been examined. Figure 3.
Pseudocode for HEF is Notice that neither the RAt nor the WAt incur an in-

HEF(graph) put cost; both of their read costs are zero. In both cases,
we charge the latency associated with their incident

{ assign al i memory nodes J n graph the memory type after their execution.
default memory color;

_-+-_rtedlist :: SORT(edges by volume);

while(sorted_iJst+ is not empty)

( best_color = default color;

edge : remove_biggest (sorted_list) ; delayassociatedfor(each memor%' color except default)
c _ with memory color k{ c+:,_or memory node incident on edge;

calculate critical path length;

if(path length is better)

best color = color;

],

,:olo_ memory node with best_color; Figure3
}

}

The complexity of HEF is O(k N 2) where k is the 3 Results
number of different possible memory types. Each node
is colored with k different memory types, and after each For this study, we used a communication topology
c_loring, the graph distances are adjusted. The recalcu- similar to that provided by the BBN TC2000 [BBN90].
lation of graph distances is O(N), there are O(k N) opera- The TC2000 supports essentially 4 forms of memory:
lions performed per node. Since each node is accessed registers, local private, block shared, and interleaved.
once, the overall complexity of O(k N2). We assumed 100 iterations per loop and a spawn cost of

Similar to the work outlined in [Sarkar87], HEF fo- 50 clock cycles. A lock per processor must be assumed,
cuses on the edges carrying the greatest communication and a pointer reference is incurred as each loop slice is
volume as being the sources of the greatest execution allocated making 50 clocks a reasonable estimate.
overhead. These edges will be considered [or the fastest As a cost metric, we use the mean percentage ina-
mem_w_, colors first thereby reducing the greatest provement in the length of the critical path before and
amount of commt, nication overhead. If a private color is after partitioning over a set of 100 test graphs. We use a
selected for a given memor%' node, the threads contain- combination of IF1 [Skedz85] and IF2 [Ran871 (referred
ing its producer and consumer are merged according to to as IFX) to graphically represent parallel programs.
the merge heuristic in [WolFeo921. Briefly, the two Initially, we assume each computation is assigned to its
thread_,, to be merged are considered pre-sorted lists, own processor, and that all comnaunications use shared
The _nerb,c alg_rithm c_mstitutes essentially a single iter- memory as the default type. We define the length of the

critical path in the initial graph as the initial length. We
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then partition the graph using a particular partitioning Delay(n): the amount of time between when n's last
algorithm, and calculate the critical path length of the fi- input is available and when n actually executes.

hal graph O'he final length). The percentage improve- We assume that each node has been assigned to some
ment is thread, and that communications local to the thread can-

not be overlapped (i.e. local communication takes place
initial path length - final path length , 100 in registers). We do not impose limits on the number ofinitial path length

registers available, nor do we assume that memory is
For the memory characteristics of the TC2000, we scarce. Graphically, the overlap, latency, and delay

obtained the improvement results shown in Table I. statistics are depicted in Figure 4.
HEF in combination with our methods for assigning Intuitively, the overlap is the computation that takes
costs throughout the IFX hierarchy extracts reasonable place between the earliest prefetch and the actual execu-
critical path improvements, tion of a node. It is a measure of the degree to which the

partitioning methods are filling the latency gaps. How-
ever, since a node may be artificially delayed due to par-
titioning, we measure the amount of computation be-

liEF tween the prefetch and the earliest time the node could
Program Improvement execute (i.e. when its last input is ready). In the ideal

, case, each node would execute as soon as all of its inputs
GJ 89.9 % were available and all of the communication necessary,,,

to fetch those inputs would be overlapped with computa-
.....PIC 86.2 % tion. The latency measure captures the degree to which

CG 88.1% our methods achieve this goal. The delay is the time be-
tween its earliest possible execution and when it actually

RICARD 79.6 % executes. That is, the delay measures how long each

SIMPLE 67.7 % computation is executed after its earliest possible start
.... time. We would like to see the delay values for nodes

on the program critical path be as small as possible. The
algorithms should seek to push node delays off the criti-

Table I cal path so critical nodes start as soon as possible. Note,
however, that if a node is delayed due to partitioning, its

3.1 Overlap start time may actually be shorter than if it were exe-
cuted in parallel. Delay, therefore, does not necessarily
indicate that a node should not have been sequentialized.To effectively exploit RISC and multithreaded archi-
Rather the absence of delay indicates that a node starts

tectures, the partitioning and scheduling system must be as soon as it is able.
able to schedule load and store operations so that the
communication latencies are masked. Within each Figure 5 shows the overlap, latency, and critical delay

thread, computations that take and produce local data (delay values for nodes on the critical path) for graphs
values should be executed during the delay between from a Conjugate Gradient Program (CG) The absence

of any value for a graph implies either that the entirewhen a remote fetch is initiated, and its consuming com-
putation executes. The notion of initiating a non-strict graph has been sequentialized, or that the graph is
load before its data is required and then "filling" the re- empty.
suiting gap is occasionally referred to as prefetching in For the graphs where values are recorded, the latency
the literature, and overlap values are either very close together or the

To expose the effectiveness of our approach for critical delay value is very low. In the former case, all
prefetching, we define the tollowing three statistics for of the overlap is covering latency. That is, none of the
each node: overlap is covering delay induced by partitioning. In the

latter case, there is delay incurred by various nodes, but
Overlap(_z): the amount of computation that takes place it is not on the graph critical path. To allow the figure to
between the initiation of n's earliest load, and the execu- scale properly, we omit the data for two graphs from
tion of tz itself, Figure 5. Those values are:

Latency(n): the amount of computation that takes place Overlap Latency Critical Delay
between the initiation of n's earliest read, and the time
when n's last input is availablc, 57990 6702 2468200500 10560 239
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These figures show particularly good latency toler- RAts and WArs have node read cost so they busy their
ance and non-critical delay values. Clearly, for CG the processors only during execution.
HEF partitioning algorithm is masking latency. Figure 7 shows the same data for PIC when parti-

tioned with HEF.

3,2 Gaps We, again, omit two outlying data points of 17,560
cycles and 52,690 cycles. We contend, then, that mul-

Another important question concerns the idle time tithreading support is desirable since it can be exploited
present in each thread, if that idle time is reasonably by compile-time partitioning and adapts better in the
substantial, the overhead associated with multithreading face of data dependent execution. Software multithread-
might prove tolerable. Further, even in the presence of ing may prove beneficial in the cases where large gaps
very fast multithreading support (i.e. supported by are found. In either case, the partitioning and scheduling
hardware), the presence of large gaps indicates that a system is able to, at the very least, locate the portions of

the code where multithreading might be profitable.large number of threads may be assigned to a single pro-
cessor thereby reducing the processor requirements for a
program. Multithreading has the additional advantage 4 Conclusions
that it responds well in the presence of incomplete or
erroneous analysis. Non-strict instruction execution, either in the context

The gap within each thread is calculated as the differ- of RISC processing or a multithreaded architecture, al-
ence between the completion time of each node, and the lows for greater overlap of computation and communica-
start of its successor. If the successor does not begin ex- tion. Further, in order to e'_tract the maximum possible
ecuting immediately, the processor executing that thread performance from these systems, parallel programs must
becomes idle [Figure 6]. use the non-strictness to tolerate communication laten-

cies. Partitioning algorithms must take into account the
effects of non-strict execution so that the compilation

O system may exploit the underlying machine on behalf ofthe programmer. To assist the algorithms, we introduced
two new nodes: WAt and RAt.

O When we examine amount communication that
the of

is overlapped with computation, we notice that some of

O _ the overlap is due to sequentialization by the partitioning
Processor is free _ _] system. Therefore, we differentiate between overlap and

I latency. For many graphs, the overlap and tolerated
latency are identical showing that HEF is effectively
exploiting non-strict instruction execution. In the cases

Gap where the two statistics differ, the resulting delay is

L generally not on the critical path indicating that critical
computations are starting as early as possible. Further,

Computation begins input- the overall percentage decrease in critical path is
reasonably large for out test codes. We conclude that
HEF is an effective partitioning methodology for non-

Q strict NUMA systems.Finally, we investigate the opportunities for multi-
threading by exposing thread idle time. For the commu-
nication granularity and the amount of processor re-

Figure 6 source available on the TC2000, some opportunities ex-
ist, but the majority of the parallelism must be extracted
from coarser parallel constructs such as loops.

The processor becomes free after the last output from We plan to implement these algorithms as part of the
a computation node is written to a register. After the ex- OSC optimization chain tor NUMA systems. Currently,
ecution of a WAt or a RAt, the processor is immediately the output of HEF is partitioned IFX suitable for schedu-
free since these instructions are not executed strictly, ling and code generation. To realize actual running pro-
Similarly, the processor becomes busy when a computa- grams, we need to develop a scheduling methodology
tion begins reading its first input from a register. Again, and augment the OSC code generator to produce exe-

cutable threads.
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Abstract by Lubomir I]ic [6] and the SISAL system [7]. The
(_/,G)-machine is an implen,entation of a graph re-

This paper presents a compiling method to translate duction machine, which is an abstract machine on a
the functional programming language Valid into ob- shared memory multiprocessor. (t_,G)-machine code,
ject code which is executable on a commewially avail- which is the object code of the (u, G)-machine, is gen-
able shared memory multiprocessor, Sequent Symme- crated by compiling programs in the functional pro-
try $2000. Since process management overhead in gramming language I,azy ML. PODS is an implemen-

such a machine is very high, our compiling strategy ration of a thread level dataflow model on a hypercube
is to exploit coarse-grain parallelism at function appli- multicon_puter. The object code of PODS is generated
cation level, and the function application level paral- by compiling programs in the dataflow programming
lelism is implem_:nted by a fork-join mechanism. The language Id. SISAL is a research language for investi-
compiler translates Valid source programs into con- gating issu(_ in parallel processing, especially for nu-

troiflow graphs based on dataflow analysis, and then merical computing. SISAL runs on (or is in devel-
serializes instructions within graphs according to flow opment for) conventional sequential machines, shared
arcs such that function applications, which have no memory multiprocessors, and vector processors, as
data dependency, are executed in parallel. We report well as the Manchester dataflow machine. The SISAL

the results of performance evaluation of the compiled parser produces code in IF1, an intermediate graph
Valid programs on a Sequent S°O00 and discuss the language used by all implementations. IF1 programs

usefulness of our method by comparing it with C and are formed into a monolithic program or module and
SISAL compilers, then optimized and translated into a second interme-

diate form, IF2, by a machine-independent optimizer,
which applies 13 optimizations, such as function in-

1 Introduction lining and dead code removal. IF2 code is next given
to IF2PART for parallelization. On concurrent ma-

chines, IF2PART concurrentizes product-form loops
Many programming languages for parallel process- autoznatically through a partitioning algorithm based

ing have been proposed recently. Among those lan- on parallel nesting level and cost estimates. On vec-
guages, functional programming languages have var- tor machines, IF2PART vectorizes innermost product-
ious attractive features, due to their pure formal se- form loops automatically. The output of IF2PART is

mantics, for writing short and clear programs a.s well given to CGEN for C and FORTRAN code generation,
as verifying and transforming programs automatically, and the result code is compiled by a C or FORTRAN
These merits of functional programs are more evident compiler.
in writing programs for parallel processing [1]. For
the efficient execution of functional programs, several In this paper, we present a compiling method based

compiling techniques based on dataflow and reduction on dataflow analysis to translate the functional pro-
models, have been proposed [2, 3] and implemented gramming language Valid [8] into obj(_t code which
on commercially available parallel rnachin_ or simu- is executable on a commercially available shared mem-

lators [4, 5, 6], such as the (t,, (;}-machine by Thoma.s ory multiprocessor, Sequent Symmetry $2000. Valid

Johnsson [4], tile l'rocess-Oriented l)ataIlow System is a hi_tl-lrv¢,l progralzllning language d_igned for
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dataflow machines. A Valid program is covlstructed b fl C
with function definitions and expressions. Sequent | |
Symmetry, the target niachine of the Valid cotnpiler, T T

inc°rp°rates '0 lllh:r°l'r°cess°rs (Inte' 80'1_(;' a"" a ] [ ]common memory, all linked by a high-speed I,us. Fine- rl ' ** b 2 r2: * 4 8

grain parallelism is not useful for conventional coy1> _.

puters. Since processors have to carry out botli user _

programs at,d process managen,ent, the overhea(t of [ r3;'¢2C ]process management becomm excessive. Therefore,

we employed coarse-grain parallelism at functiolt al)- 3_

plication level. In function application level l)aral -
lelism, function applications are inlplemented by a

fork-join mechanism. A new child process is created - I'1 r
in a function application, and the newly created child |

process executes its function instance concurrently _

withother process,_s. When a parent process encoun- [ 1ters a synchronization point before its child process d: rI1OVr4

completes execution, the parent process suspends un- I
til the child process terminates. In our implementa-

tion, only argtlments and addresses for return values
of a function instance are required as t)aratneters in d

the creation of a new child process.
The Valid compiler has two phases. In the first Figure 1: A controlflow graph

phase, the compiler constructs controlfiow graphs from
Valid source programs through dataflow analysis. In

2.1 Graph - phase Ithe graphs, a node corresponds to a source level in-
struction and an arc shows a controlflow, which re-

In phase I, the compiler constructs controlflow
fleets data dependency. In the next phase, the com-
piler partitions a graph into several parts, in which graphs, which are DAG and correspond to function
as many function application nodes as possible are in- definitions in Valid source programs. In the graphs,
eluded except for their descendants. All of the func- a node corresponds to a source level instruction and
tion applications in each part are executable in paral- an arc shows a controlfiow, which reflects data depen-
lel, since they have no data dependency on each other, dency. For example, Figure 1 shows a graph for tile
The compiler serializc.'s each part according to arcs. following expression.

The source program semantics is preserved because of d = b ** 2 - 4 * a * c
the Church-Rosser property. Then tile compiler trans-
lates the serialized code into target machine code. Figure 2 and 3 show a graph of a conditional expres-

In the next section, we describe the compiler. In sion and a graph of a recurs|re expression (tail recur-
section 3, we describe technical details of the imple- sire) respectively.

mentation. Then, in section 4, we report the results
Conditional expressionof performance evaluation of the compiled l'alid pro-

grams on Symmetry, and discuss the usefulness c;f our
method by comparing it with the SISAl. comtfiler, t"igure 2 shows the graph of a conditional expres-

SilJll:

_f gc then Et else gf

2 Compiler
If E( is vlue, then tile expression Et is evaluated. If

The compiliIi,.z, !)r¢),'oss consists ()f two f_t_;,,,,..., lit E(: is fal.s,,, then the ext)r__.'ssionEf is evaluated. In

tile first phase, lhe ,:ompiler constructs c_,lttr()ttt[)_v I:igur(, 2, t::c, Et and Ef are graphs, which correspond
graphs from Vabd source progratns witl_ _iata!! ,,, to 1t_. almve expressions Ec, Et and Ef respectively.
analysis. In the next phase, lhe compiler s,ria:,,,.... Th¢. _olnpiler generates a pair of sw and merge nodes
the graphs and thel_ translates into the targvl _nachin,_ froln a covtctitional expression. 'rile sw node has one
code. operan(t, of which the value is either true or false.
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If Ec then Et else Ef for (vl,...,vn)init (E1,...,En) body
if Ec then return Et

_..._ . .. else recur(R1,...,Rn)

t oJ I_ loop I I

Body

I-.
merge J jump L

+...+ loop o J

+...+
Figure 2: C,raph of conditional expression

l"igure 3: Graph of recurs|re expression

Only the sw node indicates nodes with special arcs,

t arcs and f arcs. The su, node indicates nodes in the the value of its operand. Data dependencies between
graph Et with t arcs and nodes in tile grapil Ef with nodes ill the graph body and others are shown with
f arcs. Nodes which are indicated with t or f arcs are arcs to loop| nodes and arcs from loopo nodes.

top nodes in the graph Et or graph Ef.
Data dependencies between nodes in the graph Et Parallel expression

or Ef and others are shown with arcs to the sw node

or arcs from the merge node. Parallel expression is used to write parallel exe-
cutabl_ _ units explicitly. For example, in the follow-

Recursive expression ing parallel expression, the parallel body u*u preceded
by the reserved word body is a parallel executable

Figure 3 shows the graph of a recurs|re expression: unit [8].

:for (vl,..,vn) ±nit (E1,..,En) body fore:__h u in [1..5] body u*u

if Ec then return Et The above parallel expression yields the array [1, 4,
ol.qe recur(R1 .... Rn) 9, 16, 25], which comprises the squares from 1 to 5.

Variables vl,..,vn are initialized to expressions The semantics of parallel expression is based on the

E1,..,En, respectively. Then, the loop body, which fork-join concept. In the above expression, parallel
is a conditional expression in the case above, is evalu- bodies u'u, for each of which argument u is bound to
ated. In general, the loop body includes a conditional an integer value from 1 to 5 respectively, are forked,
expression, which controls recurs|re evaluation. In the and executed in parallel. They are joined eventually,
above, if the boolean expression Ec is true, the return and the results are packaged as an array. Parallel ex-
expression is evaluated. It is the result of the recurs|re press|on corresponds to the for expr_sion of SISAL
expression. If Ec is false, the recur expression is eval- carried out in a distributed manner, except that it is

uated. It corresponds to a recursive call to the loop explicit. In general, the number of forked parallel bod-
body considered to be a function which has no name. ies, which are specified with expressions preceded by
The above expression is tail recurs|re. In this case, the reserved word in, such as ranges or arrays or lists,
the compiler constructs a graph, which stands for it- is far larger than the number of available processors.
eration. The recur expression is expressed as a jump "I'herefor_:,, parallel expression is translated into code

node. The jump node has one operand, which is a which considers parallel bodies as virtual processes,
label of a loopi nod(:. The jump node shows that con- and distribute:s tlmm equally to real processes created

trol transfers to the node named by the label which is according lo tlJ(' number of proc(_sors. The compiler
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defines a new function of which tile body is a recur- bef: re its child nodes operations start. Since func-
sive expression to iterate tile execution of tile parallel tion applications take more time than other opera-
body n times, where n is: t,ions, and they are processed by child processes of the

current, process, before execution of their child nodes

N_p opera,lions, other executable operations, if any, should
N_p be execu ted.

The compiler traces the graph along arcs based on
,where N_p is the number specified by the expression depth first search, and rearranges nodes in tracing or-
preceded by in, and N_p is the number of available der. When the compiler selects the next node, the
processors. The compiler translates the parallel ex- compiler selects a node among child nodes of which
pression into a recursive expression, which forks the parent nodes have been selected already. However,
application of the function N_p times and joins them. join nodes are selected when there are no nodes but

join nodes. When the compiler schedules descendants
2.2 Code scheduling - phase II of sw nodes or loopl nodes, to preserve the semantics of

the source programs, the compiler applies the tracing
In phase II, the compiler partitions a graph into sev- method from sw nodes or loopi nodes to merge nodes

eral parts, serializes each part according to the arcs, or loopo nodes associated with them, recursively. Fig-
and then translates the serialized code into target 2ha- ure 4 shows an outline of tracing of a graph. The
chine code. scheduling algorithm is the following:

Partitioning Algorithm A - code scheduling

The compiler partitions a graph at synchroniza- step A1 All nodes in a graph are initialized to NOT
tion points, which correspond to function application SELECTED. A set of selectable nodes S is initial-
nodes (call nodes). Synchronization points are ex- ized as follows.

tracted as follows: S = {nln is a node which has no parent
Because of arcs based on data dependencies, child nodes except for join nodes.}

nodes of a call node are divided into three types.

step A2 The following steps are repeated until S be-
type 1 A node which has the destination of its parent comes the empty set.

call node as i_s operand.
step A2.1 A set of join nodes J is initialized to the

type 2 An sw node or loopi node. empty set.

type 3 A merge node or loopo node. step A2.2 Algorithm B is applied to S.

Because of a scope rule of Valid, nodes may have a step A2.3 If more than one call node is scheduled in

number of type 1 and type 2 nodes but only one type step A2.2, all of them except the last call node
3 node as their child nodes. When a call node has a are changed to fork nodes. The fork operation

number of type 1 and type 2 nodes as its child nodes, a implies creation and invocation of a child pro-
synchronization point is placed between the call node cess, which executes a function application con-
and its child nodes in order to preserve the semantics curren@ with the current process, while the call
of the source program. When the call node has a operation implies that the current process exe-

type 3 node a.s its child node, a synchronization point cute..; a function application.
is placed between that type 3 descendant of the call
node and its own type 1 or type 2 child nodes, if any. step A2.4 If one or more than one call node is sched-

At synchronization points, the compiler inserts join uled in step A2.2, S is set ms follows:

nodes, which have a label of the call node associated S = {nIn is a child node of a join node,
with them as operands, which is a child node of the last

call node.}

Code scheduling If any call node.s are nol, scheduled in step A2.2,
S is set as follows:

In the graphs, arcs reveal partial orders of opera-
tions. A parent node operation has to be completed S = 3
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Algorithm B - graph tracing

The following steps are applied to each element n
of S repeatedly, until S becomes the empty set.

step ]31 If n is an sw node, n is set to SELECTED
and then algorithm A is applied to both the then

part graph and the else part graph. The thenpart graph is the graph which is originated from
:" l \ node n's child nodes indicated with t arcs and

" _ :" destined to a merge node associated with node n.

....'"....... Graph A ..... "'-,, inated from node n's child nodes indicated with

" [ ' f arcs and destined to the merge node. After
L. : . : , : .. . j scheduling the then part graph and the else part

-"' II I "........, ! ¢,,,n step B2 Else if n is a loopi node, n is set to SE;-

.. : ! It : I & " ! & "2 LECTED and then algorithm A is applied to the

I ¢i [ "_ tl (" .... ",: '.¢11( body graph, which is originated from node n's

[ ioinl If loin2 ....."::" I lolnn ! child nodes and destined tea loo, o node associ-

! / I [ / i ......... "" _1[ at,ed with n. After scheduling the body graph,

I :....: :', .,1 i ] .Grpah B | step B3 Else if n is a join node, n is added to J.
1 Graph'C _ I I "" ...... "" | step B4 Else n becomes SELECTED. n's child nodes

_-]_ _" _" of which parent nodes have been SELECTED al-
ready, are added to S.

P1 P2 .... Pn

: t
fork1 fork1 ...... _ 3 Implementation

_" : _ 2 ........ i Since free variables are not allowed in Valid in prin-fork2 tork ,-=,
O : _ ciple, applying of a function requires only the entry

r calln for_n-1 ............. o. address of the function code, values of arguments and¢1

= 2,-- : return addresses for return values. We have imple-

O join I , _n P1 mented a multi-task monitor on DYNIX. The multi-
.c : ._'"'"l task monitor has a light weight fork-join mechanism,
o. io[n2 1o

|_,_-1 r and we evaluated the performance of object code hen-
join n-1 loin 1-._..... :r crated by our compiler on this multi-task monitor.

: _-.4-.......... i r Figure 5 shows the outline of the multi-task moni-' tot. Frames are data structures in a shared memory,
loin n-1 -,t ............. and consist of a header and work area. A code entry

address to start execution, a pointer to a frame associ-CODE EXECUTION
ated with the caller function and a pointer to a barrier
variable are stored in the header of a frame associated

Figure 4: Code scheduling with a called function. Arguments and local variables
are stored in a work area. Frames are created by fork
operations or call operations, and are kept available
until completion of their function. To reduce the over-

head of creation and releasing of a frame, each proces-
sor has own free-list of frames, which are the only ones

it is allowed to access. A task pool is a list of frames
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Frame (caller)

y Barriervariable

Frame /coei °

•
L a_men,m•

Iret.valueaddress1

o. ...... . ..... .., , ............... .
,. ............... ; , ; ,

Task Pool : : TaskPool : TaskPool

...............' [ _.=;n.,e_ -I I

l I_oc_s_o_llj [P,oo_s_o_l[P_o_,,l
fork operation getting Frame releasing Frame

Figure 5: Multi-task fz_onitor
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ready to run. This list is implemented as a LIFO. froln 1 to 16 processors. We report results of co,l-

Processors get a runnable frame from a task pool in a parisons of Valid programs with SISAL programs and
mutually exclusive way. Tile number of task pools is C progranls ill elapsed time, and evaluations of the
set to more than the number of processors to reduce speedu I) of Valid programs. The SISAL programs and
the overhead caused by the access competition to task C programs are written using the same algorithms as

pools, tim Valid programs. The SISAL programs are corn-

Processors get an runnable frame from a, task piled with the optimizing SISAL compiler, OSC ver-
pool and execute the frame repeatedly until runnable sion 12.9, using default optimization mode (no op-
frames are exhausted, which means the program has tio.s), alld run on 16 processors. The C programs

completed. By scanning task pools, when processors ar,.sc,qu¢.l_tial and compiled with the SequentCcoI,l-
succeed in locking a task pool having one or nlore plier. "1'1,' (? l)rograms are not optimized. Table 1

frames, processors get tim frame from it. Since proces- slu)ws ,qat,s(,_t tilne in seconds for the Valid, SISAl,
sors execute a fum:tioll with their loc_tl stack and regis- and C pmgralns, the speedup and the ow.,rhead caused

ters, access to franms in shared memory is ozlly access I_5, imrall,.I control for l&llid programs. The elapsed
to arguments, local variables and barrier variables, so litt,,s of II,. I'alid progral_ls and C programs are inca.--
that the cache n_(,chanism is exploited effectively. This sllrc_l witll ;_ .S'cq,e,t microsecond clock, which is 32-
implies that it. is possible to avoid bus saturation whicll I)il ,t,.-c_u i_t,c.riipdated every 1 micro second [9]. The
is a main cause of bottlenecks in shared menlory ,lul- elal,s(,_l lir_,_s of the SISAL programs are mea.sured

tiprocessors. In a fort_"operation, the barrier variable, witlD spc__d,ps, which is the SISAL parallel speedups
which is a local variable of the caller function and is data galherer. I, the C column and SISAL column,

initialized to l, is incremented. Then, a new frame, figures ill brackets are the relative speed evaluated as

is gotten from tl_e current processor's frame free-list, follows:

a called function code entry point and a pointer to time of C/SISAL program

the frame of a caller function, etc, are set to those relalive speed - time of Valid program
of its header, and arguments are copied into its work
area. Lastly, the frame is put into a task pool, which The Overhead column shows the proportion of system
is selected in the same way that a runnable frame is time to total time based on results from the DYNIX

obtained. A call operation is the same as a fork op- profiler. System time includes time of ft,'k/call op-
eration except that a new frame is put into the con- erations, joi, operations and getting and releasing
tinuation frame slot of the current frame. In a joi', frames. Vigure 6 shows the speedup of Valid programs
operation, the barrier variable is decremented. If the relative _o processor humor for each benchmark pro-
barrier variable becolnes 0, the next operation is exe- granl. Itl i1,,. graph, the horizontal axis shows the
cured. Otherwise,. the processor abandons the current nurnber of I)rocessors used, the vertical axis shows the
frame and starts 1o execute the fra_ne wllich is stored sp(,¢;dUl,, a,(I tile linear proportion line shows the ideal
in the continuation frame slot of the current frame in speedllp.

a call operation. A call operation and switching con- 'l'he program 'sum(l, h)' calculates the surnmatimt
text from the current frame to the continuation frame froln / Io h integers. In SISAl,, this program is im

cost less than a for]," operation and getting a runnable l)leI,lenl.(ed with a product-form loop and a reduction

frame_ since they do not require mutually exclusive at- operatiol_. I_ Valid, this program is implemented with
cess to task pools. When the current function is con> a parallel expression and a rc<tuction operation. Ta
pleted, the barrier variable in the frame of the caller ble 1 shows that the performance of the Valid program
function is decremented and the processor stores the is comparable to the performance of the SISAL pro-
current frame in its own frame free-list. If the barrier gr;tlll. 'I'l_is program is partitioned into relatively large

variable becomes 0, the processor resumes the execu- portions a,d distributed to processors equally, so pro-
tion of the frame of the caller function, otherwise the tess creation overhead is less critical. This program

processor picks up a runnable france from a task pool also shows a very nice specwlup in Figure 6.
again. The program 'matrix(n)' computes the product _)f

two n x n ,natric_s. Although the sp(.mdup is close to

linear, the speed is about one-third that of the SISAl
4 Performance program. This is probably ms causM by the dilfer.

ence in implementation of array structure. An array

We have evaluated the performance of compiled ill SISAl. (and (2) is a on¢_dimensional or multidime_-
code of Valid programs on a. Sequent $2000, using sional collection of homogene.ous values. On the other
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Tabh; 1' Tilne comparisons of Valid, SISAL and C, and speedups and overheads of Valid.

l'rogra m l[ Time (sec.) Speedup OverheadValid 16cpus I C lcpu SISAl, 16cpus

sum(l, l0 s) ..... 0.0241 0.241 (10.0) 0.0200 (0.830) 1,5.0 7.69%n_atrix(128) ...... 0.987 4.49 (4.55) 0.323 (0.327) 12.8 .......3715%

matrix(2%) 9.07 38.4 (4.23) 3.11 (0.343) 13.3 23.4%,,

nqu_.en(10) 4.21 25.3 (6.01) 65.2 (15.3) 7.48 15.5%.....

• £qsort(1-_ 3.21 i:2.1 (3.77) ....09 (2.52) 5'.07 65.8%

1 6 ------"t i 1 v 'l , ', '

sum(1 ,10^6)14 --

/'"i" -4matrix(256)12 -- _._s

S.-'].. _
.... °.."."-°. .. ....-':_ " " 5'nqueen(1 O)

. _ ,/...fL..._..._... __ _ qsort( 1 0^4)

2 _¢_'- -

o J _ ' i 1'o ' L2 4 6 8 12 14 16

Processors

Figure 6: Speedup graphs for four benchmark Valid programs

hand, an array in Ualid is one-dimensional and may a list, which has n integers, in order of size with a
have a cotlectioiL of heterogeneous values. Therefore, quick sort algorithm. The C program uses library
the inlplernentation of an array in Valid must be more functions fr0rn Valid to manipulate lists. The SISAL
complicated t}_aI_ the:, implementation of an array in program is inlplemented with arrays. The SISAL pro-

SISAL (and C). \V,, consider that it. is possible to in- gram is not parallelized, because of the concurrentiza-
crease the speed o["tt_e Valid programs up to that of tion strategy of OSC mentioned above. In Figure 6,
the SISAl, ones by iiltroducing the same array speci- the slme(lu p curve of Valid saturates at about 5.5 after
fication as SISAl, ixilo I'_lid. 10 processors. The reason is that list generations and

The progralrl "nqueen(n)' searches all soltltions of function applications cannot overlap each other in this
the n-Queeh p_lzzl,:,."l'he C program uses library func- prograill, because non-strict evaluation has not been
tions from I_did _o ,_Janipulate lists. The SISAL pro- implelneuted yet.

gram is implel_e_l_,,,i with streams and is not l)ar_tl-. I_ fullction application level parallelism, it is pos-
lelized. In the SISAl, program, the size of a stream, sibh.* to ,,xtract more parallelism from programs than
which contains t!_,, solutions, is determined after tl,e with iteratmn level parallelism. When there are low-
search ofatl s,:_lutio1_sis completed, so that it is not in- cost recursive functions, such as the Fibonacci func-
variant. OSC does _ot concurrentize loop forms which tion, process creation and switching occur frequently.

produce varial_l size streams (and arrays). On the In a sha.red nlemory machine, frequent process cre-
other hand, t,ho Uoh,l program is parallelized. This is ation and switching cause bus saturation. As a result,
because our inlplc.zJ_entation involvm the function ap- perforlnance of the system degrades. Table 2 and Fig-
plication level lmralldism, not loop levels, a.s we have ure 7 show eft'_.'t of the cost of the function sum' on

mentioned before, per for mance.

The progra_ "_!s_rt(r_)' rearranges the elements of The: prograln 'sum'(/, h, i)' calculates the summa-
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Table 2: Effect of tile cost of the fllnction sum on performance.
Program 11Time (see.) Speedup Overhead

sum'(i,lO_,l) 6.75 6.23 63.9%

sum'(1,1Oa,lO) 0.935 6.85 6t.9%

sum'(1,1OtS,lO u) 0.155 9.79 44.6%
sum'(1,1OtJ,io a) 0.0648 14.0 11.5%

.1 i i t i i ....14 "i = 1 000

,i=1 0
co T -'-_'i--

.,// ...4- _ ... % ,B "

2 _@_..j% s -

0 "' I i | 1 A ! !
2 4 6 8 10 12 14 16

Processors

Figure 7: Speedup graph tbr sum(l,lO (;, i)

tion from l to k integers. The explallation of the speedup data is that, in run-
ning t.tl. prograln, almost all processors access task

function sum' (1 ,h, i : integer) pools to write for fork operations and to read for get-
return(integer) ring a rullnable frallm all together, and, due to bus
= if h-1 < i then saturation, accesses to task pools slow down. As for

for (s,j:integer) init(0,1) body speeds, l.]_e ]my cost: of function body and the large
if j > h then return s number function applications lead to amplification of
else recur(s+j, j+l) the differences in cost between fork operations and

else {let m = (h - l) / 2 fullction body.
in sum' (1,m,±)+sum' (m+l,h,i)};

To solve the problem of fork operation overhead,
This program switches algorithms from a divide and the compiler estimates the cost of each function, and
concur version to a loop version, according to the third generates code in which light weight function appli-

parameter i. If the range from l to h is equal to or cations are not forked or are inline expanded. How-
larger than i, the divide and concur version is used. ever, the exact cost of recursive functions can't be es-
If the range size is smaller than i, the loop version is timated at compile time. In the current specification

used. When i - 1, tt_is program is thorougllly paral- of Valid, improvement of the algorithm is the way to
lel, and when i > h - l, this program is thoroughly solve lhe fork overhead problem, as mentioned above
sequential. Thus, the grain size of parallelism can be in connectioll with the sum' program. This solution
controlled with i. Using this program, we evaluated d_sl,roys the portability of programs. Functional pro-

the effect of grain size and the number of processes on grammi ng language_s have the merit that programmers
the efficiency of our system. Note that this program can write progranis without attention _o the paral-

is not meaningful for SISAL, because only product- lelisrn of the program, while they have the demerit
form loops are parallelized in SISAL. When i _< 100, that progran, optinfization is difficult. For example,
the overhead caused by control for parallelism is high. even if the most effectiw_ strategy, that is, determin-
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Table 3: Effect of introducing annotation to control fork operation.

Program 11,Time (see.) Speedup Overhead

,uo(,o>li....... 7.6i 6.2,1 73.5%fib8(30i 2.8_1 15.4 70.6%

qG _ ' ,'' t _ , T '" ,'

.lfib8(30)

1412 -- _ " ""

c9_°

CDa

cf-)
'fi6 be(30)

4

2

0 ,l , I I I , I , I ....... ! : : =
2 4 6 8 10 12 14 16

Processors

Figure 8: Speedup graph ff>r tibo(30) and fibS(30)

ing whether to ewduat, e in parallel or sequentially, and The. above specification means that if the boolean ex-
ttle most effective mapping of functions and data to pression is true, the function is evaluated with fork, if
processors in multicomputers are obvious to progratn- the boolea.n expression is false, the function is evalu-

mers, it is difficult to express them in programs. As ated with call. In Table 3 and Figure 8, the program
a paradigm to solve the above problem without losing 'fibS(7_)' is an extended version of _fibo(n)', in which
the merit of functional programming languages, para- fork is controlled with the argument n. The Valid

functional programming, such as ParAlfl from Yale program 'fib8(n)' is a.s follows.
university, has been offer-d [10, 11]. This is a method
to extend a functional programming language by in-
troducing metalinguistic devices such a.s annotations function fib8(n:integer)return(integer)= if n<2 then I
in the language. Since ways of processing and map-

else fib8(n-l)$[n>=8]
ping functions and data structure to processors are in-

dividual for tile semantics of programs, it is expected + fib8(n-2)$[False];

that the probleln mentioned in connection with sum' h) the above program, if n _> 8, the function appli-
can be solved by extending Valid with the parafunc- cation fibS(n-l) is evaluated with a fork operation in
tional method. We have attempted to extend Valid paralM, otherwise it is evaluated sequentially with call
to optimize the strategy of processing functions, and operation. Figure 8 shows that speedups are improved
evaluated its performance, substantially. The improvement in speedups implies

An extension of function application specification bus saturation relaxation. This is caused by decreas-

in Valid allows tile programmer to express a strategy ing the number of fork operations, which lowers the
for deciding between sequential evaluation or para.lM effect of cache. Overheads are improved a little. The
evaluation. The extension is as follows, reason is that the cost of setting up frames is still high.

To solve this problem, when a function evaluation
function_application is sequential, it is done by using a mechanism simi-

::= function_name(argument_list) lar to C on a stack which each processor has locally,

$[boolean_expression] or which is in the work area of the expanded frame
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which has a stack. In tile former case, the multi-task 'l'lterct\_re frmn the viewpoint of the effect of cache,

monitor has to 1oechanged, because data required for our inlplettmntation has an advantage over the (u,(;)-
a function evaluation a.re all fixed on the stack so that machine, llow_,ver, since in our inlplenmtttation the

frames are not Itecessary. We have inlpletnented and pr()ce.-,si_,e, {_ld('r of iiIst,rtlctiolts is detertnined stati-
evaluatc:<t this version [12]. In this version, the l"alid tally at co_,l,il_, l itlm exc_,pt for function apl,lications ,
program 'fibS(tl)' a,.'lli('ved about 5 tinles the sl,eeds of it. is <lilti,_21t t_) illll)]etlml,t lazy ewtluatiot_ and higher-
C. In this versi_ll, tl,_w_,ver, lenient evalua.tion causes or(l,'r t'l_llcti_,lls, est,+,,'ially functions whicll are con-
deadlock. In tlt_, ]al.ter cas_', nlenJory eIticietlcv is low-. sl.r_l_'l_,_l,,[lici_,_itly al runtillm. In our iltlplenlelll, atioli,

ered, because evaluation of recursive functions require in _r,l_,r _, i_l,]<,_,tll s_,'h dynamically co_structi,xl
sufficiently la.rg_, t'ral_'s. We Cxl_ecl tha.t ll_ t_l+,t_mry ful_ti_l_s, a .+.t_<.cialtt_,cl_anisltl ._ucl_a:s at_ interpreter
efficiency prol,l(,ll_ can l)<,solv(,(l I)y a )_('tl_()_t wl_iclt is r('(tuir,'(t.

determines wl_(+tlt(+rt,(, tltu t_se at ttott-exl)a_,l('_l frat_(, l'()l_. <, i.., l,u.-,(_(lo!1 a t l_r(md l(+vel datallow t_m(l++'l
or an expattd(.'_l i'ran_(' a('cot'(ling t¢) the typ(' c)fevalu- at_(] +_ssu_,)('., a+_i.t_e tar_(Pt t))achille a lt_ulticotnl)ut('_r ,

ation (fork or ,',11). wlli,Ttl llu.-, .,l),'t:ial t,lecha_ist,_s for parall(+'l evaltla-
The fo+'l_,con_r+>l _etltod tne_t/,iott,,d above ca_t Im ti<_l_.sl_cll ;is Matchi!_g It,lit, Memory Manager etc.

expanded easily wiieit lnapping functiotts +u+ddata to l)at.allow grat>lls are constructed from ld prcJgranis.

processors when tim target tt_achine is a multicom-- Sequ,,nt, ially l_rOcessc+'dt0h,cks, ca,lied sequential code
puter. By _dlowing art integer expression to t:+ean segtn<!ttts (S(+'Ss), are extracted from the datattow
expression in $[ ] and generating code, which regard grapll ac,:ortli_g to tl_e arc_; of the graph. The object

the value of tl_. exl,ression in $[ ] a+sa processor I1) cod+, _,f I'()I)S is generated by compiling the SCSs.
and map the fttltctiott application to a processor, tit{, Wh_:_ t]t,, cost o1"all SC, S iS smaller than the cost of

mechanism of ti_apped expression in ParAlft can be control for tm.ra.llel processing, it can be _nade larger
implemented, by combi I_ii_g_other SCSs according to data. dependen-

cies. \Vl_etl +u:lot_tingPOIJS on a shared memory mul-
til)rocess_:r, a function becomt_s &n SCS, because the

5 Related work cost of ,'+_tltrol for parallel processing is high in such
a Itta+'hil_,. (:olnbination of SCSs corresponds to the

cod_, scl_,,,luling in our i_t_phPmentation. I'OI)S code
Several methods for implementing a functional pro-- may caus<, susp_nsion even when executable instruc-

gramming language on a commercially avaJilable p+tr- tiol+s ,,xist, I+_,ca_se code scheduling in PO1)S do+_
allel machine have been proposed. Among them are not regar+l ful_ction application instructions itssp<+cial
the @,G)-machitte proposed by Thomas aohnsson [4] instr_ct, ions. +l'h+,refore, considering the at,ore, when
and the Process-Oriente.d I)ataflow System (I+OI)S) a tartest, t_la<:him_is a sltared n_etnory tnultiprocessor,
proposed by l,ubomir P,ic [6]. our i_plen_entatiot_ l_as an advantage over the POI)S.

The (t_,G}-tttachine is a graph reductiott tnachine,
which evaluates super cotnbinators e_iciently. Pro-
grams in Lazy MI, are translated into a set of deft- 6 Conclusions
nitions of super combittators. The detinitions of su-
per combinators are then compiled to the object code I t_ tl_is lmper, we f>resented a cornpiling method to

of the (_.qG)-rnacl_ine, which reflects the behavior of tral_slatv tim fultctiotml programming language. Valid
the graph reduction machine exactly. In the (u, G}- into (,t,j(x:t (:od(, executat>le_ on a Scmluent Sytnnmtry
machine, the processitlg order of instructions is de- $2000. Tills lt_<,tlm_t itnpletnentsfunction application
termined dynanticallv at runtime.. So all the data l+.,v+_,ll>aralh,list_+bydataftowanalysisoffunctioti_lpro+
required for evaluatil_g a progran_ are in the shared grat_s. \'V,, have +,valuated the performance for speed

memory a.s fragments of the program, which form a and Slme.dup of the cot_piled Valid code on a Sym-
program grap]_ dy_a_ically, l;'requent accesses to the _netry. 'l'l_is evaluation n,ade, clear that the frequency
shared memory cause, bus saturation, so tl_at the effi- of J'oHc ol>eral.iot_s causes bus saturation, and the ef-

ciency is low'er++.,t.Our itttplettmtttation has tl_e sa_ne fi_:i,,l_,:v is Im_'_,t_,d,at_,t l_w cost fut_ctions and dala
problem. But it, our irl_lJlet,tentatiott, it, is l>ossibl, to slr_l_ltltt, l,<,_+>tt+<,l,ottl<,necks. To solv<+tlm l,us sat,_++
reduce a.ccess t() tll(: SlI.P_I"g*Xl lllelllOry l)y usil_g a.s lllallV rati_)n lJrt+t_l_,ti_, we atteltll,d<,d to add paraftlnctiolla.]

stacks ;+lid regisl+,rs a.,+t+<>ssibl++,sil_<:eacr:ess to fraltms feat_tr+,:+ l_ t'(+lid altd _,valuat_,d the [mrforlnallc+, of

in the shared t_+,t_l{,l'vis oltlv to argun_et_ts al_d local ext+,_tt,.,! I',li,t l_rogral_>, showing float this prol_l+,t_l
variables of a t_l_ti_l_, cal, I,,, _<_1,,',,,1.
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The next step ixL tlli._ work is to inlph'l_mnl a [ll] I'a_ll Ilutlak, "Exploring Parafunctional l'ro-
stream parallel l)rocessing mechaniszn and to adal)i gI'ailJlllitlg: Separating tile What from the Itow",
the method m(nllione(l in this paper to nllllticollll)Ut- I1':1':1'2Sol'tware, Vol.5, No.l, pi).54-61, (1988).

ers such tus the t:(i,IITSU AP-1000. [12] I'L 'l'akaha,_hi, R, Taniguchi and M. Anlamiya,
"(',()))_l)iling Technique based on Datailow Analy-
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Abstract tile array update problem. As a result, array-intensive
applications written in SISAL 1.2 execute a.s fast as

Applicative languages have been proposed for defin- their FORTRAN equivalents [Can89, !%o90, Can92].
lag algorithms for parallel architectures because they
are imphcitly parallel and lack side effects. However,
a strazghtforward implementation can induce excessive

copying which can limit performance. To address ex.- The design of SISAL 1.2 arrays is based on the
ecution efficiency, optimization techniques, such as vector.of-vectors array model. Under this model, mul-
build-in-place [Ran87] and update-in-place [Can89], tidimensional arrays are built hierarchically from one-

dimensional arrays, i.e., frorn vectors [Gao90]. AI-have been developed. These optimizations remove un-

necessary a_'ay copy operations through compile-time though hierarchical arrays are convenient for many ap-
analysis. Additionally, update-in-place eliminates un- plications, it is expensive to manipulate array values
necessary reference counting, reducing parallel bottle- represented in this model [Feo90]. Since the additional
necks that can occur at run-time [0C88]. overhead is unnecessary for applications that do not

Both build-in-place and update-in-place are based utilize the flexibility of the vector-of-vectors model,
on hierarchical ragged arrays, i.e., the vector-of- SISAL 2.0 provides a second array modelthat isbased

on the flat array model. Under this model, multidi-vectors array model. Although this array model is
convensent for certain applications, many optimiza- rnensional arrays are built by the concatenation of tile
tzons are precluded, e.g., vectorization. In the de- subarrays of the innermost dimension to form a single

one-dimensional array [C,ao90]. The array's uniformsign of SISAL 2.0, two array models have been in.
cluded: the vector-of-vectors model and the flat model, structure allows many more optimizations to be per-
In this paper we &scuss the changes to reference in- formed, such as vectorization; however arrays must be
heritance, which is part of update-in.place analysis, stored in contiguous memory.
These changes are necessary for arrays that are stored
zn contiguous memory, i.e., under the fiat model.

It is claimed that. SISAl, 2.0 applications that uti-
lize the flat array model can achieve better perfor-

1 Introduction nlance than their FORTI{AN counterparts [Feo90]. To
realize this goal, the current optimizations that are

SISAL is an applicative progralnming language,, de.- based on tile vector-of-vectors model must be both
signed to facilita_'.e the developnlent c)f applications exten(h_d and generalized to operate on flat arrays. In
that can run etticiently on a wide range of architectural this paper, we examine one of the optimizations that
platforrr,s [MSA+85, BOCI"92] To achieve etficie_t is part of update-in-place [Can89], reJerence inheri-
execution under the applicative lnodel ofcolnl)utation, lance, and show how it can be generalized to support
sophisticated optimizations are necessary to prevent both array models. We also introduce a new subphase
the copying of large arrays. 'l'he SISAl, 1.2 compiler of reference inheritance that significantly reduces lhe

depends upon both build-zn-place [ltan87] and update- array copying imposed by the contiguity req,lirelnent
zn-place [C',an89] analysis to rmnove unnecessary copy under the flat model. Ti,is subl)hase can also be I)en-
operations. Build-in-place attacks the increnwntal eficial for w.,ctor arrays because it can reduces pointer
construction problenl, while updat,,-irl-l)lac(, atl, acks copying.
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2 Array Models Used in SISAL 2.0 In SISAL 1.2, an n-dimensional array is physically
represented by a series of (n - 1)-dimensional arrays.

