CONF-9310206+~ =

Proceedings

Sisal '93

John T. Feo
editor

October 1993

DISTRIBUTION OF THIS DOCUMENT 1S UNLIMITED

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights, Reference herein to any specific commercial products, process,
or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favori..,g by the United States Government or the University of California.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United
States Government thereof, and shall not be used for advertising or product endorsement purposes.

Work performed under the wuspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract W.-740% Eng-48,

Proceedings

Sisal ‘93

Editor

John T. Feo
Lawrence Livermore National Laboratory

Livermore, California

Sponsored by

Computer Research Group
Lawrence Livermore National Laboratory
Livermore, CA

October 3-5, 1993

San Diego, California E

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

{

Contents

Programmability and performance issues: The case of an
iterative partial differential equation solver
Chinhyun Kim, Jean-Luc Gaudiot and Wlodek Proskurotwski

Implementing the kernal of the Australian Region Weather
Prediction Model in Sisal
Greg Egan

Even and quarter-even prime length symmetric FFTs and
their Sisal Implementations
Jaime Seguel and Dorothy Bollman

Top-down thread generation for Sisal
Bhanu Shankar, Wim Bohm and Walid Najjar

Overlapping Communications and Computations on
NUMA architechtures
Richard Wolski and [olin Feo

Compiling technique based on dataflow analysis for funtional
programming language Valid
Eiichi Takahashi, Rin-ichiro Taniguchi and Makoto Amamiya

Copy elimination for true multidimensional arrays in Sisal 2.0
Steven Fitzgerald

Increasing Parallelism for an optimization that reduces copying
in IF2 graphs
Steven Fitzgerald

Caching in on Sisal: Cache performance of Sisal vs. FORTRAN
Phil Nico and Arvin Park

FFT algorithms on a shared-memory multiprocessor
Anthony Cricenti and Greg Egan

A parallel implementation of nonnumeric search problems in
Sisal
Andreie Solin

11

18

25

40

47

74

85

91

Computer vision algorithms in Sisal
Srdjan Mitrovic and Marjan Trobina

Compilation of Sisal for a high-performance data driven vector
processor
William Miller, Walid Najjar and Wim Bélm

Sisal on distributed memory machines
Sande Pande, Dharma Agrawal and Jon Mauney

A virtual shared addressing system for distributed memory Sisal
Matthew Haines and Wimt Bohm

Developing a high-performance FFT algorithm in Sisal for a vector
supercon.puter
Joh Feo and David Cann

Implementation issues for IF2 on a static data-flow architechture
Linda Wilkins and Aaron Enright

Systematic control of parallelism in array-based data-flow

computation
Kanad Roy and Carl McCrosky

i

114

120

134

151

164

175

189

Programmability and Performance Issues: the Case
of an Iterative Partial Differential Equation Solver*

Chinhyun Kim Jean-Luc Gaudiot

Electrical Engineering-Systems Dept.
University of Southern California
Los Angeles, CA 90089-2563

Abstract

In this paper, we use a specific example to discuss
the viability of functional programming in the context
of parallel computing. The traditional argument for
functional languages has been programmability. In-
deed, due to high-level abstractions and the implicit
parallelism provided by functioneal languages, program-
mers are free to concentrate on the implementation
of the algorithm at hand without being burdened with
low-level machine execution details. We further report
that it is possible to deliver both programmability and
performance through functional programming. Some
quantitalive resulls from an experiment which consists
of developing a multigrid elliptic Partial Differential
Equation (PDE) solver are presented.

1 Introduction

In current parallel programmingstyle using impera-
tive languages such as FORTRAN or C, an applications
programmer needs to be aware of the architectural
details of the target machine in order to generate an
efficient program [7, 10]. This is due to the execution
model (von Neumann) of most existing programming
languages. Such practice makes writing parallel pro-
grams difficult. Furthermore, once written, porting a
program to a machine with a different architecture vir-
tually means rewriting the whole program. At present,
however, no other programming languages can com-
pete with imperative languages in performance.

Functional languages such as SisaL [5, 8] provide
higher-level abstractions so that underlying machine
architecture is transparent to a programmer. In ad-
dition, representation of parallel operations is implicit

*This work was supported in part by the National Science
Foundation under grant No. CCR-9013965.

Wlodek Proskurowski

Mathematics Dept.
University of Southern California
Los Angeles, CA 90089-1113

in the language semantics. These features allow a pro-
grammer to concentrate on the implementation details
o the algorithm at hand without worrying about par-
allelization and other low-level machine mechanisms.
The drawback of functional languages, however, have
been performance. Programming in functional lan-
guages can be a double-edged sword. That is, while
high-level abstractions free programmers from low-
level details, it could be difficult to achieve good per-
formance.

Much work has been done in compilation techniques
to improve the performance of functional languages
[2]. It has been shown that the latest SiSAL compiler
called the Optimizing SisAL Compiler (Osc) [3] can
compete with the FORTRAN compiler on CRAY ma-
chines [4]. The CRAY FORTRAN compiler can be con-
sidered one of the best commercially available optimiz-
ing compilers. Thanks to Osc, using the performance
issue in the argument against functional programming
has been substantially weakened. On the other hand,
the alleged functional language feature of programma-
bility issue has not been well substantiated.

A desirable (parallel) programming environment is
one that which shields a programmer from the low-
level machine details without sacrificing performance.
The objective of this paper, therefore, is to address the
issues of programmability and performance of func-
tional programming together by presenting some em-
pirical results from an experiment. The experiment is
based on a one semester graduate level course on nu-
merical methods of elliptic Partial Differential Equa-
tions (PDE). In the course, four different algorithms
for numerically solving elliptic PDEs are presented
and each student is required to implement the PDE
solvers within some specified time. In the course,
students are free to use a programming language of
his/her choice. The four iterative PDE solvers cov-
ered in the course are based on :

1. Basic iterative methods : Jacobi, Gauss-Seidel,
and Succesive Over Relaxation (SOR),

2. Multigrid method,

o«

Preconditioned Conjugate Gradient
method (and Fast Poisson solvers),

(PCG)

4. Domain Decomposition method.

The experiment consists of participating in the
course and implementing the PDE solvers in SisaAL
within the assigned date. Once the PDE solvers are
written, their performance on various types of paral-
lel machines are measured in addition to uniprocessor
machines. There is to be no modifications made to
the programs that run on various machines. Note that
implementing the PDE solvers for parallel machines is
not part of the course. In the course, students were to
write programs only for sequential machines.

The programmer participating in the experiment
had the following background at the start of the ex-
periment:

e Understood programming language issues in gen-
eral, but has not written any substantial SisaL
programs prior to the experiment.

e Had no knowledge of the numerical PDE solver
algorithms covered in the class prior to the exper-
iment.

Due to space limitation, this paper concentrates
the discussion on the implementation of a multigrid
method. In section 2, the model problem used in the
experiment is discussed. In addition, characteristics
of the multigrid algorithm is described in some detail.
Section 3 describes the implementation of a multigrid
algorithm. In section 4, performance measurements
of the implemented multigrid solver on sequential and
parallel machines are described. In addition, the de-
velopment time of each solver is described. Section 5
ends with some concluding remarks.

2 Description of the Problem

In this section, the model problem used in the ex-
periment is discussed. In addition, two multigrid al-
gorithms are described in some detail.

2.1 The Model Problem

The model problem used in the experiment is the
following two-dimensional self-adjoint elliptic equa-
tion in the unit square with proper Dirichlet (static)

r ™y
Y
=
Ay
>
}_’ % T X @ :unknown values
X x . known values

Figure 1: The finite difference method discretizes a
continuous region into a finite number of grid points
by dividing the region of interest into equal grid sizes.

boundary conditions :

—div (k grad u) =f

Two different values for the diffusion function k(z,y)
are used. The first case is when k(z,y) = 1. This
results in the well-known Poisson’s equation :

[32u(x,y) + 8u(z, y)
U2 Oy?

]=f(m,y)

In general, the resulting equation is of the following
form :

AU B TOMEC L EERY
In order to solve the problem numerically, the con-
tinuous partial differential equation needs to be dis-
cretized. In other words, solution of the dependent
variables are determined only at discrete points within
the problem domain although the variables vary con-
tinuously throughout the domain. In the experiment,
the partial differential equation is discretized using the
finite difference method. The finite difference method
is based on Taylor series expansion in which the or-
der of the truncation error depends on the number of
terms selected from the Taylor series. In the experi-
ment, second order approximation is used, 1.e., trun-
cation error is of order O((Az)?, (Ay)?); Az and Ay
are the grid spaces in the z and y axis, respectively
(Figure 1). If Az = Ay = I, an unknown variable u
at discrete point z; and y; (when k(z,y) == 1) can be
approximated as in the following equation :

2
Uimyj+ Wigtj F i1+ U+ RS
4

Uij =

where 0 < i< N, and 0 < j < M

N e

Figure 2: When the diffusion function is not constant,
using a staggered grid scheme results in a symmetric
coefficient matrix.

The variables N and M are the number of grid points
in the z and y directions, respectively. The u;; and
fi; represent the variables u(z,y) and f(z,y) at dis-
crete grid points z; and y;.

When k(z, y) is a function of £ and y, staggered grid
method is used so that the resulting coefficient matrix
is symmetric and the O(h?) accuracy is retained. The
resulting difference equation looks like the folowing :

Kiuioy; 4+ Kouigy j + Kauijo1 + Kqug j49

o= Ko

+fl——2f"j

I\o

Ko = ki_yjoj+kigryaj+kijo1/2+ kijri)e
Ky = kicijaj
Ko = ki
Kz = kij_12
Ky = kijqay

Once the partial differential equation is discretized,
a system of linear equations results which can be writ-
ten in a vector form as shown below :

A—(nxn)u(nxl) = f(nxl)

o A isthe coefficient matrix. Its size is n xn and has
the characteristics of being sparse and symmetric.

e u is a vector of unknown variables.

o fis a vector of the values of f(z,y) at discrete
points.

4 . h X
N/
\ N
N/
\[16h

A\ (©) .

Figure 3: The top figure shows the V-cycle and the
bottom figure shows the FMV-cycle.

2.2 Multigrid Method

The disadvantage of basic iterative methods is their
slow rate of convergence. Of the three methods listed,
SOR has the best performance. This, however, is
based on the assumption that the optimum value of
the weighting parameter wop; is known [6]. Unfortu-
nately, the value of wp, is usually unknown. Con-
ceptually, the slowness of the basic iterative methods
is attributed to the fact that they act as a low-pass
filter with a fixed cutoff frequency. Initially, the con-
vergence rate is fast because the high frequency error
components are quickly filtered out. However, once
the high-frequency error components are filtered out
and only the low-frequency (or smooth) error compo-
nents are left, the convergence rate becomes very slow.

The basic idea behind the Multigrid method is to
take advantage of the fact that low-frequency error
components of a fine grid becomes high-frequency er-
ror components in a coarser grid [1]. Thus, the strat-
egy is to move down to a coarser grid once the conver-
gence rate at the current grid saturates. We can think
of this as a low-pass filter whose cutoff frequency can
vary. That is, once the high-frequency components
are filtered out, the cutoff frequency can be further
moved down so that the error components which could
not be filtered out in the previous setting can be fil-
tered. Thus, fast convergence rate can be sustained
by moving through different gr.d levels.

The basic Multigrid scheme forms a V-cycle in
which the downward path computes the residual er-
ror while the upward path is the correction path which

updates the old estimation with a new approximation.

The algorithm of the V-cycle in a recursive form is as
follows [1] :

o A" is a coefficient matrix at grid level h.

o £ is a vector of the values of f(z,y) at grid level
h.

e v" is a vector of the unknown variable approxi-

mations at grid level h.

. I,‘f" is an interpolation function mapping from a
fine grid to a coarse grid. Also called, restriction.

Igh is an interpolation function mapping from a
coarse grid to a fine grid.

[J

Algorithm MV : vh — MV*(vh)

1. Relax v; times on AMvh = £ with
initial guess v*.
2. If Q" is QF (coarsest grid) then go to 4.
Else 2% « I2h(f* — AMvh)
v2h 0 (zero as initial guess, for error)
vih AlL/Qh(VQh’th)
End if
3. Correct vF «— vh 4 [h, v2h,
4. Relax vo times on A"v? = £* with v* as
initial guess.

A more efficient multigrid scheme called the full
multigrid (FMV) computes the initial guess on the
finest level hy performing the V-cycle at every grid
level using the corrected value of v at the coarser level
as the new initial guess. Its algorithm in a recursive
form is as follows [1] :

Algorithm FMV : vh — FM V(v)

1. 1f Q" is Qf then go to 3.
Else f** — IZh(f* — A"vh)

vih
V'Jh — };‘A{‘/Zh(v‘zh‘fiih)
End if

2h

2. Correct vt — vh 4 I{},‘v
3. vl MVB(vP) by times.
3 Implementation

In the experiment, a full multigrid algorithm is im-
plemented. As shown in Figure 3 (b), this method

function Multiv (N,nl,n2:integer; V,F : TwoDim returns TwoDim)
let
NewGrid := Relax(N.,ni,V.F):
UpdateGrid := if N = 2 then
Relax(N,1,NewGrid,F}

else
let
Residue := ComputeRes(N,F, NewGrid);
CoarseF := Restrict(N/2,Residue):
CoarseErrorG :=~ MultiV(N/2,nl,n2, InitVal(N/2), CoarseF):
ErrorGrid := InterP(N,CoarseErrorG):
CorrectedV := Correction(N,NewGrid,ErrorGrid)
in
Relax(N,n2,Correctedv, F)
end let
end if
in
UpdatedGrid
end let

end function

Figure 4: The function MultiVis a SiSAL implementa-
tion of a recursive algorithm which performs a V-cycle.

starts out at the coarsest grid in which each grid points
are computed to exact values. These grid points are
then interpolated to the next finer grid. Then a V-
cycle is performed on these interpolated grid points.
This is repeated at every grid level until the finest
grid level is reached. On the finest level the MV al-
gorithm is performed v times. This section describes
the SisaL implementation of the algorithm and vari-
ous functions performed as part of the multigrid op-
erations.

The function MultiV shown in Figure 4 is a SISAL
implementation that performs a V-cycle. The func-
tion is written in a recursive style and closely resem-
bles the Algorithm MV description. It has five input
parameters and one output parameter which is a two
dimensional array. The data type TwoDim is a user de-
fined data type which is really a two dimensional array
of double precision floating point numbers. The first
three input parameters N,n1,n2 of type integer are
the grid size, the number of relaxations in the down-
ward V-cycle, and the number of relaxations in the
upward V-cycle, respectively. Among the two input
parameters of type TwoDim, V is the current approxi-
mation of u and F is f in the equation Au = f. In the
current implementation of the multigrid method, the
coarsest grid is when the grid is 2 by 2, i.e., when the
number of unknowns become one. At this time, the
value of the unknown can be computed to the exact
value.

The function MultiV is called by the function FMV
which performs the FMV-cycle. In FMV-cycle, com-
putation starts from the coarsest grid level and moves
up one level at a time. At cach higher (finer) grid
level, a V-cycle is performed (Figure 3 (b)). Figure 5
is a SISAL implementation of the function FMV. This

function FMV (N,nl,n2:integer; V,F:TwoDim returns TwoDim)
let
Grid := 4f N = 2 then
ExactSolve (F)
else
let
Residue := ComputeRes(N,F,V):
CoarseF := Restrict(N/2,Residue);
CoarseUpdatedV := FMV(N/2,nl,n2,Bndval (N/2),CoarseF):
UpdateVv := InterP (N,CoarseUpdatedV):
CorrectedV := Correction(N,V,UpdatedV)
in
MultiV(N,nl,n2,Correctedv,F)
end let
end if
in
Grid
end let
ond function

Figure 5: The function FMV is a SISAL implementation
of a recursive algorithm which performs a FMV-cycle.

function is also written in a recursive style and closely
resembles the Algorithm F MV description in the pre-
vious section.

The functions MultiV and FMV call the following five
functions. These are the core functions of the multi-
grid algorithm. A short description of each function
is as follows :

Relax : One of the iterative methods such as Jacobi,
Gauss-Seidel, etc. This function is discussed in
more detail in subsequent paragraphs.

ComputeRes : This function computes residualr, i.e.
r = f— Av. This function contains (two-level)
nested forall loops only.

Restrict : This function performs an interpolation
from a grid of size N to N/2. It is used in
the downward path of the V-cycle and contains
nested forall loops.

InterP : This function performs an interpolation
from a coarse grid of size N/2 to a fine grid of
size N. This function also contains only forall
loops.

Correction : This function modifies the previously
approximated unknown variables by adding the
correction values. This function contains forall
loops.

Two points were considered in deciding the kind of
iterative method to be used for relaxation. The first
consideration is the convergence rate. As discussed
previously, SOR performs the best if wop, can be de-
termined. Since this value cannot be determined in
general, the next best choice is the Gauss-Seidel it-
eration. The second consideration is the amount of

. ™
Black gd poin
Red K

\ed grid pon s

Figure 6: The Red-Black Gauss-Seidel is a parallel
version of the otherwise sequential Gauss-Seidel iter-
ative method. Notice the way the red and the black
grid points are divided. The cross-like regions repre-
sent the 5-point stencil used in the approximation.

parallelism available in the algorithm. In this respect,
Jacobi method has the most parallelism. In Jacobi it-
eration, a new approximation of a grid point is only a
function of grid points from previous approximations.
Therefore, all grid points can be updated in parallel.
In Gauss-Seidel method, on the other hand, a new ap-
proximation of a grid point depends partly on the most
recently approximated grid points. Due to this data
dependency in the algorithm, Gauss-Seidel method is
inherently sequential.

Fortunately, a parallel version of the Gauss-Seidel
method exists. It is called the Red-Black (R-B) Gauss-
Seidel method [9] and is shown in Figure 6. This
method is not fully parallel as the Jacobi method. In-
stead, grid points are updated in two sequential steps.
That is, one half of the grid points are updated first
and then the other half are updated next. At each
step, however, grid points can be updated in paral-
lel. Although the amount of parallelism available in
the Red-Black Gauss-Seidel method is only half that
of the Jacobi method, its superior convergence rate
(twice faster than Jacobi) makes it a better iterative
scheme.

4 Experimental Results

In this section, we first discuss the programmability
issue. We then describe the performance of the im-
plemented program. First, the amount of parallelism
existing in the SisAL implementation of a multigrid

[Solvers | Develop. Time (days) |

Basic iterative methods 29
Multigrid 23
Precond. Conj. Gradient 21
Domain Decomposition 30

Table 1: Timespent to learn and implement each PDE
solvers presented in the course.

algorithm is analyzed. Then we present the actual
performance of the program on a number of different
parallel machines.

4.1 Programmability

Table 1 shows the development time of every PDE
solver implemented during the course. The develop-
ment time shown in the second column of the table
includes the class lectures explaining the algorithms
as well as the days spent in actual program develop-
meznt. On the average, half of the time was devoted
to the discussion of the algorithm and the other half
to the actual implementation. Although the first as-
signment consists of simple programs, additional time
was needed to become familiar with writing S1SAL pro-
grams.

In the case of the multigrid PDE solver, the
SisAL implementation consists of approximately 350
source lines consisting of 17 functions. Two func-
tions (MultiV and FMV) are written in a recursive
style. There are 25 loops in the program in which
three loops are written in a sequential ioop construct
and 22 loops are written in a parallel loop construct.
Approximately two weeks (six lectures) were spent in
discussing the algorithm and one week was spent in
actual program development.

Once a working program is written, that same
program was used for performance measurements on
various parallel machines without any modifications.
Therefore, on the average, a parallel PDE solver is
written in two weeks which runs on various parallel
machines in addition to average single processor work-
stations.

4.2 Performance

This section first discusses the amount of paral-
lelism available in the Sisar implementation of the
multigrid algorithm. Then actual performance mea-
sured by executing the program on different parallel
machtnes is presented.

Com{grgenoe Rate

x 16 Grid
5.0 v v
G—© Jacobl

40 |k G—8& R-B Gauss-Seldel |
E
230}
g
i]
°
c
g 20

1.0

0.0, . 4 4 ey

0.0 20.0 40.0 60.0 80.0 100.0

Number of lterations

Figure 7: Red-Black Gauss-Seidel iteration has a supe-
rior convergence rate over that of the Jacobi iteration.

4.2.1 Parallelism Profile of the Multigrid Im-
plementation

For performance measurements, an implementation of
a full multigrid algorithm is used. In the program,
the diffusion function of k(z,y) = e(*t¥) is used.
Throughout the measurements, the number of relax-
ations vy in the downward path of the V-cycle is set to
two and the number of relaxations v5 in the upward
path of the V-cycle is set to one.

The most expensive operation in each grid level is
the relaxation operation. As mentioned in the pre-
vious section, the Red-Black Gauss-Seidel relaxation
scheme is used. This scheme has a superior conver-
gence rate over that of the Jacobi relaxation while still
providing parallelism. Figure 7 shows the convergence
rate of the two schemes for a two dimensional grid of
16 by 16. The initial guess for the unknowns were set
to zero for both schemes. Table 2 shows the execu-
tion time of the two iterations on a Silicon Graphics
four processor machine. It shows that both schemes
have a close to linear speedups indicating that both
schemes contain enough parallelism. Note that the
execution time per iteration of the Jacobi iteration is
slightly faster. This is due to the fact that the Red-
Black Gauss-Seidel iteration updates grid points in a
two-step sequence while the Jacobi iteration does it in
a single step.

The relaxation operation along with other opera-
tions such as interpolation, restriction, residue calcu-
lation and error correction is performed at every grid

6

512 x 512, 10 iterations
Jacobi R-B Gauss-Seidel
PE | Exec.Time(sec) | Speedup || PE | Exec.time(sec) | Speedup
1 202.80 1 1 223.13 1
2 103.19 1.97 2 113.54 1.97
3 69.24 2.93 3 76.33 2.92
4 52.01 3.90 4 57.54 3.88

Table 2: Both the Jacobi and the Red-Black Gauss-Seidel iterations contain enough parallelism to provide close

to linear speedups.

Parallelism Profile (Infinite PEs)
8 x 8, Single V-cycle

3000 b
n1=2 relaxalions n2=1 relaxation
o N=8 aIN=8
£ 2000 f E
2
&
a
1000
01=2 relaxations n2s1 relaxation
at N=d al Na4
— h —
UL R o
1800.0 2800.0 3800.0
Execution Time

Figure 8: The ideal parallelism profile of a single V-
cycle where the grid size is 8 by 8. v; = 2 and v = 1.
(See Algorithm M V)

level. Althouth there can be many variations of mov-
ing around different grid levels, they are all based on
the V-cycle. Figure 8 shows the parallelism profile
of the V-cycle for an 8 by 8 grid using the Red-Black
Gauss-Seidel iteration as the relaxation scheme. The 2
by 2 grid is the coarsest grid in the V-cycle. The paral-
lelism profile shown is for an ideal case which assumes
infinite number of processors and no communication
overhead.

The amount of parallelism is computed by counting
the number of executable nodes at each time interval.
The nodes are part of the intermediate-level represen-
tation of the program which is a directed acyclic graph
called Intermediate Form 1 (IF1) [11]. The nodes rep-
resent instructions and the edges connecting the nodes
represent data dependency relationships among the
nodes. The reason that the parallelism profile looks

like a cluster of impulses is because it is assumed that
infinite number of processors is available. That is, all
instructions that become executable are assumed to
be executed together at the same time. The paral-
lelism profile shows that parallelism decreases by one
fourth until the grid size of 2 by 2 is reached and in-
creases ba:i to the original level. The reason the pro-
file is not exactly symmetric is because the relaxation
is performed twice going down the grid level (v, = 2),
but only once coming up the grid level (v, = 1). Note
that a single relaxation produces two spikes because
in Red-Black Gauss-Seidel iteration, grid points are
updated in two sequential steps.

In the current multigrid implementation, a full
multigrid V-cycle (FMV-cycle) is used once in the ini-
tialization stage followed by regular V-cycles in which
the number of repetitions is specified by an input pa-
rameter. An FMV-cycle starts from the coarsest grid
and moves up to the finest grid. At each grid level,
a V-cycle is performed. The parallelism profiles for
an FMV-cycle is shown in Figure 9 for infinite proces-
sors. As expected, we see repeated V-cycle profiles of
different sizes. The rightmost pattern is the V-cycle
parallelism profile for an 8 by 8 grid. At far left, par-
allelism profile for a 2 by 2 grid can barely be seen.

Figure 13 shows the parallelism profile of the full
multigrid scheme doing 5 iterations. As mentioned
already, the first iteration is the FMV-cycle, and the
next 5 iterations are the V-cycles.

4.2.2 Actual Performance on Parallel Ma-
chines

Performance of the multigrid implementation is mea-
sured on three MIMD type parallel computers. They
are,

o CRAY Y-MP (4 PEs)
o Silicon Graphics (4 PEs)

o Sequent Balance (16 PEs)

Parallelism Profile (Infinite PEs)
8 x 8, Single FMV-cycle

-
3000 | |
5 200.0 } 4
K
e
o
a.
1000 | 4
llml Ll
1800.0 2800.0 38000 4800.0 5800.0

Execution Time

Figure 9: The ideal parallelism profile of a single
FMV-cycle where the grid size is 8 by 8. v; = 2 and
vy = 1. (See Algorithm FMV)

Parallelism Profile (Infinite PEs)
8 x 8,5 terations

300.0

N
8

Parallelism

b I VIR
0.0 . - .
1890.0 6800.0

Execution Time

Figure 10: The ideal parallelism profile of a full multi-
grid scheme doing 5 iterations. The grid size is 8 by
8. vi=2and vy = 1.

512 x 512, b iterations
PE || CraY (sec.) | SGI (sec.)
1 15.89 457.78
2 8.76 287.14
3 6.39 192.69
4 5.34 146.00

Table 3: Execution time of a multigrid program on a
CRAY Y-MP and a Silicon Graphics machines.

256 x 256, 5 iterations
PE || Balance (sec.)
1 3989.20

2 1993.17

4 1014.61

8 516.11

12 362.29

16 274.89

Table 4: Execution time of a muitigrid program on a
Sequent Balance Machine.

CrAY Y-MP runs UNICOS which is a Unix-like
operating system and has vector execution units in
each processor. The Silicon Graphics machine is also
a Unix-based and is built on MIPS R3000 processor
chips. Sequent Balance utilizes National Semiconduc-
tor’s NS32032 processor chip and is a slow machine by
today’s standard.

In the performance measurement, a grid size of 512
by 512 is used and each run consists of 5 iterations.
Note that by 5 iterations we actually mean one FMV-
cycle followed by five V-cycles. Since the full multi-
grid scheme utilizes a FMV-cycle with V-cycles, it is
helpful to measure the speedup of these two cycles
separately before measuring the speedup of the whole
program. Figure 11 shows a graph which compares the
speedup of one FMV-cycle and one V-cycle. It shows
that V-cycle results in a better speedup. This is ex-
pected since FMV-cycle spends some time performing
V-cycles at coarser grids. This results in less proces-
sor utilization and thus produces lower speedup. The
graph shows that V-cycle results in a close to linear
speedup.

From Figure 11, we expect the speedup of the multi-
grid implementation to be somewhere between the
speedup reached by the FMV-cycle and the V-cycle.
Figure 12 shows the speedup of the multigrid imple-
mentation on CRAY Y-MP and Silicon Graphics ma-
chines. Figure 13 shows the speedup on a Sequent
Balance. Tables 3 and 4 show the execution times.

Comparison of S eedup (Silicon Graphics)
12, S!ngle cycle

40
a—av«:‘\;de
o—o©FMV-cycle
30} i
[«
)
?]
&
%)
20 } |
105% 30 30 30

Number of Processors

Figure 11: Speedup comparison of a single FMV-cycle
and a single V-cycle: 512 by 512 grid.

Full Multigrid
40 512 x 512, 5 itérations

o—OCRAY Y-MP
=—=e3Silicon Graphics

Speedup

1o 2.0 3.
Number of Processors

30

Figure 12: Speedup of a full multigrid implementation
on a 512 by 512 grid.

Full Mtéhsigrid Se%ent Balance)

% 256 5 iterations

r T T y

160 | E

Speedup

VO30 "5 70 90 110 T30 150 17.0

Number of Processors

Figure 13: Speedup of a full multigrid implementation
on a 256 by 256 grid.

We see that the Osc compiler does a good job of
concurrentization by observing the speedup curve of
each machine. In addition to concurrentization, CRAY
also utilizes hardware vector facilities. The Osc rec-
ommends innermost parallel loops for vectorization.
In the multigrid implementation used in the perfor-
mance measurements, the Osc recommended vector-
ization of 12 loops in which all were vectorized by the
native C compiler. A parallel loop in function Noxrm
which has reduction operations (sum and greatest)
in the return clause were neither recomme.:ded by the
Osc nor vectorized by the CrRay C compiler.

5 Conclusion

We have shown that functional programming is in-
deed a viable approach to parallel computing provid-
ing both programmability and performance. Our pro-
gram which has originally been written for a sequential
machine efficiently executed on a number of parallel
machines without requiring the programmer to man-
ually parallelize the code. The implicit parallelism
of SisaL, therefore, has allowed the programmer to
concentrate on the implementation of the algorithm
without having to worry about low-level execution de-
tails. Once a program is verified to work correctly on
a sequential machine, it can be run on various parallel
machines without program modification.

However, the current version of Osc is tailored for
execution on a shared global address space machines
which currently employ a relatively small number of
processors (< 30). On the other hand, there is a grow-
ing number of parallel machines already introduced
or being introduced which employ a large number of
processors (in the hundreds). Logically, some ma-
chines have shared global address space and some do
not. Physically, however, all large machines have dis-
tributed memory soread across the processors making
memory accesses nonuniform and latency a serious is-
sue to consider. To achieve good performance on such
machines, a new execution model needs to be devel-
oped for the next generation of the SisAL compiler.

Acknowledgements

We would like to thank our colleagues, especially
Dr. John Feo at the Computing Research Group of
the Lawrence Livermore National Laboratory for let-
ting us use the CrAY and the Silicon Graphics paral-
lel machines. We also thank Professor Walid Najjar
of Colorado State University for letting us use the Se-
quent Balance machine.

References

[1] W. Briggs. A Multigrid Tutorial. SIAM, 1987.

[2] D. Cann. Compilation Techniques for High Per-
formance Applicative Computation. PhD thesis,
Colorado State University, 1989.

[3] D. Cann. The Optimizing SISAL Compiler: Ver-
ston 12.0. Lawrence Livermore National Labora-
tory, P.O. Box 808, Livermore, CA 94550, 1992.

[4] D. Cann. Retire Fortran: A debate rekindled.
Communications of the ACM, 35(8):81-89, Au-
gust 1992,

[5] J. Feo, D. Cann, and R. Oldehoeft. A report on
the Sisal language project. Journal of Parallel
and Distributed Computing, 10:349-366, Decem-
ber 1990.

[6] G.Golub and C. van Loan. Matriz Computations.
Johns Hopkins University Press, 1989,

[7] M. Kallstrom and S. Thakkar. Programming
three parallel computers. [EEE Software, pages
11-22, January 1988.

(8] J. McGraw, S. Skedzielewski, S. Allan, R. Old-
ehoeft, J. Glauert, C. Kirkham, B. Noyce, and
R. Thomas. SISAL Language Reference Manual
Version 1.2, March 1985.

[9] J. Ortega. Introduction to Parallel and Vector So-
lution of Linear Systems. Frontiers of Computer
Science. Plenum Press, 1988.

[10] A. Osterhaug. Guide to Parallel Programming on
Sequent Compuler Systems. Sequent Computer
Systems, Inc., second edition, 1987.

(11] S. Skedzielewski and J. Glauert. IFI An Inter-
mediate Form for Applicative Languages. Com-
puting Research Group, Lawrence Livermore Na-
tional Laboratory, P.O. Box 808, L-306, Liver-
more, CA 94550, 1985.

Implementing the Kernel of the Australian Region Weather
Prediction Model in SISAL

G.K. Egan
Laboratory for Concurrent Computing Systems
Swinburne University of Technology
John Street, Hawthorn 3122, Australia

Abstract

The SISAL implicit parallel programming language
has been tmplemented on a number of plaiforms rang-
ing from scieniific workstalions through medium cost
multiprocessors to high end parallel super computers
and recently massively parallel processors. No changes
o source code are required to obtain good performance
across these platforms and it has been claimed thal
SISAL ezhibits similar uniprocessor performance to
FORTRAN while providing significant speedup com-
pared to FORTRAN on multiprocessors.

The Australian Region Weather Prediction Model
s an ezxperimental FORTRAN code which uses a vari-
able resolution nesting scheme to provide higher res-
olution predictions over imporiant areas of the Aus-
tralian conlinent such as cities and coastal fisheries.
In this preliminary study we explore the performance
of the SISAL implicit parallel programming language
on a significant sctentific application by recoding the
kernel subroutine of the Model in SISAL. Results are
presented for a low end SPARC workstation, an eniry
level Cray Y-MP EL and a high end Cray C90.

1 Introduction

The Australian Region Weather Prediction Model
(ARPE) was developed by the Australian Bureau
of Meteorology Research Centre [1] for short-term
weather forecasting up to 36 hours. ARPE draws upon
the work of Arakawa, Lamb and Miyakoda [2][3] for its
formulation and is intended to be a production code
for the prediction of weather over the Australian re-
gion. This paper will concentrate on the implementa-
tion of the core subroutine of the ARPE in the SISAL
language and readers are directed to reference [1] for a
detailed description of the model. The work is part of
a continuing long term international study of SISAL

being conducted in collaboration with the Lawrence
Livermore National Laboratory.

2 The SISAL language

SISAL is a functional language for numerical com-
putation [4]. The developers of SISAL have been able
to demonstrate performance comparable with FOR-
TRAN on a number of computing platforms including
the Cray Research multiprocessors [5].

SISAL prohibits by design the ability to express
constructions which lead to the side effects that make
compilation for parallel computer systems extremely
difficult. Examples of side effects include those which
occur through the COMMON and EQUIVALENCE
statements in FORTRAN and SISAL has neither of
these constructs. SISAL is block structured and su-
perficially resembles a number of modern languages.
The single assignment nature of SISAL means vari-
ables have values assigned to them once. This requires
some departure from a common style of programming
where variables are re-used in programs sometimes for
unrelated computations. Translation of FORTRAN
programs into SISAL is not necessarily a simple pro-
cess and can be complicated significantly if the pro-
gram being re-expressed has been the subject of undis-
ciplined maintenance or constructicn. This may be
compounded if there is no original formulation of the
mathematical model available. Direct transliteration
of well written FORTRAN code can yield satisfactory
results.

Most compurative studies to date have involved
the complete recoding of an application in SISAL. In
this study the mixed language facility of the current
{(V12.9.1) Optimising SISAL Compiler is used with an
initial core subroutine being recoded.

11

3 The weather prediction model

The Weather Prediction Model code (ARPE) con-
sists of some 10,000 lines of FORTRAN source code.
Its pre-nrocessors and ancillary code constitute per-
haps another 5,000 lines of code. The code is gen-
erally well written with disciplined use of COMMON
and EQUIVALENCE statements. The kernel routines
make almost no use of subroutines although the struc-
ture of the code suggests they should be used. ARPE
then is a reasonable example of a code where inlin-
ing has occurred from the outset in an attempt to
obtain improved performance. It predates modern
FORTRAN pre-processors which automatically inline
selected subroutines.

4 FORTRAN

The Cray Research FORTRAN tool suite used [6)
runs under X Windows and is a marked advance on
those generally available only a few years ago. The
tool set comprises: a profiler (flowview) which iden-
tifies key subroutines and subroutines which are can-
didates for inlining; a pre-processor which performs
inlining and attempts to identify and annotate paral-
lel regions; an assistant for explicit parallel annotation
{atscope); and a parallelism estimator (atexpert).

Houtine Name Tot Time Calls Avg Time Percentage Accum%
INMNER2 3.52E401 9 2.80E+00 42.24 42.24
LIE 1.08E+401} 24 4.53E.01 18.23 60.47
PHYS € 18E400 5 1.23E400 10.31 70.79
LIEBIG & 61E+400 12 4.68E-01 9.42 803.21
LIEH 5508400 12 4.58E.01 .23 89.44
LIEBH 1.69E400 1] 1.88E-01 2.84 92.28
SEMIMP 1.48E+400 9 1.64E-01 2.48 94.76
VMODES 1.08E400 4 2.7T1E.01 1.82 96.57
INNER 9.56E-01 9 1.06E-01 1.60 98.18
DADAD) 4.40F.-01 11470 3.84E.03 0.74 98.91
LAMLL 1 43E.01 2600 5.50E-0% 024 99.15

Table 1. Execution Profile (5 iterations Y-MP EL)

The original program was profiled using flowtrace
to identify the core subroutines. For reasons already
stated flowtrace did not identify any subroutines eli-
gible for inlining.

The INNER2 subroutine was chosen as the starting
point, for this study but as it represents only 42% of
the run time contribution no significant speedup is to
be expected. The LIE and PHYS subroutines will
be translated in due course. Our interest here is to
confirmm that the run time is not adversely affected
and that underlying concurrency is uncovered by the
OSC compiler.

summary of subroutine inner2
CPU
Speed up
0.87

~RNWARAIN

Frrrritd

1 3 3 4 s 6 7 L]
Speed Upas

Figure 1: speedup of INNERZ predicted by atexpert

4.1 Results for FORTRAN

The automatic parallel annotator was used to anno-
tate the INNER2 subroutine. No attempt was made to
resolve data dependencies in the original FORTRAN
in this part of the study although this is intended later.
The atexpert mecsurement tool was used to examine
individual DO loops for predicted speedup. Atexpert
is claimed to accurately predict performance for ded-
icated systems. The tool provides parallelism profiles
and allows routines associated with parallel or sequen-
tial regions to be examined and analysed interactively.

It can be seen in Figure 1 that fpp failed to discover
significant parallel regions in INNER2.

5 SISAL
5.1 Mixed language compilation

The osc compiler compiles and links modules writ-
ten in FORTRAN and SISAL. In this FORTRAN is
invoking a SISAL function. To do this the original IN-
NER2 subroutine was replaced by a FORTRAN shell.
The shell initialises the array descriptors required by
SISAL and calls the replacement INNER2 written in
SISAL [7].

Fortunately the array descriptors may be re-used
for other arrays which have an identical shape. The
ability to specify an offset for returned data structures
could be used to avoid the often clumsy process of
dealing with boundary values. The current descriptor
mechanism unfortunately sets to zero the elements not
written to.

5.2 The transliteration process
Although the mathematical formulation was avail-

able it did not provide significant assistance in the
transliteration process. The INNER2 subroutine was

12

directly transliterated into SISAL with no restructur-
ing being attempted. A number of unintentional out
of bound accesses were discovered in the FORTRAN
program during this transliteration.

The transliteration process was significantly com-
plicated by the size of the INNER2 subroutine. While
the SISAL debugger (sdbx) gave some assistance there
were many cases where sdbx was not able to deter-
niine the original source line causing the error. Other
minor difficulties which would case irritation for pro-
grammers used to imperative styles also arose. In this
case even though the author has a reasonable under-
standing of SISAL the passage of time since writing
his previous SISAL program still led him to be caught
by the following:

for initial

k:=0;

while k < kz repeat
k:= old k +1;

returns ulkl.....

Most programmers will expect k to be 1 when the
variable u is accessed on the first loop iteration rather
than zero as stated by the for initial clause.

Transliteration and debugging took approximately
35 hours.

5.3 Results for SISAL

The results for one call of INNER2 in FORTRAN
and SISAL are shown in Table 2. In their current
form both versions are several hundred lines long and
the interleaving of initialisation, the calculation of pri-
mary meteorological variables and common working
variables makes their inner workings difficult to com-
prehend (Appendices).

Language Sparc EL (Y-cpu) €90 {1-cpu) 90 {4-cpu)
177 -Q 6.640.7

{77 -Zp 3.014+0.48 0.3940.01

o1s -0 T2+1.0 6.5740.25 T 084001 0.2940.01

Table 2: Run Times for FORTRAN and SISAL

It may be noted that although the run times on
the SPARC workstation for FORTRAN and SISAL
are comparable performance on the Cray systems is
not as good. It is believed that the transliteration
resulted in a SISAL style which caused difficulty for
the SISAL optimisers; this is currently being resolved.

6 Conclusions

A modest amount of difficulty was encountered in
the transliteration of the kernel INNER2 subroutine
into SISAL. The run time for this first SISAL imple-
mentation relative to FORTRAN is acceptable. Good
speedup has been achieved with the SISAL version’s
runtime falling below that for FORTRAN at four pro-
cessors. (iven this promising start the study will
now refine the version of INNER2 and move to the
other dominant kernel subroutines LIE and PHYS.
The PHYS subroutine is dominated by conditionally
executed code as are many other weather codes. It is
anticipated that this will produce a more demanding
test for SISAL.

Acknowledgements

The author thanks the Australian Bureau of Mete-
orology Research Centre for access to the ARPE code.
The author also thanks the members of the Labora-
tory for Concurrent Computing Systems for their con-
tributions to the work presented in this paper.

Appendices
INNER2.F

The original code of INNER2 has been stripped out
and replaced with descriptor initialisation and call to
sinner2.

SUBROUTINE INNER2
C
(o} INNER2 CALCULATES THE RH SIDES OF THE MAIN SEMI.
IMPLICIT EQUATIONS
<
include ‘arpe.inc’
PARAMETER
+
4+ l2=N41,13=1143 14=1143, ILM=IL-1, ILN=1L-2
4+ J2=)141, J3=)1432, J4=J143, JLM=JL.1, JLN=JL-2
4+ KZMi=KZ-1, KZP1=K2+41
+ CP=1.00464E7, G=980.6, HL=2 501E10, PBAR=1.E6, R=287E6
+ RV=461E486
+)
C

SOMMON
+ /DTDS/ DT,DS,DTIDSIDSI2,D88Q, THSLHDTDS, BET65,DTMAX
+ J/INTGRL/ PRECP, PRECTA, CKS, EKE, PE, Ps.
BAR, TRHAT, VROMG
JKTAU/ KTAU

(o]

-
COM'MON
[CPIFF/ CDIFF(IL, L)
JCORP/ CORP(IL,IL)
,/DNORM/ DNORM(KZ)
/DQ/ DQ(KZ)
JDTODQ/ DTODQ(KZ)
JEM/ EM(IL,IL)
JEMEQ/ EMSQ(IL,IL)
JEMSQI/ EMSQI(IL.JL)
JGAMA/ GAMA(KZ)
JOMEGA/ OMEGA(KZ,1L,JL)

P kAP

JPHI/ PHI(KZIL,JL)
JPS) PEM{ILILY, PS(IL,IL), PSP(IL,JL)
JQ/ QUK?Z)
JQPH/ QPH(KZ)
*OMMON

4 /RM/ RMM(KZ,IL,JL), RM(KZ,IL,JL), RMP(KZ,IL,IL) +pe,
+ .JRTBAR/ RTBAR(KZ) Ypibar,
¥ ./SIGDOT/ SIGDOT(KZ,IL,IL) $vmrong)
¥ 9T/ TM(K2IL,JL), T(KZ.IL,JL), TP(KZ,IL,JL) c
¥ /TBAR/ TBAR(KZ) RETURN
+ v TUMKZALLIL), U(KZL,IL), UP(KZ.IL, L) END
¥ V7 VMKZILIL), V(KZALJL), VP(KZ.ILJL)
¥ zs/ zs(iLiL)
<
REAL Q . .
integer 1k(100),iij(100),ikij(100) inner2.sis

DIMENSION RMPR(KZ,IL,JL)
DIMENSION TFLEV(K2),DTFDQ(KZ),WVEL(KZ)
DIMENSION VADVU(KZP1),VADVV(KZP1),VADVRM(KZP1)
DATA VADVU/KZP1°0./,VADVV/K2ZP1%0./,VADVRM/KZP1%0./ define sinnera
DATA OMG / 0.0 /
% G.K. Egan 1993

C
c SISAL array descriptors

c one dimension type OneDReal = array[real];
ik(1)=0 type TwoDReal = array[OneDReal];
ik{(2)=0 type ThreeDReal = array{TwoDReal);
ik(3)=0

c global log(aireal returns real)
ik(4)=1
ik(s)=ks global sqri(a:real returns real)
ik(6)=1
ik(7)=ks function boundary’ceil(i,il,il,j,j1,jl:iinteger returns boolean)
ik(8)=1 (G = i)~ = i)—(=)= =i1))

c end function

c twe dimensions
#j{1)=0 function divergence'sums(
iij{2)=0 i,j,kz,il,il,j1,jl:integer; dsi:real;
itj(3)=0 dq:OneDReal;u,v,t: ThreeDReal;emaq:TwoDReal

< returna
iij(4)=i1 real, real, real, OneDreal, OneDReal,
ij{s)=il OneDReal, OneDReal, OneDReal)
iij(6)=i1 for initial
Hi(7)=il sumu:=0.0;
ij(8)=1 sumv:=0.0;

c sumx:=0.0;
ij(9)=i ki=1;
iij(10) while (k < ks) repeat
Wit =j1 k:=old k +1;
iij(12)=j1 sumu, sumv, sumx = (
ij(13)=1 if boundary’cell(i,il,il,j,j1,jl) then

. old sumu, old sumv, old sumx

¢ three dimensions else
ikij(1)=0 old sumu+dqi{k]*(uiki41,j)-u[k,i-1,j}
ikij(2)=0 +vik,ig) vk idtt,jl-vk,ij-1]-v[k,it1,j-1]),
ikij(3)=0 old surav4dq[k]*(ulk.i,il4ul«,ij+1]

c ulk,i-1,i)-ulk,d=2 54 1+ vk i41) v ko j-10),
ikij(4)=1 old sumx+dqlk]*(u{ki.il-ulk.i-1i) +viiiil-vikij1])
ikij(S)=kz end if)
ikij(6)=1 returns
ikij(T)=k= value of sumu
ikij(8)=1 value of sumv

< value of sumx
ikij(9)=i1 array of sumu
ikij(10)=il array of sumv
ikij(11 1 array of sumx
ikij(12)=il array of (-emaqli,j]*sumx®dsi)
ikij(13)=1 atray of t[k,i,j}

c end for
ikij{14)=j1 end fuoction
ikij(15)
ikij(16 function sinnerd(
ikij(17)=jl dt,ds,dsi,dsi2,4dsi,dt max,cks, eke, pe, psbar, trhat, vromg:real;
ikij(19)=1 kisu:integer;

3 cdiff: TwoDReal;
call sinnerd(cotp:TwoDReal;
+dt,ds,dsi,dsi2,1dsi,dtmex,cks, cke, pe, psbar, trhat, viomg, daorm:OneDReal;
+ktau, dq:OneDReal;
+cdiff,iij, dtodq:OneDReal;
+corp.iij, em: TwoDReal;
+dnorm,ik, emsq:TwoDReal;
+dq.ik, emsqi:TwoDReal;
+dtodq,ik, gama:OneDReal;
+em,iij, omega:OneDReal;
+emsq,iij phi:ThreeDReal;

psm, ps:TwoDReal;
+gama,ik, q:OneDReal;
+omega, ik, qph:OneDReal;
+phi,ikij, rmm, rm, smp:ThreeDReal;
+psm, iij,ps.iij, rtbar:OneDReal;
+q,ik, im, t, tp:ThreeDReal;
+qph,ik, tber:OneDReal;
+rmm, ikij,tm, ikij,cmp,ikij, um, u, up:ThieeDReal;
+ribar,ik, vm, v, vp:ThreeDReal;
+sigdot,ikij, s8: TwoDReal
+tm,ikij, t,ikij, tp.ikij, returns
+tbar,ik, ThreeDReal,%new tm
+um, ikij,u, ikij,up.ikij, ThreeDReal,%onew sigdot
+vm, ikij,v, ikij,vp,ikij, ThreeDReal, %onew up
+128 ,iij, ThreeDReal, %new'tp

« returas ThreeDReal,%onzaw rmp

+rm,ikij, ThreeDReal,Fonew' vp
4sigdot,ikij, real, %new'eke
+up,ikij, real, %onew'cks
+oew'tp,ikij, real, %enew trhat
+onew rmp,ikij, real, Z%new pe

+vp.ikij, real,%new psbar
+eke, real%new vinrong
+cks,)
4+trhat,

let

14

k=18, 0.0, cmonp

{1:=83; else
Hi=40; 0.35%(cmonp+temli+1,j4+1)/(psli+1,j41]4+pbar)$fmonp),
il:=1; 0.98% (cmonptem{i+1.j-1] / (peli-41,j-1]+pbar)
=1 +emli,j-1] / (pslij-1]+pbar))
12:=i141; end if;
13:=i142;
i4:=i149; pse, paniz
flm:=il.1; If boundary cell(i,i1,il,j,j1,jl) then
JTiz=jlt, 0.0, 0.0
j3:i=i142; else
jar=it43; 0.5°(pa{L.J]+ps[i+1.J])+pbar,
jlmi=jl-1; 0.5%(psll.il+psli.i+1]))+pbar
end if;
Yo
:o extra variables for evaluating p.grad terme logarithmically
o
psrmi, psrmj, paldi, psldj, sepdi, zepdj, emudal, emvdsi, emrdsi:=
if boundary’cell(i,i1,ilj,j1,jl) then
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
else
pslit1,j)-pafij]-pam[i+ 1.5} +peml(i,j],
diti= plll,j-f-l -pl[(. l-plm ig+1]+psmli.j),
if (ktau = 1) then log(psli+1,j]+pbar)-log(psijc),
dt log(psfii+1]+pdar).log(psijc),
else pbar®(ssfi41,jl-us(i,i}),
2.0 *dt pbar*(zefij+1]-sefi,i]),
end if; emlq{i,j]/(d.o'dl‘pu).
emsqli,j]/(4.0°ds*psn),
new'rm, rmpr:= emsqfi,j}/(4.0°de®psijc)
for k in 1,ks cross i in i1,il cross j in j1,jl end if;
t'rm, Yo
trmpri= % compute total divergence
if (rmlk,i,jj > 0.0) then Y%
mlk,i,j}, sumu, sumv, sumx, vadva, vadvv, vadvrm, wvel, tflev:=
smik,i,j} / (psfij)+pbar) divergence'sume(i,j ke.i1,il,j1,ji,dsi,dq,u,v,t,emsq);
elae
0.0, sigdot'k:=
0.0 for k in 1,kz
end if returns array of (
retutns it (k = 1) then
array of ¢'rm 0.0
array of v'rmpr else
end for; wvell{k-1].qph{k-1]*wvel[kz]
end if)
dmoap:i=0.0; eand for;
emonp:=0.0;
vadvem'k, vadvu'k, vadvv'k:=
new'tp, new'up, new'vp, new'rmp, new’sigdot, for 1 in 1,ks
new'eke, new’cks, new'trhat, :=i4d;
new’'pe, new pobar, new'romg:= t'vadvrm, t'vadve, t'vadvyv =
for i in il1,il crose j in j1,jl it (1 = kz) then
0.0, 0.0, 0.0
ps({l.i]l+pbar; else
.0/ psijc; emrdsi®*(qph{ll)*sumx-vadvrmlil))
coefl,corfd:= ®(new'rmlil,i,j]4+new rm]l,i,i)
+32.0%3qrt (new'rm|ll,1,j]*new rm(l,i,j])),
if boundary’cell(i,il,il,j,j1,j1) then emudsi®(qph{ll}*sumu.vadvu(ll})
0.0,0.0 *(ufthijl+u])ig)).
else emvdsi®(qph{ll}*sumv-vadvvill])
0.135°%(corpli,j]+corpli+1,j]), *(v(ILig)+v(Lih
0.138%(corp(i,j]+corpli.i+1]) end if
end if; teturns
array of t'vadvrm
emthad := emaq[i.,j]*psijci®tdsi; array of t'vadvu
em3tps :== emthad®psijci®r / cp; array of t'vadvy
end for;
emhadl emhad3:= Yo
if boundary’cell(i,il,it,j «1,j1) then % set up temperature difference terms
0.0,0.0 %
else ditdq:=
0.25%tdwi* (emlij}+emli+1,j]) for k in 1, kz
0.38%dsi*(emli,jl4emli,j+1]) returns array of (
end if; if ((k = 1)—boundary cell(i,it,il,},j1,j1)) then
0.0
amonp:=emonp; % 0.0 then cycle’emonp else
bmonp:=dmonp: % 0.0 then cycle’dmonp if (k = kz) thea
dimax®*(tflev[kz]-tflevikeml])+dtodq{ke}
cycle’'dmonp, {monp:= clse
it boundary'cell(i,il,il,j,j1,j1) then 0.5%(tflev[k41)-tflev[k-1]) / dglk}+dtodq{k]
0.0,0.0 end if
else end if)
emfi41,5]/(psfi+1.j}+pbar), end for;
em{i,j+1]/(psfi.j+1]+pbar) %
end if; Fsinue, psmuw, psmun, psmus, psMuU, PSMVD, PSIMVs, PEIMVe, PIMVW, DSV
i ((j = j3)—boundary cell(i,i1,ilj,j1,j1)) then
new' bmonp:= 0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
i (i = §2) & (“((j = j1)~—(j = j1))) then else
eml(i,j]* paijci if (i = ilm) then
else 1.3*pamlil,j}-0.5®psm|ilm,j}+ pbar
cycle'dmonp else
end if; 0.5%(psmli+1.j}+psmli+3,j])+pbar
end if,
new'amonpis
i (i = i) & (“((j = j1)—(j = j1))) then 0.5*(psmli-1,j]+psm{i.j])+pbar,
0.25%(new bmonp+fmonp+emii-1,j] / (psli-1,j]+pbar) 0.5*(pamli,j+1]4psmli+1,j41]))4pbar,
+emli-1,j41] / (ps{i-1.j+1]+pbar)) 0.5%(pamli,j-t]4+pem|i+1,j-1])+pbar,
else 0.5°(pamli,jl4 pamli4+1,j])+pbar,
emonp
end if; it (j = jlm) then
1.5°pam|i,j1)-0.5%pam(i,jlm] 4 pbar

cmonp:=new'bmonp+4cycle’dmonp; else .
cycle’emonp, new'cmonp: 0.5%(psmii,j+1]+psmli,j+2))+pbar
if boundary cell(i,il,il,j,j end if,

Yo
Yo
Y

e

%

%

0.5%(psmii,j-1]+psm(i,j])+pdar,
0.5%(pem[i+1,j]+pem(i+1.,j+1))+pbar,
0.5*(psmli-1,j]4+psmli-1,j+1])+pbar,
0.85*(psmli.j]+ psmafi,j4+1])+pbar

end ify

commence vertical level loop
ip'k, up’k, vp'k, rmp’k, omega’k,
new'eke, new'ppe, new'pvromg, new'ptrhat:=

for k in 1,ks

compute vertical advection contribs. in ths of mtm. = ns.

compute horizontal advection terms associated with rhs of mim.

up'ki=
it ((j = j3)—boundary'cell(i,i1,il,j,j1,j1)) then
wplk.tj]
else
let
vatl:i=
if (& = kz) then
0.0 Yogke
else
-(vadvulk41])-vadvulk})/dq{k}
eund if;
ubi=ulk,i,jl4ulk,i-1,j};
(ki ulki1];
=ulk,ijl+ufkit1,j];
(ki +ulkij41];
[k, i)+ v[kii-1];
(kidj=1]4v[k,i41,j-1];
ve:zvik,ijj4vik,i+1,jl;

bhadvl:z=emhadl® (ud®ud®cycle’dmonp-ub®ub®new bmonp

+ue®ve*cycle’emonp-uc®vc*new cmonp);

compute pressure gradient terme on ths of mim. = ns
logarithmically

pgli= ((pse-pbar)*(philk,i41.j}-philk,i,i])
+zapdi- rlbu[kl‘ptrml
+pae®paldi®(1%0.5° (t[k,i+1,i]+¢[k.i,j))
+ribar(k)))*dsi;
ctli= corfl®(vetve);
ubdiff:=
if (dnorm(k] = 0.0) then
0.0

else
cditffi,j]*dnorm|k]*dsi2
*(wumlk,i+1,j)/psmuedumik.i-1,j]/psmuw
+um{k,i,j+1]/psmun4um(k,,j-1]/psmus
-4.0%um(k,i,j}/psmu)*psmu
.nd if
in
(ctl4vatl-hadvi-pgi4ubdiff)®*dt+umik,i,j|
end let
end if;

t'rmp'k, tp'k, omega'k:=

if ((i = i2)—boundary cell(i,il,il,j,j1,j1)) then
rmp(k,i.j},
tefkiiil,
omegalk]

else

calculate horizontal advection term in the temp. = ation

let
wvelav:=
if (k. > 1) then
0.5%(wvellk-1]4 wvel[k])

else

0.5%wvel[l]

end if;

thadvi:= ulk,ij]*(sfk,it1,j]-s[k.ii])

Fulki-1]0 (ki) k,i-1,5]);

2:= vk, il (kb g+1]-1k,i,])
ARl 1))
emthad®*(thadvl4thadv2),
full:= tflev(kj+tbark);
phadvl:= ulk,i.j}*(psli+1,)]-psli.i])
Fulki-1,3*(psfij)-pali-1,j]);
phadv2:i= v[k.i.j}*(psli.i+1]-pafi,i})
Hvlkigo 1) (pelig)-pslini1);
t'omg:= emItps*(phadvi4phadv2);
tpstar = t'omg®tfull;
omg:= wvelav4q{k]*psije*tomg®cp / 1,
gamapr:z (1 / cp)*tiull / q[k]-difdqlk);
tadiff.=
if (doorm[k] = 0.0) then

a.0

else
cdifffi,j)*dnorm{k]*dsi2
*{ tnfki+ 1)+ tm(kio1)
+tm{k,ij+1]+tmlk,ij-1]-4.0%tm{k.i,j})
end if;

tp'li= (tpetar-thadv4thdiff
+(wvelav®gamapr4q(k)*ditdqlk]* wvel[kz))* paijci
-(wvelav®gamalk]4qlk]*dtodq[k]* wvel[kz]) / pbar
Y*dt+tmlk,i,j)i

%

%

%

%

%
Yo
Y

16

molsture

rme:=tmpr!k.i‘j]+rmpr(k,i+ 1)

rmw:=rmpe[k,i,jl4rmpr[k,i-1,j];
rmo:=rmprlk,i 3|+rmpr(kl +1};
rms:=rmpe(k,i,jl4+empr(k,i,j-1];
rmvad:=
{1 (k = kz) then
0.0 Yogke
else
-(vadvrm|[k41]-vadvrm{k]) / dq|k}
end if;
tmhad:=-emsqli,j]*tdsi® (ulk,ij]*rme-ulk,i-1,j]*rmw

+vik,ij]*rmn-vik,i,j-1]*rms);
rmme := rmmlk, :+l.’]/(p|m||+l,)]+pbu),
rmmw rmmlk,i-1,j}/(psmli-1,j}4 pbar);
rmma = rmmlkd,j41]/(psm(i,i+t]4pbar);
trams rmm(k.i,j-1]/(psmli,j-1)4pbar);
rmmij rmmik,i,j]/(psmli.j]+pbar);
rmhdifiz=
it (donormik] = 0.0) then

0.0

elae
cdifffi,j}®*dnorm[k]*dsi2
(rome+4rmmw<4rmmao+rmms-4.0 rmmij)
*(psmlij]+pbar)
end if;
vrmpk:= rmm(k,i,j]+dtt*(rmhad$rmvad+4rmhdif);

suppress negatlive mixing ratios

tmpkiz
if (rmp'k < 1.0E-20) then
0.0

else
Vrmp'k

end if

in
tmpk,
tp'k,
omg

end let

end if;

vp'k,
new’eke'k,
new'ppe’k,
new'pvromg ki=
if ((= i3)—boundary cefl(i,i1,il,j,j1,j1)) then
vplk,i.jl
0.0, Yoeke
0.0, %ppe
0.0 %opvromg
else

Ll 4ulki-1,541);
.l+ulk i1l

Lil+vlk,ij-1];
ve:=vlk,ijl+viki+1.];
vz vkl vk b j+1);

calculate v velocity component logarithmically

ctdi=-carf{I®(natue);
hadvd:= emhad2®(ue®ve®cycle’ emnnp—un'vs‘new';munp
+vi*vi*fmonp-vb®vb®new 'bmonp
pg3:= ((pan-pbar)*(philk,ij+1]- phllk ii])
+zspdj-ribar{k]®psrmj

+pen®paldj® (r®0.3% (tlk,ii41]4t]k,i.j])
+rtbar{k]))*dsi;
vbdiff:=
if (dnormik] = 0.0) then

0.0

else
cdifffi,j]*dnorm{k]}*dsi2
*(vm(k,it+1.j]/psmvetvmlk,i-1.j)/psmvw
4+vmlk,i,j+1]/psmvatvm(k,i,j-1)/psmvs
-4.0°vm[k,i,j]/psmv)*psmv

end {f;

vat2:i=

if (k = kz) then
0.0 Yogke

else
“(vadvy [kt 1]-vadvv[K])/dalk]

ead if;

tUvp:= (ct24vai2-hadv2-pg2+4 vbdiff)*dt4vmik.i.j)

calculate contritutions to integrals
in

tVvp,
dq[k]*psijci® (ulk.ii]®ulk.ij]l+ vlkij)®v[k,i,i]),
tflevik]*dq[k],
(omega'k*omega’'k)*dqik|
end let
end if;
returns
atray of tp'k
array of up'k
array of vp'k
array of Urmp'k
array of vmega’k

value of sum (dq[k]®paijci®(up'k®up'k4vp'k*vp'k)) Fonew eke'k
value of sum (tflev[k]}*dq[k}) Fonew ' ppe'k
value of suta (omega'k*omega'k®dq[k]) Fonew pvromg'k
value of sum (t'rmp 'k*dq[k])%ptrhat
end for; % k

V'new’'ptrhat ;= new ptrhat4emsqili,j);
t'new’epe := new'ppe*paijc®emaqili,j];
t'new’'vromg 1= new’'pvromg®emsqill,j};

returns
array of tp'k
array of up'k
erray of vp'k
array of imp'k
array of sigdot’k
value of sum new’eke
value of sum (emsqifi,j]) Fonew'cks
value of sum (t'aew ptrhat®emsqifi,j])
value of sum t'new’epe
value of sum ((psijc-0.988e6)%emsqili,j}} % psbar
value of sum t'new’'vromg

end for % 1,j

in

new’'rm,

new’sigdot,

new’up,

new'tip,

new'rmp,

new’vp,

new'eke,

new’cks,

new'trhat,

new’pe,

new ' pabar,

new’romg

end let
end function

References

[1] Leslie, L.M. et al., “A High Resolution Primitive
Equations NWP Model for Operations and Re-

search”, pp 11-35, Australian Meteorological Mag-
azine, No. 33, Mar 1985.

[2} Arakawa, A. and Lamb, V.R., “Computatioal De-
sign of the Basic Dynamical Processes of the
UCLA General Circulation Model,” pp 174-256,
337, Methods of Computational Physics, Vol. 17,
Academic Press, 1977.

[3] Miyakoda, K., “Cumulative Results of Testing a
Meteorological-Mathematical Model,” pp 99-130,
Royal Irish Academy Proceedings, July 1973.

[4] McGraw et al., “SISAL: Streams and Iteration in
a Single Assignment Language,” Language Refer-
ence Manual Version 1.2, Lawrence Livermore Na-
tional Laboratory, March 1, 1985.

[6] Feo, J.T., and Cann, D.C., “A Report on the
SISAL Language Project,” Journal of Paralle! and
Distributed Computing, Vol. 10, pp 349-366, 1990.

(6] Cray Research, “CF77 Compiling System Volume
4: Parallel Processing Guide,” Cray Research, In-
corporated, SG-3074 5.0, 1991.

[7} Cann, D.C., “The Optimising SISAL Compiler:
Version 12.0,” Computing Research Group, L-306,
Lawrence Livermore National Laboratory, Liver-
more, 1992.

17

Even and Quarter-even Prime Length Symmetric FFTs and their
SISAL Implementations *

Jaime Seguel

Department of Mathematics
University of Puerto Rico
Mayaguez, Puerto Rico PR 00681

Abstract

Even and quarter-even symmeiric DFTs are variants
of the discrete Fourier transform (DFT) in which all
redundant operations induced on the DFT equations
by the presence of cither an cven or quarter-even sym-
metry in the input data have been eliminated. These
kinds of transforms appear frequently in image pro-
cessing and tn the core procedures of some direct meth-
ods for the numerical solution of the Poisson equation.
Fast methods for compuling even and the quarter-even
DFTs when the number of data samples is a power of
two have been proposed by Swarzirauber [8] and Briggs
[1]. Their methods are generalizable to any factoriz-
able number of data samples. In this article, following
the basic mathematical techniques used by Rader [7,
to derive a fast prime length FFT, we introduce fast
methods for computing the even and the quarter-even
symmetric DFT for a prime number of data samples.
The expression of these methods in terms of matriz
algebra facilitates their implementations in SISAL.

1 Introduction.

Since its rediscovery in 1965 by Cooley and Tukey
(2], the fast Fourier transform (FFT) has become one
of the most widely used computational tools in science
and engineering. The termn FFT, initially associated
with the Cooley-Tukey FFT for sequences of period
N = 2% has become, after the efforts of many re-
searchers over the years, the generic name of a whole
family of efficient discrete Fourier transform (DFT)
numerical methods. Each member in the FFT family
is specialized to computing the DFT of a particular
class of periodic sequences. This period is also re-
ferred to as the transform length and the DFT (FFT)

*This work was supported by NSF grant R11-8905080 and the
Computational Mathematics Group of Puerto Rico EPSCoR 11
grant,

Dorothy Bollman

Department of Mathematics
University of Puerto Rico
Mayaguez, Puerto Rico PR 00681

of length N is usually called an N-point DFT (FFT).
An important member of this family is actually an ex-
tension of Cooley and Tukey’s idea to N-point DFT’s
where N is factorizable. These N-point FFTs com-
pute the N-point DFT through nested sequences of
DFT’s whose lengths are the factors of N. The Good-
Thomas algorithm [5] improves the extended Cooley-
Tukey FFT for transform lengths that are highly com-
posite. Rader’s algorithm [7], in turn, is designed for
computing prime length DFT’s. These algorithms, all
members of the family of traditional FFTs, reduce the
N-point DFT arithmetic complexity from O(N?) to
O(N log N).

A second family of fast DFT algorithms, called
symmetri¢c FFTs, was started with an article by Coo-
ley, Lewis and Welch {3] in 1970. A symmetric FFT
uses the symmetries of the input sequence to improve
over its traditional FFT counterpart in terms of com-
putational complexity and memory storage require-
ments, Especially important for their use in image
processing and in fast Poisson solvers design are the
even-symmetric FFT (E) and the quarter-even sym-
metric FFT (QE). The Cooley-Lewis- Welch algorithm
computes the N-point DFT of a real (E) sequence us-
ing a N/2-FFT as a core procedure. This algorithm
involves, however, a numerically unstable pre-process.
Dollimore [4] redesigned the Cooley-Lewis-Welch al-
gorithm improving on its numerical stability proper-
ties. Swarztrauber [8], who coined the term symmet-
ric FFT, found a family of algorithms for computing
real (E) and (QE) symmetric FFTs of any factorizable
length. The main strategy in Swarztrauber’s approach
is to eliminate data redundancies induced by the sym-
metry of the input sequence in the intermediate steps
of the traditional extended Cooley-Tukey FFT. Swarz-
trauber’s algorithm does not consist of a core proce-
dure separated from pre- or post-processes but its data
flow is not as regular as its traditional counterpart.

18

Briggs’s algorithm [1] is in the same spirit of Swarz-
trauber’s but with a more regular data flow.

The purpose of this article is to propose new al-
gorithms for computing the DFT of (E) and (QE)
symmetric FFTs of prime length and test their Sisal
implementations. These algorithms fill a gap in the
symmetric FFT family since none of the above men-
tioned methods can be used for computing symmetric
DFT’s of prime length.

2 Background

The discrete Fourier transform of an N-periodic
complex sequence z = (z,) is the N-periodic complex
sequence X = (X}) determined by the equations

N-1
X’k: Zz"uﬁ‘v kIO,...,N—-l, (1)
n=0

where wy = exp(—2ri/N)and i = V/=1. Since these
sequences are periodic of period N, the indices n and
k range over Z/N, the set of integers modulo N. Also,
the sequences = and X can be represented by the vec-
tors = (2o, ..., zy-1) and X = (Xo, ..., Xn_1). This
gives the following matrix formulation of equation (1)

X = Fyz

where Fy = [w§P], 0 < kn < N-1lisan N x N
complex matrix.
An N-periodic sequence z = (z,,) is said to be:

even — symmetric (E) ifz, = z_, and

quarter — even symmetric (QE) ifz, = z_(n41).

For an odd number N, a fundamental set of indices for
the (E) symmetry is any subset S of Z/N satisfying:

(E1) SU(=8)
(E2) SN (=5)

=Z/N and
= {0}

where =S = {—~n : n € S}. A fundamental set of
indices S for the (QE) symmetry, in turn, is any subset
of Z/N satisfying:

(QE1) SU—(S+1)
(QE2)

=Z/N and
N -1
SN—(S+1) = —,
2

where S+ 1= {n+1:n€S}. Theset {0,1,..., &1}
is a fundamental set of indices for both symmetries.
The restriction of an (E) ((QE)) symmetric sequence
to an (E) ((QE)) fundamental set of indices eliminates

redundant data. If z = () is (E) symmetric, its dis-
crete Fourier transform X = (X;) is also (E) symmet-
ric and so, equation (1) can be reduced to

N-1
v k
X = zo + Z x,,(wfv" +wiy'"),
n=1

k=0,1,...,2=1 for N odd.

This equation defines the even discrete Fourier
transform ((E) DFT). Since w' + wi*® =
2cos(27kn/N), the (E) DFT is sometimes called the
cosine transform. Its matrix representation is the
Y=l 41 x 221 41 real matrix

[1 2 2 2
C1 Ca Cﬁ#
(e) _
FN - 1 Ck Cok C(I_V_;_l_)k
| 1 oemp Gpny o Cvons |

where ¢, = 2cos(27%). On the other hand, if (z,) is
(QE) symmetric, equation (1) can be reduced to

Noi_

+)zl 'Y,

n=0

. A(N=1
Xp=arnaw
k _,_1. N

The (QE) symmetry does not induce any reduction in
the number of DFT outputs, Therefore, the matrix
representation of the (QE) DFT is an N x &=L 41

complex matrix. We denote this matrix F,(qu).