'I'he language design for SISAl, 2.0 incorporates two As depicted ill Figure lb, these pointer arrays form a
models for arrays: tile vector-of-vectors modc, l and the lr,,e structure with the leaves containing the innermost
flal model. An array's data type' specifies both the dimension ef the array. Under this representation,

operations that can be perfornwd on the array and subarrays that have different or continually changing
tile array model used lo represent the array. Arrays sizes call be implemented efficiently. When either an

that follow the flat model must be declared explicitly element or a dimension is added to an array only the
by specifying both the nund)er of dimensions and the affected dinlension is modified. Additio,:ally, individ-
base type. Additionally, lhe size of each dimension ual components of an array may be shared. Other im-

must be specified so that the necessary memory is al- plementations are possible but are less efficient. For
located during array definition: I_owever the size infor- example, if the array is stored in contiguous mem-
mation is not parl of the ,lata type, Arrays that follow ory, the entire array must be copied to a new location
the w:ctor-of-vectors n_o,M nce_l not t,e declared, i.e., whenew,.r an new element is added.
their type can be _teterlllined by context.._lemory is 'I'he vector-of-vectors model is convenient for ex-

allocated for vector arrays as required pressing algorithms that operate on a dimension-by-
For example, consider the tbllowing type declara- dimension basis, e.g., row-ordered, but not, for algo-

tions: rithms that operate on a region-by-region basis. Read
operations are expensive since the entire array struc-

typo OneVector - array of double; lure must be traversed linearly for each element ac-

type TwoVoctor = array of array of doubl.o; cessed. Additionally, memory overhead is large be-
type OnoD±m = array [..] of double' cause p!,ysical storage must be both allocated and
type TwoDira = array [..,..3 o_ doublo; deallocated for each subarray individually. Further-

nmre, maintaining and referencing an array descrip-
Both the OneVector and tlw TwoVector declara- tor, i.e., a (tope vector (cf. [O1d92]), to determine each
tions specif_, a one-dil_cnsional array type that fol- subarray's bounds and location degrades performance.
lows the vector-of-w,ctors mod,-*l. An array of type

Onegector is a one-dimensional array conlprised of 2.2 Flat Array Model
doubles, whereas an array of type TwoVoctor is a
one-dimensional array comprised of arrays of doubles. Under the fiat model, all arrays are monolithic.
Both of the 13neDJ.mand TwoDim declarations specify Multidimel_sional arrays are constructed by the con-
array types thai follow the flat array model. The ".." catenation of one-dimensional arrays to form a sin-
in the declarations above are placeholders that indi- gle flattened array [Gao90]. For example, FORTRAN
cate the nunlt,er of dinwnsions. When an array is de- specifies that multidimensional arrays are represented
fined, the size of each dinaension must t:,egiven. Notice by tile concatenation of the innermost dimensions, i.e.,
that tile types, OneVect;or and OneDim,are equivalent, column-major order [Mac83]. Since the physical size
i.e., their physical representation are identical, of the array must be known prior to its construction,

the bounds of each dinaension must be specified. AI-

2.1 Vector-of-vectors Array Model though this prevents the dynamic growth of individual
subarrays, the overhead for allocating and deallocat-

Strictly speaking, all arrays under the w.'ctor-of- ing multidimensional arrays is decreased.
vectors model have a single dimension. Conceptu- The flat model is efficient for algorithms that op-
ally. multidimensional arrays are constructed hierar- erate on an element-by-element basis. Accessing an
chically fron_ other one-din_ensional arrays. I"or ex- array element can be performed in constant time since
an_ple, a two-dimensional array of integers is logically the address calculation is based on the size and bounds
equivalent to a one-dimensional array whose elements of each dimension. Ttfis address can be partially eval-

"_ (are one-dimensional arrays of integers [Gao90]. Since uated al compile-time since each element's location
the size of an individual array is not part, of its type, within the array is known a priom. Additionally, opti-
each subarray in a multidimensional array may have mizations, such a_svectorization, can be performed be-
a different length. Additionally, the bounds of each cause the array is stored contiguously. Typically, for
subarray may not match. This allows the formation these optimizations to be performed, the array must

of ragged arrays, where the range of indices for each be accessed in the same order in which it is stored,
subarray may differ, i.e., a.s specified by the language definition.
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Figure 1" Logical and physical storage of a two-dimensional vector array

In a language such as Ada [GH83], where the ArrayA
bounds of an array are not part of its type, a dope !,:_._i_;_:ii_,:,__

:_._!.• :_ :

vector is used to perform address calculations at run- _time. Although this increases array overhead, addi- :!_z_.,::_:!
tional flexibility is gained. By changing only an ar- \ :_:: ":"::':!::_
ray's bounds, a subsequence of a one-dimensional ar-

ray can be selected. This subsequence can be operated _kl" '_on as if it is a distinct one-dimensional array. Newer
languages, such as FORTRAN 90 and SISAL 2.0, have

extended this functionality to allow arbitrary subcom- ___ponents of a multidimensional array to be accessed,

In SISAL 2.0, a multidimensional array can be di- I"7
vided along any dimension or combination of dimen- / •

sions. Additionally, the order in which elements ap- I !
pear within an array can be specified. This allows el- ...........
ements that are uniformly distributed within an array

to be selected. For example, the SISAL 2.0 expression Resultingone-dimensionalarray

"A[i in 4..1..-1, j in 4..1..-1 {i dot j}]" Figure 2: Array mapping for the SISAL 2,0 expression
"A[i in 4..1..-1,j in 4..1..-1 {i dot j}]"

selects the elements along the major diagonal of the
4 ×4 array A in reverse order, ,as depicted in Figure 2.
Operations that select slices of an array can be per-

formed by simply modifying an array's dope vector array is stored in contiguous memory. However a con-
[O1d92]; a copy operation is not required. Addition- sistent spacing is maintained between array elements,
ally, modifying a multidimensional array's dope vector thus allowing optimizations, such as vectorization, to
can change the array's logical layout without changing be applied. We propose the term "dimensional" to re-
its physical layout. Program analysis could be used to fer to any array model that allows an arbitrary region
determine the most efficient layout for an array. Fur- of an array to be both selected and operated on as it
thermore, the dope vector can give the illusion that the is a true multidimensional array.
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3 Copy Elimination and Reference n_as. The resulting graph is depicted in Figure 3b.

Counting NoOp nodes are inserted into a graph to perform
the copy operations associated with array modifiers,

An implementation that strictly adheres t,.) the at!- thus limiting the copy logic of a graph to single node
olicative model nmst copy' data values that are up-- type. Additionally, edges are annotated with marks to
dated. This copying ensures that other operations, indicate tile type of copying that is performed. These

which access the original data value, are nat affected, marks include r, R, and O; we summarize the meaning
For large data aggregates, such a.s arrays, the cost. of of these marks in Table 1. Additionally, some opera-
copying is prohibitive. Array accesses can be ordered tions need to modify only an array's dope vector, e.g.,
so that array read operations occur before any array" setting the lower bound of an array. A P mark is used
write operations. The final write operation can ut_date to indicate that the copying is performed on the dope
the array directly, preventing a copy operation, sine,' vector aI_¢tnot on the array's physical data.
all other accesses to the array have been performed.

ttowever, sequentializing array accesses decreases the

amount of parallelism exploited. _Type of Cop.ying H Dope Vector Array Data _]
Reference counting caI, 1,,, used to decrease the I No,ie PR[O] RO

amount of array copying. A reference counter, which [ Conditional Pr[O] ...... riO]

is adjusted at run-time, is used to record the num- [ Unconditional P[O] [O]
bet of potential users of an array. For each array
operation, the reference count is modified. When

a reference count is one, the associated array can Table 1" NoOp node semantics based on input edge
be updated directly, i.e., in place. Although refer- marks (Marks enclosed in brackets are optional.)
ence counting may reduce ,c_pying, it both increases

run-time overhead and produces parallel bottlenecks The incoming edge of the NoOp node in Figure 3b,
[OC88, Feo90]. Additionally, operations that access is decorated with an r mark. The mark indicates that

multidimensional arrays can overestimate reference the NoOp node performs a conditional copy opera-
counts, preventing in-place operation[C.'an89]. For- tion, At run-time, the reference count of the array A
tunately, progran_ _ma.lysis can be used to reduce is examined; if the associated value is one then the ar-
both copy' operations and reference-counting opera- ray is not copied, but the array is passed directly, via
tions [CO88, Hud87, ltud86, SS88]. its dope vector, to the AREPLACE node. The ARE-

Within the SISAL compilation environment, two PLACE node performs a destructive update to the at-
intermediate forms IF1 [SGgh] and IF2 [_,_,_h'RS(;], ray presented to it (as indicated by the RO marks).

are used to model program execution. Initially, an Reference count pragmas specify how an array's ref-
IF1 graph is produced from SISAL source code. This erencc count is modified; these pragmas include: sr,
graph is then altered by a series of optimizations, pro- pro, and cm. The sr pragma, are used to initialize
ducing an IF2 graph. 1 These optimization alter the reference counts. The pm and cm pragmas are used
operational semantics of the. graph to allow fi,r more to increment and to decrement reference counts, re-

efficient computation, spectively. Each node in an IF2 graph modifies the
Consider the IF1 graph for the SISAL expression reference count of both imported and exported arrays

"A[i:0], A[j]" (see Figure 3a). This expression is corn- based on the values associated with these pragmas.
prised of an array-update operation, (A[i:0]), and an To ensure correct operation, the reference count oI an
array-read operation, (A[j]). In the IF1 graph, the exported array is adjusted prior to its export, and the
AREPLACE node performs the array-update opera- reference count of an imported array is adjusted after
tion. The APtEPLACE node must first copy the array' the results are computed.

A to ensure the array-read operation is not affected Consider the graph in Figure 3b. Initially, the ref-
(since the execution order is not defined). Tim ith ele- eren,'c count for array A is two. If the AELEMENT
ment of the new array is then updated with the value node executes first then a copy operation is avoided.

0. To prevent the cop)" operation from always occur- The execution sequence of the graph is as follows.
ring, the IF1 graph is transformed into an IF'2 graph

that contains a NoOp node and reference cotlnt prag- 1. l'he AELgMENT node executes and then decre-

1For a more information on these optimizations refer to merits the reference count of array A, a,s indicated
[l',ansr] and [Caal89] by the era---1 pragma.
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Figure 3: IFI and Decorated IF2 graph for the SISAL expression "A[i:0], A[j]"

2. The NoOP node performs a conditional copy of be implemented without copying. As a startling point
the array. The value of the reference count is ex- for this research, we examine the modifications re-

amined and since it one the NoOP does not per- quired by reference inheritance to operate on arrays
form a copy operation. Instead the dope vector that are stored in contiguous memory, i.e., tmder the
for array A is passed to the AREPLACE node. flat model. In this paper, we restrict ourselves to

SISAL 1.2 syntax so that we may concentrate on the

3. The AREPLACE performs a destructive update to problem at hand Additionally, this approach allowsarray A
• optimization to be implemented based on the current

However, if the NoOP node is executed first, a copy definition of IF2.
operation is performed.

Initially, reference count pragmas are associated 3.1 Update-in-place analysis
with each graph edge that transmits an aggregate.
Reference counts must be modified within critical re- Update-in-place analysis is comprised of the fol-

gions of code because they are a shared resource and lowing five optimizations [Can89]: reference inheri-
are modified independently. Since this can create par- tance, node reordering, reference count elimination,

allel bottlenecks, a series of optimizations, known col- mark assignment, and ownership analysis. These op-
lectively as update-in-place [Can89], is applied. The timizations are based on the vector-of-vectors model
optimizations are used both to reduce reference count- for array representation. If multidimensional arrays

ing and to eliminate expensive copy operations• are stored in contiguous memory, these optimizations
These optimization are based on the vector-of- must be adjusted to ensure proper results• Addition-

vectors array model. To achieve the desired perfor- ally, the application and insertion of reference count
mance in SISAL 2.0, copy elimination must be per- pragmas must be adjusted. Under the vector-of-vector
formed on both vector arrays and flat arrays. Addi- model, each subarray has its own reference count,
tionally, new IF2 nodes, which manipulate dope vec- whereas a multidimensional array under the flat model
tots, may be required to prevent expensive copy op- has a single reference count for the entire array.
erations. For example, an operation that reverses the For example, consider the IF2 graph for the SISAL

specification of an array's dimensions could be incor- expression "A[ij:0]", where the two dimensional array
porated into IF2 to allow the transpose function to A must be stored in contiguous memory. This graph,
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Figure 4: Decorated IF2 graph of the SISAL expression "A[ij:0]"

depicted in Figure 4, has been augmented with NoOP tunately, the graph can be transformed to allow the
nodes and reference count pragmas based on this re- extra reference counting information to be removed,
quirement. The array update is performed by two as described in Section 3.2.
AR.EPt, ACE nodes, one for each dimension. The ith
row is first selected by the AELEMENT node and then 3.2 Reference inheritance transformation
modified by the rightmost AREPLACn node. The bot-

tommost AREPLACE node copies the modified subar- In this section we introduce a generalized version of
ray into the correct location within the array A. This reference inheritance that works for both the vector-

extra copy operation is required to ensure that the at- of-vectors and flat array models. We also introduce
ray A remains contiguous. Additionally, the original an additional phase to the optimization that identifies
modified subarray's reference count is decremented, when subarrays are updated-in-place. Based upon this
Under the vector-of-vectors model the modified sub- identification, the copy operation, which is performed
array is not copied, but the ith element of the array, by a AREPLACE node, to ensure the array is stored

which is a pointer, is updated; as such, its reference contiguously is eliminated. This additional phase is
count is not modified, also beneficial for vector arrays since the pointer to

In the graph's current form, up to three copy op- the modified row is not updated unnecessarily.

erations can occur, one for each NoOP node and one First, we describe the original transformation as de-
by the bottommost AREPLACE node. However, all veloped by David Cann [OC88, Can89] for the vector-
three copy operations are unnecessary. The graph of-vectors array model. We also provide an example
overestimates the reference counting needed to per- to demonstrate the inefficacy of reference inheritance
form the single element update since each update op- under the flat array model. We then present the nec-
eration contributes to the array's reference count. For- essary modifications in Section 3.2.2.
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3.2.1 The current transformation AELEMENT node has executed. This ensures that the

array read operation completes before the replacement
Updating a value in a multidimensional array often operation begins.
causes unnecessary copying. To update a single value Although this transformation is safe when arrays
in an N-dimensional array, a series of write operations are represented under the vector-of-vectors model,
is required, one for each dimension. Since each of these problems arise when arrays are represented under the
write operations accesses the same array, each write fiat model. Consider the SISAL expression "A[i:B],
operation contributes to the array's reference count, h[i][j:0]", where the two-dimensional array A is stored
Due to the artificially high reference count, N- 1 copy in contiguous memory. This expression produces a
operations are performed at run-time, two-dimensional array and a one-dimensional array.

To prevent these unnecessary copy operations, the The resulting two-dimensional array is identical to the
optimization reference inheritance[OC88] restructures array A except the ith row is replaced with the val-
the graph. Each subgraph that performs a subarray ues contained in the one dimensional array B, and the
update operation is made a direct descenclant of the resulting one-dimensional array is identical to the ita
NoOP node that performs the conditional copy on the row except the jta element is replaced with the value 0.
next outer subarray, sequentializing the execution of After reference inheritance has been applied, the re-
the NoOP nodes. Based on this new order, reference sulting IF2 graph allows data values to be corrupted
count information is then modified so that each subar- (see Figure 7). Since the rightmost NoOP node does
ray update operation does not introduce an additional not perform a copy operation, 2 the physical space of
reference count. As a result, many of the subsequent the produced arrays is overlapped. However, both ar-
NoOP nodes do not perform a copy operation, rays are modified independently; the leftmost ARE-

To perform reference inheritance, we need to con- PLACE node copies the array B onto the i th row, and
sider only local information. This transformation, as the rightmost AREPLACE inserts the value "0" into
illustrated in Figure 5, is applied for each AREPLACE the jth element of the same row.
and AELEMENT pair that accesses the same subarray;

the order of application is irrelevant [Can89]. This
transformation is only applied when the subgraph is 3.2.2 Reference Inheritance for the flat array
used to modify a subarray. In an earlier preparation model

phase, W marks are added to the graph to identify In many cases, the subarray being updated is placed

these edges. In the original transformation, a NO back into the same location within the original ar-mark is attached to the AREeLACE node. This mark
ray, as illustrated in Figure 8. Under this situation,

indicates that the AREPLACE node should not decre- reference inheritance always provides correct results
ment the reference count of the original ith row of A. under the fiat model, but the modified subarray is un-

The NO mark is not attached to the AREPLACE node necessarily copied back into the original location. To
when the transformation is used for fiat arrays since eliminate the unnecessary array copying under the fiat
a separate reference count is not maintained for each model, two problems must be solved:
subarray.

Applying the transformation to the graph in Fig- 1. Reference inheritance must be generalized to
ure 4 produces the graph in Figure 6. The subgraph work under the fiat array model
that updates the innermost subarray has been placed

directly under the NoOP node associated with the 2. The redundant copying of subarrays must be
bottommost AREPLACE node. The initial reference identified and eliminated.
count for the array returned by the NoOP node is set

to 1 by the sr pragma, even though there are two op- To accomplish this, a two-phase optimization is em-
erations that access the array. In this example, the ployed. The first phase is a generalized version of ref-
innermost NoOP node does not perform a copy op- erence inheritance which only restructures the graph.
eration since the row's reference count is 1. itowever, This forces the NoOP node for the outer dimension

the bottommost AREPLAC_; node unnecessarily copies to dominate the graph for the subarray update oper-

the modified i ¢h row on top of itself, ation. A second phase is then used to determine if
Notice that an artificial dependency edge (ADE), the AREPLACE node for the outer dimension receives

represented by a dashed line, has been added to the the modified subarray. In this case the graph is said
graph. This edge prevents the bottornmost ARE-
PLACE node from executing until after the innermost 2The reference count is guaranteed t,, l)e 1.
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Figure 5: Original Reference Inheritance Transformation [Can:89] (F represents tile number of output edges)

to be mutually strong-dependent (MSD). 3 If the graph scendents of the AELEMENT node. An ADE must be
is MSD then the unnecessary copy operation is elirni- inserted for each of these nodes since each node must

hated, perform any necessary operation prior to the modifi-
To generalize reference inheritance two changes are cation of the original subarray. ,

needed. First, the interior NoOP node must perform In the second phase, a graph traversal is used to
a copy operation if the resulting array is not passed to determine if the graph is MSD. For each AREPLACE
the bottommost AREPLACE node. In the first phase node, the graph is walked in reverse dataflow order
of the optimization, we force the NoOP node to per- starting with the third input of the AREPLACE node.

form the copy operation by setting the initial reference If a path exists to the exterior NoOP node, the graph
count for the array returned by the exterior NoOP is deemed MSD. This operation can be performed in
node to 2, the number of direct descendants. If the constant time since there is only one backward path
interior copy operation is unnecessary, the reference and the path length is bounded by four.

count information is adjusted by the second phase. If the graph is MSD, the current array update oper-
Second, the bottommost AREPLACE node must be de- ation can occur without inducing any copy operations,
layed until after the interior NoOP executes to ensure i.eL, it can operate in-place. The graph is annotated
that the original subarray is copied, when necessary, to reflect this. First, the interior NoOP node is forced
This is accomplished by repositioning the ADE so that not to perform a copy operation. The NoOp node's r

its source is attached to the interior NoOP. 4 mark, which indicates conditional copying, is changed
This transformation is illustrated in Figure 9. No- to an R mark. Additionally, an O mark is attached

tice that the source of ADE is not restricted to a to the interior NoOP node. Together, the R and 0
particular node type (depicted as a hatched node in marks indicate that no copying is to be performed by
the figure); the node may be a compound node which the NoOP node. If there are multiple interior NoOP
contains the NoOP that performs the copy operation, nodes, then the one that lies along the path from the
Additionally, there may be several nodes that are de- bottommost A[%EPLACE to the exterior NoOP node

must be t,he NoOP node that does not perform a copy
3We have borrowed the term, mutually strong-dependent, operation; we refer to this NoOP node as the major

from [Kim88]. The term is used here in a similar sense.

4If the graph is MSD, this ADE is unnecessary and is re- NoOP node. The edges to the other NoOP nodes
moved by the second phase of the optimization, must have their r mark removed, forcing them to copy
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Figure 6:IF2 graph for the SISAL expression "A[i,j:O]", after reference inheritance

the subarray, responding array has been constructed in the proper
Recall that each interior NoOP node is a source for location. In this situation, the AREPLACE node is

an ADE that extends to the bottommost AREPLACE used only as a synchronization point.

node. These ADEs ensure that all necessary copying As a final step, reference counting information is
is completed before the outermost update operation is adjusted. Each reference count pragma on the path
started. However, the ADEs must be adjusted to en- from the exterior NoOP node to the third input of the
sure that copying is performed before the innermost AREPLACE node is decremented by one. This ensures
AI_EPLACE node executes. Since the major NoOP that the run-time reference counts correspond to the
node does not perform a copy operation, the inner- operation of the graph.
most AREPLACE node directly modifies the subarray. If the graph is not MSD, the interior NoOP node is
Additionally, other read operations performed on the forced to perform a copy operation, i.e., the r mark is
subarray must be completed prior to tile innermost removed. Under the vector-of-vectors model, this copy
update operation. This constraint can be assured by operation may be unnecessary. Type information can

applying the node-reordering algorithm [Can89] to the be used to determine how the array is stored. If the
subgraph rooted at the AELEMENT node. array is stored hierarchally then the reference count-

Second, the bottommost AREPLACE node must be ing information from the exterior NoOP node to the
informed that the subarray has been updated in-place, interior NoOP node can be adjusted as defined by the

A P mark is attached with the AREPLACE node's original reference inheritance transformation. Ilow-
third input edge. This mark indicates that the cor- ever, the r mark associated with the interior NoOP
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node cannot be changed into an R mark because of tion of SISAL applications, but are used to identify

the possibility of row sharing (as in [FCO90]). Further MSD graphs. Additionally, the code-generation phase,
optimizations that are part of update-in place may de- which produces C code, of the SISAL 1.2 compiler
termine that the interior NoOP node does not perform was modified. A print statement is inserted for each

a copy operation. If copying is not perform and the AREPLACE node that is a member of a AREPLACE

graph is MSD then a P mark can be associated with and AElement pair. The print statement indicates
the 3ru edge of the bottommost AREPLACE node of whether or not the AI_EPLACE node is part of a MSD

the graph, thus saving a pointer-update operation, graph and reports the number of elements passed to
the AREPLACE node on its third input, i.e., the num-
ber of elements needed to be copied.

4 Preliminary Indications To determine the effectiveness of our technique, a
number of SISAL applications that manipulate mul-

A partial implementation of the refer_,ce-inheri - tidimensional arrays were compiled and executed.
tance transformation for the fiat array model was de- These programs included: two- and three-dimensional
veloped. Because SISAL 1.2 does not support flat ar- convolution (2d_conv.sis and 3d_conv.sis), a 40 time
rays, only P marks were added to the MSD graphs, step gel-chromatography simulation (ricard.sis), ma-
I_eference counting information was adjusted as de- trix inverse (inverse.sis), and loop 13 of Livermore
fined by the original reference-inheritance transfor- Loops benchmark (loopl3.sis). The optimization tech-
mation. These marks have no effect on the execu- nique is applied mostly for applications that use while
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Figure 8: Graph template for an update operation

loops. As such, the convolution functions used in our 5 Conclusions and Future Work
test suite were implemented using while loops, the

other applications are available with the SISAL dis- Update-in-place analysis has virtually eliminated
tribution, the copy problem in SISAL 1.2 [Feo90]. These opti-

In Table 2, we report both the number of applica- mizations must be extended to handle both vector-of-
tions of reference inheritance and the number of MSD vectors arrays and true multidimensional arrays. Ad-

graphs produced during compilation. These numbers ditionally, there is a higher potential for copying with
where obtained by examining the C code produced by monolithic arrays than with vector arrays. Updating
the modified SISAL compiler, i.e., the inserted print a single element in a shared array can induce a full ar-
statements were counted. The C code was then corn- ray copy, whereas an array copy operation is only per-

piled with a native C compiler and executed. A shell formed under the vector-of-vectors model if the lowest
script that examines each program output calculated dimensional subarray is shared.

the number of MSD graphs executed 5 and the total Reference inheritance is an optimization that was
number of array elements that are not copied. We developed for the vector-of-vectors array model. As
also indicate both the number of non-MSD graph and described in this paper, this optimization can be gen-

eralized and extended to reduce copying under boththe number of elements that must be copied to pre-

serve the contiguity requirement. We present these array models. In our approach, we stayed within the
results in Table 3. context and current definition of both IF1 and IF2. An

alternative approach is to define an extended ARE-
PLACE node. The extended node would receive an

5Thls number also represents the number of polnter-copy n-dimensional array, n indices, and the replacement
operations saved trader the vector-of-vector model, value for a total of n+ 2 inputs (see Figure 10a). How-
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ever, we see two main problems with this approach: the indexing operation, performed by the top-
most AELEMENT node, is identified as a common

1. Complicates the definition of the AREPLACE
node subexpression.

In the current definition of IF2, tile AREPLACE The extended reference inheritance transformation

node can update a number, say n, of sequential eliminates much of the copying used to preserve tilearray elements. The AI{EPLACE node receives
n + 2 inputs which consist of an array, an in- contiguity requirement for arrays. However, our ap-

proach cannot remove the extra copying induced by
dex, and n replacement values_ For example, the non-MSD graphs. This extra copying can occur when
array-update operation for the SISAL expression
"A[i:5,4,3]" is performed by a A REPLACE node a region of a multidimensional array, such as a row, is
that has five inputs. The array elements at posi- updated as a single operation.

For example, in the SISAL expression "A[i:B], A[i]",tions i, i+l, and i+2 are replaced with the values
the one-dimensional array B needs to be copied into

5, 4, and 3, respectively. Although type informa-
tion can differentiate between the two node defini- the two-dimensional array A. As shown in Figure 11,

tions, the extended definition unduly complicates array B is copied onto the ith row of A. Prograln anal-
ysis, such has build-in-place [Ran87], may be extendedthe semantics of the AI_EPLACE node.
to determine that the array B can be built within

2. Prevents the application of some optimizations, the array A, eliminating the copy operation, ttowever
e.g., common subexpression elin_ination this can only occur if the construction of the array B

Consider the SISAL expression "A[ij:0], A[ij]". is delayed until all operations that access the ith row
Using the extended AREPLACI_; node prevents of A are completed. Since this reduces parallelism

an indexing operation from being shared by the within the graph, any optimization needs to consider
array-read and the array-write operations, a.s de- the tradeoff between copying and the loss of paral-

picted in Figure 10a. It" the extended ARe- lelisrn.
place node is exploded, as in Figure 10b, then To eliminate the copy problem in SISAl, 2.0, ad-
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] Program Appl. of ][NumberofGraphsTypesRef. Inher. MSD non-MSD
, ,, , ,

2d_conv.sis 1 1 0

3d_conv.sis 2 2 0
ricard.sis 5 5 0
inverse.sis 6 1 5

loopl3.sis 7 7 0,.,.......

Table 2: Number of MSD graphs identified

[Program Data-set ]t Number of Graphs Types [ Element CopiesSize MSD non-MSD ........Saved Performed,

2d.conv.sis 102 56 0 I 560 0

3d_conv.sis 10a ' 686 0 37730 0
ricard.sis 5 x 1315 100 0 20000'0 ..... 0

inverse.sis 102 10 '200 100 2000

loopl3.sis k 448 0 200704 0_

Table 3: Number of MSD graphs executed, and number of array elements copied (The 2d and 3d convolution
applications used 32 and 33 kernel, respectively. The input used for loopl3.sis was provided by benchmark.)
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Abstract enced by side effects, the evaluation order of expres-
sions is dependent only on the availability of values.

To exploit the benefits of applicative languages, such As values are computed, separate copies can be pro-
as SISAL, optimizations are needed to eliminate in- vided to many independent operations that can exe-
ejficiencies that can result from a naive implementa- cute simultaneously, thus exploiting parallel architec-
lion. In particular, costs associated with copying large tures.

data aggregates can be significant, outweighing the An implementation that strictly adheres to the ap-
benefits achieved through parallel execution. Within plicative model is required to copy all data values.
the SL_AL compilation environment, an optimization However, the cost associated with copying large data
known as node-reordering is performed to reduce copy- aggregates, such as arrays, can become prohibitive,
ing [Can89]. This optimization constrains the exe- nullifyingthe benefits achieved through parallelexecu-
cution order of IF2 [WSYR86] graphs by introduc- tion. To reduce this cost, aggregates can be passed by
ing artificial dependency edges (ADEs). Although the reference, with copying performed only by operations
resulting 1F9 graph provides greater opportunities to that alter the value of an aggregate. A compiler can
eliminate expensive copy operations, parallelism is re- minimize these remaining copy operations by restrict-
stricted. Additionally, the introduced ADEs can in- ing evaluation order. For example, a write operation
crease both memory usage and token traffic for pro- can be delayed until after all read operations on tile
grams that execute on fine-grain architectures, same aggregate have been performed. Since the write

In this paper, we describe a new framework for operation is now the last operation to reference the ag-
the node-reordering optimization. The resulting algo- gregate, it can directly modify the aggregate without
rithm, which is based on the algorithm presented in affecting program semantics.

[Can89], prevents unnecessary ADEs from being in- Within the SISAL compilation environment, the

sorted into IF2 graphs. As a result of our algorithm, execution order of a program is modeled by an IF2
parallelism is constrained only when necessary to elim- [WSYP_86] graph. Based on this internal program rep-
inate costly copy operations. Furthermore, removing resentation, aseries of optimization techniques, known
the overhead associated with unnecessary ADEs results collectively as update.in-place, is applied to reduce the
in better performance of SISAL programs that run on

dataflow architectures [Fit93]. number of aggregate copy operations [Can89]. Oneof these optimizations, node-reordering, introduces ar-

tificial dependency edges (ADEs) into IF2 graphs to
defer write operations until after all pending read op-

1 Introduction orations have executed. Although this results in bet-
ter performance because of the elimination of many

To define algorithms for parallel architectures, lan- costly copy operations, many "redundant" and "su-
guages that follow the applicative paradigm have perfluous" ADEs are introduced. On fine-grain archi-

been proposed [Arv88, Bac78, Den80, ANg0, FCO90]. tectures, such as dataflow, these edges can decrease
In applicative languages, such as SISAL [BOCF92, performance since they increase both token traffic and
MSA+85], computation is carried out via the evalu- data memory usage. Additionally, superfluous ADEs
ation of expressions. Since expressions are not influ- unnecessarily restrict execution order, further decrea.s-
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ing parallelism, required. If the array update operation (A[ij:0]) axe-
In this report, we present a new approach to cutes first, the array A must be copied to ensure that

the node-reordering algorithm that was originally de- the array read operation (A[j,i]) retrieves the correct

signed by David Cann [Can89]. First, we present an value. 2 We can prevent the copy operation if the array
overview of dataflow computation and the intermedi- write is delayed until the array read operation corn-
ate language IF2. In Section 3, we define two types pletes.
of ADEs, redundant and superfluous, and discuss tim To restrict execution order, node-reordering intro-
costs associated with these ADEs. The new node- duces ADEs into an IF2 graph. For our example, the

reordering algorithm, which does not insert unneces- IF2 graph produced by update-in-place is depicted in
sary ADEs, is presented in Section 4. In Section 5, re- Figure 1. Three ADEs, represented by dashed edges,
suits are provided. We then conclude this report with have been inserted: two by the node-reordering opti-
a brief overview and a description of future work. mization and one by another optimization, reference-

inheritance. The ADEs introduced by node-reordering
are placed between array read and array copy opera-

2 Execution Model tions, e.g., from AELEMENT nodes to NoOP nodes.
The NoOP nodes have been inserted into the graph

2.1 Dataflow and IF2 to indicate the location of potential copy operations.
Since these ADEs affect the amount of copying per-

Program execution in dataflow architectures is data formed, we focus our attention on ADEs introduced
driven [DenS0]. Graphs that depict data dependen- by node-reordering.

In our example, these ADEs prevent the top-mostcies serve as the basis for these architectures and can

be used to define programs for these architectures NoOP node from firing until the two right-most

[Den80]. Each node in a dataflow graph represents AELEMENT nodes have fired, completing the array
read operation. Once the read operation completes,an operator that executes when all its operands are

available. The node is said to fire, producing a value the top-most NoOP node can execute, allowing the
that flows along edges to other nodes. 1 Thus, pro- array update to proceed. At run-time, NoOP nodes
gram execution is based on dataflow order, which is conditionally copy a data aggregate based on refer-
constrained only by data dependencies represented by ence count information [CO88]. Since all other oper-
edges in the graph, ations, not dependent on the top-most NoOP node,

IF2 [WSYR86] is a graph-based language designed have completed, the reference count for the array A is
_s an intermediate form for applicative languages such equal to 1. In this case, the NoOP node only serves
a.s SISAL. Although IF2 is based on the applicative as a synchronization point. The array A is not copied
model, memory management information can be in- but directly modified, thus eliminating a copy opera-
corporated into a dataflow graph via a set of primitive tion.
operations. Using IF2, a series ofoptimizations can be

performed to improve the execution efficiency of algo- 2.2 Activity Frames and the Cost of
rithms. For example, update-in-place analysis [Can89] ADEs
is performed in the SISAL compilation environment to
eliminate unnecessary copy operations. ADEs are in- In many prototype dataflow computers, an activ-
troduced to delay the execution of write operations ity frame or template is used to represent operators in

programs [Den80, AN90]. Each of these frames speci-
until after read operations have completed. Although ties the operation code of an operator and the destina-
this limits paralMism because of the restricted execu-
tion order, many expensive copy operations are elirn- tions of its results? Additionally, places are provided
inated. In most situations, program execution is im- to store each operand until the frame is ready for ex-

proved, ecution. The basic form of a frame is shown in Figure
Consider the SISAL expression "A[id:0], A[j,i]" 2. In some dataflow architectures, these activity

which returns an array and an integer. The returned frames reside in a data memory. Once all the operands
array is identical to A except the value at location

"[i,j]" is replaced with the value 0. Both expressions of a frame have been supplied, the operation is exe-
can execute in parallel, but depending on the order outed, producing the appropriate number of results.
of evaluation a copy operation may or may not be :_Considerthe case where the values of i and j are the sa_ne.

3Other information may also be included in a frame, e.g., a
1A separate copy is made for eac_houtput edge. tag used in dynamic dataflow [BG90].
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Figure 1:IF2 graph for the SISAL expression "A[ij:0], A[j,i]"

Op Code node with the top-most NoOP node, depicted in Fig-

input 1 ure 3. Removing this ADE frees up two memory loca-
tions and eliminates one packet. Consequently, each

; ADE removed can increase the run-time pertbrmanceI

Input M of programs that run on fine-grain architectures.
In most dataflow computers, instructions are lim-

Output 1 ited in the number of input and output tokens JAN90, '
ii

; BG90]. Removing redundant ADEs for these archi-
' tectures can further improve performance. For each

Output N activity frame that transmits a multiple number, say
N, of ADEs, additional activity frames must be in-

i_'igure 2: Activity template for a dataflow node serted into the graph. On machines that do not have
an iterative instruction, e.g., TUP instruction, a tree
of N - 1 duplication nodes (DUPs) must be inserted

i_l_:h of these results is delivered to another activity [BG90]. Similarly, a tree that collapses several ADEs
tr_l_le within a packet consisting of a value-destination into one is needed for each frame receiving multiple
l,:dr The system delivers a separate packet for each ADEs. These additional frames affect both the code
r_::f_rence to a result. Once the packet is received by size and the token traffic of a program.
i t_ destination frame, the value is stored, where it In our discussion, we assumed that an ADE is
r_sides until the frame is executed. In this manner, treated like any other edge in the graph. However
_:,at:hdata value requires two storage locations: one their are other possible implementations for ADEs
i_ _he source frame that indicates its destination, and that would require less memory. For example, a mem-
,,l,,,_ in the destination frame that contains its value, ory location contained in the activity frame can be
:\,Jditionally, each transmitted data value introduces used to count the number of ADEs received by the
:_I_acket that the system must process, frame. To schedule a frame, this value is compared

'['!le IF2 graph in Figure 1 can be directly trans- to the number of ADEs required which must also be

f'_,xHind into a dataflow graph that uses activity frames, stored in the frame. In this manner, only two mem-
ih(_ resulting graph is shown in Figure 3. In this type ory locations per activity frame are needed to imple-
_fs.raph, it is easy to see the cost associated with each ment ADEs. However, under this approach an activity

,:,itV: in a dataflow graph. For example, consider the frame must be processed each time an ADE is received,

AI)}'; (edge 4) connecting the top-most AELEMENT decreasing performance. Furthermore the scheduling
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of activity frames, i.e., the basic firing rule, is further In general, a tree of nodes is associated with an ar-
complicated. Therefore, eliminating as many ADEs as ray aggregate. The interior of the tree is formed by a
possible is beneficial for performance, series of AELEMENT nodes that de-reference the data

aggregate. Each AELI_MENT node decomposes the ar-
ray by one dimension. The leaves of the tree consists

3 Redundant and Superfluous ADEs of other nodes that either read or update each subag-
gregate. For example, consider the graph fragment for

To reduce expensive copy operations, node- the SISALexpression

reordering restricts the execution order of an IF2 :tot
graph. ADEs are introduced to delay array write oper- B : = _,[1]
ations until array read operations have occurred° A1- in

though the new execution order prevents many costly A[j, ±: 0], h [k, ±], B[±: 0]
copy operations, parallelism is reduced. Additionally, end let
execution overhead is increased for fine-grain architec-
tures due to the cost associated with ADEs.

In the original node-reordering algorithm, unnec-, depicted in Figure 6. The two top-most AELEMENT
essary ADEs are inserted. For example, consider the nodes form the interior of the tree, and decompose
partial IF2 graph for the SISAL expression "A[j,i:0], the array into subarrays. These subarrays are then
A[k,i], A[1,i:O]" presented in Figure 4. ['our ADEs accessed by the leaf nodes, which return either a rood-
have been inserted into the graph to prevent both ified copy of a subarray or a scalar value. Notice that
NoOP nodes from executing until both AELEM_;r_'r the bottom-most AELEMENT node is considered a leaf
nodes have executed. The ADEs emanating from the node because it returns a scalar element and not a sub-

top-most AELEMENT node (edges 1 and 2) are "re- array.
dundant" since the bottom-most AELEMENT node's

ADEs also delay the firing of both NoOP nodes. The In the original node-reordering algorithm, ADEs
ADEs associated with the top-most AELEMENT node are inserted connecting each interior .,ode with all
can be safely removed without disturbing either the NoOP nodes that lie on the frontier of the de-reference

graph's execution order or its semantics [Fit93]. tree. Since each leaf node that performs a read oper-
The other ADEs (edges 3 and 4) ensure that ation also maintains an ADE with each NoSe node,

array read operation, which is performed by th, he ADEs associated with interior nodes are "redun-
AELEMENT nodes, completes before the start of e_ tant" and can be removed. The new algorithm does

not insert these edges into the graph. Additionally, apotential copy operation. Although _his ordering ,.,_
sures that only one copy of the array A is made, the single NoOP node is selected to be the sink for the
NoOP node that performs the copy is delayed unnec- final set of ADEs. Thus the ADEs associated with
essarily. Deferring the execution of only one NoOP the other NoOP node are deemed "superfluous." In
node is sufficient to ensure that an unaltered copy of this manner, a maximum of one ADE per array read
the array A is available for the read operations. _;(_ operation is required to prevent the unnecessary copy
can choose, at compile time, the NoOP node. to b,_. operation.

deferred. Since the ADEs associated with the other Removing unnecessary ADEs can increase perfor-
NoOP node are "superfluous," they can be safely re- mance. Since ADEs restrict the amount of parallelism

moved from the graph, increasing parallelism, it) a graph, removing "superfluous" ADEs allows some
As depicted in Figure 5, the resulting graph con- of the parallelism to be recovered without increasing

tains only one ADE (edge 3). Edges 1 and 2 haw_ the amount of copying since one of the NoOP nodes
been identified as being redundant, and edges 2 and is required to perform a copy operation regardless of
4 have been identified as being superfluous. 4 Alterna- the presence or absence of ADEs. Additionally, with
tively, we could have identified edges 1 and 3 a.s super- the reduction of the number of edges in the graph,

fluous. Since reference counting determines whether a a mapping algorithm may be better able to partition
NoOP node performs a copy operation, we can arbi- a graph due to less node interaction. On fine-grain
trarily choose either NoOP node to be the sink for t,he architectures, such as dataflow, removing unnecessary
remaining ADE. ADEs provides us with two further benefits: less mem-

Edge 2 can be classified as either redundant or superituous; ory used and less token traffic. The reduction of token
its final classification is based on the classification of edge 4. traffic can increase the throughput of the system.
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4 The New Approach to The read-write sets are constructed by examining
Node-reordering Algorithm all graph nodes in a top-down fashion. A read and

a write set are created for each node that is the root

As part of update-in-place, an IF2 graph is restruc- of a de-reference tree. The de-reference tree is then
tured [Can89]. The optimization node-reordering in- traversed using a depth-first search strategy. When a
serts artificial dependency edges (ADEs) to defer write leaf node is encountered, the node number is recorded
operations until all read operations have been per- in either the read set or the write set. The node is
formed. As shown in Section 3, many of the ADEs recorded in the write-set if the edge that carries the
inserted are unnecessary and can be safely removed, data aggregate to the node is decorated with a W

In this section, we describe a modified version of the mark, otherwise the node is recorded in the read-set.

node-reordering algorithm that prevents the insertion The resulting sets determine the placement of the non-

of "redundant" and "superfluous" ADEs. The original redundant ADEs.

algorithm developed by David Cann is composed of For example, consider the read-write sets con-
three phases: read-write set construction, ADE inser- structed for the three dimensional array A in the fol-
tion, and graph reconstruction. _ In the modified ver- lowing SISAL expression:
sion, we retain this organization but have altered the
framework of the read-write set construction phase.

let

4.1 Read-write Set Construction B := A[j]
in

Beforeread-writesetconstruction,eachedgeinan A[i,i,i:O], B[i,i:O], foo(B[k]), B[k,i]
IF2 graph is classified. An earlier phase of update-in- end let
place decorates edges with a W mark if it carries data

that is to be modified or copied. For example, if an The IF2 graph for the expression, depicted in Figure
edge's sink is attached to an AELEMENT node, no W 7, is traversed in dataflow order. In our example, the
mark is associated with it. A W mark is associated traversal begins with the node that creates the array
with an edge if its sink is attached to either a NoOP A. First, an empty read set and an empty write set are
or another aggregate modifier, assigned to the data array A. The de-reference tree for

the array is then traversed in depth-first order. The5In [Can89],the last phase !_ called node-reordering. How-
ever, we have chosento use the name "node-reordering" to refer first leaf node encountered, the top-most NoOP, is
to the complete set of three phases, recorded in the write set since it is connected to the
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Figure 5: Modified IF2 graph fragment of "A[j,i:0], A[k,i], All,i:0]"

de-reference tr_.e by a W marked edge. Continuing in internally reconstructed to reflect this new order. This
this fashion, the other NoOP node is placed into the phase of the optimization is the same in the modified

wrhe set, and the other two leaf nodes are placed into version as in the original version developed by David
the read set. Notice that the bottom-most AELEMENT Cann.
node is classified as a leaf node because it returns a

scalar value and not a subaggregate of the array A.

Thus, the final read and write sets for the array A are 5 Some Empirical Results
{3, 4 } and {5, 10}, respectively.

The next phase of node-reordering, ADE inset- A series of SISAL programs 6 were compiled to de-
'.ion, determines the placement of ADEs. First, the termine the number of unnecessary ADEs that are re-
non-redundant ADEs are determined by examining moved by the new node-reordering algorithm. Addi-
each read-write set pair. Tile locations of these non- tionally, these programs were augmented with code to
redundant ADEs are defined by the Cartesian product allow the number of ADEs encountered at run-time
of the read set with the write set. In our example, to be calculated. In this section, we present some of
_]_e read-write set for the array A defines four non- these results.

redundant ADEs: (3, 5), (3, 10), (4, 5), and (4, 10); The results indicating the number of ADEs re-
here we represent an ADE by the pair (source-node, moved at compile time for the following SISAL
sink-node), programs are presented in Table 1: Gaussian

To define the final set of ADEs, one node is se- elimination (gauss.sis), LaGrangian hydrodynamics
l,_cted from each write set to be the sink node for the (simple2a.sis), quicksort (quicksort.sis), mergesort

_on-superfluous ADEs. For the purpose of copy elim- (mergsort.sis), matrix inverse (inverse.sis), particle
ination, this choice can be made arbitrarily. In prac- dynamics modeler (moldyn.sis), paraffins problem
Ticc, the selection may be based on a node's depth in (para.sis), parallel simulated annealing (psa.sis) and
ih_::d,>reference tree to retain the maximum amount three loops contained in the Livermore Loops test suite

_)f t:,aral]elism. For the IF2 graph in Figure 7, the (loopl3.sis, loopl0.sis and loop23s.sis). In Table 2 we
hot.tom-most NoOP node has been chosen as the sink present the number of ADEs that are executed. Since

for the ADEs for the array A; thus the ADEs inserted the ADE counts at run-time are based on all ADEs in-
are. (3, 5) and (4, 5). serted by update-in-place, we present the total number

The final phase of node-reordering is graph recon- of ADEs removed at compile time.

struction. Since the inserted ADEs have restricted the _All of these programs are available with the SISAL
original dataflow ordering of the graph, the graph is distribution.
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Program Original Removed ADEs Remaining
Source Lines ADEs Redundant Superfluous ADEs

gauss.sis 227 3 1 -- 2
simple2a.sis 1527 3 2 -- 1

loop23s.sis 46 .... 6' 3 -- 3
quicksort.sis 50 7 0 -- 7 -
loopl0.sis 54 13 10 -- 3

loopl3.sis 60 14 4 _ 7
mergesort.sis 85 14 0 3 11
inverse.sis 158 17 3 -- 14

moldyn.sis 878 27 17 _ 10
para.sis 824 61 46 -- 15

psa.sis 771 156 41 -- 115

Table 1: Counts of ADEs removed at compile-time (only ADEs associated with node-reordering are reported)

Program Static ' Dynamic

Source Lines Original Remaining % Removed Original Remaining % Removed
loopl0.sis 54 13 3 76.92 13 3 76.92

loopl3.sis 60 18 14 22.22 1152 896 22.22
mergesort.sis 85 13 11 15.38 3197 2'999 6.19

inverse.sis 158 29 26 10.34 3441 3351 2.62
moldyn.sis 878 46 29 36.96 -- -
para.sis 824 65 19 70.76 107 0 100.00

psa.sis 771 175 i34 23.42 8162 5951 i 27.09

Table 2: Counts of ADEs executed at run-time (all ADEs are reported). Runtime counts are not provided for
the "moldyn.sis" program because valid input data was ,rot available at the time of our studies.
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Figure 6:IF2 graph fragment of "A[j,i:0], A[k,i], B[i:0]"

Although the percent of ADEs removed range decrease in both memory usage and token traffic.
from 2.62% to 100.00%, a large number of programs
can benefit from the modified algorithm, particularly 6.2 Future Work
those that make extensive use of multidimensional ar-

rays. Additionally, programs that do not achieve any The modified algorithm prevents many ADEs from

improvement through the modified algorithm do not being inserted into the graph. Although this allows
incur any increase in compilation cost since each node many operations to be performed in parallel, reference
is examined at most the same number of times as in counting information is needed to determine when
the original algorithm. Notice that only one program NoOP nodes must perform a copy operation. The

exhibited superfluous ADEs, mergesort. We hope that overhead associated with reference counting can de-
further analysis will identify a class of algorithms that crease performance. Fortunately, most of the refer-

benefits from the removal of superfluous ADEs. ence counts can be eliminated through program anal-
ysis [Can89, CO88, Hud86, SS88].