Rader’s prime length complex FFT is based on the
identification of an N —1x N —1 block in Fy which can
be transformed into a Hankel-circulant by means of
appropriate row and column permutations. In general,
an M x M matrix A is a Hankel-circulant if it can be
written as

ag ay ap apf—1

a) as agp

A= an ai
ap -1 Qo Qa apf_2

We use the notation A = Circ(ag, ...,apm—1) and G4 =
(ag,ay,...,apm—1)T, the “generator” of A.
Hankel-circulants admit the following interesting
matrix factorization: Let A be an M x M Hankel-
circulant and let ©(A) be the diagonal matrix whose

19

main diagonal is the inverse DFT of the first row of
A. Then,

A = FyQ(A)Fy

Thus, the multiplication of a Hankel-circulant A of
order M by a vector can be computed in terms of
M-point FFTs, in fact, in terms of 2¥-point FFTs by
embedding A in a circulant A of order 2* defined as
follows: Let A = Circ(ap,ay,...,ap-1) and let k be
the minimum m for which 2™ > 2M — 1. Define

A= Circ(ao, <y @Af-1, 00, a1, "')aﬂf—210) L 10)

where the number of zeros inserted is 2¥ —2M + 1 and
for any vector z of length M, let z be the vector of
length 2¥ obtained from x by padding the last 2% —
2M + 1 positions with zeros. Then Ar is the vector
consisting of the first M components of Az.

In order to identify the Hankel-circulant block in
Fy let us rewrite the N-point DFT matrix as

1 €T
Po=l

where e is the column vector of ones of length N — 1
and €7 is its transpose. The N —1 x N — 1 complex
block can be transformed into a Hankel-circulant by
pre- and post-multiplacations by permutation matri-
ces whose definition rely on the field structure of Z/N.
Indeed, if N is prime, then Z/N is a field and the mul-
tiplicative group U{N) = Z/N — {0} is a cyclic group
generated by a primitive root ¢ modulo N. For exam-
ple, U/(5) = {1,2, 3,4} is generated by g = 2 since

<2 >n

< 2! >N =2

<>y =4

<>y =3
where < - >5 denotes the least positive residue con-
gruent to g* modulo N. Thus, if ¢ is a primitive root
modulo N we define Py, as a matrix representation

of the permutation yp — z¢geory 1 <E SN -1
It can be easily shown that

Wy = Py Wi PRl

-~ N-G
where Wn = C’irc(wN,w[f,pN,...,w;g >N)q
Hence,

F !

NT = Y T
Py JWNPn,g

where e is a column vector of 1’s and e7 is its trans-
pose. Thus,

P _ 0
NEOE VT gl W Py e

0
= ¥t [P,:,',;FM(F';,‘GWN o Fag P gz')]

where M = N — 1, o denotes component-wise multi-
plication,

o+ +...+ 2Ny
Zo

To

and x’ is the result of deleting the first component of
x. This matrix expression is essentially Rader’s algo-
rithm. The same factorization but using Wy instead
of Wn gives what we call the extended Rader algo-
rithm.

In the rest of this paper, we show how, as in the ex-
tended Rader algorithm, the core procedures for com-
puting even and quarter-even prime length symmet-
ric FFTs can be written as the product of a Hankel-
circulant by a vector. The efficiency of these algo-
rithms, as well as the Rader algorithm or its extended
version, depends on the availability of efficient algo-
rithms for computing FFTs.

3 Prime length (E) symmetric FFTs

Let us rewrite the (E) DFT matrix as

o) = 1 2T
N T1e Cn

where Cy = [ckn], 1 € k,n < —Nz‘—‘, an X
real matrix. Now let g be a primitive root modulo N
and define P,(Ve'; to be the matrix representation of the

N-1 ., N-1
T T T

permutationon 1 < n < ﬁ-g‘;l-, defined by the map

p(c) (n)-: <gﬂ—1 >N, if<gﬂ—-l >N Sdi——l'
N.g < N —gn-! >un, Otherwise

Then we have

]‘-(‘) : 2CT
f z = =1~
N e P;(ve)q CNP){JC;I
where
Cn = Cire(e. () ‘CP(N,’,(LV“:”‘I'))'

¢ PN
phl (1 2y

20)

Thus, in this case we have

¥
0

-1
P Fu(Fy'Ge, o PS)2')
where M = N — 1,

F‘.(\f):czy+

1'0+2(-'l71+332+...+1:y_§_1
o

and

I N=~1
e

For example, suppose N = 7. The group of units in
Z/17 is generated by g = 3. In fact,

<3°>, =1
<3 >, =3
< 32>, =2
<3¥>;, =6=-1
<3¥>; =4=-3
<3 >; =5=-2

Clearly {1,3,2} is a fundamental set and in this case

. €1 €3 C2 €1 ¢33 C2
C7 = €3 C2 Cg = c3 C
Cy Ce¢ C4 Ca €1 C3

The last equality is due to the fact that the cosine
function is even.

4 Prime length (QE) symmetric FFTs

Hankel-circulant representations for blocks in the
core submatrix Qn = [wkP +w;,k("+1)], 0<k<N-1
and 0 < n < ’—‘/2;-1- —1of Fﬁ;’e) require some extra
work since neither the upper nor the lower =1 x -’Y—;—'—l
square blocks in Qn can be transformed into Hankel-
circulant through any row-column permutation. A
way around this difficulty is based on the function

Y:Z/N— Z/2N, ¢(n)=2n+1,

which maps (QE) symmetries into (E) symmetries in
the sense that

$(=(n+1)) = —¢(n).

In fact, using this function we get

—k(n+1
wﬁ,"—l»wN (n+1)

for k # 0. Therefore, if

i

i

—k; k(2n41 —k(2n+1
w24~k'(“’21(\/")+“’2 (2ot))

N

w;){‘, 2cos (2mk(2n + 1)/2N)

Dy = WoN
win'
and
t, ts .. In_2
tN‘-l ta(l\;_l) t(N—l;(N-—2)

where 1, = 2cos(2ws/2N), then we have,
Qn~n = DnNTn.

Since the input indexing set has been embedded into
Z[2N while the output indexing set remains a subset
of Z/N, a slight adaptation of the Hankel-circulant
representation technique is required. This adaptation
is based in the following observations: first of all, since
N is an odd prime U(2N) is isomorphic to U(N) and
in particular, U(2N) is cyclic of order N — 1. Fur-
thermore, no even number belongs to U(2N) and so,
U(2N) C $(Z/N). By way of example, let us consider
the case N = 7. As pointed out earlier, the group
U(7) is the output indexing set for the (QE) core pro-
cedure. Since ¥ transforms (QE) symmetries into (E)
symmetries, an (E) fundamental subset of /(Z/7) will
be the image of a (QE) fundamental indexing set in
Z/7. Now, U(14)) is generated by g = 3. In fact,

<30>14 =1
<3 >4 =3
<32>14 =9
<3B¥>4 =13
<3>y =1
<3P>4 =5

The missing odd number in the above list is 7 = ¢(3).
But z3 is not an input for the core computation. A
natural choice for an input (E) fundamental set is
{1,3,9}, which is the image under % of the (QE) fun-

21

damental set {0,1,4}. The rearranged matrix is now,

i t3 o
a3 1o 113
ta s t4
R» =
"7 te ta tn
ty t12 tg
ts t1 13
By using the properties ¢; = t;/, if j+ j' = 0 mod 2N
and t; = —t;» whenever j + j' = Tk, k odd, we see
that
S -
1
-1 tp i3 g
R: = _1 t3 tg U
-1 9y 4 t3
e 1 -l
A]
- []

which is a Hankel-circulant based matrix factorization
for T7. It is crucial to note that the same integer g = 3
has been used to generate both U(7) and U(14). Such
a common integer exists for any pair of grc .ps U(N)
and U(2N) provided that N is an odd prime. In fact,
for N an odd prime and g odd, g is a primitive root
modulo N if and only if ¢ is a primitive root modulo
2N.

Now positive signs correspond precisely to the cases
< g" >oN< N. Also,if n < ﬁi‘—l, then < g" >on< N
if and only if < g"*™ S,8> N, each sign pattern
will be the negative of the other.

The general case can be described as follows: Let g
be an odd primitive root modulo N (and hence a prim-
itive root modulo 2N). For each j =0,1,..., Nz'a)
let

)

A = 1. if<g! >n< N

77 1 -1, otherwise.
Let Ay = diag(Ao, ..., Ax=s). Also, let P73 be the
matrix representation of the map defined by

PU(n) = { 9" 2w if <g">n< N
N 2T 2N — < g™ >,n, otherwise,

where n = 0,1,....N — 2, and let Qs\}'e; be the ma-
trix representation of the map defined by ng’eg)(n) =
Y "(P,‘V",:)(n};, n=0.1,..., Q’-;ﬂ Then we have

0

~(g¢e) . -
Fvie = ue DNoP;,L[jHTNQ%.’;r’

0
= -+ - A
y DNOPN’; [-—AZ] Fn_ Hz! jl
where
Tn = C‘."C(tp,‘j;’(o)’t}’,“};’(l)’""tP,f,"_‘,’(-"%‘—’))
T | (ge)
Hz' = F(N—)-;’ Gry © F‘-—;—”“ QN,gxl’

TN-1 +2(zo+z1+...+x_p%__a)

y: 3
:L'N-xz !
Moy
N1
Wy
2A(N~1
w
Z = N. ,
N-1)?
YN
Wi Zo
Wwo, Ty
2N
_ t ol
Dy = . ,and ' =
~-(N-1) I N-
Won 2

5 Implementations.

All three of the algorithms developed in this work,
Rader, even, and quarter-even, require the computa-
tion of the product of a circulant matrix A by a per-
muted vector Z, which we compute by a cyclic con-
volution F(F~'G4 o FZ). Thus the efficiency of all
three algorithms depends on an efficient FFT and its
inverse for vectors of size N — 1 or (N - 1)/2 where
N is the length of the original input vector. When N
is of the form 2* + 1, the FFTs are of size 2¢. In all
other cases, we embed the circulant A in a circulant
of size 2%, where k is the least number m for which
2™ > 2size(A) — 1. power of 2.

The three algorithms were programmed in Sisal
12.9.1, using double precision, and tested on a sili-
con graphics computer (S.G.I.) with four processors.
Cyclic convolution was implemented using a radix 4
version of Stockham’s algorithm, which we found to
be the fastest FFT on the S.G.I. when compared to
other standard FFTs, both with and without digit-
reversal.

Initialization for each of the three algorithms in-
cludes the computation of:

22

¢ a primitive root ¢ modulo N

o vectors of indices needed for permuting the input
and output vectors

e the size M of the cyclic convolution and a
boolean variable indicating whether embedding
necessary.

e twiddle factors for Stockham’s radix 4 FFT
e the inverse DFT of the first row of the circulant
Initialization for the quarter-even case also requires

o the vector Dy of negative powers of won

N1
o the vector Z of powers of wy?

e the vector Ay

The following two functions, expressed in pseudo
Sisal, are used for all three algorithms:

function circXvector(M:integer;
invfft.circ,z:array[complex];
returns array[complex])

% twiddle factor arguments have been suppressed

% array(complex] is actually implemented by a pair

% of real vectors

% vecXvec returns the component-wise product

% of two vectors

let

z := vecXvec(M,invflt cire,fit(M,z))

in

fit(M 2)

end let

end function %circXvector

function core(M ,N:integer;emb:boolean
indexl:array[integer};
inviTt_cire,x:array[complex]
returns array[complex])

% perm returns a vector with its components in the

% order given by a vector of indices

let

z .= perm(N — lindex1,array_setl(x,0));

embedded.z := if émb then 2z

else embed(N -~ 1,M 2)

in

circXvector(M ,invflt_circ,embedded_z)

end let

end function %core

Each of the three algorithms requires an additional
function, called “rader”,“even”, and “qeven”, respec-
tively. For example, for Rader’s algorithm, we use

function rader(M,N:integer;emb:boolean;
index1,index2:array[integer];
invflt_circ,x:array|{complex]
returns array[complex]
Yoscalar_plus_vector returns the result of adding a
%scalar component-wise to a vector
let
z := perm(N — 1,index2,
core(M,N ,emb,index1,invfft_circ,x));
yo:=foriin O,N ~1
returns value of sum x][i]
end for
in
array.addl(scalar_plus_vector(N — 1,x[0],2),y0)
end let
end function % rader

The function even is almost identical to rader ex-
cept for a factor of 2.0 in the computation of yo. The
function geven is given by

function geven(M,N:integer;

emb:boolean;

index1,index2:array[integer];

A:array[double_real];

invfft_circulant,Z D:array(complex]

returns array [complex])
% scalarXvec_plus_vec(c,x,y) returns cz + y
% where ¢ is a complex scalar and z and y are
% complex vectors
% cadd returns the sum of two complex scalars
let
r:= core(M,(N + 1)/2,emb,index1,invfft_circulant,x);
ul,u2 := for i in 0,(N —3)/2

returns array of Afi]*r[i]
array of —A[i]*r[i]
end for;
v := vecXvec(N — 1,D,perm(N — 1,index2,ul|| u2));
w := scalarXvec.plus.vec(N — 1 x[(N - 1)/2],Z,v);
yo := cadd(x[(N - 1)/2],
foriin1,(N -1)/2
returns value of sum 2.0d0*x(1]

end for)
in
array.addl(array_setl(w,1),y5)
end let

end function %qeven

23

Since the even and quarter-even algorithms reduce
the problem size by approximately one-half, we can
expect that running times for each of these two algo-
rithms to be about one-half of the running time for
the Rader algorithm, no matter the value of N. In
practice, however, we can do even better. For exam-
ple, running times for the largest prime less than 2**
and the smallest prime greater than 2!* are:

N =16, 381
1 CPU [2CPU’s | 4 CPU’s
Rader 1.92 1.36 1.10
even 0.78 0.55 0.48
qeven 0.91 0.67 0.53
N = 16,411
1CPU | 2CPUs | 4 CPU’s
Rader 4.17 2.99 2.61
even 1.85 1.28 1.04
geven 1.98 1.38 1.09

We note that in these two examples, even and geven
run more than twice as fast as Rader. This will be
true for any N not of the form 2% + 1 since the even
and quarter-even algorithms will compute the FFT in
terms of a cyclic convolution which is half the size of
the cyclic convolution used by the Rader algorithm;
however, running times for cyclic convolution more
than double with double the problem size.

References

[1] W. Briggs, “Further Symmetries of In-place
FFTs,” SIAM J. Sci. Stat. Comp., Vol. 8, pp. 644-
654, 1987.

[2] J. Cooley and J. Tukey, “An Algorithm for the Ma-
chine Caclulation of the Complex Fourier Series,”
IEEE Trans. Comput., Vol. AC-28, pp. 819-830,
1965.

[3] J. Cooley, P. Lewis, and P. Welch, “The Fast
Fourier Transform Algorithm: Programming Con-
siderations in the Calculation of Sine, Cosine and
Laplace Transforms,” J. Sound Vib., Vol. 12, pp.
315-337, 1970.

[4] J. Dollimore, “Some Algorithms for use with the
Fast Fourier Transform,” J. Inst. Math. Appl., Vol.
12, pp. 115-117, 1973.

[5) I. Good, “The Interaction Algorithm and Practical
Fourier Analysis,” J. Royal Stat. Soc., Ser. B 20,
pp. 361-375, 1958.

[6] 3. Otto, “Prime Factor

manuscript.

Symmetric FFTs,”

[7] C. Rader, “Discrete Fourier Transforms when the
Number of Data Points is Prime,” Proc. IEEE,
Vol. 56, pp. 1107-1108, 1968.

[8] P. Swarztrauber, “Symmetric FFTs”
Comp., Vol. 47, pp. 323-346, 1986.

Math.

Top-Down Thread Generation for Sisal *

Bhanu Shankar A.P.W.Boéhm W.A.Najjar
Computer Science Department
Colorado State University
FortCollins, CO 80521

Abstract

In this paper we present a model of coarse grain
dalaflow ezecution. We present g top down method for
generating machine independent mullithreaded code,
called MIDC. We define MIDC. We discuss the rel-
evant phases in the Sisal to MIDC compilation pro-
cess, and presenl some ezxample compilations. We
quantify the number of threads, number of inputs per
thread, and average thread size for Livermore and Pur-
due benchmarks.

Keywords: Hybrid von Neumann/Dataflow,
threads, code generation algorithm.

1 Introduction

Hybrid dataflow machines execute threads of von
Neumann RISC code, where the threads are enabled
by the availability of data. Thread enabling is either
implemented by efficient matching using explicit to-
ken storage and presence bits, or by pools of “wait-
ing” and “ready” threads with hardware support to
move threads from and to these pools. A strict fir-
ing rule allows a thread to execute only when all its
inputs are available, avoiding threads to block but po-
tentially increasing latency and decreasing thread size.
Conversely, a non-strict firing rule allows a thread to
execute when some of its inputs are not available.
In this case threads can become larger, but the ar-
chitecture must cope with blocking threads, which
may increase the complexity of synchronization, and
may consequently require a larger, replicated, pro-
cessor state. It appears that the matching unit ori-
ented machines, such as the monsoon [PC90] and EM-
4[SKS*92], with little processor state, would favor
non-blocking threads, whereas the pool oriented ma-
chines with large processor state, such as the TERA
machine [ACC*90], would favor blocking threads, but

*This work is supported by NSIF Grant MIP-9113268

this remains to be investigated. In this study we will
restrict ourselves to non-blocking threads.

In this paper we present the compilation of a func-
tional language, Sisal [MSA*85], into machine inde-
pendent coarse grain dataflow code (MIDC). We de-
fine MIDC, outline the relevant compilation stages,
and measure the total number of threads executed,
the average thread size, and the number of inputs per
thread for the Livermore and Purdue benchmarks.

The rest of the paper is organized as follows. In
section two we introduce the MIDC model of compu-
tation and outline MIDC generation. In section three
we present some example programs and their interme-
diate forms. In section four we analyze the dynamic
properties of our cluster generation strategy.

2 The MIDC Model of Computation

MIDC nodes are threads of von-Neumann instruc-
tions. A node is scheduled as a unit on one processor.
An MIDC program is a data-driven graph of these
clusters. Synchronization (matching) occurs at the
cluster level, and once a cluster is enabled, it runs to
completion without blocking and has a deterministic
execution time. This implies that an instruction that
issues a memory request cannot be in the same clus-
ter as the instructions that use the value returned by
the split-phase read. In our model, threads executes
strictly, that is, a thread is enabled only when all the
input tokens to the cluster are available. The limited
fine grain parallelism internal to the cluster could be
exploited, for instance, by a superscalar or VLIW pro-
cessor. The construction of clusters is guided by the
following objectives:

e Minimizing the internal thread parallelism, so
that the inter thread parallelism is maximized.

¢ Ensuring deadlock-free execution of threads.

e Minimizing matching and synchronization over-
head by maximizing the locality and making clus-

25

ters as large as possible without violating the first
two objectives.

e Minimizing the input latency caused by large
numbers of inputs to clusters.

It should be noted that there is a trade-off between
thread size and input latency. The larger a thread, the
more inputs it may require. It is therefore not always
advantageous to have as large as possible threads.

2.1 Compiler Structure

We are designing a Sisal compiler for coarse grain
dataflow machines by targeting to MIDC, which
should be easily mappable to machines such as mon-
soon, EM-4, *T, and Tera. IF1 [SG85] is used as a
common intermediate forn. for all Sisal compilers, and
decouples the front end .. the compiler from the code
generator. There are four components of the graph
form: nodes, edges, types and sub-graphs. Nodes de-
note operations, edges represent values that are passed
from node to node, types are attached to edges and
functions. To provide block structure, some set of
nodes and edges can be encapsulated in a sub-graph.
For control structures such as loops and conditionals,
sub-graphs are encapsulated in compound nodes.

The functional semantics of IF1 prohibits the ex-
pression of copy-avoiding optimizations. An extension
of IF1, called IF2 [WSYRS8S6], allows operations that
explicitly allocate and manipulate memory. A class
of AT operations is introduced, which are similar to
their IF1 counterparts but have additional informa-
tion indicating where in memory their results should
be constructed. Artificial dependence edges have also
been added to introduce synchronization where this
may be useful, for instance to facilitate update in place
optimization [Can89]. The concept of a buffer in IF2
provides a machine independent way of describing ad-
dressable memory. A buffer comprises two parts: 1) a
buffer pointer into a contiguous block of memory, and
2) an element descriptor that defines the elements of
the buffer, which may be arrays, streams, records or
basic types. IF2 makes two assumptions: 1) all scalar
values are operated by value and therefore copied to
wherever they are needed, and 2) all of the fanout
edges of a structured type are assumed to reference the
same buffer, that is, each edge is not assumed to rep-
resent a distinct copy of the data. IF2 edges are dec-
orated by pragmas. For instance, there is a “update-
in-place” pragma that indicates that a certain replace-
ment of an array element can be done without copying
the other elements of the array, but by destructively

updating the particular element. This dramatically
improves the run time performance of the system.

The Optimizing Sisal Compiler (OSC) [Can89] per-
forms some transformations that are useful for the
machines that it currently targets, but not necessar-
ily for MIDC. Sometimes analysis is needed to de-
cide whether such transformations need to be undone.
One such example is the transformation of AScatter
nodes in the Generator sub-graph of Forall nodes to
a RangeGenerate and the addition of AElement nodes
to read the array in the Forall Body. This transfor-
mation is turned off for the purpose of MIDC code
generation.

2.2 Cluster Generation

The top down cluster generation process transforms
IF2 into a flat machine independent dataflow code
MIDC where the nodes are clusters of straight line
von Neumann code, or basic blocks, and the edges
represent data paths, A node header provides a node-
label, the number of input ports, the number of reg-
isters used, and the destinations for all outputs. Out-
puts can be conditional, i.e. only sent if a register,
specified in the output directive, contains true. The
node header is followed by a stream of instructions.
Instruction operands may be node input values, reg-
isters or literals. Tokens travelling through the graph
are tagged with an activation name, which can be in-
terpreted as a pointer to a stack frame as in [CP90] or
as a color in a more classical dataflow sense.

An MIDC program consists of a number of function
definitions, one of which is called main and commu-
nicates with the outside world. A function consists
of a header and a body. A function header provides
the interface between calls and called functions. The
MIDC syntax definitions are presented in Table 1.

The IF2 to MIDC translation process starts with
a graph analysis and splitting phase, which breaks up
the nested IF2 graphs such that threads can be gen-
erated. Innermost loops are identified, as they are
candidates for vectorization, which is important not
only for machines with vector capabilities, but maybe
even more so for block (pre)fetching of conglomerate
data. Initial values for reduction operators are gen-
erated in the appropriate threads. Threads terminate
at control graph interfaces for loops and conditionals,
and at nodes for which the execution time is not stati-
cally determinable, such as a function calls and remote
memory accesses. Terminal nodes are identified and
the IF2 graphs are split along this seam.

Function interfaces are then set up for all the func-
tions that have survived function inlining. A function

26

Function Interface:

FName:
Output:
Destination:

string

Function Body: Node ...

Target Register: Ry | Vg

F FName Node# #ins Output

< (Destination) >
node# port#

N Node# #regs #ins OutList

< (CondReg ValueReg Destination MatchFn) ... >

Node:

Instruction ...
OutList:
Instruction: Targets = Operation
Targets:

Target Register | Target Register , Targets

Operation: Operator Operands

Operands: . Operand | Operand , Operands
Operand: Operand Register | Literal
Operand Register: Ve | Rg Iy

Literal: “Type Value”

CondReg: Operand Register

ValueReg: Operand Register

MatchFn: Normal | Queue

#: number or number of %: comment

.. & sequence

Table 1: MIDC Syntax Definitions

interface consists of input and output directives for a
function call. It connects input parameters to nodes
in the function body, and combines return values with
return information provided by the caller. A trigger
input is used to activate code that has no inputs.

IF2 function bodies consist of simple nodes, func-
tion calls, and compound nodes. In the case of sim-
ple nodes, such arithmetic and logical operators, the
translation scheme from IF2 to MIDC is straight-
forward. Simple nodes are merged to form threads.
A function call is translated in code that connects the
call site to the function interface, where the input val-
ues and return contexts are given a new activation
name. The return contexts combine the caller’s acti-
vation name and the return destination and are tagged
(as are the input values) with the new activation name.
The function interface returns function results using
dynamic arcs.

Compound nodes, representing conditionals and

loops contain subgraphs. The IF2 to MIDC compiler
generates threads for all sub-graphs and “glue” code
to link them together. They are wired up sequen-
tially, such that activation names and other resources
for these loops can be kept to a minimum. Forall loops
with data independent body graphs and a loop count
known before the loop is executed, consist of a gener-
ator, a body, and a returns graph. They are wired up
so that all parallelism in these loops can be exploited.
To that end, all ordering in the reduction operators
has been removed. This is valid as Sisal reduction op-
erators, such as sum, product, least, and greatest are
commutative as well as associative.

3 Examples

Three example SISAL programs will be used to ex-
emplify our code generation process. Please refer to

the appendix. Livermore Loop 3 in figure 1 is a vector
inproduct function, figure 5 shows a double recursive
binary integration function using the trapezium rule,
and figure 9 shows a bubble sort function. Function In-
lining, common sub-expression elimination and other
classical compiler optimizations along with update in
place and copy elimination gives rise to the second
intermediate form IF2. The IF2 forms of the Liver-
more Loop 3, binary integration and sort programs
are shown in figures 2 6 and 10 respectively. The
programs are compiled into the MIDC form shown in
figures 3, 7 and 11. To facilitate easier reading,
comments have been added by hand to reference the
source code or provide an insight into the “glue” code
needed.

3.1 Livermore Loop 3

During IF2 analysis we find that the loop is an
innermost loop, and that there are no other struc-
tures that impede vectorization present in the graph.
The generator graph for the loop contains a set of
AScatter nodes. In keeping with the need for par-
tial reductions the Reduce node is duplicated in the
body. Since MIDC threads have no state, the initial
value for the reduction has to be supplied from outside
the Returns graph, and all the intermediate reduction
values have to be looped back to the Returns graph.
The corresponding edges are added in the Generator
graph. The graph is now ready for code generation.

Figure 3 shows the code generated and figure 4
shows the MIDC graph structure for Livermore Loop
3.

1. The RangeChecK (RCK) operator in node 3 checks
whether the sizes of all the array inputs to the
loop are the same. Node 3 also contains code to
calculate the number of chunks and the size of the
odd sized chunk, if present.

2. A stream of colors to drive the loop bodies in
parallel will be generated using the Generate
Activation Name Stream (GANS) instruction in
MIDC node 4, along with the outer context and
the the position of the chunk in the array using
the SetColorSetinXed (SCSX) instruction. The
loop set up is completed in MIDC node 4 by the
Proliferation of the loop body inputs and the gen-
eration of input values for any reduction opera-
tion necessary.

3. Code for the loop body is generated in two ver-
sion: one that pertains to full chunks and one
for the odd sized chunk. This is 1n keeping with

our desire to reduce the number of tokens to
a minimum. For each array that is present, a
FetchCHunk (FCH) operation is issued. This is
done after computing its address in the array, see
Nodes 6 & 8. This particular loop body is en-
coded using vector instructions. Partial reduc-
tions and array gather are generated. To allow
out of order execution of the final reduction oper-
ation, MIDC node 7 recolors partial results to the
outer context using a Label (LAB) instruction.

4. The Returns graph is used as a barrier as the
partial reductions are reduced further to give the
final reduction. The Returns graph is run on the
color of the outer context. To implement out of
order evaluation, a Queue Malching Function is
added. As its name implies if two or more tokens
of the same color appear at the same port, the
tokens are queued in non-deterministic order for
processing.

3.2 Binary Integration

The analysis phase finds a Select node in the func-
tion body. Since control can flow either to the Else or
the Then sub-graphs the outputs of the sub-graphs
needs to be merged, and consequently, the MIDC
graph needs to be split at this merge point. Further
analysis shows that the Select node feeds the output
of the function and not any other internal nodes, and
the results of the Then and FElse graphs can be linked
directly to the function output interface. The Else
graph contains two independent call nodes, which can
be a part of the same thread. The Else graph is split
broken at the outputs of the call nodes, as their la-
tency is indeterminate.

Figure 7 shows the MIDC code generated and fig-
ure 8 shows the MIDC graph structure. Code is gen-
erated as follows.

1. The input and output function interfaces are gen-
erated.

2. TFor the function body, code generation is straight-
forward. Most IF2 nodes are simple, and have
a corresponding operator in MIDC. For the se-
lect node, tokens have to be directed to the
corresponding subgraphs, using conditional out-
puts driven by the boolean input to the se-
lect node. The Then branch is straightfor-
ward, as it is empty and only acts as a redi-
rection node. In the Else branch, we come
across two call nodes. Their function interfaces
are identified using the function name in the

28

call node. A new activation name is generated
using the GenerateActivationName (GAN) in-
struction. All the parameters are recolored us-
ing the SetActivationName (SAN) instruction.
Then the return address along with the old ac-
tivation name is provided. This is done in MIDC
node 6 using the REColor (REC) instruction.

3.3 Bubble Sort

The analysis phase finds that the IF2 function
graph contains a LoopB in node 3, the output of which
links to the output of the function graph. No internal
nodes use the cutput of this node. Thus, the function
graph need not be split. The LoopB node 3 in turn
contains another LoopB, node 4. As this node does
not feed other internal nodes of the graph, splitting
need not be performed. The AElement operations in
node 4 are independent of each other and can be a
part of the same MIDC thread. The graph is split at
the outputs of the AElement nodes. We also find a
Select node in the LoopB. The graph is split in the
same manner as described in the binary integration
example above.

Figure 11 shows the MIDC code generated and fig-
ure 12 shows the MIDC graph structure. Code gen-
eration is straightforward once analysis has been per-
formed.

1. The upper limit of the array required by the
ALimH in node 3 is computed using the array de-
scriptor. The size and lower bound of the array
is computed.

2. When the Select graphs are being encoded, we
find that some threads do not have any input.
Since a thread cannot start execution if it does
not have any inputs, the MIDC nodes have to be
triggered. This is done by the TRG instruction,
see MIDC Node 11.

4 Evaluation

In this section we present the dynamic properties of
our top down generation strategy, by running the Liv-
ermore and Purdue benchmark codes on our coarse
grain dataflow graph simulator [Roh92]. The objec-
tives of these measurements are to evaluate the total
work, in terms of number of clusters, the average num-
ber of instructions per cluster (S.) and average num-
ber of inputs per cluster (/.) and the average number
of inputs per instruction (I;).

Table 2 gives the total number of clusters, in-
structions and matches for the Livermore and Purdue
benchmarks.

References

[ACC*90] R. Alverson, D. Callahan, D. Cummings,
B. Koblenz, A. Portfield, and B. Smith. The
Tera computer system. In Proc. Int. Conf. on
Supercomputing, pages 1-6. ACM Press, June
1990.

[Can89) D. C. Cann. Compilation techniques for high
performance applicative computation. Techni-
cal Report CS-89-108, Colorado State Univer-

sity, 1989.

D. E. Culler and G. M. Papadopoulos. The
explicit token store. Journal of Parallel and
Distributed Computing, 10(4), 1990.

[MSA*85] J. McGraw, S. Skedzielewski, S. Allan, R. Old-
ehoeft, J. Glauert, C. Kirkham, B. Noyce, and
R. Thomas. SISAL: Streams and Iteration
in a Single Assignment Language: reference
manual version 1.2. Manual M-146, Rev. 1,
Lawrence Livermore National Laboratory, Liv-
ermore, CA, March 1985.

G. M. Papadopoulos and D. E. Culler. Mon-
soon: an explicit token-store architecture. In
Int. Ann. Symp. on Computer Architecture,
June 1990.

[CP90]

[PC90]

[Roh92] Lucas Roh. IDIAS: a dataflow machine sim-
ulator. Technical Report CS-92-112, Colorado
State University, Computer Science Depart-

ment, March 1992.

S. K. Skedzielewski and John Glauert. IF1:
An intermediate form for applicative languages
reference manual, version 1. 0. Technical Re-
port TR M-170, Lawrence Livermore National
Laboratory, July 1985.

M. Sato, Y. Kodama, S. Sakai, Y. Yamaguchi,
and Y. Koumura. Thread-based programming
for the EM-4 hybrid dataflow machine. In Int.
Ann. Symp. on Computer Architecture, 1992.

[WSYRR6] M. Welcome, S. Skedziclewski, R. K. Yates,
and J. Ranelleti. [F2: An applicative language
intermediate form with explicit memory man-
agement. Technical Report TR M-195, Univer-
sity of California - Lawrence Livermore Labo-
ratory, December 1986.

[SG8s]

[SKS*92]

29

Program Size | Clusters | Instructions | Matches Sc I I
11 20 123 1031 838 8.38 6.81 { 0.81
12 20 895 8638 5652 2.65 6.32 | 0.65
13 20 84 308 242 3.67 2.88 | 0.79
14 100 86 727 648 8.45 7.53 | 0.89
15 20 102 685 668 6.72 6.55 | 0.98
16 20 1345 6696 5206 4.98 3.87 | 0.78
17 20 129 2403 1080 18.63 8.37 | 0.45
18 20 1053 6019 3776 5.72 3.59 | 0.63
19 20 634 11744 9494 18.52 | 14.97 | 0.81
110 50 1556 53624 31525 3446 | 20.26 | 0.59
111s 20 98 543 540 5.54 5.51 | 0.99
112 20 603 3547 2558 .88 4.24 | 0.72
ns3 50 355 4401 3960 1240 | 11.15 | 0.90
114 20 231 2750 1979 11.90 8.57 | 0.72
115 20 990 7863 5368 7.94 5.42 | 0.68
116 20 539 2272 2609 4.22 484 | 1.15
17 20 138 1632 1497 11.83 | 10.85 | 0.92
119 20 1645 15407 14488 9.37 8.81 | 094
121 25 25686 113764 88022 443 3.43 | 0.77
122 20 1833 7790 5934 4.25 3.24 | 0.76
124 20 116 455 428 3.92 3.69 | 0.94
pl 100 202 1007 705 4.99 3.49 | 0.70
p2 20 1263 5825 3366 4.61 2.67 | 0.58
p3v 20 283 1228 644 4.34 2.28 | 0.52
p3 20 1283 4032 3404 3.14 265 | 0.84
pdv 20 13 64 31 4.92 2.38 | 048
p4 20 63 272 184 432 292 | 0.68
p5v 20 3209 13536 10876 4,22 3.39 | 0.80
PS5 20 3366 17138 16113 5.09 4.79 | 0.94
pP7 20 2063 7447 7408 3.61 3.59 | 0.99
p8 20 690 5247 3562 7.60 5.16 | 0.68
P9 20 3713 40870 25180 11.01 6.78 | 0.62
p10 20 1458 8254 8068 5.66 5.53 | 0.98
plly 20 325 1562 927 4.81 2.85 | 0.59
pll 20 375 1645 1332 4.39 3.55 | 0.81
pl2 20 2879 10481 12185 3.64 423 | 1.16
pl3 20 123 643 592 5.23 4.81 | 0.92
pl4 20 667 14233 4920 21.34 7.38 | 0.35
pls 10 4995 55407 29206 11.09 5.85 | 0.53
Total 66941 449608 321697 6.72 4.81 0.72

Table 2: Dynamic counts for Livermore loops (1) and Purdue benchmarks (p). v at the end of the program name
signifies vector execution. S, - Instructions/Cluster, I, - Matches/Cluster, I; - Matches/Instruction.

A Livermore Loop 3

function Loop3p(vl, v2: array(integer] returns Integer)
for el in v1 dot e2 in v2
x = el * @2;
returus value of sum x
end for
end function % Loop3p

Figure 1: Sisal Code for Livermore Loop 3.

} 1 Function Loop3

' \
1 Forall 2 |

1:(AScatter) 2:{AScatter)

3 4

Generator
4
3 Sum 0.0
! 1:{ Reduce
Body
Returns

Figure 2: 1F2 representation of Livermore Loop 3.

% Entry Code for Function loop3.
% Input Interface.
F loop3 1 2 <(3 1)(3 2)>

% Output Interface.
F loopd 2 2 <()>

% Body of Punction loop3d.

N 372 <(*RO 11 41 0)('RO 12 4 3 0)

(*RO R3 4 3 0)('RO R3 4 ¢ 0)

(R4 R6 ¢ 5 0)('R4 R7 4 3 0)>

Ro, RO, R1 = UPK I

Ro, RO, R2 = UPK 12

RCK R1 R2 ; Make sure arrays are of equal leagths.

R3 = MOI R1 "8"” ; Chunk size = 8

RS = SUI R1 R3

Ré = DVI Ri "8" ; Calculate the number of chunks.
R4 = EQI R3 RO

RT = ADI R6 1"

N 414 8 <('R12 R4 9 4 0)('RO R5 7 3 0)
(*RO R6 6 1 0)(*R13 R7 8 1 D)
(‘RO R8 6 3 0)('R12 R9 8 2 0)
('R12 R11 8 3 0)('R12 R11 9 3 0)
(‘RO R13 5 3 0)(!RO R14 8 2 0)> ; Start of Forall loop.
R3 = EIX 11 ; Extract loop index for future use.
= SI1X R3 14 ; Set loop index for the odd chunk.
R12 = EQI I3 RO

Rl = SUl 15 "1~

R2 = GANS "1™ R1 "8" ; Generate an Activation Name stream.
RS = SCSX R2 R3 ; Save the old color and index infotmation.
R6 = POL 11 R2 ; Proliferate the loop arguments.

R? = SIX 11 14

R8 = POL 12 R2

R9 = SIX 2 14

Ri10 = EQU 13

R11 = SIX R10 14

R13 = EQU 15 ; Number of chunks needed for the seduce.

Ri4 = EQU "0.0DO" ; Set initial value for the r= juce operation.

N 533 <(R3R1310)('R3R1S30)
(‘RS R2 5 3 0)>

R1 = ADD 12 11 ; reduce the partial sums.
R2 = SUI I3 1" ; loop till gchunks = 0
R3 = EQI R3 Ro

N633<()>

R3, RO, RO = UPK 1

R1 = EIX 11

FCH R2 R1 "8" "7D1" ; fetch chunk for vector X.
RS, RO, RO = UPK 12

FCH R3S R1 "8" "7D3" ; fetch chunk for vector Y,

N133<('Ro R3 513)>

MUVD 11 12 ; Multiply vectors.
R2 = RSM V1 "8" ; teduce vector sum.
R3 = LAB R2 I3 ; recolor the result.

a

N833<()>

R2, RO, RO = UPK 1

Rl = EIX I

FCH R2 R1 13 "9D1" ; fetch odd size chunk for vector X.
R3, RO, RO = UPK 12

FCH R3 R1 13 "9D3" ; fetch odd size chunk for vector Y.

N934<('Ro R3 5 13)>

= MUVD 11 13 ; odd size chuuk is reduced as above.
R? = RSM Vi I3
RS = SIX R2 14

Figure 3: MIDC code for Livermore Loop 3.

Figure 4: MIDC graphs structure for Livermore Loop 3. Legend in Nodes: Node number (#inputs, #instructions).

B Binary Integration

function F(X: real returns real)
3.0%XsXsX + 2.08XsX + 5.0
end function % F

furction Trap(L, R : real returns real)
(R-L) ¢ (F(L) + F(R))/2.0
end function % Trap

function Area(L,R,Est,Tol: real returns real)
lat
Mid := (L + R)/2.0;
Al := Trap(L, Mid); A2 := Trap(Mid, R);
Nevest := A1 + A2
in
if abs(Est - Newest) < Tol
then newest
else Area(L, Mid, A1, Tol/2.0) + Area(Mid, R, A2, Tol/2.0)
end if
end let
end function % Area

Figure 5: Sisal Code for Binary Integration.

w
w2

on @y @49 ©2)

Figure 6: IF2 for Binary Integration.

% Function Interface for Function Area.
% lnput Interface.
F area 1 4 <(8 1)(3 2)(5 3)(5 4)>

% Output Interface.
F area 223 <()>

% Body of Function Area.

N 835 4 <(R33 R32 81 0)(!R35 11 6 3 0)
%!Ras R2 6 3 0)('R335 R20 6 1 0)

!R38 14 6 6 0)('R35 12 6 5 0)

('R3s5 R31 6 4 0)>

Ri=ADRI1 12, T1I =L+ R

K2 = DVR R1 "2.0" ; Mid = (L 4 R)/3
R3 = SUR R3 11 ; Trap(L, Mid), inlined.
R4 = MUR 11 "3.0”

RS = MUR R4 11

Ré = MUR Rs I1

R7 = MUR 11 "2.0"

R8 = MUR RT Il

R9 = ADR R6 R8

R10 = ADR R9 "5.0" ; F(L), inlined.

R11 = MUR R32 "3.0"

R12 = MUR R11 R3

R13 = MUR R12 R2

Ri4 = MUR R3 "3.0”

R1s = MUR Ri14 R2

R16 = ADR R13 R13

R17 = ADR R16 "5.0" ; F(Mid), inlined.
Ria = ADR R10 R17

R19 = MUR R3 R18

R20 = DVR R19 "2.0" ; Trap(L, Mid) completes.
R31 = SUR 12 R2

R22 = MUR 12 "3.0"

R23 = MUR R22 12

R24 = MUR R33 12

R32s = MUR 12 "3.0"

R26 = MUR R32s 13

R27 = ADR Ra4 R3¢

R28 = ADR R327 "5.0" ; F(R), inlined.
R39 = ADR R17 R38

R30 = MUR Ra1 R3¢

R31 = DVR R30 "2.0" ; Trap(Mid, R) completes.
R32 = ADR R20 R31 ; Newest == Al + A2
R33 = SUR I3 R32

R34 = ABR R33

R3s = LTR R34 14 ; T2 = aba(Est - Newest).

Figure 7: MIDC code for the Binary Integration Function Area.

Figure 8: MIDC graph structure for Binary Integration Function Area.

N 6136 <('ROR3110)('R0O R4 120)

?Ro R51 D;E!RO R 1 ¢4 Og
tROR7220)((ROR9110

(*Ro R10 1 2 0)(*RO R11 1 3 0)

(‘RO R12 1 4 0)(*RO R13 2 2 0)> ; Else branch.
3

R2 = GAN 11 ; Function Call 10 Area.

R = SAN I3 R2 | Arguments given a new color.
R4 = SAN i2 R3

RS = SAN 11 R2

Ri = DVR 16 "2.0" ; New tolerance calculated.
A6 = SAN R1 R3

R7 = REC R2 "TD1” ; Destination 4 old color.
A8 = QAN 11

A9 = SAN 12 Ra

R10 = SAN I5 R8s

Ril1 = SAN I4 Rs

R12 = SAN Rl Rs

R13 = REC R8 "7TD3”

N 712 (‘RO R1 21 0)> ; Else Continuation.
Rl = ADR 11 12

N 801 (RO 210)> ; Then Branch return Newest.

W
183}

C Bubble Sort

function Sort (Data: array[integer] returns array[integer])
for initial
Limit := array_limh(Data);
B := Data;
exchange := true
while Limit > array_liml(Data) & exchange repeat
Limit := old Limit - 1;
B, exchange :=
for initial
J := array.liml(old B) - 1;
I := old B;
exch := false
while J < Limit repeat
J :=0ldJ + 1;
Y := o0ld X[J];
X, exch :=
if (Y > old X[J + 1]) then
old X[J:0ld X[J+1]; J+1: Y], true
elseif old exch then old X, true
else old X, false
end if
returns value of X
value of exch
end for
returns value of B
end for
end function %Sort

Figure 9: Sisal Code for Bubble Sort.

Punctien Sort

LoopB

PinalValue

Retumns

P
4 52 6 4
1 2
Test Returns
Body
Gn @ 04
-
Select
truc false
LK) Yy
Elsc Then
(a1
J
; .
-

Figure 10: IF2 for Function Sort.

% Function Interface for Function Sort.
% Input Interface.
Fsort 110 <(31)>

% Ousput Interface.
Fsort 220 <()>

% Body of Function Sort.

N 3131 <('RO R7T 4 20)('ROR8 41 0)

(RO R9 4 8 0)(*RO R10 4 4 0)

(‘RO R7 3 2 0)('RO R8 5 1 0)

(‘RO R9 5 3 0)(*RO R10 5 4 0)

(!RO R13 5 5 0)>

R7T = [IL 11 ; Init graph of cuter loop.

RO, RS, RO = UPK I1 ; ALimL of the Input array.
R8 = IIL RS ; Increment lteration Level

R6é = EQU "TRUE"

R9 = IIL R6

RO, R1, R2 = UPK I1

R3 = ADI R2 R1 ; ALimH of the Input array.
R4 = SUI R3 "1”

R10 = IIL R4
R11 = EIX I1 ; Extract Index of outer loop.
R12 = [IL R11

N 474 <(!ROR3S60)(R3R4610)
(R3 R5 6 2 0)(R3 R6 6 30)
(R3 R7 6 4 0)>

R1 = LEI §4 12 ; Test Graph of outer loop.
R32 = NOT R1

R3 = AND R2 13

R4 = INX I1 ; lncrement Index for the

RS = INX 12 ; next iteration.

Ré = INX I3

R7 = INX 14

N 556 (16 R3210)(l6 RS 550)>
Rl = DIL I1 ; Returas graph of nuter loop.

R3 = SIX R1 IS5 ; Set index value for the outer value.

AR5 = INX 15 ; lncrement Index for next iterstion.

N 6 10 4 <(!R0O I1 41 0)}{(*RO R5 7 2 0)

(‘RO R6 7 1 0)(*RO R7 7 3 0)
(‘RO R8 7 4 0)(‘RO RS 8 2 0)
'R0 R6 8 1 0)(*RO R7 8 3 0)
‘RO R8 8 4 0)(‘RO R10 8 § 0)
(‘RO R1 4 4 0)(*R0O 1 51 0)

(:RO R1 5 4 0)>

R4 = EQU "FALSE" ; Body of the outer loop.
RS = IIL R4 ; Also, the Init for the inner loop.
R1 = SUl l4 "1"

Ré = IIL R}

Ro, R2, RO = UPK 12

R3 = SUI R2 "1"

R7 = 1IL RS

Re = IIL 12

Rg = EIX 1

R10 = IIL R9

N 754 <(*RO R1 8 6 0)(R! R3 9 1 0)
(R1 R3 9 2 0)(R1 R4 8 3 0)

(Rt R5 9 4 0)>

Rl = LTI I3 11 ; Test graph of inner loop.

R2 = INX 11
R3 = INX 12
R4 = INX I3
RS = INX 14

N 784 <('RoR1860)RI R2910)
(R1 R3 9 20)(Rt R4 9 30)

(R1 R5 9 4 0)>

R1 = LTI 13 11 ; Test graph of inner loop.
RI = INX 11

R3 = INX 12

R4 = INX 13

RS = INX [4

N 876 <('16 R4 4 20)(!16 R5 4 30)
(16 RT 8 5 0)(!I6 R4 & 2 0)
(116 R5 5 3 0)>

1

R1 = DIL 11 ; Retutns Graph of inner loop.
R4 = SIX R1 I8

R3 = DIL 14

RS = SIX R3 15

RT = INX 1§

N 9 10 4 <(!RO 14 10 4 0)(*RO 13 10 3 0)
(*RO 12 10 2 0)(*RO 11 10 1 0)

(RO R1 10 7 0)>

Rl = ADI I3 "1" ; Body of inner loop.
R3, RS, R4 = UPK I4

RS = SUI R1 R3

RSS R2 RS "10DS™ ; AElement, node 3.
R7, R8, R9 = UPK I4

R6 = ADI I3 "2»

R10 = SU{ R6 Rs

RSS RT R10 *10D6” | ABlement, node 4.

N 102 7 <(tRO I1 7 1 O)(!R2 14 11 1 0)
zm 14 12 1 0)(Ra 17 12 2 0)

R32 15 12 3 0)(*R2 12 11 3 0)

(‘RO 11 8 1 0)>

Rl = LEI I8 168 ; Compute conditional.
R2 = NOT Rl ; nodes, 5 & 6.

N 11 23 <('RO 11 7 4 0)(*12 R1 14 1 0)

(12 R2 15 1 0){*RO 11 8 4 0)>

R1 = TRG 11 ; Select Node, selector graph.
R2 = TRG I1 ; Trigger one of the paths.

N 12 58 <('RO R1 13 4 0)(*RO I1 13 2 0)
(‘RO 12 13 3 0)('RO 13 13 5 0)>

Rl = ADI 12 "1" ; Then path of outer select.
R2, R3, R4 = UPK I1

R3 = SUI R1 RS

RSS R2 RS "13D1"

N 1313 5 <('R0 R12 7 4 0)(R0O R13 7 32 0)
(‘RO R13 8 4 0)(*RO R13 8 2 0)>

Rl = EQU 12 ; continuation of then path
R32, R3, R4 = UPK Rl ; from MIDC node 13.
Rs = SUI I3 R3

WSS R2 R5 11 ; AReplace

Ré = PAK R2 R3 R¢

R7 = EQU Reé

R8, R9, R10 = UPK R7

Ri1 = SUI 14 Re

WSS R8 R11 15 ; AReplace

R12 = PAK R8 R9 R10 ; Repack the array descriptor.
R13 = EQU "TRUE"

N 1411 <('R0O R1 7 2 0)(R0O R1 8 2 0)>
R1 = EQU "FALSE" ; Else path of the inner select.

N 1511 <('R0 R1 72 0)(RO R1 8 2 0)>
Ri = EQU "TRUE" ; Then path of the inner select.

Figure 11: MIDC code for the Sort.

Figure 12: MIDC graph structure for Function Bubble Sort.

39

Overlapping Communications and Computations on
NUMA Architectures

Rich Wolski and John Feo
Lawrence Livermore National Laboratory
Livermore, CA 94551

Abstract

Many of the currently available multiprocessing systems
are built from commodity RISC processor chip sets.
These processors reduce the latency associated with ac-
cessing memory by supporting non-strict load and store
operations. These operations complete before the data
is actually present in registers or transferred from regis-
ters to memory. Effectively overlapping communication
and computations is the key to achieving high-perfor-
mance on these systems. Present partitioning methods
do not accurately model non-strict load and store opera-
tions; consequently, they generate non-optimal sched-
ules for RISC-based machines. In this paper, we define
two new nodes, WAt and RAt, to model the execution
semantics of load and store operations. We show that
by including these nodes in program dependency graphs
with memory nodes, we can effectively overlap commu-
nications and computations, thereby, reducing critical
path lengths. We present performance results for a
RISC-based NUMA machine. Our study demonstrates
the importance of the new nodes and the versatility of
program dependency graphs with memory nodes.

1 Introduction

While older, CISC (complex instruction set com-
puter) architectures implement strict instruction seman-
tics, modern parallel computer systems tend to be built
using RISC (reduced instruction set cc.inputer) processor
technology. Many RISC processors are pipelined,
load/store architectures in which all computational in-
structions operate on register operands. Data is moved
between registers and memory by explicit load and store
instructions rather than as part of each computation.
Since the systems are typically pipelined, the load and
store operations are non-strict; that is, control! is returned
to the processor before the operations complete. More-
over, several emerging new NUMA (non-uniform mem-
ory access) multiprocessor architectures implement pro-
cessor multithreading as a mechanism for latency toler-
ance [AIv91, Nik91]. These systems hide memory la-
tencies by rapidly switching between runnable threads

40

when a reference occurs. Each load or store is over-
lapped with computation from another runnable thread.

Current partitioning methods do not adequately
model load and store operations; consequently, they
generate poor partitions for RISC-base systems. In this
paper, we define two new nodes, WAt (write-at) and
RAt (read-at), to model memory access operations.
When we include these nodes in data dependency
graphs with memory nodes [WolFe092], we find that
conventional partitioning algorithms, such HEF (heavy-
edge first), can effectively overlap communications and
computations. Most importantly, the partitions gener-
ated have shorter critical path lengths.

In Section 2, we introduce the new nodes, describe
the advantages of program dependency graphs with
memory nodes, and describe changes to the HEF algo-
rithm to accommodate WAts and RAts. In Section 3,
we give performance results for a RISC-based, NUMA
architecture. In Section 4, we conclude and describe
future work.

2 Partitioning

Parallel programs are naturally represented as data
dependency graphs [Kuck81]. Within such graphs,
nodes represent computations, and directed edges repre-
sent the conveyance of data between computations. The
advantage of a graphical representation is that paral-
lelism is immediately visible. Nodes contained within
independent paths through a program may be executed
in parallel. Traditionally, partitioning methods have as-
sumed the macro-actor model of computation described
in [Sarkar87]. The model assumes the lowest level op-
erations to be atomic and functional. Each fundamental
unit of computation executes to completion once initi-
ated, and produces results based solely on its inputs.
Fundamental computations are assumed to be strict with
respect to their inputs and outputs. An operation may
not execute before all of its inputs are present, and no
output may be consumed until all outputs have been
produced. The macro-actor model represents the com-
munication of data from producer to consumer as a sin-
gle atomic event.

In [WolFe092], we showed the advantage of includ-
ing memory nodes in dependency graphs when partition-

ing for NUMA architectures. The graphs more accu-
rately reflect the complex memory structure of these
machines, and enable partitioning algorithms to optimize
the use of memory. The graphs identify explicitly the
three distinct phases of communications [Figure la]:

1) the producer writes its results to an accessible mem-
ory location,

2) the data is transferred by an intermediate communi-
cation facility to a memory location accessible by the
consumer, and

3) the consumer reads the data from the accessible
memory location.

If the producer and consumer write and read the same
memory, then we may merge the two memory nodes
eliminating the communication phase {Figure 1b]. By
providing an architectural model that specifies the per-
formance characteristics for each type of memory and
communication channel, the compilation system can es-
timate execution delays accurately, and generate better
program partitions and schedules.

During the communication phase, if it exists, both
processors are free to execute other ready operations.
Thus, data dependency graphs with memory nodes help
to identify certain opportunities for overlapping commu-
nications and computations. But, for RISC-based and
multithreaded architectures that can overlap every
memory access operation with computations, the actual
number of opportunities is much greater than that iden-
tified.

write communicate
O 3

memory node

@)

=0

: write read C

(b)

Figure 1

Therefore, to model load and store operations, we
introduce two new nodes:

WriteAT: executed by a producer to transfer data from
register to memory (abbreviated WAr).

ReadAt: executed by a consumer to transfer data from
memory to register (abbreviated RAt).

41

Figure 2 illustrates the use of WAt and RAt nodes. In
the figure, the computation node is marked “C”, each
RAt is marked “R”, and each WAL is marked “W”. The
memory nodes read and written by the computation are
colored to indicate that they have been assigned to regis-
ters. The memory nodes between the WAts and RAts
are colored to indicate that they have been assigned to
some memory type. [Since our focus is NUMA archi-
tectures, we have eliminated the communication phase
of each memory transfer.]

Leggnd

B - Register ~ Memory

Figure 2

Unlike other nodes, however, WAt and RAt nodes
may or may not imply execution semantics. The defini-
tion of their execution semantics depends on the archi-
tecture and language system. If the target architecture
supports a load/store instruction set (as is the case with
most RISC processors), then the RAt and WAL nodes
correspond to load and store instructions respectively.
Conversely, if the architecture and language system
support direct memory addressing at the instruction
level, then the RAts and WAts simply carry cost
information but no execution semantics.

In RISC-based NUMA architectures, computations
read and write only registers, and are strict. No compu-
tation may fire until all of its register inputs are avail-

able, and no register output may be consumed until all
have been produced. However, load and store opera-
tions are not strict. Once exccuted, the processor is free
to continue cxecution of independent instructions even
though the inputs and outputs of these instructions are
not yet stable. Since a WAL and RAt have execution
semantics, our architectural model defines an execution
cost for each node.

The heavy-edge-first (HEF) algorithm attempts to re-
duce program critical path by assigning the edges carry-
ing the largest volumes of data (the heaviest edges) to
the fastest memories. Al memory nodes are initially
colored with a default memory or communication type
and sorted according to volume. The memory node in-
cident on each edge (considered one at a time in the or-
der specified by the sort) is speculatively colored with
every other possible memory type. After each coloring,
the graph's critical path is calculated, and the coloring
that yields the shortest critical path is accepted. The al-
gorithm terminates when all edges have been examined.
Pseudocode for HEF is

HEF (graph)

{ assign all memory ncdes in graph the
default memory color;

sorted_list = SORT({edges by volume);

while(sorted_list 1s rot empty)
{ best_color = default color;
edge = remove_biggest (sorted_list);
for(each memory color except default)

{ color memory node incident on edge;

calculate critical path length;
if(path length 1s better)
best_color = color;

~olor memory node with best_color;

The complexity of HEF is O(k N2) where k is the
number of different possible memory types. Each node
is colored with k different memory types, and after each
coloring, the graph distances are adjusted. The recalcu-
lation of graph distances is O(N), there are O(k N) opera-
tions performed per node. Since each node is accessed
once, the overall complexity of O(k N2).

Simular to the work outlined in [Sarkar87), HEF fo-
cuses on the edges carrving the greatest communication
volume as being the sources of the greatest execution
overhead. These edges will be considered for the fastest
memory colors first therchy reducing the greatest
amount of communication overhead. If a private color is
selected for a given memory node, the threads contain-
ing its producer and consumer are merged according to
the merge heuristic in [WolFe092]. Briefly, the two
threads to be merged are considered pre-sorted lists.
The merge algorithm constitutes essentially a single iter-

ation of a merge sort where the output sorted list is the
new thread.

The semantics of load and store operations, as im-
plemented by most architectures, also requires that the
cost statistics for RAts and WATts be calculated differ-
ently than for other nodes. Specifically, for RAts and
WALs we must charge the cost of accessing a non-regis-
ter colored memory node after the execution of the RAt
or WAL since that is how delayed memory operations are
typically implemented. A load instruction can be
thought of as reading a memory location and writing a
register. The delay until the load executes, however, is
not incurred as a result of its input memory type.
Rather, the node exccutes and some time later its output
register type contains a copy of the data in its input
memory type. Similarly, a WAt does not read a register
and write a memory location in terms of the cost model.
The WAL fires and then data is moved from register to
memory. Graphically, we depict this relationship in
Figure 3.

Notice that neither the RAt nor the WAL incur an in-
put cost; both of their read costs are zero. In both cases,
we charge the latency associated with their incident
memory type after their execution.

delay associated
with memory color

N

Figure 3

3 Results

For this study, we used a communication topology
similar to that provided by the BBN TC2000 [BBN90].
The TC2000 supports cssentially 4 forms of memory:
registers, local private, block shared, and interleaved.
We assumed 100 iterations per loop and a spawn cost of
50 clock cycles. A lock per processor must be assumed,
and a pointer reference is incurred as each loop slice is
allocated making 50 clocks a reasonable estimate.

As a cost metric, we use the mean percentage im-
provement in the length of the critical path before and
after partitioning over a set of 100 test graphs. We use a
combination of IF] [Skedz85] and IF2 [Ran87] (referred
to as IFX) to graphically represent parallel programs.
Initially, we assume cach computation is assigned to its
own processor, and that all communications use shared
memory as the default type. We define the length of the
critical path in the initial graph as the initial length. We

then partition the graph using a particular partitioning
algorithm, and calculate the critical path length of the fi-
nal graph (ihe final length). The percentage improve-
ment is

initial _path length — final path length 100

initial path length

For the memory characteristics of the TC2000, we
obtained the improvement results shown in Table I.
HEF in combination with our methods for assigning
costs throughout the IFX hierarchy extracts reasonable
critical path improvements.

HEF
Program Improvement
GJ 89.9 %
PIC 86.2 %
CG 88.1 %
RICARD 79.6 %
SIMPLE 67.7%
Table |
31 Overlap

To effectively exploit RISC and multithreaded archi-
tectures, the partitioning and scheduling system must be
able to schedule load and store operations so that the
communication latencies are masked. Within each
thread, computations that take and produce local data
values should be exccuted during the delay between
when a remote fetch is initiated, and its consuming com-
putation executes. The notion of initiating a non-strict
load before its data is required and then "filling" the re-
sulting gap is occasionally referred to as prefetching in
the literature.

To expose the effectiveness of our approach for
prefetching, we define the following three statistics for
each node:

Overlap(i1): the amount of computation that takes place
between the initiation of n's earliest load, and the execu-
tion of n itself,

Latency(n): the amount of computation that takes place
between the initiation of n's earliest read, and the time
when n's last input is available,

Delay(n): the amount of time between when n's last
input is available and when n actually executes.

We assume that each node has been assigned to some
thread, and that communications local to the thread can-
not be overlapped (i.e. local communication takes place
in registers). We do not impose limits on the number of
registers available, nor do we assume that memory is
scarce. Graphically, the overlap, latency, and delay
statistics are depicted in Figure 4.

Intuitively, the overlap is the computation that takes
place between the earliest prefetch and the actual execu-
tion of a node. It is a measure of the degree to which the
partitioning methods are filling the latency gaps. How-
ever, since a node may be artificially delayed due to par-
titioning, we measure the amount of computation be-
tween the prefetch and the earliest time the node could
execute (i.e. when its last input is ready). In the ideal
case, each node would execute as soon as all of its inputs
were available and all of the communication necessary
to fetch those inputs would be overlapped with computa-
tion. The latency measure captures the degree to which
our methods achieve this goal. The delay is the time be-
tween its earliest possible execution and when it actually
executes. That is, the delay measures how long each
computation is executed after its earliest possible start
time. We would like to see the delay values for nodes
on the program critical path be as small as possible. The
algorithms should seek to push node delays off the criti-
cal path so critical nodes start as soon as possible. Note,
however, that if a node is delayed due to partitioning, its
start time may actually be shorter than if it were exe-
cuted in parallel. Delay, therefore, does not necessarily
indicate that a node should not have been sequentialized.
Rather the absence of delay indicates that a node starts
as soon as it is able.

Figure 5 shows the overlap, latency, and critical delay
(delay values for nodes on the critical path) for graphs
from a Conjugate Gradient Program (CG) The absence
of any value for a graph implies either that the entire
graph has been sequentialized, or that the graph is
empty.

For the graphs where values are recorded, the latency
and overlap values are either very close together or the
critical delay value is very low. In the former case, all
of the overlap is covering latency. That is, none of the
overlap is covering delay induced by partitioning. In the
latter case, there is delay incurred by various nodes, but
it is not on the graph critical path. To allow the figure to
scale properly, we omit the data for two graphs from
Figure 5. Those values are:

Overlap Latency Critical Delay
57990 6702 2468
200500 10560 239

Node n's

earliest load

Node n executes ~

N

Overlap

O00000

Figure 4

Latency

<

Delay

-

Node n's last input
available

Overlap, Latency, and Critical Delay in CG

10007
a Overlap
¢ Latency
¥ Critical
o] a a o}
1007 a o] a o]
1e » 3 .
Overlap
o] o] o} .
107
1 I L R
0 20 40 60
Graphs
Figure 5

80

44

These figures show particularly good latency toler-
ance and non-critical delay values. Clearly, for CG the
HEF partitioning algorithm is masking latency.

3.2 Gaps

Another important question concerns the idle time
present in each thread. If that idle time is reasonably
substantial, the overhead associated with multithreading
might prove tolerable. Further, even in the presence of
very fast multithreading support (i.e. supported by
hardware), the presence of large gaps indicates that a
large number of threads may be assigned to a single pro-
cessor thereby reducing the processor requirements for a
program. Multithreading has the additional advantage
that it responds well in the presence of incomplete or
erroneous analysis.

The gap within each thread is calculated as the differ-
ence between the completion time of each node, and the
start of its successor. If the successor does not begin ex-
ecuting immediately, the processor executing that thread
becomes idle [Figure 6].

OO0

Processor is free —fp

Gap

Computation begins input >

Figure 6

The processor becomes free after the last output from
a computation node is written to a register. After the ex-
ecution of a WAL or a RAt, the processor is immediately
free since these instructions arc not executed strictly.
Similarly, the processor becomes busy when a computa-
tion begins reading its first input from a register. Again,

RAts and WAts have node read cost so they busy their
processors only during execution.

Figure 7 shows the same data for PIC when parti-
tioned with HEF.

We, again, omit two outlying data points of 17,560
cycles and 52,690 cycles. We contend, then, that mul-
tithreading support is desirable since it can be exploited
by compile-time partitioning and adapts better in the
face of data dependent exccution. Software multithread-
ing may prove beneficial in the cases where large gaps
are found. In either case, the partitioning and scheduling
system is able to, at the very least, locate the portions of
the code where multithreading might be profitable.

4 Conclusions

Non-strict instruction execution, either in the context
of RISC processing or a multithreaded architecture, al-
lows for greater overlap of computation and communica-
tion. Further, in order to extract the maximum possible
performance from these sysiems, parallel programs must
use the non-strictness to toleratc communication laten-
cies. Partitioning algorithms must take into account the
effects of non-strict execution so that the compilation
system may exploit the underlying machine on behalf of
the programmer. To assist the algorithms, we introduced
two new nodes: WAt and RAt.

When we examine the amount of communication that
is overlapped with computation, we notice that some of
the overlap is due to sequentialization by the partitioning
system. Thercfore, we differentiate between overlap and
latency. For many graphs, the overlap and tolerated
latency are identical showing that HEF is effectively
exploiting non-strict instruction execution. In the cases
where the two statistics differ, the resulting delay is
generally not on the critical path indicating that critical
computations are starting as early as possible. Further,
the overall percentage decrease in critical path is
reasonably large for out test codes. We conclude that
HEF is an effective partitioning methodology for non-
strict NUMA systems.

Finally, we investigate the opportunities for multi-
threading by exposing thread idle time. For the commu-
nication granularity and the amount of processor re-
source available on the TC2000, some opportunities ex-
ist, but the majority of the parallelism must be extracted
from coarser parallel constructs such as loops.

We plan to implement these algorithms as part of the
OSC optimization chain for NUMA systems. Currently,
the output of HEF is partitioned IFX suitable for schedu-
ling and code generation. To realize actual running pro-
grams, we need to develop a scheduling methodology
and augment the OSC code generator to produce exe-
cutable threads.

Gaps in PIC from HEF
10000
Average Gap
o]
1000]
o]
Average { 8 a
Gap
(cycles) |g a om oo
10073 eo a8
103
1 B T
0 100 200
Graphs
Figure 7
References [Nik91] Nikhil, R.S. et. al. *T: A multithreaded massively

[AlvO1] Alverson, G. et. al. Exploiting heterogeneous
parallelism on a multi-thread multiprocessor. Proc. Work-
shop on Multithreaded Computers, Supercomputing ‘91,
Albuquerque, NM, November 1991.

[BBN9O] Inside the TC2000, Computer, BBN Advanced
Computers Inc., 10 Fawcett St., Cambridge, MA, 02138,
1990.

[Cann89] Cann, D. C. Compilation Techniques for High
Performance Applicative Computation. Ph.D. thesis, De-
partment of Computer Science, Colorado State Univer-
sity, 1989.

[Kuck81] Kuck, D.J. et al. Dependence Graphs and Com-
piler Optimizations. Proceedings of the 8th ACM Sympo-
sium on Principles of Programming Languages, pp. 207-
218. January, 1981.

[McGraw85]) McGraw, J. R. et. al. Sisal: Streams and it-
erations in a single-assignment language, Language Ref-
erence Manual, Version 1.2. Lawrence Livermore Na-
tional Laboratory Manual M-146 (Rev. 1), Lawrence Liv-
ermore National Laboratory, Livermore, CA, March
1985.

parallel architecture. Proc. Workshop on Multithreaded
Computers, Supercomputing ‘91, Albuquerque, NM,
November 1991. ’

[Ran87] Ranelletti, J. E. Graph Transformation Algo-
rithms for Array Memory Optimization in Applicative
Languages. Ph.D. thesis, Department of Computer Sci-
ence, University of California at Davis/Livermore, 1987.

[Sarkar87] Sarkar, V., Partitioning and Scheduling Parallel
Programs for Execution on Multiprocessors. Stanford
University Technical Report No. CSL-TR-87-328, Stan-
ford University, 1987.

[Skedz85] Skedzielewski, S. K. and J. Glauert. /F! - An in-
termediate form for applicative languages. Lawrence Liv-
ermore National Laboratory Manual M-170, Lawrence
Livermore National Laboratory, Livermore, CA, July
1985.

[WolFe092] Wolski, R. and Feo, 1., Program Partitioning for
NUMA Multiprocessor Computer Systems, Proceedings
of the 2nd Sisal Users' Conference, Lawrence Livermore
National Laboratory CONF-9210270, pp. 111-137. De-
cember 1992.

46

Compiling Technique Based on Dataflow Analysis
for Functional Programming Language Valid

Eiichi Takahashi

Rin-ichiro Taniguchi

Makoto Amamiya

Department of Information Systemns,
Kyushu University
K(asuga-shi, Fukuoka-ken 816, Japan

Abstract

This paper presents a compiling method to translate
the functional programming language Valid into ob-
ject code which is executable on a commercially avail-
able shared memory multiprocessor, Sequent Symme-
try §2000. Since process management overhead in
such a machine is very high, our compiling strategy
is to ezploit coarse-grain parallelism at function appli-
cation level, and the function application level paral-
lelism 1s implemented by a fork-join mechanism. The
compiler translates Valid source programs into con-
trolflow graphs based on dataflow analysis, and then
serializes instructions within graphs according to flow
arcs such that function applications, which have no
data dependency, are ezecuted in parallel. We report
the results of performance evaluation of the compiled
Valid programs on a Sequent S2000 and discuss the
usefulness of our method by comparing it with C and
SISAL compilers.

1 Introduction

Many programming languages for parallel process-
ing have been proposed recently. Among those lan-
guages, functional programming languages have var-
lous attractive features, due to their pure formal se-
mantics, for writing short and clear programs as well
as verifying and transforming programs automatically.
These merits of functional programs are more evident
in writing programs for parallel processing [1]. For
the efficient execution of functional programs, several
compiling techniques based on dataflow and reduction
models, have been proposed [2, 3] and implemented
on commercially available parallel machines or simu-
lators [4, 5, 6], such as the (v, ()-machine by Thomas
Johnsson [4], the Process-Oriented Dataflow System

by Lubomir Bic [6] and the SISAL system (7). The
(v, G)-machine is an implementation of a graph re-
duction machine, which is an abstract machine on a
shared memory multiprocessor. (v, G)-machine code,
which is the object code of the (v, G)-machine, is gen-
erated by compiling programs in the functional pro-
gramming language [.azy ML. PODS is an implemen-
tation of a thread level dataflow model on a hypercube
multicomputer. The object code of PODS is generated
by compiling programs in the dataflow programming
language Id. SISAL is a research language for investi-
gating issues in parallel processing, especially for nu-
merical computing. SISAL runs on {or is in devel-
opment for) conventional sequential machines, shared
memory multiprocessors, and vector processors, as
well as the Manchester dataflow machine. The SISAL
parser produces code in IF1, an intermediate graph
language used by all implementations. IF1 programs
are formed into a monolithic program or module and
then optimized and translated into a second interme-
diate form, IF2, by a machine-independent optimizer,
which applies 13 optimizations, such as function in-
lining and dead code removal. IF2 code is next given
to IF2PART for patallelization. On concurrent ma-
chines, IF2PART concurrentizes product-form loops
automatically through a partitioning algorithm based
on parallel nesting level and cost estimates. On vec-
tor machines, IF2PART vectorizes innermost product-
form loops automatically. The output of IF2PART is
given to CGEN for C and FORTRAN code generation,
and the result code is compiled by a C or FORTRAN

compiler.

In this paper, we present a compiling method based
on dataflow analysis to translate the functional pro-
gramming language Valid [8] into object code which
is executable on a commercially available shared mem-
ory multiprocessor, Sequent Symmetry S2000. Valid
is a high-level programming language designed for

47

dataflow machines. A Valid program is constructed
with function definitions and expressions. Sequent
Symmetry, the target machine of the Valid compiler,
incorporates 20 microprocessors (Intel 80486) and a
common memory, all linked by a high-speed bus. Fine-
grain parallelisin is not useful for conventional com-
puters. Since processors have to carry out both user
programs and process management. the overhead of
process management becomes excessive. Therefore,
we employed coarse-grain parallelism at function ap-
plication level. In function application level paral-
lelism, function applications are implemented by a
fork-join mechanism. A new child process is created
in a function application, and the newly created child
process executes its function instance concurrently
with other processes. When a parent process encoun-
ters a synchronization point before its child process
completes execution, the parent process suspends un-
til the child process terminates. In our implementa-
tion, only arguments and addresses for return values
of a function instance are required as parameters in
the creation of a new child process.

The Valid compiler has two phases. In the first
phase, the compiler constructs controlflow graphs from
Valid source programs through dataflow analysis. In
the graphs, a node corresponds to a source level in-
struction and an arc shows a controlflow, which re-
flects data dependency. In the next phase, the com-
piler partitions a graph into several parts, in which
as many function application nodes as possible are in-
cluded except for their descendants. All of the func-
tion applications in each part are executable in paral-
lel, since they have no data dependency on each other.
The compiler serializes each part according to arcs.
The source program semantics is preserved because of
the Church-Rosser property. Then the compiler trans-
lates the serialized code into target machine code.

In the next section, we describe the compiler. In
section 3, we describe technical details of the imple-
mentation. Then, in section 4, we report the results
of performance evaluation of the compiled Valid pro-
grams on Symumetry, and discuss the usefulness cf our
method by comparing it with the SISAL compiler.

2 Compiler

The compiling process consists of two phiases. L
the first phase, the compiler constructs controfflow
graphs from Valid source programs with dataf
analysis. In the next phase, the compiler serian o
the graphs and then translates into the target machine
code,

3T
ri:** b2 r2:*4a
N
r3:*r2c
r4g:-r1r3
d: mov r4
d

Figure 1: A controlflow graph

2.1 Graph - phase I

In phase 1, the compiler constructs controlflow
graphs, which are DAG and correspond to function
definitions in Valid source programs. In the graphs,
a node corresponds to a source level instruction and
an arc shows a controlflow, which reflects data depen-
dency. For example, Figure 1 shows a graph for the
following expression.

d=b*2-4%axc

Figure 2 and 3 show a graph of a conditional expres-
sion and a graph of a recursive expression (tail recur-
sive) respectively.

Conditional expression

Figure 2 shows the graph of a conditional expres-

ston;
1f Ec then Et else Ef

If e is true, then the expression Et is evaluated. If
L is false, then the expression Ef is evaluated. In
Figure 2, Fe, Et and Ef are graphs, which correspond
to the above expressions Ec, Et and Ef respectively.
The compiler generates a pair of sw and merge nodes
from a couditional expression. The sw node has one
operand, of which the value is either true or false.

48

if Ec then Et else Ef

 S—
Y R
SWTr
te. .y fy...
Et} [Ef
. S
merge

Bl

Figure 2: Graph of conditional expression

Only the sw node indicates nodes with special arcs,
t arcs and f arcs. The sw node indicates nodes in the
graph Et with ¢ arcs and nodes in the graph Ef with
f arcs. Nodes which are indicated with t or f arcs are
top nodes in the graph Et or graph Ef.

Data dependencies between nodes in the graph Et
or Ef and others are shown with arcs to the sw node
or arcs from the merge node.

Recursive expression

Figure 3 shows the graph of a recursive expression:

for (v1,..,vn) init (Ei,..,En) body
if Ec then return Et
else recur(R1,..,Rn)

Variables vl1,.,vn are initialized to expressions
El,..,En, respectively. Then, the loop body, which
is a conditional expression in the case above, is evalu-
ated. In general, the loop body includes a conditional
expression, which controls recursive evaluation. In the
above, if the boolean expression Ec is true, the return
expression is evaluated. It is the result of the recursive
expression. If Ec is false, the recur expression is eval-
uated. It corresponds to a recursive call to the loop
body considered to be a function which has no name.
The above expression is tail recursive. In this case,
the compiler constructs a graph, which stands for it-
eration. The recur expression is expressed as a jump
node. The jump node has one operand, which is a
label of a loop; node. The jump node shows that con-
trol transfers to the node named by the label which is

for (v1,...,vn) init (E1,...,En) body
if Ec then return Et
else recur(R1,...,Rn)

igure 3: Graph of recursive expression

the value of its operand. Data dependencies between
nodes in the graph body and others are shown with
arcs to loop; nodes and arcs from loop, nodes.

Parallel expression

Parallel expression is used to write parallel exe-
cutable units explicitly. For example, in the follow-
ing parallel expression, the parallel body u*u preceded
by the reserved word body is a parallel executable
unit [8].

forez.h u in [1..5] body u»u

The above parallel expression yields the array [1, 4,
9, 16, 25], which comprises the squares from 1 to 5.
The semantics of parallel expression is based on the
fork-join concept. In the above expression, parallel
bodies u*u, for each of which argument u is bound to
an integer value from 1 to 5 respectively, are forked,
and executed in parallel. They are joined eventually,
and the results are packaged as an array. Parallel ex-
pression corresponds to the for expression of SISAL
carried out in a distributed manner, except that it is
explicit. In general, the number of forked parallel bod-
ies, which are specified with expressions preceded by
the reserved word in, such as ranges or arrays or lists,
is far larger than the number of available processors.
Therefore, parallel expression is translated into code
which considers parallel bodies as virtual processes,
and distributes them equally to real processes created
according 1o the number of processors. The compiler

49

defines a new function of which the body is a recur-
sive expression to iterate the execution of the parallel
body n times, where n is:

Nyp
Nep

n=

y,where N,, is the number specified by the expression
preceded by in, and N, is the number of available
processors. The compiler translates the parallel ex-
pression into a recursive expression, which forks the
application of the function N,, times and joins them.

2.2 Code scheduling - phase I1

In phase I, the compiler partitions a graph into sev-
eral parts, serializes each part according to the arcs,
and then translates the serialized code into target ;na-
chine code.)

Partitioning

The compiler partitions a graph at synchroniza-
tion points, which correspond to function application
nodes (call nodes). Synchronization points are ex-
tracted as follows:

Because of arcs based on data dependencies, child
nodes of a call node are divided into three types.

type 1 A node which has the destination of its parent
call node as ius operand.

type 2 An sw node or loop; node.
type 3 A merge node or loop, node.

Because of a scope rule of Valid, nodes may have a
number of type 1 and type 2 nodes but only one type
3 node as their child nodes. When a call node has a
number of type 1 and type 2 nodes as its child nodes, a
synchronization point is placed between the call node
and its child nodes in order to preserve the semantics
of the source program. When the call node has a
type 3 node as its child node, a synchronization point
is placed between that type 3 descendant of the call
node and its own type 1 or type 2 child nodes, if any.
At synchronization points, the compiler inserts join
nodes, which have a label of the call node associated
with them as operands.

Code scheduling

In the graphs, arcs reveal partial orders of opera-
tions. A parent node operation has to be completed

bel: ce its child nodes operations start. Since func-
tion applications take more time than other opera-
tions, and they are processed by child processes of the
current process, before execution of their child nodes
operations, other executable operations, if any, should
be executed.

The compiler traces the graph along arcs based on
depth first search, and rearranges nodes in tracing or-
der. When the compiler selects the next node, the
compiler selects a node among child nodes of which
parent nodes have been selected already. However,
join nodes are selected when there are no nodes but
join nodes. When the compiler schedules descendants
of sw nodes or loop; nodes, to preserve the semantics of
the source programs, the compiler applies the tracing
method from sw nodes or loop; nodes to merge nodes
or loop, nodes associated with them, recursively. Fig-
ure 4 shows an outline of tracing of a graph. The
scheduling algorithm is the following:

Algorithm A — code scheduling

step A1 All nodes in a graph are initialized to NOT
SELECTED. A set of selectable nodes S is initial-
ized as follows.

S = {n|n is a node which has no parent
nodes except for join nodes.}

step A2 The following steps are repeated until S be-
comes the empty set.

step A2.1 A set of join nodes J is initialized to the
empty set.

step A2.2 Algorithm B is applied to S.

step A2.3 If more than one call node is scheduled in
step A2.2, all of them except the last call node
are changed to fork nodes. The fork operation
implies creation and invocation of a child pro-
cess, which executes a function application con-
currenLlS' with the current process, while the call
operation implies that the current process exe-
cutes a function application.

step A2.4 If one or more than one call node is sched-
uled in step A2.2, S is set as follows:

S = {n|n is a child node of a join node,
which is a child node of the last
call node.}

If any call nodes are not scheduled in step A2.2,
S is set as follows:

S=1

50

k
R A
Graph A .
S 2 AR | Py oy
call 1 call 2 Y A | calln
#3.'\“.'1‘ ‘ly-' .“"
F |
join 1 joi
b
“Graph €
P1 P2 ... Pn
< fork 1 fork 1---« - -
& ' {
a :
f fork 2 fork 2---+--- -
m O : l
ﬁ cail n fork n-1 «---of o
Y
13} Ion_n1 calln'
,g- . o
oin 2 oin n
g || i
O o] join 1eeeees Y
join n-1 join 1=«
: SO Y !
join ne1 <-cecoeecenes
CODE EXECUTION

Figure 4: Code scheduling

Algorithm B — graph tracing

The following steps are applied to each element n
of S repeatedly, until S becomes the empty set.

step Bl If n is an sw node, n is set to SELECTED
and then algorithm A is applied to both the then
part graph and the else part graph. The then
part graph is the graph which is originated from
node n’s child nodes indicated with t arcs and
destined to a merge node associated with node n.
The else part graph is the graph which is orig-
inated from node n's child nodes indicated with
f arcs and destined to the merge node. After
scheduling the then part graph and the else part
graph, the merge node is added to S.

step B2 Else if n is a loop; node, n is set to SE-
LECTED and then algorithm A is applied to the
body graph, which is originated from node n’s
child nodes and destined to a loop, node associ-
ated with n, After scheduling the body graph,
the loop, node is added to S.

step B3 Else if n is a join nede, n is added to J.

step B4 Else n becomes SELECTED. n's child nodes
of which parent nodes have been SELECTED al-
ready, are added to S.

3 Implementation

Since free variables are not allowed in Valid in prin-
ciple, applying of a function requires only the entry
address of the function code, values of arguments and
return addresses for return values. We have imple-
mented a multi-task monitor on DYNIX. The multi-
task monitor has a light weight fork-join mechanism,
and we evaluated the performance of object code gen-
erated by our compiler on this multi-task monitor.

Figure 5 shows the outline of the multi-task moni-
tor. Frames are data structures in a shared memory,
and consist of a header and work area. A code entry
address to start execution, a pointer to a frame associ-
ated with the caller function and a pointer to a barrier
variable are stored in the header of a frame associated
with a called function. Arguments and local variables
are stored in a work area. Frames are created by fork
operations or call operations, and are kept available
until completion of their function. To reduce the over-
head of creation and releasing of a frame, each proces-
sor has own free-list of frames, which are the only ones
it is allowed to access. A task pool is a list of frames

51

Frame

code b1 Start Address

et

——

Header

Cont. FRAME Slot —

s

func

variable 1

variable n

argument 1

Work area

argument m

rel. value address |

rel. value address 1

Processor 1

——

fork operation

Frame (caller)

Barrier variable

N\

Fraine

Frame

Cont. Frame

Processor 1

l—l;rocessor 1
L _J

getting Frame

releasing Frame

Figure 5: Multi-task monitor

52

suspended
Frame

ready to run. This list is implemented as a LIFO.
Processors get a runnable frame from a task pool in a
mutually exclusive way. The number of task pools is
set to more than the number of processors to reduce
the overhead caused by the access competition to task
pools.

Processors get an runnable frame from a task
pool and execute the frame repeatedly until runnable
frames are exhausted, which means the program has
completed. By scanning task pools, when processors
succeed in locking a task pool having one or more
frames, processors get the frame from it. Since proces-
sors execute a function with their local stack and regis-
ters, access to frames in shared memory is only access
to arguments, local variables and barrier variables, so
that the cachie mechanism is exploited effectively. This
implies that it is possible to avoid bus saturation which
is a main causc of bottlenecks in shared memory mul-
tiprocessors. In a fork operation, the barrier variable,
which is a local variable of the caller function and is
initialized to 1, is incremented. Then, a new frame
is gotten from the current processor’s frame free-list,
a called function code entry point and a pointer to
the frame of a caller function, etc, are set to those
of its header, and arguments are copied into its work
area. Lastly, the frame is put into a task pool, which
is selected in the same way that a runnable frame is
obtained. A call operation is the same as a fork op-
eration except that a new frame is put into the con-
tinuation frame slot of the current frame. In a join
operation, the barrier variable is decremented. If the
barrier variable becomes 0, the next operation is exe-
cuted. Otherwise, the processor abandons the current
frame and starts to execute the frame which is stored
in the continuation frame slot of the current frame in
a call operation. A call operation and switching con-
text from the current frame to the continuation frame
cost less than a fork operation and getting a runnable
frame, since they do not require mutually exclusive ac-
cess to task pools. When the current function is com-
pleted, the barrier variable in the frame of the caller
function is decremented and the processor stores the
current frame in its own frame free-list. If the barrier
variable becomes 0, the processor resumes the execu-
tion of the frame of the caller function, otherwise the
processor picks up a runnable frame from a task pool
again.

4 Performance

We have evaluated the performance of compiled
code of Valid programs on a Sequent 52000, using

U1
w2

from 1 to 16 processors. We report results of com-
parisons of Valid programs with SISAL prograius and
C programs in elapsed time, and evaluations of the
speedup of Valid programs. The SISAL programs and
C programns are written using the same algorithms as
the Valid programs. The SISAL programs are com-
piled with the optimizing SISAL compiler, OSC ver-
sion 12.9, using default optimization mode (no op-
tions), and run on 16 processors. The C programs
are sequential and compiled with the Sequent C com-
The O programs are not optimized. Table |
shows elapsed time in seconds for the Valid, SISAL
and C programs, the speedup and the overhead caused
by parallel control for Valid programs. The elapsed
timies of the Valid programs and C programs are mea-

piler.

sured with a Sequent microsecond clock, which is 32-
bit up-counter updated every 1 micro second [9]. The
elapsed times of the SISAL programs are measured
with specdups, which is the SISAL parallel speedups
data gatherer. In the C column and SISAL column,
figures in brackets are the relative speed evaluated as
follows:

time of C/SISAL program
time of Valid program

relative speed =

The Overhead column shows the proportion of system
time to total time based on resuits from the DYNIX
profiler. System time includes time of fork/call op-
erations, join operations and getting and releasing
frames. Figure 6 shows the speedup of Valid programs
relative to processor number for each benchmark pro-
gram. In the graph, the horizontal axis shows the
mnnber of processors used, the vertical axis shows the
speedup, and the linear proportion line shows the ideal
speedup.

The program ‘sum{/, h)’ calculates the summation
from I to h integers. In SISAL, this program is im-:
plemented with a product-form loop and a reduction
operation. In Valid, this program is implemented with
a parallel expression and a reduction operation. Ta
ble 1 shows that the performance of the Valid program
is comparable to the performance of the SISAL pro-
gram. This program is partitioned into relatively large
portions and distributed to processors equally, so pro-
cess creation overhead is less critical. This program
also shows a very nice speedup in Figure 6.

The program ‘matrix(n)’ computes the product of
two n x n matrices. Although the speedup is close to
linear, the speed is about one-third that of the SISAI
program. This is probably as caused by the differ
ence in implementation of array structure. An array
in SISAL (and C) is a one-dimensional or multidimen-
sional collection of homogeneous values. On the other

Table 1: Time comparisons of Valid, SISAL and C, and speedups and overheads of Valid.

Program Time (sec.) Speedup | Overhead
Valid 16cpus l C lcpu l SISAL 16¢pus
sum(1, 10°) 0.0241 | 0.241 (10.0) | 0.0200 (0.830) 15.0 7.69%
matrix(128) 0.987 | 4.49 (4.55) 0.323 (0.327) 12.8 37.5%
matrix(256) 9.07 | 38.4 (4.23) 3.11 (0.343) 13.3 23.4%
nqueen{ 10} 4.21 25.3 (6.01) 65.2 (15.3) 7.48 15.5%
qsort(10%) 321] 121 (3.77) 809 (2.52) 5.07 65.8%
16 v T Y Y T T T
Asum(1,1076)
14 P —
s rmatrix(256)
12 . ,"’ —
e
o' ° 4 ’ -/l 7
= e -
3 T e
8 8 7 ',/, -
& __-~fnaueen(10)
T e T]
R g “Tgsort(1014)
a ,’_/o;; -
"//"
Z==
2 r -1
© ; ; é é 1.0 1‘2 1‘4 16
Processors

Figure 6: Speedup graphs for four benchmark Valid programs

hand, an array in Valid is one-dimensional and may
have a collection of heterogeneous values. Therefore,
the implementation of an array in Valid must be more
complicated than the implementation of an array in
SISAL (and C). We consider that it is possible to in-
crease the specd of the Valid programs up to that of
the SISAL ones by introducing the same array speci-
fication as SISAL into Valid.

The program “nqueen(n)’ searches all solutions of
the n-Queen puzzle. The C program uses library func-
tions from Valid 1o mmanipulate lists. The SISAL pro-
gram is implemented with streams and is not paral-
lelized. In the SISAL program, the size of a stream,
which contains the solutions, is determined after the
search of all solutions is completed, so that it is not in-
variant. OSC does not concurrentize loop forms which
produce variant size streams (and arrays). On the
other hand, the Valid program is parallelized. This is
because our implementation involves the function ap-
plication level parallelism, not loop levels, as we have
mentioned before.

The program "qsori(n)’ rearranges the elements of

54

a list, which has n integers, in order of size with a
quick sort algorithm. The C program uses library
functions frorn Valid to manipulate lists. The SISAL
program is implemented with arrays. The SISAL pro-
gram is not parallelized, because of the concurrentiza-
tion strategy of OSC mentioned above. In Figure 6,
the speedup curve of Valid saturates at about 5.5 after
10 processors. The reason is that list generations and
function apphcations cannot overlap each other in this
prograni, because non-strict evaluation has not been
implemented yet.

In function application level parallelism, it is pos-
sible to extract more parallelism from programs than
with iteration level parallelism. When there are low-
cost recursive functions, such as the Fibonacci func-
tion, process creation and switcaing occur frequently.
In a shared memory machine, frequent process cre-
ation and switching cause bus saturation. As a result,
performance of the system degrades. Table 2 and Fig-
ure 7 show effect of the cost of the function sum’ on
performance.

The program ‘sum’({, h,1)’ calculates the summa-

Table 2: Effect of the cost of the function sum® on performance.

[Program] Time (sec.) [Speedup | Overhead]
sum’(1,10%,1) 6.75 6.23 63.9%
sum’(1,10°,10) 0.935 6.85 61.9%
sum’(1,10°,10%) 0.155 9.79 44.6%
sum’(1,10°,109%) 0.0648 14.0 11.5%

16 T T T T T T

R _7ti=1000

e
12 |- 7 —
~
-

g0 |- -~ 3:
o L __ti=100
3 P 4
Q e P
D e - ‘/‘ - 1
=% - .
[&p) /./ o _y_—<>l=1 O

6 . .// - ’.:_—_"_ . - - :3»'__:

‘/' ,/’ _ - ‘: -
<4 1~ /"i —,"% - -1
//"’,_ ¢
2 /,,’:“4 -1
O 1 i 1 J. Vi 1
2 4 6 (=} 10 12 14 16

Processors

Figure 7: Speedup graph for sum(1,10°,¢)

tion from [to h integers.

function sum’(1l,h,i:integer)
return(integer)
= if h-1 < i then
for (s,j:integer) init(0,1) body
1if j > h then return s
else recur(s+j, j+1)
else {letm=(h -~ 1) / 2
in sum’(1,m,i)+sum’(m+1,h,i)};

This program switches algorithms from a divide and
concur version to a loop version, according to the third
parameter 7. If the range from ! to & is equal to or
larger than ¢, the divide and concur version is used.
If the range size is smaller than 7, the loop version is
used. When 7 = |, this program is thoroughty paral-
lel, and when 7 > L —{, this program is thoroughly
sequential. Thus, the grain size of parallelism can be
controlled with 7. Using this program, we evaluated
the effect of grain size and the number of processes on
the efficiency of our system. Note that this program
is not meaningful for SISAL, because only product-
form loops are parallelized in SISAL. When i < 100,
the overhead caused by control for parallelism is high.

The explanation of the speedup data is that, in run-
ning the program, almost all processors access task
pools to write for fork operations and to read for get-
ting a runnable frame all together, and, due to bus
saturation, accesses to task pools slow down. As for
speeds, the low cost of function body and the large
number function applications lead to amplification of
the differences in cost between fork operations and
function body.

To solve the problem of fork operation overhead,
the compiler estimates the cost of each function, and
generates code in which light weight function appli-
cations are not forked or are inline expanded. How-
ever, the exact cost of recursive functions can’t be es-
timated at compile time. In the current specification
of Valid, improvement of the algorithm is the way to
solve the fork overhead problem, as mentioned above
in connection with the sum’ program. This solution
destroys the portability of programs. Functional pro-
gramming languages have the merit that programmers
can write programs without attention to the paral-
lelisn of the program, while they have the demerit
that program optimization is difficult. For example,
even if the most effective strategy, that is, determin-

55

Table 3: Effect of introducing annotation to control fork operation.
[Program J| Time (sec.) | Speedup | Overhead |

fibo(30) 7.61 6.24 73.5%
fib3(30) 2.84 15.4 70.6%
16 T v y . : . R
2fib8(30)
14 L
‘s
12 .-" —
'° - m
o }
>
[1 7
6 |- e =FfibO (30)
-
4 + ,// -
d'/,
2 /w‘/ -1
- /
O 1 A L i 1 i
2 a & 8 10 12 14 16

Processors

Figure 8: Speedup graph for fibo(30) and {ib&(30)

ing whether to cvaluate in parallel or sequentially, and
the most effective mapping of functions and data to
processors in multicomputers are obvious to prograin-
mers, it is diflicult to express them in programs. As
a paradigm to solve the above problem without losing
the merit of functional programming languages, para-
functional programming, such as ParAlfl from Yale
university, has been offered [10, 11]. This is a method
to extend a functional programming language by in-
troducing metalinguistic devices such as annotations
in the language. Since ways of processing and map-
ping functions and data structure to processors are in-
dividual for the semantics of programs, it is expected
that the problemn mentioned in connection with sum’
can be solved by extending Valid with the parafunc-
tional method. We have attempted to extend Valid
to optimize the strategy of processing functions, and
evaluated its performance.

An extension of function application specification
in Valid allows the programmer to express a strategy
for deciding between sequential evaluation or parallel
evaluation. The extension is as follows.

function_application
::= function_name(argument_list)
$ [boolean_expression]

The above specification means that if the boolean ex-
pression is true, the function is evaluated with fork, if
the boolean expression is false, the function is evalu-
ated with call. In Table 3 and Figure 8, the program
“ib8(n)’ is an extended version of ‘fibo(n)’, in which
fork is controlled with the argument n. The Valid
program ‘fib8(n)’ is as follows.

function fib8(n:integer)return(integer)
= i1f n<2 then 1
else £ib8(n-1)$ [n>=8]
+ £ib8(n-2)$(False];

In the above program, if n > 8, the function appli-
cation fib8(n-1) is evaluated with a fork operation in
parallel, otherwise it is evaluated sequentially with call
operation. Figure 8 shows that speedups are improved
substantially. The improvement in speedups implies
bus saturation relaxation. This is caused by decreas-
ing the number of fork operations, which lowers the
effect of cache. Overheads are improved a little. The
reason is that the cost of setting up frames is still high.

‘I'o solve this problem, when a function evaluation
is sequential, it is done by using a mechanism simi-
lar to C on a stack which each processor has locally,
or which is in the work area of the expanded frame

56

which has a stack. In the former case, the multi-task
monitor has to be changed, becanse data required for
a function evaluation are all fixed on the stack so that
frames are not necessary. We have implemented and
evaluated this version [12]. In this version, the Valid
program ‘fib8(n)’ achieved about 5 times the speeds of
C. In this version, however, lenient evaluation causes
deadlock. In the latter case, memory efficiency is low-
ered, because evaluation of recursive functions require
sufficiently large frames. We expect that the memory
efficiency problen can be solved by a method which
determines whether to the nse a non-expanded frame
or an expanded frame according to the type of evalu-
ation (fork or call).

The fork control method mentioned above can be
expanded easily wien mapping functions and data to
processors when the targel machine is a multicom-
puter. By allowing an integer expression to bhe an
expression in ¥ | and generating code, which regard
the value of the expression in ¥] as a processor 1D
and map the function application to a processor, the
mechanism of mapped expression in ParAlfl can be
implemented.

5 Related work

Several methods for implementing a functional pro-
gramming language on a commercially available par-
allel machine have been proposed. Among them are
the {v, G)-machine proposed by Thomas Johnsson [4]
and the Process-Oriented Dataflow System (PPODS)
proposed by Lubomir Bic [6].

The (v, G)-machine is a graph reduction machine,
which evaluates super combinators efficiently. Pro-
grams in Lazy ML are translated into a set of defi-
nitions of super combinators. The definitions of su-
per combinators are then compiled to the object code
of the (v, G)-machine, which reflects the behavior of
the graph reduction machine exactly. In the (v, G)-
machine, the processing order of instructions is de-
termined dynamically at runtime. So all the data
required for evaluating a program are in the shared
memory as fragments of the program, which form a
program graph dynamically. Frequent accesses to the
shared memory ciause bus saturation, so that the effi-
ciency is lowered. Our implementation has the same
problem. But in our implementation, it is possible to
reduce access to the shared memory by using as many
stacks and registers as possible, since aceess to franes
in the shared miemory s only to argunients and local
variables of a function.

Therefore from the viewpoint of the effect of cache,
our implementation has an advantage over the (v, (;)-
machine. However, since in our implementation the
processing order of instructions is determined stati-
cally at compile time except for function applications,
it is difficult to niplement lazy evaluation and higher-
order functions, especially functions which are con-
stencted efficiently at runtime. In our inplementation,
in order to mmplement such dynamically coustructed
functions, a special mechanism such as an interpreter
is required,

PODS is based on a thread level dataflow model
aud assumes as the target machine a multicomputer,
which las special mechanisins for parallel evalua-
tion such as Matehing Unit, Memory Manager ete.
Dataflow graphs are constructed from Id programs.
Sequentially processed blocks, called sequential code
segments (SCSs), are extracted from the dataflow
graph according to the ares of the graph. The object
code of PODS is generated by compiling the SCSs.
When the cost of an SCS is smaller than the cost of
control for parallel processing, it can be made larger
by combining other SCSs according to data dependen-
cies. When adopting PODS on a shared memory mul-
tiprocesser, a function becomes an SCS, because the
cost of control for parallel processing is high in such
a machine. Combination of SCSs corresponds to the
code scheduling in our implementation. PODS code
may cause suspension even when executable instruc-
tions exist, becanse code scheduling in PODS does
not regard function application instructions as special
instructions. Therefore, considering the above, when
a target machine is a shared memory multiprocessor,
our implementation has an advantage over the PODS.

6 Conclusions

In this paper, we presented a cornpiling method to
translate the functional programming language Valid
into object code executable on a Sequent Symmetry
S2000. This method implements function application
level parallelism by dataflow analysis of functional pro-
graimns. We have evaluated the performance for speed
and speedup of the compiled Valid code on a Sym-
metry. This evaluation made clear that the frequency
of fork operations causes bus saturation, and the ef-
ficieney is lowered, and low-cost functions and data
structure become botttenecks, To solve the bus satu-
ration problem, we attempted to add parafunctional
features to Valid and evaluated the performance of
extended Valid programs, showing that this problem

can be solved.

57

The next step in this work is to implement a
stream parallel processing mechanisim and to adapt
the method mentioned in this paper to multicomput-
ers such as the FUJI'TSU AP-1000.

References

[1] M. Amamiya and R. Taniguchi, “Datarol:A Mas-
sively Parallel Architecture for Functional Lan-
guages”, In Proceedings of the 2nd IEEE Sym-
posium on Parallel and Distributed Processing,

pp.726-735, (1990).

[2] Simon L.Peytou Jones, The Implementation of
Functional Programming Languages, PRENTICI-
HALL INTERNATIONAL (1987).

[3] Thomas Johnsson, Compiling Lazy Functional
Language, Chaliers University of Technology
DEPARTMENT OF COMPUTER SCIENCES
(1987).

[4] Lennart Augustsson and Thomas Johnsson, “Par-
allel Graph Reduction with the (v, ()-machine”,
ACM Proc.4th International Conference on Fune-
tional Programming Languages and Computer Ar
chitecture, 202 (1988).

(5] Paul Hudak, “Distributed Execution of Func-
tional Programs Using Serial Combinators”, [ELE
TRANSACTIONS ON COMPUTERS, Vol.C-34,
No.10, 881 (1985).

[6] Lubomir Bic, “A Process-Oriented Model for Ef-
ficient Execution of Dataflow Programs”, JOUR-
NAL OF PARALLEL AND DISTRIBUTED
COMPUTING 8, 42 (1990).

[7] 3.McGraw et al., SISAL: Streams and llcra-
tion in a Single-Assignment Language: Refer-
ence Manual. Ver.1.2, Manual M-146, Rev.l,
Lawrence Livermore National Laboratory, Liver-
more, Calif,,(1985).

[8] R. Hasegawa and M. Amamiya, “The Design
and Implementation of A High Level Fune-
tional Language for Data Flow Machines™, [EICE
Trans.Inf.& Syst., Vol J71-D, No.8, pp.1532-1539,
(1988).

[9] Sequent Computer Systems,Inc., Symmetry Sys-
tem Summany.

10] Paul Hudak, “Para-Fupctional Programming”,
b (] L]

IEEE Computer 19.8,60 (1980).

58

(L1} Paul Hudak, “Exploring Parafunctional Pro-
gramming: Separating the What from the How™,
[EEE Software, Vol.5, No.1, pp.54-61, (1988).

12] E. Takahashi, R. Taniguchi and M. Amamiya,
“Compiling Technique based on Dataflow Analy-
sis for Functional Programming Language Valid”,
TECHNICAL REPORT OF IEICE, COMP 92-96,
S892-43 (1993-03).

Copy Elimination for True Multidimensional Arrays in SISAL 2.0

Steven M. Pitzgerald
Dept. of Computer Science
University of Massachusetts Lowell
Lowell, MA 01854

sfitzger@Qcs.uml.edu

Abstract

Applicative languages have been proposed for defin-
ing algorithms for parallel architectures because they
are implicitly parallel and lack side effects. However,
a straightforward implementalion can induce ercessive
copying which can limit performance. To address ez-
ecution efficiency, oplimizalion lechmiques, such as
build-in-place [Ran87] and update-in-place [Can89)],
have been developed. These optimizations remove un-
necessary array copy operalions through compile-time
analysis. Additionally, update-in-place eliminatles un-
necessary reference counting, reducing parallel botile-
necks that can occur at run-time [OC88].

Both build-in-place and update-in-place are based
on hierarchical ragged arrays, t.e., the wvector-of-
vectors array model. Allthough this array model is
conventent for cerlain applications, many oplimiza-
tions are precluded, e.g., vectorization. In the de-
sign of SISAL 2.0, lwo array models have been in-
cluded: the vector-of-vectors model and the flat model.
In this paper we discuss the changes to reference in-
heritance, which is part of update-in-place analysis.
These changes are necessary for arrays that are stored
tm conliguous memory, i.e., under the flat model.

1 Introduction

SISAL is an applicative programming language de-
signed to facilitate the development of applications
that can run efficiently on a wide range of architectural
platforms [MSA*85, BOCF92] To achieve efficient
execution under the applicative model of computation,
sophisticated optimizations are necessary to prevent
the copying of large arrays. The SISAL 1.2 compiler
depends upon both build-in-place [Ran87] aud update-
tn-place [Can89] analysis to remove unnecessary copy
operations. Build-in-place attacks the incremental
construction problem, while update-in-place attacks

the array update problem. As a result, array-intensive
applications written in SISAL 1.2 execute as fast as
their FORTRAN equivaleuts [Can89, Feo90, Can92).

The design of SISAL 1.2 arrays is based on the
vecltor-of-vectors array model. Under this model, mul-
tidimensional arrays are built hierarchically from one-
dimensional arrays, i.e., from vectors [Gao90]. Al-
though hierarchical arrays are convenient for many ap-
plications, it is expensive to manipulate array values
represented in this model [Feo90]. Since the additional
overhead is unnecessary for applications that do not
utilize the flexibility of the vector-of-vectors model,
SISAL 2.0 provides a second array model that is based
on the flat array model. Under this model, multidi-
mensional arrays are built by the concatenation of the
subarrays of the innermost dimension to form a single
one-dimensional array [Gao90]. The array’s uniform
structure allows many more optimizations to be per-
formed, such as vectorization; however arrays must be
stored in contiguous memory.

It is claimed that SISAL 2.0 applications that uti-
lize the flat array model can achieve better perfor-
mance than their FORTRAN counterparts {Feo90]. To
realize this goal, the current optimizations that are
based on the vector-of-vectors model must be both
extended and generalized to operate on flat arrays. In
this paper, we examine one of the optimizations that
is part of update-in-place [{Can89), reference inheri-
tance, and show how it can be generalized to support
both array models. We also introduce a new subphase
of reference inheritance that significantly reduces the
array copying imposed by the contiguity requirement
under the flat model. This subphase can also be ben-
eficial for vector arrays because it can reduces pointer
copying.

59

2 Array Models Used in SISAL 2.0

The language design for SISAL 2.0 incorporates two
models for arrays: the vector-of-vectors model and the
flat model. An array's data type specifies both the
operations that can be performed on the array and
the array model used to represent the array. Arrays
that follow the flat model must be declared explicitly
by specifying both the number of dimensions and the
base type. Additionally, the size of each dimension
must be specified so that the necessary memory is al-
located during array definition: however the size infor-
mation is not part of the data type. Arrays that follow
the vector-of-vectors model need not be declared, ie.,
their type can be determined by context. Memory is
allocated for vector arrays as required

For example, consider the following type declara-
tions:

OneVector =
TwoVector =
OneDim =
TwoDim =

array of double;

array of array of doubls;
array [..] of double;

array [..,..] of double;

type
type
type
type

Both the OneVector and the TwoVector declara-
tions specify a one-dinensional array type that fol-
lows the vector-of-vectors model. An array of type
OneVector is a one-dimensional array comprised of
doubles, whereas an array of type TwoVector is a
one-dimensional array comprised of arrays of doubles.
Both of the OneDim and TwoDim declarations specify
array types that follow the flat array model. The *.”
in the declarations above are placeholders that indi-
cate the number of dimensions. When an array is de-
fined, the size of each dimension must be given. Notice

that the types, OneVector and OneDim, are equivalent,
i.e., their physical representation are identical.
2.1 Vector-of-vectors Array Model
Strictly speaking, all arrays under the vector-of-
vectors model have a single dimension. Conceptu-
ally. multidimensional arrays are constructed hierar-
chically from other one-dimensional arrays. For ex-
ample, a two-dimensional array of integers is logically
equivalent to a one-dimensional array whose elements
are one-dimensional arrays of integers {(Gao90]. Since
the size of an individual array is not part of its type,
each subarray in a multidimensional array may have
a different length. Additionally, the bounds of each
subarray may not match. This allows the formation
of ragged arrays, where the range of indices for each
subarray may differ.

In SISAL 1.2, an n-dimensional array is physically
represented by a series of (n — 1)-dimensional arrays.
As depicted in Figure 1b, these pointer arrays form a
tree structure with the leaves containing the innermost
dimension of the array. Under this representation,
subarrays that have different or continually changing
sizes can be umplemented efficiently. When either an
element or a dimension is added to an array only the
affected dimension is modified. Additiosally, individ-
ual components of an array may be shared. Other im-
plementations are possible but are less efficient. For
example, if the array is stored in contiguous mem-
ory, the entire array must be copied to a new location
whenever an new element is added.

The vector-of-vectors model is convenient for ex-
pressing algorithms that operate on a dimension-by-
dimension basis, e.g., row-ordered, but not for algo-
rithms that operate on a region-by-region basis. Read
operations are expensive since the entire array struc-
ture must be traversed linearly for each element ac-
cessed. Additionally, memory overhead is large be-
cause physical storage must be both allocated and
deallocated for each subarray individually. Further-
more, maintaining and referencing an array descrip-
tor, i.e., a dope vector (cf. [O1d92]), to determine each
subarray’s bounds and location degrades performance.

2.2 Flat Array Model

Under the flat model, all arrays are monolithic.
Multidimetsional arrays are constructed by the con-
catenation of one-dimensional arrays to form a sin-
gle flattened array [Gao90]. For example, FORTRAN
specifies that multidimensional arrays are represented
by the concatenation of the innermost dimensions, i.e.,
column-major order [Mac83]. Since the physical size
of the array must be known prior to its construction,
the bounds of each dimension must be specified. Al-
though this prevents the dynamic growth of individual
subarrays, the overhead for allocating and deallocat-
ing multidimensional arrays is decreased.

The flat model is efficient for algorithms that op-
erate on an element-by-element basis. Accessing an
array clement can be performed in constant time since
the address calculation is based on the size and bounds
of each dimension. This address can be partially eval-
uated at compile-time since each element’s location
within the array is known a priort. Additionally, opti-
mizations, such as vectorization, can be performed be-
cause the array is stored contiguously. Typically, for
these optimizations to be performed, the array must
be accessed in the same order in which it is stored,
L.e., as specified by the language definition.

60

alb dle| f
1 3
wixl|ly]|z
819]10
11213

a) Logical Storage

1 w 8
2 X 9
3 y 10

mlolalalolele"]

b) Physical Storage

Figure 1: Logical and physical storage of a two-dimensional vector array

In a language such as Ada [GHB83], where the
bounds of an array are not part of its type, a dope
vector is used to perform address calculations at run-
time. Although this increases array overhead, addi-
tional flexibility is gained. By changing only an ar-
ray’s bounds, a subsequence of a one-dimensional ar-
ray can be selected. This subsequence can be operated
on as if it is a distinct one-dimensional array. Newer
languages, such as FORTRAN 90 and SISAL 2.0, have
extended this functionality to allow arbitrary subcom-
ponents of a multidimensional array to be accessed,
e.g., slices [Seb93].

In SISAL 2.0, a multidimensional array can be di-
vided along any dimension or combination of dimen-
sions. Additionally, the order in which elements ap-
pear within an array can be specified. This allows el-
ements that are uniformly distributed within an array
to be selected. For example, the SISAL 2.0 expression

“Aliin 4..1.-1,j in 4..1..-1 {i dot j}]”

selects the elements along the major diagonal of the
4x4 array A in reverse order, as depicted in Figure 2.
Operations that select slices of an array can be per-
formed by simply modifying an array’s dope vector
[O1d92]; a copy operation is not required. Addition-
ally, modifying a multidimensional array’s dope vector
can change the array’s logical layout without changing
its physical layout. Program analysis could be used to
determine the most efficient layout for an array. Fur-
thermore, the dope vector can give the illusion that the

Array A

Resulting one-dimensional array

Figure 2: Array mapping for the SISAL 2.0 expression
“Aliin 4..1..-1,j in 4..1..-1 {i dot j}}”

array is stored in contiguous memory. However a con-
sistent spacing is maintained between array elements,
thus allowing optimizations, such as vectorization, to
be applied. We propose the term “dimensional” to re-
fer to any array model that allows an arbitrary region
of an array to be both selected and operated on as it
is a true multidimensional array.

61

3 Copy Elimination and Reference

Counting

An implementation that strictly adheres to the ap-
plicative model must copy data values that are up-
dated. This copying ensures that other operations,
which access the original data value, are not affected.
For large data aggregates, such as arrays, the cost of
copying is prohibitive. Array accesses can be ordered
so that array read operations occur before any array
write operations. The final write operation can update
the array directly, preventing a copy operation, since
all other accesses to the array have been performed.
However, sequentializing array accesses decreases the
amount of parallelism exploited.

Reference counting can be used to decrease the
amount of array copying. A reference counter, which
is adjusted at run-time, is used to record the num-
ber of potential users of an array. For each array
operation, the reference count is modified. When
a reference count is one, the associated array can
be updated directly, i.e., in place. Although refer-
ence counting may reduce copying, it both increases
run-time overhead and produces parallel bottlenecks
[OC88, Feo90]. Additionally, operations that access
multidimensional arrays can overestimate reference
counts, preventing in-place operation[Can89]. For-
tunately, program analysis can be used to reduce
both copy operations and reference-counting opera-
tions [CO88, Hud87, Hud86, SS83].

Within the SISAL compilation environment, two
intermediate forms, IF1 [SG85] and 1F2 [WSYRAG],
are used to model program execution. Initially, an
IF1 graph is produced from SISAL source code. This
graph is then altered by a series of optimizations, pro-
ducing an IF2 graph.! These optimization alter the
operational semantics of the graph to allow for more
efficient computation.

Consider the IF1 graph for the SISAL expression
“Afi:0], A[j]" (see Figure 3a). This expression is com-
prised of an array-update operation, (A[i:0]), and an
array-read operation, (A[j]). In the IF1 graph, the
AREPLACE node performs the array-update opera-
tion. The AREPLACE node must first copy the array
A to ensure the array-read operation is not affected
(since the execution order is not defined). The i'* ele-
ment of the new array is then updated with the value
0. To prevent the copy operation from always occur-
ring, the IF1 graph is transformed into an 1I'2 graph
that contains a NoOP node and reference count prag-

'For a more information on these optimizations refer to
[Ran87] and [Can89)

mas. The resulting graph is depicted in Figure 3b.

NoOP nodes are inserted into a graph to perform
the copy operations associated with array modifiers,
thus limiting the copy logic of a graph to single node
type. Additionally, edges are annotated with marks to
indicate the type of copying that is performed. These
marksinclude r, R, and O; we summarize the meaning
of these marks in Table 1. Additionally, some opera-
tions need to modify only an array’s dope vector, e.g.,
setting the lower bound of an array. A P mark is used
to indicate that the copying is performed on the dope
vector and not on the array’s physical data.

[Type of Copying [| Dope Vector | Array Data ||

None PR|[O] RO
Conditional Pr[O] r[O]
Unconditional P[O] [0]

Table 1: NoOP node semantics based on input edge
marks (Marks enclosed in brackets are optional.)

The incoming edge of the NoOP node in Figure 3b,
is decorated with an r mark. The mark indicates that
the NoOp node performs a conditional copy opera-
tion. At run-time, the reference count of the array A
is examnined; if the associated value is one then the ar-
ray is not copied, but the array is passed directly, via
its dope vector, to the AREPLACE node. The ARE-
PLACE node performs a destructive update to the ar-
ray presented to it (as indicated by the RO marks).

Reference count pragmas specify how an array’s ref-
erence count is modified; these pragmas include: sr,
pm, and cm. The sr pragmas are used to initialize
reference counts. The pm and cm pragmas are used
to increment and to decrement reference counts, re-
spectively. Each node in an IF2 graph modifies the
reference count of both imported and exported arrays
based on the values associated with these pragmas.
To ensure correct operation, the reference count ot an
exported array is adjusted prior to its export, and the
reference count of an imported array is adjusted after
the results are computed.

Consider the graph in Figure 3b. Initially, the ref-
erence count for array A is two. If the AELEMENT
node executes first then a copy operation is avoided.
The execution sequence of the graph is as follows.

I. The AELEMENT node executes and then decre-
ments the reference count of array A, as indicated
by the cm=-1 pragma.

-

i “0"

Akeplace AElement

a) IF1 graph

AReplace

sr= 1

b) Decorated IF2 graph

Figure 3: IF1 and Decorated IF2 graph for the SISAL expression “A[i:0], A[j]”

2. The NoOP node performs a conditional copy of
the array. The value of the reference count is ex-
amined and since it one the NoOP does not per-
form a copy operation. Instead the dope vector
for array A is passed to the AREPLACE node.

3. The AREPLACE performs a destructive update to
array A.

However, if the NoOP node is executed first, a copy
operation is performed.

Initially, reference count pragmas are associated
with each graph edge that transmits an aggregate.
Reference counts must be modified within critical re-
gions of code because they are a shared resource and
are modified independently. Since this can create par-
allel bottlenecks, a series of optimizations, known col-
lectively as update-in-place {Can89)], is applied. The
optimizations are used both to reduce reference count-
ing and to eliminate expensive copy operations.

These optimization are based on the vector-of-
vectors array model. To achieve the desired perfor-
mance in SISAL 2.0, copy elimination must be per-
formed on both vector arrays and flat arrays. Addi-
tionally, new IF2 nodes, which manipulate dope vec-
tors, may be required to prevent expensive copy op-
erations. For example, an operation that reverses the
specification of an array’s dimensions could be incor-
porated into 1F2 to allow the transpose function to

be implemented without copying. As a starting point
for this research, we examine the modifications re-
quired by reference inheritance to operate on arrays
that are stored in contiguous memory, i.e., under the
flat model. In this paper, we restrict ourselves to
SISAL 1.2 syntax so that we may concentrate on the
problem at hand. Additionally, this approach allows
optimization to be implemented based on the current
definition of 1F2.

3.1 Update-in-place analysis

Update-in-place analysis is comprised of the fol-
lowing five optimizations [Can89): reference inheri-
tance, node reordering, reference count elimination,
mark assignment, and ownership analysis. These op-
timizations are based on the vector-of-vectors model
for array representation. If multidimensional arrays
are stored in contiguous memory, these optimizations
must be adjusted to ensure proper results. Addition-
ally, the application and insertion of reference count
pragmas must be adjusted. Under the vector-of-vector
model, each subarray has its own reference count,
whereas a multidimensional array under the flat model
has a single reference count for the entire array.

For example, consider the IF2 graph for the SISAL
expression “Ali,j:0]”, where the two dimensional array
A must be stored in contiguous memory. This graph,

63

W l i
cm=-1 cm=-l{
NoOp AElement
sr= 1 Pm‘; w

Figure 4: Decorated IF2 graph of the SISAL expression “Ali,j:0]”

depicted in Figure 4, has been augmented with NoOp
nodes and reference count pragmas based on this re-
quirernent. The array update is performed by two
AREPLACE nodes, one for each dimension. The ith
row is first selected by the AELEMENT node and then
modified by the rightmost AREPLACE node. The bot-
tommost AREPLACE node copies the modified subar-
ray into the correct location within the array A. This
extra copy operation is required to ensure that the ar-
ray A remains contiguous. Additionally, the original
modified subarray’s reference count is decremented.
Under the vector-of-vectors model the modified sub-
array is not copied, but the i** element of the array,
which is a pointer, is updated; as such, its reference
count is not modified.

In the graph’s current form, up to three copy op-
erations can occur, one for each NoOP node and one
by the bottommost AREPLACE node. However, all
three copy operations are unnecessary. The graph
overestimates the reference counting needed to per-
form the single element update since each update op-
eration contributes to the array’s reference count. For-

tunately, the graph can be transformed to allow the
extra reference counting information to be removed,
as described in Section 3.2.

3.2 Reference inheritance transformation

In this section we introduce a generalized version of
reference inheritance that works for both the vector-
of-vectors and flat array models. We also introduce
an additional phase to the optimization that identifies
when subarrays are updated-in-place. Based upon this
identification, the copy operation, which is performed
by a AREPLACE node, to ensure the array is stored
contiguously is eliminated. This additional phase is
also beneficial for vector arrays since the pointer to
the modified row is not updated unnecessarily.

First, we describe the original transformation as de-
veloped by David Cann [OC88, Can89)] for the vector-
of-vectors array model. We also provide an example
to demonstrate the inefficacy of reference inheritance
under the flat array model. We then present the nec-
essary modifications in Section 3.2.2.

64

3.2.1 The current transformation

Updating a value in a multidimensional array often
causes unnecessary copying. To update a single value
in an N-dimensional array, a series of write operations
is required, one for each dimension. Since each of these
write operations accesses the same array, each write
operation contributes to the array’s reference count.
Due to the artificially high reference count, N —1 copy
operations are performed at run-time.

To prevent these unnecessary copy operations, the
optimization reference inheritance[OC88] restructures
the graph. Each subgraph that performs a subarray
update operation is made a direct descendant of the
NoOrP node that performs the conditional copy on the
next outer subarray, sequentializing the execution of
the NoOP nodes. Based on this new order, reference
count information is then modified so that each subar-
ray update operation does not introduce an additional
reference count. As a result, many of the subsequent
NoOP nodes do not perform a copy operation.

To perform reference inherilance, we need to con-
sider only local information. This transformation, as
illustrated in Figure 5, is applied for each AREPLACE
and AELEMENT pair that accesses the same subarray;
the order of application is irrelevant {Can89]. This
transformation is only applied when the subgraph is
used to modify a subarray. In an earlier preparation
phase, W marks are added to the graph to identify
these edges. In the original transformation, a NO
mark is attached to the AREPLACE node. This mark
indicates that the AREPLACE node should not decre-
ment the reference count of the original i** row of A.
The NO mark is not attached to the AREPLACE node
when the transformation is used for flat arrays since
a separate reference count is not maintained for each
subarray.

Applying the transformation to the graph in Fig-
ure 4 produces the graph in Figure 6. The subgraph
that updates the innermost subarray has been placed
directly under the NoOP node associated with the
bottommost AREPLACE node. The initial reference
count for the array returned by the NoOP node is set
to 1 by the sr pragma, even though there are two op-
erations that access the array. In this example, the
innermost NoOP node does not perform a copy op-
eration since the row’s reference count is 1. However,
the bottommost AREPLACE node unnecessarily copies
the modified i*? row on top of itself.

Notice that an artificial dependency edge (ADE),
represented by a dashed line, has been added to the
graph. This edge prevents the bottommost ARE-
PLACE node from executing until after the innermost

AELEMENT node has executed. This ensures that the
array read operation completes before the replacement
operation begins.

Although this transformation is safe when arrays
are represented under the vector-of-vectors model,
problems arise when arrays are represented under the
flat model. Consider the SISAL expression “A[i:B],
A[i]{j:0]”, where the two-dimensional array A is stored
in contiguous memory. This expression produces a
two-dimensional array and a one-dimensional array.
The resulting two-dimensional array is identical to the
array A except the i** row is replaced with the val-
ues contained in the one dimensional array B, and the
resulting one-dimensional array is identical to the i*®
row except the j*? element is replaced with the value 0.
After reference inheritance has been applied, the re-
sulting IF2 graph allows data values to be corrupted
(see Figure 7). Since the rightmost NoOP node does
not perform a copy operation,? the physical space of
the produced arrays is overlapped. However, both ar-
rays are modified independently; the leftmost ARE-
PLACE node copies the array B onto the i** row, and
the rightmost AREPLACE inserts the value “0” into
the j*P element of the same row.

3.2.2 Reference Inheritance for the flat array
model

In many cases, the subarray being updated is placed
back into the same location within the original ar-
ray, as illustrated in Figure 8. Under this situation,
reference inheritance always provides correct results
under the flat model, but the modified subarray is un-
necessarily copied back into the original location. To
eliminate the unnecessary array copying under the flat
model, two probleins must be solved:

1. Reference inheritance must be generalized to
work under the flat array model

2. The redundant copying of subarrays must be
identified and eliminated.

To accomplish this, a two-phase optimization is em-
ployed. The first phase is a generalized version of ref-
erence inheritance which only restructures the graph.
This forces the NoOP node for the outer dimension
to dominate the graph for the subarray update oper-
ation. A second phase is then used to determine if
the AREPLACE node for the outer dimension receives
the modified subarray. In this case the graph is said

2The reference count is guaranteed to be 1.

65

Figure 5: Original Reference Inheritance Transformation [Can:89] (F represents the number of output edges)

to be mutually strong-dependent (MSD).2 If the graph
is MSD then the unnecessary copy operation is elimi-
nated.

To generalize reference inheritance two changes are
needed. First, the interior NoOP node must perform
a copy operation if the resulting array is not passed to
the bottommost AREPLACE node. In the first phase
of the optimization, we force the NoOP node to per-
form the copy operation by setting the initial reference
count for the array returned by the exterior NoOp
node to 2, the number of direct descendants. If the
interior copy operation is unnecessary, the reference
count information is adjusted by the second phase.
Second, the bottommost AREPLACE node must be de-
layed until after the interior NoOP executes to ensure
that the original subarray is copied, when necessary.
This is accomplished by repositioning the ADE so that
its source is attached to the interior NoOp .4

This transformation is illustrated in Figure 9. No-
tice that the source of ADE is not restricted to a
particular node type (depicted as a hatched node in
the figure); the node may be a compound node which
contains the NoOP that performs the copy operation.
Additionally, there may be several nodes that are de-

3We have borrowed the term, mutually strong-dependent,
from [Kim88)]. The term is used here in a similar sense.

*1f the graph is MSD, this ADE is unnecessary and is re-
moved by the second phase of the optimization.

scendents of the AELEMENT node. An ADE must be
inserted for each of these nodes since each node must
perform any necessary operation prior to the modifi-
cation of the original subarray.

In the second phase, a graph traversal is used to
determine if the graph is MSD. For each AREPLACE
node, the graph is walked in reverse dataflow order
starting with the third input of the AREPLACE node.
If a path exists to the exterior NoOP node, the graph
is deemed MSD. This operation can be performed in
constant time since there is only one backward path
and the path length is bounded by four.

If the graph is MSD, the current array update oper-
ation can occur without inducing any copy operations,
i.e., it can operate in-place. The graph is annotated
to reflect this. First, the interior NoOP node is forced
not to perform a copy operation. The NoOP node’s r
mark, which indicates conditional copying, is changed
to an R mark. Additionally, an O mark is attached
to the interior NoOP node. Together, the R and O
marks indicate that no copying is to be performed by
the NoOP node. If there arc multiple interior NoOp
nodes, then the one that lies along the path from the
bottommost AREPLACE to the exterior NOOP node
must be the NoOP node that does not perform a copy -
operation; we refer to this NoOP node as the major
NoOp node. The edges to the other NOOP nodes
must have their r mark removed, forcing them to copy

66

ement
\

fl

r|w

Figure 6: IF2 graph for the SISAL expression “A[i,j:0]”, after reference inheritance

the subarray.

Recall that each interior NoOP node is a source for
an ADE that extends to the bottommost AREPLACE
node. These ADEs ensure that all necessary copying
is completed before the outermost update operation is
started. However, the ADEs must be adjusted to en-
sure that copying is performed before the innermost
AREPLACE node executes. Since the major NoOp
node does not perform a copy operation, the inner-
most AREPLACE node directly modifies the subarray.
Additionally, other read operations performed on the
subarray must be completed prior to the innermost
update operation. This constraint can be assured by
applying the node-reordering algorithm [Can89] to the
subgraph rooted at the AELEMENT node.

Second, the bottornmost AREPLACE node must be
informed that the subarray has been updated in-place.
A P mark is attached with the AREPLACE node’s
third input edge. This mark indicates that the cor-

responding array has been constructed in the proper
location. In this situation, the AREPLACE node is
used only as a synchronization point.

As a final step, reference counting information is
adjusted. Each reference count pragma on the path
from the exterior NOOP node to the third input of the
AREPLACE node is decremented by one. This ensures
that the run-time reference counts correspond to the
operation of the graph.

If the graph is not MSD, the interior NOOP node is
forced to perform a copy operation, i.e., the r mark is
removed. Under the vector-of-vectors model, this copy
operation may be unnecessary. Type information can
be used to determine how the array is stored. If the
array is stored hierarchally then the reference count-
ing information from the exterior NoOP node to the
interior NoOP node can be adjusted as defined by the
original reference inheritance transformation. How-
ever, the r mark associated with the interior NoOp

67

rIW

sr=1

ROl W

AReplace

sr=1

W

Ali: B)

AElement

sr=l

Ali](j: 0)

Figure 7: IF2 graph for the SISAL Expression “A[i:B], A[i][j:0]”

node cannot be changed into an R mark because of
the possibility of row sharing (as in [FC0O90]). Further
optimizations that are part of update-in place may de-
termine that the interior NoOP node does not perform
a copy operation. If copying is not perform and the
graph is MSD then a P mark can be associated with
the 374 edge of the bottommost AREPLACE node of
the graph, thus saving a pointer-update operation.

4 Preliminary Indications

A partial implementation of the refers:.ce-inheri-
tance transformation for the flat array model was de-
veloped. Because SISAL 1.2 does not support flat ar-
rays, only P marks were added to the MSD graphs.
Reference counting information was adjusted as de-
fined by the original reference-inheritance transfor-
mation. These marks have no effect on the execu-

tion of SISAL applications, but are used to identify
MSD graphs. Additionally, the code-generation phase,
which produces C code, of the SISAL 1.2 compiler
was modified. A print statement is inserted for each
AREPLACE node that is a member of a AREPLACE
and AElement pair. The print statement indicates
whether or not the AREPLACE node is part of a MSD
graph and reports the number of elements passed to
the AREPLACE node on its third input, i.e., the num-
ber of elements needed to be copied.

To determine the effectiveness of our technique, a
number of SISAL applications that manipulate mul-
tidimensional arrays were compiled and executed.
These programs included: two- and three-dimensional
convolution (2d_conv.sis and 3d_conv.sis), a 40 time
step gel-chromatography simulation (ricard.sis), ma-
trix inverse (inverse.sis), and loop 13 of Livermore
Loops benchmark (loop13.sis). The optimization tech-
nique is applied mostly for applications that use while

68

NoOp

AReplace

Exterior NoOp node

Interior NoOp Node

Possible Compound Node

Figure 8: Graph template for an update operation

loops. As such, the convolution functions used in our
test suite were implemented using while loops, the
other applications are available with the SISAL dis-
tribution.

In Table 2, we report both the number of applica-
tions of reference inheritance and the number of MSD
graphs produced during compilation. These numbers
where obtained by examining the C code produced by
the modified SISAL compiler, i.e., the inserted print
statements were counted. The C code was then com-
piled with a native C compiler and executed. A shell
script that examines each program output calculated
the number of MSD graphs executed® and the total
number of array elements that are not copied. We
also indicate both the number of non-MSD graph and
the number of elements that must be copied to pre-
serve the contiguity requirement. We present these
results in Table 3.

5This number also represents the number of pointer-copy
operations saved under the vector-of-vector model.

5 Conclusions and Future Work

Update-in-place analysis has virtually eliminated
the copy problem in SISAL 1.2 [Fe090]. These opti-
mizations must be extended to handle both vector-of-
vectors arrays and true multidimensional arrays. Ad-
ditionally, there is a higher potential for copying with
monolithic arrays than with vector arrays. Updating
a single element in a shared array can induce a full ar-
ray copy, whereas an array copy operation is only per-
formed under the vector-of-vectors model if the lowest
dimensional subarray is shared.

Reference inheritance is an optimization that was
developed for the vector-of-vectors array model. As
described in this paper, this optimization can be gen-
eralized and extended to reduce copying under both
array models. In our approach, we stayed within the
context and current definition of both IF1 and IF2. An
alternative approach is to define an extended ARE-
PLACE node. The extended node would receive an
n-dimensional array, n indices, and the replacement
value for a total of n+2 inputs (see Figure 10a). How-

69

Figure 9: Modified reference inheritance graph transformation

ever, we see two main problems with this approach:

1. Complicates the definition of the AREPLACE
node
In the current definition of IF2, the AREPLACE
node can update a number, say n, of sequential
array elements. The AREPLACE node receives
n + 2 inputs which consist of an array, an in-
dex, and n replacement values. For example, the
array-update operation for the SISAL expression
“Ali:5,4,3]” is performed by a AREPLACE node
that has five inputs. The array elements at posi-
tions i, i+1, and i+2 are replaced with the values
5, 4, and 3, respectively. Although type informa-
tion can differentiate between the two node defini-
tions, the extended definition unduly complicates
the semantics of the AREPLACE node.

(3]

. Prevents the application of some optimizations,
e.g., common subexpression elimination
Consider the SISAL expression “Ali,j:0], Afij]”.
Using the extended AREPLACE node prevents
an indexing operation from being shared by the
array-read and the array-write operations, as de-
picted in Figure 10a. If the extended ARe-
place node is exploded, as in Figure 10b, then

the indexing operation, performed by the top-
most AELEMENT node, is identified as a common
subexpression.

The extended reference inheritance transformation
eliminates much of the copying used to preserve the
contiguity requirement for arrays. However, our ap-
proach cannot remove the extra copying induced by
non-MSD graphs. This extra copying can occur when
a region of a multidimensional array, such as a row, is
updated as a single operation.

For example, in the SISAL expression “A[i:B], A[i]”,
the one-dimensional array B needs to be copied into
the two-dimensional array A. As shown in Figure 11,
array B is copied onto the i** row of A. Prograin anal-
ysis, such has build-in-place [Ran87], may be extended
to determine that the array B can be built within
the array A, eliminating the copy operation. However
this can only occur if the construction of the array B
is delayed until all operations that access the i*® row
of A are completed. Since this reduces parallelism
within the graph, any optimization needs to consider
the tradeofl between copying and the loss of paral-
lelism.

To eliminate the copy problem in SISAL 2.0, ad-

Program Appl. of Number of Graphs Types
Ref. Inher. MSD | non-MSD
2d_conv sis 1 1 0
3d.conv.sis 2 2 0
ricard.sis 5 5 0
inverse.sis 6 1 5
loop13.sis 7 7 0

Table 2: Number of MSD graphs identified

Program Data-set || Number of Graphs Types Element Copies
Size MSD | non-MSD Saved | Performed
2d_conv.sis 102 56 0 560 0
3d_conv.sis 103 686 0 37730 0
ricard.sis 5 x 1315 100 0 200000 0
inverse.sis 10° 10 200 100 2000
loop13.sis — 448 0 200704 0

Table 3: Number of MSD graphs executed, and number of array elements copied (The 2d and 3d convolution
applications used 32 and 3% kernel, respectively. The input used for loop13.sis was provided by benchmark.)

ditional work needs to be performed. Currently 1F2
[WSYRS86] only defines the semantics of array nodes
based on the vector-of-vectors model. Our current
work is to determine the modifications to IF2 that are
necessary to support monolithic arrays. Additionally,
we are examining the semantics of other nodes that
manipulate dope vectors. These nodes would support
the functionality of SISAL 2.0 array operation without
introducing unnecessary copying.

Acknowledgments

I thank John Sieg of the University of Mass Lowell
and Rodney Oldehoeft of Colorado State University
for their numerous comments and suggestions which
have helped to improve this paper. Additionally, I
thank Fred Lewis of the University of Mass Lowell for
the many fruitful discussions.

References

[BOCF92] A. P. W. Bohm, R. R. Oldehoeft, D. C.
Cann, and J T. Feo. SISAL Reference
Manual Language Version 2.0. Colorado

[Cang9]

[Can92)

[CO88]

[FCO90)

[Feo90]

71

State University — Lawrence Livermore
National Laboratory, 1992.

David C. Cann. Compilation Techniques
for High Performance Applicative Compu-
tation. PhD thesis, Colorado State Univer-
sity, 1989. CSU Technical Report CS-89-
108.

David C. Cann. Retire FORTRAN? A de-
bate rekindled. CACM, 35(8):81-89, Au-
gust 1992,

D. C. Cann and R. R. Oldehoeft. Refer-
ence count and copy elimination for par-
allel applicative computing. Technical
Report CS-88-129, Department of Com-
puter Science, Colorado State University,
November 1988.

John T. Feo, David C. Cann, and Rod-
ney R. Oldehoeft. A report on the SISAL
language project. Journal of Parallel and
Distributed Computing, 10(4), December
1990.

John T. Feo. Arrays in SISAL. Tech-
nical Report UCRL-JC-106081, Lawrence

Exploded
Ext-AReplace
Node

AE lement

xL-ARep!ace

a) With extended AReplace node

AELement

Y

b) Without extended AReplace node

Figure 10: Undecorated 1F2 graphs for the SISAL expression “Afij :0], A[i,j]”, with and without the extended
AREPLACE node

[Gao90]

[GH83]

[Hud86]

[Hud87]

Livermore National Laboratory, Septem-
ber 1990. Published in The First Inter-
national Workshop on Arrays, Functional
Languages, and Parallel Systems.

Guang R. Gao. A Code Mapping Scheme
for Dataflow Software Pipelining. Kluwer
Academic Publishers, 199C.

G. Goos and J. Harmanis. The Pro-
gramming Language Ada Reference Man-
uwal. American National Standards Insti-
tute, 1983.

Paul Hudak. A semantic model of ref-
erence counting and its abstraction (De-
tailed summary). In Proceedings 1986
ACM Conference on LISP and Functional
Programming, pages 351-363. ACM, Au-
gust 1986.

P. Hudak. A semantic model of reference
counting and its abstraction. In Abstract
Interpretation of Declarative Languages,
pages 45-62. Ellis Horwood, 1987.

[Kim88]

[Mac83)

[MSA*85]

[0C8s]

Sung Jo Kim. A General Approach to
Multiprocessor Scheduling. PhD thesis,
The University of Texas at Austin, Austin,
Texas 78712-1188, February 1988.

Bruce J. MacLennan. Principles of Pro-
gramming Languages: Design, Evalua-
tion, and Implementation. CBS College
Publishing, New York, New York, 1983.

James McGraw, Stephen Skedzielewski,
Stephen Allan, Rod Oldehoeft, Chris
Kirkham, Bill Noyce, and Robert Thomas.
SISAL: Streams and Ileration tn a Sin-
gle Assignment Language, Language Ref-
erence Manual Version 1.2. Lawrence Liv-
ermore National Lahoratory, M-148 edi-
tion, March 1985.

Rodney R. Oldehoeft and David C.
Cann. Applicative parallelism on a shared-
memory multiprocessor. [EEE Software,
5(1):62-70, January 1988.

[01d92]

[Ran87]

[Seb93)

(SG85]

[SS88]

[

A lement

sasnsnvaced

Graph or Node
that builds
B

’,,\\iGraph or Node

that accesses
Ali]

Figure 11: Unnecessary copying because of a non-MSD graph

R. R. Oldehoeft. Implementing arrays
in SISAL 2.0. Proceedings of the Second
SISAL Users’ Conference, pages 209-222,
December 1992.

John E. Ranelletti. Graph Transformation
Algorithins for Array Memory Optimiza-
tion in Applicative Languages. PhD the-
sis, University of California Davis, 1987.
UCD Technical Report UCRL-53832.

Robert W. Sebesta. Concepts of Program-
ming Languages. Benjamin Cummings,
Second edition, 1993.

Stephen Skedzielewski and John Glauert.
IF1 —~ An Intermediate Form for Applica-
tive Languages. Lawrence Livermore Na-
tional Laboratory, Livermore, CA, M-170
edition, July 1985.

Stephen K. Skedzielewski and Rea J.
Simpson. A simple method to remove ref-
erence counting in applicative programs.

[WSYRS6)]

Technical Report UCRL-100156, Univer-
sity of California Davis — Lawrence Liv-
ermore National Laboratory, November
1988.

Michael Welcome, Stephen Skedzielewski,
Robert Kim Yates, and John Ranelletti.
IF2 — An Applicative Language Interme-
diate Form with FEzplicit Memory Man-
agement. University of California —
Lawrence Livermore National Laboratory,
M-195 edition, November 1986.

Increasing Parallelism for an Optimization that Reduces Copying
in IF2 Graphs

Steven M. Fitzgerald
Dept. Computer Science
University of Massachusetts Lowell
Lowell, MA 01854
sfitzger@cs.uml.edu

Abstract

To ezxploit the benefits of applicative languages, such
as SISAL, optimizations are needed to eliminate in-
efficiencies that can resull from a naive implementa-
tion. In particular, costs associated with copying large
data aggregates can be significant, outweighing the
benefits achieved through parallel ezecution. Within
the SISAL compilation environment, an optimization
known as node-reordering is performed o reduce copy-
ing [Can89]. This oplimization constrains the eze-
cution order of IF? [WSYRS86] graphs by introduc-
tng artificial dependency edges (ADEs). Although the
resulling IF2 graph provides greater opportunities to
eliminate expensive copy operations, parallelism is re-
stricted. Additionally, the introduced ADEs can in-
crease both memory usage and loken iraffic for pro-
grams that erecule on fine-grain architeclures.

In this paper, we describe a new framework for
the node-reordering optimization. The resulling algo-
rithm, which is based on the algorithm presented in
[Can89], prevents unnecessary ADEs from being in-
serted into IF2 graphs. As a resull of our algorithm,
parallelism is constrained only when necessary to elim-
inate costly copy operations. Furthermore, removing
the overhead associated with unnecessary ADEs results
in better performance of SISAL programs that run on
dataflow architectures [Fit93].

1 Introduction

To define algorithms for parallel architectures, lan-
guages that follow the applicative paradigm have
been proposed [Arv88, Bac78, Den80, AN90, FCO90).
In applicative languages, such as SISAL [BOCF92,
MSA*85], computation is carried out via the evalu-
ation of expressions. Since expressions are not influ-

enced by side effects, the evaluation order of expres-
sions is dependent only on the availability of values.
As values are computed, separate copies can be pro-
vided to many independent operations that can exe-
cute simultaneously, thus exploiting parallel architec-
tures.

An implementation that strictly adheres to the ap-
plicative model is required to copy all data values.
However, the cost associated with copying large data
aggregates, such as arrays, can become prohibitive,
nullifying the benefits achieved through parallel execu-
tion. To reduce this cost, aggregates can be passed by
reference, with copying performed only by operations
that alter the value of an aggregate. A compiler can
minimize these remaining copy operations by restrict-
ing evaluation order. For example, a write cperation
can be delayed until after all read operations on the
same aggregate have been performed. Since the write
operation is now the last operation to reference the ag-
gregate, it can directly modify the aggregate without
affecting program semantics.

Within the SISAL compilation environment, the
execution order of a program is modeled by an IF2
[WSYRS86] graph. Based on this internal program rep-
resentation, a series of optimization techniques, known
collectively as update-in-place, is applied to reduce the
number of aggregate copy operations [Can89]. One
of these optimizations, node-reordering, introduces ar-
tificial dependency edges (ADEs) into IF2 graphs to
defér write operations until after all pending read op-
erations have executed. Although this results in bet-
ter performance because of the elimination of many
costly copy operations, many “redundant” and “su-
perfluous” ADEs are introduced. On fine-grain archi-
tectures, such as dataflow, these edges can decreuse
performance since they increase both token traffic and
data memory usage. Additionally, superfluous ADEs
unnecessarily restrict execution order, further decreas-

74

ing parallelism.