Within update-in-place, the optimization edge-
6 Conclusion neutralization removes reference count pragmas based

on the location of ADEs inserted by the node-
6.1 Overview reordering algorithm [Can89, FCO90]. Since we have

eliminated many of these ADEs, we must re-examine
In this paper, we present the optimization node- this optimization.

reordering, originally developed by David Cann For example consider the graph depicted in Figure
[Can89], in a new framework. This optimization in- 8. Using the existing edge-neutralization algorithm,
serts ADEs between read and write operations to de- the reference count pragmas associated with the inte-
fer write operations until pending read operations have rior nodes of the de-reference tree are not eliminated

been performed. This restructuring of an IF2 graph because the ADEs that would have been inserted by
increases opportunities to eliminate many expensive the original node-reordering algorithm are not present.
copy operations. The algorithm that results from the Since these interior nodes have implicit ADEs, we
modified framework is both clear and concise, allow- should also be able to remove their reference counts.
ing for a simple implementation. Additionally, ADEs Furthermore, it may be possible to remove all refer-
are inserted only when necessary to prevent copy op- ence counting information within the de-reference tree
erations. The optimization is well suited for fine-grain if we select, a priori, the NoOP node that performs
architectures since the eliminated ADEs result in a the copy operation.
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In general, to select the NoOP nodes that perform [Arv88] Arvind. Dataflow approach to general-
the copy operations, a set of heuristics may be de- purpose parallel computing. Computer
veloped. These heuristics could examine the trade-off Science and Engineering, MIT Video
between copying and the loss of parallelism. Since Tape, October 1988.
only one algorithm in our test suite, mergesort, has

"superfluous" ADEs, we must first identify a class [Bac78] J. Backus. Can programming be liberated
of algorithms that might benefit from the proposed from the von Neumann style? A func-
heuristics. Currently, we are examining the character- tional style and its algebra of programs.

istics of mergesort to determine an appropriate class Communications of the ACM, 21(8), Au-
of algorithms, gust 1978.
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Abstract next generation of parallel computers[5]. This means,
of course, that regardless of how they are intercon-

In this paper we investigate the relative cache per. netted, microprocessor performance in general and
formance of Sisal and Fortran through trace-driven memory performance in particular will be of increas-
simulation of representative scientific applications, ing importr_nce in the future.

The range of cache configurations considered cot- While FOrtTI_AN is still the workhorse language
responds to on-chip caches in current and next- of the scientific community, the SISAL programming
generation microprocessors. We find that in unified language[4] offers an attractive alternative since it
caches the performance is equivalent. With split in- provides the programmer with well-defined, determi-
struction and data caches, performance is still corn- nate functions while providing the compiler with data
parable, yet the two languages demonstrate somewhat dependency information from which it can extract
different tendencies, implicit parallelism. Although SISAL's performance

competitiveness with FORTRAN has been established
on supercomputers such as the CRAY which has no

1 Background cache[l], questions have been raised as to the relative
performance in the cache environment of microproces-

With gains in CPU speed far outstripping gains in sor based systems.
memory access times, memory performance is rapidly We explore some aspects of tile relative behavior
becoming the limiting factor in computer perfor- of FORTRAN and SISAL in the cache environment of
mance. Nearly all current architectures attempt to current and next-generation microprocessors through
alleviate this bottleneck by placing small fast cache simulating their behavior in a variety of caches.
memories near the processor to take advantage of lo-

cality in memory references.[6] Since the difference in
memory access time between a cache hit and a cache 2 The Model
miss can be in the tens of cycles on a uniprocessor and
in the tens to hundreds of cycles on a multiproces- In this study we examine the relative behavior of

sor, cache behavior is of vital interest to those seeking representative scientific applications in both SXSAL
high-performance from their computer systems, and FORTRAN in cache environments sinfilar to those

At the speed at which current generation micropro- of current and next generation RISC microprocessors.
cessors run, even the time required to go off-chip has To properly model potential on-chip cache configu-
become substantial relative to the clock speed. As rations, we simulate both unified caches and split in-
a result of this and of advancing VLSI technology, struction and data caches. Sizes range from 2Kbytes

most current-generation microprocessors and virtually to 64Kbytes for the instruction caches and 2K to 256K
all next-generation microprocessors will have on-chip for the data caches. These ranges, though too small
men]ory caches. Since chip real-estate is a valuable for external caches, far exceed the limits of current
commo,Jity, these caches are relatively small( e.g. 8- on-chip cache technology. ,
32Kbytes for the MIPS R400013]). Since, by its very nature, a cache must be fast, arid

The ready availability of fast, inexpensive micro- at. on-chip cache must also be small and simple, most
processors will make them the building blocks of the on-chip cacbes are, and will probably remain, direct
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Figure 1: Average miss rate for unified Instruction/Data Caches

mapped.[2] For tl.,ese reasons, we will concentrate on 2.2 The Simulation
direct-mapped caches.

The cache performance data were generated by

2.1 The Programs tracing the execution of each program and simulating
the behavior of different cache configurations for that

The applications used here were taken from those sequence of references. The reference streams were
used by David Cann for the performance comparison captured using the pixie profiling system on a Silicon

of SISAL and FORTAN on the CI_AY Y-MP [1]. Missing Graphics MIPS R3000 based computer. All of the ex-
are FFT and the Lawrence Livermore Loops. The ecution traces are from sequential execution.
FFT program was sinmly a call to the CRAY library The SISAL and FORTRAN programs were compiled
which was clearly not portable for our purposes, and using osc version 12.9 and the MIPS distribution f77
the Livermore Loops did not produce execution traces compiler respectively. In each case, the standard "-

of sufficient length to properly exercise the caches. O" level of optimization was used. The pixie profiler
The other applications and their subject areas can modifies the executable image so that, while running,

be seen in Table 2.1. We chose these applications as it outputs its memory reference stream on an unused
a reasonably representative scientific workload with file descriptor. After being instrumented, each pro-
which to exercise the compilers and caches. No at- gram was run and its reference stream fed into our
tempt was made to re-tune them for the memory ar- cache simulator and analyzed.
chitecture of the microprocessor, and no special opti- Each reference stream was made up of 10 million
mization instructions were given to the compilers, references after skipping the initial 2 million references

to account for transient start-up behavior. Since the

, Application Subject-Material largest caches simulated are only 256K, this is SUffi-
AMR Hydrodynamics ciently long to demonstrate steady-state behavior.
BMK11A Particle Transport The results of these simulations are presented be-
KIN16 Gel Electrophoresis low.

RICARD Gel Chromatography
SIMPLE Hydrodyr amics
WEATHER Weather Modeling 3 Results

Table 1" The Applications The results presented here are those for direct
mapped caches with line sizes of 16 bytes. Though
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Figure 2: Average overall miss rate difference for split caches (FORTRAN--SISAL)

caches with different associativity and line sizes were above zero (0.2%). Note that in all cases the difference
simulated and gave different values, the relative be- is not very great. The greatest differences at the top
havior remained consistent, and bottom corners of the graph are 1.1% and -1.2%

First, Figure 1 gives the average miss rates for uni- respectively.

fled caches. These results were disappointing not be- Figures 3 and 4 decompose this graph into instruc-
cause they were bad, but because nothing interesting tion and data miss rates respectively. Now it becomes
happened. As can be seen from the figure, :he SISAL evident why Figure 2 has the form it does. It can

and FORTRAN miss rates track each other closely with be seen from Figure 3 that SISAL requires a greater
no clear advantage. Over the sampled space, the aver- amount of instruction cache than FORTRAN before its

age difference is well less that 1%. Still, this shows the miss rates come down. SISAL only catches up to FoR-
two languages to be competitive in the unified cache. TRAN when the instruction cache reaches 32k.

The case where the instruction and data caches are In the data cache, this tendency is reversed. Here,
split is somewhat more intersting. In these figures, in Figure 4, it appears that SISAL makes more efficient
Fig. 2 through Fig. 4, we show the difference in the use of the data cache until the data cache becomes as
miss rates found by subtracting the SISAL value from large as 128k and FOR_IRANcatches up. In each case,
the FORTRAN value rather than the miss rates them- the two level off together when most of the working
selves.. We find that not only does this reduce the set is resident in the cache.
clutter of the graphs, but it also shows what we are
really looking for, the relative performance. Where

the difference is above zero, SISAL is performing bet- 4 Analysis
ter, while when below zero, FORTRAN is better. The

contour line shows the crossover point. Though we have not determined the cause of these
Figure 2 shows the overall miss rate differences for differences, we have examined some possibilities.

the whole range of caches averaged over the six ap- Since we see that SISAL and FORTRAI" behave so
plications. Here the differences begin to develop. For differently in their instruction and data references we
small instruction cach,_., FORTRAN consistently out- considered the possibility that the two could have very
performs SISAL exc%,, when there is only 2k of data different memory demands, as opposed to simply bet-
cache. When the ins:,_uction cache size in increased, ter or worse locality. To see the memory character-

however, SISAL comes into its own. For a current mi- istics of the applications, each was run and the in-
croprocessor, instruction and data caches of 8k are struction and data references counted. Since some of

not unreasonable to consider. This puts it just barely these applications can run for a very long time, they
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Program Fetches Loads Stores mem/inst
' , ,

........amr SISAL 1,043,831,565 268,213,741 111,393,127 0.363
FORTRAN 1,136,562,760 256,871,897 80,011,158 0.296

bmklla SISAL 854,104,288 212,210,754 127,706,750 0.398
FORTRAN 941,454,917 244,412,172 141,005,308 0.409

kinl6 SISAL 1,309,306,131 480,184,102 69,513,119 0.420
FORTRAN 965,836,314 408,995,150 52,259,190 0.478

ricard SISAL 805,401,526 298,707,707 143,946,230 0.550
FORTRAN 803,445,241 238,072,848 147,489,178 0.480

simple SISAL 844,093,836 272,734,276 90,036,300 0.430
FORTRAN 867,464,552 278,596,699 51,846,183 0.381

weather" SISAL 385,490,039 99,840,172 3'8,605,406 0.359
FORTRAN 391,735,035 92,457,819 42,783,829 0.345

aRan to completion

Table 2: Memory characteristics of programs (10 minutes running time)
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FFT Algorithms on a Shared-Memory Multiprocessor

A.L. Cricentiand G.K. Egan."

Oo

Abstract F(w) = f f(t)*e "jwt dt (1)
This paper deals with the coding of some FFT

algorithms in the functional language SISAL, to exploit In many cases the signal of interest is not a
the available concurrency, on a shared memory continuous time signal, but a discrete time signaL
multiprocessor(EncoreMultimax). Run times andspeed- Discrete time signals are therefore sequences of
up are presented for two conventional array based and numbers and therefore lend themselves for
two pipeline stream based FFT algorithms. The implementation and analysison digital computers.
performance of the strewn based algorithms is compared In the case of discrete signals the integral above
with that of the array based algor/thms, becomes a summation:

Introduction -_tThe Discrete Fourier Transform (DFT), and other F(n) = f(k) *e-j2_kn/N n = 0,I...N-1
related transforms, are of key importance in the field of kffi0

digital signal processing. Calculation of the DFT from (2)
its definition is computationally expensive requiring The above summation is called the Discrete Fourier
O(N2) multiplications and a similar number of Transform(DFT).
additions. However much effort has been put into Calculation of the DFT is computationaUyexpensive
developing fast methods of calculating the DFr, since requiringorder N2 multiplications and a similar number
efficient calculation of the DFT makes much of discrete of additions.

signal processing possible. Several good algorithms now Many approaches for improving the computational
exist for the efficient calculation of the DFT, these efficiency of the DFT, rely on the properties of
algorithms are generally known as Fast Fourier e.J2xkn/N
Transforms (FZF). the term, which is periodic and symmetric.

To speed up the calculation of the DFT further, Exploitation of these properties has led to several fast
either faster algorithms need to be developed, or any algorithms for evaluating the DFT.
concurrency in the algorithm be exploited. Some Although there are several FFT algorithms, most are
researchers have been looking into the parallel based on the principle of decomposing the computation
implementation of the FFT. Pease [Pea68] pioneered into successively smaller DFT computations, this
work in this area by suggesting a parallel FFT algorithm, method was re-discovered by Cooley and Tuckey
Norton and Silberger [NS87] have presented results for [CT65].
a FORTRAN implementation of the Cooley-Tuckey One common FFT algorithm is called the Cooley-
FFT on a shared memory architecture 0BM-RP3 Tuckey Radix Two Fast Fourier Transform. This
machine) while Cvetanovic [Cve87] presents methods algorithm is based on the successive partitioning of the

data sequence into even and odd indices (note N mustfor performance _malysis of two FFT algorithms on
shared memory machines. Adams et. al.[ABC*91] be a power of two hence the name Radix two).

The Radix Two algorithm can be derived by eitherpresent results for parallel FFT algorithms on a
connection machine and a Cray 2. Recently the separating the input sequence f(k) into two N/2 point
performance of some FFT algorithms coded in SISAL sequences, Decimation in Time (DIT), or by dividing
have been presented by Cann[Cangl] and the output sequence F(n) into two N/2 point seque/tces,
BoUman[BSS92]. Decimation in Frequency (DIF). The number of

This paper deals with the coding of some FFT operations in each algorithm is the same, however the
algorithms; and is also concerned with the use of the DIF algorithm accepts data in natural order, and
SISAL data type stream to implement pipeline FFT outputs the data in scrambled order, while the DIT
algorithms. The performance of these pipeline algorithm accepts data in scrambled order, and outputs

it in natural order. These features can be advantageousalgorithms is compared with that of the standard ones.
in convolution or correlation, as unscrambling (bit

Algorithm derivation reversing) can be avoided by using an DIF algorithm to
Calculation of the Fourier Transform of a signal transform to the discrete frequency domain and a DIT

involves the evaluation of the following integral: to transform back to the discrete time domain.
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As previously stated the Radix 2 DIT algorithm, for be observed by noting that the input data to each

N= 2m can be obtained by splitting the input sequence butterflyin a stage depend only on the previous butterfly
into two N/2 sequences consisting of the even elements or the input. Since there are no data dependencies for
and odd elements of the input sequence. The Radix 2 each butterfly in a particularstage, the calculation of all
Cooley-Tuckey algorithm can be convenientlyexpressed these butterflies could proceed concurrently. Although
in tensor notation [BSS92]as: the signal flow diagram of the FFT is quite elegant,

coding the algorithm to exploit the available
concurrencyis not as simple as it would seem. One mus!

k partition the FFT graph into segments and assign ea_
F2k= II {(I2k-i_l_®I2i- 1)(I2k-iO'I0)}R(2 k) of these to a processor. Proper synchronisationmust be

i=1 assuredso that the data at the end of each stage is valid.(3)

where: ® denotes the tensor product. Sequential algorithm
A FORTRAN program to implement of the abov(

R(2 k) is the bit reversalpermutation. FFT, due to Cooley, Lewis and Welch, adapted fron

T2i represents the twiddle factors. [RG75], is shown in figure 2.
F2® I2i-1 is a two point transform (butterfly). The program is divided into two sections; the firs

part is devoted to performing the bit reversal on th_
Alternatively the FFT algorithm can be conveniently input sequence, such that it is in the order required fo

expressed as a signal flow graph as shown in figure 1. the FFT. Note bit reversal is not essential in some case_

The signal flow graph has an advantage in that it shows such as computing a convolution, thus it will not !_
up possible concurrency, and aids in the coding of the considered further. The second part of the progra,mi
algorithmThis algorithm is termed fast since it requires concerned with the computation of the FFT. This pat
order Nlog2N multiplies rather than order N2 multiplies consists of three nested loops, the most outer kx_pstep
to calculate the DFT of a sequence, through each stage of the sign_ flow graph, anothe

As evident from the signal flow graph this FFT loop performs the indexing on the powers of W a
algorithm has a high level of symmetry as well as required by the butterflies, while the third loop keep
potential concurrency, this was recognised early by track of whichbutterfly calculationis being performed.
Pease [Pea68] and Gold [GB73]. The concurrency can

x(O) x(o)

x(4) X(1)

x(2) X(2)

x(6) x(3)
w a e_ .e a+Wb

x(1) X(4)

x(5) x(5)
W b a-Wb

x(3) 3 x(6)
DIT Butt_(fly

x(7) x(7)
W

Figure 1 DIT signal flow graph for 8 point FFT.
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SUBROUTtNEFFr(A,M,N)
COMPLEXA(N),U,WoT
N-2**M

NV2=N/2
NMlfN-1

Jffil

DO 71 ffi1,NM1 Bit Rtgcme input

WO.OF_.J)OOTO5
T _A(J)

A0) =A0)
A0)fT

5 KfNV2

6 W0COF-DOOTO7
JfJ-K

KfK/2
GOTO6

7 J=J+K

PI ffi3.141592_3589793

DO 20 L=I,M For each stage
LE=2"'L

LE1=LE/2
u=o.o,o.)
W =CMPLX(COS(PI/LE1),SIN(PI/LE1)) Calculate the newe"j2_b_Iterm

DO 20J ffi1,LE1 Do each butterfly

DO 10 IfJ,N, LE
IPfI+LE1

TfA(IP)*U ComlmtatioeoftheImttetfl_

A(IP)ffiA(1)-T

10 A(1)=A(1)+T

2oufu'w Updatethee"prka/Nterm
RETURN

END

Flgure2 FORTRAN Pmdlx2 FFT DecimationIn"rlmeAlflodthm.

The programoff_mre2 ifcompiledto runon a operationsinvolvingthisdatatypemustbe performed
sharedmemory multiprocessor,suchas the Encore, explicitly.
shows no speed-upbecauseoftheway the "Twiddle A predeclaredtypecomplexisessentialforsignal

_jte"$2a'kn/N_terms are calculated, that is an processing as complex data is often manipulated. TheFactors',
initial cosine and sine term is computed, then on each need for the complex type has previously been noted by
iteration of the outer loop (label 20) the twiddle (W Chang [CED90] and will be implemented in SISAL 2
term) is updated by a recursion relation, this method of [COBGF].
calculation is economical in terms of machine As expected, the SISAL program shows no speed-up.
instructions, but it makes the program sequential Since The main outer loop is sequential as can be seen from
the new W value depends on the its value on the the signal flow graph, however the computation of the
previous iteration, a data dependency exists which is not butterflies is also sequential, while the signal flow graph
evident in the signal flow graph. The translation from suggests that this process could be parallel. There are
FORTRAN to SISAL is quite straight forward since two reasons that make this process sequential The first
most of the FORTRAN control structures map directly is the way the W terms are calculated. To remove this
to SISAL. One major problem in the translation is that loop iteration data dependency all the W terms can be
SISAL lacks a complex number type and complex precalculated and stored in an array for access by the
operations. This deficiency was overcome by defining a program. The second reason for the sequential
set of functions for handling complex numbers, and behaviour of the loop is in the way SISAL exploits
declaring a "typecomplex" as a: parallelism fi'om loops. SISAL does not allow one to
Record[Realp, lmaginaryp • Double_Real]. express a sequential process in a parallel form, since it

Although this record construct overcomes the cannot be written as a product for form loop. One
problem it leads to clumsy programming, since all expects that the loop which would step through each
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butterfly calculation can be expressed in a parallel
fashion, since there are no data dependencies between Pipeline algorithms
butterflies in the same stage. The FFT algorithms presented thus far rely on the

When the data operated upon is stored as an array, data being fed into the algorithm in a parallel fashion,
then SISAL requires that the elements of that arrayare that is as an array.In practice the datawould arise from
processed in order, if the product form for loop is to be sampling a signal at discrete time intervals. In this case
used. Thus SISAL can only slice loops such as the the data would arrive in a sequential fashion.
following arraybuild statement Inspection of the signal flow graphs shows that the

butterflies in a partictdar stage could be processed in
A: =for i in 1,10 any order. In fact it is not necessary to fully complete a

returns arrayof i stage before commencing the next stage, subject to the
end for availabilityof the appropriatedata for the next stage.

This loop is considered concurrent by OSC since the When usingarrays,data cannot, in general, be output
elements of A are created in order, ie A[1],A[2]...A[10], from each stage o:f the algorithm until each stage has
thus the concurrency of this loop can be exploited by been completed, that is all of the elements of each array
loop slicing. Note OSC achieves concurrency by loop must be computed. Arrays therefore restrict the amount
slicing, on a shared memory muldprocessor, of exploitable concurrency in the FFT algorithm.

The Cooley-Tuckey FFT algorithm is not easily In some situatioas, it is desirable to pass the data in a
expressed in SISAL in a way that achieves useful speed- serial fashion to the FFT and have it output in a serial
up. The problem with this algorithm is that the elements fashion. This scheme is attractive since it is possible
of the arrayoutput from each stage are not produced in have data output at the sampling rate, once the FFT has
order. An alternative algorithm is required which can be been primed with data. An algorithm which achieves
expressed in SISALin a parallel form. this is a pipeline: algorithm. Several pipeline Fast

Fourier Transforms have been presented in the
Constant geometry algorithm literature, some of these however are usually

As seen from the signal flow graph the output vector implemented with special purpose hardware
of each stage of the FFT is not produced in order, but [GB73][GW70][SJ_)].
the elements of the vector come out in a different order A pipeline algorithm [GB73] can be derived by
for each stage. This implies that the sequential SISAL considering the FFF signal flow graph of figure 4, this is
non product for loop must be used. To overcome the the graph of an 8 point DIF algorithm, note input data
limitation of arrays in SISAL being built in a strict sense are normally ordered, output data are bit reverse
for parallel loop construct.%the FFT algorithmmust be ordere$ The DIF version is chosen as it is assumed that
modified so that the elements of the output of each FFT the inputdata are ia natural sequential order.
stage, are produced in order. The reason for the It can be seen I_om the graph that to co: ate the
elements being produced out of order is because the X(0) and X(4) output points only three butterflies need
Cooley-Tuckey FFT program is based on a so called "In- to be evaluated, as shown in f_mre 5. A similar situation i
place algorithm". This mean_ that each butterfly output exists for the other output points.
is put back into the index where it came from. This is
desirable since it means that only one arrayis required The input to the firstbutterfly stage is:
to implement the program. In a SISAL implementation
this is not an advantage since a copy of the old array x(t) - x(k) k=0...N/2-1 (4)
may exist, (old) when using a non product for loop. If x(b) : x(k+ N/2) k=0...N/2-1
the restriction of in-place computation can be relaxed
then the indexing can be kept constant from stage to that is two points separated by N/2 where N is the FFT
stage and in order. This allows the inner loop, which length. Therefore the first N/2 input samples to the
performs each butterfly for a given stage, to be pipeline are routed to the top arm of the butterflywhile
expressed in the product for form loop. This algorithm is the next N/2 samples to the bottom. A delay of N/2 is
termed "Constant Geometry" [RG175] and the signal used in the top ann of the butterfly to ensure that the
flow diagram is shown in t'gure 3. Note the signal flow data at the butterfly are synchronised. The appropriate

graph below represents a DIF algorithm, the DIT Wp must be used at the butterfly output. The data
version would have the powers of W in the bottom wing leaves the butterfly in parallel pairs. The input to the
of the input to the butterfly. Since each stage of the second butterfly stage is:
constant geometry algorithm is the same, refer to signal
flow graph, the program is simple to express.
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x(O) x(o)
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x(2) x(2)

×(3) x(6)

x(4) xo)

x(5) x(5)

x(6) / x(a)

x(7) x(7)
F_ure 3 Constant Geometry FFT Algorithm.
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x(1) X(4)

x(2) X(2)

x(3) x(6)

x(4) xo)

x(5) x(5)

x(6) X(3)

x(7) x(7)
W

Figure 4 DIF Signal flow graph.

x(O) x(o)

X(4)

X(4)
Figure 5 Butterflies for computation of X(O) and X(1).
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x'(t) and x'(t+N/4) t=0...N/4-1 (5) implementation. A problem occurs with the use of
x'(b) andx'(b+N/4) b=0...N/4-1 (6) streams in OSC because OSC implements streams

strictly [CO]. As a consequence of this implementation,
where x'(t) is the output of the top arm of the first pipeline concurrency is not exploited, In addition
butterfly and x'(b) is the output of the bottom arm of parallel loops are difficult to write with streams because

the first butterfly. Again the appropriate Wp must be only the first element of the stream canbe accessed.
applied. The argument can be continued for the third The switchblocks of the pipeline are implemented by
and following stages of the pipeline and the resultg this a function stream_tch. Tiffs function is complicated
shown in figure 6. since the switching period is stage dependent. Another

The elements of the data sequence must be routed to problem arises because the two streams that enter the
the appropriate arm of each butterfly, this is achieved by function stream switch are not processed
the switches and delay lines in the pipeline. Each switch simultaneously, that is the part of top stream is
in the pipeline switches at twice the frequency of its processed before the bottom stream. The delays in the
predecessor, and the delay lengths in a given stage are pipeline are meant to cope with this problem. The
half that of the previous stage. The first switching block software implementation uses the SISAL when & un/¢_
works as follows: masking daus_ to filter out the unwanted values from

-The data samples are routed straight through for the the raurns part of the for loop.
firstN/4 elements. The pipeline algorithm could be made simpler to
-The samples are crossed over for the next N/4 express if the switching block could be simplified. To
samples, achieve this aim the switching should be made
SISAL has an appropriate data type for pipeline independent of the stage of the pipeline. Again a

algorithms, that is the type STREAM constant geometry algorithm could be used to achieve
[Can89][MSA*85]. A stream is a sequence of values of this. A pipeline implementation of the constant
uniform type that a/lows pipeline concurrency to be geometry algorithm is shown in f_,ure 7.
expressed directly by their use. Streams differ from It can be seen that each stage of the pipeline is
arrays in that the elements of the stream can only be identical. This feature makes the expression of this
accessed in sequence, no subscripting or random access pipeline algorithm straight forward.
is possible. This form of access allows the use of The switch blocks for this algorithm are very ,fimple
elements from the stream without having to produce the since they are composed of two switches. The first
complete stream as would be required with an array.By switch switches the sample rate, while the second switch
definition SISAL streams require a non-stria switches at a rate of N/2 samples.

z-4 z-2 zol

/ / XInl

z

Figure 6 Pipeline 8 point FFT algorithm.

-4 -4 -4Z Z" Z

/--e e--{z::::y-- x /--e _ /--e Xln)

Figure 7 Constant Geometry Pipeline.
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Results Sequential algorithm
The various algorithms presented in the previous Tables 1 and 2 present the results for run-time and

section were all run on an Encore shared memory speed up for the Sequential FFT algorit._m_.
multiprocessor, using OSC as the compiler. The OSC- As can be seen from table 2, the Sequential FFT

switch was used to ensure that the compiler algorithm shows no significant speed-up. This is to be
considered all concurrent loops for slicing. The value of expected since the algorithmis sequential.
500 was arrived at by trial and error. Run-times were
obtained using the SPEED-UPS routine from the OSC Constant geometry algorithm
library. All times are in seconds and the longest wall Tables 3 and 4 present the results for run-time and
time was chosen when multiple processors were used. speed up for the Constant Geometry FFT algorithm.
Generally in cases where there was a significant The constant geometry algorithm achieves good
difference between the wall time and the CPU time the speed-up, refer to table 4 and figure 8. The single
results were discarded (CPU utilisation <95%). When processor run-times are longer than the sequential
multiple processor run-times showed a significant algorithm (table 1), as is to be expected because of the
difference for each processor the results were also less efficient calculation of the indexes of the W factors
discarded, usedinthebutterflies.Howeverbecauseofthespeed-

All input data were generated internally by each up obtained, this code becomes faster than the
program, therefore the run-times reflect this. Output sequential algorithm.
data from the programs was suppressed by using the -z The droop in the speed-up graph for 10 -16
switch, processors is due to other processes competing for

Speed-up is defined as T1 proc / Tn procs, resources. The speed-up improves with the size of the
Various FFT Sizes were used in the study to check FFT and high effidencies are obtained for N > 4096.

the performance of the algorithms against model size.

Processors 1024 2048 4096 8192 16384 32768 65536
1 0.6 1.3 2.78 6.240 13.140 28.620 59.640
2 0.58 12.8 2.74 6.140 13.000 28.400 59.140

3 0.58 .. 1.28 2.74 6.120 12.960 28.380 59.180
4 0.6 1.3 2.78 6.100 12.980 28.420 59.040
5 0.58 1.3 2.76 6.120 13.000 28.420 59.480
6 6.58 1.26 2.78 6.140 13.020 28.680 59.160....

Table 1 Run-time vs FFT lengthfor the Sequential FFT.

Processors 1024 2048 4096 8192 16384 32768 65536
1 1 1 1 1 1 1 1
2 1.03 1.02 1.01 1.02 1.01 1.01 1.01

3 1.03 1.02 1.01 1.02 1.01 ...... 1.01 1.01
4 1.00 1.00 1.00 1.02 1.01 1.01 1.01
5 1.03 1.00 1.01 1.02 1.01 1.01 1.00
6 1.03 1.03 1.00 1.02 1.01 1.00 1.01

Table 2 S_)eed-upvs FFT length forthe Sequential FFT.
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Processors 1024 '2048 4096 8192 16384 32768 65536

1 0.82 1.8 3.9 8.700 18.000 38.100 80.860

2 0.44 0.96 2.02 4.480 9.280 19.680 41.__

3 0.32 0.64 1.36 2.940 6.200 13.140 27_0

4 0.24 0.5 1.06 2.300 4.680 9.900 20.940
, ,, ,,

$ 0.2 0.4 0.86 1.800 3.780 8.020 16.860

6 0.18 0.36 0.74 1.520 3.I80 6.720 14.160

7 0.16 0.32 0.64 1.340 2.780 5.800 12_

8 .... 0.14 0.28 0.600 1.200 2.440 5.160 11.140, , ,,,,,

16 0.1 0.29 0.440 0.740 1.440 2.920 6.200

Table 3 Run-time vs FFT length for the Constant Geometry FFI.

Processors 1024 2048 4096 8192 16384 32768 65536
, ,,, i ,

1 1 1 1 1 1 1 1,,,,,,,,

2 126 1.88 1.93 1.94 1.94 1.94 1.95, ,,,,

3 2.56 2.81 2.87 2.96 2.90 2.90 2.91

4 3.42 3.60 3.68 3.78 3.85 3.85 3.86

4.10 4.50 4.53 4.83 4.76 4.75 4.80

6 4.56 5.00 5.27 5.72 5.66 5.67 5.71

7 5.13 5.63 6.09 6.49 6.47 6_7 6.44

8 5.86 6.43 6_50 7.25 7238 7.38 7.26

16 8.20 9.00 8.86 11.76 12.50 13.05 13.04

Table 4 Speed-up vs FIT length for the Constant Geometry FFL

13 --.-o----- 1024

11 ----o----- 2048

9 - 4096
4 ' '

_. 7 _×_ 8192

5 A 16384

3 l_9"

I! P -----_- _ 32768

- 65536
1 2 3 4 5 6 7 8 9 10111213141516

Processors

Figure 8 Speed-up vs FFT length for the Constant Geometry FFT.

its performance. The OSC compiler warns when array

ine algorithms copying may occur.
Tables 5 and 6 present the results for run-time and Tables 7 and 8 present the results for run-time and

up for the Pipeline FFT algorithm, speed up for the Constant Geometry Pipeline FFT
The pipeline algorithmshows poor speed-up, mainly algorithm.

because the implementation of this algorithm introduces The constant geometry pipeline code performs better

large amount of array copying, which severely affects than the previous pipeline algorithm, but still suffers
from array copying.



Processors 1024 2048 4096 8192 16384 32768 65536

1 0.45 1.22 3.11 9_35 25.44 63.06 181.83,,,,,,

2 0.44 1.20 2.5] 7.36 20.79 57.54 160.45

3 0.43 1.16 2.45 7.10 20.10 53.82 153.59

4 0.44 1.05 2.57 7.14 19.54 52.03 150.77
,., ,,, ,,

5 0.43 1.06 2.51 7.09 19.23 52.26 150.02
4

6 0.43 1.10 2.46 7.16 22.71 56.14 159.57Iii

Table 5 Run-time vs FFT length for the Pipeline FFT.
llll

Processors 1024 2048 4096 8192 16384 32768 65536
. , ,,,.,,

1 1 1 1 1 1 1 1

2 1.04 1.02 1.24 1.27 1.22 1.10 1.13

3 1.07 1.05 127 1.32 1.27 1.17 1.18
4 1.04 1.17 1.21 1.31 1.30 1.21 1.21

$ 1.06 1.15 1.24 1.32 1.32 1.21 1.21

6 1.05 1.11 1.26 1.31 1.12 1.12 1.14
iii ii

Table 6 S )eed-up vs FIT length for the Pipeline FIT.

Processors 1024 2048 4096 8192 16384 32768 65536

1 1.16 2.28 6.1 14.600 35.800 87.940 214.400

2 0.76 1.88 3.96 10.060 25.720 63.540 170.820

3 0.6 1.56 3.28 8.580 22,420 56.500 156.300

...... 4 0.54 1.44 2.96 7.820 20.780 53.340 149.640

5 0.5 1.34 2.74 7.420 19.820 52.040 145.820

6 0.46 1.26 2.6 7.140 19.440 ' 50.800 144.900

Table 7 Run-time vs FIT length for the Constant Geometry Pipeline FP-I.

ii iiiiiiiiii i

Processors 1024 2048 4096 8192 16384 32768 65536

1 1 1 1 1 1 1 1

-- 2 1.34 124 1.45 1.44 1.36 1.32 120

3 1.43 1..50 1.61 1.63 1..50 1.46 1.39

4 1.58 1.60 1.73 1.82 1..54 1.48 1.39,,, ,,

5 .... 1.66 1.74 1.88 1.81 1.59 1.53 1.43

6 1.60 1.86 1.84 1.86 1.66 i.55 1.46ii

Table 8 Speed-up vs FIT length for the Constant Geometry Pipeline FvT.

Both pipeline algorithms require a function to This approach has two problems when OSC is used

implement the switch that switches with a period of N/2 to compile it. The first problem is that OSC will not
samples. This funaion must separate the input stream slice this loop as the compiler considers it sequential
into two streams, one containing the first N/2 samples because of the when clause. Thus using the product for
the other the rest of the stream. An obvious way of form loop is not an advantage.

expressing this switching function in SISAL is as: The second problem with this approach is that this
loop introduces copying. To overcome some of the

for aelement in input at i copying, the loop can be expressed as the non product
returns stream ofaelernentwheni<=length form for loop as shown in figure 10. This

stream ofaelement when i >length implementation of the loop is much faster as some array

end/or copying is eliminated. Note this was verified using theOSC -time switch.
Figure 9 'Product form for loop' for switch.
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for ini_'al Processors 1024 .....163.84 65536
i:=l; 1 1 1 1

bottom:=input 2 1.73 '" 1.77 1.77
until i>/ength repeat ' 4 2.74 2.92 ' 2.91
i:=old i+ 1; ....
bottom: =strewn rest(old bottom); 6 3.25 3.42 3.67i I ii lUlll iii _

returns streamof strewn.first(bottom) unless i>lengt_ Table 10 Speed-up vii FFT length for the Constant
% This introducescopying Geometry Pipeline FFT without unless.

value of bottom

end for The shared memory machine and the OSC code do
Figure 10 'Non product form for loop' for not exploit the available pipeline concurrency.Therefore

switch to better compare the pipeline algorithm with the array
based (non pipeline) algorithms, it was coded using

The array copying which results from _ loop is still arraysrather than streams.
significant both in terms of run-time and speed-up Performance of the arraybased pipeline algorithm is
performance. This is particularly noticeable for large much better than the stream version since the array
FVr lengths. If the unless dense is removed from the copying is eliminated. By eliminating the array copying
above loop, the execution time is reduced considerably, one can then express the function switch as a parallel
and the speed-up perform.ance is improved, refer to for construct, thereby improving the speed-up
table 10. Removal of the unless clause, is not practical performance.
since the code produces incorrect results. The speed-up Run-time and speed-up results, for the array based
improvement implies that the array copying due to the pipeline algorithm, are given in tables 11 and 12. The
unless clause is of a sequential nature, results show that the use of arrays in OSC gives better

performance than the use of streams. The performance

Processors 1024 l(k_ 65536 of this pipeline algorithm is similar to the constant
1 1.04 22.52 101.4 geometry algorithm, refer to tables 3 and 4.

,,, Note a dataflow machine would poss_ly achieve a
2 0.60 12.70 57.22 better result for the stream based pipeline algorithms as
4 0.38 7.70 34.84 pipeline concurrencycould be exploited assuming a non

! 27.66 strict implementation of the streams. However at the6 0.32 6..58 I....

Table 9 Run-time vs FFT length for the Constant time of writing a dataflow machine that implements
i GeometryPipeline FFT without unless. SISAL streams was not available. It is expected that the

CSIRAC H simulator will eventually support the stream
type.

Processors 1024 2048 4096 8192 16384 32768 65536

1 0.9 1.94 Ill 4.22 , 9.080 19.280 41..W_ 86;680
2 0.48 1 2.16 4.600 9.820 20.980 43.960,, , ., ,,,. ,

4 0.26 034 1.12 2380 5.000 11.100 22.520,, ,, , - ,.,.

8 0.18 0.32 0.680 1.340 2.820 5.920 12._
16 0.16 0.26 0.520 1.000 1.960 4.060 8340.....,

Table 11 Run-time vs FFT length for the Constant Geometry (Array)Pipeline FFT.

Processors 1024 2048 ...... 4096 8192 16384 32768 65536
1 1 1 1 1 . 1 1
2 1.88 1.94 1.95 1.97 1.96 1.97 1.97
4 3.46 3.59 3.77 3.82 3.86 3.73 3.85
8 5.00 6.06 6.21 6.78 6.84 6.99 7.00
16 5.63 7.46 8.12 9.08 9.84 10.19 10.15...........

Table 12 Speed-up vs FIT length for the Constant Geometry (Array)Pipeline FIT.
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Figure 11 Speed-up vs FIT length for the Constant Geometry Pipeline (Array) Fr I.
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Abstract - Parallelizationofnonnumeric problentv isknowntobe lem-dependent heuristics is central to this approach and is
difficult due to the unknown number of iterations and random mere. beyond the scope of this rcport.
ory usage. This report presents experiences parallelizing and Parallel processing approach emphasizes an actual im-
implementing typical nonnumericproblemsusingSisal. In particu, plementation on parallel machines [5,7,10,11]. The basic
lar, we select two search problems: the Eight.Puzzle and the Towers

of Hanoi. We take a two-step parallelization approach to implement assumption is the availability of multiprocessors. The ap-
the nonnumericproblema:algorithm level and implementation level proach can be divided into two steps: (1) algorithm level
parallelization. Algorithm level parallelization uses various search parallelization step, and (2) implementauon level parallel-
strategies suitableforparallelsearch. Implementation level paral, ization step. The first step involves paralleliz_ng the
lelization is done by the Optimizing Sisal Compiler (OSC). sequential algorithm of the given problem for algorithmic
Parallelism profiles of the two search problem are plotted to help

evaluate the effectiveness of parallelization process. Both the se- improvement. This step modifies the given algorithm to

quential and the parallel versions are implemented in Sisal and suit to multiprocessor environments, not necessarily a par-
executed on a 26-processor Sequent Symmetry shared-memory mud. ticular parallel machine environment. A study of the
tiprocessor. Experimental results demonstrate that (1) the potential parallelism in the given algorithm is particularly
combination of Sisal and OSC is effective for parallelimplementa, helpful before and after the parallelization.
lion of the two nonnumeric search problems, and (2) the automatic

parallelizing compiler OSC can give high programmability as it The second step is to implement the parallelized algo-
gives up to six-fold speedup on 26 processors, with little efforts on rithms in parallel machine environments. Unless an
implementation level parallelization. However, we also find that the automatic parallelizing compiler is used, various parallel
implementation level parallelization provided by OSC needs ira. constructs should be used to implement paraUelizedalgo-
provementas non.numericproblems often require finer rithms into parallel programs. This second step will have to
parallelization due to nondeterministic and sequential nature.

take the machine architecture into consideration. Strategies

1 Introduction of mapping programs onto processors, allocating resources
toprocessors, and load balancing policies will become crit-

The issue of processing nonnumeric problemshas been one ical in this step if the parallel implementation is to be
of the major research foci of parallel processing. Those efficient on the target machine.
search problems typically found in artificial intelligence This paper presents a parallel processing approach to
are such representative problems. They are however known search, an important subset of nonoameric problems. Spe-
to be difficult to parallelize due to (1) unknown number of cifically, we select two search problems: the Eight Puzzle
iterations (or perhaps number of recursive function calls) at and the Towers of Hanoi. Our target machine is a 26-pro-
compile time, and (2) highly irregular memory accesses cessor Sequent Symmetry as because it is available to us.
and large resource usageat runtime. Techniques developed We attempt to parallelize the two problems both in algo-
to speedup process;rigof such nonnumeric problems can be rithm level and implementation level. The two problems
classified into two different approaches: algorithmic heu- are all implemented in a functional language SISAL[2,3].
ristic approach and parallel processing approach [11]. Algorithm parallelization is done through parallel A*

The heuristic approach includes those various search search strategy [6,11] and parallel bidirectional A* search
strategies developed in artificial intelligence [9]. These [10]. Much of the implementation level parallelization is
heuristic approach is aimed at reducing the problem com- done by the Optimizing SISALCompiler (OSC) [2].
plexity by avoiding unnecessary paths in the state space. We start our discussion in section 2 by giving a brief in-
While brute-force search follows all the paths until a solu- troduction to search, followed by plotting potential
lion is found, heuristic search follows selective paths by parallelism in search problems. Section 3presents parallel-
using information which distinguishes promising states ization methods on search problems. Section 4 lists
among others. A number of heuristic search has been de- execution results of the problems onthe target multiproces-
veloped, including hill-climbing, best-first search, A*, sor. We discuss in section 5 the effectiveness of our

iterative-deepening A*, etc. [1,4,6,9]. Developing prob- approach to parallel implementation of search problems.
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Last section concludes our experiences parallelizing and It involves two fists: OPENand CLOSED. OPEN contains
implementing nonnumeric problems in SISAL and Appen- nodes to be examined whereas CLOSED has those nodes

dix lists an example SISAL program for the eight puzzle, that are already examined. Line I selects a single node from
OPEN. Line 2 generates successors of the selected node.

2 Parallelism in Search Line 3 removes from SUCC those nodes that are either on

Two search problems are briefly presented in this section. OPEN or CLOSED. Line 4 simply merges two lists to form
We list a generic and sequential search method, followed a new OPEN. Line 5 also forms a new CLOSED. This algo-
by the potential parallelism in the two search problems, rithm is generic that it uses no particular search strategy. A

particular search strategy can be embedded by modifying
2.1 Two search problems the merge step (line 4). For example, depth first search can
The Tower of Hanoi (Toll) and the Eight-Puzzle (8-P) are be readily implemented by inserting SUCC in front of

typical search problems found in AI. Given an initial state (OPEN - TEMPi, provided that selection step takes a node
of each problem, the search process is to find a path which from front of OPEN. Breadth First Search can be realized by
can lead to the goal state. The Toll with three disks can be inserting SUCC at the end of (OPEN - TEMP). A guided
stated as follows: There are three pegs, 1, 2, and 3, and heuristic search, A* search strategy [4], can also be easily
three disks of different sizes A, B, and C. The disks can be implemented by inserting nodes on SUCC into (OPEN -
stacked on the pegs. Initially the disks are all on peg 1; the TEMP) in ascending (or descending) order of heuristic val-
largest, disk C, is on the bottom, while the smallest, disk A, ues.
is on top. It is desired to transfer all of the disks to peg 3 by The above generic search is sequential in three aspects:
moving one disk at a time. Only the top disk on a peg can First, the entire loop is sequential due to loop-carried de-

be moved, but it can never be placed on top of a smaller pendencies between iterations. The central data-structure is
disk. OPEN. Iteration i uses OPEN which was modified at itera-

tion i-1. No two iterations can therefore be executed in

T°werI ! Lll parallel. The second sequentiality lies within the loop. Each
of I i iteration consists of five steps. Those five steps are again
Hanoi _ _ !!!__ m_ ................ sequential due to their data dependencies. For example,

_ _ _ lines 2 and 3 cannot be executed in parallel due to the true

Eight data dependencies. The third sequentiality stems from the
Puzzle fact that the selection step selects only one out of many

nodes on OPEN. The expansion step therefore works only
(a) (b) on one node at a time in each iteration.

Figure 1:Toll and 8-I).(a) initial state, (b) goal state.
2.2 Parallelism in search problems

Potential parallelism in the Toll is constructed by using aThe Eight-Puzzle is another typical search problem. It
consists of 8 numbered files set in a 3x3 frame, as shown in data-flow graph generated from the SISAL functional lan-

Figure 1. One cell of the frame is empty to allow an adja- guage. Parallelism refers to a number of instructions (such

cent numbered file to move into the empty cell. Given the as +, -, *,/, etc.) which can be executed in an instruction
initial state, the search process is to find a path which can cycle. Figure 3 shows a parallelism profile of the Toll with

3 disks. The x-axis indicates the execution time while the y-lead to the goal state. While searching through the state
space, a .search strategy can be. employed to guide the axis is a number of instructions that can be executed in par-
search process in an attempt to reduce the combinatorial allel, namely, parallelism. Note that the y-axis is plotted to
explosion of the search effort. Figure 2 lists a generic and logarithmic scale.

Execution of the Toll begins with an insertion of the ini-
sequential search process, tial state on OPEN. Each iteration goes through the repeat

loop of Figure 2. As we observe from the above figure, the
OPILN={initial_state},CLOSED=O amount of potential parallelism increases exponentially.
Repeat
1. TEMP_--select(OPEN) Each iteration shows two typical peaks: the first peak is an
2. succ (-- expand(TEMP) expansion step (line 2 of Figure 2) while the second peak is
3. succ (--f_]ter(SUCC,OPF.N,CLOSED) a filter step (line 3 of Figure 2).
4. OPEN'(---merge(SUCC,OPEN- TEMP) For example, consider iteration 4 which spans roughly
5. CLOSED(---merge(TEMP,CI_SED) 2000-2900. The first peak, spanning 2122-2600, is an ex-
Until (goal_state _ SUEt) or (OPEN= _) pansion step which generates SUCC for all nodes on OPEN.

Parallelism is high at the beginning of the expansion step
Figure 2: A sequential search

but quickly diminishes towards the end of the expansion
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Figure 3: A parallelism profile of the Toll. Seven iteration is Figure 4: A parallelism profile of the Eight Puzzle. Note that
an optimal number of iterations for the 3 disk Toll. Note that the maximum parallelism for tree depth 7 of the 8-P is
the y-axis is plotted to logarithmic scale, roughly 400,000!

step. One main reason exhibiting such exponential decay is process. This parallelization is simple and straightforward
to implement. It would possibly give speedup close to lin-because it involves many data copying operations and

memory (common data structure) acc'_:ssoperations. At the ear as 10 paths are explored independently and
very. beginning, n expansion functions will be called in par- simultaneously by 10 processors. However, we reject this
allel for n nodes on OPEN. However, instructions within type of task-level paraUelization because (1) it lacks the

each expansion function call are strictly sequential. In fact, global view of the search wee, (2) it requires a number of
most instructions engage in legality checking, i.e., check to processors proportional to the number of paths in the search

see if which disk can move to what peg. This legality tree, and (3) it is unlikely to find an optimal solution in an
checking involves heavy array operations to prepare a new optimal (or suboptimal) number of iterations unless an in-
array for next possible legal movements, finite number of processors is available. Further, this

The second peak, spanning 2601-2720, is a filter step. It simple parallelization is not a true paraUelization method
checks OPEN and CLOSED to see if any node on SUCC has as no processors cooperate to solve the problem. We
already been on one of them. It is not surprising that the fil- present below how we parallelize search process.
ter step exhibits a thick and relatively high peak because 3 Parallelization
the step consists of three nested loops (one for each list) and

We discuss below how we paraUelize the problems we se-is completely parallelized. Our SISAL implementation uses
lected to suit the multiprocessor environments.an array of p elements to represent a node, where p is a

number of disks. A simple algebra can easily show that Parallelization of search problems are described in detail.

checking n nodes on SUCC, m nodes on OPEN, and I nodes 3.1 Parallel A* search
on CLOSED will execute lmnp comparison instructions.

A* search is a highly efficient search strategy [4]. It is aFigure 4 shows potential parallelism for the Eight Puz-
zle. Its parallelism behavior is essentially the same as that guided search based on the evaluation functionf = g + h,

of the Toll except now that the amount of parallelism is where g is the cost of getting to the current state from the
even higher. And the rate at which the parallelism increase initial state, and h is the estimated cost to reach the goal

from the current state. Given n nodes on OPEN, it selects
in iterations is much greater than the Toll due to the larger

the most promising node, i.e., the node with the lowest (orbranching factor. The Toll has a branching factor of two on
the average while the 8-P has three, highest)f value. The performance of A* search depends on

the quality of heuristic function which estimates the re-One would argue that the search process presented in
Figure 2 does have much task-level (or coarse grain) paral- maining distance to the goal state from the current state.