In this report, we present a new approach to
the node-reordering algorithm that was originally de-
signed by David Cann [Can89]. First, we present an
overview of dataflow computation and the intermedi-
ate language IF2. In Section 3, we define two types
of ADEs, redundant and superfluous, and discuss the
costs associated with these ADEs. The new node-
reordering algorithm, which does not insert unneces-
sary ADEs, is presented in Section 4. In Section 5, re-
sults are provided. We then conclude this report with
a brief overview and a description of future work.

2 Execution Model
2.1 Dataflow and IF2

Program execution in dataflow architectures is data
driven [Den80]. Graphs that depict data dependen-
cies serve as the basis for these architectures and can
be used to define programs for these architectures
[Den80]. Each node in a dataflow graph represents
an operator that executes when all its operands are
available. The node is said to fire, producing a value
that flows along edges to other nodes.! Thus, pro-
gram execution is based on dataflow order, which is
constrained only by data dependencies represented by
edges in the graph.

IF2 [WSYRSS] is a graph-based language designed
as an intermediate form for applicative languages such
as SISAL. Although IF2 is based on the applicative
model, memory management information can be in-
corporated into a dataflow graph via a set of primitive
operations. Using IF2, a series of optimizations can be
performed to improve the execution efficiency of algo-
rithms. For example, update-in-place analysis [Can89)]
is performed in the SISAL compilation environment to
eliminate unnecessary copy operations. ADEs are in-
troduced to delay the execution of write operations
until after read operations have completed. Although
this limits parallelism because of the restricted execu-
tion order, many expensive copy operations are elim-
inated. In most situations, program execution is im-
proved.

Consider the SISAL expression “Afij:0], A[},i]”
which returns an array and an integer. The returned
array is identical to A except the value at location
“liJ]” is replaced with the value 0. Both expressions
can execute in parallel, but depending on the order
of evaluation a copy operation may or may not be

1A separate copy is made for each output edge.

required. If the array update operation (Al[i,j:0]) exe-
cutes first, the array A must be copied to ensure that
the array read operation (A[j,i]) retrieves the correct
value.? We can prevent the copy operation if the array
write is delayed until the array read operation com-
pletes.

To restrict execution order, node-reordering intro-
duces ADEs into an 1F2 graph. For our example, the
IF2 graph produced by update-in-place is depicted in
Figure 1. Three ADEs, represented by dashed edges,
have been inserted: two by the node-reordering opti-
nization and one by another optimization, reference-
inheritance. The ADEs introduced by node-reordering
are placed between array read and array copy opera-
tions, e.g., from AELEMENT nodes to NOOP nodes.
The NoOP nodes have been inserted into the graph
to indicate the location of potential copy operations.
Since these ADEs affect the amount of copying per-
formed, we focus our attention on ADEs introduced
by node-reordering.

In our example, these ADEs prevent the top-most
NoOP node from firing until the two right-most
AELEMENT nodes have fired, completing the array
read operation. Once the read operation completes,
the top-most NoOP node can execute, allowing the
array update to proceed. At run-time, NOOP nodes
conditionally copy a data aggregate based on refer-
ence count information [CO88]. Since all other oper-
ations, not dependent on the top-most NoOP node,
have completed, the reference count for the array A is
equal to 1. In this case, the NoOP node only serves
as a synchronization point. The array A is not copied
but directly modified, thus eliminating a copy opera-
tion.

2.2 Activity Frames and the Cost of
ADEs

In many prototype dataflow computers, an activ-
ity frame or template is used to represent operators in
programs [Den80, AN90]. Each of these frames speci-
fies the operation code of an operator and the destina-
tions of its results.® Additionally, places are provided
to store each operand until the frame is ready for ex-
ecution. The basic form of a frame is shown in Figure
2.

In some dataflow architectures, these activity
frames reside in a data memory. Once all the operands
of a frame have been supplied, the operation is exe-
cuted, producing the appropriate number of results.

2Consider the case where the values of i and j are the same.
30ther information may also be included in a frame, e.g., a
tag used in dynamic dataflow [BG90].

75

Figure 1: IF2 graph for the SISAL expression “A[i,j:0], A[j,i]”

Op Code
Input 1

Input M
Output 1

Output N

I"igure 2: Activity template for a dataflow node

tiach of these results is delivered to another activity
frame within a packet consisting of a value-destination
pair. The system delivers a separate packet for each
reference to a result. Once the packet is received by
the destination frame, the value is stored, where it
resides until the frame is executed. In this manner,
cach data value requires two storage locations: one
in the source frame that indicates its destination, and
one in the destination frame that contains its value.
Additionally, each transmitted data value introduces
a packet that the system must process.

The IF2 graph in Figure 1 can be directly trans-
formed into a dataflow graph that uses activity frames.
‘L he resulting graph is shown in Figure 3. In this type
ol graph, it is easy to see the cost associated with each
wdge in a dataflow graph. For example, consider the
Al (edge 4) connecting the top-most AELEMENT

node with the top-most NoOP node, depicted in Fig-
ure 3. Removing this ADE frees up two memory loca-
tions and eliminates one packet. Consequently, each
ADE removed can increase the run-time performance
of programs that run on fine-grain architectures.

In most dataflow computers, instructions are lim-
ited in the number of input and output tokens [AN90, -
BG90]. Removing redundant ADEs for these archi-
tectures can further improve performance. For each
activity frame that transmits a multiple number, say
N, of ADEs, additional activity frames must be in-
serted into the graph. On machines that do not have
an iterative instruction, e.g., TUP instruction, a tree
of N — 1 duplication nodes (DUPs) must be inserted
[BG90]. Similarly, a tree that collapses several ADEs
into one is needed for each frame receiving multiple
ADEs. These additional frames affect both the code
size and the token traffic of a program.

In our discussion, we assumed that an ADE is
treated like any other edge in the graph. However
their are other possible implementations for ADEs
that would require less memory. For example, a mem-
ory location contained in the activity frame can be
used to count the number of ADEs received by the
frame. To schedule a frame, this value is compared
to the number of ADEs required which must also be
stored in the frame. In this manner, only two mem-
ory locations per activity frame are needed to imple-
ment ADEs. However, under this approach an activity
frame must be processed each time an ADE is received,
decreasing performance. Furthermore the scheduling

76

Last Frame used to

/ generate the aggregate

-® AElement
. 2 []
[) =]
o
NoOP | | - SR
(] |
...................... 3
W‘ 6 AElement
[] =
[] =i
.
8 AElement .
o [] 5
[] =i
9
10 °
NoOp
[] |e
[
AReplace 1
AReplace []
— [] L) |=]
i~ [] (@]
[] —2 o
(.
b
113
Ali,j:0] Aljsil

Figure 3: Dataflow graph for the SISAL expression “A[i,j:0], A[j,i]”

77

of activity frames, i.e., the basic firing rule, is further
complicated. Therefore, eliminating as many ADEs as
possible is beneficial for performance.

3 Redundant and Superfluous ADEs

To reduce expensive copy operations, node-
reordering restricts the execution order of an IF2
graph. ADEs are introduced to delay array write oper-
ations until array read operations have occurred. Al-
though the new execution order prevents many costly
copy operations, parallelism is reduced. Additionally,
execution overhead is increased for fine-grain architec-
tures due to the cost associated with ADEs.

In the original node-reordering algorithm, unnec-
essary ADEs are inserted. For example, consider the
partial IF2 graph for the SISAL expression “Afj,i:0],
Afk,i], A[1,i:0]” presented in Figure 4. Four ADEs
have been inserted into the graph to prevent both
NoOp nodes from executing until both AELEMENT
nodes have executed. The ADEs emanating from the
top-most AELEMENT node (edges 1 and 2) are “re-
dundant” since the bottom-most AELEMENT node’s
ADEs also delay the firing of both NoOP nodes. The
ADEs associated with the top-most AELEMENT node
can be safely removed without disturbing either the
graph’s execution order or its semantics [Fit93).

The other ADEs (edges 3 and 4) ensure that
array read operation, which is performed by th:
AELEMENT nodes, completes before the start of e
potential copy operation. Although ‘his ordering cu
sures that only one copy of the array A is made, the
NoOr node that performs the copy is delayed unnec-
essarily. Deferring the execution of only one NoOr
node is sufficient to ensure that an unaltered copy of
the array A is available for the read operations. /e
can choose, at compile time, the NoOP nodc to be
deferred. Since the ADEs associated with the other
NoOpr node are “superfluous,” they can be safely re-
moved from thc graph, increasing parallelism.

As depicted in Figure 5, the resulting graph con-
tains only one ADE (edge 3). Edges 1 and 2 have
heen identified as being redundant, and edges 2 and
4 have been identified as being superfluous.? Alterna-
tively, we could have identified edges 1 and 3 as super-
fluous. Since reference counting determines whether a
NoQp node performs a copy operation, we can arbi-
trarily choose either NoOP node to be the sink for the
remaining ADE.

4Edge 2 can be classified as either redundaat or superfluous;
its final classification is based on the classification of edge 4.

In general, a tree of nodes is associated with an ar-
ray aggregate. The interior of the tree is formed by a
series of AELEMENT nodes that de-reference the data
aggregate. BEach AELEMENT node decomposes the ar-
ray by one dimension. The leaves of the tree consists
of other nodes that either read or update each subag-
gregate. For example, consider the graph fragment for
the SISAL expression

let

B := A[1]
in

Alj,i:0], Alk,i], B[i:0]
end let

depicted in Figure 6. The two top-most AELEMENT
nodes form the interior of the tree, and decompose
the array into subarrays. These subarrays are then
accessed by the leaf nodes, which return either a mod-
ified copy of a subarray or a scalar value. Notice that
the bottom-most AELEMENT node is considered a leaf
node because it returns a scalar element and not a sub-
array.

In the original node-reordering algorithm, ADEs
are inserted connecting each interior ..ode with all
NoOP nodes that lie on the frontier of the de-reference
tree. Since each leaf node that performs a read oper-
ation also maintains an ADE with each NoOP node,
he ADEs associated with interior nodes are “redun-
fant” and can be removed. The new algorithm does
not insert these edges into the graph. Additionally, a
single NoOP node is selected to be the sink for the
final set of ADEs. Thus the ADEs associated with
the other NoOP node are deemed “superfluous.” In
this manner, a maximum of one ADE per array read
operation is required to prevent the unnecessary copy
operation.

Removing unnecessary ADEs can increase perfor-
mance. Since ADEs restrict the amount of parallelism
in a graph, removing “superfluous” ADEs allows some
of the parallelism to be recovered without increasing
the amount of copying since one of the NoOP nodes
is required to perform a copy operation regardless of
the presence or absence of ADEs. Additionally, with
the reduction of the number of edges in the graph,
a mapping algorithm may be better able to partition
a graph due to less node interaction. On fine-grain
architectures, such as dataflow, removing unnecessary
ADEs provides us with two further benefits: less mem-
ory used and less token traffic. The reduction of token
traffic can increase the throughput of the system.

1 2
) i) Noor
i
~
e AE1EIENE Yoo
A[j,1:0] Alk,1i] All,i:0]

Figure 4: IF2 graph fragment of “A[j,i:0], A[k,i], A[l,i:0}”

4 The New Approach
Node-reordering Algorithm

to

As part of update-in-place, an IF2 graph is restruc-
tured [Can89]. The optimization node-reordering in-
serts artificial dependency edges (ADEs) to defer write
operations until all read operations have been per-
formed. As shown in Section 3, many of the ADEs
inserted are unnecessary and can be safely removed.

In this section, we describe a modified version of the
node-reordering algorithm that prevents the insertion
of “redundant” and “superfluous” ADEs. The original
algorithm developed by David Cann is composed of
three phases: read-write set construction, ADE inser-
tion, and graph reconstruction.® In the modified ver-
sion, we retain this organization but have altered the
framework of the read-write set construction phase.
4.1 Read-write Set Construction

Before read-write set construction, each edge in an
IF2 graph is classified. An earlier phase of update-in-
place decorates edges with a W mark if it carries data
that is to be modified or copied. For example, if an
edge’s sink is attached to an AELEMENT node, no W
mark is associated with it. A W mark is associated
with an edge if its sink is attached to either a NoQp
or another aggregate modifier.

5In [Can89), the last phase is called node-reordering. How-
ever, we have chosen to use the name “node-reordering” to refer
to the complete set of three phases.

The read-write sets are constructed by examining
all graph nodes in a top-down fashion. A read and
a write set are created for each node that is the root
of a de-reference tree. The de-reference tree is then
traversed using a depth-first search strategy. When a
leaf node is encountered, the node number is recorded
in either the read set or the write set. The node is
recorded in the write-set if the edge that carries the
data aggregate to the node is decorated with a W
mark, otherwise the node is recorded in the read-set.
The resulting sets determine the placement of the non-
redundant ADEs.

For example, consider the read-write sets con-
structed for the three dimensional array A in the fol-
lowing SISAL expression:

let

B := A[j]
in

Afi,i,i:0], B[i,i:0], foo(B[k]), Blk,i]
end let

The IF2 graph for the expression, depicted in Figure
7, is traversed in dataflow order. In our example, the
traversal begins with the node that creates the array
A. First, an empty read set and an empty write set are
assigned to the data array A. The de-reference tree for
the array is then traversed in depth-first order. The
first leaf node encountered, the top-most NoOp, is
recorded in the write set since it is connected to the

79

k
@ AELenent @
i
S~— ~—
e AELETENE
A[j,41:0] Alk, 1] All,i:0]

Figure 5: Modified IF2 graph fragment of “A[},i:0], A[k,i], A[1,i:0)”

de-reference trce by a W marked edge. Continuing in
this fashion, the other NoOP node is placed into the
write set, and the other two leaf nodes are placed into
the read set. Notice that the bottom-most AELEMENT
node is classified as a leaf node because it returns a
scalar value and not a subaggregate of the array A.
Thus, the final read and write sets for the array A are
{3, 4} and {5, 10}, respectively.

The next phase of node-reordering, ADE inser-
tion, determines the placement of ADEs. First, the
non-redundant ADEs are determined by examining
cach read-write set pair. The locations of these non-
redundant ADEs are defined by the Cartesian product
of the read set with the write set. In our example,
the read-write set for the array A defines four non-
redundant ADEs: (3, 5), (3, 10), (4, 5), and (4, 10);
here we represent an ADE by the pair (source-node,
sink-node).

To define the final set of ADEs, one node is se-
lected from each write set to be the sink node for the
non-superfluous ADEs. For the purpose of copy elim-
ination, this choice can be made arbitrarily. In prac-
tice, the selection may be based on a node’s depth in
the de-reference tree to retain the maximum amount
of parallelism. For the IF2 graph in Figure 7, the
bottom-most NoOP node has been chosen as the sink
for the ADEs for the array A; thus the ADEs inserted
are (3, 5) and (4, 5).

The final phase of node-reordering is graph recon-
struction. Since the inserted ADEs have restricted the
original dataflow ordering of the graph, the graph is

internally reconstructed to reflect this new order. This
phase of the optimization is the same in the modified
version as in the original version developed by David
Cann.

5 Some Empirical Results

A series of SISAL programs® were compiled to de-

termine the number of unnecessary ADEs that are re-
moved by the new node-reordering algorithm. Addi-
tionally, these programs were augmented with code to
allow the number of ADEs encountered at run-time
to be calculated. In this section, we present some of
these results.

The results indicating the number of ADEs re-
moved at compile time for the following SISAL
programs are presented in Table 1: Gaussian
elimination (gauss.sis), LaGrangian hydrodynamics
(simple2a.sis), quicksort (quicksort.sis), mergesort
(mergsort.sis), matrix inverse (inverse.sis), particle
dynamics modeler {moldyn.sis), paraffins problem
(para.sis), parallel simulated annealing (psa.sis) and
three loops contained in the Livermore Loops test suite
(loop13 .sis, loop10.sis and loop23s.sis). In Table 2 we
present the number of ADEs that are executed. Since
the ADE counts at run-time are based on all ADEs in-
serted by update-in-place, we present the total number
of ADEs removed at compile time.

SAll of these programs are available with the SISAL
distribution.

80

Program Original Removed ADEs Remaining

Source Lines | ADEs | Redundant | Superfluous ADEs
gauss.sis 227 3 1 — 2
simple2a.sis | 1527 3 2 — 1
loop23s.sis 46 6 3 — 3
quicksort.sis 50 7 0 — 7
loop10.sis 54 13 10 — 3
loop13.sis 60 14 4 — 7
mergesort.sis 85 14 0 3 11
inverse.sis 158 17 3 — 14
moldyn.sis 878 27 17 — 10
para.sis 824 61 46 — 15
psa.sis 771 156 41 — 115

Table 1: Counts of ADEs removed at compile-time (only ADEs associated with node-reordering are reported)

Program Static Dynamic

Source Lines | Original | Remaining | % Removed | Original | Remaining | % Removed
loop10.sis 54 13 3 76.92 13. 3 76.92
loop13.sis 60 18 14 22.22 1152 896 22.22
mergesort.sis | 85 13 11 15.38 3197 2999 6.19
inverse.sis 158 29 26 10.34 3441 3351 2.62
moldyn.sis 878 46 29 36.96 — — —
para.sis 824 65 19 70.76 107 0 100.00
psa.sis 771 175 134 23.42 8162 5951 | 27.09

Table 2: Counts of ADEs executed at run-time (all ADEs are reported). Runtime counts are not provided for
the “moldyn.sis” program because valid input data was not available at the time of our studies.

81

A[3,1:0]

Alk,1]

Leaf Nodes

s,
L,
%,

B[i:0]

Figure 6: IF2 graph fragment of “A[j,i:0], A[k,i], B[i:0)”

Although the percent of ADEs removed range
from 2.62% to 100.00%, a large number of programs
can benefit from the modified algorithm, particularly
those that make extensive use of multidimensional ar-
rays. Additionally, programs that do not achieve any
improvement through the modified algorithm do not
incur any increase in compilation cost since each node
is examined at most the same number of times as in
the original algorithm. Notice that only one program
exhibited superfluous ADEs, mergesort. We hope that
further analysis will identify a class of algorithms that
benefits from the removal of superfluous ADEs.

6 Conclusion
6.1 Overview

In this paper, we present the optimization node-
reordering, originally developed by David Cann
[Can89], in a new framework. This optimization in-
serts ADEs between read and write operations to de-
fer write operations until pending read operations have
been performed. This restructuring of an IF2 graph
increases opportunities to eliminate many expensive
copy operations. The algorithm that results from the
modified framework is both clear and concise, allow-
ing for a simple implementation. Additionally, ADEs
are inserted only when necessary to prevent copy op-
erations. The optimization is well suited for fine-grain
architectures since the eliminated ADEs result in a

decrease in both memory usage and token traffic.
6.2 Future Work

The modified algorithm prevents many ADEs from
being inserted into the graph. Although this allows
many operations to be performed in parallel, reference
counting information is needed to determine when
NoOr nodes must perform a copy operation. The
overhead associated with reference counting can de-
crease performance. Fortunately, most of the refer-
ence counts can be eliminated through program anal-
ysis [Can89, CO88, Hud86, SS88).

Within update-in-place, the optimization edge-
neutralizalion removes reference count pragmas based
on the location of ADEs inserted by the node-
reordering algorithm [Can89, FCO90]. Since we have
eliminated many of these ADEs, we must re-examine
this optimization.

For example consider the graph depicted in Figure
8. Using the existing edge-neutralization algorithm,
the reference count pragmas associated with the inte-
rior nodes of the de-reference tree are not eliminated
because the ADEs that would have been inserted by
the original node-reordering algorithm are not present.
Since these interior nodes have implicit ADEs, we
should also be able to remove their reference counts.
Furthermore, it may be possible to remove all refer-
ence counting information within the de-reference tree
if we select, a priori, the NOOP node that performs
the copy operation.

82

Lsal Nodes

/////4///

_

v
7~ "
é NoOp
/@// 10

Ali,i,4:0] B[i,4i:0]

“orss, 1/////

foo (B[k]

//%////ﬁ @// %7

2227077

) Bk, i]

Figure 7: Partial IF2 graph for “Al[i,i,i:0], B[i,i:0], foo(B[k]), B[k,i]”

In general, to select the NoOP nodes that perform
the copy operations, a set of heuristics may be de-
veloped. These heuristics could examine the trade-off
between copying and the loss of parallelism. Since
only one algorithm in our test suite, mergesort, has
“superfluous” ADEs, we must first identify a class
of algorithms that might benefit from the proposed
heuristics. Currently, we are examining the character-
istics of mergesort to determine an appropriate class
of algorithms.

Acknowledgments

I am grateful to Linda Wilkens of the University
of Mass Lowell for her support and advise. I also
thank Rich Wolski of LLNL and Rodney Oldehoeft
of Colorado State University for their comments and
suggestions on early drafts of this paper.

References
[AN90] Arvind and Rishiyur S. Nikhil. Exe-
cuting a program on the MIT tagged-
token dataflow architecture, JEEE Trans-
actions on Computers, 39(3):300-318,
March 1990.

[Arv8g]

[Bac78]

[BG90]

[BOCF92]

[Can89)

Arvind. Dataflow approach to general-
purpose parallel computing. Computer
Science and Engineering, MIT Video
Tape, October 1988.

J. Backus. Can programming be liberated
from the von Neumann style? A func-
tional style and its algebra of programs.
Commaunications of the ACM, 21(8), Au-
gust 1978.

A. P. Wim B6hm and John R. Gurd.
Iterative instructions in the Manchester
Dataflow Computer. IEEE Transac-
tions on Parallel and Distributed systems,
1(2):129-139, April 1990.

A. P. W. Béhm, R. R. Oldehoeft, D. C.
Cann, and J. T. Feo. SISAL Reference
Manuel Language Version 2.0. Colorado
State University — Lawrence Livermore
National Laboratory, 1992.

David C. Cann. Compilation Techniques
for High Performance Applicative Compu-
tation. PhD thesis, Colorado State Univer-
sity, 1989. CSU Technical Report CS-89-
108. '

[CO88]

{DenB0]

[FCO90]

[Fit93]

[Huds86]

Af4,4i,10]

B{i,1:0]

foo(B[k])

B[k, 1]

Figure 8: Partial IF2 graph for “A[i,i,i:0], B[i,i:0}, foo(B[k]), B[k,i]”, recall “B := A[j]”

D. C. Cann and R. R. Oldehoeft. Refer-
ence count and copy elimination for par-
allel applicative computing. Technical
Report CS-88-129, Department of Com-
puter Science, Colorado State University,
November 1988.

Jack B. Dennis. Data flow supercomput-
ers. Computer, pages 48-56, November

1980,

John T. Feo, David C. Cann, and Rod-
ney R. Oldehoeft. A report on the SISAL
language project. Journal of Parallel and
Distributed Computing, 10(4), December
1990.

Steven M. Fitzgerald. Removal of redun-
dant artificial dependency edges. Techni-
cal Report R-93-001, University of MASS
Lowell, 1993.

Paul Hudak. A semantic model of ref-
erence counting and its abstraction (De-
tailed summary). In Proceedings 1986
ACM Conference on LISP and Functional
Programming, pages 351-363. ACM, Au-
gust 1986.

[MSA*85)

[SS88)

[WSYRS6)

84

James McGraw, Stephen Skedzielewski,
Stephen Allan, Rod Oldehoeft, Chris
Kirkham, Bill Noyce, and Robert Thomas.
SISAL: Streams and Ileration in a Sin-
gle Assignment Language, Language Ref-
erence Manual Version 1.2. Lawrence Liv-
ermore National Laboratory, M-146 edi-
tion, March 1985.

Stephen K. Skedzielewski and Rea J.
Simpson. A simple method to remove ref-
erence counting in applicative programs.
Technical Report UCRL-100156, Univer-
sity of California Davis — Lawrence Liv-

ermore National Laboratory, November
1988.

Michael Welcome, Stephen Skedzielewski,
Robert Kim Yates, and John Ranelletti.
IF2 — An Applicative Langr.age Interme-
diate Form with Explicit Memory Man-
agemeni. University of California —
Lawrence Livermore National Laboratory,
M-195 edition, November 1986.

Caching in on Sisal: Cache Performance of Sisal vs. Fortran

P. L. Nico

Department of Coniputer Science
University of California, Davis
Davis, CA 95616

nico@cs.ucdavis.edu

Abstract

In this paper we investigate the relative cache per-
formance of Sisal and Fortran through trace-driven
simulation of representalive scientific applications.
The range of cache configurations considered cor-
responds to on-chip caches in current and nezt-
generation microprocessors. We find that in unified
caches the performance is equivalent. With split in-
struclion and data caches, performance is still com-
parable, yet the two languages demonstirate somewhat
different tendencies.

1 Background

With gains in CPU speed far outstripping gains in
memory access times, memory performance is rapidly
becoming the limiting factor in computer perfor-
mance. Nearly all current architectures attempt to
alleviate this bottleneck by placing small fast cache
memories near the processor to take advantage of lo-
cality in memory references.[6] Since the difference in
memory access time between a cache hit and a cache
miss can be in the tens of cycles on a uniprocessor and
in the tens to hundreds of cycles on a multiproces-
sor, cache behavior is of vital interest to those seeking
high-performance from their computer systems.

At the speed at which current generation micropro-
cessors run, even the time required to go off-chip has
become substantial relative to the clock speed. As
a result of this and of advancing VLSI technology,
most current-generation microprocessors and virtually
all next-generation microprocessors will have on-chip
memory caches. Since chip real-estate is a valuable
commodity, these caches are relatively small(e.g. 8~
32Kbytes for the Mirs R4000[3}).

The ready availability of fast, inexpensive micro-
processors will make them the building blocks of the

A. Park

Department of Computer Science
University of California, Davis
Davis, CA 95616
park@cs.ucdavis.edu

next generation of parallel computers[5]. This means,
of course, that regardless of how they are intercon-
nected, microprocessor performance in general and
memory performance in particular will be of increas-
ing importance in the future.

While FORTRAN is still the workhorse language
of the scientific community, the SISAL programming
language[4] offers an attractive alternative since it
provides the programmer with well-defined, determi-
nate functions while providing the compiler with data
dependency information from which it can extract
implicit parallelism. Although SisAL’s performance
competitiveness with FORTRAN has been established
on supercomputers such as the CRAY which has no
cache[1], questions have been raised as to the relative
performance in the cache environment of microproces-
sor based systems.

We explore some aspects of the relative behavior
of FORTRAN and SISAL in the cache environment of
current and next-generation microprocessors through
simulating their behavior in a variety of caches.

2 The Model

In this study we examine the relative behavior of
representative scientific applications in both SisaL
and FORTRAN in cache environments siniilar to those
of current and next generation RISC microprocessors.

To properly model potential on-chip cache configu-
rations, we simulate both unified caches and split in-
struction and data caches. Sizes range from 2Kbytes
to 64Kbytes for the instruction caches and 2K to 256K
for the data caches. These ranges, though too small
for external caches, far exceed the limits of current
on-chip cache teclinology.

Since, by its very nature, a cache must be fast, and
ar. on-chip cache must also be small and simple, most
on-chip caches are, and will probably remain, direct

85

0.12 Y .

0.10

0.08

0.06

Cache Mins Rate

0.4

0.02

T
optimized fortrun(unifi b and
W.w(:nm‘:g -+

0.00 S .
4

16 32
Cache Size(K)

Figure 1: Average miss rate for unified Instruction/Data Caches

mapped.[2] For these reasons, we will concentrate on
direct-mapped caches.

2.1 The Programs

The applications used here were taken from those
used by David Cann for the performance comparison
of S1saL and FORTAN on the CRAY Y-MP [1]. Missing
are FFT and the Lawrence Livermore Loops. The
FFT program was simply a call to the CRAY library
which was clearly not portable for our purposes, and
the Livermore Loops did not produce execution traces
of sufficient length to properly exercise the caches.

The other applications and their subject areas can
be seen in Table 2.1. We chose these applications as
a reasonably representative scientific workload with
which to exercise the compilers and caches. No at-
tempt was made to re-tune them for the memory ar-
chitecture of the microprocessor, and no special opti-
mization instructions were given to the compilers.

Application | Subject Material
AMR Hydrodynamics
BMK11A Particle Transport
KIN16 Gel Electrophorssis
RICARD Gel Chromatography
SIMPLE Hydrodyramics
WEATHER Weather Modeling

Table 1: The Applications

2.2 The Simulation

The cache performance data were generated by
tracing the execution of each program and simulating
the behavior of different cache configurations for that
sequence of references. The reference streams were
captured using the pixie profiling system on a Silicon
Graphics Mips R3000 based computer. All of the ex-
ecution traces are from sequential execution.

The S1SAL and FORTRAN programs were compiled
using 0SC version 12.9 and the Mips distribution 77
compiler respectively. In each case, the standard “-
O” level of optimization was used. The pixie profiler
modifies the executable image so that, while running,
it outputs its memory reference stream on an unused
file descriptor. After being instrumented, each pro-
gram was run and its reference stream fed into our
cache simulator and analyzed.

Each reference stream was made up of 10 million
references after skipping the initial 2 million references
to account for transient start-up behavior. Since the
largest caches simulated are only 256K, this is suffi-
ciently long to demonstrate steady-state behavior.

The results of these simulations are presented be-
low.

3 Results

The results presented here are those for direct
mapped caches with line sizes of 16 bytes. Though

86

0.0150 ~
0.0100
0.0050
0.0000
-0.0050
-0.0100
-0.0150

16 12
Data Cache(k)

128

Miss Rate

‘64

256

Figure 2: Average overall miss rate difference for split caches (FORTRAN—SISAL)

caches with different associativity and line sizes were
simulated and gave different values, the relative be-
havior remained consistent.

First, Figure 1 gives the average miss rates for uni-
fied caches. These results were disappointing not be-
cause they were bad, but because nothing interesting
happened. As can be seen from the figure, :he SISAL
and FORTRAN miss rates track each other closely with
no clear advantage. Over the sampled space, the aver-
age difference is well less that 1%. Still, this shows the
two languages to be competitive in the unified cache.

The case where the instruction and data caches are
split is somewhat more intersting. In these figures,
Fig. 2 through Fig. 4, we show the difference in the
miss rates found by subtracting the SisaL value from
the FORTRAN value rather than the miss rates them-
selves. . We find that not only does this reduce the
clutter of the graphs, but it also shows what we are
really looking for, the relative performance. Where
the difference is above zero, SisAL is performing bet-
ter, while when below zero, FORTRAN is better. The
contour line shows the crossover point.

Figure 2 shows the overall miss rate differences for
the whole range of caches averaged over the six ap-
plications. Here the differences begin to develop. For
small instruction cachee, FORTRAN consistently out-
performs SISAL exce,. when there is only 2k of data
cache. When the insiruction cache size in increased,
however, SISAL comes into its own. For a current mi-
croprocessor, instruction and data caches of 8k are
not unreasonable to consider. This puts it just barely

above zero (0.2%). Note that in all cases the difference
is not very great. The greatest differences at the top
and bottom corners of the graph are 1.1% and —1.2%
respectively.

Figures 3 and 4 decompose this graph into instruc-
tion and data miss rates respectively. Now it becomes
evident why Figure 2 has the form it does. It can
be seen from Figure 3 that SISAL requires a greater
amount of instruction cache than FORTRAN before its
miss rates come down. SISAL only catches up to FoR-
TRAN when the instruction cache reaches 32k.

In the data cache, this tendency is reversed. Here,
in Figure 4, it appears that SisAL makes more efficient
use of the data cache until the data cache becomes as
large as 128k and FORTRAN catches up. In each case,
the two level off together when most of the working
set is resident in the cache.

4 Analysis

Though we have not determined the cause of these
differences, we have examined some possibilities.

Since we see that SiSAL and FORTRAM behave so
differently in their instruction and data references we
considered the possibility that the two could have very
different memory demands, as opposed to simply bet-
ter or worse locality. To see the memory character-
istics of the applications, each was run and the in-
struction and data references counted. Since some of
these applications can run for a very long time, they

87

] He’mr'\c\\. MI RISC Architccture.
4 Cliffs, New JerseY 1992.

in environmen
have seel that 1 c (31 G.Kane and 3.
able. Neither \an- Prem{xce‘“a\\, Englewoo
141 3. McGraw, S. Skedz'\e\ewsk'\‘ g. Allan, R. OW-
ehoeft, 3. Glavert, C. Kirkheimm, y. Noyce: an

as of gtrength-
88

0.0500
0.0400
0.0300
0.0200
0.0100
0.0000
-0.0100

32
Data Cache(k)

16

Data Miss Rate ——

Figure 4: Average Data miss rate difference for split caches (FORTRAN—SISAL)

{ Program | Fetches Loads Stores | mem/inst |
amr SIsAL 1,043,831,565 | 268,213,741 | 111,393,127 0.363
ForTrAN | 1,136,562,760 | 256,871,897 | 80,011,158 0.296
bmklla SISAL 854,104,288 | 212,210,754 | 127,706,750 0.398
FORTRAN 941,454,917 | 244,412,172 | 141,005,308 0.409
kinl6 S1saL 1,309,306,131 | 480,184,102 | 69,513,119 0.420
I'ORTRAN 965,836,314 | 408,995,150 | 52,259,190 0.478
ricard SisaL 805,401,526 | 298,707,707 | 143,946,230 0.550
FORTRAN 803,445,241 | 238,072,848 | 147,489,178 0.480
simple SisAL 844,093,836 | 272,734,276 | 90,036,300 0.430
FORTRAN 867,464,552 | 278,596,699 | 51,846,183 0.381 |
weather? SISAL 385,490,039 | 99,840,172 | 38,605,406 0.359
FORTRAN 391,735,035 | 92,457,819 | 42,783,829 0.345

%Ran to completion

Table 2:

Memory characteristics of programs (10 minutes running time)

89

R. Thomas. SISAL: Streams and ileration tn a sin-
gle assignment language: Reference manual vei-
sion 1.2. Lawrence Livermore National Labora-
tory, Livermore, CA, manual M-146, rev. 1 edition,
March 1985.

[6] J. Rattner. Supercomputing’s destiny: the micro-
processor. Supercomputing Review, June 1989.

[6] A.J.Smith. Cache memories. Computing Surveys,
14(3):473-530, September 1982.

90

FFT Algorithms on a Shared-Memory Multiprocessor

A.L. Cricenti and G K. Egan.”
Qo
Abstract Fw) = f £ty e @t dt (1)

This paper deals with the coding of some FFT
algorithms in the functional language SISAL, to exploit
the available concurrency, on a shared memory
multiprocessor (Encore Multimax). Run times and speed-
up are presented for two conventional array based and
two pipeline stream based FFT algorithms. The
performance of the stream based algorithms is compared
with that of the array based algorithms.

Introduction

The Discrete Fourier Transform (DFT), and other
related transforms, are of key importance in the field of
digital signal processing. Calculation of the DFT from
its definition is computationally expensive requiring
O(N2) multiplications and a similar number of
additions. However much effort has been put into
developing fast methods of calculating the DFT, since
efficient calculation of the DFT makes much of discrete
signal processing possible. Several good algorithms now
exist for the efficient calculation of the DFT, these
algorithms are generally known as Fast Fourier
Transforms (FFT).

To speed up the calculation of the DFT further,
either faster algorithms need to be developed, or any
concurrency in the algorithm be exploited. Some
researchers have been looking into the parallel
implementation of the FFT. Pease [Pea68] pioneered
work in this area by suggestii.g a parallel FFT algorithm.
Norton and Silberger [NS87] have presented results for
a FORTRAN implementation of the Cooley-Tuckey
FFT on a shared memory architecture (IBM-RP3
machine) while Cvetanovic [Cve87] presents methods
for performance analysis of two FFT algorithms on
shared memory machines. Adams et. al[ABC*91]
present results for parallel FFT algorithms on a
connection machine and a Cray 2. Recently the
performance of some FFT algorithms coded in SISAL
have been presented by Cann[Can91] and
Bollman[BSS92].

This paper deals with the coding of some FFT
algorithms; and is also concerned with the use of the
SISAL data type stream to impiement pipeline FFT
algorithms. The performance of these pipeline
algorithms is compared with that of the standard ones.

Algorithm derivation

Calculation of the Fourier Transform of a signal
involves the evaluation of the following integral:

91

~Q0

In many cases the signal of interest is not a
continuous time signal, but a discrete time signal.
Discrete time signals are therefore sequences of
numbers and therefore lend themselves for
implementation and analysis on digital computers.

In the case of discrete signals the integral above
becomes a summation:

_.1 .
F(n) =zf (k)*e TN 01N

(2
The above summation is called the Discrete Fourier
Transform (DFT).

Calculation of the DFT is computationally expensive

requiring order N2 multiplications and a similar number
of additions.

Many approaches for improving the computational
efficiency of the DFT, rely on the properties of

the eiZkn/N term, which is periodic and symmetric.
Exploitation of these properties has led to several fast
algorithms for evaluating the DFT.

Although there are several FFT algorithms, most are
based on the principle of decomposing the computation
into successively smaller DFT computations, this
method was re-discovered by Cooley and Tuckey
[CTé65).

One common FFT algorithm is called the Cooley-
Tuckey Radix Two Fast Fourier Transform. This
algorithm is basad on the successive partitioning of the
data sequence into even and odd indices (note N must
be a power of two hence the name Radix two).

The Radix Two algorithm can be derived by either
separating the input sequence f(k) into two N/2 point
sequences, Decimation in Time (DIT), or by dividing
the output sequence F(n) into two N/2 point sequences,
Decimation in Frequency (DIF). The number of
operations in each algorithm is the same, however the
DIF algorithm accepts data in natural order, and
outputs the data in scrambled order, while the DIT
algorithm accepts data in scrambled order, and outputs
it in natural order. These features can be advantageous
in convolution or correlation, as unscrambling (bit
reversing) can be avoided by using an DIF algorithm to
transform to the discrete frequency domain and a DIT
to transform back to the discrete time domain.

As previously stated the Radix 2 DIT algorithm, for
N=2M can be obtained by splitting the input sequence
into two N/2 sequences consisting of the even elements
and odd elements of the input sequence. The Radix 2
Cooley-Tuckey algorithm can be conveniently expressed
in tensor notation [BSS92] as:

Fake T {(k-IBBBL- k- OT)RR
3)

where: ® denotes the tensor product.
R(2X) is the bit reversal permutation.

T2 represents the twiddle factors.

F® I,i-1is a two point transform (butterfly).

Alternatively the FFT algorithm can be conveniently
expressed as a signal flow graph as shown in figure 1.
The signal flow graph has an advantage in that it shows
up possible concurrency, and aids in the coding of the
algorithm This algorithm is termed fast since it requires
order NlogyN multiplies rather than order N2 multiplies

to calculate the DFT of a sequence.

As evident from the signal flow graph this FFT
algorithm has a high level of symmetry as well as
potential concurrency, this was recognised early by
Pease [Pea68] and Gold [GB73]. The concurrency can

be observed by noting that the input data to each
butterfly in a stage depend only on the previous butterfly
or the input. Since there are no data dependencies for
each butterfly in a particular stage, the calculation of all
these butterflies could proceed concurrently. Although
the signal flow diagram of the FFT is quite eclegant,
coding the algorithm to exploit the available
concurrency is not as simple as it would seem. One mus!(
partition the FFT graph into segments and assign each
of these to a processor. Proper synchronisation must be
assured so that the data at the end of each stage is valid.

Sequential algorithm

A FORTRAN program to implement of the abov
FFT, due to Cooley, Lewis and Welch, adapted fron
[RG75), is shown in figure 2.

The program is divided into two sections; the firs
part is devoted to performing the bit reversal on th
input sequence, such that it is in the order required fo
the FFT. Note bit reversal is not essential in some cases
such as computing a convolution, thus it will not b
considered further. The second part of the program i
concerned with the computation of the FFT. This par
consists of three nested loops, the most outer loop step
through each stage of the signal flow graph, anothe
loop performs the indexing on the powers of W a
required by the butterflies, while the third loop keep
track of which butterfly calculation is being performed.

x(0)
x(4)
x(2)
X(6)
x(1)
X(5)
x(3)

x(7)

X(0)
X(1)
X(2)

X(3)
a a+Wb
X(4)

X(5) o
X(6)

DIT Buttely
X(7)

Figure 1 DIT signal flow graph for 8 point FFT.

SUBROUTINE FFT(AM,N)
COMPLEX A(N),U,W,T
N=2'M
NV2=N/2
NM1=N-1
J=1
DO 71=1NM1

IF(LGEJ) GOTO §
T =A()
A()=A®)
A()=T
s K=NV2
6 IF(KGEJ)GOTO7
J=JK
K=K/2
GOTO6

7 J=J+K
PI=3.141592653589793
DO 20L=1,M

LE=2*"L
LE1=LE/2
U=(100.)
W = CMPLX(COS(PI/LE1),SIN(PI/LE1))
DO 20 J=1,LE1
DO 10 1=JN,LE

IP=1+LEl

T=A(P)*U

A(P)=A(D)-T

10 A@=AQ@+T

20 U=U*W
RETURN
END

Bit Reverse input

Calculate the new 32X O/N oy
Do cach butterfly

Computation of the butterflics

Update the c'jr kn/N term

Figure 2 FORTRAN Radix 2 FFT Decimation in Time Algorithm.

The program of figure 2 if compiled to run on a
shared memory multiprocessor, such as the Encore,
shows no speed-up because of the way the "Twiddle

Factors", (c‘p *ka/ N) terms are calculated, that is an
initial cosine and sine term is computed, then on each
iteration of the outer loop (label 20) the twiddle (W
term) is updated by a recursion relation, this method of
calculation is economical in terms of machine
instructions, but it makes the program sequential. Since
the new W value depends on the its value on the
previous iteration, a data dependency exists which is not
evident in the signal flow graph. The translation from
FORTRAN to SISAL is quite straight forward since
most of the FORTRAN control structures map directly
to SISAL. One major problem in the translation is that
SISAL lacks a complex number type and complex
operations. This deficiency was overcome by defining a
set of functions for handling complex numbers, and
declaring a "type complex” as a:
Record[Realp, Imaginaryp : Double_Real].

Although this record construct overcomes the
problem it leads to clumsy programming, since all

93

operations involving this data type must be performed
explicitly.

A pre declared type complex is essential for signal
processing as complex data is often manipulated. The
need for the complex type has previously been noted by
Chang [CED90] and will be implemented in SISAL 2
[COBGF].

As expected, the SISAL program shows no speed-up.
The main outer loop is sequential as can be seen from
the signal flow graph, however the computation of the
butterflies is also sequential, while the signal flow graph
suggests that this process could be parallel. There are
two reasons that make this process sequential. The first
is the way the W terms are calculated. To remove this
loop iteration data dependency all the W terms can be
precalculated and stored in an array for access by the
program. The second reason for the sequential
behaviour of the loop is in the way SISAL exploits
parallelism from loops. SISAL does not allow one to
express a sequential process in a parallel form, since it
cannot be written as a product for form loop. One
expects that the loop which would step through each

butterfly calculation can be expressed in a parallel
fashion, since there are no data dependencies between
butterflies in the same stage.

When the data operated upon is stored as an array,
then SISAL requires that the elements of that array are
processed in order, if the product form for loop is to be
used. Thus SISAL can only slice loops such as the
following array build statement

A:=foriin 1,10
returns array of i
end for

This loop is considered concurrent by OSC since the
elements of A are created in order, ie A[1],A[2]...A[10],
thus the concurrency of this loop can be exploited by
loop slicing. Note OSC achieves concurrency by loop
slicing, on a shared memory multiprocessor.

The Cooley-Tuckey FFT algorithm is not easily
expressed in SISAL in a way that achieves useful speed-
up. The problemn with this algorithm is that the elements
of the array output from each stage are not produced in
order. An alternative algorithm is required which can be
expressed in SISAL in a parallel form.

Constant geometry algorithm

As seen from the signal flow graph the output vector
of each stage of the FFT is not produced in order, but
the elements of the vector come out in a different order
for each stage. This implies that the sequential SISAL
non product for loop must be used. To overcome the
limitation of arrays in SISAL being built in a strict sense
for parallel loop constructs, the FFT algorithm must be
modified so that the elements of the output of each FFT
stage, are produced in order. The reason for the
elements being produced out of order is because the
Cooley-Tuckey FFT program is based on a so called “In-
place algorithm”. This means that each butterfly output
is put back into the index where it came from. This is
desirable since it means that only one array is required
to implement the program. In a SISAL implementation
this is not an advantage since a copy of the old array
may exist, (0/d) when using a non product for loop. If
the restriction of in-place computation can be relaxed
then the indexing can be kept constant from stage to
stage and in order. This allows the inner loop, which
performs each butterfly for a given stage, to be
expressed in the product for form loop. This algorithm is
termed "Constant Geometry" [RG175] and the signal
flow diagram is shown in figure 3. Note the signal flow
graph below represents a DIF algorithm, the DIT
version would have the powers of W in the bottom wing
of the input to the butterfly. Since each stage of the
constant geometry algorithm is the same, refer to signal
flow graph, the program is simple to express.

94

Pipeline algorithms

The FFT algorithms presented thus far rely on the
data being fed into the algorithm in a parallel fashion,
that is as an array. In practice the data would arise from
sampling a signal at discrete time intervals. In this case
the data would arrive in a sequential fashion.

Inspection of the signal flow graphs shows that the
butterflies in a particular stage could be processed in
any order. In fact it is not necessary to fully complete a
stage before commiencing the next stage, subject to the
availability of the appropriate data for the next stage.

When using arrays, data cannot, in general, be output
from each stage of the algorithm until each stage has
been completed, that is all of the elements of each array
must be computed. Arrays therefore restrict the amount
of exploitable concurrency in the FFT algorithm.

In some situations, it is desirable to pass the data in a

_serial fashion to the FFT and have it output in a serial

fashion, This scheme is attractive since it is possible
have data output at the sampling rate, once the FFT has
been primed with data. An algorithm which achieves
this is a pipeline algorithm, Several pipeline Fast
Fourier Transforms have been presented in the

literature, some of these however are usually
implemented with special purpose hardware
[GB73][GWT70][SJ90].

A pipeline algorithm [GB73] can be derived by
considering the FFT signal flow graph of figure 4, this is
the graph of an 8 point DIF algorithm, note input data
are normally ordered, output data are bit reverse
ordered. The DIF version is chosen as it is assumed that
the input data are in natural sequential order.

It can be seen from the graph that to co. ute the
X(0) and X(4) output points only three butterflies need
to be evaluated, as shown in figure 5. A similar situation
exists for the other output points.

The input to the first butterfly stage is:

x(t) = x(k)
x(b) = x(k+N/2)

that is two points separated by N/2 where N is the FFT
length. Therefore the first N/2 input samples to the
pipeline are routed to the top arm of the butterfly while
the next N/2 samples to the bottom. A delay of N/2 is
used in the top arm of the butterfly to ensure that the
data at the butterfly are synchronised. The appropriate

WP must be used at the butterfly output. The data
leaves the butterfly in parallel pairs. The input to the
second butterfly stage is:

k=0.N/21 (4
k=0..N/2-1

x(0) X(0)

x(1) X(4)
x(2) X(2)
%(3) X(6)
x(4) X(1)
x(5) X(5)

X(6) \\ X(@3)
x() X@)

Figure 3 Constant Geometry FFT Algorithm,

x(0) X(0)
x(1) X(4)
x() X(2)
x(3) X(6)
x(4) X(1)
x(5) X(5)
x(6) X(3)
x(7) X(7)
Figure 4 DIF Signal flow graph.
x(0) x'(0) X(0)

X(4)

x(4)

Figure 5 Butterflies for computation of X(0) and X(1).

95

©(t) and X(t+N/4) t=0..N/41 (5)
©'(b) and X(b+N/4) b=0..N/4-1 (6)

where x'(t) is the output of the top arm of the first
butterfly and x’(b) is the output of the bottom arm of

the first butterfly. Again the appropriate WP must be
applied. The argument can be continued for the third
and following stages of the pipeline and the results this
shown in figure 6.

The elements of the data sequence must be routed to
the appropriate arm of each butterfly, this is achieved by
the switches and delay lines in the pipeline. Each switch
in the pipeline switches at twice the frequency of its
predecessor, and the delay lengths in a given stage are
half that of the previous stage. The first switching block
works as follows:

-The data samples are routed straight through for the

first N/4 elements,

-The samples are crossed over for the next N/4

samples.

SISAL has an appropriate data type for pipeline
algorithms, that is the type STREAM
[Can89][MSA*85]. A stream is a sequence of values of
uniform type that allows pipeline concurrency to be
expressed directly by their use. Streams differ from
arrays in that the elements of the stream can only be
accessed in sequence, no subscripting or random access
is possible. This form of access allows the use of
clements from the stream without having to produce the
complete stream as would be required with an array. By
definition SISAL streams require a non-strict

implementation. A problem occurs with the use of
streams in OSC because OSC implements streams
strictly [CO}. As a consequence of this implementation,
pipeline concurrency is not exploited. In addition
parallel loops are difficult to write with streams because
only the first element of the stream can be accessed.

The switch blocks of the pipeline are implemented by
a function stream_switch. This function is complicated
since the switching period is stage dependent. Another
problem arises because the two streams that enter the
function stream switch are not processed
simultaneously, that is the part of top stream is
processed before the bottom stream. The delays in the
pipeline are meant to cope with this problem. The
software implementation uses the SISAL when & unless
masking clauses to filter out the unwanted values from
the retums part of the for loop.

The pipeline algorithm could be made simpler to
express if the switching block could be simplified. To
achieve this aim the switching should be made
independent of the stage of the pipeline. Again a
constant geometry algorithm could be used to achieve
this. A pipeline implementation of the constant
geometry algorithm is shown in figure 7.

It can be seen that each stage of the pipeline is
identical. This feature makes the expression of this
pipeline algorithm straight forward.

The switch blocks for this algorithm are very simple
since they are composed of two switches. The first
switch switches the sample rate, while the second switch
switches at a rate of N/2 samples.

-1

-4
4
o [X(n)
x®) : : < ;._DE_______ z'.".:j:.::’:i
22

z

Figure 6 Pipeline 8 point FFT algorithm.

e oy

—® X(n)

A(—o

Figure 7 Constant Geometry Pipeline.

96

Resuits

The various algorithms presented in the previous
section were all run on an Encore shared memory
multiprocessor, using OSC as the compiler. The OSC -
h500 switch was used to ensure that the compiler
considered all concurrent loops for slicing. The value of
500 was arrived at by trial and error. Run-times were
obtained using the SPEED-UPS routine from the OSC
library. All times are in seconds and the longest wall
time was chosen when multiple processors were used.
Generally in cases where there was a significant
difference between the wall time and the CPU time the
results were discarded (CPU utilisation <95%). When
multiple processor run-times showed a significant
difference for each processor the results were also
discarded.

All input data were generated internally by each
program, therefore the run-times reflect this. Output
data from the programs was suppressed by using the -z
switch.

Speed-up is defined as Ty proc / Ty, procs.

Various FFT sizes were used in the study to check
the performance of the algorithms against model size.

Sequential algorithm

Tables 1 and 2 present the results for run-time and
speed up for the Sequential FFT algorithm.

As can be seen from table 2, the Sequential FFT
algorithm shows no significant speed-up. This is to be
expected since the algorithm is sequential.

Constant geometry algorithm

Tables 3 and 4 present the results for run-time and
speed up for the Constant Geometry FFT algorithm.

The constant geometry algorithm achieves good
speed-up, refer to table 4 and figure 8. The single
processor run-times are longer than the sequential
algorithm (table 1), as is to be expected because of the
less efficient calculation of the indexes of the W factors
used in the butterflies. However because of the speed-
up obtained, this code becomes faster than the
sequential algorithm.

The droop in the speed-up graph for 10 -16
processors is due to other processes competing for
resources. The speed-up improves with the size of the
FFT and high efficiencies are obtained for N > 4096.

Processors 1024 2048 4096 8192 16384 32768 65536
1 0.6 13 2.78 6.240 13.140 28.620 59.640
2 0.58 1.28 2.74 6.140 13.000 28.400 59.140
3 0.58 1.28 2.74 6.120 12.960 28.380 59.180
4 0.6 13 2.78 6.100 12.980 28.420 59.040
5 0.58 13 2.76 6.120 13.000 28.420 59.480
6 0.58 1.26 2.78 6.140 13.020 28.680 59.160
Table 1 Run-time vs FFT length for the Sequential FFT.
Processors 1024 2048 4096 8192 16384 32768 65536
1 1 1 1 1 1 1 1
2 1.03 1.02 1.01 1.02 1.01 1.01 1.01
3 1.03 1.02 1.01 1.02 1.01 1.01 1.01
4 1.00 1.00 1.00 1.02 1.01 1.01 1.01
§ 1.03 1.00 1.01 1.02 1.01 1.01 1.00
6 1.03 1.03 1.00 1.02 1.01 1.00 1.01

Table 2 Speed-up vs FFT length for the Sequential FFT.

97

Processors 1024 2048 4096 8192 16384 32768 65536
1 0.82 1.8 3.9 8.700 18.000 38.100 80.860
2 0.44 0.96 2.02 4.480 9.280 19.680 41.540
3 032 0.64 136 2.940 6.200 13.140 27.820
4 024 0.5 1.06 2300 4,680 9.900 20.940
) 0.2 04 0.86 1.800 3.780 8.020 16.860
6 0.18 0.36 0.74 1.520 3.i80 6.720 14.160
7 0.16 032 0.64 1340 2.780 5.800 12.560
8 0.14 0.28 0.600 1.200 2.440 5.160 11.140
16 0.1 0.2 0.440 0.740 1.440 2.920 6.200

Table 3 Run-time vs FFT length for the Constant Geometry FFT.

Processors 1024 2048 4096 8192 16384 32768 65536
1 1 1 1 1 1 1 1
2 1.86 1.88 193 1.94 1.94 1.94 1.95
3 2.56 281 2.87 2.96 290 290 291
4 342 3.60 3.68 3.78 385 3.85 3.86
L) 4.10 4.50 453 483 4.76 475 4.80
6 4.56 5.00 527 572 5.66 5.67 571
7 513 5.63 6.09 6.49 6.47 6.57 6.44
8 5.86 6.43 6.50 725 738 738 7.26
16 8.20 9.00 8.86 11.76 12.50 13.05 13.04

Table 4 Speed-up vs FFT length for the Constant Geometry FFT.

13] — o

13 —o0—— 2048

£ °1 4096

& 71 ——— 8192

51 —a—— 16384

3] -9"
.a- —-— 32768
1 ettt ————1
12345678091011121314151 ®— 6553
Processors
Figure 8 Speed-up vs FFT length for the Constant Geometry FFT.
its performance. The OSC compiler warns when array
Pipeline algorithms copying may occur.

Tables 5 and 6 present the results for run-time and
speed up for the Pipeline FFT algorithm.

The pipeline algorithm shows poor speed-up, mainly
because the implementation of this algorithm introduces
a large amount of array copying, which severely affects

98

Tables 7 and 8 present the results for run-time and
speed up for the Constant Geometry Pipeline FFT
algorithm.

The constant geometry pipeline code performs better
than the previous pipeline algorithm, but still suffers
from array copying.

Processors 1024 2048 4096 8192 16384 32768 65536
1 0.45 1.22 3.11 9.35 25.44 63.06 181.83
2 0.44 1.20 2.51 736 20.79 57.54 160.45
3 043 1.16 2.45 7.10 20.10 53.82 153.59
4 0.44 1.05 2.57 7.14 19.54 52.03 150.77
5 043 1.06 251 7.09 19.23 52.26 150.02
6 043 1.10 2.46 7.16 2.71 56.14 159.57
Table 5 Run-time vs FFT length for the Pipeline FFT.
Processors 1024 2048 4096 8192 16384 32768 65536
1 1 1 1 1 1 1 1
2 1.04 1.02 124 127 1.22 1.10 113
3 1.07 1.05 1.27 132 127 1.17 1.18
4 1.04 1.17 121 131 1.30 121 121
5 1.06 1.15 1.24 132 132 121 121
6 1.05 1.11 1.26 131 1.12 1.12 1.14
Table 6 Speed-up vs FFT length for the Pipeline FFT.
Processors 1024 2048 4096 8192 16384 32768 65536
1 1.16 2.28 6.1 14.600 35.800 87.940 214.400
2 0.76 1.88 3.96 10.060 25.720 63.540 170.820
3 0.6 1.56 3.28 8.580 22.420 56.500 156.300
4 0.54 1.44 2.96 7.820 20.780 53.340 149.640
5 0.5 134 2.74 7.420 19.820 52.040 145.820
6 0.46 1.26 2.6 7.140 19.440 50.800 144.900
Table 7 Run-time vs FFT length for the Constant Geometry Pipeline FFT.
Processors 1024 2048 4096 8192 16384 32768 65536
1 1 1 1 1 1 1 1
2 134 134 145 1.4 136 132 130
3 143 1.50 1.61 1.63 1.50 1.46 1.39
4 1.58 1.60 1.73 1.82 1.54 148 1.39
5 1.66 1.74 1.88 1.81 1.59 1.53 143
6 1.60 1.86 1.84 1.86 1.66 1.55 1.46

Table 8 Speed-up vs FFT length for the Constant Geometry Pipeline FFT.

Both pipeline algorithms require a function to
implement the switch that switches with a period of N/2
samples. This function must separate the input stream
into two streams, one containing the first N/2 samples
the other the rest of the stream. An obvious way of
expressing this switching function in SISAL is as:

for aelement in input at i

retums stream of aelement when i < =length
stream of aelement when i>length

end for

Figure 9 'Product form for loop’ for switch.

99

This approach has two problems when OSC is used
to compile it. The first problem is that OSC will not
slice this loop as the compiler considers it sequential
because of the when clause. Thus using the product for
form loop is not an advantage.

The second problem with this approach is that this
loop introduces copying. To overcome some of the
copying, the loop can be expressed as the non product
form for loop as shown in figure 10. This
implementation of the loop is much faster as some array
copying is eliminated. Note this was verified using the
OSC -time switch.

forinitial
=l
bottom: =input
until i > length repeat
i:=oldi+1I;
bottom: =stream_rest(old bottom);
retums stream of stream_first(bottom) unless i>length
% This introduces copying
value of bottom
end for

Processors 1024 16384 65536
1 1 1 1
2 1.73 1.77 1.77
4 2.74 292 291
6 3.25 3.42 3.67

Figure 10 'Non product form for loop’ for
switch

The array copying which results from this loop is still
significant both in terms of run-time and speed-up
performance. This is particularly noticeable for large
FFT lengths. If the unless clause is removed from the
above loop, the execution time is reduced considerably,
and the speed-up performance is improved, refer to
table 10. Removal of the unless clause, is not practical
since the code produces incorrect results. The speed-up
improvement implies that the array copying due to the
unless clause is of a sequential nature.

Processors 1024 16384 65536
1 1.04 2252 101.4
2 0.60 12.70 57.22
4 038 7.70 34.84
6 032 6.58 27.66

Table 9 Run-time vs FFT length for the Constant
Geometry Pipeline FFT without unless.

Table 10 Speed-up vs FFT length tor the Constant
Geometry Pipeline FFT without unless.

The shared memory machine and the OSC code do
not exploit the available pipeline concurrency. Therefore
to better compare the pipeline algorithm with the array
based (non pipeline) algorithms, it was coded using
arrays rather than streams.

Performance of the array based pipeline algorithm is
much better than the stream version since the array
copying is eliminated. By eliminating the array copying
one can then express the function switch as a parallel
for construct, thereby improving the speed-up
performance.

Run-time and speed-up results, for the array based
pipeline algorithm, are given in tables 11 and 12. The
results show that the use of arrays in OSC gives better
performance than the use of streams The performance
of this pipeline algorithm is similar to the constant
geometry algorithm, refer to tables 3 and 4.

Note a dataflow machine would possibly achieve a
better result for the stream based pipeline algorithms as
pipeline concurrency could be exploited assuming a non
strict implementation of the streams. However at the
time of writing a dataflow machine that implements
SISAL streams was not available. It is expected that the
CSIRAC II simulator will eventually support the stream

type.

Processors 1024 2048 409 8192 16334 32768 65536
1 0.9 1.94 4.22 9.080 19,280 41360 86.680
2 0.48 1 2.16 4.600 9.820 20.980 43.960
4 0.26 0.54 1.12 2380 5.000 11.100 22.520
8 0.18 0.32 0.680 1.340 2.820 5.920 12.380
16 0.16 0.26 0.520 1.000 1.960 4.060 8.540
Table 11 Run-time vs FFT length for the Constant Geometry (Array) Pipeline FFT.
Processors 1024 2048 4096 8192 16384 32768 65536
1 1 1 1 1 - 1 1
2 1.88 1.94 1.95 1.97 1.96 1.97 197
4 3.46 3.59 3.1 3.82 3.86 3.713 3.85
8 5.00 6.06 6.21 6.78 6.84 6.99 7.00
16 5.63 7.46 8.12 9.08 9.84 10.19 10.15

Table 12 Speed-up vs FFT length for the Constant Geometry (Array) Pipeline FFT.

100

Speedup

PO S G VN VAU W |
Tt r t v v T

12345678 910111213141516 | —8— 65536

/._k
L

Processors

—e—— 1024

—O—— 2048

—X— 8192
—&— 16384

——— 32768

Figure 11 Speed-up vs FFT length for the Constant Geometry Pipeline (Array) FFT.

Conclusions

The paper has presented several FFT algorithms
which have been coded in SISAL. The Cooley-Tuckey [Can91]
FFT algorithm is difficult to code in SISAL in a way that
exploits the concurrency which seems to be present in
the algorithm. This is due to the order in which the
output elements of each butterfly stage are produced. [CED90]
Useful speed-up has been demonstrated, for the
constant geometry FFT algorithm, without significant
programming effort. However SISAL’s lack of a
complex number iype and operations, leads to clumsy
and long code.

For signal processing the data type stream is of key [CO]
importance as the data in this field occurs naturally as a
stream. Here SISAL could have an advantage over other [COBGF]
languages. However the strict implementation of
streams is inefficient making the writing of code difficult
if copying is to be avoided. The use of strict streams
limits the possibility of real time signal processing as the
whole of the input data, must be in memory before [CT65]
processing can commence.

[CvesT]
References
[ABC*91] Adams D.E., Bronson E.C., Casavant T.L.,
Jamieson L.H., Kamin R.A., “Experiments
with Parallel Fast Fourier Transforms",
Parallel Algorithms and Architectures for [GBT3

DSP Applications, pp 49-75 Kluwer
Academic Publishers 1991.

[BSS92] Bollman D., Sanmiguel F. Seguel J,
"Implementing FFT’s in SISAL"
Proceedings of the Second Sisal Users’ [GWT0]
Conference. pp 59-65, December 1992.

[Can89] Cann, D.C. "Compilation Techniques for
High Performance Applicative

101

Computation" Technical Report CS-89-
108, Colorado State University, pp 12-13,
May, 1989.

Cann D.C. "Retire Fortran? A Debate
Rekindled", Technical Report UCRL-JC-
107018, Lawrence Livermore National
Laboratory, April 1991.

Chang P. and Egan GK, "An
Implementation of a Numerical Weather
Prediction Model in SISAL" Technical
Report 31-017, Laboratory for Concurrent
Computing Systems, Swinburne Institute
of Technology December. 1990.

Cann D., Oldehocft R.R,, "A guide to the
Optimising SISAL Compiler" p32.

Cann D., Oldehoeft R.R., Bohm A.P.W,,
Grit D, Feo J., " SISAL Reference
Manual, Language Version 2.0", Colorado
State University and Lawrence Livermore
National Laboratory, 1990.

Cooley J.W., Tukey J.W., "An Algorithm
for the Machine Calculation of Complex
Fourier Series", Math. Comput., Vol. 19,
pp 297-301 April 1965.

Cvetanovic Z., "Performance Analysis of
the FFT Algorithm on a Shared-Memory
Parallel Architecture”, IBM J. Res.
Develop. Vol. 31 No. 4, pp 435-451 July
1987.

Gold B., Bially T., "Parallelism in Fast
Fourier Transform Hardware", IEEE
Trans. Audio Electroacoust., Vol. AU-21
No 1, pp 5-16 February 1973.

Groginski H.L., Works G.A., "A Pipeline
Fast Fourier Transform®, IEEE Trans.
Comput. Vol. C-19, pp 1015-1019
November 1970.

[MSA*85]

[NS87]

[Pea68]

[RG75]

[RG175]
{S390]

McGraw J., Skedzielewski S., Allen S,
Oldehoeft R., Glauvert J., Kirkham C,
Noyce B. and Thomas R. “SISAL:
Strcams and [Iteration In a Single
Assignment Language, Language
Reference Manual, Version 1.2, Lawrence
Livermore National Laboratory, March
1985.

Norton V.A,, Silberger A., "Parallelization
and Performance Prediction of the
Cooley-Tuckey Algorithm for Shared
Memory Architectures”, IEEE Trans,
Comput. Vol. C-36, No 5, pp 581-591 May
1987.

Pease M.C,, "An Adaptation of the Fast
Fourier Transform for Parallel
Processing”, J. Ass. Comput. Mach,, Vol
15, pp 252-264 April 1968.

Rabiner L.R, Gold B., "Theory and
Application of Digital Signal Processing”,
Prentice-Hall 1975 p 367.

Ibid, pp 575-576.

Sapiecha K., Jaroki R, “"Modular
Architecture for High Performance
Implementation of the FFT Algorithm",
1IEEE Trans. Comput. Vol. C-39, No 12,
pp 1464-1468 December 1990.

102

Acknowledgements

The authors thank the members of the Laboratory
for Concurrent Computing Systems at the Swinburne
University of Technology, for their assistance in this
research.

The authors thank the Royal Melbourne Institute of
Technology (RMIT) for the use of the Encore facility.

The Laboratory for Concurrent Computing Systems
is funded under a special research infrastructure grant
for parallel processing research by the Australian
Commonwealth Government.

Note all FFT codes are available from the principal
author.

* - AL. Cricenti is a member of Faculty in the School
of Electrical Engineering and a Researcher in the
Laboratory for Concurrent Computing Systems at the
Swinburne University of Technology, John Street,
Hawthorn 3122, Australia, Phone:+61 3 819 8516, E-
mail: alc@stan.xx.swin.oz.au.

GK. Egan is Professor of Computer Systems
Engineering and Director of the Laboratory for
Concurrent Computing Systems at the Swinburne
University of Technology, John Street, Hawthorn 3122,
Australia, Phone:+61 3 819 8516, E-mail
gke@stan xx.swin.oz.au.

A Parallel Implementation of Nonnumeric Search Problems in SISAL

Andrew Sohn
Dept. of Computer and Information Science
New Jersey Institute of Technology
Newark, NJ 07102-1982, sohn@cis.njit.edu

Abstract - Parallelization of nonnumeric problems is known to be
difficult due to the unknown number of iterations and random mem-
ory usage. This report presents experiences parallelizing and
implemeniing typical nonnumeric problems using Sisal. In particu-
lar, we select two search problems: the Eight-Puzzle and the Towers
of Hanoi. We take a two-step parallelization approach to implement
the nonnumeric problems: algorithm level and implementation level
parallelization. Algorithm level parallelization uses various search
strategies suitable for parallel search. Implementation level paral-
lelization is done by the Optimizing Sisal Compiler (0OSC).
Parallelism profiles of the two search problem are plotted to help
evaluate the effectiveness of parallelization process. Both the se-
quential and the parallel versions are implemented in Sisal and
executed on a 26-processor Sequent Symmetry shared-memory mul-
tiprocessor. Experimental results demonstrate that (1) the
combination of Sisal and OSC is effective for parallel implementa-
tion of the two nonnumeric search problems, and (2) the automatic
parallelizing compiler OSC can give high programmability as it
gives up to six-fold speedup on 26 processors, with little efforts on
implementation level parallelization. However, we also find that the
implementation level parallelization provided by OSC needs im-
provement as nonnumeric problems dften require finer
parallelization due to nondeterministic and sequential nature.

1 Introduction

The issue of processing nonnumeric problems has been one
of the major research foci of parallel processing. Those
search problems typically found in artificial intelligence
are such representative problems. They are however known
to be difficult to parallelize due to (1) unknown number of
iterations (or perhaps number of recursive function cails) at
compile time, and (2) highly irregular memory accesses
and large resource usage at runtime. Techniques developed
to speedup processing of such nonnumeric problems can be
classified into two different approaches: algorithmic heu-
ristic approach and parallel processing approach [11].

The heuristic approach includes those various search
strategies developed in artificial intelligence [9]. These
heuristic approach is aimed at reducing the problem com-
plexity by avoiding unnecessary paths in the state space.
While brute-force search follows all the paths until a solu-
tion is found, heuristic search follows selective paths by
using information which distinguishes promising states
among others. A number of heuristic search has been de-
veloped, including hill-climbing, best-first search, A*,
iterative-deepening A*, etc. [1,4,6,9). Developing prob-

lem-dependent heuristics is central to this approach and is
beyond the scope of this report.

Parallel processing approach emphasizes an actual im-
plementation on parallel machines [5,7,10,11]. The basic
assumption is the availability of multiprocessors. The ap-
proach can be divided into two steps: (1) algorithm level
parallelization step, and (2) implementauon level parallel-
ization step. The first step involves parallelizing the
sequential algorithm of the given problem for algorithmic
improvement. This step modifies the given algorithm to
suit to multiprocessor environments, not necessarily a par-
ticular parallel machine environment. A study of the
potential parallelism in the given algorithm is particularly
helpful before and after the parallelization.

The second step is to implement the parallelized algo-
rithms in parallel machine environments. Unless an
automatic parallelizing compiler is used, various parallel
constructs should be used to implement parallelized algo-
rithms into parallel programs. This second step will have to
take the machine architecture into consideration. Strategies
of mapping programs onto processors, allocating resources
to processors, and load balancing policies will become crit-
ical in this step if the parallel implementation is to be
efficient on the target machine.

This paper presents a parallel processing approach to
search, an important subset of nonnumeric problems. Spe-
cifically, we select two search problems: the Eight Puzzle
and the Towers of Hanoi. Our target machine is a 26-pro-
cessor Sequent Symmetry as because it is available to us.
We attempt to parallelize the two problems both in algo-
rithm level and implementation level. The two problems
are all implemented in a functional language SISAL [2,3].
Algorithm parallelization is done through parallel A*
search strategy (6,11] and parallel bidirectional A* search
[10]. Much of the implementation level parallelization is
done by the Optimizing SISAL Compiler (OSC) [2].

We start our discussion in section 2 by giving a brief in-
troduction to search, followed by plotting potential
parallelism in search problems. Section 3 presents parallel-
ization methods on search problems. Section 4 lists
execution results of the problems on the target multiproces-
sor. We discuss in section S the effectiveness of our
approach to parallel implementation of search problems.