Parallel A* search (PA*S) is the same as A* search ex-lelism to explore. We shall find below if it is indeed the
case. Consider a search tree for the Eight-Puzzle shown in cept now that n nodes can be examined simultaneously by

n processors [7,11]. Figure 2 can be modified slightly to ac-Figure 5. Assume that nodes are generated in the following
order:, left, right, up, and down. A simple parallelization commodate PA*S as follows:

method assigns a processor to each path of the search tree. 1. TEMP4-- select_n_best__nodes(OPEN)
Assuming that we have 10 processors, all paths can be 2. succ ,---parallel_expand('l_MP)

searched by 10 processors as shown in the figure. Which- 3. succ 4--parallel_f'dter(SUCC,OPEN,CIZ)SED)

ever processor finds die goal state will terminate the search 4. OPEN4-- insert(SUCC,OPEN- q:'EMP)
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Figure 5: A simple parallelization method. As a new path is found, a new processor, ff available, is assigned to the path. If every
processor is working on a path, each processor will have to work on more than a path as the search tree grows. The above figure re-
quires 10 PEs allof which are working independently and simultaneously to find the goal state in 3 iterations.

The main difference between the above and the sequen- For example, at the beginning of iteration 0, OPEN=(0)
tial search of Figure 2 is the selection step and the insertion and CLOSED=-0. Now, PEO selects 0 (there is only one on
step. The selection step takes the f','st n nodes on OPEN, as- OPEN anyway) and generates (1, 2, 3). Attaching the three
suming that nodes on OPEN are now placed in ascending values (f,g,h) to each successor node and inserting them
order of f value. Taking the In'st n nodes from OPEN is into OPEN in ascending order off, we now have OPEN =

equivalent to selecting the best n nodes on OPEN. The (14,1_3, 24,1,3, 36,1,5) and CLOSED = (0). Note that OPEN is
merge step inserts SUCC into OPEN - TEMP in ascending kept at PE0 (master PE) while CLOSED is evenly distribut-
order of f such that the node with the lowest f value is ed to two PEs. The PA*S takes three iterations to find the

placed at the beginning of OPEN. goal state (node 16) which is an optimal solution (or tree
For our experiments, we set g to 1 per arc and h to the depth) for this particular initial state (node 0).

number of misplaced tiles. This heuristic function gives the

goal state 0 for h value and therefore the most promising 3.2 Parallel Bidirectional A* Search

node is the one with the lowestfvalue. To briefly illustrate Bidirectional search examines the search space from an ini-
how A* works, let us use Nf,g,h to denote a node with the tial state and a goal state, hoping to meet somewhere
three values. For example, 24,1,3 denotes node 2 withf-.-,¢, between them. Parallel Bidirectional A* search (PBiA*S)
g=l, and h=3. Suppose we have two processors. Given is a bidirectional version of PA*S [10]. It searches from

OPEN = (node 0), the PA*S will go through the following both directions in parallel while search in each direction is
iterations (see Figure 6): also performed in parallel. To illustrate the PBiA*S, we

now need four lists: TOPEN and TSUCC for top-down (for-
It. Slct/Exp succ OPEN ICLOSED ward) direction, and BOPEN and BSUCC for bottom-up
No. PE0 PE1 PEO PE1 PE0 (backward) direction. CLOSED does not change as we need

0 0 only one CLOSED. The following implements the PBiA*S:

1 0 1,2,3 14,1,3,24,1,3,36,1,5 0 TOPEN=(initial_state),BOPEN=(goal_state),
CLOSED=-_,TSUCC--O,BSUCC=O

2 1 2 4, 5, 6 7 74,2,2, 36,1,5, 56,2.4, 0,1,2 Repeat
47,2,5'67,2,5 By ProcessorO:

3 7 3 ! 15,16 8 163.3,0,156,3,3,86,2,,_, 0, 1, 2, 1. "IH'EMP(---select_m_nodes(TOPEN);re=n/2,n FEs.
56,2.4, 47.2,5,67&5' 7,3 2. TSUCC(---para/!,,/..expand('ll'EMP)
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3. TSUCC6- paralIeI_filter(TSUCC,TOPEN,CLOSED) • Processor 0 selects 1 andgenerates (4, 5, 6).
4. TOPEN6- merge(TOPEN-TTF_.MP,TSUCC) • Processor 1 selects 2 and generates (7), resulting in

By Processor 1: TOPEN=(7,3,5,4,6).

1. BI_VlP <--select m_nodes(BOPEN) • Processor 2 selects 7 and generates (2,26)
2. BSUCC6- para//e/_expand(BTEMP)
3. BSUCC6- para//e/_filter(BSUCC,BOPEN,CLOSED) • Processor 3 selects 19 and generates (22,23), resulting in
4.BOPEN6- merge(BOPEN- BTEMP,BSUCC) BOPEN=(2,22,26,20,21,23).

5. CLOSED_--TTEMPu BTEMPu CLOSED

Until (TSUCCE (BOPEN,CLOSED))or (BSUCC e (TOPEN, Iteration 2 then gives TCLOSED = (0,16,1,2,7,19). At this
CLOSED))or (TOPEN= 0) or (BOPEN= _) moment, the search process stops because (TSUCC,BSUC-

C)c3(TOPEN,BOPEN,CLOSED)= 7 # O. The PBiA*S takes
Suppose we have four processors. Given TOPEN = (node tWOiterations to meet in between the search space.

O), BOPEN= (node 16), and CLOSED=0, The PBiA*S will

go through the following iterations (see Figure 6): 4 Experimental Results

We execute the two search problems on our target machine.
Fwdl Slct/ExImd TSUCC TOPEN Execution results are listed in this section. There are three
It. # P0 P1 P0 P1 P0 CLOSED types statistics collected including execution time, number

0 0 of iterations and number of nodes searched.

1 0 1, 2, 3 14,1,3,243,3,36,1,5 0, 16

2 1 2 4, 5, 6 7 74,2,2, 36,1,5, 56,2,4, 0, 16, i, 4.1 Execution time
47,2,5,67,2,s 2, 7, 19 All forgoing parallelization techniques and problems are

implemented in SISAL and executed on a Sequent Symme-
Bwd Slct/Expnd BSUCC BOPEN try shared-memory multiprocessor. An example program is
It. # P2 P3 P2 P3 P2 listed in Appendix. Various execution results are listed in,,

0 16 this section. The statistics we collected are execution time,

1 16 19,20, 74,1,3,195,1,4,206,1,.5,216,1,5 number of iterations, and number of nodes generated. The
7, 21 target machine we chose to run our implementation is a 26-

2 7 19 2, 26 22,23 24,z2, 226,2. 4, 266,2, 4, 206,1, 5, processor Sequent Symmetry Model 81 shared-memory
216.1,5, 237,2,5 multiprocessor. All the programs are implemented in a.......

functionallanguageSISAL.Part of the parallelizationis
done by the Optimizing SISAL Compiler (OSC) [2]. Loops

The first column indicates iteration numbers. Select/Expnd
shows those nodes that are selected and expanded by the specified in parallel 'for' of SISAL are converted to parallel
corresponding processor. For example, the following four loops by OSC and executed in parallel by the Symmetry.For the Tower of Hanoi, we have executed five different
activitiessimultaneously take placeat iteration2:

problem sizes: 3-7 disks. For the Eight-Puzzle, we have

0 InitialState 16= GoalState

222..........?a'..... 2_".... 2_ ...'"26

[/IOlOl I¢1OiO1 _ /,I.Z.I_J

9 10 11 12 13 14 15 16 17 18
Figure 6: Parallel Bidirectional A* Search. Thick lines=solution path,solid lines=forward search, dotted lines=backward search.
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also implemented 5 different problems as shown in Figure
7. Each problem is defined in terms of the optimal number No of Parallel A* Search (PA*S)

..........

of iterations (or tree depth). A particular initial state _cesson 3 di_ks 4`asks 5,asks 6 disks 7 disks
uniquely defines the problem size of the 8-P since the opti-

1 0.08 0.33 3.99 22.58 326.53

mal number of iterations is fixed for the given initial and 2 0.06 0.27 2.79 15.69 313.73
goal states. For example, the left most initial state of Figure 4 0.04 0.17 2.32 4.16 194.00
7 (d= 10) indicates that the tree depth (or optimal number of 6 0.05 0.21 1.10 10.73 88.63
iterations to reach the goal state) is 10. 8 0.05 0.21 1.18 8.19 80.53

10 0.05 0.21 1.24 8.46 95,56

d=10 d=12 d=14 d=16 d=18 12 0.05 0.22 1.42 8.95 81.56

,16 0.05 0.22 1.39 9.41 77.99

18 0.05 0.23 1.40 9.85 81.07

Figure 7: Five initial states for the 8-P. Goal state is in Figure 6. 20 0.05 0.23 1.41 10.46 84.85
22 0.05 0.23 1,40 10.93 88.13

Three types of execution results are collected: execution 24 0.06 0.23 1.43 11.63 90.47

time, number of iterations, and number of nodes searched, t 26 0.06 0.25 1.44 11.74 95.99
Execution time is central to evaluate our approach since it

eventually indicates the performance of our parallelization Noof ParallelBidirectionalA*Search(PBIA*S)

techniques. Tables 1 and 2 summarize execution time for Processors 3 disks ,I disks 5 `asks 6 disks 7 disks

the two problems. 1 0.06 0.:_3 2.26 19.68 164.22

No of Parallel A* (PA*S) 2 0.05 0.27 1.69 13.14 125.39
4 0.06 0.19 1.37 10.54 94.76

Processors 10 12 14 16 18 6 0.05 0.20 1.04 10.53 92.54

1 1.00 1.73 14,46 63.64 727.55 8 0.06 0.19 0.96 9.00 88,50

2 0.70 1,23 9.03 38,13 435.50 10 0.05 0.19 0.99 7.42 97.61

4 0.53 0.86 6.66 26.25 298.30 12 0,06 0.19 0.99 6.85 74.64

6 0,45 0.94 5.61 23.21 249.67 14 0.06 0.20 0.95 6.93 58.51

8 0.70 0.91 5.80 20.86 222.69 16 0.06 0.20 0.99 6.70 64,06

' 10 0.86 1,18 4.29 19,76 208,85 18 0.07 0.20 0.98 6.83 64.78

12 1,08 1.45 4.23 19.39 209.11 20 0.06 0.20 0.99 6.68 62.33

14 1.28 1.85 4.33 19.31 195.29 22 0.07 0.20 0.97 6.82 59.11

16 1.59 2.14 6.41 22.57 192.98 24 0.07 0.21 1.00 6.75 58.26

18 1.85 2,52 5.75 20.54 184.19 26 0.06 0.22 0.99 7.15 58.35
20 2.'32 3.16 6.34 20,50 187.12

Table 2: Execution time of the Toll (in seconds)22 2.45 3.68 7.32 16.41 184.47

24 3.28 6.98 9.32 16.13 191.72
4.2 Number of iterations26 4.89 6.91 13.79 20.08 208.32

The second type of runtime statistics is a number of itera-

No of ParallelBidirectionalA*(PBIA*S) tions. Table 3 lists the total number of iterations. We

Processors 10 12 14 16 18 consider the number of iterations is important not only to

.......... 1 0.83 2.69 8.18 11,73 94.53 search problems but many other problems. It will enable us
to identify the effectiveness of algorithm level paralleliza-2 0.57 1.51 4.81 7.85 52.46

4 0.68 1.62 2.79 5.57 34.93 tion and to characterize the efficiency of search strategies
6 0.35 1.40 2.84 4.41 25.21 and heuristic functions. If we can estimate the total number
8 0.46 1.07 2.67 4.02 21.96 of iterations for a given problem, we may be able to predict
10 0.53 1.29 2.27 4.64 18.28 the runtime complexity aitd therefore can more effectively
12 0.61 1.15 2.24 3.58 19.53 utilize precious resources such as memory. Further, the es-
14 0.66 0.91 1.97 3.65 17.45 timation of number of iterations will help execute the loop
16 0.73 1.12 2.33 2.90 17.26 iterations in parallel to a certain extent. In fact, we have al-
18 0.74 1.21 2.57 3.19 16.59 ready undertaken an approach to partially overlap
20 0.86 1.45 3.16 3.94 17.49 sequential loop iterations, called partial overlapping of
22 0.86 1.46 3.35 4.27 17.27 loop iterations (POLl) [1 1]. This POLl is similar in principle
24 1.03 1.87 4.09 5.29 17.40

to software pipelining but applied to a little higher level26 1.03 1.83 4.44 5.58 17.04
than instruction scheduling.

Table 1: Execution time of the 8-P (in seconds)
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No ...... Eight Puzzle No Eight Puzzle
of Parallel A* (PA*S) Parallel Bidirectional A* S' of Parallel A* (PA*S) Parallel Bidirectional A*S

PEs 10 12 i4 16 18 10 12 14 16 18 PEs 10 12 14 16 18 10 12 14 16 18
,,,

1 52 70 214 447 1440 23 45 77 97 271 1 99 132 383 776 2462 89 164 292 339 951

2 27 37 109 224 722 12 22 39 53 137 2 101 137 388 777 2466 90 155 292 367 954

4 14 19 57 114 366 9 15 19 29 72 4 100 132 399 782 2490 124 203 277 391 995

6 10 15 39 78 244 5 11 15 20 47 6 95 149 398 793 2485 86 207 308 392 963

8 10 12 31 60 182 5 8 12 16 36 8 130 149 422 801 2463 110 187 317 399 975

10 10 12 23 49 147 5' 8 10' 15 28 10 146 180 369 804 2478 120 214 300 444 931

12 10 12 20 41 125 5 7 9 12 26 12 168 199 365 796 2515 130 196 302 396 1000
•

14 10 12 18 37 106 5 6 8 II 22 14 187 231 381 823 2476 134 170 282 404 961

16 lO 12 19 34 94 5 6 8 9 20 16 206 247 461 861 2494 138 184 306 347 977

18 10 12 17 31 84 5 6 8 9 18 18 227 275 438 868 2472 138 192 327 373 964

20 10 12 16 28 77 5 6 8 9 17' 20 246 300 446 857 2515 138 200 349 403 987

22 10 12 15 24 70 5 6 8 9 16 22 253 326 444 769 2504 138 204 369 432 998

24 10 12 14 22 66 5 6 8 9 15 24 268 348 438 747 2550 138 208 384 454 979

26 lO 12 14 22 62 5 6 8 9 14 26 289 364 480 803 2587 138 212 408 475 957

No Towers of Hanoi No Towers of Hanoi

of Parallel A* (PA*S) Parallel Bidirectional A* S of Parallel A* (PA*S) Parallel Bidirectional A* S
....

PEs 3 4 5 6 7 3 4 5 6 7 PEs 3 ] 4 5 6 7 3 4 5 6 7
1 20 50 189 462 1622 9 28 87 264 803 1 27 64 220 500 1704 26 67 188' 545 1626

2 I0 29 107 267 1155 5 15 47 139 416 2 26 75 245 570 2308 25 71 198 570 1684

4 7 16 66 88 568 4 9 26 73 211 4 27 65 256 365 2260 22 61 206 586 1693

6 7 16 35 104 281 4 9 19 55 149 6 27 77 192 623 1713 22 62 176 621 1768

8 7 15 33 77 217 4 8 17 44 118 8 27 81 209 569 1703 22 58 169 573 1769

10 7 15 32 70 198 4 8 17 38 107 10 27 81 219 587 1887 22 58 170 526 1900

12 7 15 32 68 164 4 8 17 35 88 12 27 81 235 612 1769 22 58 170 505 1668

14 7 15 31 66 147 4 8 16 35 76 14 27 81 231 632 1730 22 58 165 506 1499

16 7 15 31 64 140 4 8 16 33 75 16 27 81 243 635 1757 22 58 166 493 1537

18 7 15 31 64 137 4 8 16 33 73 18 27 81 243 657 1802 22 58 166 494 1548

20 7 15 31 64 135 _4 8 16 33 71 20 27 81 243 673 1849 22 58 166 494 1516

22 7 15 31 64 132 4 8 16 33 69 22 27 81 243 692 1883 22 58 166 494 1500

24 7 15 31 64 131 4 8 16 . 33 67 24 27 81 243 713 1912 22 58 166 494 1477
26 7 15 31 64 131 4 8 16 33 67 26 27 81 243 717 1951 22 58 166 494 1480

Table 3: Number of iterations for the two problems. Table 4: Number of nodes generated for the Eight-Puzzle.

4.3 Number of nodes 5 Discussion

The third type of runtime statistics is a number of nodes Execution results are analyzed in terms of two types of

.w.arched. Table 4 lists the total number of nodes generated speedup curves: one from the number of iterations and the

for the two problems. This third information indicates (1) other from execution time. These two speedup curves are in

the total amount of work to be done to solve a certain prob- turn compared to identify if the search problems can indeed

lem and (2) the efficiency of the heuristic search algorithm be parallelized. Three search strategies are also compared

used to solve the problem. If the total number of iterations based on our problem instances to identify the merit of each

indicates how much execution time can be reduced by us- search strategy.

ing parallel processing techniques, the number of nodes

searched indicates how efficient the algorithm is for the 5.1 Effect of algorithm levelparallelization

given problem, Number of iterations is one of the important parameters. It

"Fable 4 indicates that the amount of work to be done for characterizes the efficiency of search strategies and heuris-

the given problem size is almost the same, regardless of tic functions. To further clarify the efficiency of various

number of processors. We note however there is still a little search strategies, let ld, n be the number of iterations for a

fluctuation as the number of processors changes. The fluc- problem size d on n processors. We define iteration speed-

tuaticn is due mainly to the fact that the number of nodes up for a problem size d as Siter(d) = ld,1/ld,n, where n is a

searched is determined by the three values,f, g, and h. number of processors. For example, consider d=14 of the
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8-P using PA"S. We find from Table 3 that 114A=214 and 5.2 Effect of implementation level parallelization

114,26=14. Speedup for d=14 using PA*S on 26 processors Execution time shown in Tables 1 and 2 are now converted

is Slier(14) = 114,1//14,26 = 214/14 = 15.3. Figure 8 plots to speedup factors to identify the effectiveness of imple-
some of the speedups drawn from the number of iterations mentation level parallelization. Execution time _up,
for the 8-P. Sexe, is def'med the same as that for iteration, except now

It appears that our implementation can give a significant that real execution time is used. Figure 9 plots some of the
speedup for the given problem instances. Considering that speedups. We find that speedup is disappointing as the
the A* search strategy is a highly sequential algorithm, the maximum _up for the given instances is merely 6.5. In
speedup of 15 is significant. However, it should be noted an ideal environment, we obtained over 15. There is a sig-
that this speedup is an ideal algorithmic speedup, which nificant difference between the two speedups, Sider and
can be achieved only in an ideal environment. The ideal en- Sexe. This large difference indicates that the pa_dlelization

vironment here refers to a parallel machine with no techniques are not the best choice. In any case, we observe
communication and synchronization overhead, from the curves that speedup increases as the problem size

From the above plots, we find that the PA*S performs increases for both the PA*S and the PBiA*S.
slightly better than PBiA*S in general. The main reason is
that one iteration of PBiA*S is equivalent to 2 iterations of 5.3 Discrepancy of two speedup curves

PA*S.Thisalsoexplainswhytherateofchangeofspeedup We have seen from the previous two curves (iteration
for PBiA*S is slightly smaller than that of PA*S. In any speedup Siter and execution time speedup Sex_) that there is
case, the above plots suggest that each strategy can give a a large discrepancy between them. Discrepancy indicates
substantial speedup in an ideal environment. We shall find how effective our parallel search strategies are in a multi-
out below it is indeed the case. processor environment. It also indicates whether our

parallelization methods can effectively utilize potential

25 .... ' .... 1 .... , '" • '1 .... ..:.._ 10 .... , .... I .... ' .... I ....

(a) The 8-Puzzle with PA'S -o (a) The 8-P with PA*S
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Figure 8: Speedup curves based on the number of iterations. Figure 9: Speedup curves drawn from execution time.
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parallelism present in the given algorithm. Large discrep- ber of nodes generated. PA*S generates more than twice
ancy indicates that the search strategy is ineffective in the number of nodes PBiA*S does for d=18 (Table 4). The
utilizing potential parallelism while small discrepancy in- inequality becomes prominent as the problem size increas-
dicates that it i3 effective. To be more precise, we define es.
discrepancy as D(d) = (Siter(d)-Sexec(d))/Siter(d), where d is For each individual search strategy, we find that the dis-

a problem size. crepancy decreases as problem size increases. This is a
Consider the 8-P with d=14 on 26 processors. From Ta- promising result since the parallelization method starts

bles 1 through 3, we obtain: showing its effectiveness. For small problem sizes, the par-
allelization methods are not effective but they become

search Strategy Siter(14) Sexe(14) D(14) effective for large problem sizes. We have already dis-
cussed this effect in Figure 10.

PA*S 15.3 1.0 (15.3-1.0)/15.3 = 93%
To summarize, the large discrepancy indicates that the

PBiA*S 9.6 1.8 (9.6-1.8)/9.6 = 81% parz'lelization method is not the best one. However, at the

Comparison Dr,BtA,S(14) <DpA,S(14) same time it also indicates that there is room to explore. In
...... other words, larger discrepancy implies that the search

The above relation indicates that the PBiA*S is beuer strategy can be further parallelized to improve parallelism

than PA*S in terms of parallelism utilization. We find that utilization. This is a rather a promising observation. We
this relation holds for most of the problem instances we im- take this large discrepancy as a challenge which motivates
plemented. Figure 10 shows discrepancies for the PA*S us to further investigate on parallelization methods for the

search problems.and the PBiA*S. In general, PA*S gives larger discrepan-

cy than PBiA*S. The main reason is that the PA*S does 5.4 Discussion
more work than the PBiA*S, where work refers to the num-

We observe from the curves that (1) speedup increases in

lO0 general as the problem size increases, and (2) speedup also
.... ' .... ' .... " ' ' " " " " _ " ,_ increases as the number of processors increases for a par-

90 The_ ticular problem size. This verifies that the approach we

! _" have taken to parallelize the given problems is effective for

80 the selected problem instances.

However, we closely speedup curves
70 10 _ and parallelism profiles we constructed earlier, we find that

when examine the

so our implementation is not highly effective. Note in section
t_ 14 2 that we plotted potential parallelism. Figures 3 and 4 in-

5o 18 dicated that the three problems do have a substantial

amount of instruction level parallelism. The speedup

40 curves of Figure 9 show however that a maximum speedup
is merely 6-fold. This is rather contradictory. Where are the

3o 5 10 15 20 25 tens of thousands of instruction-level parallelism gone?
Did our implementation ever utilize the potential parallel-

l O0_ .... , .... _ .... , ..... _ .... ' _ ism in the given problems? The speedup curves show that

90 1 The 8-P with PBIA*S _ parallelism was apparently not utilize by our implementa-

tion. Although the three problems do have parallelism, the80
automatic parallelizing compiler did not effectively utilize
them. We believe that the main reason this under-utiliza-o 70 _-

" tion of parallelism is due mostly to loop slicing which

so // assigns an independent iteration of loops to a processor.
f, _/_.,,__, For the search problems, the speedup is obtained mostly

5o /'_ -_ from the parallel expansion step, where n nodes are expand
by n processors. For the OpsS, the speedup is obtained

4o mostly from the parallel pattern matching step. Note that
these two steps are function calls, each of which contains a30

0 5 10 15 20 25 large number of instructions. They can be classified into
No of proeossors medium (or perhaps coarse) grain parallelism, but certainly

Figure 10: Discrepancy of iteration speedup and execution not instruction level fine-grain parallelism. As a matter of
time speedup, fact, to obtain this much speedup of up six, we had to dra-
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maticaUy change the original algorithm. If we did not problems. This construction of parallelism profiles was
change the algorithms, the OSC may have found difficulties very helpful to determine where we should concentrate on
extracting these parallelism, our parallelization efforts. We included several parallelism

This reminds us of an old issue, programmability versus prof'des to demonstrate the potential parallelism in the two

performance. On one hand, we wish to have a high pro- search problems.
grammability by having an automatic parallelizing Our execution results have indicated that the nonnumeric
compiler take care of all the parallelism utilization. On the problems can also be effectively parallelized and imple-
other hand, we like to obtain a good performance (or high mented using the combination of SISAL and OSC for a

speedup) by having manual parallelization which would shared memory machine. We were able to obtain up to a
give much control over the potential parallelism. As our ex- maximum of six-fold speedup on 26 processors. However,
perimental results demonstrate, obtaining both the high we have also found that the utilization of parallelism is
programmability and good performance is not an easy task poor for the two problems. Our parallelism profiles have
for our problem instances, indicated that the nonnumeric problems have large poten-

In any case, our SISAL implementation gives a high pro- tial parallelism but the execution results were not as good
grammability. Considering that an ultimate goal of parallel as the profiles suggested. This under utilization of parallel-
processing is to provide a tool which can automatically par- ism has to be improved for the SISAL and OSC to be
allelize and execute programs written independent of the successful for realistic nonnumeric problems. To conclude
underlying machine architecture, the SISAL and OSC are our experiences implementing nonnumeric problem, we
certainly successful. Our target nonnumeric problems are find that the combination of SISAL and OSC can give a high
different from scientific computation. As we have stated programmability to effectively implement hard and se-
earlier, they are known to be difficult to parallelize due to quential nonnumeric problems.
irregular memory u_ge and unknown number of iterations.
We spent little effort to parallelize the problems. After all, References
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Appendix

The following SISAL code implements the eight puzzle

with parallel bidirectional A* search strategy. Those func-
tion names in bold directly correspond to those names
shown in section 3.

type node---array[array[integerl];
type state=array[node]; %A snap shot of seal ch tree at time t.
function eight._puzzle(start,goal:node;n:integer

retums integer,integer)
let

open, closed: state;

open ,iteration,nodes :=
for initial

open := array[l: start];

closed :=array state []; no_nodes:=1" i:=O;

flag:=0; %1=goal found, 0 = goal not found.

while (array_size(open):_) & flag=0) repeat

first,second:=eelect(old open,n);

succl :=expand(first);

succ2 := tilter(old open,old closed,succl );

succ := set_values(succ2,goal);

open := Insert(succ,second);

closed := first II old closed; %rnerge

flag:=goal_found(succ,goal,array_size(succ));
i:=oldi+l'

no_nodes:= old no_nodes + array_size(succ);

returns value of open value of i value of no_nodes
end for

in

iteration,nodes
end let

end function
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Computer Vision Algorithms in Sisal
I

ii

Srdjan Mitrovic Marian Trobina
Computer Engineering and Networks Laboratory Computer Vision Laboratory

ETH Zuerich, Switzerland ETH Zuerich, Switzerland

Abstract that the measuring of constraints is not necessary the
measuring of the flexibility because unnecessary 2

Functional languages like Sisal 1.2 had the stigma that freedom must not add flexibility. It is logical that, to a
they either cannot produce efficient code or that they are certain degree, the presence of a "strait-jacket" for
not powerful enough to express all kinds of problems, programmers in a language diminishes the number of
While the reproach of inefficient code has been errors in a program as well as it decreases the time
sufficiently disproved, the second reproach still remains, needed to develop a program. However, it is important
To either disprove the reproach or to make suggestions that the constraints should not limit the flexibility, in
for changes in the language definition, Sisal user terms that most algorithms can be programmed in such
cotmnunity is engaged in writing applications for many language, and that the constraints provide the
different computing domains. This work presents the programmers with essential benefits. The structured
experience in implementing computer vision algorithms programming (no GOTO's) and sa'ong type-checking are
in Sisal. The chosen problems are representatives of two two examples that demonstrate useful constraints in a
different types of algorithms found in the computer programming language.
vision domain. Furthermore, these algorithms already The "strait-jacket" in Sisal consists mainly of the
exist as C-programs that are used by the members of the array-constructs, reductions and the single-assignment
Computer Vision Labo:'atory at ETH Zuerich. The paper rule which as a benefit offers the determinate execution
concludes with a performance comparison between C- behavior and automatic parallelization on varying
and Sisal-code on a sequential machine and measures parallel machine size. Ideally, it should be possible to
the speedup obtained by Sisal programs on a write whole operating systems, compilers and other
multiprocessor, applications with the same lan_[uage.We acknowledge

that this is not the case for SisaP, but the vast amount of
scientific applications can be formulated with it

1.0 Introduction [Cann92] [CannFeo90] [FeoCaOl90]. This paper shows
that Sisal is also suitable for implementing computer

There are several elements of a language that can vision algorithms.
raise its acceptance in the programming community and Apart from being able to formulate problems clearly,
we will name some. The implementation of a language, a language must be able to generate efficient machine-
i.e., its availability across several programming cede'*. This is the case when the semantic gap between
platforms coupled with efficient compilers, comfortable the language or some of its intermediate representations
programming environments and debuggers, is certainly is not too wide. Nonetheless, a language with a "strait-
important but will not be discussed in this paper 1. jacket" need not deliver worse code than a more
Rather, we will look at the flexibility and the power of "liberal" language. The "strait-jacket" introduces
the programming constructs that support the inefficiencies only when high-level constructs of a
programmers in the formulation of a problem, language cannot be mapped to efficient machine-code. It

The language designers have the dilemma between is a drawback of a specific construct and not of the
implementing very primitive but flexible constructs or principle. A language that has not efficiently
adding complexity to a language by including constructs
that support the abstract formulation of algorithms. On 2Tbe matter of what is necessary and what is not is rath_ areli_msdiscussion
such a ruler of language constraints and complexity C ,o we willabstainfrom¢.l_baralingon thistopic.
and Sisal are situated on different ends. We should note 3There are several ongoing res_h projee_ that inves_ate the expansion

functional languagesby adding non-functionalf_tttm_, It is still not a ce_in
thing how those two different paradigmascamco_xi_ in r_lity.

l Th_ exclusion does not margmalize the importance of excellent compilers and 4For many scientific application the time to writ=, debug tad maintain a

programming environments, rather they can sometime be the key to the success program is much larger than the time that is needed to execute the program. This

of a language, fact favours the usage of functional level languages anyhow.
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implementable constructs, will suffer a failure in conversion routines and thresholding operations
domains where not only the coding time but also the although those routines are included in the
execution time is very important. This is the case for transformation pipeline. The goal of the implemented
long and repetitive scientific simulations as well as in algorithms is to detect object boundaries in the input
computer vision applications, image and to represent the extracted edges.

2.0 The Programming Languages _[ _ _

Noise Edge P'_ure

The languages C and Sisal will be often compared in reduction extraction compilation
this paper and we assume that the reader is acquainted
with both languages.

C is a widely used imperative language with very Figure 1" The relation between the three Image
primitive constructs and with efficient compilers on operators
UNIX machines. It is a positive example how high-level
programming can lead to efficient executable code. It is
a negative example how unlashing freedom slows the 3.1 Noise reduction
coding of a problem and increases the debug time. Its
main achievement is that of a portable and standardized The noise-reduction operator eliminates noise from
high level assembler, an image. The implemented noise reduction is based onSisal stands for Streams and Iterations in a Single
Assignment Language [McGrSk85]. It is a functional the Gaussian smoothing [Canny86]. The input to the
language based on the single-assignment rule. It targets Gaussian smoothing algorithm is an image containing
mainly the scientific computation on parallel machines, gray values of pixels in single-precision floating-point
The Sisal compiler is available on many kinds of UNIX format. This representation of an image is needed by
systems with efficient code-generators available for noise reduction and edge extraction algorithms so that
sequential and, shared-memory and vector parallel rounding losses remain small.
machines. There are also several code-generators written A half of Gaussian kernel is precalculated in the array
for non-conventional computer architectures [Mitrov93]. gauss_kern as shown in the figure 2 where the value of
Major benefits of the Sisal language include its sigma is a parameter given by the user. With a typical
determinate behavior that allows developing and sigma of 1.0 the value of radius is 5.
debugging parallel programs on sequential machines and radius := trunc(sigma*

the automatic parallelization of Sisal programs sqrt (-2.0*log (0. 001) ) +0.5) ;

3.0 The Algorithms gausskern :-for x in O, radius

returns array of norm *

A computer vision algorithm receives a digitized etothe (-real ((x) * (x))/sigq)
end for;

image as its input and transforms it either to a new
image or a different representation: the symbolic
interpretation of the image. Because of the hard time- Figure 2: Calculation of Gausslan
constraints in computer vision, the algorithms are often transformation array
small and fast and have much less computation than
data-access operations. Every image transformation,
either to an image or to a symbolic form, is called an The array gauss_kern is used to process the input
image operator. The evaluation of computer vision image in the horizontal direction first. The resulting
algorithms in this paper is based on three different image picture is then smoothed in the vertical direction. The
operators. The first two, Gaussian smoothing and Canny transformation in horizontal direction is described in
edge detector, transform images to images. The third figure 3 -- where only the body of the innermost loop is
algorithm, image compilation, transforms an image into shown -- using the values calculated in figure 2.
an edge graph. We will shortly describe the foundations
of these algorithms and compare their implementations.
All three algorithms are implemented in a software tool
u_d at the Computer Vision Laboratory at ETH Zuerich

The three distinct algorithms depend on each other's
result and form a uansformation pipeline as shown in
figure 1. After an image is read from a camera or a file,
it is passed to the three operators and transformed to a
picture graph. Figure 1 does not depict some picture type
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newPoint :- algorithms transforman image into an easier analyzable
pict [x, y] *gauss_kern[O] + form, e.g., graphsor lists. The compilation may consist
for r in 1, radius of grouping objects together and finding object
returns value of sum boundaries, or even recognizing objects. We use a

(pict [x, y-r] + compilation algorithm that finds connected edges, their
pict [X, y+r]) *gauss_kern[r] lengths and their point-coordinates. The result of this

end for algorithm is a list of all nodes -- where every node

Figure 3: Gausslan smoothing In y-directions pointsat oneor severaledges-- anda list of edgeswith
all of theirspoint-coordinates.

The implementedalgorithmwill be briefly sketched
in the following.First,theedgeimageistransformedto

The result of the noise reduction is a picture, which is a lambda-coded representation, which reduces the
2*radius pixels less high and wide than the input number of neighbors from a maximum of 8 to a
picture, maximum of 4 neighbors per pixel. This transformation

makes the connection between two points unambiguous.
3.2. Edge Detector Figure 5 shows on left the 8-neighborhood relation with

the possible connections compared to the lambda-
An edge detector is a mathematical operator that neighborhood on the right. We see that in 8-

extracts edges from the intensity discontinuities in an neighborhood there are two different ways to walk from
image. It is easier to find object boundaries from the pixel A to pixel C, one direct and one going over pixel
edge representation than from the gray-level values in an B.
image. The chosen edge operator is described in

[Canny86] and is also referred as Canny operator. Figure A B A B
4 depicts the computation structure of the algorithm that
implements the Canny operator. It creates four _-----__/_ O _ w"
derivation images from the smoothed image. Every pixel
in every of the four derivation-images is compared with
each other in the NonMaxSuppression algorithm. The
resulting edge image has edges that are only one pixel C C
wide and are of varying strength. The succeeding
threshold operation removes the edges with weak

Figure 5: 8- neighborhood and lambda
strengths, neighborhood

Derivation ]k

x-dir J_ Every pixel in a lambda coded image contains a bit-

"_ / I Derivation _ pattern that defines the number of its neighbors and in= / _ what directions they arelocated.
o _/'L• y-dir NonMax ]_. • °m

13}

o _ _( Suooresston_-_'°_ .__ The lambda-codedimageis walkedfrom the left to
.E__"'.-, f--0-o-rlv-fition L'/_ the right and from the top to the bottom. Together with

\ zll_ f / the scanning of an image-row, a list of segments is being

__/ traversed and updated. Using this list of segments we-_-__._-,-- can locate the start and the ends of edges as well as

_ Derivation [ extract the edges that build circles, i.e., have no ends or135dog _ starts. The detailed discussion is beyond the scope of
this paper and can be read in [Klein87] and
[KleKueb871.

Figure 4: The structure of the Canny operator Figures6a and6b showtheinput image-- a digitized
algorithm view of the city of Zuerich -- and the result image that is

reconstructed from the edge graph. The picture
compilation algorithm passes the lines to a filter that

3.3. Image Compilation redraws the picture with the edges that are longer than a
specified minimal value.

The construction of edges is primarily motivated by
the need of the image compilation algorithms. These

5 Note that m mathematacal and Sisal notatlota,honzontal means y-directitx_ and

m computer vtsion terminology, x ts the horttmtal c(_,rdmate
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,,r , H I SISAL programmer has to investigate the mathematical
1| foundation of a problem instead of imitating the existing

IIIilt, _ implementation that often takes into account how to map

_I an algorithm on the machine. Therefore, we should

'_ rather talk about implementing than porting an algerithm
to Sisal.

". One difference is the representation of an image. In
C-code an image is described by the image descriptor
and the image data. The image descriptor holds
information about the horizontal and the vertical size of
the image as well as what part of the image contains
valid data -- it is called the region of interest. It is the
duty of the C programmer to correctly assign the values
to the image descriptor. In Sisal the arrays are dynamic,
i.e., the bounds and size can be changed at run-time.
Therefore, there is no image descriptor needed in Sisal
code6. The correct allocation and deallocation of data
are also the task of the C programmer. In Sisal there are
no memory handling operations because its intermediate
form, the dataflow graphs, make automatic memory
management feasible without use of a dedicated garbage
collector. The two-dimensional access to a point of an

Figure 6.a: The Input frame image in C is written as a one-dimensional access (using
the information about the total width of image-data) or
just by increasing a pointer (when scanning .sequentially
through the image). Sisal code is written using two-
dimensional access by specifying both indices.

The implementation of the smoothing and edge
extraction operators is straightforward in Sisal because it

. ,... offers powerful array handling operators. Figure 7 shows
" "-''": - "" ...... _ _ asisal.COdeskeleton for a frame to frame image operator in

__ "" ' for x in xl,x2 cross y in yl,y2

newPoint := FrameOperator(pict[x,y])

. ., returns array of newPoint

"_ : _." end for

" " : _v.=.;_..___ u.-: Figure 7: Code skeleton for a frame to frame
transformation

I

Thegraphcompilationalgorithmis moredifficultto
implementin Sisalas it is basedon a dynamiclist of
segmentsthat is beingwalkedthrough.Listsdonotexist
in Sisal and therefore the segment-list has been

Figure 6.b: The result frame implementedas a dynamic array"/. This approach
includesmuchcopyingbecausetheinsertionintoa list is
moreefficientthaninsertionintoanarray.

4.0 The Implementations Thecode thatinvolvesreadingdatafrom an image
input file and writing it back as an edge image, uses the

The algorithms described in the previous paragraphs
are implemented in C and Sisal, Although they deliver 6Actually, the im=ge descriptor has a standardized Sun-rasterFdeformat and
the same results and are based on the same algorithms, C must be used for reatdin8 picture frames. It contains more infomaation than only

and Sisal versions differ in some points that will be thebound,howeverth_also_ithm,u,eo,ay_ _,_,t, i_o,_,tio_,hatho
discussed in the following paragraphs. The reason for imasea=_'_t,,,=, be_-,_ toe,_i_ _y th,tt_,,ofat'-.
differences between Sisal code and the implementations 7Dyna_c array,=can be viewn a,t lists without the insertion operation. A, long

in other imperative languages stems from the fact that ,, we refrain from inserting elements in an ,,nay, dynamic arrays allow often
more efficient implementations than lists do.
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standard routines written in C. For Sisal this means that The main conclusion from our experiences is that
the main program, that includes l/O, is written in C. Sisal programmer should concentrate on the abstract
Sisal code is called from C using the mixed language mathematical form and use it as the base for
interface providedbyOSC, implementing algorithms in Sisal. The existing

algorithms in imperative languages can be used only to
5.0 Benchmarks verifythe results or to better understand the problem.

Another important advantage of Sisal programs is

The goal of the presented benchmarks is to comp_e that Sisal programs do automatically allocate and
the best available sequential code generated by C deallocate data structures. The user is not bothered with
compiler, and code generated by Sisal compiler. This the problems of disappearing memory or dangling
includes the usage of best compiler options for both pointers to structures that have been deallocated too
languages and using the best available compilers: GCC early. This feature shortens much the coding and
2.4 for C and OSC 12.8 for Sisal. Generally, the debugging cycle.
programming of benchmark loops in Si_l may falsify
the results by introducing unnecessary dependencies or 5.2 Comparing the Performance
even removing completely the loop code as part of the
optimization pass. Therefore, the dataflow graphs Sisal is a language designed for programming parallel
generated by the Sisal compiler have been checked with computers. Nonetheless we do measure and compare the
the IFBrowser tool [MitMurgl] before running the performance on a single-processor computer, because
benchmarks, not only the speedup of a program is important. The

We have used two kinds of data to run the code generated by a language must not only deliver a
benchmarks. On the one hand artificial images generated good speedup when compared to itself but when
outside the benchmark loop have been given to the compared to the best available sequential code. A good
algorithm and on the other hand an image has been sequential performance shows also that the language is
loaded from the disk as shown in figure 6. The latter has suited for being used on single-processor machines.
been used for comparing the performance on a For the performance measuring on the single-
sequential machine, processor machine SUN SPARC-Station, we read the

image from figure 6 into the noise reduction and edge

5.1 Comparing the Sources extraction algorithms and did 20 iterations with both
algorithms. Figure 8 shows the measured execution
times and the used memory.The Gaussian smoothing and Canny edge detector are

examples of mathematically formulated transformations .......
In Sisal the usage of arrays is supported by high-level Sisal 63 sec. 9620kB ......
constructs and range-checking options at run-time. C 70see 7160kB
There is little array support in C, either at write- or at
run-time. As the constructs have to be written by the Figure 8: Comparing execution time and
user and becausethere is almost no consistency check, memory requirements on a single-processor
the C-code tends to be longer. The C version of machine
Gaussian smoothing and Ca_my operator has 600 lines of
code and the time to write and debug it should be about
a week. The Sisal version is about 300 lines long and it Figure 8 shows flint Sisal code is somewhat better
takes about 2 days to write and debug the code. than its C counterpart. This is insofar astonishing as the

The image compilation algorithm has more than 600 C-code, being heavily used at the Computer Vision
lines in Sisal and less than 500 lines in C. The reason for Laboratory, has 'been already optimized manually and
larger Sisal code is, that most parts of the algorithm the code is very good. After looking at the generated IF2
consist of operations on dynamic lists and because of graphs we conclude that this stems from the fact that the
many if-then constructs which are typically longer and coding of mathematical transformation to C-programs
more complex in Sisal than in C8. This algorithm took leads to a loss of information, which the C-compiler is
the most time to implement because its mathematical not able to recover and therefore cannot use for
description is not clear. After several attempts with optimizing code. In our case this means that Sisal is able
different approaches, the Sisal algorithm converged to to prefetch much more from the innermost loops than
the solution presented in [KI _in87] which was the base best C-compiler are able to do.
of the used C-algorithm. We run the same two algorithms with an artificial

image (requiring no I/O) on the 4 processor SGI
.......................... machine. Figure 9 shows the execution times and the

8s,,=1U.7h,,,,,,,_,_ _=t =l_,>__d_,_e,,__.L,,_,_ _o_, _ _,,,_ derived speedup.
number of vilu_ ts relume, d from ',.heexpre.'_lor, regardl_s _'h_ch condl'_:on is
fullfilled
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Abstract employed large name spaces coupled with instruction
level synchronization, allowing the processor to toler-

Although the dataflow model has been shown to al- ate and mask unpredictable latency due to memory
low the exploitation of parallelism at all levels, research access and inter-processor communication [32]. A1-
of the past decade has revealed several problems: Syn- though the dataflow model has been shown to be a vi-
chronization at the instruction level has precluded the able contender in the arena of general purpose parallel
exploitation of locality, and lack of support for effi- architectures [15], research of the past decade has re-
cient aggregate data structure access results in poor vealed several fundamental implementation problems.
vector and array performance. Many novel Hybrid These include:

von-Neumann Data Driven machines have been pro- • A significant number of instructions executed by
posed to alleviate these problems. Current studies sug- classical fine-grain architectures, including color-
gest sufficient locality is present in dataflow execution ing and re-labeling, represent non-compute over-

to merit its exploitation. In this paper we present a head [13, 28].
data structure for exploiting locality in a data driven
environment: the Vector Cell. A Vector Cell consists • Token matching represents a substantial bottle-

of a number of fixed length chunks of data elements, neck in the dataflow circular pipeline. Purely fine-
Each chunk is tagged with a presence bit, providing grain execution has precluded the exploitation of
intra-chunk strictness and inter.chunk non-strictness program and data locality, and inherently sequen-
to data structure access. We describe the semantics tial threads of code give rise to pipeline stalls due

of the model, an instruction set and a processor archi, to matching latency [16, 24, 29, 20].

tecture as well as a Sisal to dataflow vectorizing com- • Efficient handling of aggregate data structures
plier back-end. The model is evaluated by comparing has been hampered by costly synchronization at
its performance to those of both a massively parallel the data element level. Fine-grain execution and
fine-grain dataflow processor employing 1-structures context switching has precluded the exploitation
and a conventional pipelined vector processor. Results of pipelined vector hardware [12, 22].
demonstrate the model is surprisingly resilient to long

The recent advent of multi-threaded [33, 30] or hybridmemory and communication latencies, and effectively
von Neumann-Data Driven architectures arose from

exploits underlying parallelism across multiple process-
ing elements, a desire to combine the most salient features of both

coarse grain yon Neumann and fine-grain Data Drive
models. Multithreaded architectures mask memory
latency by taking advantage of fine-grain parallelism

1 Introduction without the overhead of instruction-level synchroniza-
tion inherent in traditional data driven processors.

The classical dataflow model provides instruction This is accomplished by increasing task granularity
level support for the exploitation of all forms of pro- from one to multiple instructions. The major objec-
gram parallelism Ill. Classical dataflow architectures tire has been to reduce or eliminate unnecessary syn-

°This work is in part supported by NSF Grants CCR- chronization costs through simplified operand match-
9010240 and MIP-9113268 ing schemes and increased task granularity [16, 28, 14,
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25, 7]. Recent studies indicate sufficient locality (both odds with goal of tolerating latency through efficient
spatial and temporal) is present in dataflow execution context switching. If large numbers of data tokens are
to merit its exploitation [20]. Exploiting locality may injected into the network by the structure store as a
increase latency as coarser grain instructions require result of an update operation, the matching store will

longer times for multiple inputs to arrive, however re- become saturated. Several approaches have attacked
sults reported ill [23]indicate that for the inner loops tile problem by reducing or eliminating the copying
of many scientific codes, a coarse grain model of exe- of large volumes of data during updates. To reduce
cution will not substantially impact latency, matching store traffic several models have been pro-

posed to increase instruction granularity.In contrast to multi-threading, we propose to ex-
The RMIT [9] CSIRAC II dataflow architectureploit available data structure locality through the

pipelined execution of coarse grain instructions. In supports generic functions with specific type coercion
this paper we present a hybrid data structure, the and strongly typed variable length tokens including
Vector Cell or V-cell designed to exploit pipeline par- vectors. Structure stores are integrated in the process-
allelism in tile dataflow model. Task granularity is ing elements permitting extended structure functions
increased over classical dataflow machines by allow- such as block copying, accumulators and vector op-

erations. The USC Decoupled Multilevel Data-Flow

ing more data elements per instruction. As a con- Execution Model [10] exploits macro actors and vec-sequence overall program overhead is significantly re-
duced due to decreased matching operations and the tor instructions. The SIGMA I dataflow machine [31]
exploitation of data structure locality. In this model, has iterative instructions both of the proliferate and
vectors are operated on in small fixed size segments fetch type. The DFC (single assignment C) compiler
or vector chunks. This segmentation allows for the only generates the fetch type instructions because of i
non-strict production and consumption of vector el- serious pipeline bubbles caused by the proliferates.

ements, thereby decreasing load and store latencies. Tile redesign of the original Manchester Dataflow
In the processor, data is pipelined into vector func- Architecture using current supercomputer technology

tional units, thereby exploiting data locality, and syn- is discussed in [17]. The original processing ring is
chronization cost is reduced to the matching of vector supplanted by a modified processing ring in which all
handles (pointers). We describe the semantics of this subsystems operate synchronously in pipelined mode.
mode[, an instruction set and a processor architecture Matching store and node store operations are per-

formed in parallel, and a multi-channel instruction dis-
as well as a dataflow vectorizing compiler back-end.

tribution unit feeds instruction packets to a six func-
The model is evaluated by comparing its performance

tion pipelined ALU.
to those of a massively parallel fine-grain dataflow

In [34] Multi-Threaded Vectorization is used tomultiprocessor employing I-structure memory and a
conventional tightly coupled MIMD vector supercom- broaden the range of vectorizable code while retain-

puter (tile Cray C90). The results indicate the V- ing conventional vector machine efficiency. The pro-
cell model is capable of a significant reduction in run- posed architecture may be viewed as a hybrid between
time overhead when compared to a massively parallel a vector processor and a VLIW machine.

The remaining paper is organized along the follow-fine-grain multiprocessor. We show that the model
substantially reduces both synchronization (matching ing lines: The semantics of our hybrid model are pre-
store) and non-compute instruction overhead and sim- sented in Section 2 along with the instruction set, pro-

cessor architecture and compiler back-end. A compar-ulation results indicate the model achieves a factor of
ative performance evaluation in which we compare the2 to 5 reduction in execution time over a fine-grain

dalaflow model using 7 times fewer execution units, performance of our model against, a massively paral-
Overall, a 40% inaprovement in floating point rates lel dataItow architecture employing I-structure mem-
when compared to tile Cray C90 is indicated. Fur- ory is reported in Section 3. The performance of our

model relative to that of a conventional pipelined vec-thermore, tile pipelining of vector chunks makes the
tor supercomputer is reported in Section 4. Section 5model surprisingly resilient to long memory latencies.
concludes the paper.

The token is the basic computational mechanism
in the classical dataflow model, however it is not well

suited for the efficient support of large aggregate data 2 The Vector Cell Model
structure accesses. The content of entire array could
I:_eplaced on a single token, however this would be The I-structures [2] model is ideally suited for ac-
costly in terms of matching store bandwidth and at. cesses where the production and consumption pat,-
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ternsofdata structuresare highlyirregularand in- we determineoptimalchunk lengthsintermsofmea-
deterministic.However,when the patternsarehighly suredinputlatency,pipelinestartupdelay,and total

regular,as in most vectorizablescientificcodes,the program executiontime.

I-structure model suffers from an inordinate amount v,.,_.
of overhead: its fine grain synchronization, at the tie- ,,,**
ment level, prevents the efficient exploitation of data 1 _*'

I 1 Istructure locality and the pipelining of vectorizable _,_s_.
operations. To enable the exploitation of locality and

provide for non-strict pipelined execution semantics, _[V_-[ 1 k,,, l ]
we introduce a hybrid data structure consisting of a _,,_o,M j
number of fixed length chunks of data elements. We E.-,_v., __ I,.._ l

refer to this structure as a Vector Cell or V-cell. As ,--- _ _ 3
opposed to I-Structures, where each individual data
element is tagged by a presence bit, only chunks are .
tagged by presence bits in V-cells. Access to data a- _ model I_ Memorymodel
is therefore strict at the intra-chunk level and non-

strict at the inter-chunk level. This allows for the Figure 2: Processor and memory models
exploitation of vector consuming and producing oper-

ations that take chunks as input and pr,, !*,¢e scalars The vector cell storage model is coupled with a
or chunks as results. Vector cells retain the advan- pipelined load/store architecture, where all instruc-
tages of traditional I-structures: inexpensive context tions except load and store types operate on vector or
switching and synchronization at the instruction level scalar registers. The architecture of a processor sup-
allows long memory latencies to be masked. V-cells porting the V-cell model is depicted in Figure 2. The
add the advantage of providing a mechanism by which vector processor consists of two basic stages: a match-
data structure locality may be exploited using vector ing stage, containing a token matching store, and an
instructions on pipelined vector hardware. The affects execution stage. The execution stage is similar to a
of this mechanism are the reduction of matching store traditional vector processor containing a scalar and a
and network communication costs. This model may vector execution unit. The vector execution unit con-

be viewed as a hybrid between traditional von Neu- sists of multiple pipelined functional units, load/store
mann vectors and the I-structure model. A presence pipelines and a vector register set. The operations fol-
bit associated with each chunk is set only when all the low the basic dataflow execution: tokens destined to

elements of that chunk are available in the structure the same operation, vector or scalar, are matched in
store. Read access to a chunk is split-phase, as with the matching stage. When all the input tokens are
I-Structures, it is deferred until the presence bit is set. available, an instruction packet is formed and queued
If we let k denote the vector chunk length, an array of for execution. A token consist of a tag identifying its
n elements can be viewed as a set of [n/k] chunks, context and a data field. In scalar tokens the data field

contains the actual data value while in vector tokens it

I-structures V-Cells Strict Arrays contains the identifier of the vector register containing

_ the vector operand.

non-strlct 2.1 Instruction Set Architecture

strict _ Vector elements in the V-cell model are stored in

k=l 1 < k < n k=n adjacent locations in the structure store and are ac-
cessed by a structure store handle. In the processor,
a chunk element resides in a vector register. A chunk

Figure 1: I-Structures, V-cells and strict arrays handle is either a structure store pointer consisting of
a base address and a displacement or a vector regis-

By varying the chunk length, the V-cell model can ter identifier. In the current implementation, vector
span a continuum from I-structure cells on one ex- cell memory consist of an allocation directory and a
treme, where k = 1, to traditional strict arrays, where linearly addressable memory. Directory entries are in-

k = n, as shown in Figure 1. By measuring the ef- dexed by chunk address and consist of a chunk length
feet of chunk length on access latency and throughput descriptor and a set of presence bits.
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Vector Operands Result Function
Opcode

RSSV offset,_a handle of Vi Read a singlechunk from V2storeintoVii'"l_ossiblydeferred.

WSSV offset,@a handle Of Vi Write vectorchunk inVI to V-storeat address @a, setpresence bit.

ADRV Vi,Vj handle of Vi Add vector Vi to Vj, result is stored in V,.
SBRV V/,Vj handle'of Vi Subtract vector V i from Vi, result is stored in V,.

MLRV V_,V: handle of V, Multiply vector V, and V_, result is stored in Vi.

DVRV V_,V 2 handle of Vi Divide vector V_ by Vj, result is stored in V_.
SUMRV V_,Rj Rj + _ _iVi) Sums the elements of V_, then adds result to scalar in register Rj.

PRDRV Vi,R) R_ • I1(1//) Forms product of elements of Vs, then multiplies result by Rj.

Table 1" V-cell vector instruction set

Vector instructions take a combination of vectors read structure store vector instruction (RSSV) is used

and scalars as input, producing a vector or scalar re- to read a single vector chunk from the structure store
suit. The vector instruction set is summarized in'Fable and return a vector register handle to the target in-
1. Arithmetic vector instructions that do not return a struction. The SUMRV instruction sums the elements

scalar result return a vector chunk handle which is the in the vector chunk referenced by its right input han-
identifier of the vector register containing the result, die, adds this to the scalar value at its left input and
In addition to the arithmetic instruction types listed increments the index by k. The BRR instruction sends
in Table 1, variants of the ADDV, SBRV, MLRV, and its left input to the right output ifits right input value

DVRV operations are supported in which one operand is true, otherwise the result is sent to the left output.
is a vector registeI and the other a scalar value. Translation to VDC is accomplished in two phases:

lexical analysis, parsing, and translation to IF1 (In-
2.2 Compilation and Vectorization Strat- termediate Form 1) are performed by the Optimiz-

egy ing Sisal Compiler front end. Vectorization analysis
and code generation occurs in the final phase. During

The Manchester Dataflow Machine compiler [3] was translation to VDC, the VDC compiler only attempts
modified to generate the appropriate data driven vec- to vectorize inner most ForAll loop bodies.
tor code for the V-cell model from Sisal programs [18].
We refer to this as Vector Dataflow Code or VDC. The

approach taken by the vectorizing compiler is straight 3 Performance Compared to a Mas-
forward: the operations within innermost Sisal ForAll
loops are vectorized with no vectorizing optimizations sively Parallel Fine Grain Dataflow
or loop unrolling. Processor

To illustrate the production of vector dataflow code
a simple example is presented. Code produced by In this section we evaluate the performance of the
our vector compiler for the computation of the in- V-cell model relative to a massively parallel fine grain
ner loop of Livermore Loop 3 is illustrated. The dataflow processor. The evaluation is carried out in
code is for the computation of a scalar inner product two stages: in the first we compare the execution of

,n

_-'_i=1_ (i) • V2(i). Figure 3.a shows the Sisal source a data driven vector multiprocessor to that of a mas-
for this kernel and Figure 3.b depicts the resulting sively parallel fine-grain dataflow architecture employ-
vector dataflow code. V-cell execution is based on ing I-structures. The objective is to evaluate the ad-

the matching of vector handles, not individual data vantages derived from exploiting data structure local-
elements. Vector elements are pipelined to and from ity, and pipelined execution in the V-cell model. In the
vector registers from V-cell memory and all arithmetic second stage we evaluate the resilience of both models
vector instructions operate exclusively on vector reg- to increases in network and memory access latencies.
ister operands. We assume a worst-case allocation of tasks which is

In Figure 3.b the PRLV vector instructions are modeled by imposing a latency cost of d cycles to ev-
used to produce a stream of (Ink] - 1) vector han- ery token.
dies (double reals in the case of the RSSV targets
and boolean for the BRR operator) indexed with Objectives. In this section we evaluate the perfor-
k, 2/,', 3k, ..., where k is the vector chunk length. The mance of data driven vector execution relative to a
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type double = double_real; _'::::'_"_'1""type OneD = array[double] ; rruvl ' " '
function loop3(n:inteqer; X,Z: OneD returns ..... ,.Vp_.. d

for i in l,n

O:= X[i] * Z[i]

returns value of sum Q ........_'YR'I"_
end for

end function

Q

a. b.

Figure3 Data drivenvectorcode tocompute innerloopofL3

massively parallel fine-grain dataflow execution using
I-structures. A vector processor is significantly more Model Instruction Issue Result

scalar- fadd/fsub ..... 1 '" 3
complex than a fine-grain dataflow processor, but be- (MC88110) fmult 1 3
cause it can exploit data structure locality, fewer pro- fdiv 13 13

cessors are needed. The first objective is to evalu- vector faddvfisubv 1 6
ate the tradeoff between processor complexity and the (Cray C90) fmultv 1 7

number of processors. Since the objective of both the fdivv (reciprocal approx.) 1 20

V-cell and the I-structure model is to mask the effects

of memory access and inter-processor communication, Table 3: Scalar and vector instruction latencies
it is also important to evaluate the effects of additional
network latency on the execution of both models.

Methodology. Both models were simulated on a
cycle-level discrete-event simulator with a variable
number of processors. The Cray C90 was used as a

Benchmarks. A total of twenty three benchmarks reference for all vector instruction latencies and the
were selected for comparisons consisting of: ten from Motorola MC88110 [21] for all scalar instructions (Ta-
the Lawrence Livermore Loops [19, 11], six bench- ble 3). Both massively parallel and vector codes were
marks from the Purdue benchmarks [26, 27], and four run with the same matching store parameters and Is-
kernels from the tinpack routines [8]. Three additional tencies: 1 cycle for a failing match and 2 cycles for
programs, Simple,Bmki1a, and Hilbert codes were also a successful match (this corresponds to the matching
benchmarked. Refer to Table 2 for benchmark statis- times in the EM-4 [29]).

tics. Throughout the rest of the paper, Li and Pj are

used as abbreviations for the Livermore and Purdue Minimal execution time and cost. The objective

benchmarks i and j respectively, of this experiment is to evaluate the tradeoff between
All benchmark programs are written in Sisal. Data the complexity of a processor and the number of pro-

driven vector code was generated by the VDC back- cessors. We assume an ideally optimal allocation of
end to tile Manchester Dataflow compiler. Fine grain tasks to processors. This is modelled in our simula-
codes were generated by the Manchester Dataflow Ms- tion by setting a constant memory access time and the
chine compiler [4]. Both the Manchester compiler and cost of inter-processor communication to zero.

our vectorizing dataflow compiler were configured to In both models, the benchmarks were run with in-
generate code for non-strict structure store accesses, creasing numbers of processors until no speed-up was
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Benchmark Sisal Source L_nes Problem Size Description
LivermoreLoops ........ 426 1000 Scientific/NumericKe'rnels ....
Purdue Benchmarks 362 100-1000 ScientificKernels
Linpack Routines 212 1000 Linear Algebra
Simple 1555 10x10 Hydrodynamics
Bmkl la 1007 64 Particle Transport
Hilbert . 567 200x200 Hilbert Matrix/Lineax Algebra

Table 2: Benchmarks

observed. This minimum execution time is denoted ratio. At minimum execution times, the vector

by T!,_in in the fine-grain model and T,_min in our model is, on the average, 2.63 (2.21 weighted by
hybrid model. The results of these simulations are total cycles) times faster (Tlmin/Tvmin) than the
depicted in the histograms of Figures 4 and 5. All fine-grain one. The total number of execution cy-
timing measures are in machine cycles, the subscripts cles (T1) is 5.56 (2.25 weighted by total cycles)
f and v refer to fine-grain and vector executions re- times larger in the fine-grain model than in the
spectively. 7"I1 (%1) is the execution time of each vector model.
benchmark on a single processor. N! (N_) indicates
the number of processors at which the minimum ex- • Exploiting data structure locality. On average, the
ecution time TImin (Tvmin) was reached and FPR! fine-grain model required 72 processors to reach
(FPR_) is the floating-point rate in operations per maximumspeed-up while the vector execution re-
cycle in the fine-grain (hybrid vector) model. Figure quired only 10. This means that without takinginto account the increased cost of the intercon-
4.a plots the ratio of fine-grain single processor ex-
ecution times and V-cell single processors execution nection network (which grows at least as n log n)

times (TI1/T_I) for each benchmark. Figure 4.b de- it takes about 7 times as many fine-grain scalar
picts the ratio of fine-grain minimum execution times processors to outperform the vector multiproces-

and V-cell minimum execution times (TImin/T,,nin) sor.

for each benchmark. The relative number of proces- Figure 6 shows the hybrid vector execution time pro-
sots required to achieve an execution time of Train is files for some of the benchmarks. Note that the curves

shown in the histogram of Figure 5.a, and the floating become flat between 4 and 32 processors. While these
point rates (FLOPS/cycle) attained by each model results are to be expected, our objective is to quantify
at Train are reported in Figure 5.b. the degree to which a chunked vector access strategy

A vector chunk length of k = 32 was used in V-cell can enhance performance in a data driven model.
model simulations. This chunk length does not neces-

sarily coincide with the minimum execution time for Tolerance of network latency. The objective of
all benchmarks, on the average the minimum occurs this experiment is to evaluate the resilience of both
between 32 and 256 elements per chunk for a problem models to increases in network and memory access la-
size of 1000. tencies. Since network latency increases as the number

The results from these experiments can be summa- of processors increases, it is important to evaluate the
rized as follows: effect of increased latency on both models. We model

• Reduction of ru_2-time overhead. The fine-grain increased latency by imposing a fixed cost of d cycles
model incurs a run-time overhead in synchroniza- to every token. This implies that all accesses to the
tion (matching) and instruction scheduling for ev- structure store and all inter-processor communication
ery scalar operation. By exploiting data structure would incur this delay.
locality the vector model eliminates a large frac- The effects of the added delay on the average ex-
tion of this overhead. In fact, the vector model ecution time of the benchmarks (assuming unlimited
was capable of processing twice as many floating- resources) is shown in Figure 7 with d increasing to
point operations per cycle (FPR) as the fine- 128 cycles: The effect is minimal on the vector model

grain model" 0.38 floating point operations/cycle whereas the average total execution time of the fine-
versus 0.17. The average processor utilization grain model increases linearly with increased latency.
with unlimited resources was 10% in the fine- The ratio of Train for each model for a network ac-
grain model and 28% in the vector, a threefold cess delay of d = 128 (worst-ca.se) is depicte(t in the
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histogramin Figure8. TilefactorsA1 and Av mea- 4 Performance Compared to a Tightly

surethe relativedegradationin performanceasa re- Coupled MIMD Vector Processor
sultofthe added latency.They aredefinedby:

Tworst-cas_- Tbest-case Objective. In this section we evaluate the perfor-
A = mance of data driven vector execution relative to the

T_ejt-c,,e Cray C90 architecture. The non-strictness of data
Figure 9 compares A 1 and Av for each of the bench- structure access in the V-cell model can allow the
marks in the test suite, masking of memory access latency: a chunk can be
rib summarize, the results of latency tolerance exper- read before the whole array is written and therefore an

iments indicate: efficient pipelining of producer/consumer codes is pos-
sible. In the Cray code this synchronization is most

• Because of the added latency, the average fine- often done at the level of the whole array. On the
grain execution time is degraded by 740£ while the other hand, the Cray C90 compiler is much more ma-
V-cell execution time is degraded by only 10%. ture and sophisticated than our vectorizing back-end
This is due to the significantly lower number of and is capable of vectorizing a higher fraction of op-
tokens that are generated and communicated in erations. The objective of this section is to evaluate
tile vector model relative to tile fine-grain one. this tradeoff.
Further, the degradation in the vector model is
much more consistent, i.e has a lower variance,

than in the fine-grain model. Benchmarks. We employ the same set of twenty
three benchmarks in this comparative evaluation as

• For 10 of the benchmarks, there was no or very was used in Section 3.

minimal (< 10%) degradation in execution time

due to longer latencies. Degradation in vec- Methodology. The Cray C90 versions of these
tor mode performance was observed to occur benchmarks were compiled using the Optimizing Sisal

when the vectorized inner loop bounds were much Compiler (OSC version 12.1) [6] with the following op-
shorter than the vector chunk length (e.g. L4, timizations enabled: traditional scalar optimizations
L21). Little reduction in matching overhead oc- such as record fission, common subexpression elimina-
curs in this case as the resulting vector chunk tion, constant folding, dead code removal, function in-
lengths were not long enough to substantially line expansion, loop fusion and optimization of the re-
reduce the token traffic. Degradation in fine- suiting dataflow graph through update-in-place analy-
grain performance was observed to be most sig- sis. Loop unrolling was disabled for these trials as our
nificant in those programs containing reduction vector dataflow compiler does not perform this opti-
operations. Reduction operations sequentialize mization. By employing highly aggressive optimiza-
segments of the code, greatly reducing the avail- tions at the intermediate code stages in conjunction
able parallelism in the underlying program. In with update-in-place analysis, OSC can produce code
these cases program execution becomes limited comparable in performance to FORTRAN on the Cray
by matching store bandwidth and the majority of C90 and Cray Y-MP [5].
execution units idle. Latency cannot be masked The vector dataflow compiler back-end we devel-

by context switching due to an insufficient num- oped for V-cell code generation is based on an earlier
her of parallel threads, version of Sisal compilation technology (Sisal ---. IF1

For programs in which the underlying parallelism --, VDC) than the Cray Sisal compiler (Sisal --, IF1
was sufficient to sustain multiple execution threads, --* IF2 _ C/FORTRAN), hence our compiler does
both the fine-grain and vector models were able to ef- not provide many of the scalar optimizations that the
fectively mask latency. For inherently sequential code Cray compiler performs at the IF1/IF2 stages. De-

segments, the V-cell model was able to achieve greater spite this, performance of our model compares favor-
performance than the fine-grain model. These results ably with that of the Cray C90.
demonstrate that a vector based dataflow execution
model suffers little from added communication and

memory latency and is very resilient to increases in
these factors. This is primarily due to a dramatic re-
duction in data memory token traffic and the exploita-
tion of data structure locality.
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The data driven vector code was executed on a inner loop bounds are quite short (25 elements), mak-
cycle-level, discrete-event simulator that is config- ing the resulting vector code very inefficient for the
ured with the same number of functional units and C90s relatively longer vector registers. V-Cell non-

load/store pipelines as the Cray C90 and with the strict, inter-chunk semantics in tandem with run time
same issue and operation latencies. A chunk length (demand driven) scheduling allows for relatively high
of 128 elements, corresponding to the CO0 vector reg- utilization of processor resources when short vectors
ister length was used. are processed.

Benchmark Cray C90 V-Cell Multiple Processor Execution. Results of exper-
L_ s 16 iments conducted to compare the performance of mul-

L2 12 16 tiple processor executions are shown in the histogramL3 2 16

L4 2 s of Figure 11. These plots compare the maximum
L7 12 16 MFLOPS rate attained by each architecture employ-

L8 16 16 ing multiple vector processor for each benchmark. For
L9 2 16 multiple vector execution units, these results indicateL10 16 16
L12 2 12 the V-cell model compares very favorably with the
L21 16 16 Cray C90 execution. The Cray C90 outperformed the
P1 16 16 data driven model in only 1 of the 23 benchmarks, at-
P2 16 16
P3 12 16 taining an average performance of 191 MFLOPS (53
P4 8 8 MFLOPS weighted by the total number of machine cy-

P8 1 16 ties in the test suite) across the test suite. Although
P14 16 16 the Cray C90 supports 16 concurrent vector processing
DMM 16 16

DAXPY 2 12 units, program partitioning and data allocation, cou-
DSCAL 2 16 pied with communication overhead and barrier syn-
DMXPY 12 16 chronization delays can actually cause performance to
SIMPLE 4 16 fall as the number of processing units is increased.
BMKllA 1 16
HILBERT 4 12 The average number of processors required to obtain
Ar. Mean .....9 15 maximum performance on the Cray C90 for the test.....

suite was 9. Refer to Table 4 for the number of vector

processors at which minimum execution time occurred
Table 4' Number of vector processors at maximum for each benchmark. Results of V-cell simulations in-

performance dicate an overall performance of 361 MFLOPS (289
MFLOPS weighted by the total number of machine
cycles in the test suite) or about a 47% advantage in

Single Processor Execution. Results of experi- floating point rates over the Cray C90 in 72% fewer
ments conducted to compare the performance of sin- machine cycles. The average number of processors re-

gle processor executions are shown in the histogram quired to obtain maximum performance in V-cell ex-
of Figure 10. These plots compare the maximum ecution was 15.
MI:'LOPS rate attained by each architecture employ- The Cray C90 performed well on kernels contain-
ing a single vector processor for each benchmark. For ing low degrees of parallelism and those codes that
benchmarks restricted to execution on a single vec- are easily vectorized and chainable. For example, the
tor processor, the Cray C90 execution was superior C90 execution outperforms the V-cell model in Loop 3
to that of the V-cell model. The V-cell model only which is an inner product of arrays of 10,000 elements.
outperformed the Cray C90 on 3 of the 23 test codes, In this code the shortest execution time on the C90 is

attaining an average performance of 67 MFLOPS. By achieved with just two processors, this time is only 5%
contrast, the C90 averaged 122 MFLOPS over the test better than the single processor one. Our model was
suite, or about 45% higher floating point rates in 48% superior for codes involving reduction operations and
fewer machine cycles the our data driven model. Note kernels containing parallelism of degree greater than
that the V-Cell performance of Livermore Loop 21 is two. This may be attributed to the fact that in the
significantly better than that of the C90. Loop 21 is V-cell model, load/store pipeline latency is effectively
a triple nested loop, in which the inner loop forms masked by the vector units ability to switch between

the sum reduction of the product of two arrays. The a small pool of available vector chunks when elements
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from the current vector stream block. Moreover, in 5 Conclusion
most vectorizable codes the ability to overlap floating

point operations, memory latency and loop overhead In this paper we have presented and evaluated a
results in substantial performance gains. The execu- data structure model designed for the exploitation of
tion of both scalar and vector instructions may pro- locality in the data driven paradigm. The Vector Cell
ceed in parallel in our model, allowing most of the or V-cell incorporates vectors in a hybrid dataflow/von
non-compute loop overhead to be covered by actual Neumann model: vectors are stored in fixed length
foating point computations (for example, in the code chunks across interleaved memory, and each chunk is
of Figure 3.b, the execution of the scalar BRR instruc- tagged with a presence bit. The access to these vec-
tion may be overlapped with the execution of the vec- tors is non-strict at the chunk level but strict within
tor SUMRV instruction for all but the last chunk it- a chunk. The advantage of this model over a con-

eration), ventional pipelined vector processor is that memory

Overall, V-cell model performance was superior to latencies are effectively masked by the split phase pro-
the Cray C90, Notably" duction and consumption of data structure elements.

Compared to a massively parallel fine-grain dataflow
multiprocessor, our model is able to effectively exploit

• Because of its non-strictness, the V-cell model data structure locality: In our model data is pipelined
can allow a more efficient pipelining between vec- into vector functional units, thereby exploiting data
tor operations. This is especially true in pro- locality, and synchronization cost is reduced to the
ducer/consumer type codes where the consumer matching of vector handles. This model can be seen
code could start execution as soon as the first as a hybrid strict/non-strict data structure and also as
chunk is available. Further, when the produc- a hybrid between traditional vectors and I-structures.
tion and consumption of data elements are out- A set of vector instructions has been defined for this

of-order, the V-cell model can still provide the hybrid model, employing pipelined load, store and
pipelining, arithmetic units as well as a set of vector registers.

A data driven architecture model for the processor

and structure store supporting pipelined vector oper-
• The asynchronous nature of dataflow execution ations has been described. The performance of our

permits the dynamic exploitation of asynchronous hybrid model has been compared to both a massively
instruction level parallelism over the set of vec- parallel fine-grain dataflow architecture employing I-
tot and scalar functional units. Even though the structure memory and a pipelined vector supercom-
Cray architecture can exploit parallelism among puter through the use of 23 benchmark codes.
vector and scalar operations, a significant advan- In comparing the V-cell model to a massively paral-
tage was observed in loop bodies that exhibit even lel fine-grain dataflow multiprocessor a three fold av-
moderate degrees of instruction level parallelism. erage speed-up is measured. The number of processors

required to achieve minimum execution time is seven
times smaller for our model than it is for tile fine-grain• Although the granularity of instructions in our

model is considerably larger than in classical model. Also, the total number of execution cycles is
dataflow models, the overhead associated with reduced by a factor of five due to the elimination of

the run time scheduling of V-cell instructions on a a large amount of synchronization (matching store)
single vector processing unit appreciably degrades overhead. Both the fine-grain and vector hybrid rood-
floating point performance. In addition, the qual- els are able to effectively mask latency in programs in
ity of the vectorized code in the Cray version of which tile underlying parallelism is sufficiently large.
the benchmarks was always better or equal to The V-cell model exhibits extreme resilience to ad-
that obtained from the VDC compiler back-end ditional network and memory latencies. Overall the
resulting in superior performance on the part of hybrid vector model suffers an average degradation of

10% on its execution time versus 74% for the fine-the Cray when executed on a single vector pro-
cessor, grain model, when a high access latency for every

token crossing a processor or store boundary is as-
sumed. A significant degradation in fine-grain per-

. The Cray C90 supports the chaining of vector in- formance was observed in programs where reduction

structions. The V-cell results presented in this operations determine the behavior, as these reductions
section do not chain vector results, limit the available parallelism. By contrmst, in the vec-
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Abstract systems still remains very complex. The lack of proper
support software like the compilers, debuggers, and

Sisal, is targeted to Intel 7buchstone i860 systems, the operating systems are the main concerns of many
by mapping the functional parallelism in its intermedi- programmers.
ate IF-I representation. A new compile time schedul- One of the main reasons for the programmer's dif-
ing method is developed that investigates a trade-off ficulties is that most of the compilers for this impor-
between the schedule length and the required number tent class of multiprocessors demand that the users

of processors. The compile time schedule is found us- specify data partitioning and/or code mapping. Such
inq a new concept of threshold of a task that quantifies data and code partitioning techniques largely depen-
a trade-off between the schedule-length and the degree dent on user's judgement, are cumbersome, and may
of parallelism. At compile time one of the following suffer from inaccuracy and poor execution speed.
scheduling goals is realized: Some of the semi-automatic compilers ask the user

• Compiling for minimizing schedule length : Suit- to partition either the data or the code of his/her pro-
able for large systems, gram and automate the partitioning of the other as-

pect. The compilation methodology presented in this
* Compiling /or processor requirements below a paper is fully automatic, and produces reliable and

given maximum number of available processors in efficient code using data and code partitioning in an

the system : Suitable/or small systems, unified framework. This methodology has been incor-
The run time system is designed to support call by porated in the Sisal (Streams and Iterations in a Single

value semantics on lntel Gamma, Delta, and Paragon, Assignment Language) compiler backend for produc-

by minimizing the overheads. Each processor contains ing code to run on Intel Gamma, Delta and Paragon
the inlined Sisal program's code and starts executing family of multiprocessors.
its own C main 0 corresponding to SisalMain(). The Section 2 surveys the different program partition-
code that is specialized for a given processor is identi- ing techniques proposed in the literature. Section 3
fled by a case statement that corresponds to the pro- discusses and illustrates our compile time partition-
cessor number, thereby making the start-up overhead ing method through an example. Section 4 addresses
as small as possible. The universally owned code is the code generation and the run time system for dis-
replicated on all processors. The processors exchange tributed memory machines. Section 5 offers conclu-
data values using asynchronous 'put' and 'pick' prim- sions.
_twes to maximize the overlap of communication and

computation.

2 Program Partitioning Issues

1 Introduction The problem of program partitioning and schedul-
ing on distributed memory multiprocessors has been

The distributed memory systems are becoming attempted by many researchers, and the appr,_aches
popular. Itowever, programming distributed memory can be mainly classified as:

°*This research was supported by the U. S. Army Research

Office under grant no. DAAI,03-91-(;-0031 l. Data Driven (;ode Partitioning, and,
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2. Code B_sed Data Allocation. else max = b;
end Select;

In data driven approaches, the program data is par- }
titioned for different processors, and the code is pro-
duced so that the generated data references are 1o- Tile type "vector" defines a domain containing two
cally available. This reduces the costly, interproces- real values named a and b. By declaring x[100], 100
sot communication on distributed memory machines, instances of the variable pair are created one pair per

The code based approaches, on the other [Land, carry, processing element. The 'Select' statement activates
out. the partitioning so that each processor gets ap- every processing element whose instance has domain
proximately an equal share of the program code, The type "vector". Every processing element evaluates the

resulting data references are then examined, and data statement a > b. The universal program counter en-
is allocated to different processors to reduce the corn- ters 'then' clause and those PEs for which the state-

munication. The goals of locality, of data and load ment is true, perform the assignment max = a. Then
balanced code can conflict, and for certain types of the universal program counter enters 'else' clause and

codes like the particle codes, are impossible to achieve those PEs for which the expression is false, perform
simultaneously, max = b. This approach, thus, supports data parallel

Kennedy et al. [6] follow the data driven scheme, programming on SPMD machines.
They define language extensions to Fort,ran with func- I<oelbel et al. [7] carry' out a data mapping in their
tions for managing data distribution in non-shared ad- Blaze project and use many optimizations to reduce
dr,.>:_spaces. The new language is called Fortran D. message passing overhead.
They define compile t,ime data domains to map the Amongst the code based data allocation ap-
aggregate (Lnainly arrays) slices to local memory. The proaches, the most notable is that of Mansour et al.
user is responsible for specifying the data layout. The [2]. It uses a load balanced code, and mapping data on
colt_piler then supports a virtual address mechanism the processors, to minimize the communication. The i
to correctly map the global references to the local ones. problem domain is decomposed into subdomains at
The code generation phase ascertains that the refer- compile time, and each partition is judged on the basis
ences in tile computation are correctly mapped to the of an objective function that determix_es the locality
local memory, of references.

Pingali et al. also use data driven code partition- Some researchers have also attempted combining
ing approach by using user specified data mapping at both the above approaches. For special cases of DO
compile time. A compile time ownership analysis is loops with constant dependence distances, Ramanu-
carried out and the code is produced by employing jan et al. [10] have devised a test that determines

whether a loop can be split to achieve a communica-the concept of evaluators and participators. The com-
pile tilne data mapping mostly defines the ownership tion free partition. Based on the test, an algorithrn
information required for the correct, code generation, is developed that achieves communication free patti-
The compile time unresolved ownerships can be oh- tioning of a loop, if it exists. For example, consider
rained using run time ownership resolution, the following 'for' loop:

In compilation of loops, communication overhead for i = 2 to N

can be reduced by using locality of reference and by for j = 2 to N
sending and receiving data in blocks between different A[i,j] = B[i-l,j]+B[i,j-1]
loop slices. In a recent work, a new loop transfor-
mation called access normahzation is proposed that In the above loops, to compute each element of A[id],
re,structures the index Sets of the loop to exploit, both two elements of array B are needed. It can easily be

the localily and tho block transfers of loop data [8]. seen that if both arrays A and B are divided along

The t)roject (:* [11] relies on user partitioning of their anti-diagonals, a communication free partition of
data aggrogates on SPMD machines like CM-5. For the loops is achieved. On the other hand, for certain
,xanlplo. tho data-[)arallel program can look like" types of loops, no such partition can be found.

C,ajski et al. [3] address the loop partitioning prob-
domain vector { real a, b, max; ]- x[100]; lemon adistributed-shared memory system. A given
• . . loop partition is evaluated on the basis of the amount
Select" of parallelism, and the memory access and synchro-
[domain vector] . { nization overheads. The memory access overheads are

if (a > b) then max = a; nmdeled on the basis of whether it. is a local access (for
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read only variables), a local synchronized access (for efficient program partitioning and scheduling on dis-
read/write variables), or a network synchronized ac- tributed memory machines. "File approach proposed
cess (for non-local variables). A heuristic algorithm is in this work combines the data and code based ap-
used to reduce the number of loop partitions examined preaches in a unified framework based on the func-
to determine tile best one. tional parallelism present in a program. Functional

The above approaches save a lot of effort on the parallelisln is the parallelism amongst different opera-
compiler's part. ltowever, these approaches might not tions carried out in a program, by following data and
always yield a good program partition due to the fol- control dependences. Functional parallelism is also re-
lowing reasons: ferred to as the I)AG parallelism in the literature due

• Data driven code partitioning approaches rely to its most popular representation in the form of a Di-
rected Acyclic Graph. In this work, the two terms -

heavily on the user judgement in correctly par- functional or DAG parallelism are used interchange-
titioning the data. ably, to suit the context.

• Some of the approaches treat the data distribu-
tion as static for the complete scope of the pro- 2.1 DAG Parallelism And Functional

gram and do not. allow retnapping of the data. Paradigm
Also, even if the user partitioning of the data is

optimal at compile time, it may not be so at run One of the major limitations of the above ap-
time. due to compile time unknowns, preaches is that they deal primarily with the loop

based parallelism. I,oop parallelism is quite localized,
• Current data driven approaches tend to use the and in general, there exists r_lore general DAG paral-

regularity of the computational ._tr_,'t_lro to gen- lelism in the full scope of tile program, in an inter-

crate data and code partition. For example, the procedural framework. To exploit the high degree of
nearest neighbor communication in Jacobi, or parallelism available in newer distributed memory ma-
conlmunication in four ctimensions in 2-D SOR chines, the loop parallelism must be augmented with

used frequently in scientific computation, are used the general DAG paralMism, and hence the compiler
to drive the code generator by these compilers, must be capable of detecting and effectively mapping
These schemes are not sufficient to allow locality the interprocedural DAG parallelism onto processors.
for more general irregular computational struc- A few research efforts have addressed the issue of

tures. DAG parallelism for imperative languages. Girkar [5]

• Data driven code generation over-empha.sizes tile has specified HTG (ftierarchical Task Graph) a.s the
locality' issue. The resulting code partition may intermediate representation for I)AG parallelism, tte
be non-optimal. For example, an unbalanced has also developed a method to remove the redun-
code rnight result from a data driven code gen- dant dataflow dependences and proved that in general
eration, if the preprocessing dependence analysis the minimization problem for task dependences is NP-
stage does not properly discover the distributed complete. Sarkar [12] uses a compile time cost model
variables. I)ependence analysis is extremely dif- to analyze the trade--off between task overhead and
tick,It and irnt)r_wise in an imperative framework task granularity.
leaving thes, approaclles questionable. Extracting DAG parallelistn demands extensive in-

- terprocedural dependence analysis. Such analysis is
• Strictly code driv,m at)t_roa:qws also suffer from very hard in the imperative framework due to the

the (:OlllllillIlie'&tiOlloverhead, whictl could nullify presence of aliases, side-effects, and common blocks.
all the bene4its of tmrall_,lism. Ttw functional paractigni offers a more clean and neat

mod-I ,'::,fI)A(:; parallelism in the form of dataflow
• The apprroa,:he.-, that combine L,_,th sche_nes, are

_oc>specific to ,'<mstr_J,"ts liD, I)OAI_I.. and also graphs where, a node represents cornputation, and an..... e,dge carries the values frorn one node to another. One
ctez_tand a ..,t)e,'ial strll,'tur, of the. loop. In a gen- of tile argunlents against the, fun-tional prograrnming
eral prograr_, s_lch atq,roaclws nla3 not be viable.

is tile lack of oflicielwy, ft,,;vover, the recent success
sirlco IslaIl5 ()f _t_. c,,1,diti(ms that _nake use of the in ve,ry efficient coll_pilatior_ ,-)f furlctional languages
array indices tiler t,- unk_l,)w_l at ,:onlpil(' l irlle have led th,-m to o Jtperform conventional languages
due" to the. l)r,_sr.r,'_, varlet)l,, irJd,.x ,:oeflicients like Fortran in t_.rr_lsof rllanv-tficiency issues like ex-

"Ihes, _ ]imitatir:,r_s r,,f tIw ;,xistin_ purely data or ecuticm spe_-d awl cod(.-siz,.

code ba.,_d atq.,r,-,a,'il,.s prot_ibil fllllv a .itor_latic and 'I hi,,, w,)rk, l t_(-r-f,.,r,.. ,-_,_,',.r_trate-s c)l_the t)robl,:rl_
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of scheduling functional parallelism in the form of a [ SlSALp,_r,.,,,_._, ]
I)AG, on distributed memory multiprocessors.

Amongst tile different approaches proposed in tile [ _LLe'rs'_ ]

literature on DAG scheduling, most notable is due to [ ' ,_,,, _ S'SAL Librltry I

Gerasoulis et. al. [4], They have proposed Dominant , [ I

Sequence Algorithm (DSC) that is O((v + e)lo9 v).

DSC calculates a priority of each of the nodes at, every ]
step and schedules a highest priority node whose all
predecessors ]lave been scheduled.

However, the issue of mapping tasks on distributed
memory machines as a trade-off between the schedule
length and the number of required processors remains
unaddressed. We believe that it is very important to
address this issue in order to fldly use the power of the
distributed memory machines that could have small as
well as large number of processors. This issue along

with the necessary run time system form the subject mn.ryC_e
of this paper.

To demonstrate this approach, Sisal (Streams And

Iterations In A Single Assignment Language) has been Figure 1: Osc - Optimizing Sisal Compiler
selected, due to its clean semantics and an elegant

functional representation in it,s intermediate form. A
out update-in-place analysis to carry out some opera-task model based on dataflow graph representation

of Sisal programs is used. The dataflow graphs are tions in place without additional memory allocation or
copying. IF2Part is tile pha.se that is responsible formapped to different processors, aim a partition is gen-

erated at compile time. The efficient code generation parallelization of the Sisal programs. Finally, the last
phase IF2Gen translates the optimized IF-2 graphs

method along with the run time system keep tile over-
heads low to effectively use the parallelism at run time. into C code and the C compiler on the target links the

run time libraries and produces the binary executable
code.

In the scope of this work, II?2Part has been re-
3 Compile Time Partitioner written to perform compile time scheduling of func-

tional parallelism in IF-1 nodes. The IF2Gen has
The partitioning probleln for a general DAG (Di- been modified to generate efficient code for the ln-

rected Acyclic Graph) of task representation of a pro- tel Gamma, Delta, and Paragon family. The run time
gram, is known to be strong NP-hard thereby ruling system has been Inodified to support message passing
out the possibility of a pseudo-polynonfial algorithln, communication between different processors to send
Several variants of a new heuristic algorithm have been and receive the data values. 'l?hese contributions have

developed for partitioning Sisal dataflow graphs on been indicated by the shaded areas in the figure 1.
i860 based lntel Gan_ma, l)elta and l)aragon (Refer

to [1] for details about Sisal). 3.2 Threshold Scheduling Algorithm

3.1 Sisal Compiler Modifications l'irst, the preprocessor pha.se of the partitioner car-
ries out, a dependence analysis, identifies actual depen-

'l'he first, phase translates a progrmz_ into IF-I. dencies and scope imports of values using the Sisal in-
The second phase IF1Ld of lhe compiler combines termediate form, and performs cost assignments based
the modules of a progra_n into a n_onolit, h IF-I t, ro- on iPSC/860 timings (Refer to Figure 2) [9]. This par-
gram. IF'lOl)t is an ol)tinlizing pha,se of the (:emptier titioner has been incorporated in the lt"2Part phase of
that carries out standard datattow optirllizations s_mh the est.
as comnmn subexpression removal, 10017invariants re- Let's first introduce some detinitions and the as-
moval, 10017fusion, and consta_lt folding. IF2Mem al- sumptions about Sisal IF-1 graph execution before dis-
locates abstract memory locations to IF'-.1 nodes, pro- cussing the Threshold Scheduling Method and the re-

(luting an augmented forlll ('all(,(l I1"-2. ll"21Jp (:arries suits.
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IF-2 FROM IF2UP PHASE

I DEPENDENCE ANALYSIS

TIMING ASSIGNMENT I

I TtIRESHOLD SCHEDULING

1
i

IF.2 TO IF2GEN

Figure 2 Threshold Partitioner

3.2.1 Assumptions dependence edge. This dependence edge could be ei-
ther a data or a control dependence edge, Tile scaled

The following a.ssumptions are made about tile execu- computation cost of vi is denoted by t(vi) and the

tion of a Sisal ta_sk graph on the target machine: scaled communication cost of edge e(vi, vj) is denoted

1. The task graph is a directed acyclic graph (DAG). by c(vi, vj). The scaled computation and communica-
tion costs for each of the nodes and edges are found

2. The tasks are strict (or, in other words, a task as described earlier.

cannot start execution unless all of its inputs be- Four kinds of timings associated with each node are
come available). This restriction is imposed by defined:

the Sisal semantics. Using the strictness condition, and the precedence
constraints, the earliest start time of the node vi is

3. The tasks are non-preemptive and have a finite defined as,termination time.

4. The values are exchanged between two processors est(vi) -- j,e(vj,v,min)eEk,k#j,e(_kmax,v,)eE (ect(vj)

in the form of messages, by using asynchronous ect(vk) + c(vk,vi)),
send() and receive() calls. This assumption is

made specially for Intel Touchstone i860 systems. The earliest completion time of the node vi is given

5. The cost of a message is determined by the by, = + t(v;)
startup cost and the length of the message. For a
message m bytes long, the cost is given by a..t-j3m, The latest start time of the node vi is given by,
where a is the fixed start-up cost for the messages
and {3 is the ii_cremental cost per unit length of lSt(Vi) = max (lst(vj) %" C(Uj, Vi)),• j,e(vj,v,JEE

message.
The latest completion time of the node vi is given

6. The task creation overhead ia assumed to be neg- by,

ligible compared to task execution time. let(vi) = lSt(Vi)+ t(vi)

3.2.2 Definitions The schedule margin represents the delay in the
schedule time of the given task, had all the tasks in

A task graph G(V,E) of Sisal IF-1 nodes is a directed the graph been allocated to different processors (max-
acyclic graph (DAG) such that each node l,i E V of imum parallelism case), over the best ease in which a
G is a Simple IF-1 node representing a task and the task starts execution at the earliest start time given by

directed edge e(_.,,,v3) E E represents the precedence the critical path length. Thus, the schedule-margin is
constraint from v, to v2, that corresponds to the actual a measure of the tradeoff between the schedule length
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and the degree of paralMisn_, l,et's define a schedule- larger allowable delay in sclwdule tinw and it will be
margin value associated with node _'i as, zllore likely thal the t_uskis schedulect on one of the pre-

decessor task's processor and vi,'e-.versa. The thresh-

sm(vi) = lst(v,) - est(v,) old, thus, controls the tradeoff between the degree of
parallelism and the schedule length.

When a task _'i is schedtfled on a processor l,(Vj) Let's first, illustrate the method by the following
on which a predecessor task vj is scheduled, no corn- exallq_le.
munication is needed between vi alld t,j. The scheduh, l/efer to the example in tigure 3. It shows a task
time is given by, graph created from the following code fraction:

st i,nc(vi, p( vj )) = max( (st ime(vj, l)(v7 )) + t(vj )),.i#k . • •

(slime(vk,p(t,k))+l(vk) +c(ek,vi))) functl(argl,arg2,arg3 : in; arg4, arg5, arg6 : out);
funct2(arg4 : in; arg7 : out);

The schedule delay of a node t'i on processor p(t'j) funct3(argg : in; arg8 : out);
defines the delay in scheduling v, from its earliest start funct4(arg6 : in; arg9 : out);

time and is given by, functS(argT,argS,arg9 : in; argl0,argll,argl2 : out);
funct6(argl0 : in; argl3 : out);

sd(v,,p(vj)) = slimc(vi,p(vj))- est(vi) functT(argl3,argll ' in; argl4 : out);
funct8(argl2 :in; argl5 : out);

The schedule delay is Uplwr-bounded by the funct9(argl4,argl5 "in);
schedule-margin. The ,'ol_lpletion tilne of a node vi , , ,

on proce.ssor p(t'i) iS given by,

The computation and communication costs of each of
ctime(t'i,p(ri)) = slimc(t,i,l,(Vi))+ l(c_) the nodes and edges are shown next to thetn. The

earliest possible schedule time of task 2 is 100 (rightThe threshold assunles the values in the range,
after the completion of task 1), and its latest possible

min sin(v,) _<Threshold < maxsm(vi) schedule time is 150, if communication due to edge
_,e_' - ,,,ev (1,2) is taken into account. Only tile t,auskprecedence

A merit function is used to break ties between dif- relations, and the strictness condition nmntioned ear-

ferent tasks eonlpeting for the same processors. A lier are take.n into account, to firm out the earliest aim
merit function decides lhe quality of matching between latest schedule times of each task. For example, the

earliest and latest, possiMe schedule times for task 5
a task and a processor. Task A is better than task B on will be determined on the b_is of timings of each of
a given l)roc,,ssor if task A delays the processor com-
pletion less than I3. Similarly, task A gets a preference the tasks 2, 3, and 4, and the comnmnication cost
over task B on a given processor, if task A is delayed along the edges (2,5), (3,5) and (4,5). If a task is to
more from its earliest start time, t.llan task t3. The be executed on one of its predecessor task's processor,

merit function is a ('oillposition ot' these two require- the communication overhead along the (:orresponding
edge is saved._nents. The merit function of a node z,, on l)rocessor

In this manner the earliest and the latest possible
p(vi) is given by, schedule times of each of the tasks are found. The

,nerit(l',,p(_',))- (.sti,nc(l',,p(vi))- esl(v,)) threshold is w_ried between 0 and 157. Suppose a
threshold value 50 is I)eing used. First task 1 is sched-

--(cti,n:(r + l',,r,(,,,)) - ctimc(r.l,(_',))))
uled on p(1). When task 1 conlpletes, each of the

where, r is the set of ta.sks already scheduled on p(v_) ta.sks 2, 3, and 4 are ready to run at. time t=100. The
tasks 2, 3, and 4 conlI)e.te for I)(1), to aw)id commu-allot r + v, is the n_'w task set r_,s_llling by adding r,i

, (:time(r,p(vi)) gives tile colllpletion tillw of ta.sk set nication. This tie is broken using a lllerit function,
r on p(ri). The merit fulwtion of a ta.sk set r is given that basically gives a memsure of the task delay, and
by, tim processor colllplet,ion delay. The merit functions

meril(r,p(k)) = luax mcril(k,p(k)) of ta.sk t on processor I) is found as fol!ows:
kc, merit(t,l)) = Ta.sk delay of t on I_- l_r°cess°r comple-

The essence of the' sctmduling algorithm is tha.t it, tion delay of I) due to t.
tries to lilnit, ltl_' scl_edul, delay of _,ach ta_sk below Since, the merit function of,l is the t_ighesl., task 4 is

l.t_e thr_,shold. "l'l_us, a gr,,al_,r t.l_rest_ol_tvallw in_t)lies allocated Io p(l). Next, the tasks 2 and 3 are allowed
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Figure 3: Example Task Graph

to be allocated to new processors, and tile resulting possible which could be useful on large systems.

task delays are examined. Ill this case, both tile task
delays of 50 and 20 are below the threshold, permit- • Scheme B: Find a schedule with processor de-
ting such an allocation. The processor assignment is mands below a given maximum number of avail-
carried out in this manner for a set of the thresholds able processors in the system. Of the many sched-

values chosen by the algorithm, and the best value ules that could satisfy this condition, the one with
is chosen to satisfy the given scheduling goal of el- the minimum processor demands is chosen. The

ther minimizing schedule length or reduce the number maximum number of available processors is as-
of required processors below the nmxirnum available sumed to be 16.
n umber of processors.