103

Last section concludes our experiences parallelizing and
implementing nonnumeric problems in SISAL and Appen-
dix lists an example SISAL program for the eight puzzle.

2 Parallelism in Search

Two search problems are briefly presented in this section.
We list a generic and sequential search method, followed
by the potential parallelism in the two search problems.

2.1 Two search problems

The Tower of Hanoi (ToH) and the Eight-Puzzle (8-P) are
typical search problems found in Al Given an initial state
of each problem, the search process is to find a path which
can lead to the goal state. The ToH with three disks can be
stated as follows: There are three pegs, 1, 2, and 3, and
three disks of different sizes A, B, and 7. The disks can be
stacked on the pegs. Initially the disks are all on peg 1; the
largest, disk C, is on the bottom, while the smallest, disk A,
is on top. It is desired to transfer all of the disks to peg 3 by
moving one disk at a time. Only the top disk on a peg can
be rmoved, but it can never be placed on top of a smaller
disk.

Tower
of
Hanol
8|1]3 11218
Eight
Puzzle 2 4 Q 8 4
716|565 71615

(a) (b)
Figure 1: ToH and 8-P. (a) initial state, (b) goal state.

The Eight-Puzzle is another typical search problem. It
consists of 8 numbered tiles set in a 3x3 frame, as shown in
Figure 1. One cell of the frame is empty to allow an adja-
cent numbered tile to move into the empty cell. Given the
initial state, the search process is to find a path which can
lead to the goal state. While searching through the state
space, a search strategy can be employed to guide the
search process in an attempt to reduce the combinatorial
explosion of the search effort. Figure 2 lists a generic and
sequential search process.

OPEN={initial_state }, CLOSED=(J

Repeat

1. TEMP « select(OPEN)

2. SUCC & expand(TEMP)

3. SUCC ¢ filter(SUCC,OPEN,CLOSED)
4. OPEN « merge(SUCC,OPEN — TEMP)
5. CLOSED ¢« merge(TEMP,CLOSED)
Until (goal_state € SUCC) or (OPEN =)

Figure 2: A sequential search

It involves two lists: OPEN and CLOSED. OPEN coniains
nodes to be examined whereas CLOSED has those nodes
that are already examined. Line 1 selects a single node from
OPEN. Line 2 generates successors of the selected node.
Line 3 removes from SUCC those nodes that are either on
OPEN or CLOSED. Line 4 simply merges two lists to form
anew OPEN. Line 5 also forms a new CLOSED. This algo-
rithm is generic that it uses no particular search strategy. A
particular search strategy can be embedded by modifying
the merge step (line 4). For example, depth first search can
be readily implemented by inserting SUCC in front of
(OPEN — TEMP), provided that selection step takes a node
from front of OPEN. Breadth First Search can be realized by
inserting SUCC at the end of (OPEN — TEMP). A guided
heuristic search, A* search strategy [4], can also be easily
implemented by inserting nodes on SUCC into (OPEN —
TEMP) in ascending (or descending) order of heuristic val-
ues.

The above generic search is sequential in three aspects:
First, the entire loop is sequential due to loop-carried de-
pendencies between iterations. The central data-structure is
OPEN. Iteration i uses OPEN which was modified at itera-
tion i~1. No two iterations can therefore be executed in
parallel. The second sequentiality lies within the loop. Each
iteration consists of five steps. Those five steps are again
sequential due to their data dependencies. For example,
lines 2 and 3 cannot be executed in parallel due to the true
data dependencies. The third sequentiality stems from the
fact that the selection step selects only one out of many
nodes on OPEN. The expansion step therefore works only
on one node at a time in each iteration.

2.2 Parallelism in search problems

Potential parallelism in the ToH is constructed by using a
data-flow graph generated from the SISAL functional lan-
guage. Parallelism refers to a number of instructions (such
as +, —, *, /, etc.) which can be executed in an instruction
cycle. Figure 3 shows a parallelism profile of the ToH with
3 disks. The x-axis indicates the execution time while the y-
axis is a number of instructions that can be executed in par-
allel, namely, parallelism. Note that the y-axis is plotted to
logarithmic scale.

Execution of the ToH begins with an insertion of the ini-
tial state on OPEN. Each iteration goes through the repeat
loop of Figure 2. As we observe from the above figure, the
amount of potential parallelism increases exponentially.
Each iteration shows two typical peaks: the first peak is an
expansion step (line 2 of Figure 2) while the second peak is
a filter step (line 3 of Figure 2). _

For example, consider iteration 4 which spans roughly
2000-2900. The first peak, spanning 2122-2600, is an ex-
pansion step which generates SUCC for all nodes on OPEN,
Parallelism is high at the beginning of the expansion step
but quickly diminishes towards the end of the expansion

10" T T A T T T T T T 3
t The 3 disk ToH on infinite number of processors _
letole 2 0 3. 1 2 L], 5, | 6] 7
[g e e T
3 '
3)
[
210 4
1 At eaa 1Y, La aaa ik s salh [
0 1000 2000 3000 4000 5000

Execution Time
Figure 3: A parallelism profile of the ToH. Seven iteration is

an optimal number of iterations for the 3 disk ToH. Note that
the y-axis is plotted to logarithmic scale.

step. One main reason exhibiting such exponential decay is
because it involves many data copying operations and
memory (common data structure) acc:ss operations. At the
very beginning, n expansion functicns will be called in par-
allel for n nodes on OPEN. However, instructions within
cach expansion function call are strictly sequential. In fact,
most instructions engage in legality checking, i.e., check to
see if which disk can move to what peg. This legality
checking involves heavy array operations to prepare a new
array for next possible legal movements.

The second peak, spanning 2601-2720, is a filter step. It
checks OPEN and CLOSED to see if any node on SUCC has
already been on one of them. It is not surprising that the fil-
ter step exhibits a thick and relatively high peak because
the step consists of three nested loops (one for each list) and
is completely parallelized. Our SISAL implementation uses
an array of p elements to represent a node, where p is a
number of disks. A simple algebra can easily show that
checking n nodes on SUCC, m nodes on OPEN, and [nodes
on CLOSED will execute Imnp comparison instructions.

Figure 4 shows potential parallelism for the Eight Puz-
zle. Its parallelism behavior is essentially the same as that
of the ToH except now that the amount of parallelism is
even higher. And the rate at which the parallelism increase
in iterations is much greater than the ToH due to the larger
branching factor. The ToH has a branching factor of two on
the average while the 8-P has three,

One would argue that the search process presented in
Figure 2 does have much task-level (or coarse grain) paral-
lelism to explore. We shall find below if it is indeed the
case. Consider a search tree for the Eight-Puzzle shown in
Figure 5. Assume that nodes are generated in the following
order: left, right, up, and down. A simple parallelization
method assigns a processor to each path of the search tree.

Assuming that we have 10 processors, all paths can be
searched by 10 processors as shown in the figure. Which-
cver processor finds the goal state will terminate the search

108 pr—r 1 ey

The depth 7 8-P on Infinite number of processors

-
o
™
~y
e

1 | 2 | 3 | 4 | S[| 6} 7
3 l N

Al L

0 1000 2000
Execution time

Figure 4: A parallelism profile of the Eight Puzzle. Note that

the maximum parallelism for tree depth 7 of the 8-P is

roughly 400,000!

-
Q
>

Parallelism
(=]
w
™Y

process. This parallelization is simple and straightforward
to implement. It would possibly give speedup close to lin-
ear as 10 paths are explored independently and
simultaneously by 10 processors. However, we reject this
type of task-level parallelization because (1) it lacks the
global view of the search tree, (2) it requires a number of
processors proportional to the number of paths in the search
tree, and (3) it is unlikely to find an optimal solution in an
optimal (or suboptimal) number of iterations unless an in-
finite number of processors is available. Further, this
simple parallelization is not a true parallelization method
as no processors cooperate to solve the problem. We
present below how we parallelize search process.

3 Parallelization

We discuss below how we parallelize the problems we se-
lected to suit the multiprocessor environments,
Parallelization of search problems are described in detail.

3.1 Parallel A* search

A* search is a highly efficient search strategy [4]. It is a
guided search based on the evaluation function f = g + h,
where g is the cost of getting to the current state from the
initial state, and h is the estimated cost to reach the goal
from the current state. Given n nodes on OPEN, it selects
the most promising node, i.e., the node with the lowest (or
highest) f value. The performance of A* search depends on
the quality of heuristic function which estimates the re-
maining distance to the goal state from the current state.

Parallel A* search (PA*S) is the same as A* search ex-
cept now that n nodes can be examined simultaneously by
n processors [7,11]. Figure 2 can be modificd slightly to ac-
commodate PA*S as follows:

1. TEMP « select_n_best_nodes(OPEN)

2. SUCC « parallel_expand(TEMP)

3. SUCC & parallel_filtler(SUCC,OPEN,CLOSED)

4. OPEN « insert(SUCC,OPEN — TEMP)

105

o'
o

o |e foo for
SRR

<~
Kloj+|o

N o
p~ fon o Josc
LS)

o'
-
LSRR eReTe
RO s N
ASCERTNRCN g

IR TR L
-

\
\

0
PP

PES

PE4
Figure 5: A simple parallelization method. As a new path is found, a new processor, if available, is assigned to the path. If every

processor is working on a path, each processor will have to work on more than a path as the search tree grows. The above figure re-
quires 10 PEs all of which are working independently and simultaneously to find the goal state in 3 iterations.

0 PE3

The main difference between the above and the sequen-
tial search of Figure 2 is the selection step and the insertion
step. The selection step takes the first n nodes on OPEN, as-
suming that nodes on OPEN are now placed in ascending
order of f value. Taking the first n nodes from OPEN is
equivalent to selecting the best n nodes on OPEN. The
merge step inserts SUCC into OPEN — TEMP in ascending
order of f such that the node with the lowest f value is
placed at the beginning of OPEN.

For our experiments, we set g to 1 per arc and h to the
number of misplaced tiles. This heuristic function gives the
goal state O for h value and therefore the most promising
node is the one with the lowest f value. To briefly illustrate
how A* works, let us use N¢ gh 10 denote a node with the

three values. For example, 24 1 3 denotes node 2 with f=4,

g=1, and h=3. Suppose we have two processors. Given
OPEN = (node 0), the PA*S will go through the following
iterations (see Figure 6):

astTRRRRRRwY

KK

I | SlevExp [succ OPEN CLOSED

No. 'pEo [PEI | PEO | PEI PEO

0 0

110 1,23 1413 2413 36,15 0

2 2 (4,56 7 | 74223615 5624 | 012

47256125

31713 11516 8 | 1633015338624 | 01,2

Se24 4125 6125 7.3

Saresssnsaaes

PREYL L TXN SRS

o'..
S
N
N
.

PE? PEt PES

For example, at the beginning of iteration 0, OPEN=(0)
and CLOSED=(). Now, PEQ selects 0 (there is only one on
OPEN anyway) and generates (1, 2, 3). Attaching the three
values (f,g,h) to each successor node and inserting them
into OPEN in ascending order of f, we now have OPEN =
(14'1'3, 2413 36.1,5) and CLOSED = (0). Note that OPEN is
kept at PEO (master PE) while CLOSED is evenly distribut-
ed to two PEs. The PA*S takes three iterations to find the
goal state (node 16) which is an optimal solution (or tree
depth) for this particular initial state (node 0).

3.2 Parallel Bidirectional A* Search

Bidirectional search examines the search space from an ini-
tial state and a goal state, hoping to meet somewhere
between them. Parallel Bidirectional A* search (PBiA*S)
is a bidirectional version of PA*S [10]. It searches from
both directions in parallel while search in each direction is
also performed in parallel. To illustrate the PBiA*S, we
now need four lists: TOPEN and TSUCC for top-down (for-
ward) direction, and BOPEN and BSUCC for bottom-up
(backward) direction. CLOSED does not change as we need
only one CLOSED. The following implements the PBiA*S:

TOPEN=(initial_state), BOPEN=(goal_state),
CLOSED=@, TSUCC=(), BSUCC=()
Repeat
By Processor 0:
1. TTEMP ¢ select_m_nodes(TOPEN) ;m=n/2, n PEs.
2. TSUCC ¢ parailel_expand(TTEMP)

106

3. TSUCC & parallel_filter(TSUCC,TOPEN,CLOSED)
4. TOPEN ¢« merge(TOPEN — TTEMP, TSUCC)
By Processor 1:
1. BTEMP « select_m_nodes(BOPEN)
2. BSUCC ¢ parallel_expand(BTEMP)
3. BSUCC - parallel_filter(BSUCC,BOPEN,CLOSED)
4. BOPEN « merge(BOPEN — BTEMP, BSUCC)
5. CLOSED « TTEMP U BTEMP L CLOSED
Until (TSUCC € (BOPEN,CLOSED)) or (BSUCC € (TOPEN,
CLOSED)) or (TOPEN = @) or (BOPEN = &)

Suppose we have four processors. Given TOPEN = (node
0), BOPEN = (node 16), and CLOSED=(), The PBiA*S will
go through the following iterations (see Figure 6):

Fwd |Slct/Expnd TSUCC TOPEN

It#7 PO | P1 PO P1 PO CLOSED

0 0

1|0 1,2,3 1413 2413 3615| 0,16

21 1| 2 |456] 7 |7422 3615 %624 | 0.16.1,
41256125 | 27,19

Bwd|Slct/Expnd BSUCC BOPEN

In#fP2[P3| P2 | P3 P2

0 16

1| 16 19, 20, Tarm 19514 20615 214,45

7,21
2| 7 |19 [2,26 [22.23| 242 22624 26624 2061 5
2161523925

The first column indicates iteration numbers. Select/Expnd
shows those nodes that are selected and expanded by the
corresponding processor. For example, the following four
activities simultaneously take place at iteration 2:

¢ Processor 0 selects 1 and generates (4, 5, 6).

e Processor 1 selects 2 and generates (7), resulting in
TOPEN=(7,3,5,4,6).

o Processor 2 selects 7 and generates (2,26)

o Processor 3 selects 19 and generates (22,23), resulting in
BOPEN=(2,22,26,20,21,23).

Iteration 2 then gives TCLOSED = (0,16,1,2,7,19). At this
moment, the search process stops because (TSUCC,BSUC-
C)(TOPEN,BOPEN,CLOSED) = 7 # . The PBiA*S takes
two iterations to meet in between the search space.

4 Experimental Results

We execute the two search problems on our target machine.
Execution results are listed in this section. There are three
types statistics collected including execution time, number
of iterations and number of nodes searched.

4.1 Execution time

All forgoing parallelization techniques and problems are
implemented in SISAL and executed on a Sequent Symme-
try shared-memory multiprocessor. An example program is
listed in Appendix. Various execution results are listed in
this section. The statistics we collected are execution time,
number of iterations, and number of nodes generated. The
target machine we chose to run our implementation is a 26-
processor Sequent Symmetry Model 81 shared-memory
multiprocessor. All the programs are implemented in a
functional language SISAL. Part of the parallelization is
done by the Optimizing SISAL Compiler (OSC) [2]. Loops
specified in parallel ‘for’ of SISAL are converted to parallel
loops by OSC and executed in parallel by the Symmetry.
For the Tower of Hanoi, we have executed five different
problem sizes: 3-7 disks. For the Eight-Puzzie, we have

8] 113
] 2| 4] Initial State 16 = Goal State
7]6(5
8[1]3 2[3] (0203 [z 1123 113 13. 8[1]3
2B sl [1[8la] [7[8lel [8lal3] [8lal5] [s8l2l4] [8]2[4a] [7]2]4
71615 (Zlel5] Melsl (7lsls 7ei 716]5] [7lels 615
1 22 7 23, 24 26 3
oNRE BEORE HE 1203 (B3
42« s2] 1[4l [2]6]2]6 8lal [8 8le]a] [7]2]4]
71s615] (7lel5l [7IM 7165] [z . 1 BEA B
/\ \ iy 20 ..."' 21 8
_ Yy,
8] 1 8]113] [e[1]3] [€]1]3 8[3 3 11213] [E[1]3] [8]1]3
2lal3] [2]4]5] [2]el4] [2[ela] [2]1]a 1 s 4] (71204] (72
7[615] [7le 7151 [7]5 71615) 716{5] [6l5 6] 2[5
9 10 11 12 13 14 15 16 17 18

Figure 6: Parallel Bidirectional A* Search. Thick lines=solution path, solid lines=forward search, dotted lines=backward search.

107

also implemented S different problems as shown in Figure
7. Each problem is defined in terms of the optimal number
of iterations (or tree depth). A particular initial state
uniquely defines the problem size of the 8-P since the opti-
mal number of iterations is fixed for the given initial and
goal states. For example, the left most initial state of Figure
7 (d=10) indicates that the tree depth (or optimal number of
iterations to reach the goal state) is 10,

d=10 d=12 d=14 d=16 d=18
218l1] [2]e[1] [2[8]1] 2 1- 2[1]s6
4 3 416}3 4 6 41816 4 8
71615 [7I5H [715[8] (71513 [7]5]3
Figure 7: Five initial states for the 8-P. Goal state is in Figure 6.

Three types of execution resuits are collected: execution
time, number of iterations, and number of nodes searched.
Execution time is central to evaluate our approach since it
eventually indicates the performance of our parallelization
techniques. Tables 1 and 2 summarize execution time for
the two problems.

No of Parallel A* (PA*S)

Processors 10 12 14 16 18
1.00 173 14.46 | 63.64 | 727.55

1
2 0.70 1.23 9.03 38.13 435.50
4 0.53 0.86 6.66 2625 298.30
6 0.45 0.94 5.61 23.21 249.67
8 0.70 091 5.80 20.86 | 222.69
10 0.86 1.18 4.29 19.76 | 208.85
12 1.08 1.45 4.23 19.39 | 209.11
14 1.28 1.85 4.33 19.31 195.29
16 1.59 2.14 6.41 22.57 192.98
18 1.85 2.52 5.75 20.54 184.19
20 2.32 316 6.34 20.50 187.12
22 245 3.68 7.32 16.41 184.47
24 3.28 6.98 9.32 16.13 191.72
26 4.89 6.91 13.79 20.08 | 208.32
No of Parallel Bidirectional A* (PBiA*S)

Processors 10 12 14 16 18

1 0.83 2.69 8.18 11.73 94.53
2 0.57 1.51 4.81 7.85 52.46
4 0.68 1.62 2.79 5.57 34.93
6 0.35 1.40 2.84 4.41 25.21
8 0.46 1.07 2.67 4.02 21.96
10 0.53 1.29 2.27 4.64 18.28
12 0.61 1.15 2.24 3.58 19.53
14 0.66 0.91 1.97 3.65 17.45
16 0.73 1.12 233 290 17.26
18 0.74 121 2.57 3.19 16.59
20 0.86 1.45 3.16 3.94 17.49
22 0.86 1.46 3.35 4.27 17.27
24 1.03 1.87 4.09 5.29 17.40
26 1.03 1.83 4.44 5.58 17.04

Table 1: Execution time of the 8-P (in seconds)

No of Parallel A* Search (PA*S)
Processors | 3 gisks | 4disks | Sdisks | Gdisks | 7 disks
1 0.08 0.33 399 22.58 | 32653
2 0.06 0.27 2.79 1569 | 313.73
4 0.04 0.17 232 416 | 194.00
6 0.05 0.21 1.10 1073 | 88.63
8 0.05 0.21 1.18 8.19 80.53
10 0.05 0.21 124 8.46 95.56
12 0.05 022 1.42 8.95 81.56
14 0.05 022 132 9.58 76.25
16 0.05 022 1.39 9.41 77.99
18 0.05 0.23 1.40 9.85 81.07
20 0.05 023 1.41 10.46 | 8485
22 0.05 023 1.40 1093 | 88.13
24 0.06 0.23 1.43 1163 | 9047
26 0.06 0.25 1.44 1174 | 9599
No of Parallel Bidirectional A* Search (PBIA*S)
Processors [3 gigks | ddisks | Sdisks | Gdisks | 7 disks
1 0.06 0.33 226 19.68 | 164.22
2 0.05 0.27 1.69 13.14 | 12539
4 0.06 0.19 1.37 10.54 | 94.76
6 0.05 0.20 1.04 1053 | 9254
8 0.06 0.19 0.96 9.00 88.50
10 0.05 0.19 0.99 7.42 97.61
12 0.06 0.19 0.99 6.85 74.64
14 0.06 0.20 0.95 6.93 58.51
16 0.06 0.20 0.99 6.70 64.06
18 0.07 0.20 0.98 6.83 64.78
20 0.06 0.20 0.99 6.68 62.33
2 0.07 0.20 0.97 6.82 59.11
24 0.07 0.21 1.00 6.75 58.26
26 0.06 0.22 0.99 715 58.35

Table 2: Execution time of the ToH (in seconds)

4.2 Number of iterations
The second type of runtime statistics is a number of itera-
tions. Table 3 lists the total number of iterations. We
consider the number of iterations is important not only to
search problems but many other problems. It will enable us
to identify the effectiveness of algorithm level parallcliza-
tion and to characterize the efficiency of search strategies
and heuristic functions. If we can estimate the total number
of iterations for a given problem, we may be able to predict
the runtime complexity and therefore can more effectively
utilize precious resources such as memory. Further, the es-
timation of number of iterations will help execute the loop
iterations in parallel to a certain extent. In fact, we have al-
ready undertaken an approach to partially overlap
sequential loop iterations, called partial overlapping of
loop iterations (POLI) [11]. This POLI is similar in principle
to software pipelining but applied to a little higher level
than instruction scheduling.

108

No Eight Puzzle No Elght Puzzie
of Parallel A* (PA*S) Parallel Bidirectionzl A* S of Parallel A* (PA*S) Parallel Bidirectional A*S
PEs 10 12 14 16 18 10 12 14 16 18 PEs 10 12 14 16 18 10 12 14 16 18
1 52 | 70 | 214 | 447 | 1440] 23 45 71 97 | 271 1 99 | 132 (383 | 776 [2462| 89 | 164 | 292 | 339 | 951
2 27 | 37 1109 1224|722 12 22 39 | 53 | 137 2 101 | 137 | 388 | 777 |2466| 90 | 155 | 292 | 367 | 954
4 14 [19 | 57 | 114|366 | 9 1S 11929} 72 4 1100|132 | 399 | 782 | 2490} 124 | 203 | 277 | 391 | 995
6 10 | 15 139 | 78 {244 S 11 15 | 20 | 47 6 | 95 | 149 | 398 | 793 |2485]| 86 | 207 | 308 | 392 | 963
8 10] 12 | 31 | 60 | 182 S 8 12 | 16 | 36 8 | 130 | 149 | 422 | 801 {2463 110 | 187 | 317 | 399 | 975
10 10 12 | 23 49 | 147 5 8 10 15 28 10 | 146 | 180 | 369 | 804 (2478 120 | 214 | 300 | 444 | 931
12 10 12 | 20 41 | 125 5 7 9 12 | 26 12 | 168 | 199 | 365 | 796 | 2515 130 | 196 | 302 | 396 | 1000
14 10 12 18 37 | 106 5 6 8 1| 22 14 | 187 | 231 | 381 | 823 |2476] 134 | 170 | 282'| 404 | 961
16 | 10 | 12 | 19 | 34 | 94 5 6 8 9 20 16 | 206 | 247 | 461 | 861 {2494 138 | 184 | 306 | 347 | 977
18 10 12 17 31 84 5 6 8 9 18 18 | 227 | 275 | 438 | 868 | 2472 138 | 192 | 327 | 373 | 964
20 10 12 16 28 | 77 5 6 8 9 17 20 | 246 | 300 | 446 | 857 |2515] 138 | 200 | 349 | 403 | 987
2 11012 115|241 70 S 6 8 9 16 22 | 253 | 326 | 444 | 769 (2504 138 | 204 | 369 | 432 | 998
24 110 12 | 14 | 22 | 66 S 6 8 9 15 24 | 268 | 348 | 438 | 747 | 2550] 138 | 208 | 384 | 454 | 979
26 10 12 14 22 | 62 5 6 8 9 14 26 | 289 | 364 | 480 | 803 (2587 | 138 | 212 | 408 | 475 | 957

Towers of Hanoli

Towers of Hanoi

No No
of Paraliel A* (PA*S) Parallel Bidirectional A* S of Parallel A* (PA*S) Parallel Bidirectional A* S
PSS Ta s | 6] 7|3]4]s]e6]7 PE 3 Ta s 6|73]4]s]6]7
1 20 | SO | 189] 462 {1622] 9 28 | 87 [264 | 803 1 27 | 64 [220 | 500 {1704] 26 | 67 | 188 [545 | 1626
2 10 | 29 | 107 | 267 [1155] 5 15 | 47 | 139 | 416 2 26 | 75 | 245 | 570 (2308} 25 | 71 | 198 | 570 | 1684
4 7 16 | 66 | 88 [568 | 4 9 26 | 73 j 211 4 27 | 65 [256 | 365 |2260| 22 | 61 | 206 | 586 | 1693
6 7 16 | 35 | 104 | 281 4 9 19 | 55 | 149 6 27 | 77 [192 | 623 | 1713} 22 | 62 | 176 | 621 | 1768
8 7 15 133 1 77 1217 4 8 17 | 44 | 118 8 27 | 81 1209|569 [1703] 22 | S8 | 169 | 573 | 1769
10 7 IS |32 170 | 1981 4 8 17 38 | 107 10 | 27 | 81 | 219 [587 | 1887 22 | S8 | 170 | 526 | 1900
12 7 15 1 32 | 68 [164 4 8 17 | 35 | 88 12 | 27 | 81 | 2351612 |1769) 22 | S8 | 170 | 505 | 1668
14 7 15 {31 | 66 | 147 | 4 8 16 | 35 | 76 14 1 27 | 81 | 231 | 632 |1730(22 | 58 | 165 | 506 | 1499
16 7 15 | 31 64 | 140 | 4 8 16 { 33 | 75 16 | 27 | 81 | 243 [635 | 17571 22 | 58 | 166 | 493 | 1537
18 7 1S {31 | 64 | 137 4 8 16 1 33 | 73 18 | 27 | 81 | 243 | 657 | 1802 22 | 58 | 166 | 494 [1548
20 7 15 | 31 64 | 1351 4 8 16 | 33 | 71 20 | 27 | 81 | 243 [673 |1849] 22 | S8 | 166 | 494 | 1516
22 7 15 | 31 64 | 132 4 8 16 | 33 | 69 22 | 27 | 81 | 243 [692 [1883| 22 | 58 | 166 | 494 | 1500
24 7 15 | 31 64 | 131 4 8 16 | 33 | 67 24 | 27 | 81 | 243 | 713 11912} 22 | 58 | 166 | 494 | 1477
26 7 15 | 31 64 | 131 4 8 16 | 33 | 67 26 | 27 | 81 | 243 | 717 1951 22 | 58 | 166 | 494 | 1480
Table 3: Number of iterations for the two problems. Table 4: Number of nodes generated for the Eight-Puzzle.
4.3 Number of nodes 5 Discussion

The third type of runtime statistics is a number of nodes
scarched. Table 4 lists the total number of nodes generated
for the two problems. This third information indicates (1)
the total amount of work to be done to solve a certain prob-
lem and (2) the efficiency of the heuristic search algorithm
used to solve the problem. If the total number of iterations
indicates how much execution time can be reduced by us-
ing parallel processing techniques, the number of nodes
searched indicates how efficient the algorithm is for the
given problem,

Table 4 indicates that the amount of work to be done for
the given problem size is almost the same, regardless of
number of processors. We note however there is still a little
fluctuation as the number of processors changes. The fluc-
waticn is due mainly to the fact that the number of nodes
scarched is determined by the three values, £, g, and h.

Execution results arc analyzed in terms of two types of
speedup curves: one from the number of iterations and the
other from execution time. These two speedup curves are in
turn compared to identify if the search problems can indeed
be parallelized. Three search strategics are also compared
based on our problem instances to identify the merit of each
search strategy.

5.1 Effect of algorithm level parallelization

Number of iterations is one of the important parameters. It
characterizes the efficiency of search strategies and heuris-
tic functions. To further clarify the efficiency of various
search strategics, let Iy, be the number of iterations for a
problem size d on n processors. We define iteration speed-
up for a problem size d as Sy (d) = I4,1//q, Where nis a
number of processors. For example, consider d=14 of the

109

8-P using PA~S. We find from Table 3 that /;4,=214 and
11426=14. Speedup for d=14 using PA*S on 26 processors
iS Siter(14) = I14,1/11426 = 214/14 = 15.3. Figure 8 plots
some of the speedups drawn from the number of iterations
for the 8-P.

It appears that our implementation can give a significant
speedup for the given problem instances. Considering that
the A* search strategy is a highly sequential algorithm, the
speedup of 15 is significant. However, it should be noted
that this speedup is an ideal algorithmic speedup, which
can be achieved only in an ideal environment. The ideal en-
vironment here refers to a parallel machine with no
communication and synchronization overhead.

From the above plots, we find that the PA*S performs
slightly better than PBiA*S in general. The main reason is
that one iteration of PBiA*S is equivalent to 2 iterations of
PA*S. This also explains why the rate of change of speedup
for PBiA*S is slightly smaller than that of PA*S. In any
case, the above plots suggest that each strategy can give a
substantial speedup in an ideal environment. We shall find
out below it is indeed the case.

o5 [L e o
(8) The 8-Puzzle with PA*S 3

lteration Speedup, Sjedd)

25 LI i T hS
(b) The 8-P with PBIA*S 1
3_?;; 20 - linears,péédup 3
& 7 45
S 15f
°
[
(73
&
e 101
S
@
2 st
0 .'...x.,.,l..JAl,...l..Alxq
0 5 10 15 20 25

No of processors
Figure 8: Speedup curves based on the number of iterations.

5.2 Effect of implementation level parallelization

Execution time shown in Tables 1 and 2 are now converted
to speedup factors to identify the effectiveness of imple-
mentation level parallelization. Execution time speedup,
Sexer is defined the same as that for iteration, except now
that real execution time is used. Figure 9 plots some of the
speedups. We find that speedup is disappointing as the
maximum speedup for the given instances is merely 6.5. In
an ideal environment, we obtained over 15. There is a sig-
nificant difference between the two speedups, Sy, and
Sexe- This large difference indicates that the parallelization
techniques are not the best choice. In any case, we observe

from the curves that speedup increases as the problem size
increases for both the PA*S and the PBiA*S.

5.3 Discrepancy of two speedup curves

We have seen from the previous two curves (iteration
speedup S;,., and execution time speedup S.,.) that there is
a large discrepancy between them. Discrepancy indicates
how effective our parallel search strategies arc in a multi-
processor environment. It also indicates whether our
parallelization methods can effectively utilize potential

10 1

————p—r—

(a) The 8-P with PA*S

Execution Time Speedup, Sgyedd)
[

“Execution Time Speedup, Sqyec(d)

0 5 10 15 20 25
No of processors

Figure 9: Speedup curves drawn from execution time.

110

parallelism present in the given algorithm. Large discrep-
ancy indicates that the search strategy is ineffective in
utilizing potential parallelism while small discrepancy in-
dicates that it i3 effective. To be more precise, we define
discrepancy as D(d) = (Sier(@)—Sexec(@))/Sie(d), where d is
a problem size .

Consider the 8-P with d=14 on 26 processors. From Ta-
bles 1 through 3, we obtain:

Search Strategy || Si(14) | S.e(14) D(14)
PA*S 153 1.0 (15.3-1.0)/153=93%
PBiA*S 9.6 1.8 (9.6-1.8)9.6 = 81%
Comparison Dpgiaes(14) < Dppes(14)

The above relation indicates that the PBiA*S is better
than PA*S in terms of parallelism utilization. We find that
this relation holds for most of the problem instances we im-
plemented. Figure 10 shows discrepancies for the PA*S
and the PBiA*S. In general, PA*S gives larger discrepan-
cy than PBiA*S. The main reason is that the PA*S does
more work than the PBiA*S, where work refers to the num-

100 vy S

90 b The 8-P with PA*S

80 &

70 &

Discrepancy (%)
T

PN
20 25

D S M A T

| i

The 8-P with PBIA*S 3

Discrepancy (%)

40 -

T S R S B R " 3
10 16 20 25
No of processors

30 b

TN

Figure 10: Discrepancy of iteration speedup and execution
time speedup.

ber of nodes generated. PA*S generates more than twice
the number of nodes PBiA*S does for d=18 (Table 4). The
inequality becomes prominent as the problem size increas-
es.
For each individual search strategy, we find that the dis-
crepancy decreases as problem size increases. This is a
promising result since the parallelization method starts
showing its effectiveness. For small problem sizes, the par-
allelizaiion methods are not effective but they become
effective for large problem sizes. We have already dis-
cussed this effect in Figure 10,

To summarize, the large discrepancy indicates that the
pare'lelization method is not the best one. However, at the
same time it also indicates that there is room to explore. In
other words, larger discrepancy implies that the search
strategy can be further parallelized to improve parallelism
utilization. This is a rather a promising observation. We
take this large discrepancy as a challenge which motivates
us to further investigate on parallelization methods for the
search problems.

5.4 Discussion

We observe from the curves that (1) speedup increases in
general as the problem size increases, and (2) speedup also
increases as the number of processors increases for a par-
ticular problem size. This verifies that the approach we
have taken to parallelize the given problems is effective for
the selected problem instances.

However, when we closely examine the speedup curves
and parallclism profiles we constructed earlier, we find that
our implementation is not highly effective. Note in section
2 that we plotted potential parallelism. Figures 3 and 4 in-
dicated that the three problems do have a substantial
amount of instruction level parallelism. The speedup
curves of Figure 9 show however that a maximum speedup
is merely 6-fold. This is rather contradictory. Where are the
tens of thousands of instruction-level parallelism gone?
Did our implementation ever utilize the potential parallel-
ism in the given problems? The speedup curves show that
parallelism was apparently not utilize by our implementa-
tion. Although the three problems do have parallelism, the
automatic parallelizing compiler did not effectively utilize
them. We believe that the main reason this under-utiliza-
tion of parallelism is due mostly to loop slicing which
assigns an independent iteration of loops to a processor.

For the search problems, the speedup is obtained mostly
from the parallel expansion step, where n nodes are expand
by n processors. For the OpsS, the speedup is obtained
mostly from the parallel pattern matching step. Note that
these two steps are function calls, each of which contains a
large number of instructions. They can be classified into
medium (or perhaps coarse) grain parallelism, but certainly
not instruction level fine-grain parallclism. As a matter of
fact, to obtain this much speedup of up six, we had to dra-

111

matically change the original algorithm, If we did not
change the algorithms, the OSC may have found difficulties
extracting these parallclism.

This reminds us of an old issue, programmability versus
performance. On one hand, we wish to have a high pro-
grammability by having an automatic parallelizing
compiler take care of all the parallelism utilization. On the
other hand, we like to obtain a good performance (or high
speedup) by having manual parallelization which would
give much control over the potential parallelism. As our ex-
perimental results demonstrate, obtaining both the high
programmability and good performance is not an easy task
for our problem instances.

In any case, our SISAL implementation gives a high pro-
graramability. Considering that an ultimate goal of paraliel
processing is 1o provide a tool which can automatically par-
allelize and execute programs written independent of the
underlying machine architecture, the SISAL and OSC are
certainly successful. Our target nonnumeric problems are
different from scientific computation. As we have stated
carlier, they are known to be difficult to parallelize due to
irregular memory usage and unknown number of iterations.
We spent little effort to parallelize the problems. After all,
the SISAL and OSC gave a reasonable performance of up to
six-fold speedup. We are currently working on how to ef-
fectively utilize potential parallelism in nonnumeric
problems.

7 Conclusions

Parallel implementation of nonnumeric problems remains a
challenging task. We had difficulties implementing the two
problems. The main difficulty was the large resource usage
of the problems. The two scarch problems are small in
terms of code size, several pages of SISAL codes but large
in terms of runtime and storage usage. One can implement
the search problems in double recursion in Lisp which
would perhaps take only a page or less of Lisp code. How-
ever, it was simply not the casc for our implementation
since we had to utilize parallelism by writing programs
more complex.

The search problems indeed have shown very high runt-
ime and space complexity. Their memory usage (space
complexity) was very large that the 8-P with depth 18 need-
ed 16MB of runtime storage. This is precisely the reason
why we were unable to execute a tree depth of say 100, for
example. After all, we have successfully implemented the
selected problems using SISAL on the target machine, a Se-
quent Symmetry shared-memory multiprocessor. We have
spent much time writing codes and parallelizing the three
problems both in algorithm level and implementation lev-
els. The scarch problems have been parallelized and
implemented using two search strategies (parallel A*
search and parallel bidircctional A* scarch). In the course
of parallelization, we plotied potential parallelism in the

problems. This construction of parallelism profiles was
very helpful to determine where we should concentrate on
our parallelization efforts. We included several parallelism
profiles to demonstrate the potential parallelism in the two
search problems.

Our execution results have indicated that the nonnumeric
problems can also be effectively parallelized and imple-
mented using the combination of SISAL and OSC for a
shared memory machine. We were able to obtain up to a
maximum of six-fold speedup on 26 processors. However,
we have also found that the utilization of parallelism is
poor for the two problems. Our parallelism profiles have
indicated that the nonnumeric problems have large poten-
tial parallelism but the execution results were not as good
as the profiles suggested. This under utilization of parallel-
ism has to be improved for the SISAL and OSC to be
successful for realistic nonnumeric problems. To conclude
our experiences implementing nonnumeric problem, we
find that the combination of SISAL and OSC can give a high
programmability to effectively implement hard and se-
quential nonnumeric problems.

References

1. Bolch, L., and Cytowski, J., Search Methods for Arti-
ficial Intelligence, Academic Press, 1992,

2. Cann, D.C., and Oldehoeft, R.R., “A Guide to Opti-
mizing SISAL Compiler,” Technical Report UCRL-
MA-108369, Lawrence Livermore Laboratory, Liver-
morc, CA, 1991.

3. Feo,].T., Cann, D.C., and Oldehoeft, R.R., “A Report
on the SISAL Language Project,” Journal of Parallel
and Distributed Computing 10, December 1990,
pp.349-365.

4, Hart, P.E., Nilson, N.J., and Raphael, B., “A formal
basis for the heuristic determination of minimum cost
paths,” IEEE Transactions on SMC 4(2), pp.100-107,
1968.

5. Kale, L.V, and Saletore, V.A,, “Parallel State-Space
Search for a First Solution with Consistent Linear
Speedups,” in Int’'l Journal of Parallel Programming
19, 1990, pp.251-293.

6. Kanal, L., and Kumar, V. (Eds.), Search in Artificial
Intelligence, Springer-Verlag, 1989.

7. Kumar, V., Ramesh, K., and Rao, V.N., “Parallel Best-
First Search of State-Space Graphs: A Summary of
Results,” in Proc. AAAI-8S, pp.122-127.

8. McGraw, J.R., Skedzielewski, S.K., Allan, S.J., Olde-
hoeft, R.R., Glauent, J., Kirkham, C., Noyce, W., and
Thomas, R., “SISAL: Streams and Iteration in a Single
Assignment Language: Reference Manual version
1.2,” Manual M-146, Rev. 1, Lawrence Livermore
Laboratory, Livermore, CA, 1985.

10.

11.

Pearl, J., Heuristics: Intelligent Search Strategics for
Computer Problem Solving, Addison-Wesley, Read-
ing, MA, 1984,

Sohn, A., “Parallel Bidirectional A* Search on a Sym-
metry Multiprocessor,” in Proc. IEEE Symposium on
Parallel and Distributed Processing, Dallas, Texas,
December 1993,

Sohn, A., Gaudiot, J-L., and Sato, M., “‘Performance
Studies of the EM-4 Data-flow Multiprocessor on
Combinatorial Search Problems,” lechnical Report
92-39, Electrotechnical L.aboratory, Tsukuba, Japan,
November 1992,

Appendix

The following SISAL code implements the eight puzzle
with parallel bidirectional A* search strategy. Those func-
tion names in bold directly correspond to those names
shown in section 3.

type node=array(arraylinteger}};
type state=array(node]; %A snap shot of seaich tree at time t.
function eight_puzzle(start,goal:node; n:integer

returns integer,integer)

let
open, closed: state;
open,iteration,nodes =
for initial
open := array[1: start];
closed ‘= array state []; no_nodes:=1;i:=0;
flag:=0; % 1=goal found, O = goal not found.
while (array_size(open)>0 & flag=0) repeat
first,second:=select(old open,n);
succt = expand(first);
succ? = filter(old open,old closed,succ1);
succ ;= set_values(succ2,goal);
open := Insert(succ,second);
closed = first || old closed; %merge
flag:=goal_found(succ,goal array_size(succ)),
i=oldi+1;
no_nodes:= old no_nodes + array_size(succ);
returns value of open value of i value of no_nodes
end for
in
iteration,nodes
end let
end function

Computer Vision Algorithms in Sisal

Srdjan Mitrovic

Computer Engineering and Networks Laboraiory

ETH Zuerich, Swirzerland

Abstract

Functional languages like Sisal 1.2 had the stigma that
they either cannot produce efficient code or that they are
not powerful enough to express all kinds of problems.
While the reproach of inefficieni code has been
sufficiently disproved, the second reproach still remains.
To either disprove the reproach or to make suggestions
for changes in the language definition, Sisal user
community is engaged in writing applications for many
different computing domains. This work presents the
experience in implementing computer vision algorithms
in Sisal. The chosen problems are representatives of two
different types of algorithms found in the computer
vision domain. Furthermore, these algorithms already
exist as C-programs that are used by the members of the
Computer Vision Labo:atory at ETH Zuerich. The paper
concludes with a performance comparison between C-
and Sisal-code on a sequential machine and measures
the speedup obtained by Sisal programs on a
multiprocessor.

1.0 Introduction

There are several elements of a language that can
raise its acceptance in the programming community and
we will name some. The implementation of a language,
i.e., its availability across several programming
platforms coupled with efficient compilers, comfortable
programming environments and debuggers, is certainly
important but will not be discussed in this paper!.
Rather, we will look at the flexibility and the power of
the programming constructs that support the
programmers in the formulation of a problem.

The language designers have the dilemma between
implementing very primitive but flexible constructs or
adding complexity to a language by including constructs
that support the abstract formulation of algorithms. On
such a ruler of language constraints and complexity C
and Sisal are situated on different ends. We should note

1This exclusion does not marginalize the importance of excellent compilers and
programming environments, rather they can sometime be the key to the success
of a language.

114

Marjan Trobina
Computer Vision Laboratory
ETH Zuerich, Switzerland

that the measuring of constraints is not necessary the
measuring of the flexibility because unnecessary?
freedom must not add flexibility. It is logical that, to a
certain degree, the presence of a "strait-jacket" for
programmers in a language diminishes the number of
errors in a program as well as it decreases the time
needed to develop a program. However, it is important
that the constraints should not limit the flexibility, in
terms that most algorithms can be programmed in such
language, and that the constraints provide the
programmers with essential benefits. The structured
programming (no GOTO's) and strong type-checking are
two examples that demonstrate useful constraints in a
programming language.

The "straii-jacket” in Sisal consists mainly of the
array-constructs, reductions and the single-assignment
rule which as a benefit offers the determinate execution
behavior and automatic parallelization on varying
parallel machine size. Ideally, it should be possible to
write whole operating systems, compilers and other
applications with the same language. We acknowledge
that this is not the case for Sisal>, but the vast amount of
scientific applications can be formulated with it
{Cann92] [CannFe090] {FeoCaOl90]. This paper shows
that Sisal is also suitable for implementing computer
vision algorithms.

Apart from being able to formulate problems clearly,
a lanfuage must be able to generate efficient machine-
code®. This is the case when the semantic gap between
the language or some of its intermediate representations
is not too wide. Nonetheless, a language with a "strait-
jacket" need not deliver worse code than a more
"liberal" language. The "strait-jacket" introduces
inefficiencies only when high-level constructs of a
language cannot be mapped to efficient machine-code. It
is a drawback of a specific construct and not of the
principle. A language that has not efficiently

2’I‘ht: matter of what is necessary and what is not is rather a religous discussion
so we will abstain from claborating on this topic.

3Thcxc are several ongoing rescarch projects that investigate the cxpansion of
functional languages by adding non-functional feattures. It is still not a certain
thing how those two different paradigmas can cocxist in reality.

4For many scientific application the time to write, debug and maintain a
program is much larger than the time that is necded to execute the program. This
fact favours the usage of functional level languages anyhow.

implementable constructs, will suffer a failure in
domains where not only the coding time but also the
execution time is very important. This is the case for
long and repetitive scientific simulations as well as in
computer vision applications.

2.0 The Programming Languages

The languages C and Sisal will be often compared in
this paper and we assume that the reader is acquainted
with both languages.

C is a widely used imperative language with very
primitive constructs and with efficient compilers on
UNIX machines. It is a positive example how high-level
programming can lead to efficient executable code. It is
a negative example how unlashing frcedom slows the
coding of a problem and increases the debug time. Its
main achievement is that of a portable and standardized
high level assembler.

Sisal stands for Streams and Iterations in a Single
Assignment Language [McGrSk85]. It is a functional
language based on the single-assignment rule. It targets
mainly the scientific computation on parallel machines.
The Sisal compiler is available on many kinds of UNIX
systems with efficient code-gencrators available for
sequential and, shared-memory and vector parallel
machines. There are also several code-gencrators written
for non-conventional computer architectures [Mitrov93].
Major benefits of the Sisal language include its
determinate behavior that allows developing and
debugging parallel programs on scquential machines and
the automatic parallelization of Sisal programs

3.0 The Algorithms

A computer vision algorithm receives a digitized
image as its input and transforms it either to a new
image or a different representation: the symbolic
interpretation of the image. Because of the hard time-
constraints in computer vision, the algorithms are often
small and fast and have much less computation than
data-access operations. Every image transformation,
either to an image or to a symbolic form, is called an
image operator, The evaluation of computer vision
algorithms in this paper is based on three different image
operators. The first two, Gaussian smoothing and Canny
edge detector, transform images to images. The third
algorithm, image compilation, transforms an image into
an edge graph. We will shortly describe the foundations
of these algorithms and compare their implementations.
All three algorithms are implemented in a software 100l
used at the Computer Vision Laboratory at ETH Zuerich

The three distinct algorithms depend on cach other's
result and form a transformation pipeline as shown in
figure 1. After an image is read from a camera or a file,
it is passed to the three operators and transformed to a
picture graph. Figure 1 does not depict some picture type

115

conversion routines and thresholding operations
although those routines are included in the
transformation pipeline. The goal of the implemented
algorithms is to detect object boundaries in the input
image and to represent the extracted edges.

Edge]
axtraction

Figure 1: The relation between the three image
operators

Camera __

Sl

Noise
reduction

Picture
compilation

3.1 Noise reduction

The noise-reduction operator eliminates noise from
an image. The implemented noise reduction is based on
the Gaussian smoothing [Canny86]. The input to the
Gaussian smoothing algorithm is an image containing
gray values of pixels in single-precision floating-point
format. This representation of an image is needed by
noise reduction and edge extraction algorithms so that
rounding losses remain small.

A half of Gaussian kernel is precalculated in the array
gauss_kern as shown in the figure 2 where the value of
sigma is a parameter given by the user. With a typical
sigma of 1.0 the value of radius is 5.

radius := trunc(sigma*

sqrt (-2.0*1og (0.001))+0.5);
gauss kern :=
for x in 0, radius
returns array of norm *
etothe (-real ((x) * (x)) /sigq)
end for;

Figure 2: Calculation of Gaussian
transformation array

The array gauss_kern is used to process the input
image in the horizontal direction first. The resulting
picture is then smoothed in the vertical direction. The
transformation in horizontal direction is described in
figure 3 -- where only the body of the innermost loop is
shown -- using the values calculated in figure 2.

newPoint :=
pict(x,y]*gauss_kern[0] +
for r in 1, radius
returns value of sum
(pict [x, y-r]+
pict{x, y+r])*gauss_kern[r]
end for

Figure 3: Gaussian smoothing In y-directionS

The result of the noise reduction is a picture, which is
2*radius pixels less high and wide than the input
picture.

3.2. Edge Detector

An edge detector is a mathematical operator that
extracts edges from the intensity discontinuities in an
image. It is easier to find object boundaries from the
edge representation than from the gray-level values in an
image. The chosen edge operator is described in
[Canny86) and is also referred as Canny operator. Figure
4 depicts the computation structure of the algorithm that
implements the Canny operator. It creates four
derivation images from the smoothed image. Every pixel
in every of the four derivation-images is compared with
cach other in the NonMaxSuppression algorithm. The
resulting edge image has edges that are only one pixel
wide and are of varying strength. The succeeding
threshold operation removes the edges with weak
strengths.

/]

o
\\a[Derivation

45deg.

Derivation
x-dir

Derivation
y-dir

NonMax

edge

smoothed
image

Derivation
135deg

Figure 4: The structure of the Canny operator
algorithm

3.3. Image Compilation

The construction of edges is primarily motivated by
the need of the image comptilation algorithms. These

S

in computer vision terminology, & 18 the honzontal coordinate

Note that in mathematical and Sisal nowation, horizontal means y-direction and

image

116

algorithms transform an image into an easier analyzable
form, e.g., graphs or lists. The compilation may consist
of grouping objects together and finding object
boundaries, or even recognizing objects. We use a
compilation algorithm that finds connected edges, their
lengths and their point-coordinates. The result of this
algorithm is a list of all nodes -- where every node
points at one or several edges -- and a list of edges with
all of theirs point-coordinates.

The implemented algorithm will be briefly sketched
in the following. First, the edge image is transformed to
a lambda-coded representation, which reduces the
number of neighbors from a maximum of 8 to a
maximum of 4 neighbors per pixel. This transformation
makes the connection between two points unambiguous.
Figure S shows on left the 8-neighborhood relation with
the possible connections compared to the lambda-
neighborhiood on the right. We see that in 8-
neighborhood there are two different ways to walk from
pixel A to pixel C, one direct and one going over pixel
B.

A B B

A
[

C

Figure 5: 8- nelghborhood and lambda
nelghborhood

Every pixel in a lambda coded image contains a bit-
pattern that defines the number of its neighbors and in
what directions they are located.

The lambda-coded image is walked from the left to
the right and from the top to the bottom. Together with
the scanning of an image-row, a list of segments is being
traversed and updated. Using this list of scgments we
can locate the start and the ends of edges as well as
extract the edges that build circles, i.e., have no ends or
starts. The detailed discussion is beyond the scope of
this paper and can be read in [Klein87] and
[KleKueb87].

Figures 6a and 6b show the input image -- a digitized
view of the city of Zuerich -- and the result image that is
reconstructed from the edge graph. The picture
compilation algorithm passes the lines to a filter that
redraws the picture with the edges that are longer than a
specified minimal value.

Figure 6.a: The input frame

SENESERES #y 3.00; marjon/edge.rgl

vl b 8
."Jf‘" . d.f-ﬁ oL ;
[y o Y IR) AP
A1 '} Ve ¢ T b)
s € QET
5 % g i
3,7 = anla G P ks
A &7 il = \[,l
} 3 . 1) P R PR \
"." % P ,] _’l ' /E‘ o . “-

Figure 6.b: The result frame

4.0 The Implementations

The algorithms described in the previous paragraphs
are implemented in C and Sisal. Although they deliver
the same results and are based on the same algorithms, C
and Sisal versions differ in some points that will be
discussed in the following paragraphs. The reason for
differences between Sisal code and the implementations
in other imperative languages stems from the fact that

117

SISAL programmer has to investigate the mathematical
foundation of a problem instead of imitating the existing
implementation that often takes into account how to map
an algorithm on the machine. Therefore, we should
rather talk about implementing than porting an algorithm
to Sisal.

One difference is the representation of an image. In
C-code an image is described by the image descriptor
and the image data. The image descriptor holds
information about the horizontal and the vertical size of
the image as well as what part of the image contains
valid data -- it is called the region of interest. It is the
duty of the C programmer to correctly assign the values
to the image descriptor. In Sisal the arrays are dynamic,
i.e., the bounds and size can be changed at run-time.
Therefore, there is no image descriptor needed in Sisal
codeS. The correct allocation and deallocation of data
are also the task of the C programmer. In Sisal there are
no memory handling operations because its intermediate
form, the dataflow graphs, make automatic memory
management feasible without use of a dedicated garbage
collector. The two-dimensional access to a point of an
image in C is written as a one-dimensional access (using
the information about the total width of image-data) or
just by increasing a pointer (when scanning sequentially
through the image). Sisal code is written using two-
dimensional access by specifying both indices.

The implementation of the smoothing and edge
extraction operators is straightforward in Sisal because it
offers powerful array handling operators. Figure 7 shows
a code skeleton for a frame to frame image operator in
Sisal.

for x in x1,x2 cross y in yl,y2
newPoint := FrameOperator (pict(x,y])
returns array of newPoint
end for

Figure 7: Code skeleton for a frame to frame
transformation

The graph compilation algorithm is more difficult to
implement in Sisal as it is based on a dynamic list of
segments that is being walked through. Lists do not exist
in Sisal and therefore the segment-list has been
implemented as a dynamic array’. This approach
includes much copying because the insertion into a list is
more efficient than insertion into an array.

The code that involves reading data from an image
input file and writing it back as an edge image, uses the

6Act\ully, the image descriptor has a standardized Sun-rasterfile format and
must be used for reading picture frames. It contains more information than only
the bounds, however the algorithms use only the bounds information and the
image descriptor can be reduced 10 carrying only that type of data.

Dynamic arrays can be viewn as lists without the insenion operation. As long
as we refrain from inserting elements in an array, dynamic arrays allow often
more efficient implementations than lists do.

standard routines written in C. For Sisal this means that
the main program, that includes 1/O, is written in C.
Sisal code is called from C using the mixed language
interface provided by OSC.

5.0 Benchmarks

The goal of the presented benchmarks is to compare
the best available sequential code generated by C
compiler, and code generated by Sisal compiler. This
includes the usage of best compiler options for both
languages and using the best available compilers: GCC
2.4 for C and OSC 12.8 for Sisal. Generally, the
programming of benchmark loops in Sisal may falsify
the results by introducing unnecessary dependencies or
even removing completely the loop code as part of the
optimization pass. Therefore, the dataflow graphs
generated by the Sisal compiler have been checked with
the IFBrowser tool [MitMur91] before running the
benchmarks.

We have used two kinds of data to run the
benchmarks. On the one hand artificial images generated
outside the benchmark loop have been given to the
algorithm and on the other hand an image has been
loaded from the disk as shown in figure 6. The latler has
been used for comparing the performance on a
sequential machine.

5.1 Comparing the Sources

The Gaussian smoothing and Canny edge detector are
examples of mathematically formulated transformations.
In Sisal the usage of arrays is supported by high-level
constructs and range-checking options at run-time,
There is little array support in C, either at write- or at
run-time. As the constructs have (o be written by the
user and because there is almost no consistency check,
the C-code tends to be longer. The C version of
Gaussian smoothing and Canny operator has 600 lines of
code and the time to write and debug it should be about
a week. The Sisal version is about 300 lines long and it
takes about 2 days to write and debug the code.

The image compilation algorithm has more than 600
lines in Sisal and less than 500 lines in C. The reason for
larger Sisal code is, that most parts of the algorithm
consist of operations on dynamic lists and because of
many if-then constructs which are typically longer and
more complex in Sisal than in C8. This algorithm took
the most time to implement because its mathematical
description is not clear. After several attempts with
different approaches, the Sisal algorithm converged to
the solution presented in [K1:in87] which was the base
of the used C-algorithm,

85:.“1 If Then constructs must always include an Else clause so that the same
number of valnes 1s retumed from the eapression regardiess which condiion is

fullfilled

118

The main conclusion from our experiences is that
Sisal programmer should concentrate on the abstract
mathematical form and use it as the base for
implementing algorithms in Sisal. The existing
algorithms in imperative languages can be used only to
verify the results or to better understand the problem.

Another important advantage of Sisal programs is
that Sisal programs do automatically allocate and
dealiocate data structures. The user is not bothered with
the problems of disappearing memory or dangling
pointers to structures that have been deallocated too
early. This feature shortens much the coding and
debugging cycle.

5.2 Comparing the Performance

Sisal is a language designed for programming parallel
computers. Nonetheless we do measure and compare the
performance on a single-processor computer, because
not only the specdup of a program is important. The
code generated by a language must not only deliver a
good speedup when compared to itself but when
compared to the best available sequential code. A good
sequential performance shows also that the language is
suited for being used on single-processor machines.

For the performance measuring on the single-
processor machine SUN SPARC-Station, we read the
image from figure 6 into the noise reduction and edge
extraction algorithms and did 20 iterations with both
algorithms. Figure 8 shows the measured execution
times and the used memory.

9620kB
7160kB

Sisal 63 sec.
C 70 sec

Figure 8: Comparing execution time and
memory requirements on a single-processor
machine

Figure 8 shows that Sisal code is somewhat better
than its C counterpart. This is insofar astonishing as the
C-code, being heavily used at the Computer Vision
Laboratory, has been already optimized manually and
the code is very good. After looking at the generated IF2
graphs we conclude that this stems from the fact that the
coding of mathematical transformation to C-programs
leads to a loss of information, which the C-compiler is
not able to recover and therefore cannot use for
optimizing code. In our case this means that Sisal is able
to prefetch much more from the innermost loops than
best C-compiler are able to do.

We run the same two algorithms with an artificial
image (requiring no 1/0) on the 4 processor SGI
machine. Figure 9 shows the execution times and the
derived speedup.

1 proc. | 2 proc. | 3 proc. | 4 proc.
Time 317 16.86 | 11.98 |8.26
MFlops 2.63 495 6.97 8.26
Speedup | 1 1.88 2.65 3.14

Figure 9: Measuring performance on a
multiprocessor

The third algorithm is a special one as it represents a
domain of programs that use mostly dynamic list
manipulations and have very little paralielism. The
performance of Sisal code (using arrays to hold lists of
segments) is typically slower by 50%. It depends on
what kind of edge-image we are using, i.e., how much
copying of segments from one image row (o the next one
occurs. However, the third algorithm needs less time
than the first two, so that the performance of the whole
program is similar to C program.

6.0 Summary

We do not want to overestimate the results of the
benchmarks but we can certainly state that the gencrated
Sisal code is competitive, although it is a functional
language with much higher level of abstraction than C
is. On contrary, by providing more information about the
structure of the algorithm instead of mapping it on the
hardware -- which is what C-programmers do -- the
compiler is able to provide better code. It is also possible
to formulate algorithms in Sisal, then look at the
generated IF2 graphs and thus understand how they can
be mapped on the machine efficiently: the structure of
IF2 graphs can be used to improve the structure of a
program in an imperative language.

The Sisal version of the noise reduction and edge
extraction algorithms runs excellently on single
processors and provides good speedup on parallel
machines without any changes to the sources. Together
with the short coding and debugging time, Sisal
outperforms other imperative languages like C.

The lack of true dynamic lists, i.e., structures that
allow efficient element insertion, leads to inefficient
implementation of the image compilation algorithm. For
any algorithm that is mainly based on manipulating
complex data structures, Sisal does not perform
sufficiendy well.

Finally we can say that there are two rcasons why we
cven on a single processor machine should use Sisal
instead of an imperative language: shorter development
time and better performance. Some algorithms may be
still kept in C because they cannot be cificiently
formulated in Sisal. For those algorithms, as well as for
1/0, Sisal provides a mixed language interface.

119

7.0 Acknowledgments

We would like to thank Lawrence Livermore
National Laboratories for running the code on their SGI
parallel machine and especially John Feo, Pat Miller and
Tom DeBoni for helping us with advice and actions.
Also we would like to thank our Profs. A. Kuendig and
O. Kuebler for their support.

8.0 References

[Cann92] David Cann. Retire Fortran? A Debate
Rekindled. Communications of the ACM,
August 1992/Vol. 35, No. 8.

[CannFeo90] David Cann, John Feo. SISAL versus
FORTRAN. A Comparision Using the
Livermore Loops. Lawrence Livermore
National Laboratory Report, 1990.

[Canny86} J.Canny, A Computational Approach to Edge
Detection, 1EEE Trans. Pattern Anal. Machine
Intell., 8(6), pp. 679-697,1986.

[FeoCa0l190] John T. Feo, David C. Cann, Rodney R.
Oldchoeft. A Report on the Sisal Language
Project. Lawrence Livermore National
Laboratory, January 5, 1990.

[Klein87)] F.Klein, Vollstaendige Mittelachsenbeschrei-
bung binaerer Objekie mit euklidischer Metrik
und korrekter Geometrie. PhD thesis, ETH
Zurich, Switzerland, 1987.

[KleKueb87] F.Klein and O. Kuebler, Euclidean distance
transformations and model-guided image
interpretation, Pattern Recognition Letters 5,
1987, 19-29

[McGrSk85] 1. R. McGraw, S. K. Skedzielewski, S. J. Allan,
R. R. Oldehoeft, J. Glauert, C. Kirkham, W,
Noyce, and R. Thomas. SISAL: Sireams and
iteration in a single assignment language:
Reference manual version 1.2. lawrence
Livermore National Laboratories, Livermore
CA, March 1985

S. Mitrovic and St. Murer. A Tool to Display
Hierarchical Acyclic Dataflow Graphs.
Proceedings of the International Conference on
Parallel Computing Technologies, September
1991, Nowosibirsk USSR, World Scientific
Publishing, p. 304-315

[MitMur91]

[Mitrov93] S. Mitrovic. Compiling Sisal for the ADAM
Architecture. TIK-Schriftenreihe Nr. 2, 1993

VDF, ISBN 3 7281 2051 0.

Compilation of Sisal for a High Performance Data Driven Vector
Processor

W. Marcus Miller, Walid A. Najjar, and A. P. Wim Bohm

Department of Computer Science
Colorado State University
Fort Collins, CO 80523

Abstract

Although the dataflow model has been shown to al-
low the exploitation of parallelism at all levels, research
of the past decade has revealed several problems: Syn-
chronization at the instruction level has precluded the
exploitation of locality, and lack of support for effi-
cient aggregate data structure access results in poor
vector and array performance. Many novel Hybrid
von-Neumann Data Driven machines have been pro-
posed to alleviate these problems. Current studies sug-
gest sufficient locality is present in dataflow executlion
to mertt tls ezplottation. In this paper we present a
data siructure for exploiting locality in a data driven
environment: the Vector Cell. A Vector Cell consists
of a number of fired length chunks of data elements.
Each chunk is tagged with a presence bit, providing
intra-chunk strictness and inter-chunk non-striciness
to data siructure access. We describe the semantics
of the model, an insiruction sel and a processor archi-
tecture as well as a Sisal to dataflow vectorizing com-
piler back-end. The model is evaluated by comparing
ils performance to those of both a massively parallel
fine-grain dataflow processor employing I-structures
and a conventional pipelined vector processor. Results
demonsirate the model is surprisingly resilient to long
memory and communicalion latencies, and effectively
erploits underlying parallelism across multiple process-
ing elements.

1 Introduction
The classical dataflow model provides instruction

level support for the exploitation of all forms of pro-
gram parallelism [1]. Classical dataflow architectures

OThis work is in part supported by NSF Grants CCR-
9010240 and MIP-9113268

employed large name spaces coupled with instruction
level synchronization, allowing the processor to toler-
ate and mask unpredictable latency due to memory
access and inter-processor communication [32]. Al-
though the dataflow model has been shown to be a vi-
able contender in the arena of general purpose parallel
architectures [15], research of the past decade has re-
vealed several fundamental implementation problems.
These include:

e A significant number of instructions executed by
classical fine-grain architectures, including color-
ing and re-labeling, represent non-compute over-
head (13, 28].

e Token matching represents a substantial bottle-
neck in the dataflow circular pipeline. Purely fine-
grain execution has precluded the exploitation of
program and data locality, and inherently sequen-
tial threads of code give rise to pipeline stalls due
to matching latency [16, 24, 29, 20].

e Efficient handling of aggregate data structures
has been hampered by costly synchronization at
the data element level. Fine-grain execution and
context switching has precluded the exploitation
of pipelined vector hardware [12, 22].

The recent advent of multi-threaded (33, 30] or hybrid
von Neumann-Data Driven architectures arose from
a desire to combine the most salient features of both
coarse grain von Neumann and fine-grain Data Drive
models. Multithreaded architectures mask memory
latency by taking advantage of fine-grain parallelism
without the overhead of instruction-level synchroniza-
tion inherent in traditional data driven processors.
This is accomplished by increasing task granularity
from one to multiple instructions. The major objec-
tive has been to reduce or eliminate unnecessary syn-
chronization costs through simplified operand match-
ing schemes and increased task granularity [16, 28, 14,

120

25, 7]. Recent studies indicate sufficient locality (both
spatial and temporal) is present in dataflow execution
to merit its exploitation [20]. Exploiting locality may
increase latency as coarser grain instructions require
longer times for multiple inputs to arrive, however re-
sults reported in [23] indicate that for the inner loops
of many scientific codes, a coarse grain model of exe-
cution will not substantially impact latency.

In contrast to multi-threading, we propose to ex-
ploit available data structure locality through the
pipelined execution of coarse grain instructions. In
this paper we present a hybrid data structure, the
Vector Cellor V-cell designed to exploit pip<line par-
allelism in the dataflow model. Task granularity is
increased over classical dataflow machines by allow-
ing more data elements per instruction. As a con-
sequence overall program overhead is significantly re-
duced due to decreased matching operations and the
exploitation of data structure locality. In this model,
vectors are operated on in small fixed size segments
or vector chunks. This segmentation allows for the
non-strict production and consumption of vector el-
ements, thereby decreasing load and store latencies.
In the processor, data is pipelined into vector func-
tional units, thereby exploiting data locality, and syn-
chronization cost is reduced to the matching of vector
handles (pointers). We describe the semantics of this
model, an instruction set and a processor architecture
as well as a dataflow vectorizing compiler back-end.
The model is evaluated by comparing its performance
to those of a massively parallel fine-grain dataflow
multiprocessor employing I-structure memory and a
conventional tightly coupled MIMD vector supercom-
puter (the Cray C90). The results indicate the V-
cell model is capable of a significant reduction in run-
time overhead when compared to a massively parallel
fine-grain multiprocessor. We show that the model
substantially reduces both synchronization (matching
store) and non-compute instruction overhead and sim-
ulation results indicate the model achieves a factor of
2 to 5 reduction in execution time over a fine-grain
dataflow model using 7 times fewer execution units.
Overall, a 40% improvement in floating point rates
when compared to the Cray C90 is indicated. Fur-
thermore, the pipelining of vector chunks makes the
model surprisingly resilient to long memory latencies.

The token is the basic computational mechanism
in the classical dataflow model, however it is not well
suited for the efficient support of large aggregate data
structure accesses. The content of entire array could
be placed on a single token, however this would be
costly in terms of matching store bandwidth and at

odds with goal of tolerating latency through efficient
context switching. If large numbers of data tokens are
injected into the network by the structure store as a
result of an update operation, the matching store will
become saturated. Several approaches have attacked
the problem by reducing or eliminating the copying
of large volumes of data during updates. To reduce
matching store traffic several models have been pro-
posed to increase instruction granularity.

The RMIT [9] CSIRAC 1l dataflow architecture
supports generic functions with specific type coercion
and strongly typed variable length tokens including
vectors. Structure stores are integrated in the process-
ing elements permitting extended structure functions
such as block copying, accumulators and vector op-
erations. The USC Decoupled Multilevel Data-Flow
Execution Model [10] exploits macro actors and vec-
tor instructions. The SIGMA I dataflow machine [31]
has iterative instructions both of the proliferate and
fetch type. The DFC (single assignment C) compiler
only generates the fetch type instructions because of
serious pipeline bubbles caused by the proliferates.

The redesign of the original Manchester Dataflow
Architecture using current supercomputer technology
is discussed in [17). The original processing ring is
supplanted by a modified processing ring in which all
subsystems operate synchronously in pipelined mode.
Matching store and node store operations are per-
formed in parallel, and a multi-channel instruction dis-
tribution unit feeds instruction packets to a six func-
tion pipelined ALU.

In [34] Multi-Threaded Vectorization is used to
broaden the range of vectorizable code while retain-
ing conventional vector machine efficiency. The pro-
posed architecture may be viewed as a hybrid between
a vector processor and a VLIW machine.

The remaining paper is organized along the follow-
ing lines: The semantics of our hybrid model are pre-
sented in Section 2 along with the instruction set, pro-
cessor architecture and compiler back-end. A compar-
ative performance evaluation in which we compare the
performance of our model against a massively paral-
lel dataflow architecture employing I-structure mem-
ory is reported in Section 3. The performance of our
model relative to that of a conventional pipelined vec-
tor supercomputer is reported in Section 4. Section 5
concludes the paper.

2 The Vector Cell Model

The I-structures [2] model is ideally suited for ac-
cesses where the production and consumption pat-

121

terns of data structures are highly irregular and in- we determine optimal chunk lengths in terms of mea-

deterministic. However, when the patterns are highly sured input latency, pipeline startup delay, and total

regular, as in most vectorizable scientific codes, the program execution time.

I-structure model suffers from an inordinate amount vt e

of overhead: its fine grain synchronization, at the ele- Barw 0

ment level, prevents the efficient exploitation of data l et

structure locality and the pipelining of vectorizable Metchog Sure

operations. To enable the exploitation of locality and 1

provide for non-strict pipelined execution semantics, Toben Bark 0 I

we introduce a hybrid data structure consisting of a

number of fixed length chunks of data elements. We —eEm—— p——

refer to this structure as a Vector Cell or V-cell. As Sor | Ve o Vs Psines

opposed to I-Structures, where each individual data I I

element is tagged by a presence bit, only chunks are

tagged by presence bits in V-cells. Access to data o Processor mode! b- Memory model

is therefore strict at the intra-chunk level and non-

strict at the inter-chunk level. This allows for the Figure 2: Processor and memory models

exploitation of vector consuming and producing oper-

ations that take chunks as input and pr. '.:ce scalars The vector cell storage model is coupled with a

or chunks as results. Vector cells retain the advan- pipelined load/store architecture, where all instruc-

tages of traditional I-structures: inexpensive context tions except load and store types operate on vector or

switching and synchronization at the instruction level scalar registers. The architecture of a processor sup-

allows long memory latencies to be masked. V-cells porting the V-cell model is depicted in Figure 2. The

add the advantage of providing a mechanism by which vector processor consists of two basic stages: a match-

data structure locality may be exploited using vector ing stage, containing a token matching store, and an

instructions on pipelined vector hardware. The affects execution stage. The execution stage is similar to a

of this mechanism are the reduction of matching store traditional vector processor containing a scalar and a

and network communication costs. This model may vector execution unit. The vector execution unit con-

be viewed as a hybrid between traditional von Neu- sists of multiple pipelined functional units, load/store

mann vectors and the I-structure model. A presence pipelines and a vector register set. The operations fol-

bit associated with each chunk is set only when all the low the basic dataflow execution: tokens destined to

elements of that chunk are available in the structure the same operation, vector or scalar, are matched in

store. Read access to a chunk is split-phase, as with the matching stage. When all the input tokens are

I-Structures, it is deferred until the presence bit is set. available, an instruction packet is formed and queued

If we let k denote the vector chunk length, an array of for execution. A token consist of a tag identifying its

n elements can be viewed as a set of [n/k] chunks. context and a data field. In scalar tokens the data field

contains the actual data value while in vector tokens it
I-structures v-Cells Strict Arrays contains the identifier of the vector register containing
the vector operand.
- P —

non-strict

- 2.1 Instruction Set Architecture

strict 2% Vector elements in the V-cell model are stored in

=1 L<x <n k=n adjacent locations in the structure store and are ac-

cessed by a structure store handle. In the processor,

a chunk element resides in a vector register. A chunk

Figure 1: I-Structures, V-cells and strict arrays handle is either a structure store pointer consisting of

a base address and a displacement or a vector regis-

By varying the chunk length, the V-cell model can ter identifier. In the current implementation, vector

span a continuum from [-structure cells on one ex- cell memory consist of an allocation directory and a

treme, where k = 1, to traditional strict arrays, where linearly addressable memory. Directory entries are in-

k = n, as shown in Figure 1. By measuring the ef- dexed by chunk address and consist of a chunk length
fect of chunk length on access latency and throughput descriptor and a set of presence bits.

122

Vector Operands | Result Function

Opcode

RSSV offset,@a handle of V; | Read a single chunk from V-store into V;, possibly deferred.

WSSV offset,@a handle of V; | Write vector chunk in V; to V-store at address @a, set presence bit,

ADRV Vi,V; handle of V; | Add vector V; to Vj;, result is stored in V.

SBRV Vi, V; handle of V; | Subtract vector V; from V;, result is stored in V;.

MLRV ViV, handle of V; | Multiply vector V; and V;, result is stored in V;.

DVRV ViV, handle of V; | Divide vector Vi by V;, result is stored in V;.

SUMRV Vi.R; R; + HV") Sums the elements of V;, then adds result to scalar in register R,.
PRDRV Vi,R; Ry« H(Vg) Forms product of elements of V;, then multiplies result by R,.

Table 1: V-cell vector instruction set

Vector instructions take a combination of vectors
and scalars as input, producing a vector or scalar re-
sult. The vector instruction set is summarized in ‘Table
1. Arithmetic vector instructions that do not return a
scalar result return a vector chunk handle which is the
identifier of the vector register containing the result.
In addition to the arithmetic instruction types listed
in Table 1, variants of the ADDV, SBRV, MLRV, and
DVRY operations are supported in which one operand
is a vector register and the other a scalar value.

2.2 Compilation and Vectorization Strat-
egy

The Manchester Dataflow Machine compiler [3] was
modified to generate the appropriate data driven vec-
tor code for the V-cell model from Sisal programs [18].
We refer to this as Vector Dataflow Code or VDC. The
approach taken by the vectorizing compiler is straight
forward: the operations within innermost Sisal ForAll
loops are vectorized with no vectorizing optimizations
or loop unrolling.

To illustrate the production of vector dataflow code
a simple example is presented. Code produced by
our vector compiler for the computation of the in-
ner loop of Livermore Loop 3 is illustrated. The
code is for the computation of a scalar inner product
Soi—y Vi(i) * Vy(i). Figure 3.a shows the Sisal source
for this kernel and Figure 3.b depicts the resulting
vector dataflow code. V-cell execution is based on
the matching of vector handles, not individual data
elements. Vector elements are pipelined to and from
vector registers from V-cell memory and all arithmetic
vector instructions operate exclusively on vector reg-
ister operands.

In Figure 3.b the PRLV vector instructions are
used to produce a stream of ([n/k] — 1) vector han-
dles (double reals in the case of the RSSV targets
and boolean for the BRR operator) indexed with
k,2k,3k, ..., where k is the vector chunk length. The

read structure store vector instruction (RSSV) is used
to read a single vector chunk from the structure store
and return a vector register handle to the target in-
struction. The SUMRY instruction sums the elements
in the vector chunk referenced by its right input han-
dle, adds this to the scalar value at its left input and
increments the index by k. The BRR instruction sends
its left input to the right output if its right input value
is true, otherwise the result is sent to the left output.

Translation to VDC is accomplished in two phases:
lexical analysis, parsing, and translation to IF1 (In-
termediate Form 1) are performed by the Optimiz-
ing Sisal Compiler front end. Vectorization analysis
and code generation occurs in the final phase. During
translation to VDC, the VDC compiler only attempts
to vectorize inner most ForAll loop bodies.

3 Performance Compared to a Mas-
sively Parallel Fine Grain Dataflow
Processor

In this section we evaluate the performance of the
V-cell model relative to a massively parallel fine grain
dataflow processor. The evaluation is carried out in
two stages: in the first we compare the execution of
a data driven vector multiprocessor to that of a mas-
sively parallel fine-grain dataflow architecture employ-
ing I-structures. The objective is to evaluate the ad-
vantages derived from exploiting data structure local-
ity, and pipelined execution in the V-cell model. In the
second stage we evaluate the resilience of both models
to increases in network and memory access latencies.
We assume a worst-case allocation of tasks which is
modeled by imposing a latency cost of d cycles to ev-
ery token.

Objectives. In this section we evaluate the perfor-
mance of data driven vector execution relative to a

123

8x @f
-~ VR N
RSV RSSV | = VR2 |
- R 4 T
type double = double_real; \ '.;Z._...-.-
type OneD = array(double]; k e caaan .4'"",;""“3' 'RL
function loop3(n:integer; X,Z: OneD returns QMR ... JvrRe

for 1 in 1,n
Q:= X[1] * Z[1]
returns value of sum Q

end for
end function

b.

Figure 3: Data driven vector code to compute inner loop of L3

massively parallel fine-grain dataflow execution using
I-structures. A vector processor is significantly more
complex than u fine-grain dataflow processor, but be-
cause it can exploit data structure locality, fewer pro-
cessors are needed. The first objective is to evalu-
ate the tradeoff between processor complexity and the
number of processors. Since the objective of both the
V-cell and the I-structure model is to mask the effects
of memory access and inter-processor communication,
it is also important to evaluate the effects of additional
network latency on the execution of both models.

Benchmarks. A total of twenty three benchmarks
were selected for comparisons consisting of: ten from
the Lawrence Livermore Loops [19, 11}, six bench-
marks from the Purdue benchmarks [26, 27), and four
kernels from the Linpack routines [8]. Three additional
programs, Simple, Bmk11a, and Hilbert codes were also
benchmarked. Refer to Table 2 for benchmark statis-
tics. Throughout the rest of the paper, Li and Pj are
used as abbreviations for the Livermore and Purdue
benchmarks i and j respectively.

All benchmark programs are written in Sisal. Data
driven vector code was generated by the VDC back-
end to the Manchester Dataflow compiler. Fine grain
codes were generated by the Manchester Dataflow Ma-
chine compiler {4]. Both the Manchester compiler and
our vectorizing dataflow compiler were configured to
generate code for non-strict structure store accesses.

Model Instruction Issue [Result
scalar fadd/fsub 1 3
(MC88110) | fmult 1 3

fdiv 13 13
vector faddv/fsubv 1 6
(Cray C90) | fmultv 1 7

fdivv (reciprocal approx.) 1 20

Table 3: Scalar and vector instruction latencies

Methodology. Both models were simulated on a
cycle-level discrete-event simulator with a variable
number of processors. The Cray C90 was used as a
reference for all vector instruction latencies and the
Motorola MC88110 [21] for all scalar instructions (Ta-
ble 3). Both massively parallel and vector codes were
run with the same matching store parameters and la-
tencies: 1 cycle for a failing match and 2 cycles for
a successful match (this corresponds to the matching
times in the EM-4 [29]).

Minimal execution time and cost. The objective
of this experiment is to evaluate the tradeoff between
the complexity of a processor and the number of pro-
cessors. We assume an ideally optimal allocation of
tasks to processors. This is modelled in our simula-
tion by setting a constant memory access time and the
cost of inter-processor communication to zero.

In both models, the benchmarks were run with in-
creasing numbers of processors until no speed-up was

124

Benchmark Sisal Source Lines | Problem Size | Description

Livermore Loops 426 1000 | Scientific/Numeric Kernels

Purdue Benchrnarks 362 100-1000 | Scientific Kernels

Linpack Routines 212 1000 | Linear Algebra

Simple 1555 10x10 { Hydrodynamics

Bmklla 1007 64 | Particle Transport

Hilbert 567 200x200 | Hilbert Matrix/Linear Algebra
Table 2: Benchmarks

observed. This minimum execution time is denoted
by Tymin in the fine-grain model and Tymin in our
hybrid model. The results of these simulations are
depicted in the histograms of Figures 4 and 5. All
timing measures are in machine cycles, the subscripts
f and v refer to fine-grain and vector executions re-
spectively. Ty (Tyy) is the execution time of each
benchmark on a single processor. N; (N,) indicates
the number of processors at which the minimum ex-
ecution time Tymin (Tymin) was reached and FPR;
(FPR,) is the floating-point rate in operations per
cycle in the fine-grain (hybrid vector) model. Figure
4.a plots the ratio of fine-grain single processor ex-
ecution times and V-cell single processors execution
times (Ty,/T,1) for each benchmark. Figure 4.b de-
picts the ratio of fine-grain minimum execution times
and V-cell minimum execution times (Tymin/Tvmin)
for each benchmark. The relative number of proces-
sors required to achieve an execution time of Tinin is
shown in the histogram of Figure 5.a, and the floating
point rates (FLOPS/cycle) attained by each model
at Trmin are reported in Figure 5.b.

A vector chunk length of k = 32 was used in V-cell
model simulations. This chunk length does not neces-
sarily coincide with the minimum execution time for
all benchmarks, on the average the minimum occurs
between 32 and 256 elements per chunk for a problem
size of 1000.

The results from these experiments can be summa-
rized as follows:

o Reduction of run-time overhead. The fine-grain
model incurs a run-time overhead in synchroniza-
tion (matching) and instruction scheduling for ev-
ery scalar operation. By exploiting data structure
locality the vector model eliminates a large frac-
tion of this overhead. In fact, the vector model
was capable of processing twice as many floating-
point operations per cycle (FPR) as the fine-
grain model: 0.38 floating point operations/cycle
versus 0.17. The average processor utilization
with unlimited resources was 10% in the fine-
grain model and 28% in the vector, a threefold

ratio. At minimum execution times, the vector
model is, on the average, 2.63 (2.21 weighted by
total cycles) times faster (Tymin/Tymin) than the
fine-grain one. The total number of execution cy-
cles (Th) is 5.56 (2.25 weighted by total cycles)
times larger in the fine-grain model than in the
vector model.

e Ezplotting data structure locality. On average, the
fine-grain model required 72 processors to reach
maximum speed-up while the vector execution re-
quired only 10. This means that without taking
into account the increased cost of the intercon-
nection network (which grows at least as nlogn)
it takes about 7 times as many fine-grain scalar
processors to outperform the vector multiproces-
sor.

Figure 6 shows the hybrid vector execution time pro-
files for some of the benchmarks. Note that the curves
become flat between 4 and 32 processors. While these
results are to be expected, our objective is to quantify
the degree to which a chunked vector access strategy
can enhance performance in a data driven model.

Tolerance of network latency. The objective of
this experiment is to evaluate the resilience of both
models to increases in network and memory access la-
tencies. Since network latency increases as the number
of processors increases, it is important to evaluate the
effect of increased latency on both models. We model
increased latency by imposing a fixed cost of d cycles
to every token. This implies that all accesses to the
structure store and all inter-processor communication
would incur this delay.

The effects of the added delay on the average ex-
ecution time of the benchmarks (assuming unlimited
resources) is shown in Figure 7 with d increasing to
128 cycles: The effect is minimal on the vector model
whereas the average total execution time of the fine-
grain model increases linearly with increased latency.

The ratio of Tj,;n for each model for a network ac-
cess delay of d = 128 (worst-case) i1s depicted in the

125

9Cl1

9[242/8d 0T ut s9jel juiod Jutjeoyy pue Yy ge siossavolrd Jo aquinu Jo oijey g aunfrg

MAYVEON

HAVPRHON IR
WO We e o Wp wup vid M W UMLNA G R O W R AW

b 4

%
Mg wWe e 2@ e yd gl pd pf W DZUOCU R B O W B A Y
7 1

T]"I'l'lll”|l']

i
(OVEI0S W Ui} 18 BN My Do) Hdd
T
L

WS i) 18 GEINOS))0 TN)8 BIER)

i i I A T i i U VS W T G VU SO0 WD WY WO Y W { 1.

sawIly (uoIpNoaXa wnwituiw) “wr pue (1ossavoid a|3uis) 1 jo orjey :p auniyg

" i A P i A kb dod U W WO SV N UO0 WY ST A PO W | A PO W U Y WO SO VT GU G WS T WOV S W SV U W

MNVON D MIVPRON W
AOwe wn e oy mp wup oyl W O M WU R & R BN NOowon W mup 3 wp wup yid W od 20 M N0U N B U MR A
v ¢ T ¥ l Y T |
o - ¥
4 J
H 402 E
H q¢ 4
&7 1
”" 3
i |]
& 40
L 49
s B
- qs
—— L LSNOBE] WA 8 SO T SRULL VDS J Mty S 0 IR

o

e L

[3737

pue /¢ si1030e) uorjepriSop Aoudje| ssa0Y 6

JRIVPSIONIS
Mo W e 2P W wue v MW NS e B LN B

L2l

aV

iy

|! Y v r—y T '-Il Y TTrTTY]w
+

P W VN YT G VN T W W W S WY W WO {

821=p Ae[op JIOM}aU ® 10} SOWII) UOIINDD
-Xd Wnwiiuiu [[99-A pue ureid-suy jo onyey :g aandiy

MV IINIG
(ORI RN RURCT U TN B R/ B I

W e W e S W Wue

¥ T v A | v l T l | rl ' l

j I I | 4
b « 8
o LRl
S 4w
o R
o - &
3 4%
= W 03P A DO UBYORN S WINUA 8 SR - ™
" L " i " A A i U T VA S VY WO W WU YO VG W S0 W U

LS L T

(s931nosas pmnuujun) p AoudR[SS300® JO UOIIOIUNY B S

(s0pAz) Arume seeoy
0z [) (] ey o 0z 0
: ! - — B STt o esr e
o p__—-_,.._...._._._._._..___,‘__,_‘,_.,_,,. 1
[1

SYIBWIOUIQ [[® 10] JUIl} UOIINDIAXD dFeloAy :1 amnBi

g

g

$10553)
-01d jo 19quINU SNSIIA SUWIT} UOTINDAXA [[90-A 9 aanBiy

ooz Y201 S 133
Y T T
- +
.
Berrensen ¥ WIURNON o
L
b
- El.ﬂﬂ"d
— £ ONPINg
b -.®- [000Y
- ¢ do0y
—o- Zdo07 - PIAG WN
2 N s A " A N "

904D 1988001

000SY

histogram in Figure 8. The factors Ay and A, mea-
sure the relative degradation in performance as a re-
sult of the added latency. They are defined by:

A= Tworst—case = Thest—case

Tbut—can

Figure 9 compares A; and A, for each of the bench-
marks in the test suite.

To summarize, the results of latency tolerance exper-
iments indicate:

o Because of the added latency, the average fine-
grain execution time is degraded by 74% while the
V-cell execution time is degraded by only 10%.
This is due to the significantly lower number of
tokens that are generated and communicated in
the vector model relative to the fine-grain one.
Further, the degradation in the vector model is
much more consistent, i.e has a lower variance,
than in the fine-grain model.

e For 10 of the benchmarks, there was no or very
minimal (< 10%) degradation in execution time
due to longer latencies. Degradation in vec-
tor mode performance was observed to occur
when the vectorized inner loop bounds were much
shorter than the vector chunk length (e.g. L4,
L21). Little reduction in matching overhead oc-
curs in this case as the resulting vector chunk
lengths were not long enough to substantially
reduce the token traffic. Degradation in fine-
grain performance was observed to be most sig-
nificant in those programs containing reduction
operations. Reduction operations sequentialize
segments of the code, greatly reducing the avail-
able parallelism in the underlying program. In
these cases program execution becomes limited
by matching store bandwidth and the majority of
execution units idle. Latency cannot be masked
by context switching due to an insufficient num-
ber of parallel threads.

For programs in which the underlying parallelism
was sufficient to sustain multiple execution threads,
both the fine-grain and vector models were able to ef-
fectively mask latency. For inherently sequential code
segments, the V-cell model was able to achieve greater
performance than the fine-grain model. These results
demonstrate that a vector based dataflow execution
model suffers little from added communication and
memory latency and is very resilient to increases in
these factors. This is primarily due to a dramatic re-
duction in data memory token traffic and the exploita-
tion of data structure locality.

4 Performance Compared to a Tightly
Coupled MIMD Vector Processor

Objective. In this section we evaluate the perfor-
mance of data driven vector execution relative to the
Cray C90 architecture. The non-strictness of data
structure access in the V-cell model can allow the
masking of memory access latency: a chunk can be
read before the whole array is written and therefore an
efficient pipelining of producer/consumer codes is pos-
sible. In the Cray code this synchronization is most
often done at the level of the whole array. On the
other hand, the Cray C90 compiler is much more ma-
ture and sophisticated than our vectorizing back-end
and is capable of vectorizing a higher fraction of op-
erations. The objective of this section is to evaluate
this tradeofT.

Benchmarks. We employ the same set of twenty
three benchmarks in this comparative evaluation as
was used in Section 3.

Methodology. The Cray C90 versions of these
benchmarks were compiled using the Optimizing Sisal
Compiler (OSC version 12.1) [6] with the following op-
timizations enabled: traditional scalar optimizations
such as record fission, common subexpression elimina-
tion, constant folding, dead code removal, function in-
line expansion, loop fusion and optimization of the re-
sulting dataflow graph through update-in-place analy-
sis. Loop unrolling was disabled for these trials as our
vector dataflow compiler does not perform this opti-
mization. By employing highly aggressive optimiza-
tions at the intermediate code stages in conjunction
with update-in-place analysis, OSC can produce code
comparable in performance to FORTRAN on the Cray
C90 and Cray Y-MP [5].

The vector dataflow compiler back-end we devel-
oped for V-cell code generation is based on an earlier
version of Sisal compilation technology (Sisal — IF1
— VDC) than the Cray Sisal compiler (Sisal — IF1
— IF2 — C/FORTRAN), hence our compiler does
not provide many of the scalar optimizations that the
Cray compiler performs at the IF1/IF2 stages. De-
gpite this, performance of our model compares favor-
ably with that of the Cray C90.

128

MFLOPS

MFLOPS

0 YT T T YT T T T T T T T T | B T

Cray C90 - Single Processcr mmmm
VCel . Single Procassor 88Im

8o [4
700 |- .
60 |- R
80 | _

1213 K P18 Bnoit2R1pt p2plpips pid dmm dax dec dmx em bmk N
BENCHMARK

Figure 10: Single processor Cray C90 and V-cell performance

1400 LS L AR A B ABBRL AR LB T v v v Al v A v v AJ
Cray CO0 - Tmin s
VCel - Tmin ®eam

1213147 18 W HOH2R1 pt P pA pd pd pi4 dnm dax dec dmx sm bmk M
BENCHMARK

Figure 11: Multiprocessor Cray C90 and V-cell performance

129

The data driven vector code was executed on a
cycle-level, discrete-event simulator that is config-
ured with the same number of functional units and
load/store pipelines as the Cray C90 and with the
same igsue and operation latencies. A chunk length
of 128 elements, corresponding to the C90 vector reg-
ister length was used.

Benchmark | Cray C80 V-Cell
L1 8 16
L2 12 16
L3 2 16
L4 2 8
L7 12 16
L8 16 16
Lo 2 16
L10 16 16
L12 2 12
L21 16 16
P1 16 16
P2 16 16
P3 12 16
P4 8 8
P8 1 16
P14 16 16
DMM 16 16
DAXPY 2 12
DSCAL 2 16
DMXPY 12 16
SIMPLE 4 16
BMK11A 1 16
HILBERT 4 12
Ar. Mean 9 15

Table 4: Number of vector processors at maximum
performance

Single Processor Execution. Results of experi-
ments conducted to compare the performance of sin-
gle processor executions are shown in the histogram
of Figure 10. These plots compare the maximum
MFLOPS rate attained by each architecture employ-
ing a single vector processor for each benchmark. For
benchmarks restricted to execution on a single vec-
tor processor, the Cray C90 execution was superior
to that of the V-cell model. The V-cell model only
outperformed the Cray C90 on 3 of the 23 test codes,
attaining an average performance of 67 MFLOPS. By
contrast, the C90 averaged 122 MFLOPS over the test
suite, or about 45% higher floating point rates in 48%
fewer machine cycles the our data driven model. Note
that the V-Cell performance of Livermore Loop 21 is
significantly better than that of the C90. Loop 21 is
a triple nested loop, in which the inner loop forms
the sum reduction of the product of two arrays. The

inner loop bounds are quite short (25 elements), mak-
ing the resulting vector code very inefficient for the
C90s relatively longer vector registers. V-Cell non-
strict, inter-chunk semantics in tandem with run time
(demand driven) scheduling allows for relatively high
utilization of processor resources when short vectors
are processed.

Multiple Processor Execution. Results of exper-
iments conducted to compare the performance of mul-
tiple processor executions are shown in the histogram
of Figure 11. These plots compare the maximum
MFLOPS rate attained by each architecture employ-
ing multiple vector processor for each benchmark. For
multiple vector execution units, these results indicate
the V-cell model compares very favorably with the
Cray C90 execution. The Cray C90 outperformed the
data driven model in only 1 of the 23 benchmarks, at-
taining an average performance of 191 MFLOPS (53
MFLOPS weighted by the total number of machine cy-
cles in the test suite) across the test suite. Although
the Cray C90 supports 16 concurrent vector processing
units, program partitioning and data allocation, cou-
pled with communication overhead and barrier syn-
chronization delays can actually cause performance to
fall as the number of processing units is increased.
The average number of processors required to obtain
maximum performance on the Cray C90 for the test
suite was 9. Refer to Table 4 for the number of vector
processors at which minimum execution time occurred
for each benchmark. Results of V-cell simulations in-
dicate an overall performance of 361 MFLOPS (289
MFLOPS weighted by the total number of machine
cycles in the test suite) or about a 47% advantage in
floating point rates over the Cray C90 in 72% fewer
machine cycles. The average number of processors re-
quired to obtain maximum performance in V-cell ex-
ecution was 15.

The Cray C90 performed well on kernels contain-
ing low degrees of parallelism and those codes that
are easily vectorized and chainable. For example, the
C90 execution outperforms the V-cell model in Loop 3
which is an inner product of arrays of 10,000 elements.
In this code the shortest execution time on the C90 is
achieved with just two processors, this time is only 5%
better than the single processor one. Our model was
superior for codes involving reduction operations and
kernels containing parallelism of degree greater than
two. This may be attributed to the fact that in the
V-cell model, load/store pipeline latency is effectively
masked by the vector units ability to switch between
a small pool of available vector chunks when elements

from the current vector stream block. Moreover, in
most vectorizable codes the ability to overlap floating
point operations, memory latency and loop overhead
results in substantial performance gains. The execu-
tion of both scalar and vector instructions may pro-
ceed in parallel in our model, allowing most of the
non-compute loop overhead to be covered by actual
floating point computations (for example, in the code
of Figure 3.b, the execution of the scalar BRR instruc-
tion may be overlapped with the execution of the vec-
tor SUMRYV instruction for all but the last chunk it-
eration).

Overall, V-cell model performance was superior to
the Cray C90, Notably:

e Because of its non-strictness, the V-cell model
can allow a more efficient pipelining between vec-
tor operations. This is especially true in pro-
ducer/consumer type codes where the consumer
code could start execution as soon as the first
chunk is available. Further, when the produc-
tion and consumption of data elements are out-
of-order, the V-cell model can still provide the
pipelining.

e The asynchronous nature of dataflow execution
permits the dynamic exploitation of asynchronous
instruction level parallelism over the set of vec-
tor and scalar functional units. Even though the
Cray architecture can exploit parallelism among
vector and scalar operations, a significant advan-
tage was observed in loop bodies that exhibit even
moderate degrees of instruction level parallelism.

e Although the granularity of instructions in our
model is considerably larger than in classical
dataflow models, the overhead associated with
the run time scheduling of V-cell instructions on a
single vector processing unit appreciably degrades
floating point performance. In addition, the qual-
ity of the vectorized code in the Cray version of
the benchmarks was always better or equal to
that obtained from the VDC compiler back-end
resulting in superior performance on the part of
the Cray when executed on a single vector pro-
cessor.

e The Cray C90 supports the chaining of vector in-
structions. The V-cell results presented in this
section do not chain vector results.

5 Conclusion

In this paper we have presented and evaluated a
data structure model designed for the exploitation of
locality in the data driven paradigm. The Vector Cell
or V-cell incorporates vectors in a hybrid dataflow/von
Neumann model: vectors are stored in fixed length
chunks across interleaved memory, and each chunk is
tagged with a presence bit. The access to these vec-
tors is non-strict at the chunk level but strict within
a chunk. The advantage of this model over a con-
ventional pipelined vector processor is that memory
latencies are effectively masked by the split phase pro-
duction and consumption of data structure elements.
Compared to a massively parallel fine-grain dataflow
multiprocessor, our model is able to effectively exploit
data structure locality: In our model data is pipelined
into vector functional units, thereby exploiting data
locality, and synchronization cost is reduced to the
matching of vector handles. This model can be seen
as a hybrid strict/non-strict data structure and also as
a hybrid between traditional vectors and I-structures.
A set of vector instructions has been defined for this
hybrid model, employing pipelined load, store and
arithmetic units as well as a set of vector registers.
A data driven architecture model for the processor
and structure store supporting pipelined vector oper-
ations has been described. The performance of our
hybrid model has been compared to both a massively
parallel fine-grain dataflow architecture employing I-
structure memory and a pipelined vector supercom-
puter through the use of 23 benchmark codes.

In compating the V-cell model to a massively paral-
lel fine-grain dataflow multiprocessor a three fold av-
erage speed-up is measured. The number of processors
required to achieve minimum execution time is seven
times smaller for our model than it is for the fine-grain
model. Also, the total number of execution cycles is
reduced by a factor of five due to the elimination of
a large amount of synchronization (matching store)
overhead. Both the fine-grain and vector hybrid mod-
els are able to effectively mask latency in programs in
which the underlying parallelism is sufficiently large.
The V-cell model exhibits extreme resilience to ad-
ditional network and memory latencies. Overall the
hybrid vector model suffers an average degradation of
10% on its execution time versus 74% for the fine-
grain model, when a high access latency for every
token crossing a processor or store boundary is as-
sumed. A significant degradation in fine-grain per-
formance was observed in programs where reduction
operations determine the behavior, as these reductions
limit the available parallelism. By contrast, in the vec-

tor model, vector operations effectively exploit data
structure locality in the reduction operations through
pipeline parallelism.

The results of benchmarks executed on the Cray
C90 indicate that for equivalent codes, on the aver-
age 40% higher floating point rates are possible, with
a 70% net reduction in execution cycles when V-cell
operations are employed. This reduction is mostly at-
tributable to the data driven models ability to more
eflectively schedule small tasks at run time in concert
with non-strict data structure access semantics. This
performance advantage was still evident even though
the quality of the Cray vector code is superior to that
produced by our vector dataflow compiler.

References

[1]) Arvind :nd R.A. lannucci. Two fundamentals issues
irn multiprocessors: the data-flow solutions. Techni-
cal Report LCS CSG 226-6, Laboratory for Computer
Science, MIT, Cambrige Massachussett, May 1987.

[2] Arvind, R. S. Nikhil, and K. K. Pingali. I-Structures:
Data Structures for Parallel Computing. MIT Com-
putation Structures Group Memo 269, Laboratory for
Computer Science, MIT, 1987.

(3] A. P. W. Bohm and J. R. Gurd. Iterative instruc-
tions in the Manchester dataflow computer. [EEE
Trans. on Paralle and Distributed Systems, 1(2):129-
139, 1990.

[41 A. P. W. Béhm and J. Sargeant. Code optimization
for tagged-token dataflow machine. IEEE Trans. on
Computers, 38(1):4-14, 1989.

[5] D. C. Cann. Retire Fortran? A Debate Rekindled.
Communications of ACM, 35(8):81-89, August 1992.

[6} D. C. Cann. The Optimizing Sisal Compiler: Version
12.0. Technical Report CS-92-114, Colorado State
University, 1992,

[7] D E. Culler, A. Sah, K. E. Schauser, T. von Eicken,
and J. Wawrzynek. Fine-grain parallelism with
minimal hardware support: A compiler-controlled
threaded abstract machine. In Int. Conf. on Archi-
tectural Support for Programming Languages and Op-
erating Systems, 1991.

8] J. J. Dongarra. Performance of Varions Comput-
ers Using Standard Linear Equations Software in a
Fortran Environment. Computer Architecture News,

16:47-69, March 1988,
9] G K. Egan, J. J. Webb, and A. P. W. Bchm. Some
Architectural Features of the CSIRAC I Data-Flow
CComputer. Prentice-Hall, 1991.
P. Evnpidou and J.-1.. Gaudiot. The U'SC Decoupled

Multilevel Data- Flow Erecution Model. Prentice-Hall,
1591

(11]

(12]

(13]

(14]

(18]

(16]

(17)

(18]

(19]

(20]

(21]

(22)

(23]

(24]

132

J. T 0. The Livermore Loops in Sisal. Techni-
cal Report UCID-21159, Computing Research Group,
Lawrence Livermore National Laboratory, Livermore,
CA 94550, August 1987.

J.-L. Gaudiot. Structure handling in data-flow sys-
tems. JEEE Trans. on Computers, C-35(6):489-502,
June 1986.

J.-L. Gaudiot and W. A. Najjar. Macro-actor execu-
tion on multilevel data-driven architectures. In Proc.
of the IFIP Working Group 10. 3 Working Conference
on Parallel Processing, Pisa, Italy, 1988.

V. G. Grafe and J. E. Hoch. Implementation of the
Epsilon dataflow processor. In Proc. of the Tweniy-
third Ann. Hawaii Int. Conf. on System Sciences,
pages 19-29, 1990. volume 1.

J. Hicks, D. Chiou, B. Seong Ang, and Arvind. Per-
formance Studies of Id on the Monsoon Dataflow Sys-
tem. Journal of Parallel and Distributed Computing,
18:273-300, 1993.

R. A. lannucci. Toward A Dataflow/Von Neumann
Hybrid Architecture. In Int. Ann. Symp. on Com-
puter Architecture, pages 131-140, 1988.

Y. Inagami and J. F. Foley. The Specification of a
New Manchester Dataflow Machine. In Proceedings
International Conference on Supercomputing, 1989.

J. McGraw, S. Skedzielewski, S. Alilan, R. Oldehoeft,
J. Glauert, C. Kirkham, B. Noyce, and R. Thomas.
SISAL: Streams and Iteration in a Single Assignment
Language: reference manual version 1.2. Manual M-
146, Rev. 1, Lawrence Livermore National Labora-
tory, Livermore, CA, March 1985.

F. H. McMahon. Livermore FORTRAN kernels: A
computer test of numerical performance range. Tech-
nical Report UCRL-53745, Lawrence Livermore Na-
tional Laboratory, Livermore, CA, December 1986.

W. M. Miller, W. A. Najjar, and A. P. W. Bohm. A
quantitative analysis of locality in dataflow programs.
In 24" Int. Symp. on Microarchitecture (MICRO-24),
Albugquerque, NM, pages 46~53, Nov 1991.

Motorola. Second Generation RISC Microproces-
sor. Motorola, INC., 1991. User's Manual,
MC88110UM/AD.

W. A. Najjar, A. P. W. Bohm, and W. M. Miller. A
quantitative analysis of dataflow program execution -
preliminaries to a hybrid design. Journal of Parallel
and Distributed Computing, 18(3), July 1993.

W. A. Najjar, W. M. Miller, and A. P. W. B6hm. An
analysis of loop latency in dataflow execution. In Int.
Ann. Symp. on Computer Architecture, Gold Coast,
Australia, May 1992.

G. M. Papadopoulos and D. E. Culler. Monsoon: an
explicit token-store architecture. in Int. Ann. Symp.
on Computer Architecture, June 1990.

(25]

(30]

(31]

(32]

[33]

(34]

G. M. Papadopoulos and Kenneth R. Traub. Mul-
tithreading: A revisionist view of dataflow architec-
tures. In Int. Ann. Symp. on Computer Architecture,
June 1991.

J. R. Rice. Problems to test parallel and vector lan-
guages. Technical Report CSD-TR 516, Purdue Uni-
versity, 1985,

J. R. Rice. Problems to test parallel and vector lan-
guages - 2. Technical Report CSD-TR 1016, Purdue
University, 1990.

S. Sakai, Y. Yamaguchi, K. Hiraki, Y. Kodama, and
T. Yuba. An architecture of a data-flow single chip
processor. In Int. Ann. Symp. on Computer Architec-
ture, pages 46-53, May 1989.

S. Sakai, Y. Yamaguchi, K. Hiraki, Y. Kodama, and
T. Yuba. Pipeline optimization of a dataflow machine.
In J-L. Gaudiot and L. Bic, editors, Advanced Top-
ics in Data-Flow Computing, pages 225-246. Prentice
Hall, 1991.

K. E. Schauser, D. E. Culler, and T. von Eicken.
Compiler-controlled multithreading for lenient paral-
lel languages. In J. Hughes, editor, Conf. on Func-
tional Programming Languages and Computer Archi-
tecture, 1991.

S. Sekiguchi, K. Hiraki, and T. Shimada. Efficient vec-
tor processing on a Dataflow supercomputer SIGMA-
1. In Int. Conf. on Parallel Processing, 1988.

B. Smith. The end of architecture (keynote address).
In Int. Ann. Symp. on Computer Architecture, May
1990.

K. R. Traub. Multithread code generation for
dataflow architetures from non-strict programs. In
J. Hughes, editor, Conf. on Functional Programming
Languages and Computer Architecture, 1991,

Tzi-cker Chiueh. Multi-threaded vectorization. In Int.
Ann. Symp. on Computer Architecture, pages 352-
361, Gold Coast, Australia, May 1991.

S8
3

Sisal on Distributed Memory Machines*

Santosh S. Pande

Computer Science Department
Ohio University
Athens, OH - 45701

sspande@monsoon.cs.ohiou.edu

Abstract

Sisal, is targeted to Intel Touchstone 1860 systems,
by mapping the functional parallelism in its intermedi-
ate IF-1 representation. A new compile time schedul-
ing method 1s developed that investigates a trade-off
between the schedule length and the required number
of processors. The compile time schedule 1s found us-
ing a new concept of threshold of a task that quantifies
a trade-off between the schedule-length and the degree
of parallelism. At compile time one of the following
scheduling goals s realized:

e Compiling for minimizing schedule length : Suit-
able for large systems.

e Compiling for processor requirements below a
gtven marimum number of available processors in
the system : Suitable for small systems.

The run time system is designed to support call by
value semantics on Intel Gamma, Delta, and Paragon,
by minimizing the overheads. Each processor contains
the inlined Sisal program’s code and starts erecuting
its own C main() corresponding to SisalMain(). The
code that 1s specialized for a given processor ts ident:-
fied by a case statement that corresponds to the pro-
cessor number, thereby making the start-up overhead
as small as possible. The universally owned code 1s
replicated on all processors. The processors ezxchange
data values using asynchronous ‘put’ and ‘pick’ prim-
itives to marimize the overlap of communication and
computation.

1 Introduction

The distributed memory systems are becoming
popular. However, programming distributed memory

9*This research was supported by the U. S. Army Research
Office under grant no. DAALO3-91-(-0031)

Dharma P. Agrawal and Jon Mauney

Electrical and Computer Engineering Department

North Carolina State University
Raleigh, NC 27695-7911

dpa@ncsu.edu and mauney@csljon.csl.ncsu.edu

systems still remains very complex. The lack of proper
support software like the compilers, debuggers, and
the operating systems are the main concerns of many
programmers.

One of the main reasons for the programmer’s dif-
ficulties is that most of the compilers for this impor-
tant class of multiprocessors demand that the users
specify data partitioning and/or code mapping. Such
data and code partitioning techniques largely depen-
dent on user’s judgement, are cumbersome, and may
suffer from inaccuracy and poor execution speed.

Some of the semi-automatic compilers ask the user
to partition either the data or the code of his/her pro-
gram and automate the partitioning of the other as-
pect. The compilation methodology presented in this
paper is fully automatic, and produces reliable and
efficient code using data and code partitioning in an
unified framework. This methodology has been incor-
porated in the Sisal (Streams and Iterations in a Single
Assignment Language) compiler backend for produc-
ing code to run on Intel Gamma, Delta and Paragon
family of multiprocessors.

Section 2 surveys the different program partition-
ing techniques proposed in the literature. Section 3
discusses and illustrates our compile time partition-
ing method through an example. Section 4 addresses
the code generation and the run time system for dis-
tributed memory machines. Section 5§ offers conclu-
slons.

2 Program Partitioning Issues

The problem of program partitioning and schedul-
ing on distributed memory multiprocessors has been
attempted by many researchers, and the approaches
can be mainly classified as:

1. Data Driven Code Partitioning, and,

134

2. Code Based Data Allocation.

In data driven approaches, the program data is par-
titioned for different processors, and the code is pro-
duced so that the generated data references are lo-
cally available. 'This reduces the costly interproces-
sor communication on distributed memory machines.
The code based approaches, on the other hand, carry
out the partitioning so that each processor gets ap-
proximately an equal share of the program code. The
resulting data references are then examined, and data
is allocated to different processors to reduce the com-
munication. The goals of locality of data and load
balanced code can conflict, and for certain types of
codes like the particle codes, are impossible to achieve
simultaneously.

Kennedy et al. [6] follow the data driven scheme.
They define language extensions to Fortran with func-
tions for managing data distribution in non-shared ad-
dre~< spaces. The new language is called Fortran D.
They define compile time data domains to map the
aggregate (mainly arrays) slices to local memory. The
user is responsible for specifying the data layout. The
compiler then supports a virtual address mechanism
to correctly map the global references to the local ones.
The code generation phase ascertains that the refer-
ences in the computation are correctly mapped to the
local memory.

Pingali et al. also use data driven code partition-
ing approach by using user specified data mapping at
compile time. A compile time ownership analysis is
carried out and the code is produced by employing
the concept of evaluators and participators. The com-
pile time data mapping mostly defines the ownership
information required for the correct code generation.
The compile time unresolved ownerships can be ob-
tained using run time ownership resolution.

In compilation of loops, communication overhead
can be reduced by using locality of reference and by
sending and receiving data in blocks between different
loop slices. In a recent work, a new loop transfor-
mation called access normalization is proposed that
restructures the index sets of the loop to exploit both
the locality and the block transfers of loop data [8].

The project (** [11] relies on user partitioning of
data aggregates on SPMD machines like CM-5. For
example, the data-parallel program can look like:

domain vector { real a, b, max; } x[100];
Select:
[domain vector].{

if (a > b) then max = a;

else max = b;
end Select;

}

The type “vector” defines a domain containing two
real values named a and b. By declaring x{100], 100
instances of the variable pair are created one pair per
processing element. The ‘Select’ statement activates
every processing element whose instance has domain
type “vector”. Every processing element evaluates the
statement a > b. The universal program counter en-
ters ‘then’ clause and those PEs for which the state-
ment is true, perform the assignment max = a. Then
the universal program counter enters ‘else’ clause and
those PEs for which the expression is false, perform
max = b. This approach, thus, supports data parallel
programming on SPMD machines.

Koelbel et al. [7] carry out a data mapping in their
Blaze project and use many optimizations to reduce
message passing overhead.

Amongst the code based data allocation ap-
proaches, the most notable is that of Mansour et al.
[2]. It uses a load balanced code, and mapping data on
the processors, to minimize the communication. The
problem domain is decomposed into subdomains at
compile time, and each partition is judged on the basis
of an objective function that determines the locality
of references.

Some researchers have also attempted combining
both the above approaches. For special cases of DO
loops with constant dependence distances, Ramanu-
jan et al. [10] have devised a test that determines
whether a loop can be split to achieve a communica-
tion free partition. Based on the test, an algorithm
is developed that achieves communication free parti-
tioning of a loop, if it exists. For example, consider
the following ‘for’ loop:

for i = 2 to N
for j =2to N
Ali,j) = Bli-1,31+B[4,j-1]

In the above loops, to compute each element of Afi,j],
two elements of array B are needed. It can easily be
seen that if both arrays A and B are divided along
their anti-diagonals, a communication free partition of
the loops is achieved. On the other hand, for certain
types of loops, no such partition can be found.
Gajski et al. [3] address the loop partitioning prob-
lem on a distributed-shared memory system. A given
loop partition is evaluated on the basis of the amount
of parallelism, and the memory access and synchro-
nization overheads. ‘The memory access overheads are
modeled on the basis of whether it is a local access (for

O8]
93]

read only variables), a local synchronized access (for
read/write variables), or a network synchronized ac-
cess (for non-local variables). A heuristic algorithm is
used to reduce the number of loop partitions examined
to determine the best one.

The above approaches save a lot of effort on the
compiler’s part. However, these approaches might not
always yield a good program partition due to the fol-
lowing reasons:

e Data driven code partitioning approaches rely
heavily on the user judgement in correctly par-
titioning the data.

e Some of the approaches treat the data distribu-
tion as static for the complete scope of the pro-
gram and do not allow remapping of the data.
Also, even if the user partitioning of the data is
optimal at compile time, it may not be so at run
time. due to compile time unknowns.

e Current data driven approaches tend to use the
regularity of the computational structure to gen-
erate data and code partition. For example, the
nearest neighbor communication in Jacobi, or
communication in four dimensions in 2-D SOR
used frequently in scientific computation, are used
to drive the code generator by these compilers.
These schemes are not sufficient to allow locality
for more general irregular computational struc-
tures.

o Data driven code generation over-emphasizes the
locality issue. The resulting code partition may
be non-optimal. For example, an unbalanced
code might result from a data driven code gen-
eration. if the preprocessing dependence analysis
stage doec not properly discover the distributed
variables. Dependence analysis is extremely dif-
ficult and irmprecise in an imperative framework
leaving these approaches questionable.

o Strictly code driven approarches also suffer from
the comnmmeation overhead, which could nullify
all the benefits of parallelism.

¢ The approaches that combine Loth schemes, are
too specific to constructs like DOALL, and also
demand a special structure of the loop. In a gen-
eral program. such approaches may not be viable,
sinee many of the conditions that inake use of the
array indices may be unknown at compile time
due to the presence variable index coefficients.

These limitations of the existing purely data or
code bas d approaches protubit fully automatic and

efficient program partitioning and scheduling on dis-
tributed memory machines. The approach proposed
in this work combines the data and code based ap-
proaches in a unified framework based on the func-
tional parallelism present in a program. Functional
parallelisin is the parallelism amongst different opera-
tions carried out in a program, by following data and
control dependences. Functional parallelism is also re-
ferred to as the DAG parallelism in the literature due
to its most popular representation in the form of a Di-
rected Acyclic Graph. In this work, the two terms -
functional or DAG parallelism are used interchange-
ably, to suit the context.

2.1 DAG Parallelism And Functional
Paradigm

One of the major limitations of the above ap-
proaches is that they deal primarily with the loop
based parallelism. Loop parallelism is quite localized,
and in general, there exists more general DAG paral-
lelism in the full scope of the program, in an inter-
procedural framework. To exploit the high degree of
parallelism available in newer distributed memory ma-
chines, the loop parallelism must be augmented with
the general DAG parallelism, and hence the compiler
must be capable of detecting and effectively mapping
the interprocedural DAG parallelism onto processors.

A few research efforts have addressed the issue of
DAG parallelisin for imperative languages. Girkar [3)
has specified HTG (Hierarchical Task Graph) as the
intermediate representation for DAG parallelism. He
lias also developed a method to remove the redun-
dant dataflow dependences and proved that in general
the minimization problem for task dependences is NP-
complete. Sarkar [12] uses a compile time cost model
to analyze the trade-off between task overhead and
task granularity

Extracting DAG parallelisin demands extensive in-
terprocedural dependence analysis. Such analysis is
very hard in the imperative framework due to the
presence of aliases, side-effects, and common blocks.
The functional paradigni offers a more clean and neat
model of DAG parallelismn in the form of dataflow
graphs where, a node represents computation, and an
edge carries the values from one node to another. One
of the arguments against the functional programming
is the lack of efficiency. However, the recent success
in very efficient compilation of functional languages
have led them to outperform conventional languages
like Fortran in terms of many efficiency issues like ex-
ecution speed and code-size.

This work. therefore, coneentrates on the problem

136

of scheduling functional parallelism in the form of a
DAG, on distributed memory multiprocessors.

Amongst the different approaches proposed in the
literature on DAG scheduling, most notable is due to
Gerasoulis et. al. [4]. They have proposed Dominant
Sequence Algorithm (DSC) that is O((v + e)log v).
DSC calculates a priority of each of the nodes at every
step and schedules a highest priority node whose all
predecessors have been scheduled.

However, the issue of mapping tasks on distributed
memory machines as a trade-off between the schedule
length and the number of required processors remains
unaddressed. We believe that it is very important to
address this issue in order to fully use the power of the
distributed memory machines that could have small as
well as large number of processors. This issue along
with the necessary run time system form the subject
of this paper.

To demonstrate this approach, Sisal (Streams And
Iterations In A Single Assignment Language) has been
selected, due to its clean semantics and an elegant
functional representation in its intermediate form. A
task model based on dataflow graph representation
of Sisal programs is used. The dataflow graphs are
mapped to different processors, and a partition is gen-
erated al compile time. The efficient code generation
method along with the run time system keep the over-
heads low to effectively use the parallelism at run time.

3 Compile Time Partitioner

The partitioning problem for a general DAG (Di-
rected Acyclic Graph) of task representation of a pro-
gram, is known to be strong NP-hard thereby ruling
out the possibility of a pscudo-polynomial algorithm.
Several variants of a new heuristic algorithm have been
developed for partitioning Sisal dataflow graphs on
i860 based Intel Gamma, Delta and Paragon (Refer
to [1] for details about Sisal).

3.1 Sisal Compiler Modifications

The first phase translates a program into 1F-1.
The second phase IF1Ld of the compiler combines
the modules of a program into a monolith 1F-1 pro-
gram. IF10pt is an optimizing phase of the compiler
that carries out standard dataflow optimizations such
as common subexpression removal, loop invariants re-
moval, loop fusion, and constant folding. [F2Mem al-
locates abstract memory locations to I1°-1 nodes, pro-
ducing an augmented form called 11°-2. [F2Up carries

l SISAL program modules _l

IFild SISAL Library

IF10pt

Binary Code

Figure 11 Osc - Optimizing Sisal Compiler

out update-in-place analysis to carry out some opera-
tions in place without additional memory allocation or
copying. [F2Part is the phase that is responsible for
parallelization of the Sisal programs. Finally, the last
phase IF2Gen translates the optimized 1F-2 graphs
into C code and the C compiler on the target links the
run time libraries and produces the binary executable
code.

In the scope of this work, 1F2Part has been re-
written to perform compile time scheduling of func-
tional parallelism in IF-1 nodes. The 1F2Gen has
been modified to generate efficient code for the In-
tel Gamma, Delta, and Paragon family. The run time
system has been modified to support message passing
communication between different processors to send
and receive the data values. These contributions have
been indicated by the shaded areas in the figure 1.

3.2 Threshold Scheduling Algorithm

First, the preprocessor phase of the partitioner car-
ries oul a dependence analysis, identifies actual depen-
dencies and scope imports of values using the Sisal in-
termediate form, and performs cost assignments based
on iPSC/860 timings (Refer to Figure 2) [9]. This par-
titioner has been incorporated in the IF2Part phase of
the Osc.

Let’s first introduce some definitions and the as-
sumptions about Sisal IF-1 graph execution before dis-
cussing the Threshold Scheduling Method and the re-
sults.

137

IF-2 FROM [F2UP PHASE

i

DEPENDENCE ANALYSIS

!

[COST ASSIGNMENT]..__ 1F-2 COST
: FILE

TIMING ASSIGNMENT

l

l THRESHOLD SCHEDULING !

-

RUNTIME PROC. MERGING

—

IF-2 TO 1F2GEN

Figure 2: Threshold Partitioner

3.2.1 Assumptions

The following assumptions are made about the execu-
tion of a Sisal task graph on the target machine:

1. The task graph is a directed acyclic graph (DAG).

2. The tasks are strict (or, in other words, a task
cannot start execution unless all of its inputs be-
come available). This restriction is imposed by
the Sisal semantics.

3. The tasks are non-preemptive and have a finite
termination time.

4. The values are exchanged between two processors
in the form of messages, by using asynchronous
send() and receive() calls. This assumption is
made specially for Intel Touchstone 1860 systems.

5. The cost of a message is determined by the
startup cost and the length of the message. For a
message m bytes long, the cost is given by a+8m,
where a is the fixed start-up cost for the messages
and 3 is the incremental cost per unit length of
message.

6. The task creation overhead is assumed to be neg-
ligible comnpared to task execution time.

3.2.2 Definitions

A task graph G(V,E) of Sisal IF-1 nodes is a directed
acyclic graph (DAG) such that each node v; € V of
G 1s a Simple IF-1 node representing a task and the
directed edge e(a,.v;) € E represents the precedence
constraint from v, to v;, that corresponds to the actual

dependence edge. This dependence edge could be ei-
ther a data or a control dependence edge. The scaled
computation cost of v; is denoted by t(v;) and the
scaled communication cost of edge e(v;, v;) is denoted
by ¢(vi,vj). The scaled computation and communica-
tion costs for each of the nodes and edges are found
as described earlier.

Four kinds of timings associated with each node are
defined:

Using the strictness condition, and the precedence
constraints, the earliest start time of the node v; is
defined as,

est(vy) = min max ect(vj),
(') jne(uj"’v)EEkvk¢j~e(vka«)EE((J)
ect(vg) + vk, vi)),

The earliest completion time of the node v; is given
by,
ect{v;) = est(v;) + t(v;)

The latest start time of the node v; is given by,

Ist(v;) = max

Ist(v;) + c(vy, v5)),
j,c(u,,v.)eE((vj) + c(vj, vi))

The latest completion time of the node v; is given
by,
let(vi) = Ist(vi) + t(vi)

The schedule margin represents the delay in the
schedule time of the given task, had all the tasks in
the graph been allocated to different processors (max-
imum parallelism case), over the best case in which a
task starts execution at the earliest start time given by
the critical path length. Thus, the schedule-margin is
a measure of the tradeoff between the schedule length

138

and the degree of parallelism. Let’s define a schedule-
margin value associated with node v; as,

sm(v;) = Ist(vi) — est{v;)

When a task v; is scheduled on a processor p(v;)
on which a predecessor task vj is scheduled, no com-
munication is needed between vy and v;. The schedule
time is given by,

stime(vy, p(v;)) = m#al\x((s{inw(vj,p(nj)) + t(v)),
J#k
(stime(ve . p(vg)) + t(ve) + e(vr, vi)))

The schedule delay of a node v; on processor p(v;)
defines the delay in scheduling v; from its earliest start
time and 1s given by,

sd(vi, p(vj)) = stime(v;, p(v;)) — est(vy)

The schedule delay is upper-bounded by the
schedule-margin. The completion time of a node v;
on processor p(v;) is given by,

ctime(v;, p(vi)) = stime(vi, p(vi)) + {(vy)
The threshold assumes the values in the range,

min sm(v;) < Threshold < max sm(v;)
v, eV - v, eV
A merit function is used to break ties between dif-

ferent tasks competing for the same processors. A
merit function decides the quality of matching between
a task and a processor. Task A is better than task B on
a given processor if task A delays the processor com-
pletion less than B. Similarly, task A gets a preference
over task B on a given processor, if task A is delayed
more from its earliest start time, than task B. The
merit function is a composition of these two require-
ments. The merit function of a node v; on processor
p{v;) is given by,

merit(vi, plry)) = {(stime{v,, plui)) — est{vy))
~(ctime (T + vy, pl1y)) = ctime(7.p(1,))))

where, 7 is the set of tasks already scheduled on p(v;)
and 7+ v; is the new task set resnlting by adding v;
. ctime(r. p(vi)) gives the completion time of task set
7 on p(vi). The merit function of a task set 7 is given
by,

merit(r,p(k)) = max merit(k, p(k))

kET

The essence of the scheduling algorithm is that it
tries to limit the schedule delay of cach task below
the threshold. Thus, a greater threshold value implies

larger allowable delay in schedule time and it will be
more likely that the task is scheduled on one of the pre-
decessor task's processor and vice-versa. The thresh-
old, thus, controls the tradeofl between the degree of
parallelism and the schedule length.

Let’s first illustrate the method by the following
example.

Refer to the example in figure 3. 1t shows a task
graph created from the following code fraction:

functi(argl,arg2,arg3 : in; arg4, argb, argé

funct2(arg4 : in; arg7 : out);
funct3(argb : in; arg8 : out);
funct4(arg6é : in; arg9 : out);

funct5(arg7,arg8,arg9 :

funct6(argi0 : in; argi3 : out);
funct7(argi3,argll : in; argl4 : out);
funct8(argl2 :in; arglb : out);

funct9(argi4,argib :in);

The computation and communication costs of each of
the nodes and ecdges are shown next to them. The
carliest possible schedule time of task 2 is 100 (right
after the completion of task 1), and its latest possible
schedule time is 150, if communication due to edge
(1,2) is taken into account. Only the task precedence
relations, and the strictness condition mentioned ear-
lier are taken into account, to find out the earliest and
latest schedule times of each task. For example, the
earliest and latest possible schedule times for task 5
will be determined on the basis of timings of each of
the tasks 2, 3, and 4, and the communication cost
along the edges (2,5), (3,5) and (4,5). If a task is to
he executed on one of its predecessor task’s processor,
the communication overhead along the corresponding
edge is saved.

In this manner the earliest and the latest possible
schedule times of each of the tasks are found. The
threshold is varied between 0 and 157. Suppose a
threshold value 50 is being used. First task 1 is sched-
uled on p(1). When task 1 completes, each of the
tasks 2, 3, and 4 are ready to run at time t=100. The
tasks 2, 3, and 4 compete for p(1), to avoid commu-
nication. This tie is broken using a merit function,
that basically gives a measure of the task delay, and
the processor completion delay. The merit functions
of task L on processor p is found as follows:
merit(t,p) = Task delay of t on p - Processor comple-
tion delay of p due to t.

Since, the merit function of 4 is the highest, task 4 is
allocated to p(1). Next, the tasks 2 and 3 are allowed

139

in; argl0,argil,argl2 :

out);

out);

Figure 3: Example Task Graph

to be allocated to new processors, and the resulting
task delays are examined. In this case, both the task
delays of 50 and 20 are below the threshold, permit-
ting such an allocation. The processor assignment is
carried out in this manner for a set of the thresholds
values chosen by the algorithm, and the best value
is chosen to satisfy the given scheduling goal of el-
ther minimizing schedule length or reduce the number
of required processors below the maximum available
number of processors.

3.2.3 Algorithm

The Threshold Scheduler varies the value of the
threshold, between its minimum and maximum
bounds and determines a value that gives the min-
imum schedule length or reduce the number of re-
quired processors below that of the maximum number
of available processors. The set of threshold values is
found by using a difference between the actual sched-
ule time and the earliest schedule time of each task
on its predecessor tasks’ processors. The scheduling
is attempted for each threshold belonging to this set,
and is thus called Discrete Threshold Scheduling. Ap-
pendix A gives the algorithm that traverses the IF-1
graph in depth-first manner to perform scheduling. It
takes O(k v) worst case time, where v is the number
of nodes, and k is the number of threshold values used
by the algorithm to find the best threshold.
T'wo options are offered for compiling programs:

e Scheme A: Reduce schedule length as much as

possible which could be useful on large systems.

e Scheme B: Find a schedule with processor de-
mands below a given maximum number of avail-
able processors in the system. Of the many sched-
ules that could satisfy this condition, the one with
the minimum processor demands is chosen. The
maximum number of available processors is as-
sumed to be 16.

3.3 Compile Time Results

Using the threshold scheduling algorithm described
in Appendix A, the schedule lengths, required number
of processors, and the speedups obtained for different
numerical packages are given in figures 4, 5 and 6 using
discrete threshold scheduling. Referring to figures 4,
5 and 6 the results of Scheme A are summarized as
follows:

o This scheme finds the schedule length within a
factor of 2.0 of the critical path lower bound. It
is well known that the critical path lower bound
itself might not be achievable for optimum solu-
tion.

o The speedups range from 1.89 upto 26 and are
higher than scheme B.

e The utilization are low due to the high number
of processors found by this scheme. IF-1 graphs
are sparse and in many cases tree-like parallelism

140

Schedule-length/CP-Lowerbound

No. of Processors

Loop 18
Loop 20
Loop 23
Loop 24

g

Package Names

Loop 10
Loop 13
Loop 14
Loop 15

Figure 4: Discrete Threshold Scheduling: Schedule length

13

Loop 10
1

Loop 14
Loop 15
toop 16 I8
m 18 _..‘_‘.“‘.\.‘
Loop 20
Loop 23
Loop 24
BKIA
GATSSJ

Package Names

Figure 5: Discrete Threshold Scheduling: Processor requirements

141

Scheme A
Scheme B

L - o ™
— 4 N

£ 8§ §

rPackage Names

Schema A
Scheme B

Tl

-

Figure 6: Discrete Threshold Scheduling: Speedup

results after the dependence analysis, requiring a
large number of processors. The number of pro-
cessors are quite high. But these number of pro-
cessors could be allocated on a large system such
as an Intel Touchstone 1860 with 512 nodes.

Referring to figures, 4, 5 and 6 the results of Scheme
B are sumnarized as follows:

e The schedule length increases to as much as upto
5 times the critical path lower bound. But in
many cases, it is maintained within a factor of 3.

e The speedups range from 1.22 upto 8 and are
much smaller than scheme A.

e The number of processors is low and the utiliza-
tion is high in this scheme as compared to Scheme
A. This is due to the fact that at high values
of thresholds, every attempt is made to schedule
a given task on the predecessor task’s processor.
This results in a fewer number of processors. The
number of processors found by this schemne are be-
low 16 (a typical size for ‘small’ Intel Touchstone
1860}

4 Code Generation and Run Time Sys-

tem

Let’s first present an overview of the code generator
and run time system of Sisal compiler, Ose, that pro-

duces code for a shared memory system like Sequent
Balance.

The Sisal compiler, Osc, translates the IF-2 to a C
program in its final phase, IF2Gen. This C program is
then linked to the run time system producing object
code on the target machine using its native C compiler.
In this manner, the Sisal project has attained its goal
of easy portability across wide spectrum of platforms,
as well as ease of modifying the run time system for
different parallel architectures.

4.1 Code Generator

The Shared Memory Sisal compiler Osc, tries par-
allelization of FORALL loops, and stream tasks, on
systems like Sequent Balance, and Cray YMP.

The code generation phase starts with the IF-2
graph in which FORALL and Stream graph nodes are
decorated with parallelization/noparallelization prag-
mas in earlier partitioning phase, IF2Part (refer to
figure 1). Figure 7 shows the structure of shared mem-
ory IF2Gen. The first part If20pt tries optimization
of AGatherAT node that gathers a scattered array.
The aim of IF20pt is to manage storage required by
AGatherAT efficiently. The next phase is responsible
for improving array indexing and referencing. The ar-
rays are implemented through a dope vector that has
a pointer to the physical space. The If2Yank phase
first carries out a type merging operation based on
structural type equivalence and casts other types into
the ones representative of each equivalence class. The

142

OptlimArrays

IF2yank

PrintFilePrologue

AssignTemps

1t

PrintFunctPrologue

PrintFunct

I

[PrintFunctEpilogue]

C Code

Figure 7: Osc code generation phase

above phases can be collectively called the preproces-
sor part of the code-generator.

The next part PrintFilePrologue puts the cor-
rect headers, globals, forward definitions, the type ta-
ble, the union and record structures as a preamble in
the C code file. The custom read/write and dealloca-
tion utility routines for records and unions are then
printed and their addresses are entered in the type
table. The index into the type table is used by the
run time system to lock up for a particular alloca-
tion/deallocation routine. Next, prototypes for user
defined functions and for libraries are printed. The
AssignTemps phase assigns the temporaries to the
different Simple and AT nodes. The PrintFunctions
pass then traverses the IF-2in a top down manner. For
every function, first a function name and an argument
list is printed using ' syntax, followed by its local vari-
able declarations. Then, the IF-2 nodes belonging to
function’s body are visited in the depth first order and
their operations are printed in terms of macros that ex-
pands appropriately using Sisal run time system, and
that take proper arguments in terms of the assigned
tempaoraries. For Compound nodes, special semantic
action is taken to print the conditionals, union tags,
or the loop control structure as required. At the end
of each of the functions, a function epilogue is printed.
The shared memory implementation prints epilogues
only for parallel tasks. which consist of a frame deal-
location routine,

4.2 Run Time System

The shared memory Sisal run time system consists
of a group of routines that co-operate to carry out
three functicns:

o To manage machine defined aggregates such as
the arrays and streams.

e To carry out input/outputs for Sisal Fibre stan-
dard. Fibre is a Sisal input-output standard (for-
mat).

¢ 'To manage the processes and block allocations for
tasking mechanism.

Array handling:
The array handling routines mainly perform: array al-
location, deallocation, copying and referencing. The
arrays are maintained through dope vectors, and in-
dexed using base+offset addressing. Special bounds
checking routines ascertain the legality of references.
‘The arrays in Sisal are single dimensional while multi-
dimensional arrays are unplemented as arrays of point-
ers that point to each row.

Stream Handling:
The streams are implemented
as buffers (of MaxStreamSize) keeping read and write
pointers. The float and int streams are implemented
separately to maintain better efficiency. The impor-
tant operations on streams: read, write, dealloc, and
error are performed by various routines.

143

Fibre 1/0:
i tibre standard is managed by a toolset written
~ix that mostly performs a parsing and formatting
Process and block manager:
- the moest important part of the Sisal run time
<1 It initially establishes a shared memory sys-
v by getting a chunk of shared memory and divides
1 ate blocks for allocating them to different work-
<t Fach of the workers obtains tasks for itself from
 ~tiared queue of ready to run tasks.
e code generator and the run time system is
wied in this work to support functional paral-
s on Intel Gamma, Delta, and Paragon family of
“aibated memory machines, efficiently. Functional
Ahdism s quite fine-grained as compared to the
cernneation costs on these machines; hence care
it be taken to minimize the overheads.

1.5 Distributed Memory Systems Modifi-
cations

it run time model has been modified for the dis-
o ated memory system implementation. In this im-
v aeentation, functional parallelism between the Sim-
. nodes of a program’'s 1F-2 representation, is used.
i m-lining the Sisal function calls in its SisalMain(),
seresponding C main() of the program is created.
rv processor has the same copy of the generated
<l and individual code for each processor is sepa-
¢ in the ' main() by using a case statement. The
" {or the execution of a Simple node is present only
{1 the scope of that processor which is supposed
Suevite qt.
[he other code including control code of the pro-
- like tif " statements, and loop control structures
i peated under the scope of each processor. Com-
coomeation primitives are put at the beginning and
-+ of vach Simple node to receive and send values
ioandd to other processors.
Vil the processors start execution through a start-
“.unine and set up their context that includes pro-
o number. process id etc. A processor then takes
cpropriate branch to the corresponding case state-
m O MAIN() corresponding to SisalMain(),
tarts exerntion of the program under this case.
gever 1t needs to receive or send values, 1t exe-
< the embedded send() and receive() calls to com-
Coveeate with other processors. On comnpletion of the
SVING . each processor prints its timings and the
1t values of the program by using PutFibreOut-
cras deseribed earhier

4.3.1 Pre-processing

Before generating the intermediate C code, the ‘in-
lining’ optimization in Osc is activated so that all
the function calls are in-lined at their respective call
sites. Since Sisal does not allow recursive definition of
functions, this optimization can be always carried out.
Thus, after in-lining, the functional parallelism is ex-
posed in the interprocedural framework, and a single
SisalMain() function is created that contains all the
in-lined code.

In the IF-2 representation of Sisal programs, multi-
ple edges might carry the same value(s) from one node
to another. This results in sharing the same tem-
porary amongst multiple edges. For a shared mem-
ory implementation, these extraneous edges do not
matter, but in a distributed memory impleinentation,
it might generate a lot of unwanted communication.
Therefore, before the code generation starts, the fol-
lowing algorithm performs some pre-processing to re-
move such extraneous edges and marks other edges
active.

1.For all the nodes in the IF-2 graph of
SisalMain() do,
1.a Mark all the edges and their corres-
-ponding temporaries, INACTIVE.
2. For all the export edges of a node,
such that their destination node
is not Simple, do
2.a If the temporary corresponding
to an edge is INACTIVE, make both
the edge and the temporary ACTIVE.
3. For all the export edges of a node, such
that their destination node is Simple, do
3.a If the temporary corresponding to
the edge is INACTIVE, make both
the edge and the temporary ACTIVE.
4. Remove all INACTIVE edges in the graph.

To make the objective of this algorithm clear, let’s
present an example. Figure 8 contains a small IF-1
graph. Nodes 1 and 2 are Simple nodes. The output
value t generated by node 1 is fed to both node 2 and
the surrounding graph boundary. Let’s assume that
node 1 is scheduled on processor 1 and node 2 is sched-
uled on processor 2. The graph boundary 0 is univer-
sally owned and hence belongs to both processors 1
and 2. In this case, no messages will be generated for
the edges e0 and el, since their source is a universally
owned graph boundary and the values generated there
are available locally on each processor. As far as the
output values of nodes 1 and 2 are concerned, the code
gt or would take following actions. Send value of

144

el

el

ed

Figure 8: [F-1 Example Graph

t from node 1 to 2 for edge e2. Send value of t from
node 1 to all the processors (since graph 0 boundary
is universally owned), for edge e3. Send the value of
t' from node 2 to all the other processors. As one
can see, processor 2 who owns node 2, gets the value
of t, twice: once, the universally broadcast value on
edge e3, and once the value on edge e2. Thus, there
15 a redundant send and receive pair in the code. If
the edge e2 is eliminated, the redundancy disappears.
The above algorithm achieves this objective.

4.3.2 Code Generation

In the code generator, the phases before PrintFunc-
tion are unmodified. While printing the SisalMain()’s
equivalent C' main(), the code to be executed by each
processor i1s separated by using a case statement, that
uses the processor number. This scheme was preferred
over the scheme of isolating each of the Simple nodes
(that are parallelized) using an ‘if” guard to check pro-
cessor ownerships. A processor is said to own a given
Simple node, if only it and no other processor is re-
sponsible for the node’s execution!. The reason for
the cholece of using a ‘case’ statement instead of "if”
statement is that the overhead in using ‘if” guards is
tremendous. On the other hand, by collecting all the
Simple nodes owned by a given processor and putting
thern under a single “case’ amortizes this overhead.
Also, the C compiler would probably process “switch’

YAl the nodes other than Simple nodes, are executed by
every processor wnd are thus, universally owned

better than individual ‘ifs’ due to the fact that ‘switch’
may be implemented by a jump table where each ‘case’
{that corresponds to the processor number) can index
in it to go to its branch.

Once a ‘case’ starts the scope of the statements to
be executed by the corresponding processor, the com-
plete 1F-2 graph of the SisalMain() function is tra-
versed and the following algorithm is used to generate
the code for every processor:

For processor from 1 to Required_processors do,

1. If ((node.type = Simple) &&
(node.owner !'= processor)) then
generate communication primitives to
receive values generated by this node
that are universally owned. A value
is said to be universally owned if
it is available on every processor.
Such a value is generated by an edge
whose destination is a node other

than a Simple node that is universally owned.

Go to step 4.
2. If ((node.type = Simple) &&
(node.owner = processor)) then
For all the input edges to this node, do
2.a. If the source of the edge is a

Simple node, generate a communication

primitive to get the values from
owner of that node.
2.b. If the source of the edge is not

145

a Simple node, then the respective
value is universally owned and is
available locally. No action is
needed by the code generator.

end for

3. Generate the computation code

corresponding to the given node.

4. If ((node.type = Simple) &&

(node.owner = processor)) then
For all the output edges to this node, do
4.a. If the destination of the edge
is not a Simple node,
generate a ‘broadcast’ primitive
to send the universally owned
values to every processor.

4.b. If the destination of the edge
is a Simple node, put a
communication primitive to send
the values to the owner
of the destination node.

end for

5. Continue steps 1 to 4 above for all the

nodes in the function graph of SisalMain().

end for

The communication primitives are generated for

eacn of the values to be passed from one processor
to another. Following algorithm generates communi-
cation primitive(s) to pass data objects:

1. If (temporary.type = Scalar),
calculace its size on the target
in bytes and generate appropriate
communication primitive.

2. If (temporary.type = Array or Stream),

2.a. First calculate the size of
its dope vector and generate
communicative primitive for
passing and receiving it.

2.b. Generate communicative primitive
for passing and receiving it
based on the physical size given
in the dope vector as in 2.a.

3. If (temporary.type = Record or Union),

For each of the the fields,

3.a. Follow steps (1) to (3) above.

Thus. it can be seen that, due to the conformance
of the arrays and streams to the data size in Sisal, one
has to first pass its dope vector that gives the size of
the physical space and then pass the array or stream
itsell Therefore. two messages are needed for passing
such a variable size data object.

4.3.3 Run Time System

The main job of the run time system is to properly
support the communication primitives. Two basic
communication primitives are defined as follows:

pick(message_type, recv_data_addr,
no_bytes, source_proc, source_pid)

put(message_type, send_data_addr,
no_bytes, dest_proc(s), dest_pid)

The put and pick primitives operate asynchronously
so that the sending and the receiving processor do not
have to rendezvous. This exposes more parallelism.
These communication primitives are implemented as
macros that expand to appropriate system call(s) on
Intel machines.

Also, the different semaphore locks and cache
blocks from which memory is allocated to a requesting
processes, are not needed in the distributed memory
implementation. They are, therefore, removed from
run time system. Also, the start-up code is simpli-
fied since all the processors execute the C main and
then branch off through a case statement. Therefore
virtually no process management is needed unlike the
shared memory implementation.

Most of the array and stream compute macros re-
main as they are in the shared memory implementa-
tion.

4.4 Benchmark Results

Some benchmarks have been carried out on Intel
Gamma, Delta, and Paragon. Intel Gammais a hyper-
cube, whereas Delta is a mesh. Unlike both Gamma
and Delta, Paragon has OSF/1 as its operating system
with much simplified micro kernels.