3.3 Compile Time Results

3.2.3 Algorithm
Using the threshold scheduling algorithm described

The Threshold Scheduler varies the value of the in Appendix A, the schedule lengths, required number
threshold, between its minimum and maximum of processors, and the speedups obtained for different
bounds and determines a value that gives the rain- numerical packages are given in figures 4, 5 and 6 using
inmnl schedule length or reduce the number of re- discrete threshold scheduling. Referring to figures 4,
quired processors below that of the maximum number 5 and 6 the results of Scheme A are summarized as
of available processors. The set of threshold values is follows:

found by using a difference between the actual sched-
ule time and the earliest schedule time of each task • This scheme finds the schedule length within a

on its predecessor tasks' processors. The scheduling factor of 2.0 of the critical path lower bound. It
is attempted for each threshold belonging to this set, is well known that the critical path lower bound
and is thus called Discrete Threshold Scheduling. Ap- itself might not be achievable for optimum solu-

peudix A gives the algorithm that traverses the IF-I tion.
graph in depth-first manner to perform scheduling. It
takes O(k v) worst case time, where v is the nuufl_er • The speedups range from 1.89 upto 26 and are
of tiodes, arm k is the number of threshold values used higher than scheme B.

by the algorithnl to find the best threshold. • The utilization are low due to the high number

Two options are offered for compiling I)rogralns: of processors found by this scheme. IF-1 graphs

• Schenw A: ltedlwe schedulf, lengtll as _nlu'h as are sparse and in many ca,ses tree-like parallelism
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Figure 6'. Discrete Threshold Scheduling: Speedup

results after the dependence analysis, requiring a duces code for a shared memory system like Sequent
largo number of processors. Tile number of pro- Balance.
('essors are quite high. But these number of pro- The Sisal compiler, Osc, translates the IF-2 to a C
cessors could be allocated on a large system such program in its final phase, IF2Gen. This C program is
as an lntel Touchstone i860 with 512 nodes, then linked to the run time system producing object

code on the target machine using its native C compiler.
Referring to figures, 4, 5 and 6 the results of Scheme In this manner, the Sisal project has attained its goal

B are sunlmarized as follows: of easy portability across wide spectrum of platforms,
as well a.s ease of modifying the run time system for

• The schedule length increases to as much a_supto
5 timos tile critical path lower bound. But in different parallel architectures.
many cases, it. is maintained within a factor of 3.

4.1 Code Generator

• The speedups range from 1.22 upto 8 and are
nluch smaller than scheme A. The Shared Memory Sisal compiler Osc, tries par-

allelization of FORALL loops, and stream tasks, on
• The number of processors is low and the utiliza- systems like Sequent Balance, and Cray YMP.

tion is high in this scheme as compared to Scheme The code generation phase starts with the IF-2

A. This is due to tile fact that at high values graph in which FORALL and Stream graph nodes are
of _J_resh<_lds, every attempt is made to schedule decorated with parallelization/noparallelization prag-
a giWq'l task on the predecessor task's processor. mas in earlier partitioning phase, IF2Part (refer to
This results in a fewer number of processors. The figure 1). Figure 7 shows the structure of shared mem-
I_ur,_t,_,r,_t"processors found by this scheme are br- ory IF2Gen. The first part If'2Opt tries optimization
low It; (a typical size for 'small' lntel Touchstone of AGatherAT node that gathers a scattered array.
i_ti_)) Tile aim of IF2Opt is to manage storage required by

AGatherAT efficiently. The next phase is responsible
for improving array indexing and referencing. The ar-

4 Code Generation and Run Time Sys- rays are implemented through a dope vector that has
tern a pointer to the physical space. The If2Yank phase

first carries out a type merging operation based on
l,¢,t's tirst l_resent an overview of the code generator structural type equivalence and c_sts other types into

and r,l_t ti_le system of Sisal compiler, Osc, that pro- the ones representative of eacll equivalence class. The
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Figure 7: Osc code generation phase

above phases can be collectively called the preproces- 4.2 Run Time System

sot part of the code-generator.
The shared memory Sisal run time system consists

of a group of routines that co-operate to carry out

The next part, PrintFilePrologue puts tile cor- three functions:
rect headers, globals, forward definitions, the type ta-
ble, the union and record structures as a preamble in • To manage machine defined aggregates such as
the C code file. The custom read/write and dealloca- the arrays and streams.

tion utility routines for records and unions are then • To carry out input/outputs for Sisal Fibre stan-
printed and their addresses are entered in the type dard. Fibre is a Sisal input-output standard (for-
table. The index into the type table is used by tile mat).
run time system to look up for a particular alioca-

tion/deallocation routine. Next,, prototypes for user • To manage the processes and block allocations for
defined functions and for libraries are printed. The tasking mechanisn_.
AssignTemps phase assigns the temporaries to the
different Simple and AT nodes. The PrintFunctions Array handling:
pass then traverses the IF-2 in a top down manner. For The array handling routines mainly perform: array al-
every function, first, a function name and an argutnent location, deallocation, copying and referencing. The
list is printed using C syntax, followed by its local vari- arrays are maintained through dope vectors, and in-
able declarations, Thexl, th,' IF-2 nodes belonging to dexed using base+olfset addressing. Special bounds

function's body are visited in the depth first, order and checking routines ascertain tile legality of references.

their operations are printed in terms of macros that ex- The arrays in Sisal are single dimensional while multi-
pands appropriately using Sisal run time system, and din iensional arrays are inlplenmnted a.s arrays of point-
that take proper arguments in terms of the assigned ers that point to each row.
temporaries. For Compound node_, special semantic Stream Handling:

action is taken to print the conditionals, union l.ags, The streams are inlplemented
or the loop control structure a.s required. At the end as butlers (of MaxStreamSize) keeping read and write
of each of the functions, a function epilogue is printed, pointers. The float and int strealns are ilnplenmnted

The shared memory implementation prints epilogues separately to maintain better efficiency. The impor-
only for parallel ta.sks, which consist of a frame deal- rant operations on streams: read, write, dealloc, aml
location routine, error are pert'orlned by various rotatines.
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l.i:,r,, 1/0: 4.3.1 Pre-processing
i _i,r,_ standard is managed by a toolset written

: i,,. l tJat lliost, lv performs a parsing and formatting Before generating the intermediate C code, tile 'in-
" lining' optimization in Osc is activated so that all

.i l'v,,,'ess aud block manager: the function calls are in-lined at their respective call
i . _li,_ i,l_,st important part of the Sisal run tilne sites. Since Sisal does not allow recursive definition of
-. _,_.,_ It initially establishes a shared memorysys-

',. _, i,', _(,t'ing a chunk of shared memory and divides functions, this optimization can be always carried out.
,_ ,.,_,, I_lc,,'ks for allocating then_ to diiferent work- Thus, after in-lining, the functional parallelism is ex-
,, l_:_,:tiof the workers obtains tasks for itself from posed in the interprocedural framework, and a single

SisalMain() function is created that contains all the
, -ii:_.I,'_t (tueue of ready to run tasks, in-lined code.

I I:,_ _<,,tc generator and the run time system is In the IF-2 representation of Sisal programs, multi-
_ii,.,l it_ this work to support functional paral- pie edges might carry the same value(s) from one node
:_ _,l_ lntrl (;alnma, l)elta, and Paragon family of to another. This results in sharing the same tem-

pi_t,,:l rnenlory machines, elficiexltly. Functional porary amongst multiple edges. For a shared mem-
+:!,li_txkis quite fine-grained as conlpared to the ory implementation, these extraneous edges do not

:_ _'._l_ll,:ation costs on these machines; hence care matter, but in a distributed memory implementation,

,_.: _ t,,_ taken to nlinin_ize the overheads, it might generate a lot of unwanted communication.
Therefore, before the code generation starts, the fol-

1:_ l)istributed Memory Systems Modifi- lowing algorithm performs some pre-processing to re-
cations move such extraneous edges and marks other edges

active.

i i_,, run tilnemodel hms beenmodifiedforthedis- l.For all the nodes in the IF-2 graph of
SisalMain() do,_: _,i!,.,:t ttl,::nlory system implementation. In this im-

:, ,_,._ta_i,)n, functional parallelism between the Sire- 1.a Mark all the edges and their corres-

_ .,_,,les c,f a t)rogra_n's 1I:-2 representation, is used. -ponding temporaries, INACTIVE.

i'.. _.lining the Sisal function calls in its SisalMain(), 2. For all the export edges of a node,
,rr_spondingC main()ofthe program iscreated, such that their destination node

,,, vv t,r_.:essor has the same copy of the generated is not Simple, do
2.a If the temporary corresponding,,!,, and individual code for each processor is sepa-

.'_ _i in tl_e C main() by using a case statement. The to an edge is INACTIVE, make both
'. f,,r t l_. _,xecution of a Simple node is present only the edge and the temporary ACTIVE.
{,_tl_.scopoofthatprocessorwhich issupposed 3. For all the export edges of a node, such

,. ,:_-_'_!r il. that their destination node is Simple, do

Il,_oiliercode includingcontrolcodeof thepro- 3.a If the temporary corresponding to
the edge is INACTIVE make both

" _ lib. "if' statements, and loop control structures
_- _i,,';ttt'(t under the scope of each processor. Con> the edge and the temporary ACTIVE.

_ _."a_i,,_i primitives are put at the beginning and 4. Remove all INACTIVE edges in the graph.

, } ,,f ,'st,:lt Sin,pie node to receive and send values To make the objective of this algorithm clear, let's

': _ ;_,! to _,ther processors, present an example. Figure 8 contains a small IF-1
._ _ , . .,,__,. tm,co_.s,:_rs starl execution through a start- graph Nodes 1 and 2 are Simple nodes The output
' .,l,_t_,' at,t sol up their context that includes pro- value t generated by node 1 is fed to both node 2 and

,r _t,or, l,rocess id eic. A processor then takes the surrounding graph boundary. Let's assume that
,: i_r,,_riato branch to the corresponding case state- node 1 is scheduled on processor 1 and node 2 is sched-
" _,_t' _MAIN() corresponding to SisalMain(). uledon processor 2. The graph boundary 0isuniver-

_,_rt-. ,.x,.,_i,,n of th(, program under this case. sally owned and hence belongs to both processors 1
' _,._,.r _ n,_d, t,) receive or send values, it exe- and 2. In this case, no messages will be generated for

- _h,. ,._t,od(led send() and ro,:eive() calls to corn- the edges e0 and el, since their source is a universally

,, _,_at,- wit h o_t,-r processors. ()n co_nple_ ion of the owned graph boundary and the values generated there
',' '..i\(i ,.ach pro,'ossc, r prints its fishings and the are available locally on each processor. As far as the

" .,! v:-tl,_,._of t t_, t,rograt_ t,v usi_g Ptll FibreOut- (,utl)ul values of nodes 1 and 2 are concerned, the code
, ;_-,l,>.,,'rib,.,t ,,arlwr g,;I_ ,l,,r would _.ak_,following actions. Se.nd value of
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Figure 8: It'-I Example Graph

t from node 1 to 2 for edge e2. Send value of t from better than individual 'ifs' clue to tile fact that 'switch'
node 1 to all tile processors (since graph 0 boundary may be implemented by a jump table where each 'case'
is universally owned), for edge e3. Send the value of (that corresponds to the processor number) can index
t' from node 2 to all tile other processors. As one in it to go to its branch.

can see, processor 2 who owns node 2, gets ttle value Once a 'case' starts the scope of tile statements to
of t, twice: once, the universally broadcast value on be executed by the corresponding processor, the corn-
edge e3. and once the value on edge e2. Thus, there plete IF-2 graph of the SisalMain() function is tra-
is a redundant send and receive pair in the code. If versed and the following algorithm is used to generate
the edge e2 is eliminated, the redundancy disappears, the code for every processor:
The above algorithm achieves this objective.

4.3.2 Code Generation For processor from 1 to Required_processors do,

I. If ((node.type= Simple) &&
]I1 the code generator, the phases before PrintFul|c- (node. owner != processor)) then
lion are unmodified. While printing the SisalMain()'s generate communication primitives to

equivalent C nlain(), the code to be exectlted by each receive values generated by this node

processor is separated by using a (_'as(:statelnent, t]lat that are universally owned. A value
uses tile processor number. This scheme was preferred is said to be universally owned if
over the scheme of isolating each of the Simple nodes it is available on every processor.

(that are parallelized)using an 'if' guard to check pro- Such a value is generated by an edge
ce.,,sor ownerships. A processor is said to own a given whose destination is a node other

Simple node, if only it and no other processor is re- than a Simple node that is universally owned.
sponsible for the node's exec_lt.ion:. The reason for Go to step 4.

the choice of using a 'case' statement instead of 'if' 2. If ((node.type = Simple) &&
statement is that the overhead in using 'if' guards is (node.owner = processor)) then
trenlendous. On the other hand, by collecting all the For all the input edges to this node, do
Si:nple nodes owned by a given processor and putting 2. a. If the source of the edge is a
theul ul|der a single "ease' amortizes this ow,rhead. Simple node, generate a communication
Also, the C compiler would prolmbly process 'switch' primitive to get the values from

IAII the nodes other than Simple he,des, are executed I,y owner of that node.
ew.ry proc,.ssor ;,.ndare thus, mdversally ,,wried 2. b. If the source of the edge J.s not
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a Simple node, then the respective 4.3.3 Run Time System

value is universally owned and is
The main job of tile run time system is to properly

available locally. No action is
support, the COlnmunication primitives. Two basic

needed by the code generator. comnmnication primitives are defined as follows'
end for

3. Generate the computation code pick(message_type, recv_data_addr,

corresponding to the given node. no_bytes, source_proc, source_pid)

4. If ((node.type = Simple) &_ put(message_type, send_data_addr,

(node.owner = processor)) then no_bytes, dest_proc(s), dest_pid)
For all the output edges to this node, do

4.a. If the destination of the edge The put and pick primitives operate asynchronously

is not a Simple node, so that the sending and tile receiving processor do not

generate a 'broadcast' primitive ]lave to rendezvous. This exposes more parallelism.

to send the universally owued These communication primitives are implemented as

values to every processor, macros that expand to appropriate system call(s) on
4.b. If the destination of the edge lntel machines.

is a Simple node, put a Also, the different semaphore locks and cache

communication primitive "co send blocks from which memory is allocated to a requesting

the values to the owner processes, are not needed in the distributed memory

of the destination node. implenmntation. They are, therefore, removed from

end for run time system. Also, the start-up code is simpli-

5. Continue steps ! to 4 above for all the fled since all the processors execute the C main and

nodes in the function graph of SisalRain(). then branch off through a case statement. Therefore

end for virtually no process management is needed unlike the

shared memory implementation.

The comnmnwation i)rimitives are generated for Most of the array and stream compute macros re-

each of the values to be passed from one processor main as they are in the shared memory implementa-
to am)ther. Following algorithm generates communi- tion.

cation primitive(s) to pass data objects:
4.4 Benchmark Results

I. If (temporary. type = Scalar),
i

calculate its size on the target Some benchmarks have been carriedout.on Int,q

in bytes and generate appropriate Gamma, Delta,and Paragon. IntelGammais a hyper-

communication primitive, cube, whereas Delta isa mesh. Unlike both Gamma

2. If (temporary. type = Array or Stream), and Delta, Paragon has OSF/1 as its operating system

2.a. First calculate _;he size of with much simplified micro kernels.

its dope vector and generate The parallelized programs have been executed on
communicative primitive for these machines for both Scheme A and B and speedups

passing and receiving it. have been rneasured. Refer to tables 1 and 2 for the

2.b. Generate communicative primitive results of the benchmarks. The timings have been

for passing and receiving it gathered using a millisecond clock on these machines.

based on the physical size given The predicted speedups are those found by compile

in the dope vector as in 2.a. time scheduler (as described before)by assuming the
3. If (temporary.type = Record or Union), architectural cost model.

For each of the the fields,

3.a. Follow steps (1) to (3) above. 4.5 Discussion

Thus. i_ can t,e seen that, due to the conformance Following observations can be made from the above
of lh__ arrays and streams to the data size in Sisal, one results:
has to tirs_ [s_,_s its dope vector that gives the size of

the physical spa,',' and then pass the array or stream 1 The speedups obl, ailled for all the three machines

itself Th,refor,". two messages are needed for passing are lesser than those predicted by the compile

such a _ariabl.,. siz,, ,:taTa object li,_e inolhod This can be mainly attributed
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Table 1" Scheme A Speedups

Package No. l'redicted Gamma] Delta Paragon

Name Procs. Speedup Speedup ] Speedup Speedup
Loop 10 37 10.3 4.67 6.1 7.22,..

Loop 13 7 1,89 1.1 1.38 1.66

Loop 1,1 26 ........ F,.12 3.25 4.55 6.12 .....

Loop 15 33 1!.68 8.21 10.22 i0.45 .....

Loop 16 17 8.04 .... 4.46 5.33 6.8
Loop 20 21 2.64 1.59 1.89 1.94
Loop 23 14 3.75 1.88 2.11 2.33

Loop 24 ] 6 2.88 1.22 1.67 ! 1.75

Table 2: Scheme B Speedups

......Package I No. Predicted Gamma Delta Paragon

Nanm ] Procs. Speedup Speedup Speedup Speedup
l,oop 10 9 6.37 3.29 3.89 4.5

Loop 13 2 1.29 .89 1.0,5 1.14
Loop 14 13 6.71 3.23 3.78 4.77......

Loop 15 10 4.88 3.12 3.77 4.15
Loop 16 8 4.!)4 ....2,58 2.78 2.9
l,oop 18 11 6.71 4.77 5.1 5.33

Lool:) 20 3 1.77 1.12 1.15 1.2
Lool) 23 ,t 2.78 ....... 2.16 2.22 2.6"1.............. ,,, ,........

I,ooi) 2,1 2 1.,t7 .96 1.09 1.1B
RICh Ill) 4 2.48 1.34 1.67 1.88
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to the run time overheads and the higher com- The results are very promising and this strategy
munication latencies resulting from unpredictable could be of immense use in compiling for varying sizes
network delays. The communication model of (in terms of number of processors)of distributed mem-
o. +/3, m, where a denotes the start-up cost of a ory systems, and thus could be used for a variety of

nlessage, _3denotes the incremental cost per byte, platforms.
and m denotes the number of bytes, is based on The work, thus, provides for a general framework
the fact that there are no other messages present involving a compilation methodology to effectively

in the system at the time of communication. The map functional parallelism in any language on dis-
presence of more than one messages in the net- tributed memory systems, with both, small and large
work makes the communication latencies unpre- numbers of processors.

diet, able, due to the unpredictable network delays.
Thus, the latencies can not be analytically mod-
ele'd, and are higher than predicted by tile above
model. This can adversely affect the fine grain

functional parallelism. This is the main reason of
the loss of parallelism (in some cases as high as
_0%).

2. The speedup for Delta is better than Gamma, and
that of Paragon is better than Delta. The main
rea_son for this behavior is that Delta has better

routing hardware and topology than Gamma, and
Paragon has a better operating system software
(OSF/1) as compared to Delta.

.3. The speedups in some cases are low compared
to required number of processors, because the
fraction of the code that could be run in par-

allel is small (Amdahl's law). In fact, in most
Sisal programs, an inverted tree type parallelism
is present. In other words, there many operations
that can be executed in parallel at the beginning
of a graph or sub-graph boundary, and as the pro-

cessing occurs in the IF-1 nodes, fewer and fewer
values are produced after the reductions that are
fed to the subsequent IF-1 nodes. In many cases,

towards the end of a graph or sub-graph bound-
ary, just one or two data values are operated upon
leading to an almost serial code. Thus, there is
a high processor demand at tile beginning of a
boundary that quickly diminishes towards its end.
This phenomenon leads to inverted tree type par-
allelism that reflects in an overall high processor
demand with relatively low speedups.

5 Conclusion

This work introduces a new compile time method

to schedule functional parallelism in a program on dis-
tributed memory systems, to minimize either program
completion time, or to generate a schedule with the
processor requirements below the maximum number
of available processc_rs in a system.
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Appendix A :Threshold
Scheduling Algorithm

/* Following pseudo-code calculates the Best Threshold and finds schedule*/

i. Input : Outermost IF-2 graph, G, and minimum, and maximum

bounds on Threshold, and choice of either of compilation

schemes A or B (Scheme A allows compilation for minimizing schedule

length and scheme B allows compilation for minimizing number of

processors).

2. Output: Processor assignment for Simple and At nodes of G.

procedure GetProcessor(n, Threshold, P)

begin

I. Select a predecessor task m of n such that the
schedule time of n is minimum.

2. Let p(m) be the respective processor of the

predecessor task m. Find schedule time of n on

p(m).

3. Find the schedule delay sd(n, p(m))

If sd(n, p(m)) <= Threshold, allocate

n to p(m).

4. If sd(n, p(m)) > Threshold, find set of

clashing tasks, T on p.

5. Find merit(n, p(m)) and merit(T, p(m))

6. If merit(n, p(m)) < merit(T, p(m)), go back

to step i by choosing next best predecessor

task of n. If all the predecessor tasks are

visited go to step 8.

7. If merit(n, p(m)) >= merit(T, p(m)), allocate

n to p(m). Migrate all tasks g in set T.

a. for all the tasks g in set T do,

call Getprocessor(g, Threshold, P).

8. If in steps 1 to 7, n does not find its

processor, find any free processor p(k) such

that sd(n, p(k)) <= Threshold, and is minimum.

9. If no processor could be found in 8, add

another processor and allocate n to it.
P=P+I

end procedure
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A Virtual Shared Addressing System for Distributed Memory Sisal

Matthew Haines* Wire BShna l

e I .IC,ASE (,omput ,r Scmnce Department
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Hampton, VA 23681 Fort Collins, ('O 80523

Abstract write, and contain a large amount of machine depen-
dent housekeet)ing code not germane to tile specifica-

Efficient implementations of Sisal exist for shared tion of the problem. An alternative approach is to
memory and hierarchical memory multiprocessors, but use a high-level language that provides implicit paral-
dzstrzbuted memory Unplementations have been ham- lelism and the resulting management of parallel tasks
pered by the Sisal compiler assuming a single ad- and distributed data.
dress space. We have designed and implemented Sisal [13] is a functional language that supports
a solution to this problem by developing the VISA data types and operations for scientific cornputation, !

(VtrtTtal Shared Addressing) runtime system, which and provides implicit parallelisrn on a number of
provides distributed task and data management. In shared memory parallel architectures. The Sisal com-
th_s paper we discuss the VISA data management piler (OSC) consists of three parts: a frontend, a
system, including the deszgn and implementation of backend, and a runtime system. The frontend trans-
a single addressing space, data distribution func- lates the source program into intermediate dependence
lions, and address translation. We provide an ex- graph form. The backend optimizes the intermediate
ample of the performance of Sisal with VISA on the representation and generates native C code. The run-

nCUBE/2 distributed memory multiprocessor using a time system provides the Sisal compiler with two main
two-dimensional smoothing algorithm called Laplace. abstractions: task management and shared memory
We show that the current Sisal compiler's implemen- management. We have modified the runtime system

ration of multi-dimensional arrays is highly inefficient to provide support for both abstractions in a dis-
in a distributed system, but that an efficient imple- tributed memory environment, and in [7] we provide
mentation of rectangular multi-dimenswnal arrays is an overview of the initial system and its t)erforrnance.
possible. We also show that multithreading can effec- In this paper we discuss the design of the dis-
tit, ely increase the performance of this program even tributed memory data management portion of the

further, runtime system, called VISA. The compiler (or pro-
grammer) is provided with a shared memory abstrac-
tion, which consists of a set of primitives for allocat-

1 Introduction ing and accessing shared data structures within a vir-
tual address space (see Appendix A for a complete.
list of VISA primitives). Data distribution is accom-

Large-scale distributed memory multiprocessors plished by specifying a data decomposition, or map-
represent, the current state of the art in high- ping function, upon allocation of the structure, so that
performance computer architecture [14, 10, 18]. Pro- each data structure can be individually distributed

gramming these machines requires the management of (or replicated) independent from the other data strut-
both parallel tasks and distributed data, which is often tures. We provide an example of the performance of
done explicitly using language constructs for spawning Sisal with VISA using the nCUBE/2 distributed mere-
and synchronizing tasks, and for message passing. The ory multit)rocessor and a two-dimensional smoothing
resulting programs are difficult and time-consuming to algorithm called Laplace. We show that the current

Sisal cornpiler's implementation of multi-dirnensi, Hal
"This work supported in part by a grant from Sandia Na-

tional Laboratories while at Colorado State University arrays is highly inefficient in a distributed system, i, tlt
lSupported in part by NSF grant MIP-9113268 that an efficient implementation of rectangular multi-
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dimensional arrays is possible. We also show that mul- the compiler or programmer to specify "how" the
tithreading can effectively increase the performance of data is to be distributed across the memories for
this program even further. This paper does not ad- improved efficiency. The idea is to distribute the
dress tile imt_Mnentation issues VISA, such as how data structures in tight accordance with the dis-
a Sisal-generated C program is augmented with the tribution of parallel tasks, so that local references
VISA primitives, are mazimized. New analysis techniques [15, 9, 4]

In Section 2 we provide an overview of VISA, and can yield the optimal distribution in restricted

the design and i_plex_entation of the supporting sys- cases, and in these cases compilers could either
tern. Section 3 t,rovides a description of the Laplace insert the communication code directly or pass

algorithm and its performance, along with an analysis the distribution information to a runtime system
of the results. Section 4 provides a brief description like VISA in the form of a mapping function di-
of related research projects, and we conclude in See- rective.

tion 5. • Split-Phased Transactions. In [8] we introduced
the design of multithreaded task management,

2 The Design and hnplementation of which relies on the ability to perform remote ref-erences as split-phased transactions, where the re-
VISA quest and reply phase are decoupled to allow for

thread switching between the two phases. VISA
Central to the current Sisal compiler is the assump- provides split-phased transactions in support of

tion of shared memory, which is required for both sys- the multithreaded task execution model.
tern and user data structures. In [.5] we outlined the
design of a task management system that eliminates The Sisal compiler augments a parallel program
the need for global system data structures by employ- with VISA primitives for allocating and accessing the

ing a distributed, rather than centralized, task distri- data structures to be kept in the single addressing
bution approach. In this paper we describe the design space 1. Any variables not placed in the VISA space
of runtime support tor a single addressing space and are unaffected by the system. The augmented pro-
general data decompositions used to manage global gram is then compiled using the native C compiler
user data structures, of choice, and linked with the VISA library to create

!
the object program, which can then be executed on a

2.1 Design Goals distributed memery multiprocessor.

Our goal in designing the VISA runtime system is 2.2 Message Passing Abstraction
to eliminate the burden of explicit data management

from the programmer, while at the same time pro- All message passing required for accessing remote
riding explicit control over the general distribution of values is handled by the VISA system through the use
global data structures. Towards this end, VISA pro- of a message passing abstraction, supporting both syn-

rides the following services: chronous (blocking) and asynchronous (non-blocking)

• Single Addressing Space. One of the primary operations. Since these operations are provided by

difficulties in programming a distributed mem- most host operating systems for distributed memory
ory multiprocessor is the lack of a single ad- multiprocessors, VISA can be easily ported to other
dressing space for user data structures, such as distributed memory multiprocessors by modifying the

message passing abstraction to make the proper native
arrays. This results in encumbering the corn- calls.
plier, or worse yet, the programmer, with the
task of distributing data structures and insert- Specifically, the abstraction supports a non-
ing the proper code to fetch and store non-local blocking send for point-to-point communication, a
references. Therefore VISA provides a single ad- broadcast for disseminating information to all proces-.
dressing space, and a set of associated functions sors, a blocking receive for synchronous communica-

tion, and an interrupt-based asynchronous receive to
that operate on that space, so that the program- handle incoming requests. Asynchronous message re-
mer, or in our cause the Sisal compiler, is given a
familiar shared memory model of computation, ception requires polling at some level to determine

I Actually, the VISA primitives are currently inserted by

• Mappzng t"unclu_ns. In association with the sin- hand into the Sisal-generated C code. We are awaiting changes

gle addressing space, VISA provides a method for to the compiler wlfich would automatically insert these calls.
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when a message arrives and take apt__ropriate action, processor strzdc at which the blocks are distril,uted.
Most, systems, including ttle nCUBE/2, provide hard- These data control parameters cc_rrespond t,o the task
ware polling for incoming _nessages, resulting in a control paranleters that are used t,o distrihute paral-
hardware trail that is caught by' the operating sys- lel tasks, thus providing a unitied llwthod for tying
tmn, and then passed into the user-level in the form task distril_ution to data dist.ril)ution, which is neces-
of an interrupt. The interrupt causes a VISA message sary for avoiding unnecessary renmte references that
interrupt handler to deal with the message. If the occur when tasks and data are noi properly aligned.
interrupt handler is allowed to be invoked at any ar- A fourth control paranleter for data structures speci-

bitrary time during the computation, it. cannot rood- ties whether or not a data structure is to be replicated.
if',' the global state of the conlputation, rFherefore, Any data structure, froln a single variable t,o an en-
either the interrupt handler must be selectiw_ly dis- tire array, can I)e replicated anmng the nodes in t.h,,
abled during the times when global data structures VISA systenl. Replication is accornt:_lished by allocat-

are accessed, or it must be prevented fror, l inodifying ing enough local storage frolll eaclJ node to acconlllm-
global data structures. The former option requires the date theentire structure, and broadcasting all writes
placement of expensive system calls for enabling and to the dala structure. Rather than iznplenmnting an
disabling interrupts around all global data structure, expensive coherence protocol, VISA assulnes that the

accesses, which can be costly and error-prone. There- replicated data structures are controlled by the coin-
fore, the VISA system enlptoys the latter option" Any piler, where explicit synchronization can be provided

message requiring a global modification is enqueued which minimizes the synchronization required while
onto a message list for handling outside of the scope still maintaining a coherent system.

of the interrupt handler. 'Faille 1 details the parameter settings for sev-
eral one-dimensional mapping functions, where the

2.3 Data Distribution map_art is passed in from the allocation routine, typi-
cally specifying the starting node. Most variables and

As depicted in Figure 2, the VISA address space structures are allocated using either the scalar_map
is allocated in part of the local memory of each par- or the replicat, e..map, depending on the nature of the
ticipating node. This creates two types of addressing variable. For example, a structure containing argu-
space for each participating node in the system: a ments for a parallel slice routine would be replicated
shared mrtual addressing space that spans all of the to eliminate the remote references required by each of
nodes, and a local address space for data visible only the nodes executing the parallel slice, whereas a global
to the local node. Each data structure allocated to counter would be allocated using the scalar_map to

the VISA space receives a contiguous set of vzrtual ad- ensure consistency. Data arrays are typically allocated
dresses that are shared among the nodes and mapped using the block..map, which provides an even distri-
onto pltys_cal addresses from each node. bution of the data among the nodes in chunks that

Data distribution (or data decomposzlzon) deter- are often exploited by the contiguous loop structur,,
rxlin_s how the physical storage for a global data struc- of the Sisal tasks. Arrays can also be replicated, and
ture is to be divided antong the particil)ating nodes, as we will see with two dimensional data structures,

The goal is to divide the data structure among the the pointer array is replicated to eliminate the need
nodes so as to mtnm, izc the number of remote refer- for two remote references when accessing an array el-
cnces caused by the distribution. This implies that the ement.

distribution of data must be tied to the access pattern The current Sisal compiler represents multi-
of the parallel computation, and therefore data distri- dimensional data structures as structures containing
t_uticm needs to I_e flexible to SUl_port a wide variety sub-structures. For example, a two-dil,wnsional array

of access patterns. For VISA, data distribution is ac- is represented as an array of pointer.s, where each ele-
con_plished by dividing a data structure into a set of ment points to the location of a onf,-dinmnsi(,nal data
blocks, where each block contains blockszze elelnents. structure (see Figure 3). This is done to confc)rt,i to
The blocks are t[lon allocated to the physical theme- the way in which multi-dimensional arrays are rel_-
ries of the nodes Ill round-robin fashion until all of the resented in both Sisal and (;:_. Matq_ing functions t',,r
blocks have been distributed, multi-dimensional arrays must ther_,f_re consider I_oth

To facilitate a variety c)f distribution schemes, we the pointer arrays ms well as the data arrays. Pr,illt_:'r
a.ssign a set of control parameters to each data struc-

ture that define the block.size of each block, the start 2"I'ruem,llti-dinw.nsic,nal arrays in f: ar,. t,,,ssil,l,.,rely if tlw
_odc t.o which the first block is assigned, alld the array bounds are given at compilc ti,ne.
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Processor Processor Processor Processor

Memory Memory .. Mere.ory ... Memory

VISA Addressing Space

Figure 1" The VISA addressing space

Mapping Function blocksize slarl node stride replwate....
scalar_map n map_arg 1 No
replicate_ap n P,d 1 Yes
block_map n/p map_arg 1 No
variable_blockmap mapmrg P0 1 No

[interleaveJmap 1 map_arg 1 No

Table 1' Control parameter settings for various 1D mapping functions

and when the number of rows exceeds the number of

. I ,, "1 processors, eachprocessorgetsagroupof,,/pcontigu-
ous rows. However, if an interleaved row allocation is

desired, the map_arg can be set to i rood p instead.
For matrix_block_map, the map_arg is typically set

|

to i/(n/rbs), where rbs is a control parameter for the
matr±x_block.map function, and is fixed for a given
number of processors to allow for the proper layout of
the blocks. Figure 4 depicts the distributions for an

8x8 matrix on 4 processors using the matrix_row_map
with contiguous rows and the matrix_block_map with
rbs = 2.

Figure 2: Two-dimensional arrays in Sisal It is possible to create many different mapping func-
tions, given the ability to modify the data control pa-
rameters. This general approach to data distribution

arrays are replicated to guarantee that accessing any is necessary to accommodate the various access pat-
element of a matrix will require at most one remote terns that applications exhibit, and VISA allows the
reference, user to add to the set of available mapping functions

Assuming that all pointer arrays are allocated using so that customized decompositions are possible. Map-
the replicate_map, Table 2 details how the control ping functions are specified upon requesting memory
parameters are established for each of the data arrays from the single addressing space using the visa_malloe
in a two-dimensional matrix. The map_arg for these function. This allows a compiler that is generating
mapping functions represents the starting node, and is the VISA primitives to invoke visa_malloc with the

typically some function of i, corresponding to the i th desired mapping function, either obtained from anal-
row of the matrix. For matrix..ro__map, the map_arg ysis or through user directives. Likewise, a program-
is typically set to i/(n/p), where n is the number of rner using the VISA primitives directly can select the
rows and p is the number of processors. When the desired mapping function for each data structure with-
number of rows is equal to the number of processors out having to specify the actual rnessage passing de-

(nip = I), the ith row is placed on the ith processor, tails necessary for iml)lementing such a distribution
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Mapping Function blockstze start node stride replicate

"matrix..r0w..map n map_arg - 1 No
matrix_col.map 1 map.arg 1 Yes

matrix_block_map .... rbs • n/p map_arg ......rbs No

Table 2: (_ontrol parameter settings for various 2D mapl_ing functions

matrix_row_map matrix_block_map

: , ' : , , , : , ,

.... :......... 0 .... "............... ,"..... ,'..... '.......... "..... :........
: , . . : ', . . : .

0 2: ' I ' : ! ............. ....:..........., , ,, , , , , : , ,

................ :..... :..... :............ :.......... ....: ........ '.....
, , : , : , , , , :
' ' ' : ' : i, ' i,.... : ' : '

, , , , o , . ,
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....,".....:..... 2 ....:......':............ ,'......"....:".........,'.....:.....,'.....

: : _: : : ! ..'. .................., . ' ....
. .

.... i......... 3 .... :..... :..... :......... !..... !..... :,.......... .:..... .:..... .:.....° . .

.... : . : ', : . , ...

Figure 3: matrix_row_map and matrix_block_raap functions

scheme, ters, each range_map entry (depicted in Figure 5) con-
tains three address ranges for each data structure:

2.4 General Address Translation
• The visa_base represents the range of global vir-

Address translation is the process of obtaining the tual (VISA) addresses for this data structure.
physical address of a datum given its virtual address.
For a distributed memory multiprocessor, a physical • The local_base represents the range of local phys-ical addresses of the blocks that are allocated for
address consists of the tuple (node, offset), where node this data structure.
is a node designator and offset is the physical ad-

dress within that node. Since VISA employs a block- • The optimized_base represents the optimized
based addressing scheme, where the blocksize, starting range of global addresses, ms explained in Sec-
node, arid stride may all vary, it is necessary to store tion 2.5.
these control parameters, along with other informa-
tion about each data structure, in a descriptor called After a data structure has been distributed with

a range_map entry. The entire VISA space is therefore the vtsa_malloc routine, access requires a translation
described by the collection of these entries, called the from the virtual VISA address to the physical address

range_map table. The term "range" refers to the fact, tuple (node, offset), which proceeds as follows:
that, since all data structures are a.ssigned contigu-

ous addresses in both virtual and physical spaces, the • The range_map entry for the desired data struc-
range (low, high) is sufficient to represent all of the ture is fetched by the find_tin 0 routine, which is

addresses within a data structure. To ensure local ac- exposed to the compiler so that the range_map
cess of the range_mat) entries, the range_map table is entry for a data structure that is to be accessed
replicated. There is no coherence problem, since each many times need only be fetched once.
range_map entry is written only once (upon creation
by vtsa_malloc). • From a virtual address, the relative element po-

In addition to the data distribution control l)arame- sition within the data structure, the block which
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Field Function

visa_base "File range of global virtual addresses

local_base The range of local physical addresses for lot]ally-owned blocks

optimized_base The range of optil;_ized virtual addresses ....
nelems The number of dements

size The size of each element

blocksize _ The blocksize (elements per block)used for'-distribution ....
...... start node ' The node 1D on which to begin (i'istributing the [,locks

_

stride The stride at which to distribute the blocks

replicate A boolean to determine if this data structure is replicated
- table.Xndex The index into the range_map table for this"entry

next A utility pointer

Figure 4" [)escription of a range_map entry

contains the desired element, and tile relatiw: oil • If tile access is remote, a message is sent to the
set of the desired element within this bh:,ck are computed node, requesting that the desired da-

conlputed: turn be fetched and returned. For multithread-
ing support, this is implemented as a split-phased

element = address - low..range transaction, where the first l)hase involves a send-
block = element / blocksize

block_offset = element rood blocksize ing a request to the desired node and the second
phase involves waiting for a reply. When mul-

e Next, the node which owns the desired block is tit.hreading is enabled, a thread scheduler is in-

computed. If the replicate flag is set, then the yoked between these two operations to start an-
conlputed node always equals the local node des- other parallel thread while the request is being
ignator, indicating that each node has a copy of processed.
the desired block. Otherwise, we compute:

2.5 Optimized Address Translation
node = (start node + (block * stride))

roodP One of the first things we noticed about the VISA

where P is the number of participating nodes, address translation scheme is that the overhead for
translation is minimal when compared with the time

• If the nunlber of blocks for this data structure required to perform a remote reference, but dominates

exceeds the number of participating nodes, then the time required for a iocal reference. In addition to
some (or all) of the nodes will own multiple exposing the routine which finds a desired range map
blocks. Next, the relative block number within entry so that range_map entries can be stored locally
the desired node and tile relative offset within this to avoid repeated searching of the range_map_table,

node are computed: we have designed and implemented an optimization
that eliminates the need for an address translation

node_block = block / P when the access is local. We introduce a new func-

tel_offset = node_block * blocksize + tion, called visa_opt, which re-writes the virtual base
block_offset address with the structure's optimized base address,

and establishes a pair of "water mark" registers to hold
• If the access is local (i.e. node is equal to the local the low and high values of the range corresponding to

node designator) the rel_offset is incremented the local_base. The optimized_base is the local_base
by the local_base from the range_map entry to minus the offset necessary to generate a global ad-
produce the actual offset in local physical mere- dress that will result in a local access. For example,

ory, since local_base contains tlle address of the suppose an array of 40 integers (4 bytes each) is al-

first byte for this structure: located using block_map arnong 4 nodes, as depicted
offset = rel_offset + local_base, in Figure 6, where the local_base values can be differ-
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VISA Space

40 Elements (160 Bytes)

blockmap

PO P1 P2 P3
r-

IO Eh'ments 10 Elements 10Elements I 10 Elements

d

local base = 1000 iocalbase = 1300 Iocalbase = 900 localbase = 1000

optbase = 1000 opt_base = 1260 opt_base = 820 optbase = 880

Figure 5: Sample VISA data structure with computed optimized_base values

ent for each node, which is possible since each node task distribution with data distribution at. a multi-

manages its local memory independently of the other dimensional level. The mapping functions attempt to
nodes. Each processor would allocate local stcrage minimize the edges (or boundary elements) in the dis-

for blockstzc = I0 elements (4(1 bytes), and set the 1o- tribution, since boundary elements require remote ref-
cal_base accordingly. If, for example, the third node erences.

wishes to optimize the b_se address for this structure, Since the Sisal compiler does not support true feet-

then the optimized value is the local_base minus 20 angular arrays, the matrix in this program is imple-
elements (80 bytes), corresponding to the two blocks mented as an array of rows, where each row is a one-
of 10 elements each that proceed it, in the distribu- dimensional array of values. Also, each Sisal array is

tion. Once the base address for a structure has been represented using three data structures, two descrip-
optimized, any further access to this structure, repre- tot structures and the actual array, and each of these

sented ,as some offset, from the base, will be checked data structures is placed into VISA space, requiring
against the low and high water marks. If the corn- an additional VISA descriptor for each. Thus, for an
l)uted address falls within the water marks, then the n x n matrix, the Sisal compiler generates 6n + 6 data
access can t)roceed without translation, otherwise the structures, 5n + 5 of which are replicated. Finally,

address is passed along to the VISA access routines since Laplace is an iter-_tive algorithm, the compiler
for general address translation and proper remote han- generates two additional swap matrices, bringing the
dling. Special macros are defined to perfornl the water total data structure count for the program to 3(6n+6),
mark checks, so that the total overhead for a local ac- of which 3(5n + 5) are replicated across all nodes. As
tess has been reduced to the tin._ required fi)r three we will see, handling multi-dimensional arrays in this
comparisons, manner has a profoundly detrimental etfect on the per-

formance of the program.

Laplace employs a five-point stencil computation,
3 Performance which implies that the computation of all boundary

elements for a give distribution will require remote
We now examine the performance of a two- references. Thus our first intuition is to minirnize the

dimensional smoothing algorithlil called Laplace, number of elements on the distribution boundaries.

which is a smoothing algorithIll that uses a tiw,-point We examine two matrix mat)ping functions to see how
stencil over a two-dimensional array. 'I'he Sisal code effective they are at minimizing renlote references. For
for Laplace is given in Figure 7 our comparisons, let us assume that the matrix size is

This problenl highlights two-dimensional Sisal ar- 256 × 256(n = 256) and we are using 16 processors
rays, mapping functions, an_t the ability to combine (p = 16).
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_, laplace, sis

define main

type 0neD = array[double_real];

type TwoD = array[OneD];

fu/_ction 2d_fill (N: integer returns TwoD)

for I in 1,N cross J in 1,N

el := if mod(I+J,2) - 0 then

double_real (I.0)

else

double_real(N)

end if

returns array of el
end for

end function _,2d_fill

function laplace (Init_M: TwoD; N,KMax: integer returns TwoD)

for initial

K :=1;

M := Init_M

repeat
K := old K + 1;

M := for I in 1,N cross J in 1,N

rum := if I=IlI=N{J=IlJ=N then

old M[I,J]

else

old M[I,J] / double_real(2.0) +

(old M[I-1,J] + old M[I+I,J] + old M[I,J-1] +

old M[I,J+I]) / double_real(8.0)
end if

returns array of nM
end for

until K >= KMax

returns value of M

end for

end function Y, laplace

function main (N,K : integer returns TwoD)
let

A := 2d_fill (N)

in

laplace (A, N, K)
end let

end function 7,main

Figure 6: Sisal code for laplace flanction
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• The matm_r_row_ma/_mapping function allocates have true N-dinwnsi,nal arrays in Sisal, resttlling It_
b contiguous rows to each processor, where b - one descriptor for the whole slructure, Sisal :2/t [']t
7_/p. This mapping scheme elilninates all of the detines true N-(liluensional arrays and giw,s a ll,'t h,,d
interior remote references, leaving only those on of distril)utiu_ regions of these arrays. A quick tix l,,
every b-th row boundary. Thus we have a total this l)roblenl given tile curry'hi, version of Sisal is t,,

of (it, - 2)2(n - 2) + 2(n - 2) remote references represent the matrix by a one ¢titlwnsional structur,,
, which is 7,620 for our example of a 256 × 256 and rewrite tile inner loop of l,aplace a.,_fi:Alows:
n_atrix.

/,I := for k in 1,n*n
• In the matrtJ:_block_map mapping function tile p i := (k-1)/n + 1; j := mod(k,n);

processors are arranged in a x/_ x v05 grid, each nM :" if i=l l i=nlj=llj=0
owning a (n/V05) × (n/v/-_) block of the matrix, then old M[k]

In the example case this would lead to a 4x4 grid else old M[k] / 2.0 +
with 128x128 elements per processor, with 4 cor- (ola M[k-n] + old M[k+n] +

net processors performing 254 remote references old M[k-1] + old M[k+l]) /
_ach, 8 side processors performing 382 remote ref- 8.0
erences each, and 4 interior processors perform- end if

returns array of
ing 512 remote references each, producing total end for
of 6,120 remote references.