The parallelized programs have been executed on
these machines for both Scheme A and B and speedups
have been measured. Refer to tables 1 and 2 for the
results of the benchmarks. The timings have been
gathered using a millisecond clock on these machines.

The predicted speedups are those found by compile
time scheduler (as described before) by assuming the
architectural cost model.

4.5 Discussion

Following observations can be made from the above
results:

1. The speedups obtained for all the three machines
are lesser than those predicted by the compile
time method. This can be mainly attributed

146

Table 1. Scheme A Speedups

Package | No. | Predicted | Gamma Delta Paragon
Name | Procs. | Speedup | Speedup | Speedup | Speedup
Loop 10 37 10.3 4.67 6.1 7.22
Loop 13 7 1.89 1.1 1.38 1.66
Loop 14 26 £.42 3.25 4.55 6.12
Loop 15 33 11.68 8.21 10.22 10.45
Loop 16 17 8.04 4.46 5.33 6.8
Loop 20 21 2.64 1.59 1.89 1.94
Loop 23 14 3.75 1.88 2.11 2.33
Loop 24 6 2.88 1.22 1.67 1.75
Table 2: Scheme B Speadups
Package No. Predicted | Gamma Delta Paragon
Name Procs. | Speedup | Speedup | Speedup | Speedup
Loop 10 9 6.37 3.29 3.89 4.5
Loop 13 2 1.29 .89 1.05 1.14
Loop 14 13 6.71 3.23 3.78 4.77
Loop 15 10 4.88 3.12 3.77 4.15
Loop 16 8 4.94 2.58 2.78 2.9
Loop 18 11 6.71 4.77 5.1 5.33
Loop 20 3 1.77 1.12 1.15 1.2
Loop 23 4 2.78 2.16 2.22 2.61
Loop 24 2 1.47 96 1.09 1.16
RICARD 4 2.48 1.34 1.67 1.88

147

to the run time overheads and the higher com-
munication latencies resulting from unpredictable
network delays. The communication model of
a + 3 +m, where o denotes the start-up cost of a
message, J denotes the incremental cost per byte,
and m denotes the number of bytes, is based on
the fact that there are no other messages present
in the system at the time of communication. The
presence of more than one messages in the net-
work makes the communication latencies unpre-
dictable, due to the unpredictable network delays.
Thus, the latencies can not be analytically mod-
eled, and are higher than predicted by the above
model. This can adversely affect the fine grain
functional parallelism. This is the main reason of
the loss of parallelism (in some cases as high as
50%).

2. The speedup for Delta is better than Gamma, and
that of Paragon is better than Delta. The main
reason for this behavior is that Delta has better
routing hardware and topology than Gamma, and
Paragon has a better operating system software
(OSF/1) as compared to Delta.

3. The speedups in some cases are low compared
to required number of processors, because the
fraction of the code that could be run in par-
allel is small (Amdahl’s law). In fact, in most
Sisal programs, an inverted tree type parallelism
is present. In other words, there many operations
that can be executed in parallel at the beginning
of a graph or sub-graph boundary, and as the pro-
cessing occurs in the IF-1 nodes, fewer and fewer
values are produced after the reductions that are
fed to the subsequent IF-1 nodes. In many cases,
towards the end of a graph or sub-graph bound-
ary, just one or two data values are operated upon
leading to an almost serial code. Thus, there is
a high processor demand at the beginning of a
boundary that quickly diminishes towards its end.
This phenomenon leads to inverted tree type par-
allelism that reflects in an overall high processor
demand with relatively low speedups.

5 Conclusion

This work introduces a new compile time method
to schedule functional parallelism in a program on dis-
tributed memory systems, to minimize either program
completion time, or to generate a schedule with the
processor requirements below the maximum number
of available processors in a system.

The results are very promising and this strategy
could be of immense use in compiling for varying sizes
(in terms of number of processors) of distributed mem-
ory systems, and thus could be used for a variety of
platforms.

The work, thus, provides for a general framework
involving a compilation methodology to effectively
map functional parallelism in any language on dis-
tributed memory systems, with both, small and large
numbers of processors.

148

References [12] V. Sarkar, “Automatic partitioning of a progratu
dependence graph into parallel tasks”, IBM Jour

[1] J. T. Feo, D. C. Cann, and R. R. Oldehoeft, “A nal Of Research And Development, Vol. 35, No
Report on Sisal Language Project”, Journal of 5/6, Sept.-Nov. 1991.

Parallel and Distributed Computing, Vol. 10, No.
4, October 1990, pp. 349-366.

[2] N. Mansour, and G. C. Fox, “An Evolutionary
Approach to Load Balancing Parallel Computa-
tion”, Proc. 6th Distributed Memory Computing
Conf., April 1991, pp.200-203.

[3] D. Gajski, and J. Peir, *Camp: A Programming
Aide for Multiprocessors™, Proc. Int’l Conf. On
Parallel Processing, August 1986, pp. 475-482.

[4] A. Gerasoulis, and T. Yang, “A Comparison
Of Clustering Heuristics For Scheduling Directed
Acyclic Graphs On Multiprocessors™, Journal Of
Parallel And Distributed Computing, Vol. 16, No.
4, December 1992, pp. 276-291.

[5] M. Girkar, and C. Polychronopoulos, “Formaliz-
ing Functional Parallelism”, CSRD Report 1141,
June 1991. University of Illinois at Urbana-
Champaign, 1991.

[6] S. Hiranandani, K. Kennedy, and C. W. Tseng,
“Compiling Fortran for MIMD Distributed-
Memory Machines”, CACM, August 1992, Vol.
35, No. 8, pp. 66-80.

[7] C. Koelbel, P. Mehrotra, and J. Van Rosendale,
“Serni-automatic Domain
Decomposition in Blaze™, Proc. Int’l Conf. On
Parallel Processing, August 1987, pp. 521-524.

[8] W. Li, and K. Pingali, “Access Normalization:
Loop Restructuring for NUMA Compilers”, Tech-
nical Report, TR 92-1278, Cornell University.

[9] S. S. Pande, D. P. Agrawal, and J. Mauney, “A
New Threshold Scheduling Strategy for Sisal pro-
grams on Distributed Memory Machines”, Jour-
nal Of Parallel And Distributed Computing (To
appear).

[10] J. Ramanujan. and P. Sadayyapan, “Access
Based Data Decomposition for Distributed Mem-
ory Machines”, Proc. 6th Distributed Memory
Computing Conf., April 1991, pp. 196-199.

[11] J. Rose, and (. Steele, “C*: An Extended C Lan-

guage for Data Parallel Programming”, Technical
Report PL&7-5. Thinking Machines Inc.

149

Appendix A : Threshold
Scheduling Algorithm

/* Following pseudo-code calculates the Best Threshold and finds schedulex/

1. Input : Outermost IF-2 graph, G, and minimum, and maximum
bounds on Threshold, and choice of either of compilation
schemes A or B (Scheme A allows compilation for minimizing schedule
length and scheme B allows compilation for minimizing number of
processors).

2. Output: Processor assignment for Simple and At nodes of G.

procedure GetProcessor(n, Threshold, P)
begin

1. Select a predecessor task m of n such that the
schedule time of n is minimum.

2. Let p(m) be the respective processor of the
predecessor task m. Find schedule time of n on
p(m).

3. Find the schedule delay sd(n, p(m))

If sd(n, p(m)) <= Threshold, allocate
n to p(m).

4, If sd(n, p(m)) > Threshold, find set of
clashing tasks, T on p.

5. Find merit(n, p(m)) and merit(T, p(m))

6. If merit(n, p(m)) < merit(T, p(m)), go back
to step 1 by choosing next best predecessor
task of n. If all the predecessor tasks are
visited go to step 8.

7. If merit(n, p(m)) >= merit(T, p(m)), allocate
n to p(m). Migrate all tasks g in set T.

a. for all the tasks g in set T do,
call Getprocessor(g, Threshold, P).

8. If in steps 1 to 7, n does not find its
processor, find any free processor p(k) such
that sd(n, p(k)) <= Threshold, and is minimum.

9. If no processor could be found in 8, add
another processor and allocate n to it.
P=P+1

end procedure

150

A Virtual Shared Addressing System for Distributed Memory Sisal

Matthew Haines®

ICASE
NASA Langley Research Center
Hampton, VA 23681

Abstract

Efficient tmplementations of Sisal exist for shared
memory and hierarchical memory multiprocessors, but
distributed memory tmplementations have been ham-
pered by the Sisal compiler assuming a single ad-
dress space. We have designed and implemented
a solution to this problem by developing the VISA
(Virtual Shared Addressing) runtime system, which
provides distribuled lask and data managemeni. In
this paper we discuss the VISA data management
system, including the design and tmplementation of
a single addressing space, data distribution func-
tions, and address translation. We provide an ez-
ample of the performance of Sisal with VISA on the
nCUBE/2 distributed memory mulliprocessor using a
{wo-dimensional smoothing algorithm called Laplace.
We show that the current Sisal compiler’s implemen-
tation of multi-dimensional arrays is highly inefficient
in a distributed system, but that an efficient fmple-
mentation of rectangular multi-dimensional arrays 1s
posstble. We also show that multithreading can effec-
tively increase the performance of this program even
further,

1 Introduction

Large-scale distributed memory multiprocessors
represent the current state of the art in high-
performance computer architecture [14, 10, 18]. Pro-
gramming these machines requires the management of
both parallel tasks and distributed data, which is often
done explicitly using language constructs for spawning
and synchronizing tasks, and for message passing. The
resulting prograrmns are difficult and time-consuming to

*This work supported in part by a grant from Sandia Na-
tional Laboratories while at Colorado State University
tSupported in part by NSF grant MIP-9113268

Wim Bohm'!

Computer Science Department
Colorado State University
Fort Collins, CO 80523

write, and contain a large amount of machine depen-
dent housekeeping code not germane to the specifica-
tion of the problem. An alternative approach is to
use a high-level language that provides implicit paral-
lelism and the resulting management of parallel tasks
and distributed data.

Sisal {13] is a functional language that supports
data types and operations for scientific computation,
and provides implicit parallelism on a number of
shared memory parallel architectures. The Sisal com-
piler (OSC) consists of three parts: a frontend, a
backend, and a runtime system. The frontend trans-
lates the source program into intermediate dependence
graph form. The backend optimizes the intermediate
representation and generates native C code. The run-
time system provides the Sisal compiler with two main
abstractions: task management and shared memory
management. We have modified the runtime systemn
to provide support for both abstractions in a dis-
tributed memory environment, and in 7] we provide
an overview of the initial system and its performance.

In this paper we discuss the design of the dis-
tributed memory data management portion of the
runtime system, called VISA. The compiler (or pro-
grammer) is provided with a shared memory abstrac-
tion, which consists of a set of primitives for allocat-
ing and accessing shared data structures within a vir-
tual address space (see Appendix A for a complete
list of VISA primitives). Data distribution is accom-
plished by specifying a data decomnposition, or map-
ping function, upon allocation of the structure, so that
each data structure can be individually distributed
(or replicated) independent from the other data struc-
tures, We provide an example of the performance of
Sisal with VISA using the nCUBE/2 distributed mem-
ory multiprocessor and a two-dimensional smoothing
algorithm called Laplace. We show that the current
Sisal compiler’s implementation of multi-dimensi nal
arrays is highly inefficient in a distributed systern, but
that an efficient implementation of rectangular multi-

151

dimensional arrays is pussible. We also show that mul-
tithreading can effectively increase the performance of
this program even further. This paper does not ad-
dress the implementation issues VISA, such as how
a Sisal-generated (! program is augmented with the
VISA primitives.

In Section 2 we provide an overview of VISA, and
the design and implementation of the supporting sys-
tem. Section 3 provides a description of the Laplace
algorithm and its performance, along with an analysis
of the results. Section 4 provides a brief description
of related research projects, and we conclude in Sec-
tion 5.

2 The Design and Implementation of
VISA

Central to the current Sisal compiler is the assump-
tion of shared memory, which is required for both sys-
tem and user data structures. In [5] we outlined the
design of a task management system that eliminates
the need for global system data structures by employ-
ing a distributed, rather than centralized, task distri-
bution approach. In this paper we describe the design
of runtime support for a single addressing space and
general data decompositions used to manage global
user data structures.

2.1 Design Goals

Our goal in designing the VISA runtime system is
to eliminate the burden of explicit data management
from the prograrnmer, while at the same time pro-
viding explicit control aver the general distribution of
global data structures. Towards this end, VISA pro-
vides the following services:

o Single Addressing Space. One of the primary
difficulties in programming a distributed mem-
ory multiprocessor is the lack of a single ad-
dressing space for user data structures, such as
arrays. This results in encumbering the com-
piler, or worse yet, the programmer, with the
task of distributing data structures and insert-
ing the proper code to fetch and store non-local
references. Therefore VISA provides a single ad-
dressing space, and a set of associated functions
that operate on that space, so that the program-
mer, or in our case the Sisal compiler, is given a
familiar shared mermory model of computation.

e Mapping Funclions. In association with the sin-
gle addressing space, VISA provides a method for

the compiler or programmer to specify “how” the
data is to be distributed across the memories for
improved efficiency. The idea is to distribute the
data structures in tight accordance with the dis-
tribution of parallel tasks, so that local references
are mazimized. New analysis techniques [15, 9, 4]
can yield the optimal distribution in restricted
cases, and in these cases compilers could either
insert the communication code directly or pass
the distribution information to a runtime system
like VISA in the form of a mapping function di-
rective.

e Split-Phased Transactions. In [8] we introduced
the design of multithreaded task management,
which relies on the ability to perform remote ref-
erences as splil-phased transaclions, where the re-
quest and reply phase are decoupled to allow for
thread switching between the two phases. VISA
provides split-phased transactions in support of
the multithreaded task execution model.

The Sisal compiler augments a parallel program
with VISA primitives for allocating and accessing the
data structures to be kept in the single addressing
space!. Any variables not placed in the VISA space
are unaffected by the system. The augmented pro-
gram is then compiled using the native C compiler
of choice, and linked with the VISA library to create
the object program, which can then be executed on a
distributed memecry multiprocessor.

2.2 Message Passing Abstraction

All message passing required for accessing remote
values is handled by the VISA system through the use
of a message passing abstraction, supporting both syn-
chronous (blocking) and asynchronous (non-blocking)
operations. Since these operations are provided by
most host operating systems for distributed memory
multiprocessors, VISA can be easily ported to other
distributed memory multiprocessors by modifying the
message passing abstraction to make the proper native
calls.

Specifically, the abstraction supports a non-
blocking send for point-to-point communication, a
broadcast for disseminating information to all proces-
sors, a blocking recetve for synchronous communica-
tion, and an interrupt-based asynchronous recetve to
handle incoming requests. Asynchronous message re-
ception requires polling at some level to determine

P Actually, the VISA primitives are currently inserted by
hand into the Sisal-generated C code. We are awaiting changes
to the compiler which would automatically insert these calls.

152

when a message arrives and take appropriate action.
Most systems, including the nCUBE/2, provide hard-
ware polling for incoming messages, resulting in a
hardware trap that is caught by the operating sys-
tem, and then passed into the user-level in the form
of an interrupt. The interrupt causes a VISA message
interrupt handler to deal with the message. If the
interrupt handler is allowed to be invoked at any ar-
bitrary time during the computation, it cannot mod-
ify the global state of the computation. Therefore,
either the interrupt handler must be selectively dis-
abled during the times when global data structures
are accessed, or it must be prevented from modifying
global data structures. The former option requires the
placement of expensive system calls for enabling and

disabling interrupts around all global data structure-

accesses, which can be costly and error-prone. There-
fore, the VISA system employs the latter option: Any
message requiring a global modification is enqueued
onto a message list for handling outside of the scope
of the interrupt handler.

2.3 Data Distribution

As depicted in Figure 2, the VISA address space
is allocated in part of the local memory of each par-
ticipating node. This creates two types of addressing
space for each participating node in the system: a
shared wvirtual addressing space that spans all of the
nodes, and a local address space for data visible only
to the local node. Each data structure allocated to
the VISA space receives a contiguous set of virtual ad-
dresses that are shared among the nodes and mapped
onto physical addresses from each node.

Data distribution (or data decomposition) deter-
mines how the physical storage for a global data struc-
ture is to be divided among the participating nodes.
The goal i1s to divide the data structure among the
nodes so as to nunimize the number of remole refer-
ences caused by the distribution. This imnplies that the
distribution of data must be tied to the access pattern
of the parallel computation, and therefore data distri-
bution needs to be flexible to support a wide variety
of access patterns. For VISA, data distribution is ac-
complished by dividing a data structure into a set of
blocks, where each block contains blocksize elements.
The blocks are then allocated to the physical memo-
ries of the nodes i round-robin fashion until all of the
blocks have been distrnibuted.

To facihitate a variety of distribution schemes, we
assign a sel of control parameters to each data struc-
ture that define the blocksize of each block, the starf
node to which the first block is assigned, and the

processor stride at which the blocks are distributed.
These data control parameters correspond to the task
control parameters that are used to distribute paral-
lel tasks, thus providing a unified method for tying
task distribution to data distribution, which is neces-
sary for avoiding unnecessary remote references that
occur when tasks and data are not properly aligned.
A fourth control parameter for data structures speci-
fies whether or not a data structure is to be replicated.
Any data structure, from a single variable to an en-
tire array, can be replicated among the nodes in the
VISA system. Replication is accomplished by allocat-
ing enough local storage from each node to accommo-
date the entire structure, and broadcasting all writes
to the data structure. Rather than implementing an
expensive coherence protocol, VISA assumes that the
replicated data structures are controlled by the com-
piler, where explicit synchronization can be provided
which minimizes the synchronization required while
still maintaining a coherent system.

Table 1 details the parameter settings for sev-
eral one-dimensional mapping functions, where the
map.arg is passed in from the allocation routine, typi-
cally specifying the starting node. Most variables and
structures are allocated using either the scalar map
or the replicatemap, depending on the nature of the
variable. For example, a structure containing argu-
ments for a parallel slice routine would be replicated
to eliminate the remote references required by each of
the nodes executing the parallel slice, whereas a global
counter would be allocated using the scalar map to
ensure consistency. Data arrays are typically allocated
using the blockmap, which provides an even distri-
bution of the data among the nodes in chunks that
are often exploited by the contiguous loop structure
of the Sisal tasks. Arrays can also be replicated, and
as we will see with two dimensional data structures,
the pointer array is replicated to eliminate the need
for two remote references when accessing an array el-
ernent.

The current Sisal compiler represents multi-
dimensional data structures as structures containing
sub-structures. For example, a two-dimensional array
is represented as an array of poinfers, where each ele-
ment points to the location of a one-dimensional data
structure (see Figure 3). This is doue to conform to
the way in which multi-dimensional arrays are rep-
resented in both Sisal and (. Mapping functions for
multi-dimensional arrays must therefore consider both
the pointer arrays as well as the data arrays. Pointer

2True multi-dimensional arrays in C are possible only if the
array bounds are given at compile time.

9]
D

f'_—_’ r————
Processor Processor Processor Processor
........ Memory [Memory [) Memory [0 "7l Memory |
\ V, N o o N
VISA Addressing Space
Figure 1. The VISA addressing space
Mapping Function blocksize | starl node | stride | replicate
scalar map n map.arg 1 No
replicate.map n P; | Yes
block.map n/p map.arg 1 No
variable blockmap || map.arg Py 1 No
interleave.map 1 map.arg 1 No

Table 1: Coontrol parameter settings for various 1D mapping functions

Figure 2: Two-dimensional arrays in Sisal

arrays are replicated to guarantee that accessing any
element of a matrix will require at most one remote
reference.

Assuming that all pointer arrays are allocated using
the replicatemap, Table 2 details how the control
parameters are established for each of the data arrays
in a two-dimensional matrix. The map_arg for these
mapping functions represents the starting node, and is
typically some function of i, corresponding to the i‘h
row of the matrix. For matrix.xow_map, the map_arg
is typically set to i/(n/p), where n is the number of
rows and p is the number of processors. When the
number of rows is equal to the number of processors
(n/p = 1), the i** row is placed on the i*h processor,

and when the number of rows exceeds the number of
processors, each processor gets a group of n/p contigu-
ous rows. However, if an interleaved row allocation is
desired, the map.arg can be set to ¢ mod p instead.
For matrix_block map, the map.arg is typically set
to i/(n/rbs), where rbs is a control parameter for the
matrix_blockmap function, and is fixed for a given
number of processors to allow for the proper layout of
the blocks. Figure 4 depicts the distributions for an
8x8 matrix on 4 processors using the matriz_row_map
with contiguous rows and the matriz_block_map with
rbs = 2.

It is possible to create many different mapping func-
tions, given the ability to modify the data control pa-
rameters. This general approach to data distribution
is necessary to accommodate the various access pat-
terns that applications exhibit, and VISA allows the
user to add to the set of available mapping functions
so that customized decompositions are possible. Map-
ping functions are specified upon requesting memory
from the single addressing space using the visa_malloc
function. This allows a compiler that is generating
the VISA primitives to invoke visa_malloc with the
desired mapping function, either obtained from anal-
ysis or through user directives. Likewise, a program-
mer using the VISA primitives directly can select the
desired mapping function for each data structure with-
out having to specify the actual message passing de-
tails necessary for implementing such a distribution

154

Mapping Function || blocksize | starl node | stride | replicate
matrix_row.map n map.arg 1 No |
matrix._col map 1 map.arg 1 Yes
matrix_blockmap || rbs+n/p | map.arg rbs No

Table 2: Control parameter settings for various 2D mapping functions

matrix_row_map

matrix_block_map

. N
I
.
.

. . B . .
P PRI T e PERERY R
.

.

. ' . . .

. 1 . 3 .
PRI SRRAEE PR, TR e
. .
.

Figure 3: matrix_row.map and matrix.block.map functions

scheme.
2.4 General Address Translation

Address translation is the process of obtaining the
physical address of a datum given its virtual address.
For a distributed memory multiprocessor, a physical
address consists of the tuple (node, offset), where node
i1s a node designator and offset is the physical ad-
dress within that node. Since VISA emplovs a block-
based addressing scheme, where the blocksize, starting
node, and stride may all vary, it is necessary to store
these control parameters, along with other informa-
tion about each data structure, in a descriptor called
a range_map entry. The entire VISA space is therefore
described by the coilection of these entries, called the
range_map lable. The term “range” refers to the fact
that, since all data structures are assigned contigu-
ous addresses in both virtual and physical spaces, the
range (low, high) is sufficient to represent all of the
addresses within a data structure. To ensure local ac-
cess of the range_map entries, the range_map table is
replicated. There is no coherence problem, since each
range_map entry is written only once (upon creation
by visa_malloc).

In addition to the data distribution control parame-

ters, each range_map entry (depicted in Figure 5) con-
tains three address ranges for each data structure:

o The visa_base represents the range of global vir-
tual (VISA) addresses for this data structure.

o The local_base represents the range of local phys-
ical addresses of the blocks that are allocated for
this data structure.

o The optimized_base represents the optimized
range of global addresses, as explained in Sec-
tion 2.5.

After a data structure has been distributed with
the visa_malloc routine, access requires a translation
frorn the virtual VISA address to the physical address
tuple (node, offset), which proceeds as follows:

e The range_map entry for the desired data struc-
ture is fetched by the find_rm() routine, which is
exposed to the compiler so that the range_map
entry for a data structure that is to be accessed
many times need only be fetched once,

o From a wirtual address, the relative element po-
sition within the data structure, the block which

! Field [Function

visa_base | The range of global virtual addresses
local. base | The range of local physical addresses for locally-owned blocks
optimized_ base | The range of optimized virtual addresses
nelems | The number of elements

size | The size of each element

blocksize | The blocksize (elements per block) used for distribution
start node | The node ID on which to begin distributing the blocks
stride | The stride at which to distribute the blocks
replicate | A boolean to determine if this data structure is replicated
table.index | The index into the range.map table for this entry

next | A utility pointer

Figure 4: Description of a range_map entry

contains the desired element, and the relative off-
set of the desired element within this block are
computed:

element = address - low.range
block = element / blocksize
block offset = element mod blocksize

Next, the node which owns the desired block is
computed. If the replicate flag is set, then the
computed node always equals the local node des-
ignator, indicating that each node has a copy of
the desired block. Otherwise, we compute:

node = (start node + (block * stride))
mod P

where P is the number of participating nodes.

If the number of blocks for this data structure
exceeds the number of participating nodes, then
some (or all) of the nodes will own multiple
blocks. Next, the relative block number within
the desired node and the relative offset within this
node are computed:

node_block = block / P
rel offset = node_block * blocksize +
block offset

[f the access is local (i.e. node is equal to the local
node designator) the rel _offset is incremented
by the local_base from the range.map entry to
produce the actual offset in local physical mem-
ory, since local_base contains the address of the
first byte for this structure:

offset = rel offset + local_base.

o If the access is remote, a message is sent to the
computed node, requesting that the desired da-
turn be fetched and returned. For multithread-
ing support, this is implemented as a split-phased
transaction, where the first phase involves a send-
ing a request to the desired node and the second
phase involves waiting for a reply. When mul-
tithreading is enabled, a thread scheduler is in-
voked between these two operations to start an-
other parallel thread while the request is being
processed.

2.5 Optimized Address Translation

One of the first things we noticed about the VISA
address translation scheme is that the overhead for
translation is minimal when compared with the time
required to perform a remote reference, but dominates
the time required for a iocal reference. In addition to
exposing the routine which finds a desired range map
entry so that range_map entries can be stored locally
to avoid repeated searching of the range.map_table,
we have designed and implemented an optimization
that eliminates the need for an address translation
when the access is local. We introduce a new func-
tion, called visa_opt, which re-writes the virtual base
address with the structure’s optimized base address,
and establishes a pair of “water mark” registers to hold
the low and high values of the range corresponding to
the local_base. The optimized_base is the local_base
minus the offset necessary to generate a global ad-
dress that will result in a local access. For example,
suppose an array of 40 integers (4 bytes each) is al-
located using block.map among 4 nodes, as depicted
in Figure 6, where the local_base values can be differ-

156

VISA Space

..

block_map
PO P1 P2 P3
'e Y Y a'd ™\
10 Elements 10 Elements 10 Elements 10 Elements
local base = 1000 local_base = 1300 local_base = 900 local_base = 1000
opt_base = 1000 opt_base = 1260 opt_base = 820 opt_base = 880
L A A JL J

Figure 5: Sample VISA data structure with computed optimized_base values

ent for each node, which is possible since each node
manages its local memory independently of the other
nodes. Each processor would allocate local sterage
for blocksize = 10 elements (40 bytes), and set the lo-
cal_base accordingly. If, for example, the third node
wishes to optimize the base address for this structure,
then the optimized value is the local_base minus 20
elements (80 bytes), corresponding to the two blocks
of 10 elements each that proceed it in the distribu-
tion. Once the base address for a structure has been
optimized, any further access to this structure, repre-
sented as some offset from the base, will be checked
against the low and high water marks. If the com-
puted address falls within the water marks, then the
access can proceed without translation, otherwise the
address is passed along to the VISA access routines
for general address translation and proper remote han-
dling. Special macros are defined to perform the water
mark checks, so that the total overhead for a local ac-
cess has been reduced to the time required for three
comparisons.

3 Performance

We now examine the performance of a two-
dimensional smoothing algorithm called Laplace,
which is a smoothing algorithm that uses a five-point
stencil over a two-dimensional array. The Sisal code
for Laplace is given in Figure 7

This problem highlights two-dimensional Sisal ar-
rays, mapping functions, and the ability to combine

task distribution with data distribution at a multi-
dimensional level. The mapping functions attempt to
minimize the edges (or boundary elements) in the dis-
tribution, since boundary elements require remote ref-
erences.

Since the Sisal compiler does not support true rect-
angular arrays, the matrix in this program is imple-
mented as an array of rows, where each row is a one-
dimensional array of values. Also, each Sisal array is
represented using three data structures, two descrip-
tor structures and the actual array, and each of these
data structures is placed into VISA space, requiring
an additional VISA descriptor for each. Thus, for an
n x n matrix, the Sisal compiler generates 6n + 6 data
structures, 5n + 5 of which are replicated. Finally,
since Laplace is an iterative algorithm, the compiler
generates two additional swap matrices, bringing the
total data structure count for the program to 3(6n+6),
of which 3(5n + 5) are replicated across all nodes. As
we will see, handling multi-dimensional arrays in this
manner has a profoundly detrimental effect on the per-
formance of the program.

Laplace employs a five-point stencil computaticn,
which implies that the computation of all boundary
elements for a give distribution will require remote
references. Thus our first intuition is to minimize the
number of elements on the distribution boundaries.
We examine two matrix mapping functions to see how
effective they are at minimizing remote references. For
our comparisons, let us assume that the matrix size is
256 x 256(n = 256) and we are using 16 processors

(p = 16).

157

% laplace.sis
define main

type OneD = array([double_reall;
type TwoD = array[OneD];

function 2d_fill (N: integer returns TwoD)
for I in 1,N cross J in 1,N
el := if mod(I+J,2) = 0 then
double_real(1.0)

else
double_real(N)
end if
returns array of el
end for

end function % 2d_fill

function laplace (Init_M: TwoD; N,KMax: integer returns TwoD)
for initial

K := 1;
M := Init_M
repeat

K := o0ld K + 1;
M := for I in 1,N cross J in 1,N
nM := if I=1]|I=N|J=1|J=N then
old M[I,J]
else
old M[I,J] / double_real(2.0) +
(old M[I-1,J] + old M[I+1,J] + old M[I,J-1] +
old M[I,J+1]) / double_real(8.0)
end if
returns array of nM
end for
until K >= KMax
returns value of M
end for
end function % laplace

function main (N,K : integer returns TwoD)
let
A = 2d_fill (N)
in
laplace (A, N, K)
end let
end function ¥ main

Figure 6: Sisal code for laplace function

158

o The matrir_rew. map mapping function allocates
b contiguous rows to each processor, where b =
n/p. This mapping scheme eliminates all of the
interior remote references, leaving only those on
every b-th row boundary. Thus we have a total
of (p~ 2)2(n — 2) + 2(n - 2) remote references
, which 18 7,620 for our example of a 256 x 256
matrix.

¢ In the matrir_block_.map mapping function the p
processors are arranged in a /p x /p grid, each
owning a (n/\/p) x (n/\/p) block of the matrix.
In the example case this would lead to a 4x4 grid
with 128x128 elements per processor, with 4 cor-
ner processors performing 254 remote references
each, 8 side processors performing 382 remote ref-
erences each, and 4 interior processors performn-
ing 512 remote references each, producing total
of 6,120 remote references.

When evaluating the performance of Laplace we
must select a problem size, which raises the prob-
lemm that a problem size which fits into the memory
of a single node is not large enough to saturate an
order of magnitude larger machine configuration, and
a problem size that saturates a large machine config-
uration does not fit into one memory. Therefore, we
create three processor configuration groups: 1,2,4.&
8 nodes, 4,8,16, & 32 nodes, and 16, 32, 64, & 128
nodes. We use the same array size within each proces-
sor group, and increasingly larger array sizes between
the groups. We measure the efficiency of Laplace rel-
ative to the smallest configuration in each group, and
call this measure relative efficiency (REff).

The results of running Laplace with the two matrix
mapping functions are given in Table 3, where REffis
defined as REff=(Tw/{Tua * n)) * 100, where « is the
number of processors for the base configuration in a
group, T, is the execution time for this base configura-
tion, and T, is the execution time on na processors,
and Sp gives the speedup, in terms of execution time,
of the block map over the row map. These results
are clearly disappointing. The poor performance is
caused by the need for replicating the administrative
data structures of the two dimensional arrays, cre-
ating 3(3n + 3) Sisal data structures and 3(3n + 3)
VISA data structures (range map entries), for a total
of 3(6n + 6) administrative data structures, 3(5n + 5)
of which must be replicated. In a one PE machine
there is no broadcast, hence the much better sequen-
tial performance. Dealing with N-dimensional arrays
in this fashion works for shared memory machines, but
is clearly unacceptable in a distributed memory ma-
chine. The correct way to solve this problem is to

have true N-dimensional arrays in Sisal, resulting
one descriptor for the whole structure. Sisal 2 0 2]
defines true N-dimensional arrays and gives a method
of distributing regions of these arrays. A quick fix to
this problem given the current version of Sisal 1s to
represent the matrix by a one dimensional structure
and rewrite the inner loap of Laplace as follows:

M := for k in 1,n*n
i = (k-1)/n+ {; j := mod(k,n);
nM := if i=1li=n}j=1]3j=0
then old M[k]
else old M[k] / 2.0 +
(old M[k-n] + old M[k+n] +
old M[k-1] + old M[k+1]) /
8.0
end if
returns array of nM
end for

Table 4 presents the results of the improved
Laplace program, using a one dimensional array and
a block mapping function that corresponds to the ma-
{riz_row_map function, where Sp gives the speedup of
the true 2D array implementation over the Sisal 2D
array implementation. The results are significantly
better, and can be further improved by using mulls-
threading to hide part of the cost from a remote refer-
ence.

Table 5 gives the performance results for Laplace
with multithreading, where the number of threads
is 16 for all multithreading cases, and Sp gives
the speedup of the inultithreading case over the
non-multithreading case. For this experiment, we
use the improved version of Laplace that utilizes
a one-dimensional array rather than the Sisal two
dimensional arrays. Going from no message passing,
(1 PE) to message passing (2 PEs) slows the program
down in the non-multithreading case, but since the
compute/communicate ratio of Laplace is high (the
computation of O(n?) array elements requires O(n) re-
mote references), parallelizing this code pays off and
performance is regained. At the same time, multi
threading is effective for Laplace as there are enougl
remote reference to cover the multithreading over:
heads, which gives rise to speedups of between 1.20
and 1.65. Clearly, multithreading is effective at toler
ating the remote references for this program.

Finally, this program could be further improved by
employing compiler generate block moves allowing «
whole row to be communicated between nodes. This
is a case where making the compiler aware of the di-
tributed memory architecture, and performing the ap
propriate analysis and optimization, will provide re

159

malrir_row.map

malriz_block.map

PEs | Matrix Size || Time (s) | REff (%) || Time (s) [REff (%) | Sp
1 256x256 17.1284 100.0 18.6020 100.0 | 0.92

2 256x256 27.8498 30.8 34.3491 27.1 | 0.81

4 256x256 19.4244 22.0 24.4763 19.0 { 0.79

8 256x256 20.7248 10.3 22.7965 10.2 | 0.90

4 512x512 52.2188 100.0 53.0218 100.0 | 0.98

8 512x512 47.8333 54.5 51.3777 51.6 | 0.93
16 512x512 58.5527 22.3 63.2369 21.0 | 0.92
32 512x512 89.9674 7.3 97.4665 6.8 | 0.92
16 1024x1024 || 129.7875 100.0 || 134.5676 100.0 | 0.96
32 1024x1024 || 185.1608 35.0 || 199.6552 33.7 1 0.93
64 1024x1024 || 318.1579 10.2 || 346.8237 9.7 | 0.92
128 1024x1024 || 529.3233 3.1]| 646.9596 2.6 | 0.82

Table 3: Performance of 2D Laplace, row versus block map, 10 iteration

Stsal 2D Arrays

True 2D Arrays

PEs | Matrix Size || Time (s) | REff (%) || Time (s) | REff (%) Sp
1 256x256 17.1284 100.0 16.6974 100.0 1.03

2 256x256 || 27.8498 30.8 18.5326 450 | 1.50

4 256x256 19.4244 22.0 12.4936 35.4 1.55

8 256x%256 20.7248 10.3 8.7825 23.8 1 2.36

4 512x512 || 52.2188 100.0 | 41.3844 100.0 | 1.26

8 512x512 47.8333 54.5 25.4780 81.2] 1.88
16 512x512 58.5527 22.3 17.4767 59.2 1 3.35
32 512x512 89.9674 7.3 14.5955 354 6.16
16 1024x1024 || 129.7875 100.0 50.6113 100.0 | 2.56
32 1024x1024 || 185.1608 35.0 36.0326 70.2 | 5.14
64 1024x1024 }| 318.1579 10.2 29.1644 43.4 | 10.91
128 1024x1024 || 529.3233 3.1 26.8367 23.6 | 19.73

Table 4: Performance of improved Laplace (matrix row.map)

160

No Multithreading Multithreading

PEs | Matrix Size || Time (s) | REff (%) || Time (s) | REf (%) | Sp
1 256x256 16.6974 100.0

2 256x256 18.5326 45.0 11.2740 74.1 | 1.65

4 256x256 12.4936 334 8.9311 46.7 | 1.39

8 256x256 8.7825 23.8 6.8160 30.6 | 1.27

4 512x512 || 41.3844 100.0 || 26.7381 100.0 | 1.54

8 512x512 || 25.4780 81.2 18.2013 73.5 | 1.39

16 512x512 17.4767 59.2 13.6886 48.8 | 1.27

32 512x512 14.5955 35.4 11.5710 28.9 | 1.26

16 | 1024x1024 || 50.6113 100.0 | 36.4239 100.0 | 1.39

32 | 1024x1024 || 36.0326 70.2 27.3604 66.6 | 1.31

64 | 1024x1024 || 29.1644 3.4 23.1235 39.4] 1.26

128 | 1024x1024 || 26.8367 23.6 20.3319 224 | 1.32

Table 5: Performance of Laplace with multithreading, MT=16, 10 iterations

sults superior to the general runtime approach.

4 Related Research

In [3] shared memory implementations of Sisal and
Fortran are compared. The shared memory implemen-
tation of Sisal compares favorably with Fortran on a
wide variety of benchmarks. By providing a virtual
shared memory runtime system, we have taken the
shared memory implementation to distributed mem-
ory machines. In [6] we introduced the design of our
task management system, in [8] we quantify the char-
acteristics of software multithreading, and in [7] we
present the entire runtime system and provide exper-
iments that measure the relative effects of certain de-
sign decisions using a larger set of test programs.

Another area of research that offers a language-
independent shared memory paradigm is Distributed
Shared Memory [1, 12, 16]. However, the inability to
couple paralle] tasks tightly with the distribution of
data, controlled implicitly by the operating system,
can result in misalignment, causing excessive message
passing. Also since the granularity of sharing data in
these systemns is often very large (typically a page),
contention, or false sharing can occur, in which two
unrelated data items exist on the same sharable unit,
prohibiting simultaneous access. Since the sharable
unit in VISA is an individual data structure, false
sharing does not occur.

The most common alternatives to programming
distributed memory multiprocessors using an explicit
parallel language with message passing are distributed

memory language compilers, such as FortranD [9],
Kali [11], and Superb [19]. These systems offer the
advantage of implicit management for both tasks and
mermory, and allow the programmer to use a familiar
programming paradigm: sequential shared memory.
Although these systems have had success in imple-
menting some applications, there are several problems
that have kept them from wide-spread use:

e Parallelizing a sequentially written program re-
quires extensive dependence analysis that can be
hampered with common imperative programming
phenomena such as aliasing [17].

o Due to the complexity of these compilers and the
difficulties in porting them to new machines, their
availebility is limited to only of few of the cur-
rently available distributed memory multiproces-
sor systems. As stated earlier, such a compiler is
not commercially available for the nCUBE/2.

e Though parallelizing/vectorizing compilers have
proven to be successful for some applications on
shared memory multiprocessors and vector pro-
cessors with shared memory, they are still largely
unproven for distributed memory multiproces-
Sors.

5 Conclusions
We have introduced the design and implementa-

tion of a runtime-based approach to providing a shared
memory paradigm and implicit memory management

161

for a distributed memory implementation of Sisal.
We have also examined the performance of a two-
dimensional smoothing algorithm using Sisal and aug-
mented with VISA to run on the nCUBE/2. The
results clearly demonstrate the need for true rectan-
gular arrays, as the current implementation of two-
dimensional arrays in Sisal creates an excessive num-
ber of supporting data structures, most of which need
to be replicated. This not only wastes an enormous
amount of local memory, but clogs the network with
replication messages, resulting in dismal performance.
However, if the two-dimensional arrays are “flattened”
into one-dimensional arrays, then reasonable perfor-
mance can be achieved, upon which multithreading
can improve.

VISA represents only the first step in achieving an
efficient and competitive distributed memory imple-
mentation of Sisal, and efforts should now be concen-
trated on the compiler to add explicit knowledge of
a distributed memory system, as well as generating
the appropriate primitives for the distributed memory
runtime system that we have created. Only then can
optimizations concerning task and data layout be im-
plemented, which are necessary for performance that
will compete with other distributed memory program-
ming approaches.

References

[1] John K. Bennett, John B. Carter, and Willy
Zwaenepoel. Munin: Shared memory for distributed
memory multiprocessors. Technical Report Rice
COMP TR89-91, Rice University, April 1989.

[2] A.P. W. Béhm, D. C. Cann, J. T. Feo, and R. R. Old-
ehoeft. SISAL 2.0 reference manual. Technical Report
CS-91-118, Computer Science Department, Colorado
State University, Fort Collins, CO, November 1991.

(3] David Cann. Retire Fortran? A debate rekindled.
Communications of the ACM, 35(8):81-89, August
1992.

[4) Manish Gupta and Prithviraj Banerjee. Demon-
stration of automatic data partitioning techniques
for parallelizing compilers on multicomputers. IFEE
Transactions on Parallel and Distributed Systems,
3(2):179-193, March 1992.

[5] Matthew Haines and Wim Bohm. Thread manage-
ment in a distributed memory implmentation of Sisal.
In International Symposium on Computer Architec-
ture, Workshop on Dataflow Computing, May 1992.

[6) Matthew Haines and Wim Bohm. Towards a dis-
tributed memory implementation of Sisal. In Scal-
able High Performance Computing Conference, pages
385-392. IEEE, April 1992.

(7] Matthew Haines and Wim Béhm. On the design of
distributed memory Sisal. Journal of Programming
Languages, 1:209-240, 1993.

[8] Matthew Haines and Wim B&hm. Task management,
virtual shared memory, and multithreading in a dis-
tributed memory implementation of Sisal. In Arndt
Bode, Mike Reeve, and Gottfried Wolf, editors, Paral-
lel Architectures and Languages Furope, pages 12-23.
Springer-Verlag Lecture Notes in Computer Science,
June 1993.

[9] Seema Hiranandani, Ken Kennedy, and Chau-Wen
Tseng. Compiling Fortran D for MIMD distributed-
memory machines. Communications of the ACM,
35(8):66-80, August 1992.

[10] Intel iPSC/860 specifics. Brochure, 1991.

[11] C. Koelbel and P. Mehrotra. Compiling global name-
space parallel loops for distributed execution. [EEE
Transactions on Parallel and Distributed Systems,
2(4):440-451, October 1991.

{12] Kai Li. Shared Virtual Memory on Loosely Coupled
Multiprocessors. PhD thesis, Yale University, Septem-
ber 1986.

[13] J. R. McGraw, S. K. Skedzielewski, S. J. Allan, R. R.
Oldehoeft, J. Glauert, C. Kirkham, W. Noyce, and
R. Thomas. SISAL: Streams and iteration in a single
assignment language: Reference manual version 1.2.
Manual M-146, Rev. 1, Lawrence Livermore National
Laboratory, Livermore, CA, March 1985.

[14] nCUBE, Beaverton, OR. nCUBE/2 Technical
Overview, SYSTEMS, 1990.

[15) Michael O’Boyle and G.A. Hedayat. Data align-
ment: Transformations to reduce communication on
distributed memory architectures, April 1992.

[16] Umakishore Ramachandran, Mustaque Ahamad, and
M. Yousef A. Khalidi. Unifying synchronization and
data transfer in maintaining coherence of distributed
shared memory. Technical Report GIT-CS-88/23,
Georgia Institute of Technology, June 1988.

(17) Zhiyu Shen, Zhiyuan Li, and Pen-Chung Yew. An
emperical study of Fortran programs for parallelizing
compilers. [EEE Transactions on Parallel and Dis-
tributed Systems, 1(3):356-364, July 1990.

(18] Thinking Machines Corporation, Cambridge, Mas-
sachusetts. CM5 Technical Summary, October 1991.
[19] H. Zima, H. Bast, and M. Gerndt. Superb: A tool for

semi-automatic MIMD/SIMD parallelization. Paral-
lel Computing, 6:1-18, 1986.

162

Appendix A: VISA Primitives

o Allocation

— V_ADDRESS visa_malloc (int nelems, int size,

map_function map, int map_arg)

This function allocates a block of VISA space
(nelems * size bytes), which will be distributed
according to map, and returns a pointer to the
start of the allocated space. A range_map entry
is also created and distributed among the nodes,
and local space is allocated, according to the
map, to store the data structure.

o Deallocation

void visa_free (V_ADDRESS address)

This function returns the given portion of VISA
space to the free pool, removes the correspond-
ing range_map entry from each of the range_map
tables, and deallocates the local storage used for
storing the structure.

o Access

- range_map.type * findrm (V_.ADDRESS ad-

dress)

Return a pointer to the range_map entry cor-
responding to the given VISA address. This
pointer is then passed into each of the access
routines as an argument so that the fetch does
not have to be done for each access.

char visaget.c (V.ADDRESS address,
range_map-type *rm)
int visagetdi (V_ADDRESS address,
range_map-type *rm)
float visa_getf (V_ADDRESS address,
range.map.type *rm)
double visa_get.d (V.ADDRESS address,

range.map-type *rm)

These functions return the desired value from
the given VISA address. If the range_map en-
try rm is not defined, then the correspond-
ing range_map entry for this structure will be
fetched, which is true for all of the access func-
tions.

void visa.get.m (POINTER data, int size,
V_ADDRESS address,

range_map.type *rm)

This function copies the block of data starting
at the given VISA address and for a length of
size into the local address pointed to by data.

- void visa_put._c (char value, V.ADDRESS ad-

dress, range_map.-type *rm)

void visa_puti (int value, V. ADDRESS ad-
dress, range_map_type *rm)
void visa_put_f (float value, V_ADDRESS ad-
dress, range_map_type *rm)

163

void visa_put.d (double value, V_.ADDRESS
address, range_map.type *rm)

These functions place valueinto the given VISA
address location.

void visa_putan (POINTER data, int size,
V_ADDRESS address,
range.map-type *rm)

This function copies the local data block of size
size and pointed to by datainto the given VISA
address location.

void visa.update_c (uchar red, char wvalue,
V_ADDRESS address,
range.map-type *rm)
void visa.update.i (uchar red, int value,
V_ADDRESS address,
range.map-type *rm)
void visa_updatef (uchar red, float value,
V_ADDRESS address,
range.map_type *rm)
void visa.update_d (uchar red, double value,
V_ADDRESS address,
range.map-type *rm)
These functions update the value stored in the
given VISA address with value, according to the

reduction red. Currently supported reductions
include V.SUM and V_PRODUCT.

Developing a high-performance FFT algorithm in Sisal
for a vector supercomputer

John Feo and David Cann
Lawrence Livermore National Laboratory
Livermore, CA 94551

Abstract

Functional languages provide a level of program abstrac-
tion devoid of most details regarding implementation and
architecture. Memory management, task scheduling, com-
munication, synchronization, and resource management
are implied by the language’s semantics, and are not pro-
grammed explicitly by the programmer. While these
properties of functional languages are attractive, they may
be detrimental if the programmer's objective is to realize
high performance. In ihis paper, we discuss these pro-
gramming issues and study the difficulty of expressing a
machine-specific algorithm in a functional language. We
chose to study the Fast Fourier Transform, the Cray C90,
and Sisal. We present an implementation of the Fast
Fourier Transform designed specifically for the Cray hard-
ware, and explain how to express the computation in
Sisal. Despite its complexity, the Sisal code runs in con-
stant memory, exhibits good speedup, and executes close
to the achievable performance limits of the machine.

1 Introduction

Functional programming languages provide a level of
program abstraction devoid of most implemental and ar-
chitectural details. The functional programmer works at
or near the level of mathematics. Allocation and dealloca-
tion of memory, identification of concurrent tasks, com-
munication, synchronization, and resource management
are implied by the semantics of the language, and are not
programmed explicitly by the user. While these proper-
ties reduce the cost of developing correct, determinate par-
allel programs, they also reduce the user’s control over
how programs execute. Fine control over program execu-
tion is one way to achieve high performance.

Since functional languages do not provide execution
control, the functional programmer must develop algo-
rithms that naturally exploit the target architecture, and
then rely on the compiler and runtime system to compile
and execute the code efficiently. In this paper, we study
the difficulty of expressing machine-specific algoritams in
a functional language. For the algorithm, we chose the
Fast Fourier Transform (FFT). This algorithm is the ker-
nel of many large scientific applications, and has been
studied extensively. Since speed is paramount in kernel
routines, FFT algorithms are usually written to machine
specifications. Recently, several papers have appeared in

the literature discussing the implementation of FFT algo-
rithms in functional languages {1,2,9]. For the machine,
we chose the Cray C90, a sixteen processor vector super-
computer. Each processor is capable of executing one bil-
lion floating point operations per second. Writing high-
performance code for the Cray is a formidable challenge.
For the language, we chose Sisal [6], a functional lan-
guage developed by Lawrence Livermore National Labora-
tory and Colorado State University. Sisal programs have
achieved good performance on a variety of multiprocessor
computers [4].

In section two, we present the Fast Fourier Transform
and identify important optimizations, In section three, we
introduce the Cray C90 architecture and give requirements
necessary to achieve high performance. In section four,
we present an implementation of the FFT algorithm de-
signed specifically for the Cray hardware, and show how
to express the algorithm in Sisal. In section five, we ex-
plain how the code is compiled and give performance
numbers. In section six, we present our conclusions and
observations.

2 Fast Fourier Transform

We can model the state of many physical processes as a
function of time or frequency. The two models are related
by the Fourier Transform,

oo

H(f) = [h®)e*™ &)
and
h(r) = [H(f)e?™ of 2

—o0

The two forms are referred to as the decimation in fre-
quency and the decimation in time, respectively. The dis-
crete form of Equation (1) for n samples is

G

0<sf<n-1 3)

As formulated the Fourier Transform is O(n2). But an
O(n log n) algorithm exists based on the principal of
divide-and-conquer. The algorithm is known as the Fast
Fourier Transform (FFT) [5]. An elegant formulation of
the algorithm ascribed to Danielson and Lanczos is

164

presented in [10]. Observe that the sum in Equation (3)
may be divided into two sums: one over the even com-
ponents of the data and the other over the odd components
of the data,

L (2K
H, - gﬂhucz’"f(‘;)

where 0 € f< n-1. We may now rewrite Equation (4) as
the sum of two Fourier Transforms of size n/2

n

=1 27rif(2k+]]
+ 2 hypye "

k=0

@

n

tL e, ()

k=0

n
=1

Z h2k+|€2ﬁf(zf)
k=0

H,
)
(%)

- H}ven + e\ N H?dd
The complexity of Equation (5) is O(n log n). Note that f
ranges from O to n — 1 in the last statement, but since
Hever and Hodd are periodic in f with length n/2, all values
are present. Figure 1 illustrates the recursive character of
the Cooley-Tukey FFT algorithm. The repeating pattern
is known as a butterfly. The heavy lines on the left- and
right-hand sides highlight a one- and a two-stage butterfly,
respectively. The pattern is simple and regular, but there
is a problem—the results are out of order. A post-pro-
cessing step to put data in the correct order is required. To
find the correct position for the datum at index i, we re-
verse the bits of the index. For example, if n is 16, then
0 goes to O, 1 goes to 8, 2 goes to 4, 3 goes to 12, etc.
The permutation is known as bit reversal.

There are several ways to improve the performance of
the FFT:

1. Compute two butterfly stages at once (radix-4). A
one-stage, two-input butterfly requires one complex multi-
plication and two complex additions, or a total of 10 float-
ing point operations. Let a and b be the inputs of a one-
stage butterfly, then the outputs are

' an
a+elc

ar
=t
a—-¢-“c¢

/

(6.1)

A two-stage, four-input butterfly requires three complex
multiplications and eight complex additions, or a total of
34 floating point operations. Let a, b, ¢, and d be the
inputs of a two-stage butterfly, then the outputs are

wig

a+ ¢

ar ar
c}+c4(b+e2dJ

ar | sar ar
a+elc|{+ed|b+e?d

s

an dax dax (6.2)
a+el?c|l+ed|b+re?d
dan Tar dax
a+elcl+ed|b+re?d
But, since e = - 1 and e™? = i, we may rewrite Equation

(6.2) as

ar ar ar
a+elc|+ledb+edd

ar ar 3ax
a+elc|l-ledb+et d

L] ax dan M
a~elc|+iledb-ed

an ar lar
a~e?c¢c|-iledtbh-e4d

Since four one-stage butterflies comprise a two-stage but-
terfly, a radix-4 algorithm executes 15% fewer instruc-
tions.

2. Compute the first two butterfly stages separately.
Use constants, and not names, for the exponential terms.
Since the exponential values are either 1, -1, i, and i, we
can eliminate the multiplication operations.

3. Compute all the exponential terms required for the
computation before initiating the algorithm, and store
them in a manner that is convenient for retrieval by each
stage.

4. Permute the results of each butterfly stage such that
the results of the final butterfly stage are in the correct or-
der. This optimization eliminates the post-processing
step to do the bit-reversal. It is important, however, that
the permutations at each stage preserve the computation’s
regularity; otherwise, the savings will be spent on com-
plex array index calculations.

3 The Cray C90

The National Energy Research Supercomputer Center’s
Cray C90 (a.nersc.gov) is a sixteen processor, vector su-
percomputer. The machine’s clock speed is 4.167
nanoseconds. It has 258 M words of main memory orga-
nized in 1024 banks. The memory speed is 23 clocks.

165

Each processor has two vector multiply-add pipelines fed
by sets of 128-element vector registers. The peak execu-
tion speed of each processor is 1 gflop per second. The
geometric mean of the Livermore Loops [7] is 86.3
mflops with a peak speed of 826 mflops [8].

In addition to the vector hardware, each processor has a
scalar add and multiply unit. The execution time of scalar
operations is much less than the execution time of vector
operations. The geometric mean of the Livermore Loops
executed as all scalar operations is 22.25 mflops with a
peak speed of 53 mflops [8]. Only highly vectorized
codes achieve peak performance on the Cray C90. More-
over, the lengths of the vectors are important—Ilonger the
vectors, better the performance.

Peak performance depends on keeping the vector regis-
ters full. The Cray hardware can issue a memory read per
cycle; but if consecutive reads address the same memory
bank (a bank conflict), then the second read will be delayed
until the memory is refreshed. Since memory is inter-
leaved by words, vector strides of one are optimal.

In summary, to achieve high-performance on the Cray
C90, a programmer must:

1. implement a vector algorithm,

2. maintain long vector lengths throughout the compu-
tation, and

3. avoid vector strides of two or multiples of two.
4 The Sisal program

To realize a high-performance FFT algorithm in Sisal
for the Cray C90, we have to address each of the seven
points raised in the previous two sections. Since we can
not explicitly encode implemental details in a Sisal pro-
gram, we have to address the seven requirements through
algorithm design.

For the purposes of this discussion, we assume the size
of the input data is n, a power of two. Since Sisal does
not have a complex data type, we store the data as two
vectors of real values, xre and xim. xre(i} and xim(i]
are the real and imaginary components, respectively, of
the i-th datum. Using two vectors, instead of a vector of
records, simplifies the code and aids vectorization.

4.1 Two-stage butterflies

Since a Sisal function can return multiple values, en-
coding a two-stage butterfly in Sisal is easy. We define
the function fft_4_2 of fourteen inputs (the real and
imaginary components of the four butterfly inputs and
three exponential terms) and eight output values (the real
and imaginary components of the four butterfly outputs).
Its body consists of the three complex multiplications and
eight complex additions implied by Equation (7). The
function is the algorithm’s central kernel.

4.2 The initial iterations

We compute the initial butterfly stages in a function
named level_1. Succeeding stages are computed in an it-
erative loop in the body of the main function. If n is an
even power of two, level_1 computes the first two-
stages; else, it computes the first three stages. The func-
tion level_1 calls fft_4_2 to compute each butterfly.
We pass the exponential terms as constants and rely on
the Sisal compiler to eliminate the unnecessary multipli-
cation operations.

4.3 Storing the exponential terms

To reduce index calculations and improve vectorization,
we store the exponential terms in three pairs of two-di-
mensional arrays. Each pair of arrays provides the real and
imaginary components of one of the three exponential
terms in Equation (7). Each array has log4n rows, num-
bered 0 to loggn — 1. If n is an even power of two, row {
has 4/ values; otherwise, it has 2 * 4/ values. The total
memory requirement is 2n words. We do store some
terms more than once (the minimum storage requirement
is 1.5 n), but using the extra space significantly reduces
execution time.

4.4 Vectors, long vectors, and bit reversal

We now describe logically several possible vector im-
plementations of the FFT algorithm. Say that at level i,
we divide the data into 4 packs, and we divide each pack
into four sections. Figure 2 depicts such a data decompo-
sition for n = 64, The labels a, b, ..., z, 1, 2, ..., 38 rep-
resent the 64 data values. The implied algorithm is ideal
for a concurrent, vector computer such as the Cray C90.
It consists of a set of parallel vector tasks. There is one
task per pack, and the lengths of the vectors are n/4i*!.
Additionally, we may execute each vector task on a single
processor or on multiple processors as necessary to opti-
mize performance. Figure 3 illustrates one possible per-
mutation of the outputs of each level to effect bit reversal
in place. Notice that only the relative positions of the
packs change. The positions of the data within a pack do
not change. Thus, the computation’s regularity is main-
tained. The algorithm’s one drawback is that the lengths
of the vectors shrink from n/4 to 1 as the computation
proceeds (we refer to the algorithm as long-to-short). The
short vector lengths at the end cause the final iterations to
execute slowly [Table I}.

Figure 4 depicts an alternative vector computation
(short-to-long) similar in nature to the algorithm described
in the previous paragraph. In this algorithm, the vector
lengths grow from 1 to n/4 as the computation proceeds.
Its drawback is that the initial iterations execute slowly.
We can maintain long vector lengths throughout the com-
putation by executing the first algorithm for the first half
of the computation and then switching to the second algo-

166

vector
tasks | jength |scconds

22 | 216 1 0080
24 | 214 1 0080
26 | 212 | 0083
28 | 210 | 0094
2101 28 1 0155
| 2121 26 | o04mi
at4 | 2% 1 1755
2161 22 | 6911

Table | - The effect of vector length on
performance

rithm for the second half of the computation. Unfortu-
nately, the second algorithm expects the data in a different
order than it is written by the first algorithm (compare the
order of the data at the end of the first level in Figures 3
and 4). So, we need for a third algorithm (switch) that
reads the data as written by the first algorithm and writes
the data as read by the second algorithm.

In an imperative language, the programmer can read and
write data in any order. However, the Sisal programmer is
limited to the ways in which the different array ex-
pressions in Sisal construct arrays. For example, the for
expression gathers array elements in a determinate,
prescribed manner. The i-th iteration of a for expression
defines the i-th elements of each resultant array. Permuta-
tion of array elements during construction is not permit-
ted. One might think that this constraint would make it
impossible to express the algorithms described in the pre-
vious paragraphs. But careful study of Figures 3 and 4 re-
veals that we can built the levels in sections such that the
constraint holds for each section. After the sections are
built, we can paste them together in the correct order.

For example, consider the second level butterflies in
Figure 3. The first four inputs to the first butterfly are a,
e, i, and m. The four outputs are the first values in the
four sections shown at the third level

abecd...

mnop...

Thus, there exists an i-to-{ correspondence between loop
iteration and result value. We have the vector loop return
four arrays, and catenate the arrays to build the four sec-
tions. We then catenate the sections together, interchang-

ing the second and third sections, to build the full data
array at the third level.

As a second example, consider the first section of the
data array at level three in Figure 4

a7q23il5y31ellu27m1933s5
Now divide the section into four parts

a7q23

il5y3l

ellu?2?

m 193 35

Notice that the first four output values of the first butter-
fly, a, e, i, and m, are the first values of the four parts.
Again, there exists an i-to-i correspondence between loop
iteration and result value. We have the vector loop return
four arrays, and catenate the arrays together, interchanging
the second and third arrays, to build the sections. We then
catenate the sections together to build the full data array at
the third level.

Sisal pseudo-code for long-to-short, short-to-long, and
switch algorithms is

function long_to_short(...
returns array(real], array({real])

let

AAre, AAim, BBre, BBim,
CCre, CCim, DDre, DDim :=
for j in 0, number of_packs - 1

% start address of the
% four sections of pack j
p0, pl, p2, pP3 := ... ;

Are, Aim, Bre, Bim,
Cre, Cim, Dre, Dim :=

for k in 0, (size_of_pack / 4) - 1
are, aim, bre, bim,
cre, cim, dre, dim := fft_4_2(...)

returns array of are
array of bre
array of cre
array of dre
end for

array of aim
array of bim
array of cim
array of dim

returns value of catenate Are
value of catenate Aim
value of catenate Bre
value of catenate Bim
value of catenate Cre
value of catenate Cim
value of catenate Dre
value of catenate Dim

end for

167

in
AAre || CCre || BBre || DDre,
AAim |} CCim || BBim |} DDim
end let

end function % long_to_short

function short_to_long(...

returns array|real],

for 3 in 0,

(number_of_packs / 4) - 1

% start address of packs
$ (4 *) + 1, + 2, + 3, and + 4

p0, pl, p3, pd :=

Are, Aim, Bre, Bim,

Cre, Cim, Dre, Dim

7

for k in 0, size_of_pack - 1
are, aim, bre, bim,
cre, cim, dre, dim := fft_4_2/{...)

returnsg array of

array of
array of
array of
end for
returns

value of catenate
value of catenate
end for

are array of aim
bre array of bim
cre array of cim
dre array of dim

(Arellcrel |Brel|Dre)
(Aiml {Cim| |Biml| | Dim)

end function % short_to_long

function switch(...

returns array(real},

for j in 0,

Are, Aim, Bre, Bim,

Cre, Cim, Dre, Dim

(size_of_pack / 4) -1

for k in 0, number_of_packs - 1

% address of value j in
% the four sections of pack k

p0, pl, p2, p3 :=

‘

are, aim, bre, bim,
cre, cim, dre, dim := fft_4_2(...)

returns array of
array of
array of
array of
end for

returns
value of catenate
value of catenate
end for

end function % switch

are array of aim
bre array of bim
cre array of cim
dre array of dim

(Arel|Crel |Brel|Dre)
(Aim!{Ciml iBiml {Dim)

array(real))

array[real])

4.5 Strides of two or multiples of two

The inner for expression of function long_to_short
traverses the four sections of a pack value-by-value. The
inner for expression of function short_to_long tra-
verses four packs value-by-value. In both cases, the for
expression is a vector loop with stride one. But, the inner
for expression of function switch jumps from pack to
pack. Its stride is the size of a pack, i.e., a power of two.
The resulting bank conflicts degrade performance. We can
eliminate the offending stride by inserting a one word gap
between packs. We define a fourth function gap that exe-
cutes the long-to-short algorithm, but inserts a 0 between
packs. It is identical to long_to_short except for the re-
turns clause of the outer for expression,

returns
value of catenate array_addh(are,
value of catenate array_addh(aim,
value of catenate array_addh(bre, .0d0)
value of catenate array_addh(bim, .0d0)

0.0d0)
0
0
0
value of catenate array_addh(cre, 0.0d0)
0
0
0

.040)

value of catenate array_addh(cim, .0d40)
value of catenate array_addh(die, .040)
value of catenate array_addh(dim. 0.0d0)

The “padding” of vectors to improve vector or cache per-
formance is a well known optimization. It is used often
by scientific programmers.

To summarize, we have presented an FFT algerithm
designed specifically for the Cray C90. It addresses the
seven requirements for high-performance listed in Sections
2 and 3. We have shown how to write the algorithm in
Sisal. The Sisal code consists of five major routines:
level_l,1ong_to_short,gap,switch,and short_to_
1ong. The functions are called in the order listed and
compute, respectively, levels 1, 2 through middle - 2,
middle — 1, middle, and middle + | through log4n, where
middle = logyn / 2.

5.0 Performance

Performance of the Sisal code depends on building the
data aray at each level in place, parallelizing the nested
for expressions to balance the work load, and vectorizing
the inner for expression. A naive implementation of the
Sisal code would build each array defined by the inner for
expressions separately. If insufficient space was allocated
for an array, copying would occur whenever more space
was required. Each concatenation operation would execute
in two steps: 1) space for the composite array would be al-
located, and 2) the component arrays would be copied into
the space. Such an implementation would copy an enor-
mous number of values and would be useless.

To eliminate needless copying the Optimizing Sisal
Compiler [3] includes build-in-place analysis [11]. The
goals of the analysis are to calculate the sizes of arrays and
to determine the start addresses of the components of ar-

168

P time
1 0.041 | 489 1.0
0.023 | 872 1.8
0.016 | 1,253 | 2.6
0.012 | 1,672 | 3.4

mflops | Sp

Sl Wi

Table II — Performance of the Sisal code, n =2 ** 18

P time
1 0.083 | 510 1.0
0.044 | 962 1.9
0.030 | L1411 | 28
0.024 | 1,764} 3.5

mflops | Sp

r2

(98]

FeS

Table 111 — Performance of the Sisal code, n =2 ** 19

p time |mflops| Sp
1 0.171 | 521 1.0
2 0.087) 1,024} 1.9
3 0.070 | 1,273 | 2.4
4 0.054 1 1,651 3.2
5 0.043 | 2,073 | 4.0
6 0.035] 2,597 49
7 0.030 | 2,971 5.7
8 0.027 | 3,301 6.3

Table IV - Performance of the Sisal code, n =2 ** 20

rays built by catenation, array_addh, or array_adjust
operations.

Consider the first result returned by the function
long_to_short. The size of the array is

array_size(AAre) + array_size(CCre) +
array_size(BBre) + array_size(DDre)

and the size of each component array, AAre, BBre, CCre,
and DDre, is

number_of_packs * size_of_pack [4

The start addresses of the four component arrays are
0
array_size(AAre) — |
array_size(AAre) + array_size(CCre) — 2

array_size(AAre) +
array_size(CCre) + array_size(BBre) - 3

Each component array is a composite array. For example,
AAre consists of m arrays of size

size_of pack /4

where m = number_of_packs. The address of the k-th
component array of AAre is

k * size_of_pack !4

The OSC compiler inserts code into the Sisal program
to compute the above equations at runtime. Prior to exe-
cution of the function long_to_short, the program cal-
culates the sizes of the results and calls the memory man-
agement system to allocate sufficient space. Then, the
program calculates the start address of each component ar-
ray within the space allocated, and passes the address to
the appropriate instance of the inner for expression.
Three types of savings accrue:

1) the memory management system is called only once,

2) since the arrays are built in place, the many catenation
operations in the original code are no longer needed and
may be deleted, and

3) no copying of values or intermediate arrays occurs.

OSC slices all outer £or expressions and vectorizes all
inner £or expressions. The Sisal runtime system divides
the range of the outer expressions by the number of work-
ers, and allocates one task per worker. This strategy
works well whenever the extent of the range is greater
than the number of workers and the amount of work per
slice is the same. In our code, the latter is always true.
However, since the number of outer iterations grows from
1 to loggn — 1 and then shrinks again to 1, the number of
outer iterations is not always greater than the number
workers. To insure that we used all processors throughout
the computation, we forced the Sisal compiler to slice the
inner for expressions. The compiler still automatically
vectorized each slice.

Tables 11, 111, and IV list the execution speeds, mflops,
and speedups of the Sisal code for n = 2'%, 219, and 2.
Performance is uniform and close to the achievable limits
of the hardware. The Sisal code runs in 12n words of
memory. When an array is no longer needed, its space is
deallocated automatically and reused—there is no memory
leakage.

169

6.0 Conclusions

We have successfully written a machine-specific FFT
algorithm in Sisal. Sisal’s functional semantics have not
prevented us from addressing key implemental and archi-
tectural issues. Moreover, the algorithm’s performance is
uniform, parallel, and close to achievable limits of the
machine. A key result is that we completed the study in
only six-man weeks. In that time, we developed five dif-
ferent algorithms, and wrote, debugged, and evaluated ap-
proximately 1500 lines of parallel code.

We did discover several shortcomings of Sisal. First,
Sisal lacks subarray operations and monolithic array con-
structors. This deficiency made the code more complex
and the programming effort more difficult. We will in-
clude subarray operations and may include a monolithic ar-
ray constructor in the next version of the language. Sec-
ond, the simplicity of the OSC partitioner introduced
needless overhead. If we accepted the default partitioning,
then we under-utilized the machine whenever the number
of outer iterations was less than the number of workers.
By forcing the compiler to slice both the outer and inner
for expressions, we achieved good load balancing, but
increased runtime overhead. We hope to support dynamic
partitioning of nested expressions in the next version of
the runtime system.

Acknowledgments

Cray time was provided by the Sisal Scientific Com-
puting Initiative. This work was supported by Lawrence
Livermore National Laboratory under DOE contract W-
7405-Eng-48.

References

170

Bohm, A.P. and R.E. Hiromoto. The dataflow time and
space complexity of FFTs. Journal of Parallel and Dis-
tributed Computing, 18, 3 (July 1993).

Bollman, D., F. Sanmiguel and J. Seguel. Implement-
ing FFT's in Sisal. Proc. of the Second Sisal User's
Conference, Lawrence Livermore National Laboratory,
San Diego, CA, October 1992.

Cann, D. C. The Optimizing Sisal Compiler: Version
12.0. Lawrence Livermore National Laboratory Manual
UCRL-MA-110080, Lawrence Livermore National
Laboratory, Livermore, CA, April 1992,

Cann, D. C. Retire FORTRAN? A Debate Rekindled.
CACM, 35, 8 (August 1992).

Cooley, J. and J. Tukey. An algorithm for the machine
calculation of complex Fourier serics. Mathematics of.
Computing, 19, (1965).

McGraw, J. R. et. al. Sisal: Streams and iterations in a
single-assignment language, Language Reference Man-
ual, Version 1.2, Lawrence Livermore National Labora-
tory Manual M-146 (Rev. 1), Lawrence Livermore Na-
tional Laboratory, Livermore, CA, March 1985.
McMabhon, F. H. Livermore Fortran Kernels: A Com-
puter Test of the Numerical Performance Range.
Lawrence Livermore National Laboratory Technical Re-
port UCRL-53745, Lawrence Livermore National Labo-
ratory, Livermore, CA, December 1986.

McMahon, F. H. private communications, October,
1993.

Novoa, J., D. Bollman and J. Seguel. A Sisal code for
computing the Fourier Transform on Sn. Proc. of the
Second Sisal User’s Conference, Lawrence Livermore
National Laboratory, San Diego, CA, October 1992.

. Press, W. H., et. al. Numerical Recipes, The Art of

Scientific Computing. Cambridge University Press,
Cambridge, England, 1986.

. Ranelletti, J. E. Graph Transformation Algorithms for

Array Memory Optimization in Applicative Languages.
Ph.D. thesis, Department of Computer Science, Uni-
versity of California at Davis/Livermore, 1987.

" s, e, W T Pt R S T

B sl
- -

/422—4 a‘% '-:‘-~\Z\§\§\L

Figure 1 — A logical view of the Cooley-Tukey FFT algorithm

171

abcdefghijklmnop
qrstuvwxyz123456
78910111213 14151617 18 19 20 21 22

abcd

fgh

L5

ijkl

mnop

X

qrst
uvwx
yz12
3456
78910

i

11 12 13 14

15 16 17 18
19 20 21 22

23 24 25 26
27 28 29 30

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

31 32 33 34
35 36 37 38

~)
oo
O

10

23 24 25 26

Figure 2 — Long-to-short algorithm

172

abcdefghijklmnop
grstuvwxyz123456
7891011 121314151617 181920 21 22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

abced 78910 qrst 23 24 25 26

111213 14 uvwx 27 28 29 30
ijkl 1516 17 18 yzl2 31323334
mnop 19 20 21 22 3456 35 36 37 38

1

a7q23i15y3lellu2lm
ijk1151617 18 yz 1231323334
efghll 1213 14uvwx 27282930
mnop 192021223456 35363738

Figure 3 — Long-to-short algorithm with bit reversal

a q 7 23 e u 11 27 iy

15 31 m 3 19 35
a7q?23 b8r24 c9525 d10t26
ellu?27 f12 v 28 g 13 w29 h 14 x 30
i15y 31 j 16z 32 k17133 1182 34
m 19 3 35 n 20 4 36 021537 p 22 6 38

a7q23i15y3lellu2iml9335

\b8r24j167,32f12v28n20436

c9s25k 17133 g13w29021537
d10t26118234h14x30p22638

a7q23il5y3lellu27mli933s
c9s25k17133g13w29021537
b8r24j16232f12v28n20436
d10t26118234h 14 x 30 p 22 6 38

Figure 4 — Short-to-long algorithm with bit reversal

174

Implementation Issues for IF2 on a Static Data Flow Architecture

Linda M. Wilkens

Department of Conmiputer Science
University of Massachusetts Lowell
Lowell, MA 01854

Department of Mathematics and
Computer Science
Bridgewater State College
Bridgewater, MA 02325

Abstract

Data flow archilectures offer a natural hardware
environment for functional programming languages.
Unjortunately, very few data flow systems are com-
mercially available. One daia flow environment cur-
rently available is the ULowell Data Flow Imaging Co-
processor based on the NEC uPD7281 data flow pro-
cessor. This environment 1s well-suiled for repetitive,
highly data-parallel applications, such as low-level im-
age processing; however, programming the uPD7281
is often difficult due to the lack of available high-level
languages such as SISAL. Because IF2 graphs are sim-
tlar to the graphs that represent uPD7281 assembly
language, a straightforward translation from IF2 to
wPD7281 assembly language should exrist. In this pa-
per, we discuss the problems and possibilities of imple-
menting IF2 for this environment.

1 Introduction

There are two main problems associated with paral-
lel programming: latency and synchronization [AI91].
Latency is the time delay between when a processor
makes a request for a resource and when that request
is satisfied. Most processors spend this time idling.
Synchronization is the time spent structuring concur-
rent activities to avoid both safety problems and non-
determinism.

Data flow computing addresses these problems by
using the availability of data, rather than explicit con-
trol flow, to drive computation. This paradigm both
alleviates problems caused by memory latency [Den91]

Aaron Garth Enright

Department of Computer Science
University of Massachusetts Lowell
Lowell, MA 01854

and provides run-time scheduling of instruction ex-
ecution. Rather than waiting for daia to arrive, a
data flow machine schedules a computation when its
operands are available. Thus, a minimal amount of
time is spent idling, waiting for data.

The two main classes of data flow architectures are
stalic and dynamic. Static data flow machines lack the
sophisticated token-matching mechanisms that char-
acterize dynamic data flow architectures [GKW85],
and are suitable for a class of algorithms that exhibit a
great deal of regularity. The ULowell Data Flow Imag-
ing Coprocessor [CNMW90] is based on the Nippon
Equipment Corporation uPD7281 data flow proces-
sor [Nip85, Jef85), which is a static architecture. The
theme of our research is to effectively utilize this static
data flow architecture by relying on the compiler to
ensure correct token matching occurs even though the
hardware does not provide this functionality. Interest-
ing compilation techniques for data flow architectures
can be seen in [Dav79, Gao86].

Applicative programming languages such as SISAL
[BOCF] may be appropriate high level languages for
data flow architectures because of interesting par-
allelisms between the functional and the data flow
paradigms. The task of implementing SISAL on a
data flow machine is simplified by the similarity be-
tween both IF1 [SG85] and IF2 [WSYR86] graphs and
data flow graphs.

This paper is organized as follows: Section 2
presents background information on data flow archi-
tectures. Section 3 describes our target architecture in
detail. Section 4 explores the issues involved in port-
ing IF2 to the architecture of Section 3. Section 5
contains concluding remarks and directions for future

175

research.

2 Data Flow Architectures

Parallel architectures based on traditional system
designs often do not perform as well as expected be-
cause von Neumann architectures are inherently se-
quential. They function by fetching an instruction,
fetching its operands, executing the instruction and
then fetching the next instruction. Highly parallel ar-
chitectures based on this paradigm suffer from two
main problems:

1. Fetching operands from memory is time consum-
ing, and processors often remain idle during this
period.

2. It is difficult to determine which instructions may
be executed in parallel, because data dependen-
cies are not explicit.

Data flow architectures address these two problems
by dismissing the fetch and execute paradigm. In-
stead of loading an instruction and then fetching its
operands, data flow systems wait for all of an instruc-
tion’s operands to become available, and then execute
the instruction. Thus data, not the operations per-
formed on data, drive the machine.

Since data is the driving force in a data flow ma-
chine, operands for instructions must contain more in-
formation than just a data value. Packages of data,
called tokens, must minimally contain both a refer-
ence to the instruction that uses them and a destina-
tion address for the result. When a token arrives at
a data flow processing unit, its instruction reference
is checked to see how many operands are required. If
all of the operand tokens for the instruction are avail-
able, the instruction is scheduled for execution; other-
wise the input token is held until the other operands
arrive. The result token produced by executing the in-
struction is sent to the destination address contained
in the input token.

The two problems of traditional computer archi-
tectures are addressed by the data flow paradigm, be-
cause:

1. Processing elements operate on available data
while waiting for other data to arrive.

2. Since all tokens must contain a destination ad-
dress, data dependencies can be detected be
searching for all nodes with the same destination
address. By representing this flow of data as a

directed graph and then reversing the direction
of the arcs, a data-dependency graph is created.

2.1 Data Flow Graphs

A data flow program may be represented by a di-
rected graph in which nodes represent instructions and
edges represent the flow of tokens, as can be seen in
Figure 1. In this figure, data tokens conceptually
travel on the arcs joining the nodes. For example,
token “a” travels down the left-side incoming arc of
the “+” node; token “b” travels down the right-side
incoming arc of the “+” node. Both tokens carry the
information that the resulting sum token is destined
for the “¥” node.

|

+ /

|etvmeo— €
ap—— O

|

(a+b)*(c/d)
Figure 1: A typical data flow graph

One of the principle problems which face data flow
designs is what to do if two tokens arrive at the left-
side input arc bef ‘re any tokens arrive at the right side
input arc. One possibility would be to queue tokens,
or simply store them, but then the question arises “if
two tokens are waiting on the left-side arc and a to-
ken arrives on the right-side arc, which token from
the left side does it match with?” This question has
led to the development of the two classes of data flow
architectures: static and dynamic. Strictly static ar-
chitectures provide no hardware assist for matching up
tokens that arrive out of order. Dynamic architectures
use a tag field in the tokens so that an instruction ex-
ecutes only on tokens with matching tags. These two
types of architectures are discussed in detail in the
following sections.

176

2.2 Static Data Flow

Static data flow has no special purpose hardware
for matching tokens. In these systems, it is the re-
sponsibility of the software to ensure that instructions
operate on matching tokens. These systems have the
advantage of being cheaper and faster, but are inher-
ently more difficult to program and debug.

Tokens in a static data flow environment must con-
tain (minimally) the following fields:

1. A data value field.
2. The operation to perform on the data value field.

3. The destination of the operation’s result.

Tokens are matched with the first available token
at an arc. This can have different meanings depending
on the support hardware on a particular system. For
example, some data flow systems allow for queuing
along an arc; this entails using a finite length queue
to store arriving tokens. As long as the queue does
not overflow, the first token arriving on the other arc
will match with the first token in the queue. However,
because of the finiteness of these queues, values can
be lost or overwritten, resulting in mis-matches among
the remaining tokens. uPD7281 queuing is illustrated
in Figure 2.

Incoming A-side
token matches with

head of B-side
queuse
~——— > l
\
O
\ Tokens conceptually
\ ;?geue' along B-side
N oL
a—
\
A
]
QUEUE
ADD

Figure 2: How tokens queue on the uPD7281.

A queuing model offers a well-known paradigm for
the analysis of data flow program execution. Even if
a machine offers no hardware support for queues , the

architecture can be characterized as having queues of
length one (imagine a queue where one value can be
enqueued, but if it is not read before the next value
is enqueued, the old value is overwritten). Thus, one
can generalize static data flow as a “first-in-first-out”
matching paradigm over finite queues, allowing anal-
ysis by means of queuing models. The problem with
this approach is that finite queuing models are more
difficult to work with than are the more familiar infi-
nite models.

The strictest firing rule for static data flow is that
an instruction can be executed when all of its input
arcs are occupied, and none of its output arcs are
occupied. This rule avoids the out-of-order match-
ing problem, but introduces other difficulties. The
requirement that the output arcs be unoccupied re-
duces the amount of parallelism that can be exploited
and also requires some means of enforcement. In early
versions of static data flow, this rule was enforced by
means of acknowledgement tokens sent from a destina-
tion to a source indicating that the corresponding data
arc was available. This solution had the unfortunate
consequence of doubling the token traffic. More mod-
ern static architectures avoid acknowledgement arcs
but are still more restrictive than the dynarnic model.
Unless the one-token-per-arc rule is enforced in hard-
ware, the compiler must very carefully structure loops
and other control constructs to ensure correct program
execution.

2.3 Dynamic Data Flow

Dynamic data flow alleviates the problem of match-
ing tokens by implementing explicit token-matching
hardware. This makes dynamic data flow hardware
more complex and more expensive than static data
flow hardware, but removes a considerable burden
from the programmer.

Tokens in a dynamic data flow environment must
contain (minimally) the following fields:

1. A data value field.
2. The operation to perform on the data value field.
3. The destination of the operation’s result

4. A field containing information for matching other
input tokens to the instruction.

The destination and matching information are com-
bined into a tag field. Tokens are matched only with
tokens that contain the same tag. The tag field may
combine information not only pertaining to the token’s

177

destination operation, but also pertaining to the spe-
cific loop iteration, the given function invocation, or
other context identification. Token matching can be
quite time consuming, so several strategies have been
developed for minimizing the cost, such as Explicit
Token Store (ETS) [ABU91] and associative caches
[AEQ1]. Unlike the FIFO model that we observed for
static data flow, dynamic data flow matching follows
no simple paradigm.

The execution rule for dynamic data flow is that an
instruction is executed only when tokens with match-
ing tag fields are available at all of its input arcs. The
execution rule is typically enforced by hardware.

2.4 Advantages of Static Data Flow

The reason we chose static data flow for our re-
search is that static data flow components are cheaper
and faster than their dynamic counterparts, and the
commercial availability of one such processor enabled
the production of an inexpensive testing platform.
The FIFO model of matching also makes execution
simulation and analysis easier. The problem we wish
to address is token mis-matching; we believe that this
problem can be handled in most cases at compile time.

This is essentially the same approach as RISC on
traditional computer architectures: off-load as much
as possible to the software, keeping the hardware as
simple as possible. If difficult operations such as token
matching and synchronization could be done in soft-
ware, especially at compile time, then no matching
hardware would be needed.

It is a non-trivial problem to guarantee token syn-
chronization through software, and we only begin to
consider the problem in this paper. It is our contin-
uing research to find out if token synchronization can
be done exclusively in software and what tradeoffs are
involved.

2.5 Similarities between Data Flow Hard-
ware and Functional Programming
Languages

Data flow systems are neither fully applicative nor
von Neumann in style [Bac78], yet the model of com-
putation aspires to many of the same goals as purely
functional languages. The concept of clean semantics,
free from side-effects, expressed in a strongly mathe-
matical style are the common denominators that link
these two forms. Data flow is often criticized for not
fitting into the applicative model; however, we submit
that this criticism applies to particular implementa-
tions, not to the design philosophy of data flow.

Many of the digressions away from the purely func-
tional implementation of data flow have been accom-
modations made to the von Neumann community.
Many of these implementation constructs are similar
to the various ways in which LISP has been altered to
placate programmers versed in the imperative style.
Yet, inherently, data flow hardware and functional lan-
guages strive toward the same goals: understandabil-
ity and clean-semantics.

2.6 Graphical Models

a b

QUEUE

ADD

ouTt

{a+b)'S

Figure 3: Data Flow and uPD7281 graphs of the same
function

Both data flow programs and the intermediate
forms IF1 and IF2 are conveniently represented as di-
rected graphs. Furthermore, these two sorts of pro-
gram graphs have similar formats, as can be seen in
Figure 3. These graphs both represent the expression
a + b x5, and even though the uPD7281 style data
flow graph on the right has an additional node, they
are similar in many respects. The similarity in graphi-
cal formats indicates that a translation from one form
to the other should exist.

3 The ULowell Data Flow Imaging Co-
processor

3.1 Overview
The ULowell Data Flow Imaging Coprocessor was

developed at the University of Lowell (now the Univer-
sity of Massachusetts Lowell) as a high-performance

178

Xciever

Xciever

AUTO
CONFIG

uPD9305
MEMORY
ACCESS
AND
GENERAL
INTERFACE
CONTROLLER

DMA

CONTROL

uPD7281

upPD7281

upPD7281

uPD7281

upD7281

upPD7281

uPD7281

Figure 4: The Ulowell Data Flow Co-Processor Board

179

imaging cor- ‘essor hosted by an Amiga microcom-
puter. The Amiga computer historically has offered
support for both graphics and imaging. In addition,
the Amiga architecture facilitates the design and im-
plementation of coprocessor boards. The ULowell
Data Flow hoard consists of seven NEC ¢ PD7281 data
flow processors connected in a one-direction ring. In-
corporated in the ring is a NEC pPD9305 Memory Ac-
cess and General Interface Controller (MAGIC) chip,
which is the interface to the Amiga. The coproces-
sor board is able to directly access the Amiga system
memory, and can use it to store large images which will
be manipulated by code running on the board. The
board is illustrated in Figure 4 (derived from [Sim88]).

3.2 The NEC uPD7281

The Nippon Equipment Corporation (NEC)
pPD7281 is a commercially available static data flow
processor, designed to support imaging operations. It
consists of seven functional units such as the link table,
the function table, and the data memory; plus input,
output and refresh controllers. The functional units
are arranging in a circular pipeline as depicted in Fig-
ure 5. Because the chip provides hardware support for
multiple tokens per arc, the chip is not strictly static.
Furthermore, because the function table holds state
information between successive function node execu-
tions, the architecture is not strictly functional. The
functional units are discussed below.

Figure 5: The uPD7281 Internal Pipeline Architecture

IC - Input Controller. Routes incoming tokens
either to this processor, or forwards them to the
next processor in the ring.

RC - Refresh Controller. Sends refresh tokens
through the' processor for memory refreshes.

OC - Output Controller. Routes tokens to other
processors.

LT - Link Table. Stores the link (edge) informa-
tion of the data flow graph.

FT - Function Table. Stores the function (node)
information of the data flow graph.

AG&FC - Address Generator and Flow Con-
troller. Manages queues, data memory references,
and flow control constructs.

DM - Data Memory. Contains 512 words of
general purpose memory, which is used to store
queues, to hold constants, and acts as a small lo-
cal memory.

Q - Queue. Used as a buffer between the data
memory and the processor unit.

PU - Processing Unit. Performs arithmetic and
logic instructions. Can also duplicate tokens.

0Q - Output Queue. Queues tokens waiting to
be output to other processors.

3.3 NEC pPD7281 Data Flow Graphs

Processing Unit instructions can be associated with
either queues or memory references, both of which are
stored in Data Memory. To sufficiently represent this
association, NEC has devised an alternative to tradi-
tional data flow graphs. pPD7281 data flow graphs use
a compound node which contains the Processing Unit
(PU) instruction, ai.d may also contain an associated
queue or memory reference (AG&FC) instruction. Ex-
amples of these compound node types as well as other
types of nodes for output and conditional executions
can be seen in Figure 6.

An NEC uPD7281 data flow graph node’s left-side
input is referred to as the “A” side input and the right-
side input is referred to as “B” side input. All in-
structions are either unary or binary. Output arcs are
referred to as “X” and “Y” in the general case, but
this unique instruction set allows for duplicating the
“X” output. The type of a PU instruction determines
the number of inputs and the number of outputs as
well as the type of AG&FC instructions that it can be
associated with. AG&FC instructions can also appear
as nodes by themselves. Another type of instruction,
generator (GE) instructions can also be used for the

180

A B A B A B A B A B A B
|

S0 U D U T U T SRR S

QUEUE QUEUE QUEUE QUEUE QUEUE QUEUE]

— >< |

SUB‘I sus suB ADD MUL L ADD |

A-B error B-A ermor A-B A-B A+B A‘B A+B

(bits 0-15)

Normal Exchange Two X Single Single Conditional

Inputs outputs X ouput Y output Execution

"Atside TN

-8* side
input data \/ inpuslldan
~ AG & FC
//\ L_— Instruction
PU
Instruction M U L
xsido \1 X Y- sido
output data output data
A B A A B A B A
L A R U
| Nor COUNT Fotm J QUEUE QUEUE ﬁ NOP:LE
‘ N0 ouT2 I—— SUBGT | y >0 <=0
~A o 0 1 !
o ‘ <=0 >0y A A
Output A
1 hoat ouputaazp A8 A-B
to host
No AG&FC No PU Output Output Branching A NOP
Instruction Instruction instruction instruction instruction Branch
(with A side (witl B side (1 value) (2 values)
input) input)

Figure 6: Examples of 4PD7281 Data flow Graph Elements

181

duplication and generation of tokens. GE instructions
can have more than two outputs.

#PD7281 data flow graphs lack an explicit no-
tion of hierarchical composition. When programs are
large, graphs can become quite large and cumber-
some to read. We suggest an alternative approach
to standard ul’D7281 graphical design by creating
overview graphs. Overview graphs are standard data
flow graphs such as Figure 1. In these graphs, more
complex functions are represented as a single node (a
similar concept to graph nodes [SG85] in IF2). When
the final graph is drawn, graphs representing the com-
plex functions are spliced in where only a node with
the functions’ names appeared in the overview graph.
This process is illustrated in Figure 7.

3.4 Programming the NEC yPD7281

The programming paradigm for the NEC pPD728]
is quite straightforward, and is illustrated in Figure 8.

1. Devise the algorithm.
2. Draw the NEC puPD728] data flow graph.

3. Label all nodes and arcs on the graph with unique
names.

4. Write the uPD7281 assembly language program
by converting the labelled nodes and arcs into
FUNCTION and LINK statements.

The last step is actually fairly easy if the graph
was drawn and labelled correctly. The PU, AG&FC
and GE instructions should all appear on the graph
with all necessary information to write the code. This
information would include:

1. The number and side(s) of the inputs (indicated
by the incoming arcs).

2. The number and side(s) of the outputs (indicated
by the outgoing arcs).

3. The PU instruction.

4. Associated functions (for example, when a
QUEUE (AG&FC) instruction is associated with
an ADD (PU) instruction).

5. Special processing such as conditional execution,
input operand swap, test conditions, or flow con-
trol.

6. Destination processor addresses for output func-
tions.

v

Oiice this information is obtained, it can be placed
in the assembly language program in a “fill-in-the-
blank” manner.

NEC

4 Implementing IF2 on the

pPD7281
4.1 Common Functions

There are very few one-to-one correspondences be-
tween the instructions of IF2 and the NEC uPD7281.
First of all, the uPD7281 is an integer processor, so
all floating point operations must be performed in
software. Secondly, the pPD7281 carries condition
and sign information on two extra bits, implying that
boolean type data must be extracted from the condi-
tion bit and converted to integer form. Finally, due
to the limited amount of on-processor memory, there
is no inherent support for records, arrays, or streams.
(This problem is discussed in detail in Sections 4.2 and
4.3).

The few instructions that are common between 1F2
and the uPD7281 are shown in Table 1.

1F2 1F2 pPD7281
Type Instruction | Instruction
Integer | Plus ADD
Boolean | Plus OR
Integer | Times MUL
Boolean | Times AND
Integer | Minus SUB
Boolean | Not NOT
NoOp NOP

Table 1: Equivalent instructions for IF2 and the
pPD7281

Despite the fact that many IF2 instructions do not
correspond in a one-to-one fashion to pyPD7281 in-
structions, several can be developed easily. In Fig-
ure 8, we showed how to develop an absolute value
function on the pPD7281. The code in this example
can be easily spliced into a uPD7281 data flow graph
anywhere an Abs node appears in an equivalent 1F2
graph. The same is true for Min, Max, Div, Mod,
Less, LessEqual, Equal, NotEqual, and other sim-
il~r nodes.

4.2 Memory Management

Because there are only 512 words of data mem-
ory available on-chip, memory management on the

182

| epe—

SPLICE

| t—— O
——
i
\
\
\
\
{
\
o

7/
[A,

frm

|

(a+b)*Abs(c)

1. OVERVIEW GRAPH

©
o

RDCYCS

MUL

!
|
!
|
I
|
—%
|
!
f
J
I
|
I

I
]
|
|
{
|
!
i
|
|
|
!
I
I

Abs(X) | 2. ABS(X) FUNCTION

NOP(GE)

]
|
I
|
|
|
|
€ |
ADD] RDCVCS :
MUL :
T
T I
I D
QUEUE
MUL

(a+b)*Abs(c)

Figure 7: Splicing an Abs(x) function

183

3. RESULTING GRAPH ’

into an overview graph.

ABS(X) :=IF X >= 0 THEN
X
ELSE
-X
END IF

!
ouTt
J
ABS(X)
1. Conceptualize 2. Draw Graph
3. Add Labels 4. Write Code
X
i
ARC1
NOP INPUT ARCIATY;
ARC2 NOP(GE) OUTPUT ARCS;
LINK ARC2,ARC3 =FNOP(ARCI),
LINK ARC4 =FMUI(ARC2),
LINK ARCS = FOUT(ARC3);
LINK ARCS = FOUT(ARC4),
ARC3
FUNCTION FNOP =NOP(GE),
FUNCTION FMUL = JRDCYCS(NO,1);

ABRI

MUL(Y)
FUNCTION FOUT =OUTI{0,0);

MEMORY
END;

NO =-1;

Figure 8: Writing an Absolute value function for the yPD7281

184

pPD7281 becomes difficult, and good memory man-
agement techniques are crucial. Reference counts, and
the ability to swap words in-and-out of data memory
all need to be done in the software loaded onto the
uPD7281. Fortunately, the features of IF2 such as
operating on data by reference, memory preallocation
and AT nodes [WSYRS8G) all can relieve the memory
management burden from the processor.

There are two possible strategies for dealing with
the limited amount of processor meniory:

1. Use the processor memory as a cache. This strat-
egy involves including cache management rou-
tines in all pPD7281 programs.

2. Store only temporaries and constants in processor
memory, leaving all variables in host system mem-
ory and accessing them through the pPD9305.
This approach has the advantage of simplicity,
with the greater cost of more memory fetches;
however, this approach might be feasible in a
data flow architecture, because the processor can
(theoretically) be kept busy with other operations
while waiting for the memory fetches to complete.

An optimal strategy might be a hybrid of these two
approaches. We propose to borrow another idea from
RISC computing and use part of the data memory
for constants and queues and the rest as a register
file [Hwa93] rather than a cache. Using a register file
rather than a cache allows data memory allocation
to be done at compile time using register allocation
techniques such as interference graph coloring [HP90].
We refer to the application of RISC techniques such
as this to static data flow architectures as Data flow-
RISC.

4.3 Arrays and Streams

Arrays and streams must be accessed as individ-
ual data words from image memory, due to the ar-
chitecture of the uPDI9305. In a control flow system,
the penalty for this von Neumnann bottleneck [Bac78]
would be intolerable, but because this is a data flow
system, the processor should not see significant idle
time. Techniques such as load balancing [(Gao80] are
needed to keep the processor pipeline busy.

4.4 Artificial Dependency Edges (ADEs)

One of the major contributions of 1F2 is the in-
troduction of Artificial Dependency Edges (ADLs)
[WSYRS86]. These edges in the 1F2 graph model are

used for synchronizing nodes which would normally

execute independent. of each other. Surprisingly, these
are also one of the easiest features to implement on the
nPDT281.

To construct an ADE on the uPD7281:

1. Place a new combination QUEUE/NOP node
on the graph.

2. Remove the arc to the “A” side input of the ADE
destination node and connects it instead to the
“A” side input of the QUEUE/NOP node.

3. Draw an arc from the “X” output of the
QUEUE/NOP node to the “A” side input of
the ADE destination node.

4, Construct an arc from the source ADE node
output to the “B” side input QUEUE/NOP
node. Since the value of the token is ignored,
it is unimportant whether it is an “X” or “Y”
side output. If, however, there is no free out-
put arc on the source ADE node, one of the out-
put tokens must be replicated and sent to the
QUEUE/NOP node. The uPD7281 provides
the instructions COPYM or COPYBK for to-
ken replication, and one of these node types can
be spliced in between the source ADE node and
the QUEUE/NOP node.

This entire procedure is demonstrated in Figure 9.

The definition of the QUEUE/NOP node speci-
fies that it will not output its token until the source
node has output its token. Note that special care must
be taken in order to prevent too many tokens from
being queued at the QUEUE/NOP node. This in-
volves using a longer queue, switching the “A” and
“B” side inputs to the QUEUE/NOP node, and
making the node excharige the “A” and “B” side in-
puts.

4.5 Other Functions on the pyPD7281

The puPD7281 has many more instructions which
might be useful for an efficient implementation of IF2.
It also contains instructions for self-modifying code,
which would not be used for implementing [F2, and
object loading, which may be useful for distribut-
ing programs across multiple processors. A complete
reference to the pPD7281 instruction set is given in
[Nip85].

4.6 Load Balancing and Mapping

The ULowell Data Flow Iinaging Co-processor con-
tains seven uPD7281 data flow processors as well as

185

a b c d
a b
Pl b
QUEUE QUEUE
> MUL ADD
5
1 2 l
Times -i RDCYCS
1
| MUL
|
|
|
|
|
| QUEUE
: ouT2
L 0/\1
0
2. uPD7281 GRAPH WITHOUT
ADE
TS
-1 2 ///a \\ c d
\
\
Y I AN
u
1. IF2 GRAPH WITH ADE : QUELE | QUEUE
| NOP \\ADD
\ —
\\ lJ v \)
\ | \ |
\| Queue ADCIVCS
N f
MuL MpL
« 7
N //
QUEUE
ouT2

3. uPD7281 GRAPH WITH ADE INSERTED

Figure 9. Implementing ADE’s on the uPD7281

186

one puPDY9305 Memory Access and General Interface
Controller. To obtain optimal throughput on the co-
processor, it is necessary to properly map programs
onto processors. This problem is discussed thoroughly
in [Wil92].

4.7 An Initial Implementation Suite

Initially, we propose the following implementation
suite for IF2 on the ULowell Data Flow Imaging Co-
Processor:

1. Integer arithmetic and boolean functions.
2. Single dimensional arrays.

3. Non-recursive function calls.

4. Streams.

. One uPD7281 processor.

[S11

The primary goal of the initial implementation suite
is to work out as much of the token synchronization
as possible. Features such as floating-point, recur-
sion, etc. can be added incrementally. Using multiple
uPD7281 processors is an implementation of [Wil92].

5 Summary

We have discussed several ideas for an implemen-
tation of IF2 on a static data flow architecture and
shown the potential advantages of such an implemen-
tation. We have, of course, left the actual implemen-
tation to future work, showing several concrete ex-
amples which can be used as a foundation. Efficient
compilation techniques would allow static data flow
to out-perform later dynamic data flow machines, and
eiin:‘nate (or at least minimize) the need for expensive
and slow matching hardware. All-in-all, the marriage
of IF2 to data flow is a natural one, and should yield
key results in the future.

References
[ABU91] Arvind, L. Bic, and T. Ungerer. Evolu-
tion of data-flow computers. In Advanced
Topics in Data-flow Computing, pages 3
- 34, 1991.

[AE9]] D. Abramson and G. Egan. Design of a
high performance dataflow multiproces-
sor. In Advanced Topics in Data-flow

Compuling, pages 121 - 142, 1991,

[A191]

[Bac78]

[BOCF)

[CNMW90]

[Dav79)

[Den91]

[Gao86)

[GKW85]

(HP90)

[Hwa93]

[Jef85]

187

Arvind and R. Iannucci. Two fundamen-
tal issues in multiprocessing. In Pro-
ceedings of DFVLR - Conference 1987
on Parallel Processing in Science and
Engineering, Bonn-Bad Godesburg, June
1991.

J. Backus. Can programming be liberated
from the von Neumann style? a func-
tional style and its algebra of programs.
Communications of the ACM, 21:613 -
641, August 1978.

A. Bohm, R. Oldehoeft, D. Cann, and
J. Feo. SISAL Reference Manual, Lan-
guage Version 2.0. Lawrence Livermore
National Laboratory, P.O. Box 808, I.-
306, Livermore, CA 94550.

J. Canning, I. Nwokogba, R. Miner, and
L. Wilkens. A software development en-
vironment for data flow computation. In
Proceedings of the ISMM International
Conference on Parallel and Distributed
Computing and Systems, pages 86 — 90,
October 1990.

A. Davis. A data flow evaluation system
based on the concept of recursive iocality.
In Proceedings of the National Compilcr
Conference, pages 1079 — 1086, 1979.

J. Dennis. A modern static data-flow ar-
chitecture. In Advanced Topics in Dala-
flow Computing, pages 121 ~ 142, 1991.

G. Gao. A Code Mapping Scheme for
Dataflow Software Pipelining. PhD the-
sis, M.I.T., Cambridge, MA, 1986.

J. Gurd, C. Kirkham, and 1. Watson.
The manchester prototype dataflow com-
puter. Communications of the ACM,
28:34 - 52, January 1985.

J. Hennesy and D. Patterson. Com-
puter Architecture A Quantitalive Ap-
proach. Morgan Kaufmann Publishers,
Inc., San Mateo, CA, 1990.

K. Hwang. Advanced Computer Architec-
ture. McGraw-Hill, New York, 1993.

T. Jeffery. The ppd7281 processor. Byle
Magazine, pages 237 - 246, November
1985.

[Nip85]

[SG85]

[Sim88]

[Wil92]

[WSYRS6)

Nippon Equimpent Corporation. The
pPD7281 Reference Manual, 1985,

S. Skedzielewski and J. Glauert. IF1: An
Inlermediate Form for Applicative Lan-
guages. Lawrence Livermore National
Laboratory, P.O. Box 808, L-306, Liver-
more, CA 94550, July 1985.

D. Simoes. On multiprocessor dataflow
parallel pipelined processors in image
processing. Master’s thesis, The Univer-
sity of Lowell, 1 University Avenue, Low-
ell, MA 01854, February 1988.

L. M. Wilkens. Modeling Parallel Compu-
tation via the Fusion of Timed Peiri Nets
with an Application to the Mapping Prob-
lem. PhD thesis, The University of Mas-
sachusetts Lowell, 1 University Avenue,
Lowell MA 01854, April 1992.

M. Welcome, S. Skedzielewski, R. Yates,
and J. Ranelletti. IF2: An Applicalive
Language Intermediate Form with FEz-
plicit Memory Management. Lawrence
Livermore National Laboratory, P.O. Box
808, L-306, Livermore, CA 94550, De-
cember 1986.

188

Systematic Control of Parallelism in
Array-Based Dataflow Computation

Kanad Roy and Carl McCrosky
Department of Computational Science
University of Saskatchewan, Saskatoon

CANADA S7N 0W0

Abstract

Dataflow systems must be concerned with the degree of
parallelism generated by array computations. It would be
preferable if the program largely avoided specification of
parallelism, and the dataflow compiler later generated
parallelism appropriate to the intended dataflow machine.

The present research addresses this objective. Our
approach is based on maintaining a high degree of
referential transparency in both the source program and
the dataflow graph. Choices of two representations for
arrays (one sequential and the other parallel), and a set of
identities in the source language permit great flexibility
in tailoring the degree of parallelism and the size of the
dataflow graph presented to the machine.

Several patterns of systematically factoring
computations into sequential and parallel sub-
components are used to gain a high degree of control over
the execution characteristics of array computations. The
paper reports an implementation of this approach and
includes a number of examples.

1. Introduction

Designers of dataflow systems must concern
themselves with the degree of parallelism generated by
dataflow computations [1]{2]. The degree of parallelism
is not simply maximized, as machines can be saturated
with waiting tokens. Rather, the goal is to generate
parallelism appropriate to the capabilities of the
underlying dataflow machine. This paper studies the
systematic control of the degree of parallelism for array
computations in static dataflow systems.

The size of the dataflow graph is a related concern.
Ideally the graph should be as small as possible to
conserve memory and to minimize program loading time.
However, the amount of available paralielism is loosely
correlated with the size of the dataflow graph, particularly
in static dataflow systems. Within the constraint of the
parallelism available in the problem being solved, there
is a trade-off between parallelism and graph size, which
we explore.

Arrays are a primary source of parallelism in dataflow
systems. Many of the scientific problems for which
dataflow computation is intended have arrays as their
principle data structure. Often operations on arrays can
be performed in parallel. Unfortunately, the resultant
run-time parallelism may be excessive. For instance,
scaling all of the pixels in a large image may generate
much too much parallelism. The alternative of
sequential processing is equally unfortunate.

Some throttle on parallelism is required that supplies
approximately the appropriate amount of work
(executable dataflow actors) to the underlying machine.
Often this throttle is clever programming by the user.
Unfortunately this approach generally fixes the problem’s
parallel structure. The only executable form of the
algorithm - the program - is thus committed to one
particular view of parallelism, which is likely appropriate
for only one particular machine. The present research
takes another approach to the control of parallelism: we
explore the use of compile-time techniques to compile
declarative array languages to executable dataflow graphs
which present appropriate degrees of parallelism at run
time.

There are three key points of departure for this work.
All three are chosen to maximize our ability to reason
about and manipulate both programs and dataflow graphs.
1) We adopt a purely functional source language, as the
relatively simple semantics of these languages supports
our ability to reason about programs. 2) Our source
language incorporates a well-founded mathematical model
of arrays and an integrated set of array operations, thereby
maximizing ease of reasoning about arrays. This formal
basis for arrays provides a rich source of program
equivalence laws which allow us to quickly find
equivalent forms for array expressions. 3) We adopt
unconventional representations of arrays, which permit a
nearly transpareni correspondence between our functional
array programs and our dataflow graphs.

Our system - based on these three ideas — permits
us two degrees of freedom in controlling parallelism and
the related dataflow graph size. 1) We can selectively
choose between two array representations to tailor
parallelism and graph size. 2) We can use our algebraic
equivalence laws to manipulate both the source program

189

and the resultant dataflow graph. Both of these degrees of
freedom can be controlled by automated systems to
obtain appropriate degrees of parallelism and graph size.

Some of the ideas used in this research have been
explored or discussed elsewhere. The principal
originality of our approach is the systematic integration
and exploitation of these ideas. The present work is a
preliminary exploration of this approach; it is limited in
several ways which are discussed in Section 10.

Our solution to the degree of parallelism problem does
not apply to all reasonable array computations. There
remain important problems for which more standard array
representations and more procedural implementations are
best. The techniques developed in this paper are
applicable to a “pure” subset of array dataflow
computations in much the same way that some of the
more powerful compiler optimization techniques apply
only to the pure expression subsets of procedural
languages. Nevertheless, the techniques developed here
can be usefully embedded in the larger context of practical
dataflow systems.

This paper draws on a variety of sources of maierial;
the first three sections establish necessary background.
Section 2 defines our first-class nested array language, A.
Section 3 discusses how separately reported research
allows us to avoid the initial pitfall of functional array
languages — the excessive generation of intermediate
containers. Section 4 specifies our array representation
schemes. Section 5 specifies our abstract dataflow
machine. Section 6 defines a set of functions on arrays,
which are used in later examples. Sectiou 7 describes
the compilation process from our functional language to
static dataflow graphs.

A simple strategy which provides some control over
the degree of parallelism is discussed in Section 8.
Section 9 introduces some equivalence laws of our theory
of arrays and describes their usefulness in improving our
degree of control over parallelism. Section 10 concludes
the paper by discussing the achievements of this line of
research, the limitations that have been encountered, and
future directions for research.

2. A, the language and the domain of arrays

The array-based functional language used in this paper,
A, is a subset of the experimental language, Falafel,
being developed at the University of Saskatchewan
[71(8]. These languages are sugarings of the typed,
higher-order lambda calculus. They differ from most
other functional languages in that arrays are included as
first-class objects in the value domain, in the type
system, and in the selection of primitive operations.
The arrays in these languages may be nested, thereby
permitting more flexible manipulation of array
computations. Falafel and A draw ideas from numerous
other programming languages: Nial [6], Miranda (9], Id
{11] and Sisal [3]. The greatest strength of A is that its
simple semantics makes array-based computation

relatively easy to reason about. (A and even Falafel are
intended to serve only as experimental testbeds for
declarative array-based computation. Useful results will
be applied to larger languages.)

A program in A is defined below, where terminal
symbols are in bold font and [a]a means a list of zero or
more o’s separated by B’s. const denotes constant values
and functions; id denotes the identifiers.

pgm = exp | let [id =exp], in pgm (1.1)

exp u= const | id | array | (exp exp) | (1.2)
Aid . exp

array = [[exp], ; [exp],] (1.3)

The square brackets in bold fonts denote the terminal
symbols to represent arrays.

Formally, arrays are 3-tuples, <valence, shape,
content>. valence is the dimensionality of the array.
shape is a tuple of natural numbers specifying the
number of elements in each dimension of the array.
content is a tuple containing the items of the array in
row major order. Empty arrays are permissible; they
have at least one zero in their shape tuple. Arrays can be
nested.

array (baseSet) = { <valence, shape, content> | 2.1

valence € Nat; 2)
shape = <extenty, ..., extent,gence.1>; (2.3)
extent; € Nat; 24)
content = <itemy, ..., iteMyyy.1>; (2.5)
item; € baseSet; (2.6)

tally = extenty * ... * extentyyence.; } (2.7

valence is included in the representation of an array but
not in the concrete syntax; it can be deduced from
shape. Falafel does not permit heterogeneous arrays -
all array items must be of the same type. A two
dimensional array with shape (2, 3) whose items are first
six natural numbers is represented as “[2, 3; 0, 1, 2, 3, 4,
5]”, and comresponds to the nested tuple, <2, <2, 3>, <0,
1,2, 3,4, 55>,

The semantic domain for A is given below. The value
space, V, contains data and functions. Other constructors
are not prohibited, but add nothing to our development.

V = Int + Real + Bool + Amay(V) + (V->V)

The denotational equations for A are given below:

p :: Ident->V 3.1
K : Const->V 3.2)
P: pgm->p->V 4.1)
P [let [i=e]lin ¢'] p = 4.2)

D[e'] pl(D [e] plil,

Dsexp>p>V 5.1

190

D[ilp=pIlil] (5.2)
D [c]lp=K][c] (5.3)
D[e)]lp=(®Ile) p) D [e] p) (5.4)
D[Ai.elp=Ak.DJ[e] plki (5.5)
D [[Sos e Svogt Bge ww iiq)] P = (5.6)

<v, <D [s¢] p, ... D [s,1] p>,
<D Tig) p, ... D [icy] p>>

A is restricted in two important ways: the shapes of
all array values must be manifest at compile time; and
user functions cannot be recursive. Shapes are omitted in
the array notation when they are obvious (e.g., [1,2.3] =
[3; 1.2 3.

3. Intermediate container removal

Straightforward implementation of array-based
functional programs leads to the generation of large
numbers of intermediate containers. Consider (g A)
where f and g are functions from arrays to arrays (f, g
Array -> Array) and A is an array. The application of g to
A produces an array — an intermediate container -
which is passed to f. The systematic allocation, filling,
reading, and deallocation of these intermediate containers
has traditionally condemned first-class functional array
operations to toy status. We would be ill-advised to
adopt a purely functional array language if we had no
remedy for this problem.

However, we have shown systematic means of
removing these intermediate containers by finding the
function, h, which is extensionally equal to the
composition of fand g (h A = f(g A) for all A), but h
does not generate the intermediate container [7].
Intermediate container removal (ICR) is a compiler
optimization phase which systematically avoids the
generation of intermediate containers; because A and its
dataflow graphs are mathematically tractable, intermediate
container removal can be applied to either form. (Related
work was done in [13}{14].) Section 7 of this paper
demonstrates how the ideas of ICR are applied in this
setting.

4. Representation of arrays

A naive approach to handle arrays in dataflow
represents each array as a token, and passes these tokens
on dataflow links. This approach implies arbitrary-width
tokens and communication paths; it is unrealistic. The
most widely accepted solutions for arrays in dataflow
systems involve storage of the array in special memory
locations; reading and writing of elements are carried out
by special tokens and actors. In these storage solutions
attention must be paid to the possibility of updating
array elements and thereby violating referential
transparency (numerous solutions have been proposed

[1]{12]). Other useful solutions to the representation of
array ; have been proposed, such as [4].

In order to maintain ease of manipulation of dataflow
graphs and array representations, it is necessary to avoid
the complexities of the storage representations for arrays
and adopt a modified naive representation [14]. As we
shall see, this choice will not carry us all the way to our
ultimate goal of practical array computations, but for a
large and meaningful subset of array computations, it
will be an advantageous choice. We choose two simple
representations for arrays. The stream representation
consists of time-ordered sequences of the items of arrays
on single atomic dataflow links. The bundle
representation consists of parallel collection of atomic
dataflow links, each link carrying an item of the array.
Operators exist to convert between streams and bundles.

R is the domain of permitted array representations.
Nested arrays are represented as nested streams or bundles:

R = stream-of(Shape, Link) (6.1)
+ stream-of (Shape, R) (6.2)
+ bundle-of(Shape, Links) (6.3)
+ bundle-of(Shape, R) 6.4)

A stream is a shape and a time-ordered sequence of
atoms on a dataflow link, (6.1), or a time-ordered
sequence nested arrays on nested representations, (6.2). A
bundle is a shape and a collection of atoms on parallel
dataflow links, (6.3), or a collection of nested arrays on
parallel nested representations, (6.4). In both streams and
bundies the shape must be manifest at compile-time, but
is not directly represented in the run-time dataflow
graphs. In streams, known shape translates to known
length of the sequence; in bundles, known shape
translates to a known number of constituent fibres —
each fibre has a unique identification corresponding to the
addresses in the manifest shape. Figure 1 gives graphic
representations for the array [0, 1, 2] as a stream, (a), and
as a bundle, (b). Ovals with the long axis up and down
collect streams and bundles, respectively.

f <IX>

(@) (®)

Figure 1. Stream and bundie representations
of the array [0, 1, 2]

191

For any homogenous array of d levels of nesting, there
are 29 choices of representation. The four representations
of the array [[1, 2], [3, 4]] are given in Figure 2.

i

bundle of streams

bundle of bundles

streamn of bundles stream of streams

Figure 2: Four representations of the array

[, 2], (3, 41

§. The dataflow model

Our abstract machine is a conventional parallel static
dataflow machine [14]. No special array storage is
assumed. Dataflow actors have a total of no more than
four links (including inputs and outputs), The following
dataflow actors are supported: dyadic operators (+, -, *, /, *,
mod, <, >, =, <=, >=, and, or), monadic operators (not, id),
and six other special purpose operators.

Nodes in the dataflow graph are described as tuples,
<actor; state; input; output>, actor is a tag which
identifies the dataflow actor, state consists of state used
by some actors, input (output) is a list consisting of the
inputs (outputs) to (from) the node. The operational
semantics of dataflow actors are described in terms of an
operator, Fr, which maps from tuples to tuples. The
treatment of input and output requires some clarification.
The inputs and outputs are conceptually connected to
dataflow links; the streams of values on these links are
represented as queues (lists). The use of a head-tail
pattern (head:tait) in the input position on the left-hand-
side of a firing equation implies that the next input must
be available before the node may fire. The use of a front-
last pattern (front#last) in the output position on the
right-hand-side implies that the last value is output.
Underscore in the state position means the state is not

used. An ‘@’ sign implies an application of its first
argument, which is an operator, to its latter arguments;
the result of the application is an atomic value.

Dyadic, dyad, and monadic, monad, actors are defined
by the patterns:

Fr <dyad; _; a:at, b:bt; pf> = 7.1)
< dyad; _; at, bt; pf#@(dyad a b)>
Fr <monad; _; a:at; pf> = (71.2)

< monad; _; at; pff@(monad a)>

The six special purpose actors are: duplicate, which
consumes one input and produces copies on its two
outputs; switch, which consumes a value and a boolean
selector and reproduces the input on the selected of two
output edges; select, which consumes a control value
and then selectively consumes one of two inputs and
reproduces that input on its single output; replicate-n
which consumes a single input and produces n copies of
that value on its single output; split-m-n, which
cyclically copies its first m inputs to its left output and
then copies the next n-m inputs to its right output; and
alternate-m-n, which cyclically copies m values from its
left input and then n-m values from its right input, all to
its single output. Fr rules for these actors are given
below. Notice that the state is sometimes used for
counting and some rules change the actor itself (e.g. from
replicate-n to replicate-n’).

Fr <duplicate; _; a:at; pf, gf> = (7.3)
<duplicate; _; at; pf#a, qfffa>

Fr <switch; _; False:ct, a:at; pf, gf> = (74.1)
<switch; _; ct, at; pfi#a, qf>

Fr <switch; _; True:ct, a:at; pf, gf> = (74.2)
<switch; _; ct, at; pf, qffta>

Fr <select; _; False:ct, a:at, bt; pf> = 75.1)
<select; _; ct, at, bt; pf#a>

Fr <select; _; True:ct, at, b:bt; pf> = (715.2)
<select; _; ct, at, bt; pf#b>

Fr <replicate-n; -1, _; a:at; pf> = (1.6.1)
<replicate-n’; n-1, a; at; pfi#a>

Fr <replicate-n’; 0, a; at; pf> = (7.6.2)
<replicate-n; -1, _; at; pf>

Fr <replicate-n’; c, a; at; pf> = (7.6.3)
<replicate-n’; c-1, a; at; pf#a>

Fr <split-m-n; -1; a:at; pf, qf> = (77.1)
<split-m-n’; m-1; at; pf#a, qf>

Fr <split-m-n’; O; a:at; pf, gf> = (1.17.2)
<split-m-n’’; n-m-1; at; pf, qf#fa>

Fr <split-m-n’; c; a:at; pf, gf> = (1.1.3)
<split-m-n’; c-1; at; pf#a, gf>

Fr <split-m-n"’; G; at; pf, gf> = (1.7.4)
<split-m-n; -1; at; pf, gf>

Fr <split-m-n’’; c; a:at; pf, gf> = (7.1.5)

192

<split-m-n"’; c-1; at; pf, qf#a>

Fr <alternate-m-n; -1; a:at, bt; pf> = 7.8.1)
<alternate-m-9’; m-1; at, bt; pf#a>

Fr <alternate-m-n’; 0; at, b:bt; pf> = (7.8.2)
<alternate-m-n’’; n-m-1; at, bt; pf#b>

Fr <alternate-m-n’; c; a:at, bt; pf> = (7.8.3)
<alternate-m-n’; c-1; at, bt; pf#a>

Fr <alternate-m-n’’; 0; at, bt; pf> = (7.8.4)
<alternate-m-n; -1; at, bt; pf>

Fr <alternate-m-n’’; c; at, b:bt; pf> = (7.8.5)

<aliernate-m-n"’; c-1; at, bt; pf#b>

Schematic representations for these six special actors
are given in Figure 3.

Figure 3: Schematic represeniations of special

actors

The operations which have state (or modify their actor
codes) all have simple cycles back to their initial state
(and code). All uses of these actors in the graphs
generated by our compiler cause complete circuits back to
the initial state. In this sense, the graphs are self-
cleaning.

The above six actors have corresponding macro
versions which accept bundles and act on the individual
elements separately. In the case of duplicate the macro
actor DUPLICATE accepts a hundle and — with a set of
duplicate actors — accomplishes a DUPLICATE on the
entire bundle. Likewise, multiple input SELECT’s and
ALTERNATE’s are constructed of trees of select’s and
alternate’s. In text, we freely use these macro-actors in
place of their corresponding graphs, if necessary.

Any nested representation of an array can be converted
to any other representation. We illustrate the recovery of
paralielism from sequentiality in neted arrays. Figure 4
shows how to use split-m-n operators to recover a bundle-
bundle representation from a stream-stream representation
of [[1, 2], [3. 4]}.

Recent dataflow research indicates that it is
advantageous to gather atomic actors into sequential
threads which communicate through conventional
registers [15]. We do not carry out this transformation
on our graphs, although we could. We avoid this as an
unnecessary complication to our purposes.

Figure 4: Recovering nested bundles from

nested streams

6. Primitive operations on arrays

Research in array-based computation has produced
numerous useful operations on arrays (first-order and
higher-order). These operations constitute our basic tool
set for constructing array-based functional computations.
This section defines some of these operators (in a much
abbreviated form, see (7}, [8], and [10] for full details).
All of these operations have dataflow graphs for both the
stream and the bundle representations of arrays; we give
several representative examples.

addresses are one-dimensional arrays that contain only
natural numbers. If an address has the same valence as
the shape of an array, and all the items of the address are
less than the corresponding items of the shape, then the
address uniquely addresses an item of the array.

grid generates an array with the shape of its argument,
but with all items replaced by their own addresses. For
example:
grid {2,2;0,1,2,3] = (2, 2, (2, 0,0], (2 0, 1},
(2, 1,0], (2 1, 1]]

193

pick takes a (valid) address and an array and returns the
specified item. It can be represented in infix form too.
For example:

pick 12, 1,01 {2,2;0, 1,2,3] = 2

shape returns the shape of an array as an array. For
example:

shape [2,2; 0, 1, 2,3] = [2; 2, 2]

The semantics of Falafel, as described in {7], permit
the definition of arrays by parts. The semantics of
definition-by-parts is based on a complete partial order of
partially defined arrays; the meaning of a definition-by-
parts is the least upper bound of all the partial
definitions. In Falafel, syntactic sugar is provided for
this mechanism. An array, p, is defined by parts, p;, by
the form {p suchthat pg py, ..}, where the p; are
partial definitions. p is the least upper bound of all the
pi. All such forms can be compiled down to A, but we
make use of this convenient syntax in defining further
fundamental array operations.

each is the array equivalent of the familiar map
operation:

{z suchthat shapez = shapea; (8)
forall x in grid a, (x pick z) =
(f (x pick a))}

eachfa =

each can be implemented as a dataflow graph for either
stream or bundle arrays. Figure 5 gives both versions.

Figure 5: Stream and bundle datafiow graphs
for 'each’

There is a family of operations related to each
(eachleft, eachright, and eachboth). To conserve space,
we present only eachleft; its stream-stream and bundle-
bundle graphs are given in Figure 6.

cachleft ftr = {z suchthat shape z = shapet; (9)
forall x in grid t, (x pick z) =
(f (x pick)y 1)}

reach takes a list of addresses and a nested array. It
uses pick to select an item using each address in the list
of addresses in turn. [head | tail] is a head-tail
decomposition notation for one-dimensional arrays.

reach{la = a (10)
reach [hit] a = reach t (h pick a)

rows and cols return the list of rows and the list of
columns, respectively, from a two-dimensional array.
mix is the inverse of rows.

rows tab = {z suchthat a

(shape z) = [(first (shape tab))];

forall fi in grid z, (shape (fi pick z)) =
[(second (shape tab))};

forall fi in grid z,

forall si in grid [(first z)],
((fi,si]jreach z) =

([fi, si’] pick tab)}

where [fi’] = fi; [si’] = si

right
left right

Figure 6: Stream-stream and bundle-bundle
dataflow graphs for 'eachleft’

colstab = {z suchthat (12)
(shape z) = [(second (shape tab))];
forall fi in grid z, (shape (fi pick z)) =
[(first (shape tab))];
forall fi in grid z,
forall si in grid [(first z)],
(Isi, fi]reach z) =
(Ifi’, si’] pick tab)}
where [fi’] = fi; [si’] = si

mix Ist = {z suchthat (13)
(shape z) = [first (shape Ist),
first (shape (first 1st))];
forall fi in grid z,
(fipickz) =
([(first fi)], [second fi}] reach Ist)}

194

reshape applies a new shape to an array, for example:

reshape (2; 1,4]1(2,2;0,1,2,3] =
(1,40, 1, 2, 3].

link collapses one level of structure in nested arrays, for
example:

link [4; [2; 0,01, (2,0, 1}, [2; 1, 0], [25 1, 1]] =
(8;0,0,0,1, 1,0, 1, 1.

All of the operations presented in this section have
dataflow graphs for both stream and bundle
representations of all array arguments. Space constraints
prohibit their presentation. They are used in the
compilation process reported in the next section.

7. Compilation

This section describes — at a very high level — the
process of compilation from A to static dataflow graphs
comprised of the primitives discussed in Section 6.
Compilation begins with a conventional translation to a
nested abstract syntax tree in which branches are function
application and leaves are arrays, atoms, or functions.

Consider the type of every function, for example,
each, which is of type [o] -> [B]. The number of array
constructors, [], in a type specification corresponds to the
number of arrays (independent or nested) taken as
arguments or returned as results by the function. For
each array there is a choice of whether to use a stream or
bundle representation. Where a function has d array
constructors, there are 29 choices for the representations
of arrays. In theory, there are static dataflow graphs for
each such choice (although some of the graphs are clearly
never useful). Each primitive in A has this diversity of
corresponding dataflow graphs.

Static dataflow graph code generation for A consists of
four phases:

1) Shape information is propagated throughout the
abstract syntax tree. After this process, the shape of
every intermediate and final result is known.

2) Choices are made regarding which versions of
primitives are to be used. As these choices are made, the
primitives are instantiated as graphs. The shapes of
arrays are used in this process to determine the width of
bundle-represented arrays.

3) Normally, the representation choice of the output of
one function will be the same as the representation
choice for the input of the next function. In this case,
the two dataflow graphs can be directly connected. On
occasion, however, it may be useful to make differing
representation choices in composed primitives. In this
case, stream-to-bundle or bundle-to-stream conversion
graphs must be interposed between the primitives. In
this manner, the entire graph is constructed.

4) Having constructed the complete graph,
optimizations are applied directly to the graph. These
optimizations correspond to intermediate container
removal, discussed above. In static dataflow graphs,
where the output array of one function is just a
(collection of) dataflow link(s), intermediate container
removal is essentially automatic. Output dataflow links
are simply connected to the appropriate inputs — the
intermediate container is only the conceptual bundle (or
stream), whicb uas no physical reality.

It should be pointed out that the resultant static
dataflow graphs have no run-time overheads for arrays.
Only the dataflow actors and their connection links are
involved in array processing. The entire cost of
supporting arrays is paid in the size of the graph.

8. Multiple representations give control
over parallelism and graph size

In this section we examine the nature of the dataflow
graphs that can be generated using the approach
established so far. We begin by examining some of the
dataflow graphs that can be generated for a simple
example, shuffle, which performs the perfect shuffle
operation.

shufflea = link (cols (reshape (14)
[2, (first (shape a)) div 2] a))

shuffle is illustrated by example. It is applied to a list
of ten integers. Arrays are diagrammed as boxes to show
spatial arrangement and nesting [10].

[L{2f3]4]5[6]7]8]9[10]

reshape arranges the argument into two rows:

11213]4]5
6 {7 (819 |10

cols interleaves the items in the rows by "picking up"
the columns, making a list of pairs:

LLfe 273 [8])i419 |5 {19]

link removes the extra structure added by cols, resulting
in the shuffled array:

L1f6]2]7({3]8]4]9]5]10]

Four dataflow graphs can be generated for shuffle,
corresponding to all four combinations of input and
output representations: bundle-to-bundle, bundle-to-

195

stream, stream-to-bundle, and stream-to-stream. These
are drawn in Figure 7. The optimizations of intermediate
container removal have been applied to these graphs.

1 2 3 4 5 6
A\

l |

@

bundle-to-stream

it-13 Aﬁxt&l\

stream-to-bundle

b

X

}

bundle-to-bundle

Figure 7: The four possible dataflow graphs for
‘shutfle’

Notice that the bundle-to-bundle form of shuffle has no
run-time cost; it is simply a wiring plan. The
component operations of shuffle (link, cols, and reshape)
naturally “wire up” without any intermediate containers
during our compilation process. Given our array
representation choice, it is impossible to generate
intermediate containers. The composition of bundle-to-
bundle “purely restructuring” operations such as link,
cols, and reshape always results in a simple wiring
pattern such as the bundle-to-bundle shuffle.

Unlike the each family of operators — which have
equally good stream-to-stream and bundle-to-bundle

196

graphs — shuffle is most naturally bundle-to-bundie.
The bundle-to-stream and stream-to-bundle forms do have
an important role: they permit simultaneous re-
arrangement and fan-in or fan-out of parallelism. If the
operations before (after) shuffle are time consuming and
the operations after (before) shuffle are simple, then the
bundle-to-stream (stream-to-bundle) forms of shuffle are
advantageous.

The following example expression illustrates our
ability to tailor parallelism using different choices of
array representations and corresponding choices of
primitives. The expression to be evaluated is each (each
incr) [0, 1], [2, 3]].

In Figure 8 we see a useful control of parallelism,
Where i is the tally of the outer array and j is the tally of
each inner array, we can perform the computation in
0O(1), O(i*)), O(i), or O() (not shown).

|1

0 2
Q> ¢
I ihcr“ ihcrl | incr]l ihcr|

@D Qs

bundle-of-bundles

stream-of-strearns stream-of-bundles

Figure 8: Dataflow graphs for ‘each (each incr)

(o, 11, (2, 3y

Given any non-recursive, known-shape expression in A
(or Falafel), it is possible to compile it to a dataflow
graph. During this process, a decision must be made for
every array (arguments, results, and intermediate
containers) whether the array’s representation is to be
stream or bundle. Where there are ¢ such choices in a
program, there are 2¢ possible dataflow graphs for the
program (shuffle has 22 possible graphs). These graphs
can be expected to exhibit a wide range of parallelism and
graph size characteristics. If we generate all (or some)
such graphs and plot parallelism versus graph size, we
have a set of semantically equivalent implementations for
the original program. The parallelism/graph-size
measures can be used to select the appropriate trade-off
for a given dataflow machine.

Several measures of the static and dynamic properties
of dataflow graphs are made. Static graph size is the
count of nodes in the graph. Static graph depth is the
maximum latency through the graph. Static average
parallelism is the ratio static-graph-size | static-graph-
depth. Run time is the number of cycles required to
complete execution of the graph, where an infinite
number of processors are available. Dynamic minimum
(maximum, average) parallelism is the least (greatest,
average) number of actors firing on any given cycle.

The first program example that we shall investigate
gencrates all cross-products of two nested lists of
integers;

cp ab = eachleft (eachright (eachboth *)) a b (15)

We generate five different graphs for cp. The cases
considered are described in Table 1. The argument used
in the first two examples are of the form [2; [3; ...] ...].
In the next two examples the arguments are [3; [4; ...] ...
]. The last example uses arguments of the form [7; [4; ...

] 1

It is apparent from the results in Table 1 that choices
of stream versus uvundle representations, and the
corresponding choices of operators, give a degree of
control over the parallelism and graph size of a dataflow
program.

Table 2 gives results for a larger program fragment;
matrix multiply. In all the examples in Table 2, the
decision has been made to present the rows of the
original arguments to matrix multiply, rather than the
unnested two-dimensional arrays. The rows (list of lists)
are presented in bundle-of-streams form. Consequently
the parallelism and graph sizes for these runs are
intermediate between the fully sequential and fully
parallel versions.

197

Table 1: Parallelism and graph size for cross

product

!Igg:l cp-2 cp-3 C S
outer
shape 2 2 3 3 7
inner
shape 3 3 4 4 4
outer || bun- bun- un- bun- bun-
repr. dle dle dle dle dle
inner |f stre- bun- stre- bun- stre-
repr. am dle am dle am
static
graph 8 24 21 84 133
size
static
graph 2 2 3 3 4
depth
static
avg 4 12 7 28 33.25

’ I

par.
oper.
Cr[:l. 24 24 84 84 532
run
time 6 2 10 3 11
dyn.
o e 12 4 2 14
par.
dyn.
max. 4 12 11 32 67
par.
dyn.
aslﬁgl. 4 12 8.4 28 48.4
par.

The results of this section offer considerable promise.
We have been able to specify algorithms in a completely
declarative form, without making any commitment to
any particular form of parallelism. From these
specifications, we have been able to generate a variety of
static dataflow graphs, each presenting different options
on the parallelism/graph-size tradeoff. The most
appropriate tradeoff can be selected by the user (or —
potentially — automatically).

In the next section we exploit more subtle means to
generate a finer range of tradeoffs between parallelism and
graph-size.

9. Array equivalence laws enhance control
over parallelism and graph size

Referentially transparent functional array languages,
with appropriate primitive operations, have large
numbers of “universal laws” (identities) which describe
equivalences between expressions [5]. For instance, the

composition of each applied to two functions is
equivalent to the each of the two composed functions:

(eachf)o(each g) A = each (fog) A (16)
for all f, g, and A

Table 2: Parallelism and graph size for matrix
multiplication

|| mm-1 mm-2 | mm-3
first
matrix {5,3] (7,3] [7. 4]
shape
second
matrix [3,5] (3,7 14,7
shape
outer bundle Fundle bundle
repr.
inner stream stream stream
repr.
static
graph size | 440 868 868
static
graph 1 11 1
depth
static
avg. par. 40 78.9 789
operation
cop:m " 1070 2114 2933
run time |{ 16 16 2
dynamic
my-:,. par. 25 49 49
dynamic
my:x. par. | 137 261 299
dynamic
azg. par. 66.9 132.1 1333

These laws greatly enhance our power to refine the
trade-off between parallelism and graph size. Consider
the application of (each incr) to a two-dimensional table
of integers. The techniques developed in Section 6 give
us only two results — the completely sequential graph
and the completely parallel graph described in the first
two columns of Table 3.

Three laws are available to improve our control over
the parallelism in this simple example. The first law is
based on the inverse relationship of mix and rows; it says
that we can break a table into its rows, apply each f to
each row, and then reassemble the table with mix.

each f a = mix (each (each f) (rows a)), an
when valence a = 2

Once we have obtained the each-each form on the
right-hand-side of (17), we are free to choose stream or
bundle representations for either level. As a consequence,
we can process each row sequentially and all columns in

198

parallel, or vis-a-versa. Thus where the table is m-by-n,
we have O(m) and O(n) algorithms as well as the O(m*n)
and O(1) algorithms. Statistics for these new versions
are given on columns three and four of Table 3.

A dual law breaks the table in to a list of columns
using the operations cols and transpose (which is not
defined in this paper).

each f a = transpose (mix (18)
(each (each) (cols a))),
when valence a = 2

Another strategy for factoring tables into bundles of
streams (or vis-a-versa) is to divide the table in half
(thirds, forths, ...). The following identify breaks tables
in half (take and drop are not defined in this paper).

each f a = (shape a) reshape (link (19)
{each f firsthalf, each f secondhalf])
where firsthalf =

(tally a div 2) take a;
secondhalf =
(tally adiv 2) drop a

Table 3: Parallelism and graph size for
‘(each incr)'

seg. | par. Jrow |]col half | half
sha-
pe 5.4 5 4 5 4 54 5.4 5 4
repr |fstre- [bun- fbun Pstre- [bun- | stre-
am dle dle_ am_ dle_ am_
stre- bun- stre- bun-
am dle am dle
stat.
0 5 4 2 10
grp. 1 2
SZ.
stat. 1 1 1 1 1
gIp.
dep.
stat.,
0 N 4 2 10
avg. “1 2
par.
nn
ti- 20 1 4 5 10 2
me
dyn.
min 1 20 5 4 2 10
par.
dyn.
max 1 20 5 4 2 10
par.
dyn.
avg. 1 20 S 4 2 10
par. ||

The results for this strategy with bundle-of-streams and
stream-of-bundles representations are given in the last
two columns of Table 3.

The above strategies factor two-dimensional arrays.
They all generalize to higher dimensional arrays. An
operation could be mapped on an array with shape [i, j, k]
in O(1), O(i*j), O(i*k), O(*k), O(i), O), C(k), or O(i*j*k)
time. The graph sizes for these computations would be
the reverse order of the time complexities, respectively.

Reductive applications of functions (e.g., reduce f i [a,
b,c] = af (bf(cfi)) can be performed sequentially, or —
for associative functions — in a binary trec. Thus we
can reduce arrays of shape [n] in either space O(1) and
time O(n), or in space O(n) and time O(log n). When
reducing large arrays, the reduction can be broken into
two levels of reduction using the various strategies of
rectangular factoring discussed above. For instance:

reduce fia = reduce fi (each (reduce f1) (rows a)) (20)

when i is the identity of f, and f is associative. One
reduce can be done sequentially and the other in parallel.
This approach can be generalized to more than two levels
of reduction if the architecture makes this a useful
strategy.

Four patterns of factoring of expressions are exposed
by our referentially transparent model of array
computations: 1) re-arrangement operations, such as our
shuffle example, 2) cross product, as illustrated in the
eachleft-eachright-eachboth example, 3) operation
mapping, as illustrated in the each-incr and matrix
multiplication examples, and 4) the reductive patterns
just discussed. These four patterns can be combined in
any form in more complex examples.

10. Conclusions

We have systematically exploited identities and
representation choices in a referentially transparent
system of array expressions and dataflow graphs to
control the degree of parallelism. This work has
demonstrated, in principle, that array-based computations
can be written in a very general form and can then be
mapped to particular dataflow machine. Thus dataflow
users can avoid early-binding of control of parallelism
strategies.

A few fundamental patterns of factoring of array
computations have been exposed by our examples.
While the set of patterns is small, they are powerful
strategies, and can be applied in combination to produce
more complex possibilities for more complex problems.

While these factoring ideas are not new, our systematic
exploitation of them appears to be both new and
promising.

The present work is preliminary; there are many
limitations. Presently, only structural recursions
(recursions where the inductive principle is the structure

199

of the array) are handled; our ideas do not yet extend to
course-of-values recursions.

Only application to static dataflow has been studied.
While there does not appear to be any serious difficulty
in extending these ideas to dynamic dataflow, this work
remains.

Our methods require that the shape of all arrays be
known. This restriction is equivalent to the restriction to
static dataflow — it is necessary that the structure of the
final dataflow graph be known, and that structure is
dictated by the shape of containers. This restriction can
be relaxed for stream representations (which are not
reconverted to bundles), but we have not done so.

There are important array computations which our
techniques do not address. Computations which perform
dynamic look-ups in arrays do not map well to our
approach. For these computations, the storage solutions
are superior. In our view, the present techniques should
be applied within the larger context of an array dataflow
system that uses storage solutions where necessary or
preferable, but uses our techniques where appropriate to
avoid the overheads of storage solutions, or to better
control parallelism. The relationship between storage
solutions and our approach has not been worked out.

The primary future effort suggested by this work is the
automation of the exploration of the domains of possible
graphs for array dataflow expressions. The choices of
stream and bundle representation, and the applications of
identities exploited in this paper were all human
decisions. If this approach is to be practical, automated
systems must find the better graphs. As the number of
graphs is exponential in the number of arrays and
identities, blind search will not be useful for large
expressions. Heuristic approaches must be established.

The second future effort suggested by this work is to
embed nur approach within the larger context of a storage
solution, as discussed above.

The success of this approach is due to the referential
transparency of the source expressions and the dataflow
graphs. While the approach cannot be expected to solve
all dataflow programming problems, it is a useful
approach for a large and interesting subset of array
computations.

References

[1}] Arvind and lanucci R., "Two Fundamental Issues
in Multiprocessing: The Data Flow Solution",
Tech Report 226-2, Laboratory for Computer
Science, MIT, July 1983.

{2] Dennis J.B., "Data Flow Supercomputers”, IEEE
Computer, November 1980, pp 48-56.

(3] Feo.). T., Cann, D. C. and Oldehoeft, R. R, "A
Report on the Sisal Language Project”, Journal of
Parallel and Distributed Computing, Vol. 10,
1990, pp. 349-366.

(4]

(51

(6]

(7

(8]

19]
(10]

(11]

[12]

(13]

[14]

[15]

200

Gaudiot, J. L. and Wei, Y., "Token Relabeling in
a Tagged Token Dataflow Architecture", IEEE
Transactions on Computers, Sept. 1989.

Jenkins M.A,, "The Role of Equations in Nial",
Tech Report# 84-161, Department of Computing
and Information Science, Queen's University,
Canada, 1984.

Jenkins M. A. and Jenkins W. H., “Q’Nial
Reference Manual”, Nial Systems Limited, Canada
198S.

McCrosky C., "The Elimination of Intermediate
Containers in the Evaluation of First-Class Array
Expressions", Computer Languages, Vol 16, No.
2, pp 179-195.

McCrosky C., Sailor K., and ven der Buhs, B.,
“The Semantics of Falafel”, report in progress,
University of Saskatchewan.

“Miranda System Manual”, Research Software
Limited, 1987.

More T., "Notes on the Diagrams, Logic and
Operations of Array Theory", Tech Report G320-
2137, IBM Cambridge Scientific Center, 1981.
Nikhil R. S., “Id (Version 90.0) Reference
Manual”, Tech Report CSG Memo 284-1, MIT
Laboratory for Computer Science, Cambridge,
USA, July 1990.

Pingali, K. and Arvind, "Efficient Demand-Driven
Evaluation. Part I", ACM TOPLAS, April 1985,
pp 311-333.

Ranelletti, J. E., "Graph Transformation
Algorithms for Array Memory Optimization in
Applicative Languages”, Ph.D. Thesis, University
of California at Davis, 1987.

Roy K., “Static Dataflow Implementation of
First-Class Arrays”, M. Sc. Thesis, Department
of Computational Science, University of
Saskatchewan, Canada, 1990.

Traub, K., “Multi-thread Code Generation for
Dataflow Architectures from Non-Strict
Programs”, FPCA’91, Cambridge, pp. 73-101.