When evaluating the perfor,lance of Laplace we Table 4 presents the results of the improved

must select, a prolAem size, which raises tile prob- Laplace program, using a one dimensional array an,t
lem that a l,roblel, size which /its into the memory a block mapping function that corresponds to the ma-
of a single node is not large enough to saturate an trix_row_map function, where Sp gives the speedul_ of
order of lnagnitude larger machine configuration, and tile true 2D array implementation over the Sisal 2I)
a problem size that saturat_es a large machine config- array implementation. The results are signilicantly
uration does not tit. into one memory. Therefore, we better, and can be filrther improved by using multi-

create three processor configuration groups: 1,2,4,&. threadin9 to hide part, of the cost, from a remote retire
8 nodes, 4,8,16, & 32 nodes, and 16, 32, 64, & 128 ence.
nodes. We use the same array size within each proces- Table 5 gives the performance results for Laplace

sor group, and increasingly larger array sizes between with multithreading, where the number of threads
the groups. We measure the efticiency of Laplace tel- is 16 for all multithreading cases, and Sp gives
ative to the smallest configuration in each group, and the speedup of the multithreading case over th_
call this Inca.sure relative efficiency (REff). non-multithreading case. For this experiment, w, =

The results of running LalJlace with the two nmtrix use tile improved version of Laplace that utilizes
rnapl_ing functions are given in Table 3, where REfits a one-dimensional array rather than the Sisal tw¢,
detined a.s REff=(7),/(7;_, * n)), 100, where _ is the dimensional arrays. (;oing from no message t)a.';sing

nurnl)er of i)rocessors for tile base configuration in a (1 PE) to nwssage passing (2 t'Es) slows the t)rogratlm
group, 7_ is the execution time for this base configura- down in the non-multithreading case, but since th,'
tion, and Tn, is the execution tinle on no processors, coml)ute/cotnmunicate ratio of Laplace is high (th,
and Sp gives the speedup, in terms of execution time, computation of O(n 2) array elements requires O(-) r_,-
of the block map over the row map. These results mote references), parallelizing this code pays off an,t

are clearly disappointing. The poor performance is performance is regained. At the sanw time, multi
caused by tile need for replicating the administrative threading is elfective for Lai)lace a.s ther(, are enougt_
data structures of the two dimensional arrays, ere- remote reference to cow:r the multithreading cwer

ating 3(3n+ 3) Sisal data structures and 3(3n+ 3) heads, which /¢ives rise to speedups of between 1.:26
VISA data structures (range rlla !) entries), for a total and 1.65. (:learly, multith.'eading is etfective at tc,h:._

(,f 3(6n + 6) atllllinistrative data structures, 3(5n + 5) ating tile remote references for this t)rogram.
(_f which must I)e replicated. In a one PF: machine Finally, this program could be further illlt)rov_'d I,_
there is no I)roadca.,q, t,!tlce the nluch better sequen- employing col_li)iler generate block nloves all,willg a

tial t)erfornlance. Dealing with N-di_nensionai arrays whole row to i_e c¢_ll_ltunicat_'_t Iwtween nodes. *l'hi:_
in this fa.shion works for shared memory ,tachines, but is a case where nlaking the coull)iler aware of the di:.

is clearly unaccet)tal)le in a distributed memory ma- trihuted t,_emory architecture, and l)erfl)ri_ing th,: al,
chine. The correct way to solve this problem is to prot)riate analysis and optinlizati()n, will l)rovide r,,
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matrix_row_map malrir,_block_map

PEs Matrix Size Time (s) REff (%) Time (s) REff(%) Sp
1 256x256 17.1284 100.0 18.6020 100.0 0.92
2 256x256 27.8498 30.8 34.3491 27.1 0.81
4 256x256 19.4244 22.0 24.4763 19.0 0.79

8 256x256 20.7248 10.3 22,7965 10.2 0,90
4 512x512 52.2188 100.0 53.0218 100.0 0.98
8 512x512 47.8333 54.5 51.3777 51.6 0.93

16 512x512 58.5527 22.3 63.2369 21.0 0.92

32 512x512 89.9674 7.3 97.4665 6.8 0.92
i6 i024x1024 129.7875 100.0 134.5676 100.0 0.96
32 I024x1024 185.1608 35.0 199.6552 33.7 0.93
64 1024x1024 318.1579 10.2 346.8237 9.7 0.92

! 128 1024x1024 529.3233 3.1 646.9596 2.6 0.82

Table 3 Performance of 2D Laplace, row versus block map, 10 iteration

Sisal 2D Arrays True 2D Arrays
PEs Matrix Size Time (s) REff(%) Time (s) REff(%) Sp

1 256x256 17.1284 100.0 16.6974 100.0 1.03
2 256x256 27.8498 30.8 18.5326 45.0 1.50
4 256x256 19.4244 22.0 12.4936 33.4 1.55
8 256x256 20.7248 10.3 8.7825 23.8 2.36

4 512x512 52.2188 100.0 41.3844 100.0 1.26
8 512x512 47.8333 54.5 25.4780 81.2 1.88

16 512x512 58.5527 22.3 17.4767 59.2 3.35
32 512x512 89.9674 7.3 14.5955 35.4 6.16

16 1024x1024 129.7875 100.0 50.6113 100.0 2.56
32 1024x1024 185.1608 35.0 36.0326 70.2 5.14
64 1024x1024 318.1579 10.2 29.1644 43.4 10.91

128 1024xi024 529.3233 3.1 26.8367 23.6 19.73

Table 4: Performance of improved Laplace (matrix_ro__map)
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No Multithreading Multithreading

PEs Matrix Size Time (s) REff (%) Time (s) REff(%) Sp
1 256x256 16.6974 100.0

2 256x256 18.5326 45.0 11.2740 74.1 1.65
4 256x256 12.4936 33.4 8.9311 46.7 1.39
8 256x256 8.7825 23.8 6.8160 30.6 1.27
4 512x512 41.3844 100.0 26.7381 100.0 1.54
8 512x512 25.4780 81.2 18.2013 73.5 1.39

16 512x512 17.4767 59.2 13.6886 48.8 1.27
32 512x512 14.5955 35.4 11.5710 28.9 1.26
16 1024x1024 50.6113 100.0 36.42'39 100.0 1.39
32 1024x1024 36.0326 70.2 27.3604 66.6 1.31

64 1024x1024 29.1644 A.3.4 I 23.1235 39.4 1.26

128 1024x1024 26.8367 23.6 ] 20.3319 22.4 1.32

Table 5: Performance of Laplace with multithreading, MT=16, 10 iterations

stilts superior to the general runtime approach, memory language compilers, such as FortranD [9],
Kali [11], and Sup.:,rb [19]. These systems offer the
advantage of implicit management, for both tasks and

4 Related Research memory, and allow the programmer to use a familiar
programming paradigm: sequential shared memory.

In [3] shared memory implementations of Sisal and Although these systems have had success in imple-
Fortran are compared. The shared memory implemen- menting some applications, there are several problems
tation of Sisal compares favorably with Fortran on a that have kept them from wide-spread use:
wide variety of benchmarks. By providing a virtual • Parallelizing a sequentially written program re-
shared memory runtime system, we have taken the quires extensive dependence analysis that can be
shared memory implementation to distributed mem- hampered with common imperative programming
ory machines. In [6] we introduced the design of our phenomena such as aliasing [17].
task management system, in [8] we quantify the char-

acteristics of software multithreading, and in [7] we • Due to the complexity of these conipilers and the
present the entire runtime system and provide exper- difficulties in porting them to new machines, their
iments that measure the relative effects of certain de- avaib.bility is limited to only of few of the cur-
sign decisions using a larger set of test programs, rently available distributed memory multiproces-

Another area of research that offers a language- sot systems. As stated earlier, such a compiler is

independent shared memory paradigm is Distributed not commercially available for the nCUBE/2.
Shared Memory [1, 12, 16]. However, the inability to
couple parallel tasks tightly with the distribution of • Though parallelizing/vectorizing compilers have
data, controlled implicitly by the operating system, proven to be successful for some applications on
can result in misalignment, causing excessive message shared memory multiprocessors and vector pro-

passing. Also since the granularity of sharing data in cessors with shared memory, they are still largely
these systerns is often very large (typically a page), unproven for distributed memory multiproces-
contention, or false sharing can occur, in which two sors.
unrelated data items exist on the same sharable unit,

prohibiting simultaneous access. Since the sharable
unit in VISA is an individual data structure, false 5 Conclusions
sharing does not occur.

The most cornrnon alternatives to programming We have introduced the design and irnplementa--
distributed memory multiprocessors using an explicit tion of a runtime-b_sed approach to providing a shared
parallel language with message passing are distributed memory paradigm and implicit memory .,.anagement
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for a distributed memory implementation of Sisal. [7] Matthew Haines and Wim B6hm. On the design of

We have also examined tile performance of a two- distributed memory Sisal. Journal of Programming

dimensional smoothing algorithm using Sisal and aug- Languages, 1:209-240, 1993.

mented with VISA to run on the nCUBE/2. The [8] Matthew Haines and Wim BShm. Task management,

results clearly demonstrate the need for true rectan- virtual shared menlory, and multithreading in a dis-

gular arrays, as the current implementation of two- tributed memory implementation of Sisal. In Arndt

dimensional arrays in Sisal creates an excessive num- Bode, Mike Reeve, and Gottfried Wolf, editors, Paral-

ber of supporting data structures, most of which need lel Architectures and Languages Europe, pages 12-23.
Springer-Verlag Lecture Notes in Computer Science,

to be replicated. This not only wastes an enormous
amount of local memory, but clogs the network with June 1993.

replication messages, resulting in dismal performance. [9] Seema Hiranandani, Ken Kennedy, and Chau-Wen
However, if the two-dimensional arrays are "flattened" Tseng. C,ompiling Fortran D for MIMD distributed-

into one-dimensional arrays, then reasonable perfor- memory machines. Communications of the ACM,

mance can be achieved, upon which multithreading 35(8):66-80, August 1992.

can improve. [10] Intel iPSC/860 specifics. Brochure, 1991.

VISA represents only the first step in achieving an [11] C. Koelbel and P. Mehrotra. Compiling global name-

efficient and competitive distributed memory imple- space parallel loops for distributed execution. IEEE
mentation of Sisal, and efforts should now be concen- Transactions on Parallel and Distributed Systems,

trated on the compiler to add explicit knowledge of 2(4):440-451, October 1991.

a distributed memory system, a.s well as generating [12] Kai Li. Shared Virtual Memory on Loosely Coupled

the appropriate primitives for the distributed memory Multiprocessors. PhD thesis, Yale University, Septem-

runtime system that we have created. Only then can bet 1986.

optimizations concerning task and data layout be im- [13] J. R. McGraw, S. K. Skedzielewski, S. J. Allan, R. R.
plemented, which are necessary for performance that Oldehoeft, J. Glauert, C. Kirkham, W. Noyce, and

will compete with other distributed memory program- R. Thomas. SISAL: Streams and iteration in a single

ruing approaches, assignment language: Reference manual version 1.2.
Manual M-146, Rev. 1, Lawrence Livermore National
Laboratory, Livermore, CA, March 1985.
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Appendix A: VISA Primitives void visa_put_d (double value, V_ADDR.ESS
address, range_map_type * rm)

• Allocation These functions place value into tile given VISA
address location.

- V_ADDRESS visaJnalloc (int nelems, int size,
map_function map, int map_arg) -void visa_put.In (POINTER data, int size,

V._ADDRESS address,This function allocates a block of VISA space
(nelems * size bytes), which will be distributed range_map_type *rm)

according to map, and returns a pointer to tire This function copies tile local data block of size
start of the allocated space. A range.anap entry size and pointed to by data into the given VISA
is also created and distributed among tire nodes, address location.

and local space is allocated, according to the - void visa_update_c (uchar red, char value,
map, to store the data structure. V_ADDRESS address,

• Deallocation range_map_type *rm)
void visa_update._i (uchar red, int value,

-- void visa_free (V_ADDRESS address) V_ADDRESS address,

This function returns the given portion of VISA range_map_type *rm)
space to the free pool, removes tire correspond- void vlsa_update..f (uchar red, float value,
ing range_map entry from each of the range_map V_ADDRESS address,
tables, and deaJlocates the local storage used for range_map_type *rm)
storing tile structure, void visa_update_d (uchar red, double value,

V_ADDRESS address,

• Access range_map_type *rm)

- range_map_type * find..rm (V_ADDRESS ad- These functions update the value stored in the
dress) given VISA address with value, according to the

Return a pointer to the range_map entry cot- reduction red. Currently supported reductions
responding to the given VISA address. This include V_SUM and V_PRODUCT.
pointer is then passed into each of the access
routines as an argument so that the fetch does
not have to be done for each access.

- char vlsa.get_c (V_ADDRESS address,
range_map_type * rm)
int visa_getl (V_ADDRESS address,
range_map_type * rm)
float visa_get_f (V_ADDRESS address,

range_map_type * rm)
double visa_get_d (V_ADDRESS address,
range_map_type * rm)
These functions return the desired value from

the given VISA address. If the range_map en-
try rm is not defined, then the correspond-

ing range_map entry for this structure will be
fetched, which is true for all of the access func-
tions.

--void visa_get_m (POINTER data, int size,
V.ADDRESS address,

range_map_type * rm)

This function copies the block of data starting
at tire given ViSA address and for a length of
size into tire local address pointed to by data.

- void visa_put_c (char value, V_ADDRESS ad-
dress, range_map_type *rm)
void visa_putd (int value, V_ADDRESS ad-
dress, range_map_type- *rm)
void visa_put_f (float value, V__ADI)RESS ad-

dress, range_map_type *rm)
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Developing a high-performance FFT algorithm in Sisal
for a vector supercomputer

John Feo and David Cann
Lawrence LivermoreNational Laboratory

Livermore, C'A 945.51

Abstract the literature discussing the implementation of FFT algo-
Functional languages provide a level of program abstrac- rithms in functional languages [1,2,9]. For the machine,
tion devoid of most details regarding implementation and we chose the Cray C90, a sixteen processor vector super-
architecture. Memory management, task scheduling, corn- computer. Each processor is capable of executing one bil-
munication, synchronization, and resource management lion floating point operations per second. Writing high-
are implied by the language's semantics, and are not pro- performance code for the Cray is a formidable challenge.
grammed explicitly by the programmer. While these For the language, we chose Sisal [6], a functional lan-
properties of fimctional languages are attractive, they may guage developed by Lawrence Livermore National Labora-
be detrimental if the programmer's objective is to realize tory and Colorado State University. Sisal programs have
high performance. In this paper, we discuss these pro- achieved good performance on a variety of multiprocessor
gramming issues and study the difficulty of expressing a computers [4].
machine-specific algorithm in a functional language. We In section two, we present the Fast Fourier Transform
chose to study the Fast Fourier Transform, the Cray C90, and identify important optimizations. In section three, we
and Sisal. We present an implementation of the Fast introduce the Cray C90 architecture and give requirements
Fourier Transform designed specifically for the Cray hard- necessary to achieve high performance. In section four,
ware, and explain how to express the computation in we present an implementation of the FFT algorithm de-
Sisal. Despite its complexity, the Sisal code runs in con- signed specifically for the Cray hardware, and show how
stant memory, exhibits good speedup, and executes close to express the algorithm in Sisal. In section five, we ex-
to the achievable performance limits of the machine, plain how the code is compiled and give performance

numbers. In section six, we present our conclusions and
observations.

1 Introduction
2 Fast Fourier Transform

Functional programming languages provide a level of
program abstraction devoid of most implemental and ar- We can model the state of many physical processes as a
chitectural details. The functional programmer works at function of time or frequency. The two models are related
or near the level of mathematics. Allocation and dealloca- by the Fourier Transform,

tion of memory, identification of concurrent tasks, com- oo

munication, synchronization, and resource management H(f) = J"h(t)e 2ni/'to_t (1)
are implied by the semantics of the language, and are not _**

programmed explicitly by the user. While these proper- and
ties reduce the cost of developing correct, determinate par-

allel programs, they also reduce the user's control over 7how programs execute. Fine control over program execu- h(t) = j H(f)e 2nift 0]" (2)
tion is one way to achieve high performance. -**

Since functional languages do not provide execution The two forms are referred to as the decimation in fry-

control, the functional programmer must develop algo- quency and the decimation in time, respectively. The dis-
rithms that naturally exploit the target architecture, and crete form of Equation (1) for n samples is
then rely on the compile,' and runtime system to compile
and execute the code efficiently. In this paper, we study .-I 2nif(k]
the difficulty of expressing machine-specific algori_:_.msin Hf = _ ht,e _.n) , O<f<n-1 (3)
a functional language. For the algorithm, we chose the k=0

Fast Fourier Transform (FFT). This algorithm is the key- As formulated the Fourier Transform is O(n2). But an

nel of many large scientific applications, and has been O(n log n) algorithm exists based on the principal of
studied extensively. Since speed is paramount in kernel divide-and-conquer. The algorithm is known as the Fast
routines, FFT algorithms are usually written to machine Fourier Transform (FFF) [5]. An elegant formulation of
specifications. Recently, several papers have appeared in the algorithm ascribed to Danielson and Lanczos is
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presented in [10]. Observe that the sum in Equation (3) / a_ )_/ _ )
may be divided into two sums: one over the even corn- a + eTc + eT- b + eTd
ponents of the data and the other over the odd components

of the data,z__. (T) 2_ [,T) ( _/ 5a_l cLx)

a + e-'2--c + eT b + e--Td
where 0 <f< n-l. We may now rewrite Equation (4) as
the sum of two Fourier Transforms of size n/2

n---I 2a.iy(2k) (2trif] n-I 2xiy(_-) a+e2c + eT b+e 2d

k=0 k=0 (5) But, since e_ =- 1 and e_/2= i, we may rewrite Equation

(2_/] H_ d (6,2) as= H_fven + e _ n ,/

Tile complexity of Equation (5) is O(n log n). Note thatf a + eTc + e-4-b + eTd
ranges from 0 to n - l in the last statement, but since

HeVenandH°ddareperiodicinfwithlengthnl2, allvalues ( arc)(_ 3air)

are present. Figure 1 illustrates the recursive character of a + eTc - e"_b + e _ d
the Cooley-Tukey FFF algorithm. The repeating pattern

is kn°wn as a butterflY" The heavy lines °n the left" and / ) ( 3£_ / (7)

right-hand sides highlight a one- and a two-stage butterfly, a_r y_£
respectively. The pattern is simple and regular, but there a - eTc + i e 4 b -- e 4 d
is a problem--the results are out of order. A post-pro-

cessing step to put data in the correct order is required. To / o_x / (o_x 3,_x)
find the correct position for the datum at index i, we re- a - eTc - i eTb - e-T-d
verse the bits of the index. For example, if n is 16, then
0 goes to 0, 1 goes to 8, 2 goes to 4, 3 goes to 12, etc.
The permutation is known as bit reversal. Since four one-stage butterflies comprise a two-stage but-

There are several ways to improve the performance of terfly, a radix-4 algorithm executes 15% fewer instruc-
the FFT: tions.

1. Compute two butterfly stages at once (radix-4). A 2. Compute the first two butterfly stages separately.
one-stage, two-input butterfly requires one complex multi- Use constants, and not names, for the exponential terms.
plication and two complex additions, or a total of 10 float- Since the exponential values are either 1, -1, i, and -i, we

can eliminate the multiplication operations.ing point operations. Let a and b be the inputs of a one-

stage butterfly, then the outputs are 3. Compute all the exponential terms required for the

_lr "_ computation before initiating the algorithm, and storea + eTc/ them in a manner that is convenient for retrieval by eachstage.

(6.1) 4. Permute the results of each butterfly stage such that

a - e " c the results of the final butterfly stage are in the correct or-
der. This optimization eliminates the post-processing
step to do the bit-reversal. It is important, however, that

A two-stage, four-input butterfly requires three complex the permutations at each stage preserve the computation's
multiplications and eight complex additions, or a total of regularity; otherwise, the savings will be spent on com-
34 floating point operations. Let a, b, c, and d be the plex array index calculations.
inputs of a two-stage butterfly, then the outputs are

3 The Cray C90

The National Energy Research Supercomputer Center's
Cray C90 (a.nersc.gov) is a sixteen processor, vector su-
percomputer. The machine's clock speed is 4.167
nanoseconds. It has 258M words of main memory orga-
nized in 1024 banks. The memory speed is 23 clocks.
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Each processor has two vector multiply-add pipelines fed 4.2 The initial iterations
by sets of 128-element vector registers. The peak execu-
tion speed of each processor is 1 gflop per second. The We compute the initial butterfly stages in a function
geometric mean of the Livermo:e Loops [7] is 86.3 named 1eve1_1. Succeeding stages are computed in an it-
mflops with a peak speed of 826 mflops [8]. erative loop in the body of the main function. If n is an

In addition to the vector hardware, each processor has a even power of two, 1eve1_1 computes the first two-
scalar add and multiply unit. The execution time of scalar stages; else, it computes the first three stages. The func-
operations is much less than the execution time of vector tion 1eve1_1 calls fft_4_2 to compute each butterfly.
operations. The geometric mean of the Livermore Loops We pass the exponential terms as constants and rely on
executed as all scalar operations is 22.25 mflops with a the Sisal compiler to eliminate the unnecessary multipli-
peak speed of 53 rnflops [8]. Only highly vectorized cation operations.
codes achieve peak performance on the Cray C90. More-
over, the lengths of the vectors are important--longer the 4.3 Storing the exponential terms
vectors, better the performance.

Peak performance depends on keeping the vector regis- To reduce index calculations and improve vectorization,
ters full. The Cray hardware can issue a memory read per we store the exponential terms in three pairs of two-di-
cycle; but if consecutive reads address the same memory mensional arrays. Each pair of arrays provides the real and
bank (a bank conflict), then the second read will be delayed imaginary components of one of the three exponential
until the memory is refreshed. Since memory is inter- terms in Equation (7). Each array has log4n rows, num-
leaved by words, vector strides of one are optimal, bered 0 to log4n - 1. If n is an even power of two, row i

In summary, to achieve high-performance on the Cray has 4i values; otherwise, it has 2 * 4 i values. The total
C90, a programmer must: memory requirement is 2n words. We do store some

1. implement a vector algorithm, terms more than once (the minimum storage requirement
is 1.5 n), but using the extra space significantly reduces

2. maintain long vector lengths throughout the compu- execution time.
tation, and

3. avoid vector strides of two or multiples of two. 4.4 Vectors, long vectors, and bit reversal

4 The Sisal program We now describe logically several possible vector im-
plementations of the FFT algorithm. Say that at level i,

To realize a high-performance FFT algorithm in Sisal we divide the data into 4 i packs, and we divide each pack
for the Cray C90, we have to address each of the seven into four sections. Figure 2 depicts such a data decompo-
points raised in the previous two sections. Since we can sition for n = 64. The labels a, b..... z, 1, 2..... 38 rep-
not explicitly encode implemental details in a Sisal pro- resent the 64 data values. The implied algorithm is ideal
gram, we have to address the seven requirements through for a concurrent, vector computer such as the Cray C90.
algorithm design. It consists of a set of parallel vector tasks. There is one

For the purposes of this discussion, we assume the size task per pack, and the lengths of the vectors are n/4 i.l.
of the input data is n, a power of two. Since Sisal does Additionally, we may execute each vector task on a single
not have a complex data type, we store the data as two processor or on multiple processors as necessary to opti-
vectors of real values, xre and xim. xre[i] and ximti] mize performance. Figure 3 illustrates one possible per-
are the real and imaginary components, respectively, of mutation of the outputs of each level to etfect bit reversal
the i-th datum. Using two vectors, instead of a vector of in place. Notice that only the relative positions of the
records, simplifies the code and aids vectorization, packs change. The positions of the data within a pack do

not change. Thus, the computation's regularity is main-

4.1 Two-stage butterflies tained. The algorithm's one drawback is that the lengthsof the vectors shrink from n/4 to 1 as the computation

proceeds (we refer to the algorithm as long-to-short). The
Since a Sisal function can return multiple values, en- short vector lengths at the end cause the final iterations to

coding a two-stage butterfly in Sisal is easy. We define
the function f f t 4 o of fourteen inputs (the real and execute slowly [Table I].

"- Figure 4 depicts an alternative vector computation
imaginaD' components of the four butterfly inputs and (short-to-long) similar in nature to the algorithm described
three exponential terms) and eight output values (the real in the previous paragraph. In this algorithm, the vector
and imaginary components of the four butterfly outputs).
Its body consists of the three complex multiplications and lengths grow from 1 to n/4 as the computation proceeds.Its drawback is that the initial iterations execute slowly.
eight complex additions implied by Equation (7). The We can maintain long vector lengths throughout the corn-
function is the algorithm's central kernel, putation by executing the first algorithm for the first half

of the computation and then switching to the second algo-
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ing the second and third sections, to build the full data
array at the third level.

As a second example, consider the first section of the
22 216 .0080 data array at level three in Figure 4,,

24 214 .0080 a7q23i 15y31e 11 u27m 19335

..... 26, 212 .0083 Now divide the section into foul"parts

28 2 !0 .0094 a 7 q 23_

210 28 .0155 i 15 y 31
_

_ 21.._2 26 .0471 e 11 u 27
m 19335

2TM 24 .1755
Notice that the first four output values of the first butter-

216 22 .6911 fly, a, e, i, and m, are the first values of the four parts.
Again, there exists an i-to-i correspondence between loop
iteration and result value. We have the vector loop return

Table i - The effect of vector length on four arrays, and catenate the arrays together, interchanging
performance the second and third arrays, to build the sections. We then

ii -- i iii iiii

catenate the sections together to build the full data array at
the third level.

rithm for the second half of the computation. Unfortu-
Sisal pseudo-code for long-to-short, short-to--long, and

nately, the second algorithm expects the data in a different switch algorithms is
order than it is written by the first algorithm (compare the
order of the data at the end of the first level in Figures 3 function long_to_short( . . .

and 4). So, we need for a third algorithm (switch) that returns array[real], array[real] )

reads the data as written by the first algorithm and writes
the data as read by the second algorithm. 1 et

In an imperative language, the programmer can read and
write data in any order. However, the Sisal programmer is AAre, AAim, BBre, BBirn,CCre, CCim, DDre, DDim :=
limited to the ways in which the different array ex- for j in 0, number_of_packs - 1
pressions in Sisal construct arrays. For example, the for
expression gathers array elements in a determinate, % start address of the
prescribed manner. The i-th iteration of a for expression % four sections of pack j
defines the i-th elements of each restlltant array. Permuta- po, pl, 132, p3 : .... ;
tion of array elements during construction is not permit-
ted. One might think that this constraint would make it Are, Aim, Bre, Bim,
impossible to express the algorithms described in the pre- ere, cim, Dre, Dim :=

for k in 0, (size_of_pack / 4) - 1
vious paragraphs. But careful study of Figures 3 and 4 re-
veals that we can built the levels in sections such that the are, aim, bre, bira,

ere, cim, dre, dim := fft_4_2(...)
constraint holds for each section. After the sections are

returns array of are array of aim

built, we can paste them together in the correct order, array of bre array of bim
For example, consider the second level butterflies in array of ere array of cim

Figure 3. The first four inputs to the first butterfly are a, array of dre array of dim
e, i, and m. Tile four outputs are the first values in the end for
four sections shown at the third level

returns value of catenate Are

_!b c d .. . value of catenate Aim
value of catenate Bre

ijk I . valueof catenate Bim
value of catenate Cre

C_f g h . • . value of catenate cim

value of catenate Dr-e

l_nn o p .. . value of catenate Dim

Thus, there exists an i-to-i correspondence between loop end for

iteration and result value. We have the vector loop return
four arrays, and catenate the arrays to build the four sec-
tions. We then catenate the sections together, interchang-
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i n 4.5 Strides of two or multiples of two
AAre I I CCre i I BBre I i DDre,

AAim II CCim II BBim If DDim The inner for expression of function long_to_short

end 1 e t traverses the four sections of a pack value-by-value. The
inner for expression of function short_to_long tra-

end function % long to short
- - versesfourpacksvalue-by-value.Inbothcases,thefor

expression is a vector loop with stride one. But, the inner
function short_to long ( . . . for expression of function switch jumps from pack to

returns array [real ] , array [real ] pack. Its stride is the size of a pack, i.e., a power of two.
The resulting bank conflicts degrade performance. We can

for j in 0, (number_of_packs / 4) - 1 eliminate the offending stride by inserting a one word gap

% start address of packs between packs. We define a fourth function gap that exe-
% (4 * j ) + 1, + 2, + 3, and + 4 cutes the long-to-short algorithm, but inserts a 0 between
p0, pl, p3, p4 : .... ; packs. It is identical to long_to_short except for the re-

turns clause of the outer for expression,
Are Aim, Bre, Bim,

' returns

Cre, Cim, Dre, Dim := value of catenate array_addh(are, 0 0d0)

for k in 0, size_of_pack - 1 value of catenate array_addh(aim, 0 0d0)

are, aim, bre, bim, value of catenate array_addh(bre, 0 0d0)
cre, tim, dre, dim :: fft_4_2(...)

value of catenate array_addh(bim, 0 0d0)
returns array of are array of aim

value of catenate array_addh(cre, 0 0d0)
array of bre array of bim

value of catenate array_addh(cim, 0 0d0)
array of ere array of cim

value of catenate array_addh(dle, 0.0d0)
array of dre array of dim

value of catenate array_addh(dim. 0.0d0)
end for

The "padding" of vectors to improve vector or cache per-
returns formance is a well known optimization. It is used often

value of catenate (Arel Icrei IBrel IDre) by scientific programmers.
value of catenate (Aiml ICiml IBiml [Dim)

To summarize,we havepresentedan FFT algorithm

end for designed specifically for the Cray C90. It addresses the

end function % short_to_l ong seven requirements for high-performance listed in Sections
2 and 3. We have shown how to write tile algorithm in
Sisal. The Sisal code consists of five major routines:

function switch ( . . . level_l, long_to_short, gap, switch, and short_to_
returns array[real], array[real]

long. The functions are called in the order listed and

for j in @ (size of pack / 4) - 1 compute, respectively, levels I, 2 through middle- 2,
middle - 1, middle, and middle + 1 through logan, where

Are, Aim Bre, Bim, middle = logan / 2.
Cre, Cim Dre, Dim :=

for k in 0. number_of_packs - 1 5.0 Performance

% address of value j in

% the four sections of pack k Pertbrrnance of the Sisal code depends on building the
p0, pl, p2, p3 : .... ; data aray at each level in place, parallelizing the nested

for expressions to balance the work load, and vectorizing
are, aim, bre, bim, the inner for expression. A naive implementation of the
cre, cim, dre, dim :: fft 4 2 . . . ) Sisal code would build each array defined by the inner for

expressions separately. If insufficient space was allocated
returns array of are array of aim for an array, copying would occur whenever more space

array of bre array of bim was required. -Eachconcatenation operation would execute
array of cre array of cim

in two steps: 1) space for the composite array would be al-
array of dre array of dim

located, and 2) the component arrays would be copied into
end for the space. Such an implementation would copy an enor-

returns mous number of values and would be useless.
value of catenate (Arel ICrel Brel IDre) To eliminate needless copying the Optimizing Sisal
value of catenate (Aiml IC'iml Biml IDim) Compiler [3] includes build-in-place analysis [11]. The

end f o r goals of the analysis are to calculate the sizes of arrays and
to determine the start addresses of the components of ar-

end function % switch
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The start addresses of the four component arrays are

' -- 0

1 0.041 489 1.0
array_size(AA re) - 1

2 0.023 872 1.8
array_size(AAre) + array_size( CCre) - 2

3 0.016 1,253 2.6
, array_size(AA re) +

4 0.012 1,672 3.4 array_size(CCre) + array_size(BBre) - 3

Each component array is a composite an'ay. For example,
AAre consists of m arrays of size

Table II - Pertbrmance of the Sisal code, n = 2 ** 18
size_of_pack / 4

where m = number_of_packs. The address of the k-th
component array of AAre is

J,,

1 0.083 510 1.0 k * size_of.pack / 4

2 0.044 962 1.9 The OSC compiler inserts code into the Sisal program
to compute the above equations at runtime. Prior to exe-

3 0.030 1,411 2.8 cution of the function long_to_shor'r., the program cal-

4 0.024 1,764 3.5 culates the sizes of the results and calls the memory man-
agement system to allocate sufficient space. Then, the
program calculates the start address of each component ar-
ray within the space allocated, and passes the address to

Table III - Performance of the Sisal code, n = 2 ** 19 the appropriate instance of the inner for expression.
Three types of savings accrue:

1) the memory management system is called only once,

1 0.171 521 1.0 2) since the arrays are built in place, the many catenation
operations in the original code are no longer needed and

2 0.087 1,024 1.9 may be deleted, and
.........

3 0.070 1,273 2.4 3) no copying of values or intermediate arrays occurs.

4 0.054 1,651 3.2 OSC slices all outer for expressions and vectorizes all
inner for expressions. The Sisal runtime system divides

5 0.043 2,073 4.0 the range of the outer expressions by the number of work-
ers, and allocates one task per worker. This strategy

6 0.035 2,597 4.9 works well whenever the extent of the range is greater

7 0.030 2,971 5.7 than the number of workers and the amount of work per
_- slice is the same. In our code, the latter is always true.

8 0.027 3,301 6.3 However, since the number of outer iterations grows from
" 1 to logan - 1 and then shrinks again to 1, the number of

outer iterations is not always greater than the number
Table IV - Performance of the Sisal code, n = 2 ** 20 workers. To insure that we used all processors throughout

the computation, we forced the Sisal compiler to slice the
inner for expressions. The compiler still automatically

rays built by catenation, array_addh, or array_adjust vectorized each slice.
operations. Tables II, III, and IV list the execution speeds, mflops,

Consider the first result returned by the function and speedups of the Sisal code for n = 2 TM,219, and 22°.
lc.mg_to_._6hor t. Thc si;,e of the array is Performance is uniform and close to the achievable limits

array size(AAre) + array_size(CCre)+ of the hardware. The Sisal code runs in 12n words of
arrav size(BBre) + array_sizc(DDre) memory. When an array is no longer needed, its space is

"- deallocated automatically and reused--there is no menaory
and the size of each component array, AAre, BBre, CCre, leakage.
and DDre, is

number_of_pack_" * size_of_pack / 4
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Abstract and provides run-time scheduling of instruction ex-
ecution. Rather than waiting for data to arrive, a

Data flow architeclures offer a natural hardware data flow machine schedules a computation when its
environment for functional programming languages, operands are available. Thus, a minimal amount of
Unjortunately, very few data flow systems are corn- time is spent idling, waiting for data.
mercially available. One data flow environment cur- The two main classes of data flow architectures are
rently available is the ULowell Dala Flow Imaging Co- static and dynamic. Static data flow machines lack the
processor based on the NEC pPD7281 data flow pro- sophisticated token-matching mechanisms that char-
cessor. This environment is well.suited for repetitive, acterize dynamic data flow architectures [GKW85],
highly data-parallel applications, such as low-level im- and are suitable for a class of algorithms that exhibit a

age processing; however, programming the pPD728.I great deal of regularity. The ULowell Data Flow Imag-
is often difficult due to the lack of available high-level ing Coprocessor [CNMWg0] is based on the Nippon
languages such as SISAL. Because IF2 graphs are sim- Equipment Corporation pPD7281 data flow proces-

ilar" to the graphs that represent I_PD7281 assembly sor [Nip85, Jef85], which is a static architecture. The
language, a straightforward translation from IF2 to theme of our research is to effectively utilize this static
pPD728I assembly language should exist. In this pa- data flow architecture by relying on the compiler to
per, we discuss the problems and possibilities of imple- ensure correct token matching occurs even though the
menting IF2 for this environment, hardware does not provide this functionality. Interest-

ing compilation techniques for data flow architectures
can be seen in [Dav79, Gao86].

1 Introduction Applicative programming languages such as SISAL

[BOCF] may be appropriate high level languages for

There are two main problems associated with paral- data flow architectures because of interesting par-
lel programming: latency and synchronization [AI91]. allelisms between the functional and the data flow
Latency is the time delay between when a processor paradigms. The task of implementing SISAL on a

makes a request for a resource and when that request data flow machine is simplified by the similarity be-
is satisfied. Most processors spend this time idling, tween both IF1 [SG85] and IF2 [WSYR86] graphs and
Synchronization is tim time spent structuring concur- data flow graphs.
rent activities to avoid both safety problems and non- This paper is organized as follows: Section 2
determinism, presents background information on data flow archi-

Data flow computing addresses these problems by tectures. Section 3 describes our target architecture in
using the availability ofdata, rather than explicit con- detail. Section 4 explores the issues involved in port-
trol flow, to drive computation. This paradigm both ing IF2 to the architecture of Section 3. Section 5
alleviates problems caused by memory latency [Den91] contains concluding remarks and directions for future
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research, directed graph and then reversing the direction
of the arcs, a data-dependency graph is created.

2 Data Flow Architectures 2.1 Data Flow Graphs

Parallel architectures based on traditional system A data flow program may be represented by a di-

designs often do not perform as well as expected be- rected graph in which nodes represent instructions and
cause von Neumann architectures are inherently se- edges represent the flow of tokens, as can be seen in
quential. They function by fetching an instruction, Figure 1. In this figure, data tokens conceptually
fetching its operands, executing the instruction and travel on the arcs joining the nodes. For example,
then fetching the next instruction. Highly parallel ar- token "a" travels down the left-side incoming arc of
chitectures based on this paradigm suffer from two the "+" node; token "b" travels down the right-side
main problems: incoming arc of the "+" node. Both tokens carry the

information that the resulting sum token is destined

1. Fetching operands from memory is time consum- for the "," node.

ing, and processors often remain idle during this
period, a b ¢ a

2. It is digicult to determine which instructions may il i I I [1 i 1 [

be executed in parallel, because data dependen-
cies are not explicit.

Data flow architectures address these two problems
by dismissing the fetch and execute paradigm. In-
stead of loading an instruction and then fetching its

operands, data flow systems wait for all of an instruc- / |
tion's operands to become available, and then execute
the instruction. Thus data, not the operations per-

formed on data, drive the machine. [
Since data is the driving force in a data flow ma-

k_

chine, operands for instructions must contain more in-
formation than just a data value. Packages of data,
called token, s, nmst minimally contain both a refer-

ence to the instruction that uses them and a destina- (a+bl*(c/d)
tion address for the result. When a token arrives at

a data flow processing unit, its instruction reference Figure 1: A typical data flow graph
is checked to see how many operands are required. If
all of the operand tokens for the instruction are avail-

One of the principle problems which face data flow
able, the instruction is scheduled for execution; other-

designs is what to do if two tokens arrive at the left-
wise tbe input token is held until the other operands side input arc bar,re any tokens arrive at the right side
arrive. The result, token produced by executing the in- input arc. One possibility would be to queue tokens,
struction is sent to the destination address contained

or simply store them, but then the question arises "if
in the input token, two tokens are waiting on the left-side arc and a to-

The two problems of traditional computer archi- ken arrives on the right-side arc, which token from
tectures are addressed by the data flow paradigm, be- the left side do,:s it match with?" This question has

cause: led to the development of the two classes of data flow

1. Processing elements operate on available data architectures: static and dynamic. Strictly static ar-
while waiting for other data to arrive, chitectures provide no hardware assist for matching up

tokens that arrive out of order. Dynamic architectures

2. Since all tokens must contain a destination ad- use a tag field in the tokens so that an instruction ex-
dress, data dependencies can be detected be ecutes only on tokens with matching tags. These two

searching for all nodes with the same destination types of architectures are discussed in detail in the
address. By representing this flow of data as a following sections.
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2.2 Static Data Flow architecture can be characterized as having queues of
length one (imagine a queue where one value can be

Static data flow has no special purpose hardware enqueued, but if it is not read before the next value
for matching tokens. In these systems, it is the re- is enqueued, tile old value is overwritten). Thus, one
sponsibility of the software to ensure that instructions can generalize static data flow as a "first-in-first-out"
operate on matching tokens. These systems have the matching paradigm over finite queues, allowing anal-
advantage of being cheaper and faster, but are inher- ysis by means of queuing models. The problem with
ently more difficult to program and debug, this approach is that finite queuing models are more

Tokens in a static data flow environment must con- difficult to work with than are tile more familiar infi-

tain (minimally) the following fields: nite models.
The strictest firing rule for static data flow is that

1. A data value field, an instruction can be executed when all of its input
arcs are occupied, and none of its output arcs are

2. Tile operation to perform on tile data value field.
occupied. This rule avoids the out-of-order match-

3. The destination of tile operation's result, ing problem, but introduces other difficulties. The
requirement that the output arcs be unoccupied re-

Tokens are matched with the first available token duces the amount of parallelism that can be exploited
at an arc. This can have different meanings depending and also requires some means of enforcement. In early
on the support hardware on a particular system. For versions of static data flow, this rule was enforced by

example, some data flow systems allow for queuing means of acknowledgement tokens sent from a destina-
along an arc; this entails using a finite length queue tion to a source indicating that the corresponding data
to store arriving tokens. As long as the queue does arc was available. This solution had the unfortunate

not overflow, the first token arriving on the other arc consequence of doubling the token traffic. More mod-
will match with the first token in the queue, ttowever, ern static architectures avoid acknowledgement arcs
because of the finiteness of these queues, values can but are still more restrictive than the dynamic model. i

be lost or overwritten, resulting in mis-matches among Unless the one-token-per-arc rule is enforced in hard-
the remaining tokens. #PD7281 queuing is illustrated ware, the compiler must very carefully structure loops
in Figure 2. and other control constructs to ensure correct program

execution.
Ir_--omingA-slde
token matches with

_adofB-s_e 2.3 Dynamic Data Flow

queue_(_ ,.. )
Dynamic data flow alleviates the problem of match-

'_ 1 ing tokens by implementing explicit token-matching
\ TokensconceNuaJly hardware. This makes dynamic data flow hardware

"queue* along B-side
\ a_c more complex and more expensive than static data

-. flow hardware, but removes a considerable burden
\ from the programmer.

, Tokens in a dynamic data flow environment must

.......... contain (minimally) the following fields:

QUEUE 1. A data value field.

ADD 2. The operation to perform on the data value field.

3. The destination of the operation's result11 4. A field containing information for matching other

input tokens to the instruction.
Figure 2: tlow tokens queue on the #PD7281.

Tile destination and matching information are com-

A queuing model offers a well-known paradigm for bined into a tag field. Tokens are matched only with
the analysis of data flow program execution. Even if tokens that contain the same tag. The tag field may
a machine offers no hardware support for queues , the combine information not only pertaining to the token's
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destination operation, but also pertaining to the spe- Many of the digressions away from the purely func-
cific loop iteration, the given function invocation, or tional implementation of data flow have been accom-
other context identification. Token matching can be modations made to the von Neumann community.
quite time consuming, so several strategies have been Many of these implementation constructs are similar
developed for minimizing the cost, such as Explicit to the various ways in which LISP has been altered to

Token Store (ETS) [ABU91] and associative caches placate programmers versed in the imperative style.
[AE91]. Unlike the FIFO model that we observed for Yet, inherently, dataflow hardware and functional lan-
static data flow, dynamic data flow matching follows guages strive toward the same goals: understandabil-

no simple paradigm, ity and clean-semantics.
The execution rule for dynamic data flow is that an

instruction is executed only when tokens with match- 2.6 Graphical Models
ing tag fields are available at all of its input arcs. The
execution rule is typically enforced by hardware.

• b

2.4 Advantages of Static Data Flow _ _ • b

!

I t

Tile reason we chose static data flow for our re- [-_t-_cu_
search is that static data flow cornponents are cheaper

and faster than their dynamic counterparts, and the | ?

commercial availability of one such processor enabled _
the production of an inexpensive testing platform. ,cs
The FIFO model of matching also makes execution
simulation and analysis easier. The problem we wish

to address is token ntis-matching; we believe that this I--_ ,--7
problem can be handled in most cases at compile time.

This is essentially the same approach as RISC on
traditional computer architectures: off-load as much _,.br5
as possible to the software, keeping the hardware as
simple as possible. If difficult operations such as token

matching and synchronization could be done in soft- Figure 3: Data Flow and/_PD7281 graphs of the same
ware, especially at compile time, then no matching function
hardware would be needed.

It is a non-trivial problem to guarantee token syn- Both data flow programs and the intermediate
chronization through software, and we only begin to forms IF1 and IF2 are conveniently reprcsented as di-

consider the problem in this paper. It is our contin- retted graphs. Furthermore, these two sorts of pro-
uing research to find out if token synchronization can gram graphs have similar formats, as can be seen in
be done exclusively in software and what tradeoffs are Figure 3. These graphs both represent the expression
involved, a + b. 5, and even though the /zPD7281 style data

flow graph on the right has an additional node, they
2.5 Similarities between Data Flow Hard- are similar in many respects. The similarity in graphi-

ware and Functional Programming cal formats indicates that a translation from one form
Languages to the other should exist.

Data flow systems are neither fully applicative nor

yon Neumann in style [Bac78], yet the model of com- 3 The ULowell Data Flow Imaging Co-putation aspires to many of the same goals as purely
functional languages. The concept of clean semantics, processor
free from side-effects, expressed in a strongly mathe-
matical style are the common denominators that link 3.1 Overview
these two forms. Data flow is often criticized for not

fitting into the applicative model; however, we submit The ULowell Data Flow Imaging Coprocessor was
that this criticism applies to particular implementa- developed at. the University of Lowell (now the Univer-

tions, not to the design philosophy of data tlow. sity of Mmssachusetts Lowell) as a high-performance
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imaging co," :essor hosted by an Amiga microcom- I'tC - Refresh Controller. Sends refresh tokens
puter. The Amiga computer historically has offered through the processor for memory refreshes.
support for both graphics and imaging. Ill addition,
the Amiga architecture facilitates the design and ira- OC - Output Controller. Routes tokens to other
plementation of coprocessor boards. The ULowell processors.
Data Flow board consists of seven NEC pPD7281 data LT - Link Table. Stores the link (edge) informa-
flow processors connected in a one-direction ring. In_ lion of tile data flow graph.
corporated in the ring is a NEC pPD9305 Menmry Ac-

cess and General Interface Controller (MAGIC) chip, FT - Function Table. Stores the function (node)
which is the interface to tile Amiga. The coproces- information of the data flow graph.
sot board is able to directly access the Amiga system
memory, and can use it to store large images which will AG&FC - Address Generator and Flow Con-
be manipulated by code running on tile board. The troller. Manages queues, data memory references,
board is illustrated in Figure 4 (derived from [Sire88]). and flow control constructs.

3.2 The NEC pPD7281 DM - Data Memory. Contains 512 words of
general purpose memory, which is used to store
queues, to hold constants, and acts as a small lo-

The Nippon Equipment Corporation (NEC)
tzPD7281 is a commercially available static data flow cal memory.

processor, designed to support imaging operations. It Q - Queue. Used as a buffer between the data
consists of seven functional units such as tile link table, memory and the processor unit.
the function table, and the data memory; plus input,

output and refresh controllers. The functional units PU - Processing Unit. Performs arithmetic and
are arranging in a circular pipeline as depicted ill Fig- logic instructions. Can also duplicate tokens.
ure 5. Because the chip provides hardware support for
multiple tokens per arc, the chip is not strictly static. OQ - Output Queue. Queues tokens waiting to
Furthermore, because the function table holds state be output to other processors.
information between successive function node execu-

tions, the architecture is not strictly functional. Tile 3.3 NEC #PD7281 Data Flow Graphs
functional units are discussed below.

Processing Unit instructions can be associated with
either queues or memory references, both o lrwhich are
stored in Data Memory. To sufficiently represent this

_ association, NEC has devised an alternative to tradi-
____j _ _o tional data flow graphs. /_PD7281 data flow graphs use

a compound node which contains the Processing Unit
(PU) instruction, al,d may also contain an a_ssociated
queue or memory reference (AG_:FC) instruction. Ex-
amples of these compound node types as well as other
types of nodes for output and conditional executions
can be seen in Figure 6.

An NEC/JPD7281 data flow graph node's left-side
input is referred to as the "A" side input and the right-
side input is referred to as "B" side input. All in-
structions are either unary or binary. Output arcs are
referred to as "X" and "Y" in the general case, but

this unique instruction set allows for duplicating the

Figure 5: The 1_PD7281 Internal Pipeline Architecture "X" output. The type of a PU instruction determines
the number of inputs and the number of outputs as
well as the type of AG&FC instructions that it can be

IC - Input Controller. Routes incoming tokens associated with. AG&FC instructions can also appear
either to this processor, or forwards them to the as nodes by themselves. Another type of instruction,

next processor in the ring. generator (GE) instructions can also be used for the
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(bits0--I 5)

Normal Exchange Two X Single Single Conditional
Inputs outputs X ouput Y output Execution

"A"side __ _._._

input data "B"sideinputdata

rVl"U _s_uc_on
PU " L
Insb'uct_on
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outputdata outputdata
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-A Out :_UlA _/OT i<---O >0_A-B A-B
to host OutputA &B

tohost

No AG&FC No PU Output Output Branching A NOP
Instruction Instruction Instruction Instruction Instruction Branch

(with A side (witla B side (1 value) (2 values)
Input) Input)

Figure 6: Examples of/_PD7281 Data flow Graph Elements
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duplication and generation of tokens. GE instructions Once this information is obtained, it can be placed
can have more than two outputs, in the assembly language program in a "fill-in-the-

/zPD7281 data flow graphs lack an explicit no- blank" manner.
tion of hierarchical composition. When programs are
large, graphs can become quite large and cumber-

some to read. We suggest an alternative approach 4 Implementing IF2 on the NEC
to standard pPD7281 graphical design by creating #PD7281
overview graphs. Overview graphs are standard data
flow graphs such as Figure 1. In these graphs, more 4.1 Common Functions
complex functions are represented as a single node (a

similar concept to graph nodes [SG85] in IF2). When There are very few one-to-one correspondences be-
the final graph is drawn, graphs representing the tom- tween the instructions of IF2 and the NEC pPD7281.
plex functions are spliced in where only a node with First of all, the #PD7281 is an integer processor, so

i 'the funct ons names appeared in the overview graph all floating point operations must be performed in
This process is illustrated in Figure 7. software. Secondly, the pPD7281 carries condition

and sign information on two extra bits, implying that
3.4 Programming the NEC itPD7281 boolean type data must be extracted from the condi-

tion bit and converted to integer form. Finally, due
The pIogramming paradigm for the NEC pPD7281 to the limited amount of on-processor memory, there

is quite straightforward, and is illustrated in Figure 8. is no inherent support for records, arrays, or streams.
(This problem is discussed in detail in Sections 4.2 and

1. Devise the algorithm. 4.3).

2, Draw the NEC pPD7281 data flow graph. The few instructions that are common between IF2
and the pPD7281 are shown in Table 1.

3. Label all nodes and arcs on the graph with unique
names. IF2 IF2 pPD7281

Type Instruction Instruction
4. Write the /_PD7281 assembly language program Integer Plus ADD

by converting the labelled nodes and arcs into Boolean Plus OR

FUNCTION and LINK statements. Integer Times MUL
Boolean Times AND ....

The last step is actually fairly easy if the graph Integer iidinus SUB
was drawn and labelled correctly. The PU, AG&FC Boolean Not NOT

and GE instructions should all appear on the graph NoOp NOP
with all necessary information to write the code. This

information would include: Table 1: Equivalent instructions for IF2 and the

1. The number and side(s) of the inputs (indicated pPD7281

by the incoming arcs). Despite the fact that many IF2 instructions do not

2. The number and side(s) of the outputs (indicated correspond in a one-to-one fashion to pPD7281 in-
by the outgoing arcs), structions, several can be developed easily. In Fig-

ure 8, we showed how to develop an absolute value

3. The PU instruction, function on the pPD7281. The code in this example
can be easily spliced into a #PD7281 data flow graph

4. Associated functions (for example, when a anywhere an Abs node appears in an equivalent IF2
QUEUE (AG&FC) instruction is associated with graph. The same is true for Min, Max, Div, Mod,
an ADD (PU) instruction). Less, LessEqual, Equal, NotEqual, and other sim-

5. Special processing such a.s conditional execution, il,.r nodes.
input operand swap, test conditions, or flow con-
trol. 4.2 Memory Management

6. Destination processor addresses for output rune- Because there are only 512 words of data mem-
tions, ory available on-chip, memory management On the
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ABS(X) := IF X >= 0 THE,'N
X -1

-X
F2gD IF

1, Conceptualize 2. Draw Graph

3. Add Labels 4. Write Code

x

i
ARC1

r_L_ m_op INPUT ARC 1 AT 1;

LINK ARC2,ARC3 = FNOP(ARCI);

)-- _ LINK ARCA = FMUI_ARC2);

UL LINK ARCS = FOUT(ARC3);
LINK ARC5 = FOUT(ARC4);

i "c'3 FUNCTION FNOP -- NOP(GE);

FUNCTION FMUL = MUIdY),RDCYCS(NO,1);
FUNCTION FOUT = OUTI(0,0);

-_ r-_T MEMORY NO = -1;

END;

ARCS

Figure 8: Writing an Absolute value function for the/_PD7281
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/_PD7281 becomes difficult, and good nmmory man- execute independent of each other. Surprisingly, these
agement techniques are crucial. Reference counts, and are also one of tile easiest: Datures to implement on the
the ability to swap words in-and-out of data nlemory tLPD7281.
all need to be done in the software loaded onto the To construct an ADE on the #PD7281:

/_PD7281. Fortunately, the features of IF2 such a.s

operating on data by reference, memory preallocation 1. Place a new combination QUEUE/NOP node
on the graph.and AT nodes [WSYR86] all can relieve the memory

management burden from the processor. 2. Remove the arc to the "A" side input of the ADE
There are two possible strategies for dealing with destination node and connects it instead to the

the limited amount of processor memory: "A" side input of the QUEUE/NOP node.

1. Use the processor memory as acache. Thisstrat- 3. Draw an arc from the "X" output of the

egy involves including cache management rou- QUEUE/NOP node to the "A" side input of
tines in all/_PI_)7281 programs, the ADE destination node.

2. Store only temporaries and constants in processor 4. Construct an arc from the source ADE i_ode

memory, leaving all variables in host system mere- output to the "B" side input QUEUE/NOP
ory and accessing them through the IIPD9305. node. Since the value of the token is ignored,
This approach h_ the advantage of simplicity, it is unimportant whether it is an "X" or "Y"
with the greater cost of more memory fetches; side output. If, however, there is no free out-
however, this approach might be feasible in a put arc on the source ADE node, ane of the out-
data flow architecture, because the processor can put tokens must be replicated and sent to the
(theoretically) be kept busy with other operations QUEUE/NOP node. The /_PD7281 provides
while waiting for the memory fetches to complete, the instructions COPYM or COPYBK for to-

ken replication, and one of these node types can
An optimal strategy might be a hybrid of these two be spliced in between the source ADE node and

approaches. We propose to borrow another idea from the QUEUE/NOP node.
RISC computing and use part of the data memory
for constants and queues and the rest as a regtster 'rhis entire procedure is demonstrated in Figure 9.
file [Itwa93] rather than a cache. Using a register file The definition of the QUEUE/NOP node speci-
rather than a cache allows data memory allocation ties that it will not output its token until the source
to be done at colnpile time using register allocation node has output its token. Note that special care must
techniques such as interference graph coloring [tlPg0]. be taken in order to prevent too many tokens from
We refer to the application of RISC techniques such being queued at the QUEUE/NOP node. This in-
a.s this to static data flow architectures as Data flow- volves using a longer queue, switching the "A" and
RIS'C. "B" side inputs to the QUEUE/NOP node, and

making the node exchange the "A" and "B" side in-
4.a Arrays and Streams puts.

Arrays and streams must be accessed a.s individ- 4.5 Other Functions on the #PD7281
ual data words from image menaory, due to the ar-
chitecture of the/,PD9305. In a control flow system, The /1PD7281 has many more instructions which

the penalty for this von Neulnann bottleneck [Bac78] might be useful for an efficient implementation of IF2.
would be intolerable, but because this is a data flow It also contains instructions for self-modifying code,

system, tile processor should not see significant idle which would not be used for implementing IF2, and
tirne. Techniques such a.s load balanc_77g [Gao86] are object loading, which may be useful for distribut-
needed to keep the processor pipeline busy. ing programs across multiple processors. A complete

reference to the #PD7281 instruction set is given in

4.4 Artificial Dependency Edges (ADEs) [Nip85].

One of the major contributions of IF2 is t,he ill- 4.6 Load Balancing and Mapping
troduction of Artificial t)ependency Edges (ADEs)

[WSYR86]. These edges in the IF2 graph nlodel are The ULowell Data Flow Imaging Co-processor con-
used for synchronizing nodes whicll would nornlally tains seven ILPD7281 data flow processors as well a.s
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one #PD9305 Memory Access and General Interface [AI91] Arvind and R. Iannucci. Two fundamen-
Controller. To obtain optimal throughput on the co- tal issues in multiprocessing. In Pro-
processor, it is necessary to properly map programs ceedings of DFVLR - Conference 1987
onto processors. This problem is discussed thoroughly on Parallel Processing in Science and

in [Wi192]. Engineering, Bonn-Bad Godesburg, June
1991.

4.7 An Initial Implementation Suite
[Bac78] J. Backus. Can programming be liberated

Initially, we propose the following implementation from the von Neumann style? a tune-
suite for IF2 on the ULowell Data Flow Imaging Co- tional style and its algebra of programs.
Processor: Communications of the ACM, 21:613-

641, August 1978.
1. Integer arithmetic and boolean functions.

[BOCF] A. B6hm, R. Oldehoeft, D. Cann, and
2. Single dimensional arrays. J. Feo. SISAL Reference Manual, Lan-

3. Non-recursive function calls, guage Version 2.0. Lawrence Livermore
National Laboratory, P.O. Box 808, 1,-

4. Streams. 306, Livermore, CA 94550.

5. One #PD7281 processor. [CNMW90] J. Canning, I. Nwokogba, R. Miner, and

The primary goal of the initial implementation suite L. Wilkens. A software development en-
is to work out as much of the token synchronization vironment for data flow computation. In

as possible. Features such as floating-point, recur- Proceedings of the ISMM International
sign, etc. can be added incrementally. Using nmltiple Conference on Parallel and Distributed

pPD7281 processors is an implementation of [Wi192]. Computing and Systems, pages 86 - 90,
October 1990.

5 Summary [Dav79] A. Davis. A data flow evaluation systembased on the concept of recursive locality.
In Proceedings of lhe National Compu%r

We have discussed several ideas for an implemen- Conference, pages 1079- 1086, 1979.
tation of IF2 on a static data flow architecture and

shown the potential advantages of such an implemen- [Den91] J. Dennis. A modern static data-flow ar-
tation. We have, of course, left the actual implemen- chitecture. In Advanced Topics in Data-
tation to future work, showing several concrete ex- flow Computing, pages 121 - 142, 1991.
amples which can be used as a foundation. Efficient
compilation techniques would allow static data flow [Gag86] G. Gag. A Code Mapping Scheme for
to out-perform later dynamic data flow machines, and Dataflow Software Pipelining. PhD the-
eiin,_nate (or at least rninimize) tile need for expensive sis, M.I.T., Cambridge, MA, 1986.

and slow matching hardware. All-in-all, the marriage [GKW85] J. Gurd, C. Kirkham, and I. Watson.
of IF2 to data flow is a natural one, and should yield The manchester prototype dataflow corn-

key results in the future, purer. Communications of the ACM,
28:34 - 52, January 1985.
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Systematic Control of Parallelism in
Array-Based Dataflow Computation

Kanad Roy and Carl McCrosky
Department of Computational Science
University of Saskatchewan, Saskatoon

CANADA S7N 0W0

Arrays are a primary source of parallelism in dataflow
Abstract systems. Many of the scientific problems for which

dataflow computation is intended have arrays as their
Dataflow systems must be concerned with the degree of principle data structure. Often operations on arrays can

parallelism generated by array computations. It would be be performed in parallel. Unfortunately, the resultant
preferable if the program largely avoided specificationof run-time parallelism may be excessive. For instance,
parallelism, and the dataflow compiler later generated scaling all of the pixels in a large image may generate
parallelism appropriatetotheintendeddataflowmachine, much too much parallelism. The alternative of

The present research addresses this objective. Our sequential processing is equally unfortunate.
approach is based on maintaining a high degree of Some throttle on parallelism is required that supplies
referential transparency in both the source program and approximately the appropriate amount of work
the dataflow graph. Choices of two representations for (executable dataflow actors) to the underlying machine.
arrays (one sequential and the other parallel), and a set of Often this throttle is clever programming by the user.
identities in the source language permit great flexibility Unfortunately this approach generally fixes the problem's
in tailoring the degree of parallelism and the size of the parallel structure. The only executable form of the
dataflow graph presented to the machine, algorithm - the program - is thus committed to one

Several patterns of systematically factoring particular view of parallelism, which is likely appropriate
computations into sequential and parallel sub- for only one particular machine. The present research
components are used to gain a high degree of control over takes another approach to the control of parallelism: we
the execution characteristics of array computations. The explore the use of compile-time techniques to compile
paper reports an implementation of this approach and declarative array languages to executable dataflow graphs
includes a number of examples, which present appropriate degrees of parallelism at run

time.

There are three key points of departure for this work.
1. Introduction All three are chosen to maximize our ability to reason

about and manipulate both programs and dataflow graphs.
Designers of dataflow systems must concern 1) We adopt a purely functional source language, as the

themselves with the degree of parallelism generated by relatively simple semantics of these languages supports
dataflow computations [1][2]. The degree of parallelism our ability to reason about programs. 2) Our source
is not simply maximized, as machines can be saturated language incorporates a well-founded mathematical model
with waiting tokens. Rather, the goal is to generate of arrays and an integrated set of array operations, thereby
parallelism appropriate to the capabilities of the maximizing ease of reasoning about arrays. This formal
underlying dataflow machine. This paper studies the basis for arrays provides a rich source of program
systematic control of the degree of parallelism for array equivalence laws which allow us to quickly find
computations in static dataflow systems, equivalent forms for array expressions. 3) We adopt

The size of the dataflow graph is a related concern, unconventional representations of arrays, which permit a
Ideally the graph should be as small as possible to nearly transparent correspondence between our functional
conserve memory and to minimize program loading time. array programs and our dataflow graphs.
However, the amount of available parallelism is loosely Our system - based on these three ideas - permits
correlated with the size of the dataflow graph, particularly us two degrees of freedom in controlling parallelism and
in static dataflow systems. Within the constraint of the the related dataflow graph size. 1) We can selectively
parallelism available in the problem being solved, there choose between two array representations to tailor
is a trade-off between parallelism and graph size, which parallelism and graph size. 2) We can use our algebraic
we explore, equivalence laws to manipulate both the source program
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and the resultant dataflow graph. Both of these degrees of relatively easy to reason about. (A and even Falafel are
freedom can be controlled by automated systems to intended to serve only as experimental testbeds for
obtain appropriate degrees of parallelism and graph size. declarative array-based computation. Useful results will

Some of the ideas used in this research have been be applied to larger languages.)
explored or discussed elsewhere. The principal A program in A is defined below, where terminal
originality of our approach is the systematic integration symbols are in bold font and [o_]pmeans a list of zero or
and exploitation of these ideas. The present work is a more o¢'sseparated by 13's. eonst denotes constant values
preliminary exploration of this approach; it is limited in and functions; iddenotes the identifiers.
several ways which are discussed in Section 10.

Our solution to the degree of parallelism problem does pgm :'= exp I let [id=exp]_ in pgm (1.1)
not apply to all reasonable array computations. There exp ::= const Iid I array I (exp exp) I (1.2)
remain important problems for which more standard array _, id . exp
representations and more procedural implementations are array ::= [ [exp], ; lexpl, l (1.3)
best. The techniques developed in this paper are

applicable to a "pure" subset of array dataflow The square brackets in bold fonts denote the terminal
computations in much the same way that some of the symbols to represent arrays.
more powerful compiler optimization techniques apply Formally, arrays are 3-tuples, <valence, shape.
only to the pure expression subsets of procedural content>, valence is the dimensionality of the array.
languages. Nevertheless, the techniques developed here shape is a tuple of natural numbers specifying the
can be usefully embedded in the larger context of practical number of elements in each dimension of the array.
dataflow systems, content is a tuple containing the items of the array in

This paper draws on a variety of sources of material; row major order. Empty arrays are permissible; they
the first three sections establish necessary background, have at least one zero in their shape tuple. Arrays can be
Section 2 defines our first-class nested array language, A. nested.
Section 3 discusses how separately reported research

allows us to avoid the initial pitfall of functional array array (baseSet) "-- { <valence, shape, content> I (2.1)
languages - the excessive generation of intermediate valence e Nat; (2.2)
containers. Section 4 specifies our array representation shape = <extento..... extentv,ac,ce.l>; (2.3)
schemes. Section 5 specifies our abstract dataflow extenti E Nat; (2.4)

machine. Section 6 defines a set of functions on arrays, content "- <itemo.... itemt,aly.l>; (2.5)which are used in later examples. Sectio;l 7 describes
the compilation process from our functional language to itemj E baseSet; (2.6)
static dataflow graphs, ttally = extento * ... * extenMl_nc_.l } (2.7)

A simple strategy which provides some control over
the degree of parallelism is discussed in Section 8. valence is included in the representation of an array but
Section 9 introduces some equivalence laws of our theory not in the concrete syntax; it can be deduced from
of arrays and describes their usefulness in improving our shape. Falafel does not permit heterogeneous arrays -
degree of control over parallelism. Section 10 concludes all array items must be of the same type. A two
the paper by discussing the achievements of this line of dimensional array with shape (2, 3) whose items are first
research, the limitations that have been encountered, and six natural numbers is represented as "[2, 3; 0, 1, 2, 3, 4,
future directions for research. 5 ]", and corresponds to the nested tuple, <2, <2, 3>, <0,

1,2, 3, 4, 5>>.
The semantic domain for A is given below. The value

2. A, the language and the domain of arrays space, V, contains data and functions. Other constructors
are not prohibited, but add nothing to our development.

The array-based functional language used in this paper,
A, is a subset of the experimental language, Falafel, V = lnt + Real + Bool + Array(V) + (V-> V)
being developed at the University of Saskatchewan
I7118]. These languages are sugarings of the typed, The denotational equations for A are given below:
higher-order lambda calculus. They differ from most
other functional languages in that arrays are included as p :: Ident -> V (3.1)
first-class objects in the value domain, in the type K :: Const-> V (3.2)
system, and in the selection of primitive operations.
The arrays in these languages may be nested, thereby P :: pgm -> p -> V (4.1)
permitting m_re flexible manipulation of array P [ let [i = e]_ in e' ] p = (4.2)

computations. Falafel and A draw ideas from numerous D [ e' ] p[( D [ e ] p)/il.
other programming languages: Nial 161, Miranda [9], Id

I111 and Sisal [31. The greatest strength of A is that its D :: exp -> p -> V (5.1)
simple semantics makes array-based computation
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D [ i ] p = p [ i ] (5.2) [111121). Other useful solutions to the representation of
D [ c ] p = K [ c ] (5.3) arra).; have been proposed, such as [4].

In order to maintain ease of manipulation of dataflow
I) [ (eo el)] P = (D [eo] p) (D Jell P) (5.4) graphs and array representations, it is necessary to avoid
D [ X i . e ] p = X k. D [ e ] p[k/i', (5.5) the complexities of the storage representations for arrays
D [ [So..... sv.I; it ..... it-l] ] P = (5.6) and adopt a modified naive representation [14]. As we

<v, <D [So] P...... D [sv.1] P>, shall see, this choice will not carry us all the way to our

<D [it] p ..... D [it.l] p>> ultimate goal of practical array computations, but for a
large and meaningful subset of array computations, it

A is restricted in two important ways: the shapes of will be an advantageous choice. We choose two simple
all array values must be manifest at compile time: and representations for arrays. The stream representation
user functions cannot be recursive. Shapes are omitted in consists of time-ordered sequences of the items of arrays
the array notation when they are obvious (e.g., [1,2.3] - on single atomic dataflow links. The bundle
[3; 1 2, 3]). representation consists of parallel collection of atomic

' dataflow links, each link carrying an item of the array.
Operators exist to convert between streams and bundles.

3. Intermediate container removal R is the domain of permitted array representations.
Nested arrays are represented as nested streams or bundles:

Straightforward implementation of array-based
functional programs leads to the generation of large R = stremn-of(Shape, Link) (6.1)
numbers of intermediate containers. Consider l(g A) + stream-of (Shape, R) (6.2)

+ bundle-of(Shape, Links) (6.3)where f and g are functions from arrays to arrays (i, O :
Array -> Array) and A is an array. The application of g to + bundle-of(Shape, R) (6.4)
A produces an array - an intermediate container -
which is passed to i. The systematic allocation, filling, A stream is a shape and a time-ordered sequence of
reading, and deallocation of these intermediate containers atoms on a dataflow link, (6.1), or a time-ordered
has traditionally condemned first-class functional array sequence nested arrays on nested representations, (6.2). A
operations to toy status. We would be ill-advised to bundle is a shape and a collection of atoms on parallel

dataflow links, (6.3), or a collection of nested arrays onadopt a purely functional array language if we had no
remedy for this problem, parallel nested representations, (6.4). In both streams and

However, we have shown systematic means of bundles the shape must be manifest at compile-time, but
removing these intermediate containers by finding the is not directly represented in the run-time dataflow
function, h, which is extensionally equal to the graphs. In streams, known shape translates to known
composition of f and g (h A = f(g A) for all A), but h length of the sequence; in bundles, known shape
does not generate the intermediate container [7]. translates to a known number of constituent fibres -
Intermediate container removal (ICR) is a compiler each fibre has a unique identification corresponding to the
optimization phase which systematically avoids the addresses in the manifest shape. Figure 1 gives graphic
generation of intermediate containers; because A and its representations for the array [0.1,2] as a stream, (a), and
dataflow graphs are mathematically tractable, intermediate as a bundle, (b). Ovals with tile long axis up and down
container removal can be applied to either form. (Related collect streams and bundles, respectively.
work was done in [13][14].) Section 7 of this paper
demonstrates how the ideas of ICR are applied in this
setting.

..._..--- --,--.-..._

4. Representation of arrays _)0..I I)1_.tt

A naive approach to handle arrays in dataflow
represents each array as a token, and passes these tokens
on dataflow links. This approach implies a.rbitraJy-width
tokens and communication paths; it is unrealistic. The (a) Co)
most widely accepted solutions for arrays in dataflow
systems involve storage of the array in special memory
locations; reading and writing of elements are carried out Figure 1: Stream and bundle representations
by speci_ tokens and actors. In these storage solutions of the array [0, 1, 2]
attention must be paid to the possibility of updating
array elements and thereby violating referential
transparency (numerous solutions have been proposed
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For any homogenous array of d levels of nesting, there used. An '@' sign implies an application of its first
are 20 choices of representation. The four representations argument, which is an operator, to its latter arguments;
of the array [[1.2], [3, 4]] are given in Figure 2. the result of the application is an atomic value.

Dyadic, dyad, and monadic, monad, actors are defined
by the patterns:

Fr <dyad; _; a:at, b:bt; pf> = (7.1)

< dyad; _; at, bt; pf#@(dyad a b)>
Fr <monad; ;a:at; pf> = (7.2)

< monad; ; at; pf#@(monad a)>

The six special purpose actors are: duplicate, which
bundle of bundles bundle of streams consumes one input and produces copies on its two

outputs; switch, which consumes a value and a boolean
_, selector and reproduces the input on the selected of two
l output edges; select, which consumes a control value

,_--_.. and then selectively consumes one of two inputs and

/(, ----------- -- I reproduces that input on its single output; replicate-n

3 ( I _" which consumes a single input and produces n copies of

_ _ that value on its single output; split-m-n, which

_[DC cyclically copies its first m inputs to its left output and
( then copies the next n-m inputs to its fight output; and

t alternate-m-n, which cyclically copies m values from its

"_,,,,__.._ _ left input and then n-m values from its fight input, all to
its single output. Fr rules for these actors are given
below. Notice that the state is sometimes used for

stream of bundles stream of streams counting and some rules change the actor itself (e.g. from
replicate-nto replicate-n').

Figure 2: Four repre.sentations of the array
[[1, 2], [3, 4]] Fr <duplicate; _; a:at; pf, qf> = (7.3)

<duplicate; _; at; pf#a, qf#a>

5. The dataflow model Fr <switch;_; False:ct, a:at; pf, qf> = (7.4.1)
<switch; _; ct, at; pf#a, qf>

Our abstract machine is a conventional parallel static Fr <switch; _; True:ct, a:at; pf, qf> = (7.4.2)
dataflow machine [14]. No special array storage is <switch; _; ct, at; pf, qf#a>
assumed. Dataflow actors have a total of no more than

four links (including inputs and outputs). The following Fr <select; _; False:ct, a:at, bt; pf> = (7.5.1)
dataflow actors are supported: dyadic operators (., -. *,/, ", <select; _; ct, at, bt; pf#a>
rood, <, >, =, <=, >=, and, or), monadic operators (not, id), Fr <select; _; True:ct, at, b:bt; pf> = (7.5.2)
and six other special purpose operators. <select; _; ct, at, bt; pf#b>

Nodes in the dataflow graph are described as tuples,
<actor; state; input; output>, actor is a tag which Fr <replicate-n;-1,_; a:at; pf> = (7.6.1)
identifies the dataflow actor, state consists of state used <replicate-n'; n-I, a; at; pf#a>
by some actors, input (output) is a list consisting of the Fr <replicate-n'; 0, a; at; pf'> = (7.6.2)
inputs (outputs) to (from) the node. The operational <replicate-n;-1,_; at; pf>
semantics of dataflow actors are described in terms of an Fr <replicate-n'; c, a; at; pf> = (7.6.3)
operator, Fr, which maps from tuples to tuples. The <replicate.n'; c-I, a; at; pf#a>
treatment of input and output requires some clarification.
The inputs and outputs are conceptually connected to Fr <split-m-n; -1; a:at; pf, qf> = (7-7.1)
dataflow links; the streams of values on these links are <split-m-n'; m-l; at; pf#a, qf>
represented as queues (lists). The use of a head-tail Fr <split-m-n'; O;a:at; pf, qf> = (7.7.2)
pattern (head:tail) in the input position on the left-hand- <split-m-n"; n-m-l; at; pf, qf#a>
side of a f'tring equation implies that the next input must Fr <split-m-n'; c; a:at; pf, qf> = (7.7.3)
be available before the node may fire. The use of a front- <split-m-n'; c-I; at; pf#a, qf>
last pattern (front#last) in the output position on the Fr <split-m-n"; O;at; pf, qf> = (7.7.4)
right-hand-side implies that the last value is output. <split-m-n;-1; at; pf, qf>
Underscore in the state position means the state is not Fr <split-m-n"; c; a:at; pf, qf> = (7.7.5)
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<split-m-n"; c-l; at; pf, qf#a> Recent dalaflow research indicates that it is
advantageous to gather atomic actors into sequential

Fr <alternate-m-n;-1; a:at, bt; pf> = (7.8.1) threads which communicate through conventional
<alternate-m-n'; m-l; at, bt; pf#a> registers [15]. We do not carry out this transformation

Fr <alternate-m-n'; O;at, b:bt; pf> = (7.8.2) on our graphs, although we could. We avoid this as an
<alternate-m-n"; n-m-I; at, bt; pf#b> unnecessary complication to our purposes.

Fr <alternate-m-n'; c; a:at, bt; pf> = (7.8.3)
<alternate-m-n'; c-l; at, bt; pf#a>

Fr <alternate-m-n"; 0; at, bt; pf> = (7.8.4)
<alternate-m-n; -1; at, bt; pf>

Fr <alternate-m-n"; c; at, b:bt; pf> = (7.8.5) 4
<alternate-m-n"; c-l; at, bt; pf#b>

Schematic representations for these six special actors ?,
are given in Figure 3.

,0ur.,.,.oov.r,n0n..,.,,roe.,r..o.
Figure 3: Schematic representations of special 6. Primitive operations on arrays

actors

Research in array-based computation has produced
The operations which have state (or modify their actor numerous useful operations on arrays (first-order and

codes) all have simple cycles back to their initial state higher-order). These operations constitute our basic tool
(and code). All uses of these actors in the graphs set for constructing array-based functional computations.
generated by our compiler cause complete circuits back to This section defines some of these operators (in a much
the initial state. In this sense, the graphs are self- abbreviated form, see [71, [8], and [10] for full details).
cleaning. All of these operations have dataflow graphs for both the

The above six actors have corresponding macro stream and the bundle representations of arrays; we give
versions which accept bundles and act on the individual several representative examples.
elements separately. In the case of duplicate the macro addressesare one-dimensional arrays that contain only
actor DUPLICATEaccepts a bundle mad - with a set of natural numbers. If an address has the same valence as
duplicate actors - accomplishes a DUPLICATE on the the shape of an array, and all the items of the address are
entire bundle. Likewise, multiple input SELECT's and less than the corresponding items of the shape, then the
ALTERNATE's are constructed of trees of select's and address uniquely addresses an item of the array.
alternate's. In text, we freely use these macro-actors in grid generates an array with the shape of its argument,
place of their correstxmding graphs, if necessary, but with all items replaced by their own addresses. For

Any nested representation of an array can be converted example:
to any other representation. We illustrate the recovery of

parallelism from sequentiality in netted arrays. Figure 4 grid 12, 2; O, 1, 2, 31 = [2, 2; [2; O, 0], 12; O, 11,
shows how to use split-m-noperators to recover a bundle- [2; 1, 0], [2; 1, 111
bundle representation from a strean_-stream representation
of [[1,21, [3,411.
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pick takes a (valid) address and an array and returns the reach takes a list of addresses and a nested array. It
specified item. It can be represented in infix form too. uses pick to select an item using each address in the list
For example: of addresses in turn. [head I tail] is a head-tail

decomposition notation for one-dimensional arrays.
pick [2; 1, 0l 12, 2; 0, 1, 2, 31 = 2

reach [] a = a (10)
shape returns the shape of an array as an array. For reach [hit] a = reach t (h pick a)

example:
rows and eels return the list of rows and the list of

shape [2, 2; 0, 1, 2, 31 = [2; 2, 21 columns, respectively, from a two-dimensional array.
mix is the inverse of rows.

The semantics of Falafel, as described in [7], permit
the definition of arrays by parts. The semantics of rows tab = {z suchthat (11)
definition-by-parts is based on a complete partial order of (shape z) = [(first (shape tab))];
partially defined arrays; the meaning of a definition-by- forali fi in grid z, (shape (fi pick z)) =
parts is the least upper bound of all the partial [(second (shape tab))];
definitions. In Falafel, syntactic sugar is provided for forall fi in grid z,
this mechanism. An array, p, is defined by parts, Pi, by forali si in grid [(first z)],
the form {p suchthat Po, Pl.... }, where the Pi are ([fi, si] reach z) =
partial definitions, p is the least upper bound of all the ([fi', si'] pick tab)}
Pi. All such forms can be compiled down to A, but we where [fi'] = fi; [si'] = si
make use of this convenient syntax in defining further
fundamental array operations.

each is the array equivalent of the familiar map right

operation: left right left
l
i

each f a = {z suchthat shape z = shape a; (8) _ ""
forall x in grid a, (x pick z) = -----

(f (x pick a))) !
i
i

each can be implemented as a dataflow graph for either

stream or bundle arrays. Figure 5 gives both versions. . _

LII1

(
_ 11' 1

Figure 6: Stream-stream and bundle-bundle

dataflow graphs for 'eachleft'

(
cois tab = {z suchthat (12)

(shape z) = [(second (shape tab))];
forali fi in grid z, (shape (fi pick z)) =

Figure 5: Stream and bundle dataflow graphs [(first (shape tab))];
for 'each' forall fi in grid z,

forall si in grid [(first z)],
There is a family of operations related to each ([si, fi]reachz) =

(eachleft, eachright, and eachboth). To conserve space, ([fi', si'] pick tab)}
we present only eachleff; its stream-stream and bundle- where [fi'] = fi; [si'] = si
bundle graphs are given in Figure 6.

mix 1st = {z suchthat (13)
eachleft f t r = {z suchthat shape z = shape t; (9) (shape z) = lfirst (shape lst),

forali x in grid t, (x pick z) = first (shape (first lst))];
(f (x pick t) r) } forali fi in grid z,

(fi pick z) =
(Ilfirst ill, [second fill reach lst)}
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4) Having constructed the complete graph,
reshape applies a new shape to an array, for ex,'unple: optimizations are applied directly to the graph. These

optimizations correspond to intermediate container
reshape 12; 1, 4] 12, 2; O, 1, 2, 31 = removal, discussed above. In static dataflow graphs,

[1, 4; O, 1, 2, 31. where the output array of one function is just a
(collection of) dataflow link(s), intermediate container

linkcollapses one level of structure in nested arrays, for removal is essentially automatic. Output data.flow links
exaJnple: ,are simply connected to the appropriate inputs - the

intermediate container is only the conceptual bundle (or
link [4; 12; 0, 01, 12; O, 11,[2; 1, 01, [2; 1, 111 = stream), whicb ,,as no physical reality.

[8; 0, 0, 0, 1, 1, 0, 1, 1]. It should be pointed out that the resultant static
dataflow graphs have no run-time overheads for arrays.

All of the operations presented in this section have Only the dataflow actors and their connection links are
dataflow graphs for both stream and bundle involved in array processing. The entire cost of
representations of all array arguments. Space constraints supporting arrays is paid in the size of the graph.
prohibit their presentation. They are used in the
compilation process reported in the next section.

8. Multiple representations give control
over parallelism and graph size

7. Compilation
In this section we examine the nature of the dataflow

This section describes - at a very high level - the graphs that can be generated using the approach
process of compilation from A to static dataflow graphs established so far. We begin by examining some of the
comprised of the primitives discussed in Section 6. dataflow graphs that can be generated for a simple
Compilation begins with a conventional translation to a example, shuffle, which performs the perfect shuffle
nested abstract syntax tree in which branches are function operation.
application and leaves are arrays, atoms, or functions.

Consider the type of every function, for example, shuffle a = link (cols (reshape (14)
each, which is of type [ct] -> [13]. The number of array [2, (first (shape a)) div 21 a))
constructors, [ ], in a type specification corresponds to the
number of arrays (independent or nested) taken as shuffle is illustrated by example. It is applied to a list
arguments or returned as results by the function. For of ten integers. Arrays are diagrammed as boxes to show
each array there is a choice of whether to use a stream or spatial arrangement and nesting [10].
bundle representation. Where a function has d array

constructors, there are 2d choices for the representations I 1 12 13 14 15 16 17 18 19 Ilol
of arrays. In theory, there are static dataflow graphs for ....
each such choice (although some of the graphs are clearly
never useful). Each primitive in A has this diversity of reshape arranges the argument into two rows:
corresponding dataflow graphs.

Static dat',dlow graph code generation for A consists of I 2 3 4 5
four phases: 6 7 8 9 10

1) Shape information is propagated throughout the
abstract syntax tree. After this process, the shape of

every intermediate and final result is known, cols interleaves the items in the rows by "picking up"
2) Choices are made regarding which versions of the columns, making a list of pairs:

primitives are to be used. As these choices are made, the

primitives are instantiated as graphs. The shapes of Ir-rT_ll ,lll_ 18 _1_4_9_1 _La_larrays are used in this process to determine the width of 2
bundle-represented arrays.

3) Normally, the representation choice of the output of link removes the extra structure added by cols, resulting
one function will be the same as the representation in the shuffled array:
choice for the input of the next function. In this case,

the two dat;fflow graphs can be directly connected. On 1 6 2 7 3 8 4 9 5 10occasion, however, it may be useful to make differing
representation choices in composed primitives. In this

case, stream-to-bundle or bundle-to-stream conversion Four dataflow graphs can be generated for shuffle,
graphs must be interposed between the primitives. In corresponding to all four combinations of input and
this manner, the entire graph is constructed. output representations: bundle-to-bundle, bundle-to-
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stream, stream-to-bundle, and stream-to-stream. These
are drawn in Figure 7. The optimizations of intermediate 7

container removal have been ,applied to these graphs.

1 2 3 4 5 6 7_.._

bundle-to-stream

Q
4i stream-to-stream
3
2
1
0

__ bundle-to-bundleFigure 7: The four possible dataflow graphs for
'shuffle'

_j__l_-_ Notice that the bundle-to-bundle form of shuffle has no

run-time cost; it is simply a wiring plan. The
component operations of shuffle (link, eels, and reshape)
naturally "wire up" without any intermediate containers

_4 _6 , _ during °ur c°mpilati°n pr°cess" Given °ur array

representation choice, it is impossible to generate
---J intermediate containers. The composition of bundle-to-

3 _ bundle "purely restructuring" operations such as link,
eels, and reshape always results in a simple wiring

stream-to-bundle pattern such as the bundle-to-bundle shuffle.
Unlike the each family of operators - which have

equally good stream-to-stream and bundle-to-bundle
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graphs - shuffle is most natur_dly bundle-to-bundle. Given any non-recursive, known-shape expression in A
The bundle-to-stream ,'rodstream-to-bundle forms do have (or Falafel), it is possible to compile it to a dataflow
an important role: they permit simultaneous re- graph, During this process, adecision must be made for
arrangement and fan-in or fan-out of parallelism. If the every array (,arguments, results, and intermediate
operations before (after) shuffle are time consuming and containers) whether the array's representation is to be
the operations after (before) shuffle are simple, then the stream or bundle. Where there are c such choices in a
bundle-to-streanl (stre,'un-to-bundle) forms of shuffle ,are program, there are 2c possible dataflow graphs for the
advantageous, program (shuffle has 22 possible graphs). These graphs

The following example expression illustrates our can be expected to exhibit a wide range of parallelism and
ability to tailor parallelism using different choices of graph size characteristics. If we generate all (or some)
array representations and corresponding choices of such graphs and plot parallelism versus graph size, we
primitives. The expression to be evaluated is each (each have a set of semantically equivalent implementations for
incr) [[0, 1], [2, 3]]. the original program. The parallelism/graph-size

In Figure 8 we see a useful control of parallelism, measures can be used to select the appropriate trade-off
Where i is the tally of the outer array and j is the tally of for a given dat,'fflow machine.
each inner array, we can perform the computation in Several measures of the static and dynamic properties
O(1), O(i*j),O(i), or O(j) (not shown), of dataflow graphs are made. Static graph size is the

count of nodes in the graph. Static graph depth is the
maximum latency through the graph. Static average

parallelism is the ratio static-graph-size / static-graph-
depth. Run time is the number of cycles required to
complete execution of the graph, where an infinite

_, _--------_---_ number of processors are available. Dynamic minimum

mcrl
,

I u|t;rllu|t.;tl__ In| III ""Cl'II (maximum, average) parallelism is the least (greatest,.... average) number of actors firing on any given cycle.

_ The first program example that we shall investigate3qz__p generates all cross-products of two nested lists of

_ integers:

bundle-of-bundles cp a b = eachleft (eachright (eachboth *)) a b (15)

We generate five different graphs for cp. The cases

considered are described in Table 1. The argument used

in the first two examples are of the form [2; [3; ... ] ... ].
In the next two examples the arguments are [3; [4; ... ] ...

t ]. The last example uses arguments of the form [7; [4; ...

]..].
It is apparent from the results in Table 1 that choices

of stream versus t;undle representations, and the
corresponding choices of operators, give a degree of

h control over the parallelism and graph size of a dataflow
_! program.¼-r4_"_.. Table 2 gives results for a larger program fragment:

matrix multiply. In all the examples in Table 2, the

decision has been made to present the rows of the

t_ original arguments to matrix multiply, rather than the

unnested two-dimensional arrays. The rows (list of lists)
3 are presented in bundle-of-streams form. Consequently

the parallelism and graph sizes for these runs are
2 intermediate between the fully sequential and fully

parallel versions.

f

stream-of-streams stream-of-bundles

Figure 8: Dataflow graphs for 'each (each tncr)
[[0, 1], [2, 3]]'
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Table 1: Parallelism and graph size for cross composition of each applied to two functions is
product equivalent to the each of the two composed functions:

IIcp-1 [ cp72 I cp-3 i Cp-4 [ cp-.5 (each f) o (each g) g = each (f o g) g (16)
outer .... for all f, g, and A
shape 2 2 3 3 7
inner Table 2: Parallelism and graph size for matrix
shape 3 3 4 4 4 multiplication,,

outer bun- bun- bun- bun- bun-
repr. die die die die die Iimm-1. ..[ mm-2 , ram-3

inner stre- bun- stre-' bun- stre- first
am die am die am matrix [5, 31 [7, 31 [7, 41

repr.
static shape .....

graph 8 24 2t 84 133 second
size matrix 13,5] I3, 71 [4, 7]
static shape

graph 2 2 3 3 4 outer bundle Fundle bundle
depth repr.
static inner stream stream stream

avg. 4 12 7 28 33.25 repr. .......
v static

par. 440 868 868
graph sizeoper.

cnt. 24 24 84 84 532 static
,,,

run graph 1t 11 11
time 6 2 10 3 t 1 depth .....

,,,

dyn. static 40 78.9 78.9
min. 4 12 4 24 14 avg. par.
par. operation

..... count 1070 2114 2933
dyn.
max. 4 12 t I 32 67 run time 16 16 22

par. dynamic
dyn. min. par. 25 49 .. 49

avg. 4 12 8.4 28 48.4 dynamic 137 261 299
par. max. par. , .......

dynamic 66.9 132.1 133.3
The results of this section offer considerable promise, avg. par.

We have been able to specify algorithms in a completely
declarative form, without making any commitment to These laws greatly enhance our power to refine the
any particular form of parallelism. From these trade-off between parallelism and graph size. Consider
specifications, we have been able to generate a variety of the application of (each iner) to a two-dimensional table
static dataflow graphs, each presenting different options of integers. The techniques developed in Section 6 give
on the parallelism/graph-size tradeoff. The most us only two results - the completely sequential graph
appropriate tradeoff can be selected by the user (or - and the completely parallel graph described in the first
potentially - automatically), two columns of Table 3.

In the next section we exploit more subtle means to Three laws are available to improve our control over
generate a finer range of tradeoffs between parallelism and the parallelism in this simple example. The first law is
graph-size, based on the inverse relationship of mixand rows; it says

that we can break a table into its rows, apply each f to
each row, and then reassemble the table with mix.

9. Array equivalence laws enhance control
over parallelism and graph size each f a = mix (each (each f) (rows a)), (17)

when valence a = 2

Referentially transparent functional array languages,
with appropriate primitive operations, have large Once we have obtained the each-each form on the
numbers of "universal laws" (identities) which describe right-hand-side of (17), we are free to choose stream or
equivalences between expressions 15]. For instance, the bundle representations for either level. As a consequence,

we can process each row sequentially and all columns in
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parallel, or vis-a-versa. Thus where the table is m-by-n, The results for this strategy with bundle-of-streams and
we have O(m) ,and O(n) algorithms as well ,asthe O(m'n) stre_un-of-bundles representations are given in the last
and O(1) algorithms. Statistics for these new versions two columns of Table 3.
are given on columns three and four of Table 3. The above strategies factor two-dimensional arrays.

A dual law breaks the table in to a list of columns They all generalize to higher dimensional arrays. An
using the operations eels and transpose (which is not operation could be mapped on an array with shape [i.j. k]
defined in thispaper), in 0(1 ), O(i*j), O(i*k), O(j*k), O(i), O(j), O(k), or O(i*j*k)

time. The graph sizes for thesecomputations would be
each f a = transpose (mix (18) the reverse order of the time complexities, respectively.

(each (each f) (eels a))), Reductive applications of functions (e.g., reduce f i [a.
when valence a = 2 b, c] = a f (b f (c f i))) can be perfomled sequentially, or -

for associative functions - in a binary tree. Thus we
Another strategy for factoring tables into bundles of can reduce arrays of shape [n] in either space O(1) and

streams (or vis-a-versa) is to divide the table in half time O(n), or in space O(n) and time O(Iog n). When
(thirds, forths .... ). The following identify breaks tables reducing large ,'u-rays,the reduction can be broken into
in half (take aJld drop ,are not defined in this paper), two levels of reduction using the various strategies of

rectangular factoriHg discussed above. For instance:
each f a = (shape a) reshape (link (I 9)

leach f firsth_df,each f secondhall]) reduce f i a = reduce f i (each (reduce f i) (rows a)) (20)
where firsthalf =

(tally a div 2) take a; when i is the identity of f, and f is associative. One
secondh_df = reduce c,'mbe done sequentially and the other in parallel.

(tally a div 2) drop a This approach can be generalized to more than two levels
of reduction if the ,architecture makes this a useful

Table 3: Parallelism and graph size for strategy.
'(each incr)' Four patterns of factoring of expressions are exposed

by our referentially transparent model of array
Iis_. I par. I row ! col l half ! half computations: 1) re-arrangement operations, such as our

.... shuffle example, 2) cross product, as illustrated in the
sha- 5, 4 5, 4 5, 4 5, 4 5, 4 5, 4 eachleft-eachright-eachboth example, 3) operation
pe ill

repr sire- bun- bun- stre- bun- stre- mapping, as illustrated in the each-incr and matrix
am die die_ am_ die_ a,n_ multiplication examples, and 4) the reductive patterns

stre- bun- stre- bun- just discussed. These four patterns can be combined in
am die arn die

any form in more complex examples.
stat.
grp. 1 20 5 4 2 10
SZ. 10. Conclusions
stat.

grp. 1 1 1 1 1 1 We have systematically exploited identities and
dep. representation choices in a referentially transparent
star. system of array expressions and dataflow graphs to
avg. 1 20 5 4 2 10 control the degree of parallelism. This work has
par. demonstrated, in principle, that array-based computations
run can be written in a very general form and can then be
ti- 20 1 4 5 10 2 mapped to particular dat',fflow machine. Thus dataflow
me users c_ul avoid early-binditlg of control of parallelism
dyn. strategies.
rain 1 20 5 4 2 I0 A few fundamental patterns of factoring of array
par. computations have been exposed by our examples.
dyu. While the set of patterns is small, they are powerful
max 1 20 5 4 2 !0 strategies, and can be applied in combination to produce
par. more complex possibilities for more complex problems.
dyn. While these factoring ideas are not new, our systematic
avg. 1 20 5 4 2 10 exploitation of them appears to be both new and
par. promising.

The present work is preliminary; there are many
limitations. Presently, only structural recursions
(recursions where the inductive principle is the structure
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of the array) are handled; our ideas do not yet extend to [41 Gaudiot, J. L. and Wei, Y., "Token Relabeling in
course-of-values recursions, a Tagged Token Dataflow Architecture", IEEE

Only application to static dataflow has been studied. Transactions on Computers, Sept. 1989.
While there does not appear to be any serious difficulty [5] Jenkins M.A., "The Role of Equations in Nial",
in extending these ideas to dynamic dataflow, this work Tech Report# 84-161, Department of Computing
remains, and Information Science, Queen's University,

Our methods require that the shape of all arrays be Canada, 1984.
known. This restriction is equivalent to the restriction to I61 Jenkins M. A. and Jenkins W. H., "Q'Nial
static dataflow - it is necessary that the structure of the Reference Manual", Nial Systems Limited, Canada
final dataflow graph be known, and that structure is 1985.
dictated by the shape of containers. This restriction can [71 McCrosky C., "The Elimination of Intermediate
be relaxed for stream representations (which are not Containers in the Evaluation of First-Class Array
reconverted to bundles), but we have not done so. Expressions", Computer Languages, Vol 16, No.

There are important array computations which our 2, pp 179-195.
techniques do not address. Computations which perform 18] McCrosky C., Sailor K., and ven der Buhs, B.,
dynamic look-ups in arrays do not map well to our "The Semantics of Falafel", report in progress,
approach. For these computation,;,, the storage solutions University of Saskatchewan.
are superior. In our view, the present techniques should [91 "Miranda System Manual", Research Software
be applied within the larger context of an array dat',fflow Limited, 1987.
system that uses storage solutions where necessary or [101 More T., "Notes on the Diagrams, Logic and
preferable, but uses our techniques where appropriate to Operations of Array Theory", Tech Report G320-
avoid the overheads of storage solutions, or to better 2137, IBM Cambridge Scientific Center, 1981.
contl,_l parallelism. The relationship between storage [lll Nikhil R. S., "Id (Version 90.0) Reference
solutions and our approach has not been worked out. Manual", Tech Report CSG Memo 284-1, MIT

The primary future effort suggested by this work is the Laboratory for Computer Science, Cambridge,
automation of the exploration of the domains of possible USA, July 1990.
graphs for array dataflow expressions. The choices of [121 Pingali, K. and Arvind, "Efficient Demand-Driven
stream and bundle representation, and tile applications of Evaluation. Part I", ACM TOPLAS, April 1985,
identities exploited in this paper were all human pp311-333.
decisions. If this approach is to be practical, automated [131 Ranelletti, J. E., "Graph Transformation
systems must find the better graphs. As the number of Algorithms for Array Memory Optimization in
graphs is exponential in the number of arrays and Applicative Languages", Ph.D. Thesis, University
identities, blind search will not be useful for large of California at Davis, 1987.
expressions. Heuristic approaches must be established. I14] Roy K., "Static Dataflow Implementation of

The second future effort suggested by this work is to First-Class Arrays", M. Sc. Thesis, Department
embed our approach within the larger context of a storage of Computational Science, University of
solution, as discussed above. Saskatchewan, Canada, 1990.

The success of this approach is due to the referential [151 Traub, K., "Multi-thread Code Generation for
transparency of the source expressions and the dataflow Dataflow Architectures from Non-Strict
graphs. While the approach cannot be expected to solve Programs", FPCA'91, Cambridge, pp. 73-101.
all dataflow programming problems, it is a useful
approach for a large and interesting subset of array
computations.
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